WO2021096332A1 - Organic light-emitting diode - Google Patents

Organic light-emitting diode Download PDF

Info

Publication number
WO2021096332A1
WO2021096332A1 PCT/KR2020/095135 KR2020095135W WO2021096332A1 WO 2021096332 A1 WO2021096332 A1 WO 2021096332A1 KR 2020095135 W KR2020095135 W KR 2020095135W WO 2021096332 A1 WO2021096332 A1 WO 2021096332A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
water
organic layer
Prior art date
Application number
PCT/KR2020/095135
Other languages
French (fr)
Korean (ko)
Inventor
김민준
이동훈
서상덕
김서연
이다정
최승원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080019625.6A priority Critical patent/CN113614939A/en
Priority claimed from KR1020200150020A external-priority patent/KR102427161B1/en
Publication of WO2021096332A1 publication Critical patent/WO2021096332A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light-emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multilayer structure made of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device.
  • the present invention provides the following organic light emitting device:
  • a negative electrode provided to face the positive electrode
  • the emission layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2:
  • X is O or S
  • L 1 and L 2 are each independently a single bond, or any one selected from the group consisting of,
  • Ar 1 and Ar 2 is substituted or unsubstituted C 6-60 aryl, and the other is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
  • Each R is independently hydrogen or deuterium
  • a is an integer of 1 to 3
  • b is an integer from 1 to 6
  • B 1 to B 4 are each independently a C 6-60 aromatic ring fused with an adjacent ring
  • L' 1 and L' 2 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a substituted or unsubstituted C 2-60 heteroarylene containing one or more heteroatoms of N, O and S,
  • Ar' 1 and Ar' 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
  • Each R' is independently hydrogen or deuterium
  • c, d, e and f are each independently an integer of 1 to 6,
  • the above-described organic light-emitting device includes two kinds of host compounds in the light-emitting layer, so that efficiency, driving voltage, and/or lifespan characteristics in the organic light-emitting device can be improved.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and a cathode 4 are shown as an example of an organic light-emitting device.
  • D means deuterium
  • Ph means a phenyl group
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O, and S atoms, or substituted or unsubstituted with two
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a C1-C25 linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms in the oxygen of the ester group.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, Can be, etc. However, it is not limited thereto.
  • the heteroaryl group is a heterocyclic group containing one or more heteroatoms of O, N, Si and S as heterogeneous elements, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • heteroaryl group examples include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenan
  • the aromatic ring refers to a condensed monocyclic or condensed polycyclic ring including only carbon as a ring-forming atom and having aromaticity in the entire molecule.
  • the number of carbon atoms in the aromatic ring is 6 to 60, or 6 to 30, or 6 to 20, but is not limited thereto.
  • the aromatic ring may be a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, or a pyrene ring, but is not limited thereto.
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the heteroaryl among the heteroarylamines may be described above for heteroaryl.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the above-described heteroaryl may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied except that the heterocycle is formed by bonding of two substituents.
  • deuterated or substituted with deuterium means that at least one available hydrogen in each chemical formula is substituted with deuterium. Specifically, being substituted with deuterium in the definition of each chemical formula or substituent means that at least one or more of the positions at which hydrogen can be bonded in the molecule will be substituted with deuterium, and more specifically, at least 10% of the available hydrogen is It means substituted by deuterium. In one example, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated in each formula.
  • anode Anode
  • a negative electrode provided to face the positive electrode
  • an emission layer provided between the anode and the cathode, wherein the emission layer includes a first compound represented by Chemical Formula 1 and a second compound represented by Chemical Formula 2.
  • the organic light-emitting device may simultaneously include two types of compounds having a specific structure in the light-emitting layer as host materials, thereby improving efficiency, driving voltage, and/or lifetime characteristics in the organic light-emitting device.
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are a multi-layered material such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the organic light-emitting device may include a hole injection layer between an anode and a hole transport layer to be described later, if necessary.
  • the hole injection layer is positioned on the anode and injects holes from the anode, and includes a hole injection material.
  • a hole injection material has the ability to transport holes, has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and prevents the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material.
  • a compound having excellent thin film formation ability is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, perylene.
  • the organic light-emitting device may include a hole transport layer between the anode and the emission layer.
  • the hole transport layer is a layer that receives holes from an anode or a hole injection layer formed on the anode and transports holes to the emission layer, and includes a hole transport material.
  • a hole transport material a material capable of transporting holes from an anode or a hole injection layer to the light emitting layer and having high mobility for holes is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the organic light-emitting device may include an electron blocking layer between the hole transport layer and the emission layer, if necessary.
  • the electron blocking layer is formed on the hole transport layer and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light-emitting device. It refers to the layer that plays a role in improving the value.
  • the electron blocking layer includes an electron blocking material, and an arylamine-based organic material may be used as an example of the electron blocking material, but is not limited thereto.
  • the organic light-emitting device includes an emission layer between an anode and a cathode, and the emission layer includes the first compound and the second compound as a host material.
  • the first compound functions as an N-type host material having an electron transport ability superior to that of a hole transporting ability
  • the second compound functions as a P-type host material having a hole transport ability that is superior to an electron transporting ability.
  • the ratio of the electron to the electron can be properly maintained. Accordingly, excitons are evenly emitted from the entire emission layer, so that the luminous efficiency and lifetime characteristics of the organic light-emitting device can be improved at the same time.
  • the first compound is represented by Formula 1 above.
  • the first compound is a compound in which a triazinyl group is substituted in a furan/thiophene condensed ring core in which at least one naphthalene ring is condensed, and the compound is a dibenzofuran/dibenzothiophene core substituted with a triazinyl group.
  • the electron transport ability is excellent, and the electron-hole recombination probability in the light emitting layer can be increased by efficiently transferring electrons to the dopant material.
  • L 1 is a single bond, , or Can be
  • L 2 may be a single bond, or any one selected from the group consisting of:
  • one of Ar 1 and Ar 2 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, or fluorenyl, and the other is phenyl, biphenylyl, terphenylyl, naphthyl, Phenanthryl, fluorenyl, dibenzofuranyl, dibenzothiophenyl, or carbazolyl,
  • Ar 1 and Ar 2 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl.
  • Ar 1 and Ar 2 are each independently phenyl, phenyl substituted with deuterium, biphenylyl, terphenylyl, phenanthryl, naphthyl, 9,9-dimethylfluorenyl, dibenzofuranyl, dibenzo Thiophenyl, or 9-phenylcarbazole.
  • Ar 1 and Ar 2 may be the same as each other or may be different from each other.
  • one of Ar 1 and Ar 2 may be unsubstituted or C 6-20 aryl substituted with deuterium.
  • both Ar 1 and Ar 2 may be C 6-20 aryl unsubstituted or substituted with deuterium.
  • Ar 1 is phenyl, biphenylyl, or naphthyl
  • Ar 2 may be phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, 9,9-dimethylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9-phenylcarbazolyl, or carbazolyl .
  • Ar 1 is any one selected from the group consisting of,
  • Ar 2 may be any one selected from the group consisting of:
  • each R is independently hydrogen or deuterium.
  • a which means the number of R, may be 1, 2, or 3 and b may be 1, 2, 3, 4, 5, or 6.
  • the first compound may be represented by any one of the following 1-1-1 to 1-1-3:
  • X, L 2 , Ar 1 and Ar 2 are as defined in Chemical Formula 1.
  • a compound in which Z is a substituent represented by Formula 1 may be prepared by a manufacturing method such as the following Scheme 1:
  • X is halogen, preferably bromo, or chloro, and definitions for other substituents are as described above.
  • the compound represented by Formula 1 may be prepared through a Suzuki-coupling reaction of starting materials A1 and A2.
  • This Suzuki-coupling reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction may be appropriately changed.
  • the method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
  • the second compound is represented by Chemical Formula 2.
  • the second compound has a biscarbazole-based structure, so that holes can be efficiently transferred to a dopant material, and thus, the probability of recombination of holes and electrons in the emission layer together with the first compound having excellent electron transport ability is improved. You can increase it.
  • B 1 to B 4 may each independently be a benzene or naphthalene ring.
  • B 1 and B 2 may each independently be a benzene or naphthalene ring, and B 3 and B 4 may be a benzene ring.
  • the second compound may be represented by the following Formula 2':
  • B 1 and B 2 are each independently a benzene or naphthalene ring
  • L' 1 , L' 2 , Ar' 1 , Ar' 2 , R', c and d are as defined in Chemical Formula 2.
  • L' 1 and L' 2 may each independently be a single bond, or a C 6-20 arylene unsubstituted or substituted with deuterium.
  • L' 1 and L' 2 are each independently a single bond, unsubstituted or deuterium substituted phenylene; Or it may be unsubstituted or naphthylene substituted with deuterium.
  • L' 1 and L' 2 may each independently be a single bond, or any one selected from the group consisting of:
  • L' 1 and L' 2 may be the same as or different from each other.
  • Ar' 1 and Ar' 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, triphenylenyl, fluoranthenyl, fluorenyl, 9,9'-spirobi Fluorenyl, dibenzofuranyl, or dibenzothiophenyl,
  • Ar' 1 and Ar' 2 are unsubstituted or one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl, for example, 1 or 2 substituents. Can be substituted with
  • Ar' 1 and Ar' 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, triphenylenyl, fluoranthenyl, fluorenyl, 9,9-dimethylfluore Nil, 9,9-diphenylfluorenyl, 9,9'-spirobifluorenyl, dibenzofuranyl, or dibenzothiophenyl.
  • Ar' 1 and Ar' 2 may be the same or different from each other.
  • R' may be all hydrogen or all deuterium.
  • c, d, e, and f indicating the number of R′ may each independently be an integer of 1 to 6.
  • B 1 and B 2 are a benzene ring
  • c and d are each independently an integer of 1 to 4
  • B 1 and B 2 are a naphthalene ring
  • c and d are each independently an integer of 1 to 6
  • B 3 and B 4 are a benzene ring
  • e and f are each independently an integer of 1 to 3
  • B 3 and B 4 are a naphthalene ring
  • e and f are each independently an integer of 1 to 5.
  • the second compound may be represented by the following Formula 2-1:
  • L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in Chemical Formula 2.
  • the second compound may be represented by the following Formulas 2-2 to 2-4:
  • L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in Chemical Formula 2.
  • the second compound may be represented by the following Formulas 2-5 to 2-10:
  • L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in Chemical Formula 2.
  • the compound represented by Formula 2 may be prepared by a manufacturing method such as the following Scheme 2 as an example:
  • X is halogen, preferably bromo, or chloro, and the definition of other substituents is as described above.
  • the compound represented by Formula 2 may be prepared through a Suzuki-coupling reaction of starting materials A3 and A4. This Suzuki-coupling reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction may be appropriately changed.
  • the method for preparing the compound represented by Formula 2 may be more specific in Preparation Examples to be described later.
  • first compound and the second compound may be included in a weight ratio of 1:99 to 99:1 in the emission layer. In this case, it is more preferable that the first compound and the second compound are included in a weight ratio of 30:70 to 70:30 in terms of appropriately maintaining the ratio of holes and electrons in the emission layer.
  • the emission layer may further include a dopant material in addition to the two kinds of host materials.
  • dopant substances include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • a compound in which at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted.
  • styrylamine styryldiamine
  • styryltriamine styryltetraamine
  • metal complex examples include an iridium complex and a platinum complex, but are not limited thereto.
  • the following compound may be used as the dopant material, but is not limited thereto:
  • the organic light emitting device may include a hole blocking layer between the light emitting layer and the electron transport layer to be described later, if necessary.
  • the hole blocking layer is formed on the emission layer and is preferably provided in contact with the emission layer to improve the efficiency of the organic light-emitting device by increasing the probability of hole-electron bonding by controlling electron mobility and preventing excessive movement of holes. It means the layer that plays a role.
  • the hole-blocking layer includes a hole-blocking material, and examples of the hole-blocking material include: a subazine derivative including triazine; Triazole derivatives; Oxadiazole derivatives; Phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but is not limited thereto.
  • the electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from an electrode and transporting received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • the electron injection and transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high mobility for electrons is suitable.
  • specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complex; Triazine derivatives and the like may be used, but are not limited thereto.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and their derivatives, metal complex compounds , Or nitrogen-containing 5-membered cyclic derivatives, but are not limited thereto.
  • the electron injection and transport layer may be formed as separate layers such as an electron injection layer and an electron transport layer.
  • the electron transport layer is formed on the emission layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer.
  • the electron injection layer is formed on the electron transport layer, and electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and the like, their derivatives, metal complex compounds, and nitrogen-containing 5-membered ring derivatives.
  • electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and the
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited thereto.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • the first compound and the second compound may be included in the emission layer.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and a cathode 4 are shown as an example of an organic light-emitting device.
