WO2021097755A1 - 生物特征检测方法、生物特征检测装置和电子装置 - Google Patents

生物特征检测方法、生物特征检测装置和电子装置 Download PDF

Info

Publication number
WO2021097755A1
WO2021097755A1 PCT/CN2019/119955 CN2019119955W WO2021097755A1 WO 2021097755 A1 WO2021097755 A1 WO 2021097755A1 CN 2019119955 W CN2019119955 W CN 2019119955W WO 2021097755 A1 WO2021097755 A1 WO 2021097755A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sampling
light source
photoelectric converter
emitting
Prior art date
Application number
PCT/CN2019/119955
Other languages
English (en)
French (fr)
Inventor
黄思衡
王文祺
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980004153.4A priority Critical patent/CN111050634B/zh
Priority to PCT/CN2019/119955 priority patent/WO2021097755A1/zh
Publication of WO2021097755A1 publication Critical patent/WO2021097755A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices

Definitions

  • This application relates to biometric detection, and in particular to a biometric detection method, biometric detection device and electronic device applied to photoplethysmogram (PPG).
  • PPG photoplethysmogram
  • the PPG system has a good application prospect in the non-invasive detection of human blood pressure, blood flow, blood oxygen, cerebral oxygen, muscle oxygen, blood sugar, microcirculation peripheral blood vessel pulse rate, respiration rate and respiratory volume.
  • the PPG front-end processing module is an important part of these wearable non-invasive testing instruments. Because the tested skin is generally a finger or a wrist, the PPG front-end processing module may receive large ambient light noise. This noise mainly comes from sunlight or indoor fluorescent lights, which increases measurement errors.
  • One of the objectives of the present application is to disclose a biological feature detection method, a biological feature detection device, and an electronic device to solve the above-mentioned problems.
  • An embodiment of the present application discloses a biological feature detection method, which is used to control a light source and a photoelectric converter to sense the biological feature of an object to be detected.
  • the biological feature detection method includes: controlling the The light source performs a light-emitting operation; each time the light-emitting operation is performed, the photoelectric converter is controlled to perform N+1 sampling operations to collect the light signal emitted by the light source after passing through the object to be detected and being photoelectrically converted.
  • the biological feature detection device includes a controller and a light source control module , Used to control the light source to perform light-emitting operations during the N-level operation; the photoelectric converter control module, used to control the photoelectric converter to perform N+1 sampling operations each time the light-emitting operation is performed, so as to collect all The optical signal emitted by the light source passes through the object to be detected and is photoelectrically converted to form an electrical signal; and a signal processing module for processing the electrical signal collected by the N+1 sampling operation to obtain the object to be detected
  • Another embodiment of the present application discloses an electronic device, including: the above-mentioned biological feature detection device; the photoelectric converter; and the light source.
  • the biological feature detection method, the biological feature detection device and the electronic device of the present application can improve the ambient light suppression ratio under the same sampling interval.
  • Fig. 1 is a schematic functional block diagram of an embodiment of the biometric detection device of the present application.
  • FIG. 2 is a schematic diagram of the general operation of the biometric detection device of this application.
  • FIG. 3 is an embodiment of the second-level operation of the biometric detection device of this application.
  • FIG. 4 is an embodiment of the N-level operation of the biometric detection device of this application when N is an even number.
  • FIG. 5 is a first embodiment of the N-level operation of the biometric detection device of this application when N is an odd number.
  • FIG. 6 is a second embodiment of the N-order operation of the biometric detection device of this application when N is an odd number.
  • FIG. 7 is a schematic diagram of an embodiment in which the biometric detection device of the present application is applied to an electronic device.
  • PPG photoplethysmogram
  • light is used to irradiate the skin to detect the volume change of blood perfusion in the dermis and subcutaneous tissue.
  • the volume of blood perfusion changes, the The amount of light absorption also changes, and the subcutaneous blood plethysmogram can be obtained from the measured reflected light intensity to reflect the heart rate and heart blood oxygen status.
  • Fig. 1 is a schematic functional block diagram of an embodiment of the biometric detection device of the present application.
  • the biometric detection device 103, the light source 108, and the photoelectric converter 110 in FIG. 1 constitute the PPG system 100.
  • the biometric detection device 103 is used to control the light source 108 and the photoelectric converter 110 in a specific environment to sense the biological characteristics of the object 101 to be detected, such as the blood pressure, blood flow, blood oxygen, cerebral oxygen, muscle oxygen, blood sugar, Microcirculation peripheral blood vessel pulse rate, respiration rate and respiratory volume, etc.
  • the photoelectric converter 110 is used to convert the sensed light into an electrical signal to perform the sampling operation SP, and the light source 108 is used to perform the light-emitting operation EP.
  • the photoelectric converter 110 may be a photodiode, and the light source 108 may be an LED, but the present application is not limited thereto.
  • the biometric detection device 103 includes a driving module 102, a receiving module 104, and a controller 106.
  • the controller 104 includes a light source control module 1062, a photoelectric converter control module 1064, and a signal processing module 1066.
  • the driving module 102 is coupled between the light source control module 1062 and the light source 108; the receiving module 104 is coupled between the signal processing module 1066 and the photoelectric converter 1101.
  • the driving module 102 controls the light source 108 to generate incident light EL to the object to be detected 101 and cause the reflected light RL with biological information.
  • the receiving module 104 controls the photoelectric converter 110 to sense the received light entering the photoelectric converter 110 to generate a current to the receiving module 104.
  • the received light received by the photoelectric converter 110 includes biological information. However, if there is a gap between the PPG system 100 and the object to be detected 101, light leakage will result and the received light received by the photoelectric converter 110 will also include the ambient light AL.
  • the light source control module 1062 of the controller 106 is used to control the light source 108 to perform the light-emitting operation EP through the driving module 102; the photoelectric converter control module 1064 of the controller 106 is used to control the photoelectric converter 110 to perform the sampling operation SP through the receiving module 104.
  • the signal processing module 1066 of the controller 106 is configured to process the electrical signals collected by the sampling operation SP to obtain the biological characteristics of the object 101 to be detected.
