WO2021097836A1 - 储物设备、储物设备控制方法、装置、冷藏设备及系统 - Google Patents

储物设备、储物设备控制方法、装置、冷藏设备及系统 Download PDF

Info

Publication number
WO2021097836A1
WO2021097836A1 PCT/CN2019/120372 CN2019120372W WO2021097836A1 WO 2021097836 A1 WO2021097836 A1 WO 2021097836A1 CN 2019120372 W CN2019120372 W CN 2019120372W WO 2021097836 A1 WO2021097836 A1 WO 2021097836A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
rfid
side plate
antennas
rfid module
Prior art date
Application number
PCT/CN2019/120372
Other languages
English (en)
French (fr)
Inventor
吴晓
胡龙耀
耿路
吴靖
范育宸
刘怀国
刘润声
Original Assignee
连云港伍江数码科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 连云港伍江数码科技有限公司 filed Critical 连云港伍江数码科技有限公司
Priority to PCT/CN2019/120372 priority Critical patent/WO2021097836A1/zh
Publication of WO2021097836A1 publication Critical patent/WO2021097836A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation

Definitions

  • the present invention relates to the technical field of electrical equipment, in particular to a storage device, a storage device control method, device, refrigeration equipment and system.
  • the traditional technology has at least the following problems: the traditional storage device's control of the antenna is chaotic, which leads to repeated identification, which leads to a waste of antenna resources.
  • an embodiment of the present application provides a storage device, including:
  • Box body the box body is used to store items with corresponding RFID tags; the box body includes a bottom plate;
  • Laminate the laminate is set in the cavity of the box, and is used to divide the cavity of the box;
  • a plurality of antennas and at least two RFID modules some of the antennas are arranged on the bottom plate, and the other part of the antennas are arranged on the layer board; any antenna is electrically connected to one RFID module, and each RFID module is electrically connected to at least one antenna;
  • each RFID module takes turns to perform frequency hopping scanning through the corresponding antenna to collect the item information in each RFID tag.
  • the antenna is a linear polarization antenna.
  • the antenna is a circularly polarized antenna.
  • the antenna is a unidirectional radiating antenna or a bidirectional radiating antenna.
  • it further includes a box door, the box door is installed on the box body, and the box door is a shielded door made of electromagnetic shielding material;
  • the box body also includes a first side plate, a second side plate, a third side plate and a fourth side plate;
  • the first side plate, the second side plate, the third side plate, and the fourth side plate all include two layers of first shielding plates and a first insulation layer sandwiched between the two layers of first shielding plates;
  • the bottom plate includes a second shielding plate, a transmission layer made of ABS material, and a second insulation layer sandwiched between the second shielding plate and the transmission layer made of ABS material;
  • the first side plate, the second side plate, the third side plate, the fourth side plate and the bottom plate enclose a cavity of the box body.
  • the embodiment of the present application also provides a storage device control method, including the following steps:
  • the next RFID module sends a control signal so that the next RFID module performs frequency hopping scan through the corresponding antenna to collect the item information in each RFID tag.
  • an embodiment of the present application also provides a storage device control device, including:
  • the polling judgment module is used to judge whether the corresponding antenna frequency hopping scan of the RFID module in the current working state has ended;
  • the signal sending module is used to send a control signal to the next RFID module, so that the next RFID module performs frequency hopping scan through the corresponding antenna, and collects the item information in each RFID tag.
  • an embodiment of the present application also provides a refrigerating device, including a compressor, a condenser, and the storage device described above;
  • the compressor is mechanically connected to the condensing pipe; the condensing pipe is arranged in the box of the storage device.
  • an embodiment of the present application also provides a refrigerating system, including a management device, a device interface, and a plurality of refrigerating devices as described above;
  • the management device is electrically connected to the RFID module of the refrigerating device through the device interface.
  • the management device is a computer, a mobile terminal or a cloud server;
  • the refrigeration device is an RS232 interface, an RS485 interface and/or a USB interface.
  • the storage device includes a box body, a layer board, a plurality of antennas, and at least two RFID modules.
  • the box body is used to store items with corresponding RFID tags.
  • the box body includes a bottom plate; the layer board is arranged in the cavity of the box body. The cavity used to divide the box; part of the antenna is arranged on the bottom plate, and the other part is arranged on the layer plate; any antenna is electrically connected to an RFID module, and each RFID module is electrically connected to at least one antenna; the antenna in the storage device is specifically
  • the working process is: each RFID module performs frequency hopping scanning through the corresponding antenna in turn, and collects the item information in each RFID tag, that is, one RFID module controls a part of the antenna. After an RFID module completes the control of all the antennas connected to it, download Only an RFID module enters the working state, so as to realize the orderly control of the antenna in the storage device, avoid the problem of antenna control confusion, and effectively use the antenna resources.
  • Figure 1 is a schematic diagram of the structure of the storage device of the present application in an embodiment
  • FIG. 2 is a schematic diagram of the antenna radiation direction in the storage device of the present application in an embodiment
  • FIG. 3 is a flow chart of the steps of the storage device control method of the present application in an embodiment
  • Figure 4 is a schematic structural diagram of a storage device control device of the present application in an embodiment
  • Figure 5 is a schematic structural diagram of the refrigeration equipment of the present application in an embodiment
  • Fig. 6 is a schematic structural diagram of the refrigerating system of the present application in an embodiment.
  • a storage device which includes:
  • the box body 12 is used to store items with corresponding RFID tags 14; the box body 12 includes a bottom plate 122;
  • the layer plate 124 is arranged in the cavity of the box body 12 for dividing the cavity of the box body 12;
  • a plurality of antennas 16 and at least two RFID modules 18, part of the antenna 16 is arranged on the bottom plate 122, another part of the antenna 16 is arranged on the layer plate 124; any antenna 16 is electrically connected to one RFID module 18, and each RFID module 18 is at least electrically connected Connect an antenna 16;
  • each RFID module 18 performs frequency hopping scanning through the corresponding antenna 16 in turn, and collects the item information in each RFID tag 14.
  • the box is used to store items with corresponding RFID tags.
  • the box body further includes a first side plate, a second side plate, a third side plate and a fourth side plate; the first side plate, the second side plate, the third side plate and the fourth side plate all include Two layers of first shielding plates and a first insulation layer sandwiched between the two layers of first shielding plates; the bottom plate includes a second shielding plate, a transparent layer made of ABS material, and sandwiched between the second shielding plate and made of ABS material The second insulation layer between the permeable layers; the first side plate, the second side plate, the third side plate, the fourth side plate and the bottom plate enclose the cavity of the box.
  • the housing of the box (made by mechanically connecting the first shielding plate of the first side plate, the second side plate, the third side plate and the fourth side plate and the second shielding plate of the bottom plate) is made of electromagnetic shielding performance.
  • the shell made of materials, for example, the outer shell made of metal materials, the inner shell of the box body (the first shielding plate of the first side plate, the second side plate, the third side plate and the fourth side plate and The transparent layer of the bottom plate is mechanically connected).
  • the four sides are made of materials with electromagnetic shielding properties, and the bottom surface is made of magnetically permeable materials.
  • the magnetically permeable material can be made of ABS material, between the outer shell and the inner shell of the box. Fill the insulation material to form an insulation layer.
  • the electromagnetic shielding cabinet can prevent the leakage of electromagnetic waves inside.
  • the bottom plate of the cabinet adopts magnetically permeable materials to ensure that the electromagnetic waves emitted by the first-type antenna installed on the bottom plate can spread into the cavity of the cabinet without hindrance.
  • the storage device further includes a box door, the box door is installed on the box body, and the box door is a shielded door made of electromagnetic shielding material. Further, the box door is a box door made of glass with electromagnetic shielding performance.
  • RFID (Radio Frequency Identification) tags are electronic tags that record certain information based on radio frequency identification technology, and store relevant information about items, such as unit price, production date, shelf life, and so on.