  • the first compound and the second compound may be included in the emission layer.
  • the organic light-emitting device according to the present invention can be manufactured by sequentially stacking the above-described configurations. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming each of the above-described layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • PVD physical vapor deposition
  • the light emitting layer may be formed by a solution coating method as well as a vacuum evaporation method for a host and a dopant.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • subB-1 15 g, 38.1 mmol
  • formula A 11 g, 41.9 mmol
  • potassium carbonate 15.8 g, 114.3 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.4 mmol
  • subB-2 15 g, 30.2 mmol
  • formula A 8.7 g, 33.3 mmol
  • potassium carbonate 12.5 g, 90.7 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subB-4 15 g, 33.3 mmol
  • formula A 9.6 g, 36.7 mmol
  • potassium carbonate 13.8 g, 100 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subB-5 15 g, 31.9 mmol
  • formula A 9.2 g, 35.1 mmol
  • potassium carbonate 13.2 g, 95.8 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subB-6 (15 g, 30 mmol) and formula A (8.6 g, 33 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 mL of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subC-1 15 g, 38.1 mmol
  • formula A 10 g, 38.1 mmol
  • potassium carbonate 15.8 g, 114.3 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.4 mmol
  • subC-2 15 g, 33.8 mmol
  • formula A 8.9 g, 33.8 mmol
  • potassium carbonate 14 g, 101.4 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subC-3 15 g, 30.4 mmol
  • formula A 8 g, 30.4 mmol
  • potassium carbonate 12.6 g, 91.1 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subC-4 15 g, 31.9 mmol
  • formula A 8.4 g, 31.9 mmol
  • potassium carbonate 13.2 g, 95.8 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subC-5 15 g, 28.8 mmol
  • formula A 7.6 g, 28.8 mmol
  • potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subC-6 15 g, 30.4 mmol
  • formula A 8 g, 30.4 mmol
  • potassium carbonate 12.6 g, 91.1 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subC-7 15 g, 29.4 mmol
  • formula A 7.7 g, 29.4 mmol
  • potassium carbonate 12.2 g, 88.2 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subC-8 (15 g, 26.8 mmol) and formula A (7 g, 26.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (11.1 g, 80.5 mmol) was dissolved in 33 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subC-9 15 g, 26.8 mmol
  • formula A 7 g, 26.8 mmol
  • potassium carbonate 11.1 g, 80.5 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.1 g, 0.3 mmol
  • subC-10 15 g, 31 mmol
  • formula A 8 g, 31 mmol
  • potassium carbonate 14 g, 93 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.2 g, 0.3 mmol
  • subC-11 15 g, 28.1 mmol
  • formula A 7.4 g, 28.1 mmol
  • potassium carbonate 11.6 g, 84.3 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.1 g, 0.3 mmol
  • subC-12 15 g, 28.1 mmol
  • formula A 7.4 g, 28.1 mmol
  • potassium carbonate (11.6 g, 84.3 mmol) was dissolved in 35 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subC-13 15 g, 27.3 mmol
  • formula A 7.1 g, 27.3 mmol
  • potassium carbonate 11.3 g, 81.8 mmol
  • bis (tri-tert-butylphosphine) palladium (0) 0.1 g, 0.3 mmol
  • subC-14 15 g, 30 mmol
  • formula A 7.9 g, 30 mmol
  • potassium carbonate 12.4 g, 90 mmol
  • bis(tri-tert-butylphosphine)palladium (0) 0.2 g, 0.3 mmol
  • intermediate 2-1-1 (10 g, 25.2 mmol) and intermediate 2-1-2 (8 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-2-1 (10 g, 25.2 mmol) and intermediate 2-2-2 (8 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-3-1 (10 g, 25.2 mmol) and intermediate 2-3-2 (10.1 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-4-1 (10 g, 25.2 mmol) and intermediate 2-4-2 (9.3 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-5-1 (10 g, 25.2 mmol) and intermediate 2-5-2 (10.1 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-6-1 (10 g, 25.2 mmol) and intermediate 2-6-2 (11.4 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • potassium carbonate (13.9 g, 100.7 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-7-1 (10 g, 22.4 mmol) and intermediate 2-7-2 (10.2 g, 24.6 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.4 g, 89.5 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-8-1 (10 g, 17.9 mmol) and intermediate 2-8-2 (5.6 g, 19.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (9.9 g, 71.5 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-9-1 (10 g, 21.1 mmol) and intermediate 2-9-2 (6.7 g, 23.3 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (11.7 g, 84.6 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-10-1 (10 g, 27 mmol) and intermediate 2-10-2 (10 g, 29.6 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (14.9 g, 107.8 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-11-1 (10 g, 27 mmol) and intermediate 2-11-2 (11.5 g, 29.6 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (14.9 g, 107.8 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-12-1 (10 g, 23.8 mmol) and intermediate 2-12-2 (8.8 g, 26.1 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.1 g, 95 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-13-1 (10 g, 24.3 mmol) and intermediate 2-13-2 (11.1 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-14-1 (10 g, 24.3 mmol) and intermediate 2-14-2 (7.7 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-15-1 (10 g, 24.3 mmol) and intermediate 2-15-2 (9 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-16-1 (10 g, 24.3 mmol) and intermediate 2-16-2 (11.1 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-17-1 (10 g, 24.3 mmol) and intermediate 2-17-2 (10.1 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-18-1 (10 g, 24.3 mmol) and intermediate 2-18-2 (10.5 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-19-1 (10 g, 24.3 mmol) and intermediate 2-19-2 (10.5 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water.
  • potassium carbonate (13.5 g, 97.3 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-20-1 (10 g, 23.4 mmol) and intermediate 2-20-2 (9.4 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-21-1 (10 g, 23.4 mmol) and intermediate 2-21-2 (10.6 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water.
  • potassium carbonate (12.9 g, 93.7 mmol) was added to water.
  • bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-22-1 (10 g, 23.4 mmol) and intermediate 2-22-2 (11.3 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • intermediate 2-23-1 (10 g, 23.4 mmol) and intermediate 2-23-2 (10.1 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • Example 1 Fabrication of an organic light emitting device
  • a glass substrate coated with a thin film of ITO (indium tin oxide) having a thickness of 1,000 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product made by Fischer Co. was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150 ⁇ , but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • an electron suppressing layer was formed by vacuum depositing the following EB-1 compound with a film thickness of 150 ⁇ on the hole transport layer.
  • the compound 1 prepared in Synthesis Example 1 was used as a first host
  • the compound 2-1 prepared in Synthesis Example 2-1 was used as a second host
  • the following Dp-7 compound was used as a dopant.
  • a red light emitting layer having a thickness of 400 ⁇ was formed by vacuum evaporation.
  • the first host and the second host were used in a weight ratio of 1:1
  • the total host material and the dopant material were used in a weight ratio of 98:2.
  • a hole blocking layer was formed by vacuum depositing the following HB-1 compound with a thickness of 30 ⁇ on the emission layer. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 ⁇ . Lithium fluoride (LiF) in a thickness of 12 ⁇ and aluminum in a thickness of 1,000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • LiF lithium fluoride
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride at the negative electrode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum degree during deposition was 2 x 10 ⁇ Maintaining 7 ⁇ 5 x 10 -6 torr, an organic light emitting device was manufactured.
  • Example 1 an organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 1 to 3 were used instead of Compound 1 and Compound 2-1 as cohost materials. .
  • Example 1 an organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 6 and 7 were used instead of compounds 1 and 2-1 as cohost materials. .
  • the organic light emitting device of the embodiment in which the first compound represented by Formula 1 and the second compound represented by Formula 2 were simultaneously used as the host material of the emission layer was represented by Formulas 1 and 2.
  • the organic light-emitting device of Comparative Example in which only one or both of the displayed compounds were not employed, excellent luminous efficiency and remarkably improved lifespan characteristics were exhibited.
  • the device according to the embodiment exhibited higher efficiency and longer life than the device of the comparative example employing the compound represented by Formula 1 as a single host.
  • the device according to the embodiment has a driving voltage, efficiency, and lifespan compared to the device of the comparative example employing Comparative Examples compounds C-1 to C-12 as a first host and the compound represented by Formula 2 as a second host. All of the characteristics have been improved.
  • the combination of the first compound represented by Formula 1 and the second compound represented by Formula 2 was used as a cohost, it was confirmed that energy was effectively transferred to the red dopant in the red light emitting layer. This can be determined because the first compound has high stability against electrons and holes, and also because the amount of holes increased as the second compound was used at the same time, and a more stable balance of electrons and holes was maintained in the red light emitting layer. It is judged as.
  • the organic light-emitting device when considering that the luminous efficiency and lifetime characteristics of the organic light-emitting device have a trade-off relationship with each other, the organic light-emitting device employing a combination of the compounds of the present invention has significantly improved device characteristics compared to the comparative example device. It can be seen as representing.
  • substrate 2 anode

Abstract

The present invention provides an organic light-emitting diode.

Description

유기 발광 소자Organic light emitting element
관련 출원(들)과의 상호 인용Cross-reference with related application(s)
본 출원은 2019년 11월 11일자 한국 특허 출원 제10-2019-0143627호 및 2020년 11월 11일자 한국 특허 출원 제10-2020-0150020호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0143627 filed on November 11, 2019 and Korean Patent Application No. 10-2020-0150020 filed on November 11, 2020. All contents disclosed in the literature are included as part of this specification.
본 발명은 유기 발광 소자에 관한 것이다. The present invention relates to an organic light emitting device.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material. An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light-emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode. The organic material layer is often made of a multilayer structure made of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of such an organic light emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.Development of new materials for organic materials used in organic light emitting devices as described above is continuously required.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호(Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
본 발명은 유기 발광 소자에 관한 것이다. The present invention relates to an organic light emitting device.
본 발명은 하기의 유기 발광 소자를 제공한다:The present invention provides the following organic light emitting device:
양극; anode;
상기 양극과 대향하여 구비된 음극; 및 A negative electrode provided to face the positive electrode; And
상기 양극과 음극 사이에 구비된 발광층을 포함하고,Including a light emitting layer provided between the anode and the cathode,
상기 발광층은 하기 화학식 1로 표시되는 제1 화합물 및 하기 화학식 2로 표시되는 제2 화합물을 포함한다:The emission layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2:
[화학식 1][Formula 1]
Figure PCTKR2020095135-appb-img-000001
Figure PCTKR2020095135-appb-img-000001
상기 화학식 1에서,In Formula 1,
X는 O 또는 S이고, X is O or S,
L 1 및 L 2는 각각 독립적으로 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나이고, L 1 and L 2 are each independently a single bond, or any one selected from the group consisting of,
Figure PCTKR2020095135-appb-img-000002
Figure PCTKR2020095135-appb-img-000002
Ar 1 및 Ar 2 중 하나는 치환 또는 비치환된 C 6-60 아릴이고, 다른 하나는 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, One of Ar 1 and Ar 2 is substituted or unsubstituted C 6-60 aryl, and the other is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
R은 각각 독립적으로 수소 또는 중수소이고,Each R is independently hydrogen or deuterium,
a는 1 내지 3의 정수이고,a is an integer of 1 to 3,
b는 1 내지 6의 정수이고, b is an integer from 1 to 6,
[화학식 2][Formula 2]
Figure PCTKR2020095135-appb-img-000003
Figure PCTKR2020095135-appb-img-000003
상기 화학식 2에서,In Chemical Formula 2,
B 1 내지 B 4는 각각 독립적으로 인접한 고리와 융합된 C 6-60 방향족 고리이고, B 1 to B 4 are each independently a C 6-60 aromatic ring fused with an adjacent ring,
L' 1 및 L' 2는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,L' 1 and L' 2 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a substituted or unsubstituted C 2-60 heteroarylene containing one or more heteroatoms of N, O and S,
Ar' 1 및 Ar' 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, Ar' 1 and Ar' 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
R'는 각각 독립적으로 수소 또는 중수소이고,Each R'is independently hydrogen or deuterium,
c, d, e 및 f는 각각 독립적으로 1 내지 6의 정수이고,c, d, e and f are each independently an integer of 1 to 6,
a, b, c, d, e 및 f가 각각 2 이상인 경우, 괄호 안의 치환기는 서로 동일하거나 상이하다.When a, b, c, d, e, and f are each 2 or more, the substituents in parentheses are the same as or different from each other.
상술한 유기 발광 소자는 발광층에 2종의 호스트 화합물을 포함하여, 유기 발광 소자에서 효율, 구동전압 및/또는 수명 특성을 향상시킬 수 있다. The above-described organic light-emitting device includes two kinds of host compounds in the light-emitting layer, so that efficiency, driving voltage, and/or lifespan characteristics in the organic light-emitting device can be improved.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and a cathode 4 are shown as an example of an organic light-emitting device.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to aid in understanding the present invention.