  • the driving module 102 includes a light source driver 112 for driving the light source 108.
  • the light source driver 112 is an LED driver.
  • the receiving module 104 includes a current-to-voltage converter for converting the current output by the photoelectric converter 110 into a voltage.
  • the controller 106 is implemented by a digital circuit, and the driving module 102 may further include a digital-to-analog converter 116 coupled between the light source driver 112 and the light source control module 1062; the receiving module 104 may further include an analog-digital converter.
  • the converter 118 is coupled between the current-to-voltage converter 114 and the signal processing module 1066.
  • the object 101 to be tested is generally a finger or wrist, and the test system will have a large light leakage, that is, the photoelectric converter 110 will receive a large ambient light AL. Eliminating the ambient light AL will cause the measurement error to rise.
  • the general practice is shown in FIG. 2.
  • the controller 106 controls the light source 108 to perform a light-emitting operation EP
  • the photoelectric converter 110 will correspondingly perform two sampling operations SP1 and SP2, and the light-emitting operation EP and the sampling operations SP1 and SP2 are cycles. It is carried out sexually, with a period T PF , for example, the period T PF is 40 milliseconds (ie, a frequency of 25 Hz).
  • the light source 108 When the light-emitting operation EP is performed, the light source 108 is turned on to cause a light-emitting period. At this time, the sampling operation SP1 is performed so that the sampling period of the sampling operation SP1 at least partially overlaps the light-emitting period of the light-emitting operation EP, so as to compare the reflected light RL and the ambient light. AL performs sampling at the same time.
  • the start time of the light-emitting operation EP may be slightly earlier than the start time of the sampling operation SP1 to ensure that the light source 108 has stabilized; and the end time of the light-emitting operation EP is the time when the light source 108 is turned off , Can be the same as the end time of the sampling operation SP1.
  • the sampling result D1 of the sampling operation SP1 is obtained after the sampling operation SP1 ends, and is output to the controller 106 by the analog-to-digital converter 118.
  • the sampling operation SP2 will be performed after the light source 108 is turned off.
  • the sampling period of the sampling operation SP2 does not overlap the lighting period of the lighting operation EP, so that the ambient light AL can be simply sampled.
  • the ambient light AL is sampled only once, which is called a first-order operation.
  • the sampling interval time of the sampling operation SP1 and the sampling operation SP2 is T INT , and the time length of the sampling period of the sampling operation SP1 and SP2 are the same.
  • the sampling result D2 of the sampling operation SP2 is obtained after the sampling operation SP2 ends, and is output to the controller 106 by the analog-to-digital converter 118.
  • the controller 106 subtracts the results of the sampling operations SP1 and SP2 to generate a biometric sampling result D R.
  • the PPG system 100 will repeat the light-emitting operation EP and the sampling operations SP1 and SP2. It should be noted that the controller 106 resets the photoelectric converter 110 after the sampling operations SP1 and SP2 are completed, so as to avoid the results of the sampling operations SP1 and SP2 from interfering with each other.
  • the ambient light AL mainly includes sunlight (the frequency is DC) or indoor fluorescent lamps (the frequency is 50Hz/60Hz), so the frequency f AL of the ambient light AL is a low-frequency signal.
  • the ambient light suppression ratio obtained by the method of Figure 2 is:
  • Ambient light suppression ratio 1/(2sin( ⁇ *f AL *T INT ))
  • the sampling interval time T INT the greater the ambient light suppression ratio, but the smaller the sampling interval time, the shorter the sampling period of the sampling operations SP1 and SP2, which will cause greater sampling noise, and a dilemma. situation.
  • the time length of the sampling period needs to be about 80 microseconds or more, and the corresponding ambient light suppression ratio is 30dB or less, but the ambient light suppression ratio required for this application is 50dB the above. Therefore, the present application proposes the following embodiments to improve the above-mentioned problems.
  • the controller 106 controls the light source 108 to perform a light-emitting operation EP, and the photoelectric converter 110 correspondingly performs three or more sampling operations SP1, SP2, SP3,... , That is, in each period T PF , the ambient light AL is sampled more than twice, that is, a second-order operation or a higher-order operation. The details will be described later.
  • FIG. 3 is an embodiment of the second-level operation of the biometric detection device of this application.
  • Figure 3 is the same as Figure 2 in that the light-emitting operation EP and the sampling operations SP1, SP2, SP3 are performed periodically, with a period T PF , the sampling intervals of the sampling operations SP1, SP2, and SP3 are all T INT , and the sampling operation The time lengths of the sampling periods of SP1, SP2, and SP3 are all the same.
  • the difference between FIG. 3 and FIG. 2 is that the embodiment of FIG. 3 is a second-order operation.
  • the light source control module 1062 of the controller 106 controls the light source 108 through the drive module 102 every time the light-emitting operation EP is performed, the photoelectric converter control module of the controller 106 1064 controls the photoelectric converter 110 to perform three sampling operations SP1, SP2, and SP3 correspondingly.
  • sampling period of the sampling operation SP1 does not overlap the light-emitting period of the light-emitting operation EP,
  • the ambient light AL can be simply sampled.
  • the sampling result D1 of the sampling operation SP1 is obtained after the sampling operation SP1 ends, and is output by the analog-digital converter 118 to the signal processing module 1066 of the controller 106.
  • the light source 108 When the light-emitting operation EP starts, the light source 108 is turned on to cause a light-emitting period. At this time, the sampling operation SP2 is performed so that the sampling period of the sampling operation SP2 is at least partially overlapped with the light-emitting period of the light-emitting operation EP, so as to compare the reflected light RL and the environment.
  • the light AL is sampled at the same time.
  • the start time of the light-emitting operation EP may be slightly earlier than the start time of the sampling operation SP2 to ensure that the light source 108 has stabilized; and the end time of the light-emitting operation EP is the time when the light source 108 is turned off. The time can be the same as the end time of the sampling operation SP2.
  • the sampling result D2 of the sampling operation SP2 is obtained after the sampling operation SP2 ends, and is output by the analog-to-digital converter 118 to the signal processing module 1066 of the controller 106.
  • the sampling operation SP3 will be performed after the light source 108 is turned off. In other words, the sampling period of the sampling operation SP3 does not overlap the emission period of the emission operation EP, so as to simply sample the ambient light AL.
