WO2021097649A1 - 一种软质假肢复合材料及其制备方法 - Google Patents
一种软质假肢复合材料及其制备方法 Download PDFInfo
- Publication number
- WO2021097649A1 WO2021097649A1 PCT/CN2019/119377 CN2019119377W WO2021097649A1 WO 2021097649 A1 WO2021097649 A1 WO 2021097649A1 CN 2019119377 W CN2019119377 W CN 2019119377W WO 2021097649 A1 WO2021097649 A1 WO 2021097649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- composite material
- nano
- carbon
- polymethyl methacrylate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
Definitions
- the invention relates to the field of prosthetic products, in particular to a soft prosthetic composite material and a preparation method thereof.
- Prostheses also known as “prostheses” are used to replace some of the functions of the limbs that have been lost, so that the amputee can restore a certain degree of self-care and work ability.
- alloys and polymer materials are the two main materials for preparing prostheses.
- alloys that can guarantee hardness are prone to rejection.
- the compatibility of polymer materials meets the needs, but the mechanical properties need to be improved. Based on the above-mentioned problems, it is a topic worthy of research to prepare one that has both high mechanical properties and good biocompatibility.
- the purpose of the present invention is to provide a soft prosthetic composite material and a preparation method thereof.
- the prosthetic composite material combines the advantages of alloys and polymer materials, that is, it satisfies specific mechanical properties and can reduce The phenomenon of rejection, therefore, has a good market acceptance.
- a soft prosthetic composite material comprising the following components in parts by weight: 15-25 parts of copper powder, 25-35 parts of nano carbon, 13-18 parts of carbon nanotubes, 10-15 parts of nano titanium dioxide, 50 parts of egg shells -80 parts, 30-45 parts of discarded lobster shells, 25-38 parts of polymethyl methacrylate, 1-3 parts of maleic acid grafting agent, 1-5 parts of citronella essential oil, 5-25 parts of epoxy resin, 12-25 parts of seaweed extract, 1-3 parts of N,N-dimethylaniline.
- the above-mentioned soft prosthetic composite material includes the following components in parts by weight: 18 parts of copper powder, 32 parts of nano carbon, 15 parts of carbon nanotubes, 12 parts of nano titanium dioxide, 75 parts of egg shells, and 40 parts of discarded lobster shells. Parts, 30 parts of polymethyl methacrylate, 2 parts of maleic acid grafting agent, 4 parts of citronella essential oil, 18 parts of epoxy resin, 20 parts of seaweed extract, 2 parts of N,N-dimethylaniline.
- the particle size of the carbon nanotubes is 25-30 ⁇ m.
- the content of methyl ester in the polymethyl methacrylate is 12-25%.
- the preparation method of the soft prosthetic composite material includes the following steps: step 1, weigh the components; step 2, clean the waste lobster shell, extract the chitin according to the conventional method, and reserve; step 3, remove the eggs After the shell is cleaned, put it into a ball mill and grind for use; step 4, mix the copper powder, nano carbon, carbon nano tube, and nano titanium dioxide, put it into the ball mill and grind, transfer it to a tube furnace, and introduce a nitrogen atmosphere. Then add egg shell powder, calcined to obtain mixture A; step 5, mix and copolymerize polymethyl methacrylate and epoxy resin to obtain reactant B, and add mixture A, chitin and maleic acid to reactant B. Add the reactant C, algae essence, citronella essential oil, and N,N-dimethylaniline into the extruder to extrude.
- the advantages of the soft prosthetic composite material and the preparation method thereof of the present invention are:
- egg shells as natural protein, and chitin extracted from lobster shells can improve the biocompatibility of the prosthesis and reduce the occurrence of rejection;
- the metal materials are processed, they are loaded on the egg shell powder through modification treatment, so that the egg shell powder is used as a carrier to enhance its own mechanical properties, that is, to improve the mechanical properties on the basis of ensuring the biocompatibility;
- citronella essential oil and seaweed extract have a certain bactericidal effect.
- the combination of the two has a synergistic effect, and the antibacterial effect is increased by 0.18 times.