본 명세서에서,
Figure PCTKR2020095135-appb-img-000004
, 또는
Figure PCTKR2020095135-appb-img-000005
는 다른 치환기에 연결되는 결합을 의미하고, D는 중수소를 의미하고, Ph는 페닐기를 의미한다.
In this specification,
Figure PCTKR2020095135-appb-img-000004
, or
Figure PCTKR2020095135-appb-img-000005
Means a bond connected to another substituent, D means deuterium, and Ph means a phenyl group.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.In the present specification, the term "substituted or unsubstituted" refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O, and S atoms, or substituted or unsubstituted with two or more substituents connected among the above-exemplified substituents. . For example, "a substituent to which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent to which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2020095135-appb-img-000006
Figure PCTKR2020095135-appb-img-000006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the ester group may be substituted with a C1-C25 linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms in the oxygen of the ester group. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2020095135-appb-img-000007
Figure PCTKR2020095135-appb-img-000007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2020095135-appb-img-000008
Figure PCTKR2020095135-appb-img-000008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이에 한정되는 것은 아니다.In the present specification, the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸, 아다만틸(adamantyl) 등이 있으나, 이에 한정되지 않는다. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, adamantyl, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020095135-appb-img-000009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2020095135-appb-img-000009
Can be, etc. However, it is not limited thereto.
본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N, Si 및 S 중 1개 이상의 헤테로원자를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.In the present specification, the heteroaryl group is a heterocyclic group containing one or more heteroatoms of O, N, Si and S as heterogeneous elements, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms. Examples of the heteroaryl group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiiadia There may be a zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
본 명세서에 있어서, 방향족 고리는 고리 형성 원자로서 탄소만을 포함하면서 분자 전체가 방향족성(aromaticity)을 갖는 축합단환 또는 축합다환 고리를 의미한다. 상기 방향족 고리의 탄소수는 6 내지 60, 또는 6 내지 30, 또는 6 내지 20이나, 이에 한정되는 것은 아니다. 또한, 상기 방향족 고리로는 벤젠 고리, 나프탈렌 고리, 안트라센 고리, 페난쓰렌 고리, 파이렌 고리 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aromatic ring refers to a condensed monocyclic or condensed polycyclic ring including only carbon as a ring-forming atom and having aromaticity in the entire molecule. The number of carbon atoms in the aromatic ring is 6 to 60, or 6 to 30, or 6 to 20, but is not limited thereto. In addition, the aromatic ring may be a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, or a pyrene ring, but is not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.In the present specification, the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group. In the present specification, the heteroaryl among the heteroarylamines may be described above for heteroaryl. In the present specification, the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, the description of the aryl group described above may be applied except that the arylene is a divalent group. In the present specification, the description of the above-described heteroaryl may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents. In the present specification, the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied except that the heterocycle is formed by bonding of two substituents.
본 명세서 있어서, 용어 "중수소화된 또는 중수소로 치환된"의 의미는 각 화학식에서 적어도 하나의 이용가능한 수소가 중수소로 치환된 것을 의미한다. 구체적으로, 각 화학식 또는 치환기의 정의에서 중수소로 치환된다는 것은, 분자 내 수소가 결합될 수 있는 위치 중 적어도 하나 이상이 중수소로 치환될 것을 의미하고, 보다 구체적으로, 이용가능한 수소의 적어도 10%가 중수소에 의해 치환된 것을 의미한다. 일례로, 각 화학식에서 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화된다.In the present specification, the meaning of the term "deuterated or substituted with deuterium" means that at least one available hydrogen in each chemical formula is substituted with deuterium. Specifically, being substituted with deuterium in the definition of each chemical formula or substituent means that at least one or more of the positions at which hydrogen can be bonded in the molecule will be substituted with deuterium, and more specifically, at least 10% of the available hydrogen is It means substituted by deuterium. In one example, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated in each formula.
양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 제1 화합물 및 상기 화학식 2로 표시되는 제2 화합물을 포함하는 발광 소자를 제공한다.anode; A negative electrode provided to face the positive electrode; And an emission layer provided between the anode and the cathode, wherein the emission layer includes a first compound represented by Chemical Formula 1 and a second compound represented by Chemical Formula 2.
본 발명에 따른 유기 발광 소자는 발광층에 특정 구조를 갖는 2종의 화합물을 호스트 물질로 동시에 포함하여, 유기 발광 소자에서 효율, 구동전압 및/또는 수명 특성을 향상시킬 수 있다. The organic light-emitting device according to the present invention may simultaneously include two types of compounds having a specific structure in the light-emitting layer as host materials, thereby improving efficiency, driving voltage, and/or lifetime characteristics in the organic light-emitting device.
이하 각 구성 별로 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail for each configuration.
양극 및 음극Anode and cathode
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다. As the anode material, a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer. Specific examples of the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are a multi-layered material such as LiF/Al or LiO 2 /Al, but are not limited thereto.
정공주입층Hole injection layer
본 발명에 따른 유기 발광 소자는 필요에 따라 양극과 후술하는 정공수송층 사이에 정공주입층을 포함할 수 있다. The organic light-emitting device according to the present invention may include a hole injection layer between an anode and a hole transport layer to be described later, if necessary.
상기 정공주입층은 상기 양극 상에 위치하여, 양극으로부터 정공을 주입하는 층으로, 정공 주입 물질을 포함한다. 이러한 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 엑시톤의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 특히, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 적합하다.The hole injection layer is positioned on the anode and injects holes from the anode, and includes a hole injection material. Such a hole injection material has the ability to transport holes, has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and prevents the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material. In addition, a compound having excellent thin film formation ability is preferable. In particular, it is suitable that the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
상기 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, perylene. Organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
정공수송층Hole transport layer
본 발명에 따른 유기 발광 소자는 양극과 발광층 사이에 정공수송층을 포함할 수 있다. 상기 정공수송층은 양극 또는 양극 상에 형성된 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질을 포함한다. 상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다. The organic light-emitting device according to the present invention may include a hole transport layer between the anode and the emission layer. The hole transport layer is a layer that receives holes from an anode or a hole injection layer formed on the anode and transports holes to the emission layer, and includes a hole transport material. As the hole transport material, a material capable of transporting holes from an anode or a hole injection layer to the light emitting layer and having high mobility for holes is suitable. Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
전자저지층E-low layer
본 발명에 따른 유기 발광 소자는 필요에 따라 정공수송층과 발광층 사이에 전자저지층을 포함할 수 있다. 상기 전자저지층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자저지층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The organic light-emitting device according to the present invention may include an electron blocking layer between the hole transport layer and the emission layer, if necessary. The electron blocking layer is formed on the hole transport layer and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light-emitting device. It refers to the layer that plays a role in improving the value. The electron blocking layer includes an electron blocking material, and an arylamine-based organic material may be used as an example of the electron blocking material, but is not limited thereto.
발광층Light emitting layer
본 발명에 따른 유기 발광 소자는 양극과 음극 사이에 발광층을 포함하고, 상기 발광층은 상기 제1 화합물 및 상기 제2 화합물을 호스트 물질로 포함한다. 구체적으로, 상기 제1 화합물은 전자 수송 능력이 정공 수송 능력보다 우수한 N형 호스트 물질로 기능하고, 상기 제2 화합물은 정공 수송 능력이 전자 수송 능력보다 우수한 P형 호스트 물질로 기능하여, 발광층 내 정공과 전자의 비율을 적절하게 유지시킬 수 있다. 이에 따라, 엑시톤(exciton)이 발광층 전체에서 고르게 발광하여 유기 발광 소자의 발광 효율과 수명 특성이 동시에 향상될 수 있다. The organic light-emitting device according to the present invention includes an emission layer between an anode and a cathode, and the emission layer includes the first compound and the second compound as a host material. Specifically, the first compound functions as an N-type host material having an electron transport ability superior to that of a hole transporting ability, and the second compound functions as a P-type host material having a hole transport ability that is superior to an electron transporting ability. The ratio of the electron to the electron can be properly maintained. Accordingly, excitons are evenly emitted from the entire emission layer, so that the luminous efficiency and lifetime characteristics of the organic light-emitting device can be improved at the same time.
이하, 상기 제1 화합물 및 상기 제2 화합물을 순차적으로 설명한다.Hereinafter, the first compound and the second compound will be sequentially described.
(제1 화합물)(First compound)
상기 제1 화합물은 상기 화학식 1로 표시된다. 구체적으로, 상기 제1 화합물은 적어도 한쪽에 나프탈렌 고리가 축합된 퓨란/티오펜 축합환 코어에 트리아지닐기가 치환된 화합물로, 상기 화합물은 디벤조퓨란/디벤조티오펜 코어에 트리아지닐기가 치환된 화합물에 비하여, 전자 수송 능력이 우수하여, 도펀트 물질로 전자를 효율적으로 전달함에 따라 발광층에서의 전자-정공 재결합 확률을 높일 수 있다. The first compound is represented by Formula 1 above. Specifically, the first compound is a compound in which a triazinyl group is substituted in a furan/thiophene condensed ring core in which at least one naphthalene ring is condensed, and the compound is a dibenzofuran/dibenzothiophene core substituted with a triazinyl group. Compared to the compound, the electron transport ability is excellent, and the electron-hole recombination probability in the light emitting layer can be increased by efficiently transferring electrons to the dopant material.
바람직하게는, L 1은 단일 결합,
Figure PCTKR2020095135-appb-img-000010
, 또는
Figure PCTKR2020095135-appb-img-000011
일 수 있다.
Preferably, L 1 is a single bond,
Figure PCTKR2020095135-appb-img-000010
, or
Figure PCTKR2020095135-appb-img-000011
Can be
또한, L 2는 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:In addition, L 2 may be a single bond, or any one selected from the group consisting of:
Figure PCTKR2020095135-appb-img-000012
.
Figure PCTKR2020095135-appb-img-000012
.
반면, 상기 화학식 1에서, L 2가 상기와 같은 구조의 링커를 갖지 않는 화합물의 경우, 예를 들어, L 2가 1,3-페닐렌이거나, 또는 1,2-페닐렌인 화합물은 상기 제1 화합물 대비 전자와 정공에 대한 안정도가 좋지 않아, 도펀트로 에너지를 효과적으로 전달하기 어렵다. 이에 따라, 상기 제1 화합물을 코호스트 중 하나로 채용한 유기 발광 소자에 비하여 L 2가 상기와 같은 구조의 링커를 갖지 않는 화합물은 효율 및 수명 특성이 좋지 않을 수 있다.On the other hand, in Formula 1, in the case of a compound in which L 2 does not have a linker having the above structure, for example, the compound in which L 2 is 1,3-phenylene or 1,2-phenylene is Compared to 1 compound, the stability against electrons and holes is poor, so it is difficult to effectively transfer energy to the dopant. Accordingly, compared to an organic light-emitting device employing the first compound as one of the cohosts, a compound in which L 2 does not have a linker having the above structure may have poor efficiency and lifespan characteristics.
바람직하게는, Ar 1 및 Ar 2 중 하나는 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 또는 플루오레닐이고, 다른 하나는 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 카바졸일이며,Preferably , one of Ar 1 and Ar 2 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, or fluorenyl, and the other is phenyl, biphenylyl, terphenylyl, naphthyl, Phenanthryl, fluorenyl, dibenzofuranyl, dibenzothiophenyl, or carbazolyl,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 중수소, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.Here, Ar 1 and Ar 2 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl.
구체적으로, Ar 1 및 Ar 2는 각각 독립적으로 페닐, 중수소로 치환된 페닐, 비페닐릴, 터페닐릴, 페난트릴, 나프틸, 9,9-디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 9-페닐카바졸일 수 있다.Specifically, Ar 1 and Ar 2 are each independently phenyl, phenyl substituted with deuterium, biphenylyl, terphenylyl, phenanthryl, naphthyl, 9,9-dimethylfluorenyl, dibenzofuranyl, dibenzo Thiophenyl, or 9-phenylcarbazole.
또한, Ar 1 및 Ar 2는 서로 동일하거나, 또는 서로 상이할 수 있다.In addition, Ar 1 and Ar 2 may be the same as each other or may be different from each other.
또한, Ar 1 및 Ar 2 중 하나는, 비치환되거나, 또는 중수소로 치환된 C 6-20 아릴일 수 있다.In addition, one of Ar 1 and Ar 2 may be unsubstituted or C 6-20 aryl substituted with deuterium.
다르게는, Ar 1 및 Ar 2 모두, 비치환되거나, 또는 중수소로 치환된 C 6-20 아릴일 수 있다.Alternatively, both Ar 1 and Ar 2 may be C 6-20 aryl unsubstituted or substituted with deuterium.