  • the sampling result D3 of the sampling operation SP3 is obtained after the sampling operation SP3 ends, and is output by the analog-digital converter 118 to the signal processing module 1066 of the controller 106.
  • the signal processing module 1066 generates a biometric sampling result D R according to the results of the sampling operations SP1, SP2, and SP3. Specifically, the biometric sampling result D R is (2*D2-D1-D3)/2.
  • the photoelectric converter control module 1064 resets the photoelectric converter 110 after the sampling operations SP1, SP2, and SP3 are completed, so as to prevent the results of the sampling operations SP1, SP2, and SP3 from interfering with each other.
  • the ambient light suppression ratio obtained by the method of Figure 3 is:
  • Ambient light suppression ratio 1/(2sin( ⁇ *f AL *T INT )) 2
  • the PPG system 100 of the second-order operation has a higher ambient light suppression ratio, for example, in a high-precision heart rate and heart oximetry application .
  • the time length of the sampling period needs to be about 80 microseconds, and the corresponding ambient light suppression ratio can be increased from 30dB to 60dB.
  • the biometric detection device 103 of the present application is not limited to the second-order operation of FIG. 3, and may also include N-order operations above the second order, that is, in each period T PF , the ambient light AL is sampled N times.
  • N is represented as an even number and an odd number separately.
  • FIG. 4 is an embodiment of the N-order operation of the biometric detection device 103 of this application when N is an even number, and N is a positive integer greater than 1.
  • the light-emitting operation EP and the sampling operations SP1 to SP(N+1) are performed periodically, with a period T PF , the sampling interval time of the sampling operations SP1 to SP(N+1) are all T INT , and the sampling The time lengths of the sampling periods of operations SP1 to SP(N+1) are all the same.
  • (N/2) sampling operations SP1 to SP(N/2) are performed to obtain sampling results D1 to D(N/2), which are output to the controller 106 by the analog-digital converter 118
  • the sampling period of the sampling operations SP1 to SP(N/2) does not overlap the light-emitting period of the light-emitting operation EP, and the ambient light AL can be simply sampled.
  • the light source 108 When the light-emitting operation EP starts, the light source 108 is turned on to cause a light-emitting period. At this time, the sampling operation SP(N/2+1) is performed so that the sampling period of the sampling operation SP(N/2+1) at least partially overlaps with The lighting period of the lighting operation EP is to sample the reflected light RL and the ambient light AL at the same time.
  • the start time of the lighting operation EP may be slightly earlier than the start time of the sampling operation SP2 to ensure that the light source 108 is stable ;
  • the end time of the light-emitting operation EP that is, the time to turn off the light source 108, may be the same as the end time of the sampling operation SP2.
  • the sampling result D(N/2+1) of the sampling operation SP(N/2+1) is obtained after the sampling operation SP(N/2+1) ends, and is output to the controller 106 by the analog-to-digital converter 118.
  • the sampling operations SP(N/2+2) ⁇ SP(N+1) will be performed after the light source 108 is turned off to obtain the sampling results D(N/2+2) ⁇ D(N+1), and then The analog-digital converter 118 outputs to the controller 106.
  • the sampling period of the sampling operations SP(N/2+2)-SP(N+1) does not overlap the light-emitting period of the light-emitting operation EP, so as to simply sample the ambient light AL.
  • the controller 106 generates a biometric sampling result D R according to the results of the sampling operations SP1 to SP(N+1). Specifically, the biometric sampling result D R is
  • the controller 106 resets the photoelectric converter 110 after the sampling operations SP1 ⁇ SP(N+1) ends, so as to avoid the results of the sampling operations SP1 ⁇ SP(N+1) from interfering with each other.
  • the ambient light suppression ratio obtained by the method of Figure 4 is:
  • Ambient light suppression ratio 1/(2sin( ⁇ *f AL *T INT )) N
  • FIG. 5 is a first embodiment of the N-order operation of the biometric detection device 103 of this application when N is an odd number, and N is a positive integer greater than 1.
  • the difference with N being an even number is that when N is an odd number, ((N+1)/2-1) sampling operations SP1 ⁇ SP((N+1)/2-1) are performed before the light-emitting operation EP is performed.
  • the sampling operation SP((N+1)/2) is performed, and after the light-emitting operation EP is performed, ((N+1)/2) sampling operations SP((N+1)/ 2+1) ⁇ SP(N+1).
  • FIG. 6 is a second embodiment of the N-order operation of the biometric detection device 103 of this application when N is an odd number, and N is a positive integer greater than 1.
  • the difference from the embodiment of FIG. 5 is that before the light-emitting operation EP in FIG. 6 is performed, ((N+1)/2) sampling operations SP1 to SP((N+1)/2) are performed, and in the light-emitting operation EP At the beginning, the sampling operation SP((N+1)/2+1) is performed. After the light-emitting operation EP is performed, ((N+1)/2-1) sampling operations SP((N+1)/ 2+2) ⁇ SP(N+1).
  • the power consumption when the light source 108 is turned on is much larger than the power consumption when the photoelectric converter 110 is started.
  • the length of the light-emitting period of the light-emitting operation EP roughly determines the overall power consumption of the PPG system 100.
  • the high-end PPG system of the present application uses increasing the number of sampling periods of the sampling operation SP to improve the ambient light suppression ratio. Because the number and time length of the light-emitting periods of the light-emitting operation EP is not increased, it has no effect on the overall power consumption of the PPG system 100. Big.
  • the biological feature detection device 103 of the present application can be implemented by a chip, which can be a semiconductor chip implemented by a different process, and the photoelectric converter 110 and the light source 108 are both arranged outside the chip where the biological feature detection device is located.
  • the present application is not limited thereto.
  • the photoelectric converter 110 and/or the light source 108 may also be disposed in the chip where the biometric detection device is located.
  • FIG. 7 is a schematic diagram of an embodiment in which the biometric detection device of the present application is used in an electronic device 70.
  • the electronic device 70 includes a PPG system 100, and the PPG system 100 includes a biometric detection device 103, a light source 108 and a photoelectric converter 110.
  • the electronic device 70 may be a wearable electronic device, such as a watch, a necklace, or any other smart wearable device.
  • the electronic device 70 may also be a handheld electronic device, such as a smart phone, a personal digital assistant, a handheld computer system, or a tablet computer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Neurology (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种生物特征检测装置(103)、生物特征检测方法和电子装置(70)。生物特征检测装置(103)用来控制光源(108)及光电转换器(110)以感测待检测对象(101)的生物特征,生物特征检测装置(103)包括:控制器(106),包括:光源控制模块(1062),用于在N阶操作时,控制光源(108)进行发光操作;光电转换器控制模块(1064),用于每进行一次发光操作,控制光电转换器(110)进行N+1次采样操作,以采集光源(108)发出的光信号(EL)经过待检测对象(101)后且被光电转换后形成的电信号;以及信号处理模块(1066),用于根据N+1次采样操作采集的电信号处理得到待检测对象(101)的生物特征。