- a soft prosthetic composite material comprising the following components in parts by weight: 15 parts of copper powder, 25 parts of nano-carbon, 13 parts of carbon nanotubes, 10 parts of nano-titanium dioxide, 50 parts of egg shells, 30 parts of discarded lobster shells, 25 parts of polymethyl methacrylate, 1 part of maleic acid grafting agent, 1 part of citronella essential oil, 5 parts of epoxy resin, 12 parts of seaweed extract, 1 part of N,N-dimethylaniline.
- the particle size of the carbon nanotubes is 25 ⁇ m.
- the content of methyl ester in the polymethyl methacrylate is 12%.
- the preparation method of the soft prosthetic composite material includes the following steps: step 1, weigh the components; step 2, clean the waste lobster shell, extract the chitin according to the conventional method, and reserve; step 3, remove the eggs After the shell is cleaned, put it into a ball mill and grind for use; step 4, mix the copper powder, nano carbon, carbon nano tube, and nano titanium dioxide, put it into the ball mill and grind, transfer it to a tube furnace, and introduce a nitrogen atmosphere. Then add egg shell powder, calcined to obtain mixture A; step 5, mix and copolymerize polymethyl methacrylate and epoxy resin to obtain reactant B, and add mixture A, chitin and maleic acid to reactant B. Add the reactant C, algae essence, citronella essential oil, and N,N-dimethylaniline into the extruder to extrude.
- the mesh number after ball milling in step 4 is 100-200 mesh, and the speed of high-pressure stirring in step 5 is 80-100 rpm. High-pressure stirring ensures the invariance of biological components and reduces energy input. Reduce production costs.
- a soft prosthetic composite material including the following components in parts by weight:
- the particle size of the carbon nanotubes is 28 ⁇ m.
- the content of methyl ester in the polymethyl methacrylate is 20%.
- the preparation method of the soft prosthetic composite material includes the following steps: step 1, weigh the components; step 2, clean the waste lobster shell, extract the chitin according to the conventional method, and reserve; step 3, remove the eggs After the shell is cleaned, put it into a ball mill and grind for use; step 4, mix the copper powder, nano carbon, carbon nano tube, and nano titanium dioxide, put it into the ball mill and grind, transfer it to a tube furnace, and introduce a nitrogen atmosphere. Then add egg shell powder, calcined to obtain mixture A; step 5, mix and copolymerize polymethyl methacrylate and epoxy resin to obtain reactant B, and add mixture A, chitin and maleic acid to reactant B. Add the reactant C, algae essence, citronella essential oil, and N,N-dimethylaniline into the extruder to extrude.
- a soft prosthetic composite material comprising the following components in parts by weight: 25 parts of copper powder, 35 parts of nano-carbon, 18 parts of carbon nanotubes, 15 parts of nano-titanium dioxide, 80 parts of egg shells, 45 parts of discarded lobster shells, 38 parts of polymethyl methacrylate, 3 parts of maleic acid grafting agent, 5 parts of citronella essential oil, 25 parts of epoxy resin, 25 parts of seaweed extract, 3 parts of N,N-dimethylaniline.
- the particle size of the carbon nanotubes is 30 ⁇ m.
- the content of methyl ester in the polymethyl methacrylate is 25%.
- the preparation method of the soft prosthetic composite material includes the following steps: step 1, weigh the components; step 2, clean the waste lobster shell, extract the chitin according to the conventional method, and reserve; step 3, remove the eggs After the shell is cleaned, put it into a ball mill and grind for use; step 4, mix the copper powder, nano carbon, carbon nano tube, and nano titanium dioxide, put it into the ball mill and grind, transfer it to a tube furnace, and introduce a nitrogen atmosphere. Then add egg shell powder, calcined to obtain mixture A; step 5, mix and copolymerize polymethyl methacrylate and epoxy resin to obtain reactant B, and add mixture A, chitin and maleic acid to reactant B. Add the reactant C, algae essence, citronella essential oil, and N,N-dimethylaniline into the extruder to extrude.