  • radio frequency identification is a non-contact automatic identification technology that automatically identifies data in RFID tags through radio frequency signals or writes data to RFID tags. Radio frequency identification technology does not require manual intervention and can work in various harsh environments.
  • the RFID tag includes a coupling element and a chip, and the coupling element is electrically connected to the chip. Further, the RFID tag is an active RFID tag, a semi-active RFID tag or a passive RFID tag.
  • the RFID tag adopts a UHF (Ultra High Frequency, ultra high frequency) electronic tag
  • the corresponding RFID module adopts an ultra high frequency RFID module.
  • UHF electronic tags are passive electronic RFID tags. When the RFID module is outside the sensing range, the UHF electronic tag is in a passive state. When the RFID module is within the sensing range, the UHF electronic tag extracts the electromagnetic waves from the RFID module and extracts the required work. power supply.
  • UHF electronic tags have the characteristics of long recognition distance, high recognition, strong anti-collision ability, and good scalability, which make storage equipment have good recognition capabilities.
  • the laminate is used to divide the cavity of the box up and down, so that the cavity of the box becomes multiple independent storage spaces.
  • the laminate includes at least one laminate, and the specific number of laminates can be determined according to the size of the box.
  • the laminate is a laminate made of metal materials, or a laminate made of high-strength plastic materials. It should be noted that when the laminate is a laminate made of metal materials, The antenna is attached to the laminate. When the laminate is made of high-strength plastic material (for example, the laminate is made of ABS material), the antenna can be attached to the laminate or embedded in the layer Inside the board. Further, the laminate is a grid-like laminate or a hollow laminate.
  • the storage device further includes a plurality of partitions, the partitions are arranged on the floor, specifically, each floor is provided with at least one partition, and the partition is used to reduce the space on the floor. Perform horizontal split.
  • the partitions are grid-shaped partitions, and metal partitions or plastic partitions can be used.
  • the antenna is the medium for transmitting and receiving signals between the RFID tag and the RFID module.
  • the performance of the antenna can be characterized by the following parameters: gain, bandwidth, input impedance, reflection system, voltage standing wave ratio, incident power/reflected power, lobe width, front-to-back ratio and polarization characteristics.
  • gain is used to measure the antenna The ability to send and receive signals in a specific direction; bandwidth refers to the frequency within a certain range near the resonance point; input impedance refers to the ratio of signal voltage to signal current at the antenna input; reflection coefficient refers to the ratio of reflected voltage to incident voltage; voltage standing wave Ratio refers to the ratio of the antinode voltage to the node voltage; the lobe width refers to the two sides of the maximum radiation direction of the main lobe; the angle between the two points where the radiation intensity is reduced by 3dB, used to describe the antenna radiation energy in the main lobe direction The degree of concentration, it should be noted that the larger the lobe width, the fewer the number of antennas that need to be installed in the box, which is beneficial to reduce the manufacturing cost of storage equipment; the front-to-back ratio refers to the ratio of the maximum radiation intensity of the main lobe to the rear lobe ; Polarization characteristics indicate the way the electromagnetic waves emitted by the antenna propagate, including linear polarization,
  • the antenna is a linearly polarized antenna.
  • the RFID tag adopts a linear polarization tag.
  • the polarization direction of the linear polarization antenna is consistent with the polarization direction of the RFID tag.
  • the antenna is a circularly polarized antenna.
  • the RFID tag adopts a circularly polarized tag.
  • the circularly polarized antenna may be a left-handed circularly polarized antenna or a right-handed circularly polarized antenna.
  • the circularly polarized wave generated by the circularly polarized antenna is a constant-amplitude rotating field, which can be decomposed into two orthogonal linearly polarized waves with the same amplitude and a phase difference of 90 degrees, that is, regardless of the polarization direction of the antenna receiving the signal, The received signals are all the same, and the circularly polarized antenna method is adopted, which reduces the sensitivity of the RFID module to the position of the antenna and the position of the tag.
  • the number of antennas can be determined according to the size of the box.
  • the size of the box is small, a smaller number of class-like antennas are set, and when the size of the box is large, a larger number of antennas are set.
  • part of the antenna is set on the bottom plate, and the other part is set on the laminate.
  • the antenna is a unidirectional radiating antenna or a bidirectional radiating antenna. It should be noted that, as shown in Fig. 2, the radiation direction of the antenna is set toward the object.
  • the carried RFID tag maximizes the efficiency of the antenna.
  • the antenna provided on the bottom plate adopts a unidirectional radiation antenna, and the radiation direction of the antenna faces the RFID tag carried by the article on the bottom plate.
  • the antenna set on the laminate can be a unidirectional radiating antenna or a bidirectional radiating antenna.
  • the antenna is a unidirectional radiating antenna
  • the radiation direction of the antenna is toward the RFID tag carried by the item on the laminate
  • the antenna is a bidirectional radiating antenna
  • one direction of the antenna radiation is toward the RFID tag carried by the article on the laminate
  • the other direction of the antenna radiation is toward the RFID tag carried by the article on the bottom plate.
  • the number of antennas can be determined according to the size of the box.
  • the size of the box is small, a smaller number of antennas are set, and when the size of the box is large, a larger number of antennas are set.
  • 10 antennas are arranged in a box, of which 2 antennas are arranged on the bottom plate and 8 antennas are arranged on the layer board. Setting an appropriate number of second-type antennas according to the size of the box can maximize the reading efficiency of the antenna and reduce the time for repeated reading.
  • the RFID module is equivalent to the antenna's transceiver, which can read the information in the RFID tag through the antenna, and can also write information to the RFID tag through the antenna.
  • the RFID module is a multi-channel RFID module, which can increase the scalability of the storage device by connecting multiple antennas, that is, as the size of the box becomes larger, the number of antennas can be increased accordingly to ensure large The size of the box can be fully covered by the antenna radiation range, reducing the identification blind area and improving the identification effect.
  • Each RFID module is electrically connected to a part of the antenna, each antenna is not repeatedly electrically connected to the RFID module, and one antenna is only electrically connected to one RFID module.
  • each RFID module can be triggered by external control signals in turn, such as the control signal provided by the operation and maintenance personnel manually triggering the control signal or the control signal output by the upper computer, and then start to enter the working state, and drive its own connection in turn
  • the antennas of each antenna perform frequency hopping scanning to collect the item information of the items attached to each RFID tag within the coverage of the radio frequency signal. For example, when any RFID module is working, the other RFID modules remain on standby.
  • the RFID module 20 in this working state first drives any connected antenna to perform a frequency hopping scan in the frequency band from 920MHz (megahertz) to 925MHz, and then drives another antenna to hop within the aforementioned preset frequency band.
  • each antenna 18 is sequentially driven to perform frequency hopping scanning until all the antennas connected to the RFID module are traversed. After the RFID module traverses the frequency sweep of each antenna on it, the next RFID module starts to enter the working state, and the working mode is the same as the RFID module after the previous working.
  • 10 antennas are included, which are respectively labeled No. 1, No. 2, and No. 3 to No. 10, wherein the No. 1 to No. 8 antennas are arranged on the laminate, and the No. 9 and 10 antennas are arranged on the bottom plate.
  • It includes 2 RFID modules, which are marked as the first RFID module and the second RFID module. The antennas with odd numbers are electrically connected to the first RFID module, and the antennas with even numbers are electrically connected to the second RFID module.
  • the first RFID module scans and reads the information in the RFID tag in the preset frequency band through antennas No. 1, No. 3 to No. 9 respectively.
  • the second RFID module sequentially The information in the RFID tag is scanned and read in the preset frequency band through the antennas No. 2, No. 4 to No. 10 respectively. After the second RFID module completes the work, it returns to the first RFID module to work, and then rotates in turn.
  • This example only illustrates how each RFID module scans and reads the information in the RFID tag in the preset frequency band through the corresponding antenna in turn. It does not constitute the number of RFID modules, the number of antennas, and the working order of each RFID module. The working order of the antenna is limited. Further, the preset frequency band may be determined according to actual needs, for example, the preset frequency band is 920 MHz to 925 MHz.