Description

生物特征检测方法、生物特征检测装置和电子装置 技术领域
本申请涉及生物特征检测,尤其涉及一种应用于光电容积描记(Photoplethysmogram,PPG)生物特征检测方法、生物特征检测装置和电子装置。
背景技术
PPG系统在人体血压、血流、血氧、脑氧、肌氧、血糖、微循环外周血管脉率、呼吸率和呼吸容量等的无创检测中都有很好的应用前景。而PPG前端处理模块是这些穿戴式无创检测仪器的重要组成部分。因为受测皮肤一般为手指或手腕,PPG前端处理模块可能会接受到较大的环境光噪声,此噪声主要来自与阳光或室内日光灯,造成量测误差增加。
有鉴于此,有必要提高生物特征检测的准确度。
发明内容
本申请的目的之一在于公开一种生物特征检测方法、生物特征检测装置和电子装置来解决上述问题。
本申请的一实施例公开了一种生物特征检测方法,用来控制光源及光电转换器以感测待检测对象的生物特征,所述生物特征检测方法包括:在N阶操作时,控制所述光源进行发光操作;每进行一次所述发光操作,控制所述光电转换器进行N+1次采样操作,以采集所述光源发出的光信号经过所述待检测对象后且被光电转换后形成的电信号;以及根据所述N+1次采样操作采集的电信号处理得到 所述待检测对象的生物特征;其中N大于1,当N为偶数时,控制所述光源及所述光电转换器,以使第N/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段;当N为奇数时,控制所述光源及所述光电转换器,以使第(N+1)/2次或第(N+1)/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段。
本申请的另一实施例公开了一种生物特征检测装置,用来控制光源及光电转换器以感测待检测对象的生物特征,所述生物特征检测装置包括:控制器,包括:光源控制模块,用于在N阶操作时,控制所述光源进行发光操作;光电转换器控制模块,用于每进行一次所述发光操作,控制所述光电转换器进行N+1次采样操作,以采集所述光源发出的光信号经过所述待检测对象后且被光电转换后形成的电信号;以及信号处理模块,用于根据所述N+1次采样操作采集的电信号处理得到所述待检测对象的生物特征;其中N大于1,当N为偶数时,所述光源控制模块控制所述光源,及所述光电转换器控制模块控制所述光电转换器,以使第N/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段;当N为奇数时,所述光源控制模块控制所述光源,及所述光电转换器控制模块控制所述光电转换器,以使第(N+1)/2次或第(N+1)/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段。
本申请的另一实施例公开了一种电子装置,包括:上述的生物特征检测装置;所述光电转换器;以及所述光源。
本申请的生物特征检测方法、生物特征检测装置和电子装置能够在相同采样间隔时间下,提高环境光抑制比。
附图说明
图1是本申请的生物特征检测装置的实施例的功能方框示意图。
图2为本申请的生物特征检测装置的一般操作的示意图。
图3为本申请的生物特征检测装置的二阶操作的实施例。
图4为本申请的生物特征检测装置在N为偶数的情况下的N阶操作的实施例。
图5为本申请的生物特征检测装置在N为奇数的情况下的N阶操作的第一实施例。
图6为本申请的生物特征检测装置在N为奇数的情况下的N阶操作的第二实施例。
图7为包括本申请的生物特征检测装置应用在电子装置的实施例的示意图。
具体实施方式
在利用光电容积描记(Photoplethysmogram,PPG)法量测脉搏周期或心血氧时,会利用光线照射皮肤以侦测真皮与皮下组织血液灌注的容积变化量,当血液灌注的容积发生变化时,对光的吸收量也发生变化,便可从量测到的反射光强弱得知皮下血液容积描记图,以反应出心率与心血氧状态。
图1是本申请的生物特征检测装置的实施例的功能方框示意图。图1的生物特征检测装置103、光源108和光电转换器110构成了PPG系统100。生物特征检测装置103用来在特定环境下控制光源108与光电转换器110,以感测待检测对象101的生物特征,如生物的血压、血流、血氧、脑氧、肌氧、血糖、微循环外周血管脉率、呼吸率和呼吸容量等。在某些实施例中,光电转换器110用于将感测到的光线转为电信号以进行采样操作SP,光源108用来进行发光操作EP。举例来说,光电转换器110可以是光电二极管,光源108可以是LED,但本申请不以此限。
生物特征检测装置103包括驱动模块102、接收模块104与控制器106,控制器104包括光源控制模块1062、光电转换器控制模块1064以及信号处理模块1066。驱动模块102耦接于光源控制模块1062和光源108之间;接收模块104耦接于信号处理模块1066 和光电转换器1101之间。当进行发光操作EP时,驱动模块102控制光源108产生入射光EL至待检测对象101并造成带有生物信息的反射光RL。当进行采样操作SP时,接收模块104控制光电转换器110传感进入光电转换器110的接收光以产生电流至接收模块104,光电转换器110接收到的所述接收光即包括带有生物信息的反射光RL,然而,若PPG系统100和待检测对象101之间具有空隙,会造成漏光并使光电转换器110接收到的所述接收光便还包括环境光AL。