- Example 2 Example 3 Comparative example 1 tensile strength 168.45 170.2 157.6 84.6
- the present invention is not limited to the above-mentioned embodiments, as long as it does not deviate from the scope of the present invention, the present invention can be implemented in various ways.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种软质假肢复合材料及其制备方法。该复合材料包括以下按重量份计的组分:铜粉15-25份、纳米碳25-35份、碳纳米管13-18份、纳米二氧化钛10-15份、鸡蛋壳50-80份、废弃龙虾壳30-45份、聚甲基丙烯酸甲酯25-38份、马来酸接枝剂1-3份、香茅草精油1-5份、环氧树脂5-25份、海藻精12-25份、N,N-二甲基苯胺1-3份,将金属类材料处理后,通过改性处理,负载在鸡蛋壳粉上,使得鸡蛋壳粉作为载体,增强了自身的力学性能,即保证了生物相容性的基础上,提高力学性能,且制备成本低。
Description
本发明涉及假肢产品领域,具体涉及一种软质假肢复合材料及其制备方法。
假肢就,又称“义肢”它的作用使代替失去肢体的部分功能,使截肢者恢复一定的生活自理和工作能力。目前合金类与高分子材料类是制备假肢两种主要材料,现实中能保证硬度的合金类,易产生排异现象,而高分子材料类相容性能满足需要,但力学性能有待提高。综合上述问题,制备一种即有较高的力学性能又具有良好的生物相容性,是值得研究的课题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种软质假肢复合材料及其制备方法,该假肢复合材料结合合金类和高分子材料类的优点,即满足特定的力学性能,又能减少排异现象,因此,具有良好的市场接受度。
一种软质假肢复合材料,包括以下按重量份计的组分:铜粉15-25份、纳米碳25-35份、碳纳米管13-18份、纳米二氧化钛10-15份、鸡蛋壳50-80份、废弃龙虾壳30-45份、聚甲基丙烯酸甲酯25-38份、马来酸接枝剂1-3份、香茅草精油1-5份、环氧树脂5-25份、海藻精12-25份、N,N-二甲基苯胺1-3份。
优选地,上述软质假肢复合材料,包括以下按重量份计的组分:铜粉18份、纳米碳32份、碳纳米管15份、纳米二氧化钛12份、鸡蛋壳75份、废弃龙虾壳40份、聚甲基丙烯酸甲酯30份、马来酸接枝剂2份、香茅草精油4份、环氧树脂18份、海藻精20份、N,N-二甲基苯胺2份。
优选地,碳纳米管的粒径为25-30μm。
优选地,所述聚甲基丙烯酸甲酯中甲酯的含量为12-25%。
上述软质假肢复合材料的制备方法,包括以下步骤:步骤1,称取各组分;步骤2,价将废弃龙虾壳清洗干净后,按照常规方法提取几丁质,备用;步骤3,将鸡蛋壳清洗干净后,投入球磨机中磨碎,备用;步骤4,将铜粉、纳米碳、碳纳米管、纳米二氧化钛混合,投入球磨机中磨碎后,转入管式炉中,通入氮气气氛,再加入鸡蛋壳粉,煅烧得混合物A;步骤5,将聚甲基丙烯酸甲酯和环氧树脂混合共聚得反应物B,向反应物B中加入混合物A、几丁质和马来酸接枝剂,减压下高速搅拌得反应物C;将反应物C、海藻精、香茅草精油、以 及N,N-二甲基苯胺投入挤出机中挤出,即可。
与现有技术相比,本发明一种软质假肢复合材料及其制备方法的优势在于:
1、采用废弃的鸡蛋壳和龙虾壳为组分,鸡蛋壳作为天然蛋白质,龙虾壳提取的几丁质,均能提高所的假肢的生物相容性,减少了排异现象的产生;
2、将金属类材料处理后,通过改性处理,负载在鸡蛋壳粉上,使得鸡蛋壳粉作为载体,增强了自身的力学性能,即保证了生物相容性的基础上,提高力学性能;
3、香茅草精油和海藻精均具有一定的杀菌效果,两者结合,协同作用,抑菌效果提升了0.18倍。
下面通过具体实施例对本发明作进一步详细介绍。
实施例1
一种软质假肢复合材料,包括以下按重量份计的组分:铜粉15份、纳米碳25份、碳纳米管13份、纳米二氧化钛10份、鸡蛋壳50份、废弃龙虾壳30份、聚甲基丙烯酸甲酯25份、马来酸接枝剂1份、香茅草精油1份、环氧树脂5份、海藻精12份、N,N-二甲基苯胺1份。
其中,碳纳米管的粒径为25μm。