  • the storage device includes a box, a laminate, multiple antennas, and at least two RFID modules, wherein the box is used to store items with corresponding RFID tags, and the box includes a bottom plate;
  • the layer board is arranged in the cavity of the box body for dividing the cavity of the box body; part of the antenna is arranged on the bottom plate, and the other part is arranged on the layer board; any antenna is electrically connected to one RFID module, and each RFID module is at least electrically connected An antenna;
  • the specific process of storage equipment is: each RFID module takes turns to perform frequency hopping scanning through the corresponding antenna to collect the item information in each RFID tag, that is, one RFID module controls a part of the antenna, and one RFID module completes the completion of all connected to it After the antenna is controlled, the next RFID module enters the working state, thereby achieving orderly control of the antenna in the storage device, avoiding the problem of antenna control confusion, and effectively using antenna resources.
  • a storage device control method which includes the following steps:
  • Step S310 If the frequency hopping scan of the antenna corresponding to the RFID module in the current working state ends, the next RFID module sends a control signal so that the next RFID module performs frequency hopping scan through the corresponding antenna, and collects the items in each RFID tag information.
  • devices with control functions such as controllers, upper computers, terminals, etc. can be used to control the RFID module, and it is not limited to which device or method of control the controller of the RFID module is, as long as the control of the RFID module is achieved. can.
  • the control system of the host computer or storage device can be used.
  • the total controller of the freezer sends a control signal to the next RFID module, and the control signal can be, but is not limited to, a timing level signal.
  • the next RFID module starts at the set frequency band and drives each antenna on it in turn to perform frequency hopping scans.
  • the next RFID module starts to work, drive any antenna on it to perform frequency hopping scans in the 920MHz to 925MHz frequency band. After the antenna is swept and received, the next antenna is driven to perform frequency hopping scan in the frequency band of 920MHz to 925MHz.
  • each RFID module is controlled in turn in and out of the working state, and the item information of each item can be read by the radio frequency signal fed back by the RFID tag on each item when each antenna is hopping and scanning in real time.
  • the storage device control method is a method implemented based on the hardware structure of the storage device.
  • antennas there are 12 antennas, which are respectively labeled No. 1, No. 2, and No. 3 to No. 12, wherein the No. 1 to No. 10 antennas are arranged on the laminate, and the No. 11 and 12 antennas are arranged on the bottom plate.
  • It includes 3 RFID modules, which are marked as the first RFID module, the second RFID module, and the third RFID module.
  • No. 1 to No. 4 antennas are electrically connected to the first RFID module
  • No. 5 to No. 8 antennas are electrically connected to the second RFID module
  • No. 9 to No. 12 antennas are electrically connected to the second RFID module.
  • the first RFID module scans and reads the information in the RFID tag in the preset frequency band through antennas No. 1 to No. 4 respectively.
  • the second RFID module sequentially respectively. Scan and read the information in the RFID tag in the preset frequency band through antennas No. 5 to 8.
  • the third RFID module scans through antennas 9 to 12 in the preset frequency band. Read the information in the RFID tag, and then return to the first RFID module to work after the third RFID module completes its work, and cycle in turn.
  • This example only illustrates how each RFID module scans and reads the information in the RFID tag in the preset frequency band through the corresponding antenna in turn. It does not constitute an analysis of the number of RFID modules, the number of antennas, and the working sequence of each RFID module. The working order of the antenna is limited.
  • the RIFD read-write module can be reasonably controlled to work in order, and the RIFD read-write module can scan and read through the antenna connected to it, thereby avoiding the problem of antenna control confusion.
  • the problem of repeated identification is also avoided, thereby improving the efficiency of antenna identification and effectively saving antenna resources.
  • steps in the flowchart of FIG. 3 are displayed in sequence as indicated by the arrows, these steps are not necessarily performed in sequence in the order indicated by the arrows. Unless there is a clear description in this article, there is no strict order for the execution of these steps, and these steps can be executed in other orders. Moreover, at least part of the steps in FIG. 3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. The execution of these sub-steps or stages The sequence is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • a storage device control device including:
  • the polling judgment module 410 is used to judge whether the antenna frequency hopping scan corresponding to the RFID module in the current working state has ended;
  • the signal sending module 420 is configured to send a control signal to the next RFID module, so that the next RFID module performs frequency hopping scan through the corresponding antenna, and collects the item information in each RFID tag.
  • Each module in the storage device control device described above can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a refrigerating device including a compressor 52, a condenser 54 and the storage device as described in the storage device embodiment;
  • the compressor 52 is mechanically connected to the condenser tube 54; the condenser tube 54 is arranged in the box 12 of the storage device.
  • refrigeration equipment is used to store food, medicines and other electrical equipment at low temperatures.
  • refrigeration equipment includes freezers, refrigerators, freezers, and so on.
  • the condenser tube is arranged on the inner wall of the box body.
  • the refrigeration equipment also includes lighting equipment, lighting equipment. Specifically, the lighting equipment does not cause electromagnetic waves to leak, and the leaked electromagnetic waves are prevented from interfering with the RFID module to read the information on the RFID tag through the antenna. Refrigeration equipment avoids installing antennas at the location where the condenser is installed, so as to avoid frost on the condenser from damaging the antenna.
  • the refrigeration equipment further includes a controller, which is electrically connected to the RFID module, the compressor, and the lighting equipment.
  • the controller is the control center of the refrigeration equipment, and is used to control the coordination of various parts of the refrigeration equipment.
  • each embodiment of the refrigerating equipment of the present application by arranging the antenna on the bottom plate and the layer plate of the box, it effectively overcomes the problem of insufficient coverage of the antenna inside the box of the traditional refrigeration equipment, and the interference of the antenna caused by condensation and frost in the box.
  • the antenna signal attenuation caused by the metal inner wall of the body and the metal bracket inside the box, and the reasonable setting of the antenna effectively reduces the identification blind area, improves the reliability of the RFID module for tag identification, and finally solves the long-standing large-capacity horizontal cold storage Difficulties in equipment placement antennas.
  • a refrigerating system including a management device 62, a device interface 64, and a plurality of refrigerating devices as described above;
  • the management device 62 is electrically connected to the RFID module 18 of the refrigerating device through the device interface 64.
  • the management device 62 is a computer, a mobile terminal or a cloud server; the device interface 64 is an RS232 interface, an RJ45 interface, an RS485 interface and/or a USB interface.
  • the management equipment is used to comprehensively manage multiple refrigeration equipment to realize the unified management of multiple refrigeration equipment in a large area (such as a large supermarket). Specifically, each refrigeration equipment collects the types of items stored in the refrigeration equipment through the RFID module and Information such as quantity is reported to the management equipment, and the management equipment counts the information reported by each refrigerating equipment, and generates a list of items allocated to each refrigerating equipment, so that the refrigerating equipment can be supplemented with corresponding items in time.
  • the management device is a computer, a mobile terminal, or a cloud server.
  • the equipment interface provides an expandable interface for connecting multiple refrigeration equipment and a wired communication interface for the management equipment 62. Its function is to summarize and transmit information.
  • the equipment interface includes RS232 interface, RJ45 interface, RS485 interface and/ Or USB interface.
  • the management equipment 62 is used to uniformly manage multiple refrigeration equipment, which improves the management efficiency and timeliness of the equipment, and also reduces the manpower and material resources for management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