控制器106的光源控制模块1062用来通过驱动模块102控制光源108进行发光操作EP;控制器106的光电转换器控制模块1064用来通过接收模块104控制光电转换器110进行采样操作SP。控制器106的信号处理模块1066用于根据采样操作SP采集的电信号处理得到待检测对象101的生物特征。
驱动模块102包括光源驱动器112,用来驱动光源108,举例来说,若光源108为LED,则光源驱动器112为LED驱动器。接收模块104包括电流电压转换器,用来将光电转换器110输出的电流转换为电压。在某些施例中,控制器106是以数字电路实现,则驱动模块102可另包括数字模拟转换器116耦接于光源驱动器112和光源控制模块1062之间;接收模块104可另包括模拟数字转换器118耦接于电流电压转换器114和信号处理模块1066之间。
对于心率或心血氧量测而言,待检测对象101一般为手指或手腕,测试系统会有较大的漏光,也就是光电转换器110会接受到较大的环境光AL,若不能有效地消除环境光AL,会造成量测误差上升。一般作法如图2所示,控制器106控制光源108每进行一次发光操作EP,光电转换器110会相对应地进行两次采样操作SP1和SP2,且发光操作EP和采样操作SP1和SP2为周期性地进行,具有周期T PF,例如周期T PF为40豪秒(即25Hz的频率)。
在发光操作EP进行时,光源108被点亮以造成发光时段,此时进行采样操作SP1,使采样操作SP1的采样时段至少部分重叠于 发光操作EP的发光时段,以对反射光RL和环境光AL同时进行采样,在某些实施例中,发光操作EP的开始时间会稍早于采样操作SP1的开始时间,以确保光源108已稳定;而发光操作EP的结束时间,即关闭光源108的时间,可和采样操作SP1的结束时间相同。采样操作SP1的采样结果D1会在采样操作SP1结束后得到,并由模拟数字转换器118输出至控制器106。
接着,采样操作SP2会在光源108被关闭之后进行,换句话说,采样操作SP2的采样时段不重叠于发光操作EP的发光时段,如此一来,便可单纯地对环境光AL进行采样。此处在每一周期T PF,只对环境光AL进行采样一次,称做一阶操作。采样操作SP1和采样操作SP2的采样间隔时间为T INT,且采样操作SP1和SP2的采样时段的时间长度皆相同。采样操作SP2的采样结果D2会在采样操作SP2结束后得到,并由模拟数字转换器118输出至控制器106。控制器106将采样操作SP1和SP2的结果相减产生生物特征采样结果D R。而下一周期T PF,PPG系统100会重复发光操作EP、采样操作SP1和SP2。应注意的是,控制器106在采样操作SP1和SP2结束后皆会重置光电转换器110,以避免采样操作SP1和SP2的结果互相干扰。
环境光AL主要包含阳光(频率是直流)或室内日光灯(频率是50Hz/60Hz),因此环境光AL的频率f AL为低频信号。图2的方式所得到的环境光抑制比为:
环境光抑制比=1/(2sin(π*f AL*T INT))
环境光抑制比越大,表示PPG系统100对环境光AL的抑制能力越好。因此,采样间隔时间为T INT越小,环境光抑制比越大,但采样间隔时间越小,表示采样操作SP1和SP2的采样时段的时间长度越短,会造成采样噪声越大,形成两难的局面。在高精确度心率与心血氧量测应用中,采样时段的时间长度需求约为80微秒以上,对应的环境光抑制比为30dB以下,但在此应用所需要的环境光抑制比为50dB以上。因此,本申请提出以下的实施例来改善上述问题, 简单来说,控制器106控制光源108每进行一次发光操作EP,光电转换器110相对应地进行三次以上采样操作SP1、SP2、SP3、…,即在每一周期T PF,对环境光AL进行采样两次以上,即二阶操作或更高阶操作。其细节将说明于后。
图3为本申请的生物特征检测装置的二阶操作的实施例。图3和图2相同的是,发光操作EP和采样操作SP1、SP2、SP3为周期性地进行,具有周期T PF,采样操作SP1、SP2、SP3的采样间隔时间皆为T INT,且采样操作SP1、SP2、SP3的采样时段的时间长度皆相同。图3和图2不同的是,图3的实施例为二阶操作,控制器106的光源控制模块1062通过驱动模块102控制光源108每进行一次发光操作EP,控制器106的光电转换器控制模块1064控制光电转换器110相对应地进行三次采样操作SP1、SP2、SP3。
具体来说,图3的实施例和图2相比,在发光操作EP进行之前,多进行了一次采样操作SP1,换句话说,采样操作SP1的采样时段不重叠于发光操作EP的发光时段,可单纯地对环境光AL进行采样。采样操作SP1的采样结果D1会在采样操作SP1结束后得到,并由模拟数字转换器118输出至控制器106的信号处理模块1066。
在发光操作EP开始进行时,光源108被点亮以造成发光时段,此时进行采样操作SP2,使采样操作SP2的采样时段至少部分重叠于发光操作EP的发光时段,以对反射光RL和环境光AL同时进行采样,在某些实施例中,发光操作EP的开始时间会稍早于采样操作SP2的开始时间,以确保光源108已稳定;而发光操作EP的结束时间,即关闭光源108的时间,可和采样操作SP2的结束时间相同。采样操作SP2的采样结果D2会在采样操作SP2结束后得到,并由模拟数字转换器118输出至控制器106的信号处理模块1066。