所述聚甲基丙烯酸甲酯中甲酯的含量为12%。上述软质假肢复合材料的制备方法,包括以下步骤:步骤1,称取各组分;步骤2,价将废弃龙虾壳清洗干净后,按照常规方法提取几丁质,备用;步骤3,将鸡蛋壳清洗干净后,投入球磨机中磨碎,备用;步骤4,将铜粉、纳米碳、碳纳米管、纳米二氧化钛混合,投入球磨机中磨碎后,转入管式炉中,通入氮气气氛,再加入鸡蛋壳粉,煅烧得混合物A;步骤5,将聚甲基丙烯酸甲酯和环氧树脂混合共聚得反应物B,向反应物B中加入混合物A、几丁质和马来酸接枝剂,减压下高速搅拌得反应物C;将反应物C、海藻精、香茅草精油、以及N,N-二甲基苯胺投入挤出机中挤出,即可。
步骤4中球磨后的目数为100-200目,步骤5中高压搅拌的速度为80-100rpm。高压搅拌,保证了生物组分不变性外,减少了能量的投入。降低了生产成本。
实施例2
一种软质假肢复合材料,包括以下按重量份计的组分:
铜粉18份、纳米碳32份、碳纳米管15份、纳米二氧化钛12份、鸡蛋壳75份、废弃龙虾壳40份、聚甲基丙烯酸甲酯30份、马来酸接枝剂2份、香茅草精油4份、环氧树脂 18份、海藻精20份、N,N-二甲基苯胺2份。
其中,碳纳米管的粒径为28μm。
所述聚甲基丙烯酸甲酯中甲酯的含量为20%。
上述软质假肢复合材料的制备方法,包括以下步骤:步骤1,称取各组分;步骤2,价将废弃龙虾壳清洗干净后,按照常规方法提取几丁质,备用;步骤3,将鸡蛋壳清洗干净后,投入球磨机中磨碎,备用;步骤4,将铜粉、纳米碳、碳纳米管、纳米二氧化钛混合,投入球磨机中磨碎后,转入管式炉中,通入氮气气氛,再加入鸡蛋壳粉,煅烧得混合物A;步骤5,将聚甲基丙烯酸甲酯和环氧树脂混合共聚得反应物B,向反应物B中加入混合物A、几丁质和马来酸接枝剂,减压下高速搅拌得反应物C;将反应物C、海藻精、香茅草精油、以及N,N-二甲基苯胺投入挤出机中挤出,即可。
实施例3
一种软质假肢复合材料,包括以下按重量份计的组分:铜粉25份、纳米碳35份、碳纳米管18份、纳米二氧化钛15份、鸡蛋壳80份、废弃龙虾壳45份、聚甲基丙烯酸甲酯38份、马来酸接枝剂3份、香茅草精油5份、环氧树脂25份、海藻精25份、N,N-二甲基苯胺3份。
其中,碳纳米管的粒径为30μm。
所述聚甲基丙烯酸甲酯中甲酯的含量为25%。
上述软质假肢复合材料的制备方法,包括以下步骤:步骤1,称取各组分;步骤2,价将废弃龙虾壳清洗干净后,按照常规方法提取几丁质,备用;步骤3,将鸡蛋壳清洗干净后,投入球磨机中磨碎,备用;步骤4,将铜粉、纳米碳、碳纳米管、纳米二氧化钛混合,投入球磨机中磨碎后,转入管式炉中,通入氮气气氛,再加入鸡蛋壳粉,煅烧得混合物A;步骤5,将聚甲基丙烯酸甲酯和环氧树脂混合共聚得反应物B,向反应物B中加入混合物A、几丁质和马来酸接枝剂,减压下高速搅拌得反应物C;将反应物C、海藻精、香茅草精油、以及N,N-二甲基苯胺投入挤出机中挤出,即可。
对比例1
除不含碳纳米管外,其余同实施例2。
对实施例1-3和对比例1的软质假肢材料的性能进行检测,所得数据如下所示。
实施例1 | 实施例2 | 实施例3 | 对比例1 | |
抗拉强度 | 168.45 | 170.2 | 157.6 | 84.6 |
(kg/cm 2) | ||||
耐疲劳次数(次) | 5800 | 5908 | 5804 | 3582 |
杀菌率(%) | 89.4 | 92.6 | 90.5 | 80.6 |
硬度(邵氏A) | 82.5 | 86.9 | 84.3 | 60.5 |
选取100名假肢接收者,分别使用由实施例1-3和对比例1的假肢材料制成的假肢,其中实施例1-3的接收者中的接受率平均达到了85%,而对比例1的接受率只能为45¥。从上表可以看出,本发明软质假肢材料的性能可以看出,该材料的力学性能好,耐使用,不易变形,杀菌率高,使用后不易产生排异性。
另外,本发明不限于上述实施方式,只要在不超出本发明的范围内,可以采取各种方式实施本发明。
Claims (5)
- 一种软质假肢复合材料,其特征在于,包括以下按重量份计的组分:铜粉15-25份、纳米碳25-35份、碳纳米管13-18份、纳米二氧化钛10-15份、鸡蛋壳50-80份、废弃龙虾壳30-45份、聚甲基丙烯酸甲酯25-38份、马来酸接枝剂1-3份、香茅草精油1-5份、环氧树脂5-25份、海藻精12-25份、N,N-二甲基苯胺1-3份。
- 根据权利要求1所述的一种软质假肢复合材料,其特征在于,包括以下按重量份计的组分:铜粉18份、纳米碳32份、碳纳米管15份、纳米二氧化钛12份、鸡蛋壳75份、废弃龙虾壳40份、聚甲基丙烯酸甲酯30份、马来酸接枝剂2份、香茅草精油4份、环氧树脂18份、海藻精20份、N,N-二甲基苯胺2份。
- 根据权利要求1所述的一种软质假肢复合材料,其特征在于,碳纳米管的粒径为25-30μm。
- 根据权利要求1所述的一种软质假肢复合材料,其特征在于,所述聚甲基丙烯酸甲酯中甲酯的含量为12-25%。