一种储物设备、储物设备控制方法、装置、冷藏设备以及系统,其中储物设备包括:箱体(12),箱体(12)用于储存带有相应RFID标签(14)的物品;箱体(12)包括底板(122);层板(124),层板(124)设置于箱体(12)的腔体内,用于分割箱体(12)的腔体;多个天线(16)以及至少两个RFID模块(18),部分天线(16)设置于底板(122)上,另一部分天线(16)设置于层板(124)上;任一天线(16)电连接一个RFID模块(18),且各RFID模块(18)至少电连接一个天线(16);其中,各RFID模块(18)轮流通过相应的天线(16)进行跳频扫描,采集各RFID标签(14)内的物品信息,实现了有次序的控制储物设备中的天线,避免了天线控制混乱的问题,进而有效地利用了天线资源。

Description

储物设备、储物设备控制方法、装置、冷藏设备及系统 技术领域
本发明涉及电器设备技术领域,特别是涉及一种储物设备、储物设备控制方法、装置、冷藏设备及系统。
背景技术
随着科学技术的发展,各行各业智能化程度不断加深,各类具有计算处理能力的智能设备也层出不穷。例如,具备储物功能的智能储物设备得到了长足的发展,其中,又如具备储物功能的智能冰箱、智能冰柜等冷藏设备在零售业方面以及食品、药品的储藏方面都得到了广泛地应用。该类冷藏设备能够自主地识别并管理其内储藏的物品。
但是,在实现过程中,发明人发现传统技术中至少存在如下问题:传统储物设备对天线的控制混乱使得重复识别,导致天线资源的浪费。
发明内容
基于此,有必要针对传统冷藏设备对天线的控制混乱使得重复识别,导致天线资源的浪费的问题,提供一种储物设备、储物设备控制方法、装置、冷藏设备及系统。
为了实现上述目的,一方面,本申请实施例提供了一种储物设备,包括:
箱体,箱体用于储存带有相应RFID标签的物品;箱体包括底板;
层板,层板设置于箱体的腔体内,用于分割箱体的腔体;
多个天线以及至少两个RFID模块,部分天线设置于底板上,另一部分天线设置于层板上;任一天线电连接一个RFID模块,且各RFID模块至少电连接一个天线;
其中,各RFID模块轮流通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息。
在其中一个实施例中,天线为线极化天线。
在其中一个实施例中,天线为圆极化天线。
在其中一个实施例中,天线为单向辐射天线或双向辐射天线。
在其中一个实施例中,还包括箱门,箱门安装在箱体上,箱门为电磁屏蔽材料制成的屏蔽门;
箱体还包括第一侧板、第二侧板、第三侧板以及第四侧板;
第一侧板、第二侧板、第三侧板和第四侧板均包括两层第一屏蔽板以及夹于两层第一屏蔽板之间的第一保温层;
底板包括第二屏蔽板、ABS材料制成的透过层以及夹于第二屏蔽板与ABS材料制成的透过层之间的第二保温层;
第一侧板、第二侧板、第三侧板、第四侧板和底板围成箱体的腔体。
另一方面,本申请实施例还提供了一种储物设备控制方法,包括以下步骤:
若当前工作状态的RFID模块相应的天线跳频扫描结束,则向下一个RFID模块发送控制信号,以使下一个RFID模块通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息。
再一方面,本申请实施例还提供了一种储物设备控制装置,包括:
轮询判断模块,用于判断当前工作状态的RFID模块相应的天线跳频扫描是 否结束;
信号发送模块,用于向下一个RFID模块发送控制信号,以使下一个RFID模块通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息。
又一方面,本申请实施例还提供了一种冷藏设备,包括压缩机、冷凝管以及如上所述的储物设备;
压缩机机械连接冷凝管;冷凝管设置于除储物设备的箱体内。
又一方面,本申请实施例还提供了一种冷藏系统,包括管理设备、设备接口以及多个如上所述的冷藏设备;
管理设备通过设备接口电连接冷藏设备的RFID模块。
在其中一个实施例中,管理设备为电脑、移动终端或云端服务器;冷藏设备为RS232接口、RS485接口和/或USB接口。
上述技术方案中的一个技术方案具有如下优点和有益效果:
储物设备包括箱体、层板、多个天线以及至少两个RFID模块,其中,箱体用于储存带有相应RFID标签的物品,箱体包括底板;层板设置于箱体的腔体内,用于分割箱体的腔体;部分天线设置于底板上,另一部分设置于层板上;任一天线电连接一个RFID模块,且各RFID模块至少电连接一个天线;储物设备内的天线具体工作过程为:各RFID模块轮流通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息,即一个RFID模块控制一部分天线,在一个RFID模块完成对所有与其连接的天线的控制后,下一个RFID模块才进入工作状态,从而实现有次序的控制储物设备中的天线,避免了天线控制混乱的问题,进而有效地利用了天线资源。
附图说明
图1为一个实施例中本申请储物设备的结构示意图;
图2为一个实施例中本申请储物设备中的天线辐射方向示意图;
图3为一个实施例中本申请储物设备控制方法的步骤流程图;
图4为一个实施例中本申请储物设备控制装置的结构示意图;
图5为一个实施例中本申请冷藏设备的结构示意图;
图6为一个实施例中本申请冷藏系统的结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件并与之结合为一体,或者可能同时存在居中元件。本文所使用的术语“设置于”、“安装”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了解决传统储物设备对天线的控制混乱使得重复识别,导致天线资源的浪费的问题,在一个实施例中,如图1所示,提供了一种储物设备,包括:
箱体12,箱体12用于储存带有相应RFID标签14的物品;箱体12包括底板122;
层板124,层板124设置于箱体12的腔体内,用于分割箱体12的腔体;
多个天线16以及至少两个RFID模块18,部分天线16设置于底板122上,另一部分天线16设置于层板124上;任一天线16电连接一个RFID模块18,且各RFID模块18至少电连接一个天线16;