바람직하게는, Ar 1은 페닐, 비페닐릴, 또는 나프틸이고,Preferably, Ar 1 is phenyl, biphenylyl, or naphthyl,
Ar 2는 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 9,9-디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9-페닐카바졸일, 또는 카바졸일일 수 있다.Ar 2 may be phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, 9,9-dimethylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9-phenylcarbazolyl, or carbazolyl .
예를 들어, Ar 1은 하기로 구성되는 군으로부터 선택되는 어느 하나이고,For example, Ar 1 is any one selected from the group consisting of,
Figure PCTKR2020095135-appb-img-000013
Figure PCTKR2020095135-appb-img-000013
Ar 2는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Ar 2 may be any one selected from the group consisting of:
Figure PCTKR2020095135-appb-img-000014
.
Figure PCTKR2020095135-appb-img-000014
.
바람직하게는, R은 각각 독립적으로 수소 또는 중수소이다.Preferably, each R is independently hydrogen or deuterium.
또한, R의 개수를 의미하는 a는 1, 2, 또는 3이고, b는 1, 2, 3, 4, 5, 또는 6일 수 있다.In addition, a, which means the number of R, may be 1, 2, or 3, and b may be 1, 2, 3, 4, 5, or 6.
바람직하게는, 상기 제1 화합물은 하기 1-1-1 내지 1-1-3 중 어느 하나로 표시될 수 있다:Preferably, the first compound may be represented by any one of the following 1-1-1 to 1-1-3:
Figure PCTKR2020095135-appb-img-000015
Figure PCTKR2020095135-appb-img-000015
상기 화학식 1-1-1 내지 1-1-3에서,In Formulas 1-1-1 to 1-1-3,
X, L 2, Ar 1 및 Ar 2은 상기 화학식 1에서 정의한 바와 같다.X, L 2 , Ar 1 and Ar 2 are as defined in Chemical Formula 1.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:Representative examples of the compound represented by Formula 1 are as follows:
Figure PCTKR2020095135-appb-img-000016
Figure PCTKR2020095135-appb-img-000016
Figure PCTKR2020095135-appb-img-000017
Figure PCTKR2020095135-appb-img-000017
Figure PCTKR2020095135-appb-img-000018
Figure PCTKR2020095135-appb-img-000018
Figure PCTKR2020095135-appb-img-000019
Figure PCTKR2020095135-appb-img-000019
Figure PCTKR2020095135-appb-img-000020
Figure PCTKR2020095135-appb-img-000020
Figure PCTKR2020095135-appb-img-000021
Figure PCTKR2020095135-appb-img-000021
Figure PCTKR2020095135-appb-img-000022
Figure PCTKR2020095135-appb-img-000022
Figure PCTKR2020095135-appb-img-000023
Figure PCTKR2020095135-appb-img-000023
Figure PCTKR2020095135-appb-img-000024
Figure PCTKR2020095135-appb-img-000024
Figure PCTKR2020095135-appb-img-000025
Figure PCTKR2020095135-appb-img-000025
Figure PCTKR2020095135-appb-img-000026
Figure PCTKR2020095135-appb-img-000026
Figure PCTKR2020095135-appb-img-000027
Figure PCTKR2020095135-appb-img-000027
Figure PCTKR2020095135-appb-img-000028
Figure PCTKR2020095135-appb-img-000028
Figure PCTKR2020095135-appb-img-000029
Figure PCTKR2020095135-appb-img-000029
..
한편, 상기 화학식 1로 표시되는 화합물 중 Z가 상기 화학식 1로 표시되는 치환기인 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다: Meanwhile, among the compounds represented by Formula 1, a compound in which Z is a substituent represented by Formula 1 may be prepared by a manufacturing method such as the following Scheme 1:
[반응식 1][Scheme 1]
Figure PCTKR2020095135-appb-img-000030
Figure PCTKR2020095135-appb-img-000030
상기 반응식 1에서, X"는 할로겐이고, 바람직하게는 브로모, 또는 클로로이며, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.In Reaction Scheme 1, X" is halogen, preferably bromo, or chloro, and definitions for other substituents are as described above.
구체적으로, 상기 화학식 1로 표시되는 화합물은 출발물질 A1 및 A2의 Suzuki-coupling 반응을 통해 제조될 수 있다. 이러한 Suzuki-coupling 반응은 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하며, 상기 Suzuki-coupling 반응을 위한 반응기는 적절히 변경될 수 있다. 상기 화학식 1로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Specifically, the compound represented by Formula 1 may be prepared through a Suzuki-coupling reaction of starting materials A1 and A2. This Suzuki-coupling reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction may be appropriately changed. The method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
(제2 화합물)(2nd compound)
상기 제2 화합물은 상기 화학식 2로 표시된다. 구체적으로, 상기 제2 화합물은 비스카바졸계 구조를 가져, 도펀트 물질로 정공을 효율적으로 전달할 수 있고, 이에 따라 전자 수송 능력이 우수한 상기 제1 화합물과 함께 발광층 내에서의 정공과 전자의 재결합 확률을 높일 수 있다. The second compound is represented by Chemical Formula 2. Specifically, the second compound has a biscarbazole-based structure, so that holes can be efficiently transferred to a dopant material, and thus, the probability of recombination of holes and electrons in the emission layer together with the first compound having excellent electron transport ability is improved. You can increase it.
상기 제2 화합물은, B 1 내지 B 4는 각각 독립적으로 벤젠, 또는 나프탈렌 고리일 수 있다. In the second compound, B 1 to B 4 may each independently be a benzene or naphthalene ring.
예를 들어, B 1 및 B 2는 각각 독립적으로 벤젠 또는 나프탈렌 고리이고, B 3 및 B 4는 벤젠 고리일 수 있다. 이때, 상기 제2 화합물은 하기 화학식 2'로 표시될 수 있다:For example, B 1 and B 2 may each independently be a benzene or naphthalene ring, and B 3 and B 4 may be a benzene ring. In this case, the second compound may be represented by the following Formula 2':
[화학식 2'][Formula 2']
Figure PCTKR2020095135-appb-img-000031
Figure PCTKR2020095135-appb-img-000031
상기 화학식 2'에서,In Formula 2',
B 1 및 B 2는 각각 독립적으로 벤젠 또는 나프탈렌 고리이고,B 1 and B 2 are each independently a benzene or naphthalene ring,
L' 1, L' 2, Ar' 1, Ar' 2, R', c 및 d는 상기 화학식 2에서 정의한 바와 같다.L' 1 , L' 2 , Ar' 1 , Ar' 2 , R', c and d are as defined in Chemical Formula 2.
바람직하게는, L' 1 및 L' 2는 각각 독립적으로 단일 결합, 또는 비치환되거나 또는 중수소로 치환된 C 6-20 아릴렌일 수 있다.Preferably, L' 1 and L' 2 may each independently be a single bond, or a C 6-20 arylene unsubstituted or substituted with deuterium.
예를 들어, L' 1 및 L' 2는 각각 독립적으로 단일 결합, 비치환되거나 또는 중수소로 치환된 페닐렌; 또는 비치환되거나 또는 중수소로 치환된 나프틸렌일 수 있다.For example, L' 1 and L' 2 are each independently a single bond, unsubstituted or deuterium substituted phenylene; Or it may be unsubstituted or naphthylene substituted with deuterium.
예를 들어, L' 1 및 L' 2는 각각 독립적으로 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:For example, L' 1 and L' 2 may each independently be a single bond, or any one selected from the group consisting of:
Figure PCTKR2020095135-appb-img-000032
.
Figure PCTKR2020095135-appb-img-000032
.
이때, L' 1 및 L' 2는 서로 동일하거나 또는 상이할 수 있다.In this case, L' 1 and L' 2 may be the same as or different from each other.
바람직하게는, Ar' 1 및 Ar' 2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 트리페닐레닐, 플루오란테닐, 플루오레닐, 9,9'-스피로비플루오레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이고, Preferably, Ar' 1 and Ar' 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, triphenylenyl, fluoranthenyl, fluorenyl, 9,9'-spirobi Fluorenyl, dibenzofuranyl, or dibenzothiophenyl,
여기서, Ar' 1 및 Ar' 2는 비치환되거나, 또는 중수소, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기, 예를 들어, 1개 또는 2개의 치환기로 치환될 수 있다.Here, Ar' 1 and Ar' 2 are unsubstituted or one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl, for example, 1 or 2 substituents. Can be substituted with
예를 들어, Ar' 1 및 Ar' 2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 트리페닐레닐, 플루오란테닐, 플루오레닐, 9,9-디메틸플루오레닐, 9,9-디페닐플루오레닐, 9,9'-스피로비플루오레닐, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있다.For example, Ar' 1 and Ar' 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, triphenylenyl, fluoranthenyl, fluorenyl, 9,9-dimethylfluore Nil, 9,9-diphenylfluorenyl, 9,9'-spirobifluorenyl, dibenzofuranyl, or dibenzothiophenyl.
또한, Ar' 1 및 Ar' 2는 서로 동일하거나, 또는 서로 상이할 수 있다.In addition, Ar' 1 and Ar' 2 may be the same or different from each other.
또한, R'는 모두 수소이거나, 또는 모두 중수소일 수 있다. In addition, R'may be all hydrogen or all deuterium.
그리고, R'의 개수를 의미하는 c, d, e 및 f는 각각 독립적으로 1 내지 6의 정수일 수 있다. 일 예로, B 1 및 B 2가 벤젠 고리인 경우 c 및 d는 각각 독립적으로 1 내지 4의 정수이고, B 1 및 B 2가 나프탈렌 고리인 경우 c 및 d는 각각 독립적으로 1 내지 6의 정수이고, B 3 및 B 4가 벤젠 고리인 경우 e 및 f는 각각 독립적으로 1 내지 3의 정수이고, B 3 및 B 4가 나프탈렌 고리인 경우 e 및 f는 각각 독립적으로 1 내지 5의 정수이다.In addition, c, d, e, and f indicating the number of R′ may each independently be an integer of 1 to 6. For example, when B 1 and B 2 are a benzene ring, c and d are each independently an integer of 1 to 4, and when B 1 and B 2 are a naphthalene ring, c and d are each independently an integer of 1 to 6 , When B 3 and B 4 are a benzene ring, e and f are each independently an integer of 1 to 3, and when B 3 and B 4 are a naphthalene ring, e and f are each independently an integer of 1 to 5.
한편, B 1 내지 B 4가 모두 벤젠 고리인 경우, 상기 제2 화합물은 하기 화학식 2-1로 표시될 수 있다:On the other hand, when all of B 1 to B 4 are benzene rings, the second compound may be represented by the following Formula 2-1:
Figure PCTKR2020095135-appb-img-000033
Figure PCTKR2020095135-appb-img-000033
상기 화학식 2-1에서, In Formula 2-1,
L' 1, L' 2, Ar' 1, 및 Ar' 2는 상기 화학식 2에서 정의한 바와 같다.L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in Chemical Formula 2.
또는, B 1은 나프탈렌 고리이고, B 2 내지 B 4가 모두 벤젠 고리인 경우, 상기 제2 화합물은 하기 화학식 2-2 내지 2-4로 표시될 수 있다:Alternatively, when B 1 is a naphthalene ring, and B 2 to B 4 are all benzene rings, the second compound may be represented by the following Formulas 2-2 to 2-4:
Figure PCTKR2020095135-appb-img-000034
.
Figure PCTKR2020095135-appb-img-000034
.
상기 화학식 2-1 내지 2-4에서, In Formulas 2-1 to 2-4,
L' 1, L' 2, Ar' 1, 및 Ar' 2는 상기 화학식 2에서 정의한 바와 같다.L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in Chemical Formula 2.