接着,采样操作SP3会在光源108被关闭之后进行,换句话说,采样操作SP3的采样时段不重叠于发光操作EP的发光时段,以单纯地对环境光AL进行采样。采样操作SP3的采样结果D3会在采样操作SP3结束后得到,并由模拟数字转换器118输出至控制器106 的信号处理模块1066。信号处理模块1066依据采样操作SP1、SP2、SP3的结果产生生物特征采样结果D R。具体来说,生物特征采样结果D R为(2*D2-D1-D3)/2。而下一周期TPF,PPG系统100会重复发光操作EP、采样操作SP1、SP2、SP3。应注意的是,光电转换器控制模块1064在采样操作SP1、SP2、SP3结束后皆会重置光电转换器110,以避免采样操作SP1、SP2、SP3的结果互相干扰。
图3的方式所得到的环境光抑制比为:
环境光抑制比=1/(2sin(π*f AL*T INT)) 2
和图2的方式相比,在采样间隔时间T INT不变的情况下,二阶操作的PPG系统100具有较高的环境光抑制比,例如在高精确度心率与心血氧量测应用中,采样时段的时间长度需求约为80微秒,对应的环境光抑制比可从30dB提升至60dB。
本申请的生物特征检测装置103并不以图3的二阶操作为限制,亦可包含二阶以上的N阶操作,即在每一周期T PF,对环境光AL进行采样N次。为方便说明,本申请中将N为偶数和奇数分开表示。图4为本申请的生物特征检测装置103在N为偶数的情况下的N阶操作的实施例,N为大于1的正整数。
图4中,发光操作EP和采样操作SP1~SP(N+1)为周期性地进行,具有周期T PF,采样操作SP1~SP(N+1)的采样间隔时间皆为T INT,且采样操作SP1~SP(N+1)的采样时段的时间长度皆相同。在发光操作EP进行之前,进行了(N/2)次采样操作SP1~SP(N/2)以得到采样结果D1~D(N/2),并由模拟数字转换器118输出至控制器106,换句话说,采样操作SP1~SP(N/2)的采样时段不重叠于发光操作EP的发光时段,可单纯地对环境光AL进行采样。
在发光操作EP开始进行时,光源108被点亮以造成发光时段,此时进行采样操作SP(N/2+1),使采样操作SP(N/2+1)的采样时段至少部分重叠于发光操作EP的发光时段,以对反射光RL和环境光AL同时进行采样,在某些实施例中,发光操作EP的开始时间会稍 早于采样操作SP2的开始时间,以确保光源108已稳定;而发光操作EP的结束时间,即关闭光源108的时间,可和采样操作SP2的结束时间相同。采样操作SP(N/2+1)的采样结果D(N/2+1)会在采样操作SP(N/2+1)结束后得到,并由模拟数字转换器118输出至控制器106。
接着,采样操作SP(N/2+2)~SP(N+1)会在光源108被关闭之后进行,以得到采样结果D(N/2+2)~D(N+1),并由模拟数字转换器118输出至控制器106。换句话说,采样操作SP(N/2+2)~SP(N+1)的采样时段不重叠于发光操作EP的发光时段,以单纯地对环境光AL进行采样。控制器106依据采样操作SP1~SP(N+1)的结果产生生物特征采样结果D R。具体来说,生物特征采样结果D R
Figure PCTCN2019119955-appb-000001
应注意的是,控制器106在采样操作SP1~SP(N+1)结束后皆会重置光电转换器110,以避免采样操作SP1~SP(N+1)的结果互相干扰。图4的方式所得到的环境光抑制比为:
环境光抑制比=1/(2sin(π*f AL*T INT)) N
图5为本申请的生物特征检测装置103在N为奇数的情况下的N阶操作的第一实施例,N为大于1的正整数。和N为偶数的差别在于,N为奇数时,发光操作EP进行之前,进行了((N+1)/2-1)次采样操作SP1~SP((N+1)/2-1),在发光操作EP开始进行时,进行采样操作SP((N+1)/2),发光操作EP进行之后,进行了((N+1)/2)次采样操作SP((N+1)/2+1)~SP(N+1)。
Figure PCTCN2019119955-appb-000002
图6为本申请的生物特征检测装置103在N为奇数的情况下的N阶操作的第二实施例,N为大于1的正整数。和图5的实施例的 差别在于,图6的发光操作EP进行之前,进行了((N+1)/2)次采样操作SP1~SP((N+1)/2),在发光操作EP开始进行时,进行采样操作SP((N+1)/2+1),发光操作EP进行之后,进行了((N+1)/2-1)次采样操作SP((N+1)/2+2)~SP(N+1)。
Figure PCTCN2019119955-appb-000003
在PPG系统100中,光源108被点亮时的耗电远大于光电转换器110启动时的耗电,换句话说,发光操作EP的发光时段的时间长度大致决定了PPG系统100整体功耗。本申请的高阶PPG系统利用增加采样操作SP的采样时段的数量来提升环境光抑制比,因为并没有增加发光操作EP的发光时段的数量和时间长度,故对PPG系统100整体功耗影响不大。
本申请的生物特征检测装置103可以用芯片实现,该芯片可以是不同工艺实现的半导体芯片,且光电转换器110和光源108皆设置于生物特征检测装置所在的芯片之外。但本申请不以此限,在某些实施例中,光电转换器110及/或光源108亦可设置于生物特征检测装置所在的芯片中。
图7为包括本申请的生物特征检测装置用在电子装置70的实施例的示意图。参照图7,电子装置70包括PPG系统100,PPG系统100包括生物特征检测装置103、光源108和光电转换器110。电子装置70可为穿戴式电子装置,例如手表、项鍊或其他任何智能穿戴设备。电子装置70亦可为手持式电子装置,例如智能型手机、个人数字助理、手持式计算机系统或平板计算机等。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (20)