其中,各RFID模块18轮流通过相应的天线16进行跳频扫描,采集各RFID标签14内的物品信息。
需要说明的是,箱体用于储存带有相应RFID标签的物品。在一个示例中,箱体还包括第一侧板、第二侧板、第三侧板以及第四侧板;第一侧板、第二侧板、第三侧板和第四侧板均包括两层第一屏蔽板以及夹于两层第一屏蔽板之间的第一保温层;底板包括第二屏蔽板、ABS材料制成的透过层以及夹于第二屏蔽板与ABS材料制成的透过层之间的第二保温层;第一侧板、第二侧板、第三侧板、第四侧板和底板围成箱体的腔体。换言之,箱体的外壳(由第一侧板、第二侧板、第三侧板和第四侧板的第一屏蔽板以及底板的第二屏蔽板机械连接而成)为采用具备电磁屏蔽性能的材料制成的壳体,例如,采用金属材料制成的外壳,箱体的内壳(由第一侧板、第二侧板、第三侧板和第四侧板的第一屏蔽板以及底板的透过层机械连接而成)的四面采用具备电磁屏蔽性能的材料制成,底面采用透磁材料制成,例如,透磁材料可以采用ABS材料,在箱体的外壳与内壳之间填充保温材料形成保温层。采用电磁屏蔽的箱体可避免内部的电磁波外泄,箱体的底板采用透磁材料保证安装在底板的第一类天线发射的电磁波能够无阻碍地传播到箱体的腔体内。
在又一个示例中,储物设备还包括箱门,箱门安装在箱体上,箱门为电磁屏蔽材料制成的屏蔽门。进一步的,箱门为采用具有电磁屏蔽性能的玻璃制成的箱门。
RFID(Radio Frequency Identification,射频识别)标签是基于射频识别技术记载一定信息的电子标签,其内存储了物品的相关信息,例如单价、生产日期、保质期等等。其中,射频识别是一种非接触式的自动识别技术,通过射频信号自动识别RFID标签中的数据,或者向RFID标签写入数据,射频识别技术工作无须人工干预,可工作于各种恶劣环境。在一个示例中,RFID标签包括耦合元件以及芯片,耦合元件电连接芯片。进一步的,RFID标签为有源RFID标签、半有源RFID标签或无源RFID标签。优选的,RFID标签采用UHF(Ultra High Frequency,超高频)电子标签,对应的RFID模块采用超高频RFID模块。UHF电子标签属于无源电子RFID标签,当RFID模块在感应范围之外,UHF电子标签处于无源状态,当RFID模块在感应范围之内,UHF电子标签从RFID模块发出电磁波中提取工作所需的电源。UHF电子标签具备识别距离远、识别度高、防冲突能力强、可扩展性好的特点,使得储物设备具备良好的识别能力。
层板用于上下分割箱体的腔体,使得箱体的腔体变成多个独立的储物空间。在一个示例中,层板包括至少一个层板,层板的具体数量可根据箱体的尺寸来确定。在又一个示例中,层板为采用金属材料制成的层板,或者采用强度高的塑料材料制成的层板,需要说明的是,当层板为采用金属材料制成的层板时,天线贴附在层板上,当层板采用强度高的塑料材料制成的层板(例如,层板为ABS材料制成的层板)时,天线可贴附在层板上也可嵌入层板内。进一步的,层板为网格状层板或镂空层板。在再一个示例中,储物设备还包括多个隔板, 隔板设置在层板上,具体而言,各层板上均设置有至少一个隔板,隔板用于将层板上的空间进行水平分割。进一步的,隔板为网格状隔板,可采用金属隔板或塑料隔板。
天线是RFID标签与RFID模块之间收发信号媒介。可通过以下参数来表征天线的性能:增益、带宽、输入阻抗、反射系统、电压驻波比、入射功率/反射功率、波瓣宽度、前后比以及极化特征,其中,增益是用来衡量天线朝一个特定方向收发信号的能力;带宽是指谐振点附近一定范围内频率;输入阻抗是指天线输入端信号电压与信号电流之比;反射系数是指反射电压与入射电压的比值;电压驻波比是指波腹电压与波节电压的比值;波瓣宽度是指主瓣最大辐射方向两侧;辐射强度降低3dB的两点之间的夹角,用于描述天线辐射能量在主瓣方向的集中程度,需要说明的是,波瓣宽度越大,箱体内需要设置的天线的数量越少,有利于降低储物设备的制造成本;前后比是指主瓣与后瓣的最大辐射强度的比值;极化特征表示天线发出的电磁波传播的方式,包括线极化、圆极化以及椭圆极化。
在一个示例中,天线为线极化天线。相应的,RFID标签采用线极化标签,在实际使用过程中,为了使得天线读写效率最大化,需要保证线极化天线的极化方向与RFID标签的极化方向一致。
在又一个实施例中,天线为圆极化天线。相应的,RFID标签采用圆极化标签,进一步的,圆极化天线可为左旋圆极化天线或右旋圆极化天线。具体的,圆极化天线产生的圆极化波是等幅旋转场,可分解为两正交等幅、相位相差90度的线极化波,即无论收信号的天线的极化方向如何,接收到的信号都是相同的,采用圆极化天线方式,使得RFID模块对天线的方位以及标签的方位的敏感 性降低。
进一步的,在实际应用过程中,天线的数量可根据箱体的尺寸而定,当箱体的尺寸小则设置较少数量的类天线,当箱体的尺寸大则设置较大的数量的天线。其中,部分天线设置在底板上,另一部分天线设置在层板上,进一步的,天线为单向辐射天线或双向辐射天线,需要说明的是,如图2所示,天线的辐射方向设置朝向物品携带的RFID标签,使得天线的效率最大化。具体的,设置在底板上的天线采用单向辐射天线,且天线的辐射方向朝向底板上的物品携带的RFID标签。设置在层板上的天线可采用单向辐射天线也可采用双向辐射天线,当天线为单向辐射天线时,天线辐射的方向朝向层板上的物品携带的RFID标签;当天线为双向辐射天线时,天线辐射的一个方向朝向层板上的物品携带的RFID标签,天线辐射的另一个方向朝向底板上的物品携带的RFID标签。
进一步的,在实际应用过程中,天线的数量可根据箱体的尺寸而定,当箱体的尺寸小则设置较少数量的天线,当箱体的尺寸大则设置较大的数量的天线,例如,在一个箱体内设置10个天线,其中2个天线设置在底板上,8个天线设置在层板上。根据箱体的尺寸设置适当数量的第二类天线能够使天线的读取效率最大化、减少重复读取的时间。
RFID模块相当于天线的收发机,能够通过天线读取RFID标签内的信息,也能通过天线向RFID标签写入信息。在一个示例中,RFID模块为多通道RFID模块,可通过连接多个天线,增强了储物设备的扩展性,即随着箱体的尺寸变大,可相应地增加天线的数量,从而保证大尺寸的箱体能被天线辐射范围全面覆盖,降低识别盲区,改善识别效果。
各RFID模块分别电连接一部分天线,各天线不重复电连接RFID模块,一 个天线只电连接一个RFID模块。