- 基于权利要求1-4任一项所述的一种软质假肢复合材料的制备方法,其特征在于,软质假肢复合材料的制备方法,包括以下步骤:步骤1,称取各组分;步骤2,价将废弃龙虾壳清洗干净后,按照常规方法提取几丁质,备用;步骤3,将鸡蛋壳清洗干净后,投入球磨机中磨碎,备用;步骤4,将铜粉、纳米碳、碳纳米管、纳米二氧化钛混合,投入球磨机中磨碎后,转入管式炉中,通入氮气气氛,再加入鸡蛋壳粉,煅烧得混合物A;步骤5,将聚甲基丙烯酸甲酯和环氧树脂混合共聚得反应物B,向反应物B中加入混合物A、几丁质和马来酸接枝剂,减压下高速搅拌得反应物C;将反应物C、海藻精、香茅草精油、以及N,N-二甲基苯胺投入挤出机中挤出,即可。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/119377 WO2021097649A1 (zh) | 2019-11-19 | 2019-11-19 | 一种软质假肢复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/119377 WO2021097649A1 (zh) | 2019-11-19 | 2019-11-19 | 一种软质假肢复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021097649A1 true WO2021097649A1 (zh) | 2021-05-27 |
Family
ID=75980280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/119377 WO2021097649A1 (zh) | 2019-11-19 | 2019-11-19 | 一种软质假肢复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021097649A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101029158A (zh) * | 2007-03-05 | 2007-09-05 | 冷劲松 | 颗粒填充形状记忆复合材料及其制备方法 |
JP2008013672A (ja) * | 2006-07-06 | 2008-01-24 | Kyoto Institute Of Technology | エポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料 |
WO2012151250A1 (en) * | 2011-05-03 | 2012-11-08 | University Of Hawaii | Composite resin compositions |
CN104817989A (zh) * | 2015-04-10 | 2015-08-05 | 深圳广恒威科技有限公司 | 一种底部填充胶组合物及其制备方法 |
CN105199317A (zh) * | 2015-09-17 | 2015-12-30 | 吉林化工学院 | 一种高韧性高强度环氧树脂基导电复合材料的制备方法 |
CN105641751A (zh) * | 2016-03-09 | 2016-06-08 | 山东中恒碳纤维科技发展有限公司 | 一种三维编织复合材料假肢及其制备方法 |
JP6564588B2 (ja) * | 2015-03-09 | 2019-08-21 | 株式会社エマオス京都 | 多孔質モノリスコーティング構造物及びその製造方法 |
-
2019
- 2019-11-19 WO PCT/CN2019/119377 patent/WO2021097649A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008013672A (ja) * | 2006-07-06 | 2008-01-24 | Kyoto Institute Of Technology | エポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料 |
CN101029158A (zh) * | 2007-03-05 | 2007-09-05 | 冷劲松 | 颗粒填充形状记忆复合材料及其制备方法 |
WO2012151250A1 (en) * | 2011-05-03 | 2012-11-08 | University Of Hawaii | Composite resin compositions |
JP6564588B2 (ja) * | 2015-03-09 | 2019-08-21 | 株式会社エマオス京都 | 多孔質モノリスコーティング構造物及びその製造方法 |