  1. 一种生物特征检测方法,其特征在于,所述生物特征检测方法包括:
    在N阶操作时,控制光源向待检测对象进行发光操作;
    每进行一次所述发光操作,控制所述光电转换器进行N+1次采样操作,其中N大于1;以及
    根据所述N+1次采样操作采集的电信号处理得到所述待检测对象的生物特征;
    当N为偶数时,控制所述光源及所述光电转换器,以使第N/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段;当N为奇数时,控制所述光源及所述光电转换器,以使第(N+1)/2次或第(N+1)/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段。
  2. 如权利要求1所述的生物特征检测方法,其中所述N+1次采样操作中,只有一次采样操作的采样时段至少部分重叠于所述发光操作的发光时段。
  3. 如权利要求1所述的生物特征检测方法,其中所述发光操作的开始时间早于采样时段至少部分重叠于所述发光操作的所述采样操作的开始时间。
  4. 如权利要求1所述的生物特征检测方法,其中控制所述光源进行所述发光操作包括:
    控制所述光源周期性地进行所述发光操作。
  5. 如权利要求1所述的生物特征检测方法,其中控制所述光电转换器进行N+1次采样操作包括:
    在所述N+1次采样操作结束后分别重置所述光电转换器。
  6. 如权利要求1所述的生物特征检测方法,其中所述N+1次采样操作的采样时段的时间长度皆相同。
  7. 一种生物特征检测装置,其特征在于,,所述生物特征检测装置包括:
    控制器,包括:
    光源控制模块,用于在N阶操作时,控制光源进行发光操作;
    光电转换器控制模块,用于每进行一次所述发光操作,控制所述光电转换器进行N+1次采样操作其中N大于1;以及
    信号处理模块,用于根据所述N+1次采样操作采集的电信号处理得到所述待检测对象的生物特征;
    当N为偶数时,所述光源控制模块控制所述光源,及所述光电转换器控制模块控制所述光电转换器,以使第N/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段;当N为奇数时,所述光源控制模块控制所述光源,及所述光电转换器控制模块控制所述光电转换器,以使第(N+1)/2次或第(N+1)/2+1次采样操作的采样时段至少部分重叠于所述发光操作的发光时段。
  8. 如权利要求7所述的生物特征检测装置,其中所述N+1次采样操作中,所述光源控制模块控制所述光源,及所述光电转换器控制模块控制所述光电转换器,以使只有一次采样操作的采样时段至少部分重叠于所述发光操作的发光时段。
  9. 如权利要求7所述的生物特征检测装置,其中所述光源控制模块控制所述光源,及所述光电转换器控制模块控制所述光电转换器,以使所述发光操作的开始时间早于采样时段至少部分重叠于所述发光操作的所述采样操作的开始时间。
  10. 如权利要求7所述的生物特征检测装置,其中所述光源控制模块控制所述光源周期性地进行所述发光操作。
  11. 如权利要求7所述的生物特征检测装置,所述光电转换器控制模块在所述N+1次采样操作结束后分别重置所述光电转换器。
  12. 如权利要求7所述的生物特征检测装置,其中所述光电转换器控制模块控制所述光电转换器以使所述N+1次采样操作的采样时段的时间长度皆相同。
  13. 如权利要求7所述的生物特征检测装置,另包括驱动模块,耦接于所述光源控制模块和所述光源之间。
  14. 如权利要求13所述的生物特征检测装置,其中所述驱动模块包括光源驱动器,用来驱动所述光源。
  15. 如权利要求14所述的生物特征检测装置,其中所述驱动模块另包括数字模拟转换器,耦接于所述光源驱动器和所述光源控制模块之间。
  16. 如权利要求7所述的生物特征检测装置,另包括接收模块,耦接于所述信号处理模块和所述光电转换器之间。
  17. 如权利要求16所述的生物特征检测装置,其中所述接收模块包括电流电压转换器,用来将所述电信号由电流形式转换为电压形式。
  18. 如权利要求17所述的生物特征检测装置,其中所述接收模块另包括模拟数字转换器,耦接于所述电流电压转换器和所述光电转换器控制模块之间。
  19. 一种电子装置,包括:
    如权利要求7-18项所述的生物特征检测装置;
    所述光电转换器;以及
    所述光源。
  20. 如权利要求19所述的电子装置,其中所述光电转换器为光电二极管,所述光源为LED。
PCT/CN2019/119955 2019-11-21 2019-11-21 生物特征检测方法、生物特征检测装置和电子装置 WO2021097755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980004153.4A CN111050634B (zh) 2019-11-21 2019-11-21 生物特征检测方法、生物特征检测装置和电子装置
PCT/CN2019/119955 WO2021097755A1 (zh) 2019-11-21 2019-11-21 生物特征检测方法、生物特征检测装置和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119955 WO2021097755A1 (zh) 2019-11-21 2019-11-21 生物特征检测方法、生物特征检测装置和电子装置