储物设备具体的工作过程为:各个RFID模块可以轮流在外部控制信号的触发下,例如运维人员手动触发提供的控制信号或者上位机输出的控制信号,开始进入工作状态,依次驱动自身所连接的各天线进行跳频扫描,以采集射频信号覆盖范围内的各RFID标签所附物品的物品信息。例如在任一个RFID模块工作时,其他RFID模块保持待机。该工作状态的RFID模块20先驱动所连接的任一天线在预设频段内,例如920MHz(兆赫兹)到925MHz频段内进行跳频扫描后,再驱动另一天线在前述预设频段内进行跳频扫描,如此依次驱动各个天线18进行跳频扫描直到遍历该RFID模块上所连接的所有天线。在该RFID模块遍历其上各个天线扫频后,下一个RFID模块开始进入工作状态,工作模式与前一工作结束后的RFID模块相同。
为了便于理解储物设备工作过程,现举例说明:
在一个示例中,包括10个天线,分别标为1号、2号、3号至10号,其中,1号至8号天线设置在层板上,9号天线和10天线设置在底板上。包括2个RFID模块,分别标为第一RFID模块和第二RFID模块。标号为奇数的天线电连接第一RFID模块,标号为偶数的天线电连接第二RFID模块。在工作过程中,第一RFID模块依次分别通过1号、3号至9号天线在预设频段内扫描读取RFID标签内的信息,在第一RFID模块完成工作后,第二RFID模块再依次分别通过2号、4号至10号天线在预设频段内扫描读取RFID标签内的信息,在第二RFID模块完成工作后再返回到第一RFID模块工作,依次轮流循环。该示例仅仅说明各RFID模块依次轮流通过对应的天线在预设频段内扫描读取RFID标签内的信息的工作方式,并不构成对RFID模块的数量、天线的数量、各RFID模块的工 作顺序以及天线的工作顺序的限定。进一步的,预设频段可根据实际需要而定,例如,预设频段为920MHz至925MHz。
本申请储物设备各实施例中,储物设备包括箱体、层板、多个天线以及至少两个RFID模块,其中,箱体用于储存带有相应RFID标签的物品,箱体包括底板;层板设置于箱体的腔体内,用于分割箱体的腔体;部分天线设置于底板上,另一部分设置于层板上;任一天线电连接一个RFID模块,且各RFID模块至少电连接一个天线;储物设备具体过程为:各RFID模块轮流通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息,即一个RFID模块控制一部分天线,在一个RFID模块完成对所有与其连接的天线的控制后,下一个RFID模块才进入工作状态,从而实现有次序的控制储物设备中的天线,避免了天线控制混乱的问题,进而有效地利用了天线资源。
在一个实施例中,如图3所示,提供了一种储物设备控制方法,包括以下步骤:
步骤S310,若当前工作状态的RFID模块相应的天线跳频扫描结束,则向下一个RFID模块发送控制信号,以使下一个RFID模块通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息。
其中,可采用控制器、上位机、终端等具备控制功能的设备来对RFID模块进行控制,并不限定RFID模块的控制方为何种设备或者何种方式的控制,只要实现对RFID模块的控制即可。
具体的,在当前处于工作状态的一个RFID模块工作结束,也即该工作状态的RFID模块已经依次驱动其上所有天线进行了跳频扫描时,可以通过上位机或者储物装置自带的控制系统,例如冰柜的总控制器向下一个RFID模块发送控制 信号,控制信号可以是但不限于时序电平信号。下一个RFID模块开始在设定频段上,依次驱动其上各天线进行了跳频扫描。下一个RFID模块开始工作时,驱动其上任一天线在920MHz到925MHz频段内进行跳频扫描。待该天线扫频接收,即驱动下一天线在920MHz到925MHz频段内进行跳频扫描,如此,直至该下一个RFID模块上的各个天线均完成跳频扫描即结束该下一个RFID模块的工作。如此轮流控制各个RFID模块进出工作状态,即可实时通过各天线跳频扫描时,各物品上RFID标签反馈的射频信号读取各物品的物品信息。
需要说明的是,储物设备控制方法是基于储物设备的硬件结构而实现的方法。
为了便于理解储物设备控制方法的具体流程,现举例说明:
在一个示例中,包括12个天线,分别标为1号、2号、3号至12号,其中,1号至10号天线设置在层板上,11号天线和12天线设置在底板上。包括3个RFID模块,分别标为第一RFID模块、第二RFID模块以及第三RFID模块。1号至4号天线电连接第一RFID模块,5号至8号天线电连接第二RFID模块,9号至12号天线电连接第二RFID模块。在具体的控制流程中,第一RFID模块依次分别通过1号至4号天线在预设频段内扫描读取RFID标签内的信息,在第一RFID模块完成工作后,第二RFID模块再依次分别通过5号至8号天线在预设频段内扫描读取RFID标签内的信息,在第二RFID模块完成工作后,第三RFID模块再依次分别通过9号至12号天线在预设频段内扫描读取RFID标签内的信息,在第三RFID模块完成工作后再返回第一RFID模块工作,依次轮流循环。该示例仅仅说明各RFID模块依次轮流通过对应的天线在预设频段内扫描读取RFID标签内的信息的工作方式,并不构成对RFID模块的数量、天线的数量、 各RFID模块的工作顺序以及天线的工作顺序的限定。
本申请储物设备控制方法各实施例中,能够合理地控制RIFD读写模块按照次序的工作,再由RIFD读写模块各自通过与其连接的天线进行扫描读取,避免了天线控制混乱的问题,也避免了重复识别的问题,进而提高了天线识别效率,有效地节省了天线资源。
应该理解的是,虽然图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图4所示,提供了一种储物设备控制装置,包括:
轮询判断模块410,用于判断当前工作状态的RFID模块相应的天线跳频扫描是否结束;
信号发送模块420,用于向下一个RFID模块发送控制信号,以使下一个RFID模块通过相应的天线进行跳频扫描,采集各RFID标签内的物品信息。