또는, B 1 및 B 2는 나프탈렌 고리이고, B 3 및 B 4는 벤젠 고리인 경우, 상기 제2 화합물은 하기 화학식 2-5 내지 2-10으로 표시될 수 있다:Alternatively, when B 1 and B 2 are a naphthalene ring, and B 3 and B 4 are a benzene ring, the second compound may be represented by the following Formulas 2-5 to 2-10:
Figure PCTKR2020095135-appb-img-000035
Figure PCTKR2020095135-appb-img-000035
상기 화학식 2-5 내지 2-10에서, In Formulas 2-5 to 2-10,
L' 1, L' 2, Ar' 1, 및 Ar' 2는 상기 화학식 2에서 정의한 바와 같다.L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in Chemical Formula 2.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:Representative examples of the compound represented by Formula 2 are as follows:
Figure PCTKR2020095135-appb-img-000036
Figure PCTKR2020095135-appb-img-000036
Figure PCTKR2020095135-appb-img-000037
Figure PCTKR2020095135-appb-img-000037
Figure PCTKR2020095135-appb-img-000038
Figure PCTKR2020095135-appb-img-000038
Figure PCTKR2020095135-appb-img-000039
Figure PCTKR2020095135-appb-img-000039
Figure PCTKR2020095135-appb-img-000040
Figure PCTKR2020095135-appb-img-000040
Figure PCTKR2020095135-appb-img-000041
Figure PCTKR2020095135-appb-img-000041
Figure PCTKR2020095135-appb-img-000042
Figure PCTKR2020095135-appb-img-000042
Figure PCTKR2020095135-appb-img-000043
Figure PCTKR2020095135-appb-img-000043
Figure PCTKR2020095135-appb-img-000044
Figure PCTKR2020095135-appb-img-000044
Figure PCTKR2020095135-appb-img-000045
Figure PCTKR2020095135-appb-img-000045
Figure PCTKR2020095135-appb-img-000046
Figure PCTKR2020095135-appb-img-000046
Figure PCTKR2020095135-appb-img-000047
Figure PCTKR2020095135-appb-img-000047
Figure PCTKR2020095135-appb-img-000048
Figure PCTKR2020095135-appb-img-000048
Figure PCTKR2020095135-appb-img-000049
Figure PCTKR2020095135-appb-img-000049
Figure PCTKR2020095135-appb-img-000050
Figure PCTKR2020095135-appb-img-000050
Figure PCTKR2020095135-appb-img-000051
Figure PCTKR2020095135-appb-img-000051
Figure PCTKR2020095135-appb-img-000052
Figure PCTKR2020095135-appb-img-000052
Figure PCTKR2020095135-appb-img-000053
Figure PCTKR2020095135-appb-img-000053
Figure PCTKR2020095135-appb-img-000054
Figure PCTKR2020095135-appb-img-000054
Figure PCTKR2020095135-appb-img-000055
Figure PCTKR2020095135-appb-img-000055
Figure PCTKR2020095135-appb-img-000056
Figure PCTKR2020095135-appb-img-000056
..
한편, 상기 화학식 2로 표시되는 화합물은 일 예로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있다: On the other hand, the compound represented by Formula 2 may be prepared by a manufacturing method such as the following Scheme 2 as an example:
[반응식 2][Scheme 2]
Figure PCTKR2020095135-appb-img-000057
Figure PCTKR2020095135-appb-img-000057
상기 반응식 2에서, X"는 할로겐이고, 바람직하게는 브로모, 또는 클로로이며, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.In Reaction Scheme 2, X" is halogen, preferably bromo, or chloro, and the definition of other substituents is as described above.
구체적으로, 상기 화학식 2로 표시되는 화합물은 출발물질 A3 및 A4의 Suzuki-coupling 반응을 통해 제조될 수 있다. 이러한 Suzuki-coupling 반응은 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하며, 상기 Suzuki-coupling 반응을 위한 반응기는 적절히 변경될 수 있다. 상기 화학식 2로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Specifically, the compound represented by Formula 2 may be prepared through a Suzuki-coupling reaction of starting materials A3 and A4. This Suzuki-coupling reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction may be appropriately changed. The method for preparing the compound represented by Formula 2 may be more specific in Preparation Examples to be described later.
또한, 상기 발광층 내에 상기 제1 화합물 및 상기 제2 화합물은 1:99 내지 99:1의 중량비로 포함될 수 있다. 이때, 발광층 내 정공과 전자의 비율을 적절하게 유지시킨다는 측면에서 30:70 내지 70:30의 중량비로 상기 제1 화합물 및 상기 제2 화합물이 포함되는 것이 보다 바람직하다.In addition, the first compound and the second compound may be included in a weight ratio of 1:99 to 99:1 in the emission layer. In this case, it is more preferable that the first compound and the second compound are included in a weight ratio of 30:70 to 70:30 in terms of appropriately maintaining the ratio of holes and electrons in the emission layer.
한편, 상기 발광층은 상기 2종의 호스트 물질 외에 도펀트 물질을 더 포함할 수 있다. 이러한 도펀트 물질로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.Meanwhile, the emission layer may further include a dopant material in addition to the two kinds of host materials. Such dopant substances include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group, and the styrylamine compound is substituted or unsubstituted As a compound in which at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but are not limited thereto. In addition, examples of the metal complex include an iridium complex and a platinum complex, but are not limited thereto.
보다 구체적으로는, 상기 도펀트 재료로 하기와 같은 화합물이 사용될 수 있으나, 이에 한정되는 것은 아니다:More specifically, the following compound may be used as the dopant material, but is not limited thereto:
Figure PCTKR2020095135-appb-img-000058
Figure PCTKR2020095135-appb-img-000058
Figure PCTKR2020095135-appb-img-000059
Figure PCTKR2020095135-appb-img-000059
Figure PCTKR2020095135-appb-img-000060
Figure PCTKR2020095135-appb-img-000060
Figure PCTKR2020095135-appb-img-000061
.
Figure PCTKR2020095135-appb-img-000061
.
정공저지층Hole bottom
본 발명에 따른 유기 발광 소자는 필요에 따라 발광층과 후술하는 전자수송층 사이에 정공저지층을 포함할 수 있다. 상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The organic light emitting device according to the present invention may include a hole blocking layer between the light emitting layer and the electron transport layer to be described later, if necessary. The hole blocking layer is formed on the emission layer and is preferably provided in contact with the emission layer to improve the efficiency of the organic light-emitting device by increasing the probability of hole-electron bonding by controlling electron mobility and preventing excessive movement of holes. It means the layer that plays a role. The hole-blocking layer includes a hole-blocking material, and examples of the hole-blocking material include: a subazine derivative including triazine; Triazole derivatives; Oxadiazole derivatives; Phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but is not limited thereto.
전자주입 및 수송층Electron injection and transport layer
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등을 사용할 수 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다. The electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from an electrode and transporting received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer. As the electron injection and transport material, a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high mobility for electrons is suitable. Examples of specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complex; Triazine derivatives and the like may be used, but are not limited thereto. Or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and their derivatives, metal complex compounds , Or nitrogen-containing 5-membered cyclic derivatives, but are not limited thereto.
상기 전자 주입 및 수송층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li 2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.The electron injection and transport layer may be formed as separate layers such as an electron injection layer and an electron transport layer. In this case, the electron transport layer is formed on the emission layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer. In addition, the electron injection layer is formed on the electron transport layer, and electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and the like, their derivatives, metal complex compounds, and nitrogen-containing 5-membered ring derivatives.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited thereto.
유기 발광 소자Organic light emitting element
본 발명에 따른 유기 발광 소자의 구조를 도 1에 예시하였다. 도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물 및 상기 제2 화합물은 상기 발광층에 포함될 수 있다. The structure of the organic light emitting device according to the present invention is illustrated in FIG. 1. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4. In such a structure, the first compound and the second compound may be included in the emission layer.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and a cathode 4 are shown as an example of an organic light-emitting device.
이와 같은 구조에 있어서, 상기 제1 화합물 및 상기 제2 화합물은 상기 발광층에 포함될 수 있다. In such a structure, the first compound and the second compound may be included in the emission layer.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.The organic light-emitting device according to the present invention can be manufactured by sequentially stacking the above-described configurations. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming each of the above-described layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate. In addition, the light emitting layer may be formed by a solution coating method as well as a vacuum evaporation method for a host and a dopant. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to such a method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.Meanwhile, the organic light-emitting device according to the present invention may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
상기 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The fabrication of the organic light emitting device will be described in detail in the following examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
[제1 화합물의 합성예][Synthesis Example of First Compound]
합성예 1: 화합물 1의 제조Synthesis Example 1: Preparation of Compound 1
Figure PCTKR2020095135-appb-img-000062
Figure PCTKR2020095135-appb-img-000062
질소 분위기에서 sub1(15 g, 40.8 mmol)와 화학식 A(11.8 g, 44.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.9 g, 122.3 mmol)를 물 51 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1을 14.6 g 제조하였다.In a nitrogen atmosphere, sub1 (15 g, 40.8 mmol) and formula A (11.8 g, 44.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.9 g, 122.3 mmol) was dissolved in 51 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of compound 1.
(수율 65%, MS: [M+H] += 550)(Yield 65%, MS: [M+H] + = 550)
합성예 2: 화합물 2의 제조Synthesis Example 2: Preparation of Compound 2
Figure PCTKR2020095135-appb-img-000063
Figure PCTKR2020095135-appb-img-000063
질소 분위기에서 sub2(15 g, 47.2 mmol)와 화학식 A(13.6 g, 51.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(19.6 g, 141.6 mmol)를 물 59 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2를 14.4 g 제조하였다.In a nitrogen atmosphere, sub2 (15 g, 47.2 mmol) and formula A (13.6 g, 51.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (19.6 g, 141.6 mmol) was dissolved in 59 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.4 g of compound 2.
(수율 61%, MS: [M+H] += 500)(Yield 61%, MS: [M+H] + = 500)
합성예 3: 화합물 3의 제조Synthesis Example 3: Preparation of Compound 3
Figure PCTKR2020095135-appb-img-000064
Figure PCTKR2020095135-appb-img-000064
질소 분위기에서 sub3(15 g, 38.1 mmol)와 화학식 A(11 g, 41.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3을 13.4 g 제조하였다.In a nitrogen atmosphere, sub3 (15 g, 38.1 mmol) and formula A (11 g, 41.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of compound 3.
(수율 61%, MS: [M+H] += 576)(Yield 61%, MS: [M+H] + = 576)
합성예 4: 화합물 4의 제조Synthesis Example 4: Preparation of compound 4
Figure PCTKR2020095135-appb-img-000065
Figure PCTKR2020095135-appb-img-000065
질소 분위기에서 sub4(15 g, 43.6 mmol)와 화학식 A(12.6 g, 48 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(18.1 g, 130.9 mmol)를 물 54 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4를 18.3 g 제조하였다.In a nitrogen atmosphere, sub4 (15 g, 43.6 mmol) and formula A (12.6 g, 48 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (18.1 g, 130.9 mmol) was dissolved in 54 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.3 g of compound 4.
(수율 80%, MS: [M+H] += 526)(Yield 80%, MS: [M+H] + = 526)
합성예 5: 화합물 5의 제조Synthesis Example 5: Preparation of compound 5
Figure PCTKR2020095135-appb-img-000066
Figure PCTKR2020095135-appb-img-000066
질소 분위기에서 sub5(15 g, 35.7 mmol)와 화학식 A(10.3 g, 39.3 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.8 g, 107.2 mmol)를 물 44 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5를 15.2 g 제조하였다.In a nitrogen atmosphere, sub5 (15 g, 35.7 mmol) and formula A (10.3 g, 39.3 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in 44 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of compound 5.
(수율 71%, MS: [M+H] += 602)(Yield 71%, MS: [M+H] + = 602)
합성예 6: 화합물 6의 제조Synthesis Example 6: Preparation of compound 6
Figure PCTKR2020095135-appb-img-000067
Figure PCTKR2020095135-appb-img-000067
질소 분위기에서 sub6(15 g, 35.9 mmol)와 화학식 A(10.3 g, 39.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.9 g, 107.7 mmol)를 물 45 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6을 13.1 g 제조하였다.In a nitrogen atmosphere, sub6 (15 g, 35.9 mmol) and formula A (10.3 g, 39.5 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 45 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.1 g of compound 6.
(수율 61%, MS: [M+H] += 600)(Yield 61%, MS: [M+H] + = 600)
합성예 7: 화합물 7의 제조Synthesis Example 7: Preparation of compound 7
Figure PCTKR2020095135-appb-img-000068
Figure PCTKR2020095135-appb-img-000068
질소 분위기에서 sub7(15 g, 35.7 mmol)와 화학식 A(10.3 g, 39.3 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.8 g, 107.2 mmol)를 물 44 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7을 14.2 g 제조하였다.In a nitrogen atmosphere, sub7 (15 g, 35.7 mmol) and formula A (10.3 g, 39.3 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in 44 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of compound 7.
(수율 66%, MS: [M+H] += 602)(Yield 66%, MS: [M+H] + = 602)
합성예 8: 화합물 8의 제조Synthesis Example 8: Preparation of compound 8
Figure PCTKR2020095135-appb-img-000069
Figure PCTKR2020095135-appb-img-000069
질소 분위기에서 sub8(15 g, 40.8 mmol)와 화학식 A(11.8 g, 44.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.9 g, 122.3 mmol)를 물 51 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8을 13.4 g 제조하였다.In a nitrogen atmosphere, sub8 (15 g, 40.8 mmol) and formula A (11.8 g, 44.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.9 g, 122.3 mmol) was dissolved in 51 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of compound 8.