Publications (1)

Publication Number Publication Date
WO2021097755A1 true WO2021097755A1 (zh) 2021-05-27

Family

ID=70244800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119955 WO2021097755A1 (zh) 2019-11-21 2019-11-21 生物特征检测方法、生物特征检测装置和电子装置

Country Status (2)

Country Link
CN (1) CN111050634B (zh)
WO (1) WO2021097755A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627902A (zh) * 2009-07-15 2010-01-20 深圳先进技术研究院 基于环境光的低功耗、高精度光电容积描记信号前端处理模块
CN104207761A (zh) * 2013-06-03 2014-12-17 飞比特公司 心率数据收集
CN105491943A (zh) * 2014-06-30 2016-04-13 皇家飞利浦有限公司 光电容积脉搏波传感器装置和方法
CN105953823A (zh) * 2016-04-21 2016-09-21 矽力杰半导体技术(杭州)有限公司 环境光滤除电路、光电传感器及应用其的光电检测设备
US20180228413A1 (en) * 2017-02-12 2018-08-16 Hoon Kim Portable apparatus for noninvasively measuring blood glucose level and operating method thereof
CN109073428A (zh) * 2016-02-29 2018-12-21 德克萨斯仪器股份有限公司 具有环境光消除的生物感测设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909312B2 (en) * 2011-05-17 2014-12-09 Microsemi Corporation Signal acquisition circuit for detecting a wanted signal in the presence of an unwanted signal
CN105910632B (zh) * 2016-04-21 2018-10-26 矽力杰半导体技术(杭州)有限公司 光电检测设备和集成电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627902A (zh) * 2009-07-15 2010-01-20 深圳先进技术研究院 基于环境光的低功耗、高精度光电容积描记信号前端处理模块
CN104207761A (zh) * 2013-06-03 2014-12-17 飞比特公司 心率数据收集
CN105491943A (zh) * 2014-06-30 2016-04-13 皇家飞利浦有限公司 光电容积脉搏波传感器装置和方法
CN109073428A (zh) * 2016-02-29 2018-12-21 德克萨斯仪器股份有限公司 具有环境光消除的生物感测设备
CN105953823A (zh) * 2016-04-21 2016-09-21 矽力杰半导体技术(杭州)有限公司 环境光滤除电路、光电传感器及应用其的光电检测设备
US20180228413A1 (en) * 2017-02-12 2018-08-16 Hoon Kim Portable apparatus for noninvasively measuring blood glucose level and operating method thereof

Also Published As

Publication number Publication date
CN111050634A (zh) 2020-04-21
CN111050634B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US10121815B2 (en) Photo detector and associated integrated circuit
CN102258366B (zh) 一种正交方波调制光电容积脉搏波测量装置和测量方法
Shaltis et al. Implementation and validation of a power-efficient, high-speed modulation design for wireless oxygen saturation measurement systems
CN109846492B (zh) 采集电路、血氧饱和度采集芯片及装置
CN1915167A (zh) 一种光-频率转换式脉搏血氧仪的数字信号处理方法
CN112806972B (zh) Ppg测量电路和方法、可穿戴电子设备
US20080161663A1 (en) Digital logic module of oximeter sensor probe
US10420492B2 (en) Biometric sensor arrangement and method for generating a biometric signal
JP2001112728A (ja) 脈拍計
US20140243626A1 (en) Power reduction for oximetry sensor operation
TWI529381B (zh) 訊號獲取電路及方法、脈衝血氧測定法感測器以及獲取在其中之想要訊號的方法
TW202232368A (zh) 指紋感測裝置及其操作方法
WO2021097755A1 (zh) 生物特征检测方法、生物特征检测装置和电子装置
US20090154573A1 (en) Signal Demodulation
US10568581B2 (en) Pulsimeter, frequency analysis device, and pulse measurement method
WO2017113909A1 (zh) 一种利用光电方式检测人体心率的集成芯片
WO2021102627A1 (zh) 生物特征检测方法、生物特征检测装置和电子装置
WO2021102892A1 (zh) Ppg电路、生物特征检测装置和生物特征检测方法
KR101215081B1 (ko) 단전원 증폭 모듈을 이용한 산소포화도 측정 장치
CN104783768A (zh) 一种三角波调制光电容积脉搏波测量装置和测量方法
TW201617023A (zh) 具有校正功能的血管感測裝置
KR102189402B1 (ko) 산소포화도 측정기의 이진검색 기반 자동 오프셋 교정장치
JPH10201743A (ja) オキシメータ
KR102646181B1 (ko) 광학기반 생체신호 측정 장치
US10736195B2 (en) Matched filter techniques configured to fire led using a sloped response

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953206

Country of ref document: EP

Kind code of ref document: A1