关于储物设备控制装置的具体限定可以参见上文中对于储物设备控制方法的限定,在此不再赘述。上述储物设备控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,如图5所示,提供了一种冷藏设备,包括压缩机52、冷凝管54以及如储物设备实施例中所述的储物设备;
压缩机52机械连接冷凝管54;冷凝管54设置于储物设备的箱体12内。
其中,冷藏设备用于以低温保存食物、药品等物品的电气设备。例如,冷藏设备包括冰柜、冰箱、冷冻库等等。冷凝管设置在箱体的内壁上。
在一个示例中,冷藏设备还包括照明设备,照明设备。具体的,照明设备不会产生电磁波外泄,避免外泄的电磁波干扰RFID模块通过天线读取RFID标签上的信息。冷藏设备避免在安装冷凝管的位置设置天线,从而避免冷凝管上的结霜现象破坏天线。
在又一个示例中,冷藏设备还包括控制器,控制器电连接RFID模块、压缩机以及照明设备。控制器为冷藏设备的控制中心,用于控制冷藏设备的各部分的协调工作。
本申请冷藏设备各实施例中,通过将天线设置在箱体的底板和层板上,有效克服解决了传统冷藏设备的箱体内部天线覆盖范围不够、箱体内冷凝结霜对天线的干扰、箱体金属内壁以及箱体内部金属支架引起的天线信号衰减等问题,并且通过合理地设置天线有效地减少了识别盲区,提高RFID模块对标签识别的可靠性,最终解决了长久以来大容量卧式冷藏设备布置天线的难题。
在一个实施例中,如图6所示,提供了一种冷藏系统,包括管理设备62、设备接口64以及多个如上所述的冷藏设备;
管理设备62通过设备接口64电连接冷藏设备的RFID模块18。
进一步的,管理设备62为电脑、移动终端或云端服务器;设备接口64为RS232接口、RJ45接口、RS485接口和/或USB接口。
其中,管理设备用于综合管理多个冷藏设备,实现大区域内(例如大型超市)多个冷藏设备的统一管理,具体的,各冷藏设备通过RFID模块将采集到冷藏设备内存储的物品种类以及数量等信息上报给管理设备,管理设备统计各冷藏设备上报的信息,并生成给各冷藏设备配货的物品清单,以便及时给冷藏设备补充相应的物品。在一个示例中,管理设备为电脑、移动终端或云端服务器。
设备接口为连接多个冷藏设备提供了扩展性接口以及为管理设备62提供了有线通信接口,其功能为汇总并传输信息,在一个示例中,设备接口包括RS232接口、RJ45接口、RS485接口和/或USB接口。
本申请冷藏系统各实施例中,利用管理设备62统一管理多个冷藏设备,提高设备的管理效率和及时性,也降低了管理的人力物力的投入。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,包括以上方法所述的步骤,所述的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种储物设备,其特征在于,包括:
    箱体,所述箱体用于储存带有相应RFID标签的物品;所述箱体包括底板;
    层板,所述层板设置于所述箱体的腔体内,用于分割所述箱体的腔体;
    多个天线以及至少两个RFID模块,部分所述天线设置于所述底板上,另一部分所述天线设置于所述层板上;任一所述天线电连接一个所述RFID模块,且各所述RFID模块至少电连接一个所述天线;
    其中,各所述RFID模块轮流通过相应的所述天线进行跳频扫描,采集各所述RFID标签内的物品信息。
  2. 根据权利要求1所述的储物设备,其特征在于,所述天线为线极化天线。
  3. 根据权利要求1所述的储物设备,其特征在于,所述天线为圆极化天线。
  4. 根据权利要求1至3任意一项所述的储物设备,其特征在于,所述天线为单向辐射天线或双向辐射天线。
  5. 根据权利要求1至3任意一项所述的储物设备,其特征在于,还包括箱门,所述箱门安装在所述箱体上,所述箱门为电磁屏蔽材料制成的屏蔽门;
    所述箱体还包括第一侧板、第二侧板、第三侧板以及第四侧板;
    所述第一侧板、所述第二侧板、所述第三侧板和所述第四侧板均包括两层第一屏蔽板以及夹于两层所述第一屏蔽板之间的第一保温层;
    所述底板包括第二屏蔽板、ABS材料制成的透过层以及夹于所述第二屏蔽板与所述ABS材料制成的透过层之间的第二保温层;
    所述第一侧板、所述第二侧板、所述第三侧板、所述第四侧板和所述底板 围成所述箱体的腔体。
  6. 一种储物设备控制方法,其特征在于,包括以下步骤:
    若当前工作状态的RFID模块相应的天线跳频扫描结束,则向下一个所述RFID模块发送控制信号,以使下一个所述RFID模块通过相应的所述天线进行跳频扫描,采集各所述RFID标签内的物品信息。
  7. 一种储物设备控制装置,其特征在于,包括:
    轮询判断模块,用于判断当前工作状态的RFID模块相应的天线跳频扫描是否结束;
    信号发送模块,用于向下一个所述RFID模块发送控制信号,以使下一个所述RFID模块通过相应的所述天线进行跳频扫描,采集各所述RFID标签内的物品信息。
  8. 一种冷藏设备,其特征在于,包括压缩机、冷凝管以及如权利要求1至5任意一项所述的储物设备;
    所述压缩机机械连接所述冷凝管;所述冷凝管设置于所述除储物设备的箱体内。
  9. 一种冷藏系统,其特征在于,包括管理设备、设备接口以及多个如权利要求8所述的冷藏设备;
    所述管理设备通过所述设备接口电连接所述冷藏设备的RFID模块。
  10. 根据权利要求9所述的冷藏系统,其特征在于,所述管理设备为电脑、移动终端或云端服务器;所述冷藏设备为RS232接口、RS485接口和/或USB接口。
PCT/CN2019/120372 2019-11-22 2019-11-22 储物设备、储物设备控制方法、装置、冷藏设备及系统 WO2021097836A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120372 WO2021097836A1 (zh) 2019-11-22 2019-11-22 储物设备、储物设备控制方法、装置、冷藏设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120372 WO2021097836A1 (zh) 2019-11-22 2019-11-22 储物设备、储物设备控制方法、装置、冷藏设备及系统