(수율 60%, MS: [M+H] += 550)(Yield 60%, MS: [M+H] + = 550)
합성예 9: 화합물 9의 제조Synthesis Example 9: Preparation of compound 9
Figure PCTKR2020095135-appb-img-000070
Figure PCTKR2020095135-appb-img-000070
질소 분위기에서 sub9(15 g, 40.8 mmol)와 화학식 A(11.8 g, 44.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.9 g, 122.3 mmol)를 물 51 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 14.1 g 제조하였다.In a nitrogen atmosphere, sub9 (15 g, 40.8 mmol) and formula A (11.8 g, 44.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.9 g, 122.3 mmol) was dissolved in 51 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.1 g of compound 9.
(수율 63%, MS: [M+H] += 550)(Yield 63%, MS: [M+H] + = 550)
합성예 10: 화합물 10의 제조Synthesis Example 10: Preparation of Compound 10
Figure PCTKR2020095135-appb-img-000071
Figure PCTKR2020095135-appb-img-000071
질소 분위기에서 sub10(15 g, 38.1 mmol)와 화학식 A(11 g, 41.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10을 15.8 g 제조하였다.In a nitrogen atmosphere, sub10 (15 g, 38.1 mmol) and formula A (11 g, 41.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.8 g of compound 10.
(수율 72%, MS: [M+H] += 576)(Yield 72%, MS: [M+H] + = 576)
합성예 11: 화합물 11의 제조Synthesis Example 11: Preparation of Compound 11
Figure PCTKR2020095135-appb-img-000072
Figure PCTKR2020095135-appb-img-000072
질소 분위기에서 sub11(15 g, 38.1 mmol)와 화학식 A(11 g, 41.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11을 16.6 g 제조하였다.In a nitrogen atmosphere, sub11 (15 g, 38.1 mmol) and formula A (11 g, 41.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.6 g of compound 11.
(수율 76%, MS: [M+H] += 576)(Yield 76%, MS: [M+H] + = 576)
합성예 12: 화합물 12의 제조Synthesis Example 12: Preparation of Compound 12
Figure PCTKR2020095135-appb-img-000073
Figure PCTKR2020095135-appb-img-000073
질소 분위기에서 sub12(15 g, 41.9 mmol)와 화학식 A(12.1 g, 46.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(17.4 g, 125.8 mmol)를 물 52 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 13.8 g 제조하였다.In a nitrogen atmosphere, sub12 (15 g, 41.9 mmol) and formula A (12.1 g, 46.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of compound 12.
(수율 61%, MS: [M+H] += 540)(Yield 61%, MS: [M+H] + = 540)
합성예 13: 화합물 13의 제조Synthesis Example 13: Preparation of compound 13
Figure PCTKR2020095135-appb-img-000074
Figure PCTKR2020095135-appb-img-000074
질소 분위기에서 sub13(15 g, 41.9 mmol)와 화학식 A(12.1 g, 46.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(17.4 g, 125.8 mmol)를 물 52 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13을 15.4 g 제조하였다.In a nitrogen atmosphere, sub13 (15 g, 41.9 mmol) and formula A (12.1 g, 46.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.4 g of compound 13.
(수율 68%, MS: [M+H] += 540)(Yield 68%, MS: [M+H] + = 540)
합성예 14: 화합물 14의 제조Synthesis Example 14: Preparation of Compound 14
Figure PCTKR2020095135-appb-img-000075
Figure PCTKR2020095135-appb-img-000075
질소 분위기에서 sub14(15 g, 36.8 mmol)와 화학식 A(10.6 g, 40.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.2 g, 110.3 mmol)를 물 46 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 16.3 g 제조하였다.In a nitrogen atmosphere, sub14 (15 g, 36.8 mmol) and formula A (10.6 g, 40.5 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 mL of water, stirred sufficiently, and bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.3 g of compound 14.
(수율 75%, MS: [M+H] += 590)(Yield 75%, MS: [M+H] + = 590)
합성예 15: 화합물 15의 제조Synthesis Example 15: Preparation of compound 15
Figure PCTKR2020095135-appb-img-000076
Figure PCTKR2020095135-appb-img-000076
질소 분위기에서 sub10(15 g, 36.8 mmol)와 화학식 A(10.6 g, 40.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.2 g, 110.3 mmol)를 물 46 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 15.2 g 제조하였다.In a nitrogen atmosphere, sub10 (15 g, 36.8 mmol) and formula A (10.6 g, 40.5 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 mL of water, stirred sufficiently, and bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of compound 15.
(수율 70%, MS: [M+H] += 590)(Yield 70%, MS: [M+H] + = 590)
합성예 16: 화합물 16의 제조Synthesis Example 16: Preparation of Compound 16
Figure PCTKR2020095135-appb-img-000077
Figure PCTKR2020095135-appb-img-000077
질소 분위기에서 sub16(15 g, 40.1 mmol)와 화학식 A(11.6 g, 44.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.6 g, 120.4 mmol)를 물 50 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16을 13.8 g 제조하였다.In a nitrogen atmosphere, sub16 (15 g, 40.1 mmol) and formula A (11.6 g, 44.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.6 g, 120.4 mmol) was dissolved in 50 mL of water and then sufficiently stirred, and then bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of compound 16.
(수율 62%, MS: [M+H] += 556)(Yield 62%, MS: [M+H] + = 556)
합성예 17: 화합물 17의 제조Synthesis Example 17: Preparation of compound 17
Figure PCTKR2020095135-appb-img-000078
Figure PCTKR2020095135-appb-img-000078
질소 분위기에서 sub17(15 g, 40.1 mmol)와 화학식 A(11.6 g, 44.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.6 g, 120.4 mmol)를 물 50 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17을 15.1 g 제조하였다.In a nitrogen atmosphere, sub17 (15 g, 40.1 mmol) and formula A (11.6 g, 44.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.6 g, 120.4 mmol) was dissolved in 50 mL of water and then sufficiently stirred, and then bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.1 g of compound 17.
(수율 68%, MS: [M+H] += 556)(Yield 68%, MS: [M+H] + = 556)
합성예 18: 화합물 18의 제조Synthesis Example 18: Preparation of Compound 18
Figure PCTKR2020095135-appb-img-000079
Figure PCTKR2020095135-appb-img-000079
질소 분위기에서 sub18(15 g, 40.1 mmol)와 화학식 A(11.6 g, 44.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.6 g, 120.4 mmol)를 물 50 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18을 17.8 g 제조하였다.In a nitrogen atmosphere, sub18 (15 g, 40.1 mmol) and formula A (11.6 g, 44.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.6 g, 120.4 mmol) was dissolved in 50 mL of water and then sufficiently stirred, and then bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.8 g of compound 18.
(수율 80%, MS: [M+H] += 556)(Yield 80%, MS: [M+H] + = 556)
합성예 19: 화합물 19의 제조Synthesis Example 19: Preparation of compound 19
Figure PCTKR2020095135-appb-img-000080
Figure PCTKR2020095135-appb-img-000080
질소 분위기에서 sub19(15 g, 34.6 mmol)와 화학식 A(10 g, 38.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.4 g, 103.9 mmol)를 물 43 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 15.5 g 제조하였다.In a nitrogen atmosphere, sub19 (15 g, 34.6 mmol) and formula A (10 g, 38.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.4 g, 103.9 mmol) was dissolved in 43 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.5 g of compound 19.
(수율 73%, MS: [M+H] += 615)(Yield 73%, MS: [M+H] + = 615)
합성예 20: 화합물 20의 제조Synthesis Example 20: Preparation of Compound 20
Figure PCTKR2020095135-appb-img-000081
Figure PCTKR2020095135-appb-img-000081
질소 분위기에서 sub20(15 g, 34.6 mmol)와 화학식 A(10 g, 38.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.4 g, 103.9 mmol)를 물 43 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20을 17 g 제조하였다.In a nitrogen atmosphere, sub20 (15 g, 34.6 mmol) and formula A (10 g, 38.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.4 g, 103.9 mmol) was dissolved in 43 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17 g of compound 20.
(수율 80%, MS: [M+H] += 61)(Yield 80%, MS: [M+H] + = 61)
합성예 21: 화합물 21의 제조Synthesis Example 21: Preparation of Compound 21
Figure PCTKR2020095135-appb-img-000082
Figure PCTKR2020095135-appb-img-000082
질소 분위기에서 sub21(15 g, 42 mmol)와 화학식 A(12.1 g, 46.2 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(17.4 g, 126.1 mmol)를 물 52 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21을 14.5 g 제조하였다.In a nitrogen atmosphere, sub21 (15 g, 42 mmol) and formula A (12.1 g, 46.2 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (17.4 g, 126.1 mmol) was dissolved in 52 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of compound 21.
(수율 64%, MS: [M+H] += 539)(Yield 64%, MS: [M+H] + = 539)
합성예 22: 화합물 22의 제조Synthesis Example 22: Preparation of Compound 22
Figure PCTKR2020095135-appb-img-000083
Figure PCTKR2020095135-appb-img-000083
질소 분위기에서 sub22(15 g, 31.1 mmol)와 화학식 A(9 g, 34.2 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.9 g, 93.2 mmol)를 물 39 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 12.4 g 제조하였다.In a nitrogen atmosphere, sub22 (15 g, 31.1 mmol) and formula A (9 g, 34.2 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.9 g, 93.2 mmol) was dissolved in 39 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of compound 22.
(수율 60%, MS: [M+H] += 665)(Yield 60%, MS: [M+H] + = 665)
합성예 23: 화합물 23의 제조Synthesis Example 23: Preparation of Compound 23
Figure PCTKR2020095135-appb-img-000084
Figure PCTKR2020095135-appb-img-000084
(1) 단계 23-1: 중간체 화합물 subB-1의 제조(1) Step 23-1: Preparation of intermediate compound subB-1
질소 분위기에서 sub2(15 g, 47.2 mmol)와 화학식 B(7.4 g, 47.2 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(19.6 g, 141.6 mmol)를 물 59 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-1을 13.9 g 제조하였다.In a nitrogen atmosphere, sub2 (15 g, 47.2 mmol) and formula B (7.4 g, 47.2 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (19.6 g, 141.6 mmol) was dissolved in 59 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.9 g of subB-1.
(수율 75%, MS: [M+H] += 394)(Yield 75%, MS: [M+H] + = 394)
(2) 단계 23-2: 화합물 23의 제조(2) Step 23-2: Preparation of compound 23
질소 분위기에서 subB-1(15 g, 38.1 mmol)와 화학식 A(11 g, 41.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23을 15.3 g 제조하였다.In a nitrogen atmosphere, subB-1 (15 g, 38.1 mmol) and formula A (11 g, 41.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of compound 23.
(수율 70%, MS: [M+H] += 576)(Yield 70%, MS: [M+H] + = 576)
합성예 24: 화합물 24의 제조Synthesis Example 24: Preparation of Compound 24
Figure PCTKR2020095135-appb-img-000085
Figure PCTKR2020095135-appb-img-000085
(1) 단계 24-1: 중간체 화합물 subB-2의 제조(1) Step 24-1: Preparation of intermediate compound subB-2
질소 분위기에서 sub23(15 g, 35.7 mmol)와 화학식 B(5.6 g, 35.7 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.8 g, 107.2 mmol)를 물 44 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-2를 12 g 제조하였다.In a nitrogen atmosphere, sub23 (15 g, 35.7 mmol) and formula B (5.6 g, 35.7 mmol) were added to 300 mL of THF, and stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in 44 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12 g of subB-2.
(수율 68%, MS: [M+H] += 496)(Yield 68%, MS: [M+H] + = 496)
(2) 단계 24-2: 화합물 24의 제조(2) Step 24-2: Preparation of compound 24
질소 분위기에서 subB-2(15 g, 30.2 mmol)와 화학식 A(8.7 g, 33.3 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.5 g, 90.7 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 24를 13.1 g 제조하였다.In a nitrogen atmosphere, subB-2 (15 g, 30.2 mmol) and formula A (8.7 g, 33.3 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.5 g, 90.7 mmol) was dissolved in 38 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.1 g of compound 24.
(수율 64%, MS: [M+H] += 678)(Yield 64%, MS: [M+H] + = 678)
합성예 25: 화합물 25의 제조Synthesis Example 25: Preparation of compound 25
Figure PCTKR2020095135-appb-img-000086
Figure PCTKR2020095135-appb-img-000086
(1) 단계 25-1: 중간체 화합물 subB-3의 제조(1) Step 25-1: Preparation of intermediate compound subB-3
질소 분위기에서 sub12(15 g, 41.9 mmol)와 화학식 B(6.6 g, 41.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(17.4 g, 125.8 mmol)를 물 52 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-3을 12.9 g 제조하였다.In a nitrogen atmosphere, sub12 (15 g, 41.9 mmol) and formula B (6.6 g, 41.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of subB-3.