CN104817989A (zh) * | 2015-04-10 | 2015-08-05 | 深圳广恒威科技有限公司 | 一种底部填充胶组合物及其制备方法 |
CN105199317A (zh) * | 2015-09-17 | 2015-12-30 | 吉林化工学院 | 一种高韧性高强度环氧树脂基导电复合材料的制备方法 |
CN105641751A (zh) * | 2016-03-09 | 2016-06-08 | 山东中恒碳纤维科技发展有限公司 | 一种三维编织复合材料假肢及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001503016A (ja) | 消化管内の微生物個体数の変更 | |
CN106360115A (zh) | 一种防治肝病的饲料添加剂及其制备方法 | |
CN113234983B (zh) | 一种NbTaTiZr双相等原子比高熵合金及其制备方法 | |
WO2021097649A1 (zh) | 一种软质假肢复合材料及其制备方法 | |
CN106721304A (zh) | 一种减少仔猪断奶应激的微生物饲料添加剂及其制备方法 | |
CN101480222A (zh) | 一种军曹鱼用复合免疫增强剂 | |
CN103893100A (zh) | 辣木多元益生菌面膜 | |
Putra et al. | Sustainable Sources of Raw Materials for Additive Manufacturing of Bone‐Substituting Biomaterials | |
Munir et al. | Gums‐based bionanostructures for medical applications | |
CN105085958A (zh) | 一种基于改性蚕丝蛋白的多酚氧化酶纳米高效吸附固定薄膜以及制备方法 | |
CN104232512A (zh) | 用于水体修复的复合微生物制剂及其制备方法与应用 | |
WO2022160917A1 (zh) | 含有非变性ii型胶原和壳寡糖的复合物及其制备方法 | |
CN108219360B (zh) | 一种医用聚醚醚酮复合材料及其制备方法 | |
Imai | Phylogenetic taxonomy of rumen ciliate protozoa based on their morphology and distribution | |
Upadhayay et al. | Sea shell extracted chitosan composites and their applications | |
CN109330744B (zh) | 一种定制可降解多元多层纳米复合物3d打印义指指骨 | |
Kumar et al. | Effect of Mikania cordata (Burm) BL Robins on non-specific immune response of Catla catla (Hamilton, 1822) against Aphanomyces invadans | |
CN1202866C (zh) | 含生物质的胃肠造影剂 | |
CN114790428A (zh) | 一种提高肉食性水产动物健康和生长的预消化饲料 | |
CN114258989A (zh) | 饲料添加剂及其制备方法和应用 | |
JP2007055986A (ja) | 抗アレルギー剤 | |
EP4103213A1 (en) | Improved aquaculture feed additive | |
CN102640875B (zh) | 一种促进牲猪保健与快速生长的中草药剂 | |
Matmin et al. | Biodegradable Inorganic Nanocomposites | |
Vyas et al. | Sustainable sources of raw materials as substituting biomaterials for additive manufacturing of dental implants: a review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953053 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19953053 Country of ref document: EP Kind code of ref document: A1 |