Publications (1)

Publication Number Publication Date
WO2021097836A1 true WO2021097836A1 (zh) 2021-05-27

Family

ID=75981157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120372 WO2021097836A1 (zh) 2019-11-22 2019-11-22 储物设备、储物设备控制方法、装置、冷藏设备及系统

Country Status (1)

Country Link
WO (1) WO2021097836A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298554A (ja) * 2005-04-20 2006-11-02 Matsushita Electric Ind Co Ltd 食品の在庫管理グッズ、食品の在庫管理装置
WO2016130528A1 (en) * 2015-02-11 2016-08-18 Promega Corporation Radio frequency identification techniques in an ultra-low temperature environment
CN106203204A (zh) * 2016-07-14 2016-12-07 青岛海尔特种电冰柜有限公司 制冷设备rfid动态识别方法
CN207006709U (zh) * 2017-06-23 2018-02-13 青岛海尔特种电器有限公司 一种集成rfid天线的搁架及制冷设备
CN109269213A (zh) * 2018-08-24 2019-01-25 深圳阿弗艾德电子有限公司 智能识别冷柜及智能识别方法
CN109388987A (zh) * 2018-08-31 2019-02-26 连云港伍江数码科技有限公司 储物设备、储物设备控制方法、装置、冷藏设备及系统
CN208901738U (zh) * 2018-08-31 2019-05-24 连云港伍江数码科技有限公司 储物设备以及冷藏系统
CN208968122U (zh) * 2018-08-31 2019-06-11 连云港伍江数码科技有限公司 储物设备以及冷藏系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298554A (ja) * 2005-04-20 2006-11-02 Matsushita Electric Ind Co Ltd 食品の在庫管理グッズ、食品の在庫管理装置
WO2016130528A1 (en) * 2015-02-11 2016-08-18 Promega Corporation Radio frequency identification techniques in an ultra-low temperature environment
CN106203204A (zh) * 2016-07-14 2016-12-07 青岛海尔特种电冰柜有限公司 制冷设备rfid动态识别方法
CN207006709U (zh) * 2017-06-23 2018-02-13 青岛海尔特种电器有限公司 一种集成rfid天线的搁架及制冷设备
CN109269213A (zh) * 2018-08-24 2019-01-25 深圳阿弗艾德电子有限公司 智能识别冷柜及智能识别方法
CN109388987A (zh) * 2018-08-31 2019-02-26 连云港伍江数码科技有限公司 储物设备、储物设备控制方法、装置、冷藏设备及系统
CN208901738U (zh) * 2018-08-31 2019-05-24 连云港伍江数码科技有限公司 储物设备以及冷藏系统
CN208968122U (zh) * 2018-08-31 2019-06-11 连云港伍江数码科技有限公司 储物设备以及冷藏系统

Similar Documents

Publication Publication Date Title
CN109255273A (zh) 储物设备、储物设备控制方法、装置、冷藏设备及系统
CN109269215A (zh) 储物设备、储物设备控制方法、装置、冷藏设备及系统
CN208968122U (zh) 储物设备以及冷藏系统
US20120161944A1 (en) Rfid-based intelligent storage cabinet and the management method thereof
CN109388987A (zh) 储物设备、储物设备控制方法、装置、冷藏设备及系统
CN109376812A (zh) 储物装置、天线扫描控制方法及冰柜系统
CN109961253A (zh) 基于rfid智能仓储的管理系统及管理方法
CN201965676U (zh) 复杂进出判断门禁机
CN109376813A (zh) 储物装置、天线扫描控制方法及冰柜系统
CN109297227A (zh) 储物装置和冰柜
CN209101634U (zh) 储物装置和冰柜系统
CN109388988A (zh) 储物装置、天线扫描控制方法及装置
CN208901738U (zh) 储物设备以及冷藏系统
WO2021097836A1 (zh) 储物设备、储物设备控制方法、装置、冷藏设备及系统
CN209915445U (zh) 储物装置和售货系统
CN209027167U (zh) 储物设备以及冷藏系统
CN104700136B (zh) 物品堆放位置自动定位系统及方法
WO2021097839A1 (zh) 储物设备、储物设备控制方法、装置、冷藏设备及系统
WO2021097837A1 (zh) 储物设备、储物设备控制方法、装置、冷藏设备及系统
JP2003198422A (ja) コンテナ用rfidタグの交信距離延長方法
Genovesi et al. Phase-only encoding for novel chipless RFID tag
WO2021097833A1 (zh) 储物装置、天线扫描控制方法及冰柜系统
CN215495255U (zh) 一种智能柜
WO2021097838A1 (zh) 储物装置、天线扫描控制方法及装置
WO2021097835A1 (zh) 储物装置和冰柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953406

Country of ref document: EP

Kind code of ref document: A1