(수율 71%, MS: [M+H] += 434)(Yield 71%, MS: [M+H] + = 434)
(2) 단계 25-2: 화합물 25의 제조(2) Step 25-2: Preparation of compound 25
질소 분위기에서 sub-3(15 g, 34.6 mmol)와 화학식 A(10 g, 38 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.3 g, 103.7 mmol)를 물 43 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 25를 17 g 제조하였다.In a nitrogen atmosphere, sub-3 (15 g, 34.6 mmol) and formula A (10 g, 38 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 mL of water, stirred sufficiently, and then bis(tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17 g of compound 25.
(수율 80%, MS: [M+H] += 616)(Yield 80%, MS: [M+H] + = 616)
합성예 26: 화합물 26의 제조Synthesis Example 26: Preparation of Compound 26
Figure PCTKR2020095135-appb-img-000087
Figure PCTKR2020095135-appb-img-000087
(1) 단계 26-1: 중간체 화합물 subB-4의 제조(1) Step 26-1: Preparation of intermediate compound subB-4
질소 분위기에서 sub17(15 g, 40.1 mmol)와 화학식 B(6.3 g, 40.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.6 g, 120.4 mmol)를 물 50 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-4를 12.1 g 제조하였다.In a nitrogen atmosphere, sub17 (15 g, 40.1 mmol) and formula B (6.3 g, 40.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.6 g, 120.4 mmol) was dissolved in 50 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.1 g of subB-4.
(수율 67%, MS: [M+H] += 450)(Yield 67%, MS: [M+H] + = 450)
(2) 단계 26-2: 화합물 26의 제조(2) Step 26-2: Preparation of compound 26
질소 분위기에서 subB-4(15 g, 33.3 mmol)와 화학식 A(9.6 g, 36.7 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(13.8 g, 100 mmol)를 물 41 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 26을 15.8 g 제조하였다.In a nitrogen atmosphere, subB-4 (15 g, 33.3 mmol) and formula A (9.6 g, 36.7 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (13.8 g, 100 mmol) was dissolved in 41 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.8 g of compound 26.
(수율 75%, MS: [M+H] += 632)(Yield 75%, MS: [M+H] + = 632)
합성예 27: 화합물 27의 제조Synthesis Example 27: Preparation of Compound 27
Figure PCTKR2020095135-appb-img-000088
Figure PCTKR2020095135-appb-img-000088
(1) 단계 27-1: 중간체 화합물 subB-5의 제조(1) Step 27-1: Preparation of intermediate compound subB-5
질소 분위기에서 sub3(15 g, 38.1 mmol)와 화학식 A(10 g, 38.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-5를 14.1 g 제조하였다.In a nitrogen atmosphere, sub3 (15 g, 38.1 mmol) and formula A (10 g, 38.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.1 g of subB-5.
(수율 79%, MS: [M+H]+= 470)(Yield 79%, MS: [M+H]+= 470)
(2) 단계 27-2: 화합물 27의 제조(2) Step 27-2: Preparation of compound 27
질소 분위기에서 subB-5(15 g, 31.9 mmol)와 화학식 A(9.2 g, 35.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(13.2 g, 95.8 mmol)를 물 40 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 27을 12.5 g 제조하였다.In a nitrogen atmosphere, subB-5 (15 g, 31.9 mmol) and formula A (9.2 g, 35.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (13.2 g, 95.8 mmol) was dissolved in 40 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.5 g of compound 27.
(수율 60%, MS: [M+H] += 652)(Yield 60%, MS: [M+H] + = 652)
합성예 28: 화합물 28의 제조Synthesis Example 28: Preparation of compound 28
Figure PCTKR2020095135-appb-img-000089
Figure PCTKR2020095135-appb-img-000089
(1) 단계 28-1: 중간체 화합물 subB-6의 제조(1) Step 28-1: Preparation of intermediate compound subB-6
질소 분위기에서 sub24(15 g, 35.4 mmol)와 화학식 B(5.5 g, 35.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.7 g, 106.2 mmol)를 물 44 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-6을 12.5 g 제조하였다.In a nitrogen atmosphere, sub24 (15 g, 35.4 mmol) and formula B (5.5 g, 35.4 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.7 g, 106.2 mmol) was dissolved in 44 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.5 g of subB-6.
(수율 71%, MS: [M+H] += 500)(Yield 71%, MS: [M+H] + = 500)
(2) 단계 28-2: 화합물 28의 제조(2) Step 28-2: Preparation of compound 28
질소 분위기에서 subB-6(15 g, 30 mmol)와 화학식 A(8.6 g, 33 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.4 g, 90 mmol)를 물 37 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28을 14.9 g 제조하였다.(수율 73%, MS: [M+H]+= 682)In a nitrogen atmosphere, subB-6 (15 g, 30 mmol) and formula A (8.6 g, 33 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 mL of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.9 g of compound 28 (yield 73%, MS: [M+H]+=682).
합성예 29: 화합물 29의 제조Synthesis Example 29: Preparation of compound 29
Figure PCTKR2020095135-appb-img-000090
Figure PCTKR2020095135-appb-img-000090
(1) 단계 29-1: 중간체 화합물 subC-1의 제조(1) Step 29-1: Preparation of intermediate compound subC-1
질소 분위기에서 sub25(15 g, 56 mmol)와 화학식 C(11.6 g, 56 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(23.2 g, 168.1 mmol)를 물 70 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.6 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-1을 16.7 g 제조하였다.In a nitrogen atmosphere, sub25 (15 g, 56 mmol) and formula C (11.6 g, 56 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (23.2 g, 168.1 mmol) was dissolved in 70 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of subC-1.
(수율 76%, MS: [M+H] += 394)(Yield 76%, MS: [M+H] + = 394)
(2) 단계 29-2: 화합물 29의 제조(2) Step 29-2: Preparation of compound 29
질소 분위기에서 subC-1(15 g, 38.1 mmol)와 화학식 A(10 g, 38.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 16 g 제조하였다.In a nitrogen atmosphere, subC-1 (15 g, 38.1 mmol) and formula A (10 g, 38.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16 g of compound 29.
(수율 73%, MS: [M+H] += 576)(Yield 73%, MS: [M+H] + = 576)
합성예 30: 화합물 30의 제조Synthesis Example 30: Preparation of Compound 30
Figure PCTKR2020095135-appb-img-000091
Figure PCTKR2020095135-appb-img-000091
(1) 단계 30-1: 중간체 화합물 subC-2의 제조(1) Step 30-1: Preparation of intermediate compound subC-2
질소 분위기에서 sub2(15 g, 47.2 mmol)와 화학식 C(9.7 g, 47.2 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(19.6 g, 141.6 mmol)를 물 59 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.5 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-2를 14 g 제조하였다.In a nitrogen atmosphere, sub2 (15 g, 47.2 mmol) and formula C (9.7 g, 47.2 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (19.6 g, 141.6 mmol) was dissolved in 59 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.5 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of subC-2.
(수율 67%, MS: [M+H] += 444)(Yield 67%, MS: [M+H] + = 444)
(2) 단계 30-2: 화합물 30의 제조(2) Step 30-2: Preparation of compound 30
질소 분위기에서 subC-2(15 g, 33.8 mmol)와 화학식 A(8.9 g, 33.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14 g, 101.4 mmol)를 물 42 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30을 13.1 g 제조하였다.In a nitrogen atmosphere, subC-2 (15 g, 33.8 mmol) and formula A (8.9 g, 33.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.1 g of compound 30.
(수율 62%, MS: [M+H] += 626)(Yield 62%, MS: [M+H] + = 626)
합성예 31: 화합물 31의 제조Synthesis Example 31: Preparation of Compound 31
Figure PCTKR2020095135-appb-img-000092
Figure PCTKR2020095135-appb-img-000092
(1) 단계 31-1: 중간체 화합물 subC-3의 제조(1) Step 31-1: Preparation of intermediate compound subC-3
질소 분위기에서 sub26(15 g, 40.8 mmol)와 화학식 C(8.4 g, 40.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.9 g, 122.3 mmol)를 물 51 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-3을 13.5 g 제조하였다.(수율 67%, MS: [M+H]+= 494)In a nitrogen atmosphere, sub26 (15 g, 40.8 mmol) and formula C (8.4 g, 40.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.9 g, 122.3 mmol) was dissolved in 51 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.5 g of subC-3 (yield 67%, MS: [M+H]+= 494).
(2) 단계 31-2: 화합물 31의 제조(2) Step 31-2: Preparation of compound 31
질소 분위기에서 subC-3(15 g, 30.4 mmol)와 화학식 A(8 g, 30.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.6 g, 91.1 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31을 15.6 g 제조하였다.In a nitrogen atmosphere, subC-3 (15 g, 30.4 mmol) and formula A (8 g, 30.4 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.6 g, 91.1 mmol) was dissolved in 38 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.6 g of compound 31.
(수율 76%, MS: [M+H] += 676)(Yield 76%, MS: [M+H] + = 676)
합성예 32: 화합물 32의 제조Synthesis Example 32: Preparation of Compound 32
Figure PCTKR2020095135-appb-img-000093
Figure PCTKR2020095135-appb-img-000093
(1) 단계 32-1: 중간체 화합물 subC-4의 제조(1) Step 32-1: Preparation of intermediate compound subC-4
질소 분위기에서 sub4(15 g, 43.6 mmol)와 화학식 C(9 g, 43.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(18.1 g, 130.9 mmol)를 물 54 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-4를 16.4 g 제조하였다.In a nitrogen atmosphere, sub4 (15 g, 43.6 mmol) and formula C (9 g, 43.6 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (18.1 g, 130.9 mmol) was dissolved in 54 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.4 g of subC-4.
(수율 80%, MS: [M+H] += 470)(Yield 80%, MS: [M+H] + = 470)
(2) 단계 32-2: 화합물 32의 제조(2) Step 32-2: Preparation of compound 32
질소 분위기에서 subC-4(15 g, 31.9 mmol)와 화학식 A(8.4 g, 31.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(13.2 g, 95.8 mmol)를 물 40 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 13.5 g 제조하였다.In a nitrogen atmosphere, subC-4 (15 g, 31.9 mmol) and formula A (8.4 g, 31.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (13.2 g, 95.8 mmol) was dissolved in 40 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.5 g of compound 32.
(수율 65%, MS: [M+H] += 652)(Yield 65%, MS: [M+H] + = 652)
합성예 33: 화합물 33의 제조Synthesis Example 33: Preparation of Compound 33
Figure PCTKR2020095135-appb-img-000094
Figure PCTKR2020095135-appb-img-000094
(1) 단계 33-1: 중간체 화합물 subC-5의 제조(1) Step 33-1: Preparation of intermediate compound subC-5
질소 분위기에서 sub10(15 g, 38.1 mmol)와 화학식 C(7.9 g, 38.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물 47 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-5를 14.2 g 제조하였다.(수율 72%, MS: [M+H]+= 520)In a nitrogen atmosphere, sub10 (15 g, 38.1 mmol) and formula C (7.9 g, 38.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of subC-5 (yield 72%, MS: [M+H]+=520).
(2) 단계 33-2: 화합물 33의 제조(2) Step 33-2: Preparation of compound 33
질소 분위기에서 subC-5(15 g, 28.8 mmol)와 화학식 A(7.6 g, 28.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12 g, 86.5 mmol)를 물 36 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33을 12.1 g 제조하였다.In a nitrogen atmosphere, subC-5 (15 g, 28.8 mmol) and formula A (7.6 g, 28.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.1 g of compound 33.
(수율 60%, MS: [M+H] += 702)(Yield 60%, MS: [M+H] + = 702)
합성예 34: 화합물 34의 제조Synthesis Example 34: Preparation of Compound 34
Figure PCTKR2020095135-appb-img-000095
Figure PCTKR2020095135-appb-img-000095
(1) 단계 34-1: 중간체 화합물 subC-6의 제조(1) Step 34-1: Preparation of intermediate compound subC-6
질소 분위기에서 sub27(15 g, 40.8 mmol)와 화학식 C(8.4 g, 40.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.9 g, 122.3 mmol)를 물 51 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-6을 15.7 g 제조하였다.In a nitrogen atmosphere, sub27 (15 g, 40.8 mmol) and formula C (8.4 g, 40.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.9 g, 122.3 mmol) was dissolved in 51 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.7 g of subC-6.
(수율 78%, MS: [M+H] += 494)(Yield 78%, MS: [M+H] + = 494)
(2) 단계 34-2: 화합물 34의 제조(2) Step 34-2: Preparation of compound 34
질소 분위기에서 subC-6(15 g, 30.4 mmol)와 화학식 A(8 g, 30.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.6 g, 91.1 mmol)를 물 38 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 15.2 g 제조하였다.In a nitrogen atmosphere, subC-6 (15 g, 30.4 mmol) and formula A (8 g, 30.4 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.6 g, 91.1 mmol) was dissolved in 38 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of compound 34.
(수율 74%, MS: [M+H] += 676)(Yield 74%, MS: [M+H] + = 676)
합성예 35: 화합물 35의 제조Synthesis Example 35: Preparation of compound 35
Figure PCTKR2020095135-appb-img-000096
Figure PCTKR2020095135-appb-img-000096
(1) 단계 35-1: 중간체 화합물 subC-7의 제조(1) Step 35-1: Preparation of intermediate compound subC-7
질소 분위기에서 sub34(15 g, 39.1 mmol)와 화학식 C(8.1 g, 39.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.2 g, 117.2 mmol)를 물 49 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-7을 15.9 g 제조하였다.In a nitrogen atmosphere, sub34 (15 g, 39.1 mmol) and formula C (8.1 g, 39.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.2 g, 117.2 mmol) was dissolved in 49 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.9 g of subC-7.
(수율 80%, MS: [M+H] += 510)(Yield 80%, MS: [M+H] + = 510)
(2) 단계 35-2: 화합물 35의 제조(2) Step 35-2: Preparation of compound 35
질소 분위기에서 subC-7(15 g, 29.4 mmol)와 화학식 A(7.7 g, 29.4 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.2 g, 88.2 mmol)를 물 37 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 14.2 g 제조하였다.In a nitrogen atmosphere, subC-7 (15 g, 29.4 mmol) and formula A (7.7 g, 29.4 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of compound 35.
(수율 70%, MS: [M+H] += 692)(Yield 70%, MS: [M+H] + = 692)
합성예 36: 화합물 36의 제조Synthesis Example 36: Preparation of Compound 36
Figure PCTKR2020095135-appb-img-000097
Figure PCTKR2020095135-appb-img-000097
(1) 단계 36-1: 중간체 화합물 subC-8의 제조(1) Step 36-1: Preparation of intermediate compound subC-8
질소 분위기에서 sub28(15 g, 34.6 mmol)와 화학식 C(7.2 g, 34.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.4 g, 103.9 mmol)를 물 43 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-8을 13.3 g 제조하였다.In a nitrogen atmosphere, sub28 (15 g, 34.6 mmol) and formula C (7.2 g, 34.6 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.4 g, 103.9 mmol) was dissolved in 43 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of subC-8.
(수율 69%, MS: [M+H] += 559)(Yield 69%, MS: [M+H] + = 559)
(2) 단계 36-2: 화합물 36의 제조(2) Step 36-2: Preparation of compound 36
질소 분위기에서 subC-8(15 g, 26.8 mmol)와 화학식 A(7 g, 26.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(11.1 g, 80.5 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36을 15.5 g 제조하였다.In a nitrogen atmosphere, subC-8 (15 g, 26.8 mmol) and formula A (7 g, 26.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (11.1 g, 80.5 mmol) was dissolved in 33 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.5 g of compound 36.
(수율 78%, MS: [M+H] += 741)(Yield 78%, MS: [M+H] + = 741)
합성예 37: 화합물 37의 제조Synthesis Example 37: Preparation of Compound 37
Figure PCTKR2020095135-appb-img-000098
Figure PCTKR2020095135-appb-img-000098
(1) 단계 37-1: 중간체 화합물 subC-9의 제조(1) Step 37-1: Preparation of intermediate compound subC-9
질소 분위기에서 sub19(15 g, 34.6 mmol)와 화학식 C(7.2 g, 34.6 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.4 g, 103.9 mmol)를 물 43 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-9를 13.9 g 제조하였다.In a nitrogen atmosphere, sub19 (15 g, 34.6 mmol) and formula C (7.2 g, 34.6 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.4 g, 103.9 mmol) was dissolved in 43 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.3 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.9 g of subC-9.
(수율 72%, MS: [M+H] += 559)(Yield 72%, MS: [M+H] + = 559)
(2) 단계 37-2: 화합물 37의 제조(2) Step 37-2: Preparation of compound 37
질소 분위기에서 subC-9(15 g, 26.8 mmol)와 화학식 A(7 g, 26.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(11.1 g, 80.5 mmol)를 물 33 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 37을 14.5 g 제조하였다.In a nitrogen atmosphere, subC-9 (15 g, 26.8 mmol) and formula A (7 g, 26.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (11.1 g, 80.5 mmol) was dissolved in 33 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of compound 37.
(수율 73%, MS: [M+H] += 741)(Yield 73%, MS: [M+H] + = 741)
합성예 38: 화합물 38의 제조Synthesis Example 38: Preparation of Compound 38
Figure PCTKR2020095135-appb-img-000099
Figure PCTKR2020095135-appb-img-000099
(1) 단계 38-1: 중간체 화합물 subC-10의 제조(1) Step 38-1: Preparation of intermediate compound subC-10
질소 분위기에서 sub12(15 g, 41.9 mmol)와 화학식 C(8.7 g, 41.9 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(17.4 g, 125.8 mmol)를 물 52 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-10을 14.2 g 제조하였다.In a nitrogen atmosphere, sub12 (15 g, 41.9 mmol) and formula C (8.7 g, 41.9 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of subC-10.
(수율 70%, MS: [M+H] += 484)(Yield 70%, MS: [M+H] + = 484)
(2) 단계 38-2: 화합물 38의 제조(2) Step 38-2: Preparation of compound 38
질소 분위기에서 subC-10(15 g, 31 mmol)와 화학식 A(8.1 g, 31 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.9 g, 93 mmol)를 물 39 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 38을 13.4 g 제조하였다.In a nitrogen atmosphere, subC-10 (15 g, 31 mmol) and formula A (8.1 g, 31 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of compound 38.
(수율 65%, MS: [M+H] += 666)(Yield 65%, MS: [M+H] + = 666)
합성예 39: 화합물 39의 제조Synthesis Example 39: Preparation of Compound 39
Figure PCTKR2020095135-appb-img-000100
Figure PCTKR2020095135-appb-img-000100
(1) 단계 39-1: 중간체 화합물 subC-11의 제조(1) Step 39-1: Preparation of intermediate compound subC-11
질소 분위기에서 sub29(15 g, 36.8 mmol)와 화학식 C(7.6 g, 36.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.2 g, 110.3 mmol)를 물 46 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-11을 12.9 g 제조하였다.In a nitrogen atmosphere, sub29 (15 g, 36.8 mmol) and formula C (7.6 g, 36.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of subC-11.
(수율 66%, MS: [M+H] += 534)(Yield 66%, MS: [M+H] + = 534)
(2) 단계 39-2: 화합물 39의 제조(2) Step 39-2: Preparation of compound 39
질소 분위기에서 subC-11(15 g, 28.1 mmol)와 화학식 A(7.4 g, 28.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(11.6 g, 84.3 mmol)를 물 35 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 39를 14.5 g 제조하였다.In a nitrogen atmosphere, subC-11 (15 g, 28.1 mmol) and formula A (7.4 g, 28.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (11.6 g, 84.3 mmol) was dissolved in 35 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of compound 39.
(수율 72%, MS: [M+H] += 716)(Yield 72%, MS: [M+H] + = 716)
합성예 40: 화합물 40의 제조Synthesis Example 40: Preparation of Compound 40
Figure PCTKR2020095135-appb-img-000101
Figure PCTKR2020095135-appb-img-000101
(1) 단계 40-1: 중간체 화합물 subC-12의 제조(1) Step 40-1: Preparation of intermediate compound subC-12
질소 분위기에서 sub30(15 g, 36.8 mmol)와 화학식 C(7.6 g, 36.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(15.2 g, 110.3 mmol)를 물 46 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-12를 12.9 g 제조하였다.In a nitrogen atmosphere, sub30 (15 g, 36.8 mmol) and formula C (7.6 g, 36.8 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of subC-12.
(수율 66%, MS: [M+H] += 534)(Yield 66%, MS: [M+H] + = 534)
(2) 단계 40-2: 화합물 40의 제조(2) Step 40-2: Preparation of compound 40
질소 분위기에서 subC-12(15 g, 28.1 mmol)와 화학식 A(7.4 g, 28.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(11.6 g, 84.3 mmol)를 물 35 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40을 12.7 g 제조하였다.In a nitrogen atmosphere, subC-12 (15 g, 28.1 mmol) and formula A (7.4 g, 28.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (11.6 g, 84.3 mmol) was dissolved in 35 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.7 g of compound 40.
(수율 63%, MS: [M+H] += 716)(Yield 63%, MS: [M+H] + = 716)
합성예 41: 화합물 41의 제조Synthesis Example 41: Preparation of Compound 41
Figure PCTKR2020095135-appb-img-000102
Figure PCTKR2020095135-appb-img-000102
(1) 단계 41-1: 중간체 화합물 subC-13의 제조(1) Step 41-1: Preparation of intermediate compound subC-13
질소 분위기에서 sub31(15 g, 35.5 mmol)와 화학식 C(7.3 g, 35.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(14.7 g, 106.4 mmol)를 물 44 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.4 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-13을 14.6 g 제조하였다.In a nitrogen atmosphere, sub31 (15 g, 35.5 mmol) and formula C (7.3 g, 35.5 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (14.7 g, 106.4 mmol) was dissolved in 44 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.4 g, 0.4 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of subC-13.
(수율 75%, MS: [M+H] += 550)(Yield 75%, MS: [M+H] + = 550)
(2) 단계 41-2: 화합물 41의 제조(2) Step 41-2: Preparation of compound 41
질소 분위기에서 subC-13(15 g, 27.3 mmol)와 화학식 A(7.1 g, 27.3 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(11.3 g, 81.8 mmol)를 물 34 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41을 13.6 g 제조하였다.In a nitrogen atmosphere, subC-13 (15 g, 27.3 mmol) and formula A (7.1 g, 27.3 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (11.3 g, 81.8 mmol) was dissolved in 34 mL of water, and after sufficiently stirring, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.6 g of compound 41.
(수율 68%, MS: [M+H]+= 732)(Yield 68%, MS: [M+H]+= 732)
합성예 42: 화합물 42의 제조Synthesis Example 42: Preparation of Compound 42
Figure PCTKR2020095135-appb-img-000103
Figure PCTKR2020095135-appb-img-000103
(1) 단계 42-1: 중간체 화합물 subC-14의 제조(1) Step 42-1: Preparation of intermediate compound subC-14
질소 분위기에서 sub17(15 g, 40.1 mmol)와 화학식 C(8.3 g, 40.1 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(16.6 g, 120.4 mmol)를 물 50 mL에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(0.5 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-14를 13 g 제조하였다.In a nitrogen atmosphere, sub17 (15 g, 40.1 mmol) and formula C (8.3 g, 40.1 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (16.6 g, 120.4 mmol) was dissolved in 50 mL of water, and after sufficiently stirring, tetrakis (triphenylphosphine) palladium (0) (0.5 g, 0.4 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of subC-14.
(수율 65%, MS: [M+H] += 500)(Yield 65%, MS: [M+H] + = 500)
(2) 단계 42-2: 화합물 42의 제조(2) Step 42-2: Preparation of compound 42
질소 분위기에서 subC-14(15 g, 30 mmol)와 화학식 A(7.9 g, 30 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(12.4 g, 90 mmol)를 물 37 mL에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 42를 14.7 g 제조하였다.In a nitrogen atmosphere, subC-14 (15 g, 30 mmol) and formula A (7.9 g, 30 mmol) were added to 300 mL of THF, followed by stirring and refluxing. Thereafter, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 mL of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of compound 42.
(수율 72%, MS: [M+H] += 682)(Yield 72%, MS: [M+H] + = 682)
[제2 화합물의 합성예][Synthesis Example of Second Compound]
합성예 2-1: 화합물 2-1의 제조Synthesis Example 2-1: Preparation of Compound 2-1
Figure PCTKR2020095135-appb-img-000104
Figure PCTKR2020095135-appb-img-000104
질소 분위기에서 중간체 2-1-1(10 g, 25.2 mmol)와 중간체 2-1-2(8 g, 27.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-1을 9 g 제조하였다.In a nitrogen atmosphere, intermediate 2-1-1 (10 g, 25.2 mmol) and intermediate 2-1-2 (8 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9 g of compound 2-1.
(수율 64%, MS: [M+H] += 561)(Yield 64%, MS: [M+H] + = 561)
합성예 2-2: 화합물 2-2의 제조Synthesis Example 2-2: Preparation of Compound 2-2
Figure PCTKR2020095135-appb-img-000105
Figure PCTKR2020095135-appb-img-000105
질소 분위기에서 중간체 2-2-1(10 g, 25.2 mmol)와 중간체 2-2-2(8 g, 27.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-2를 10.6 g 제조하였다.In a nitrogen atmosphere, intermediate 2-2-1 (10 g, 25.2 mmol) and intermediate 2-2-2 (8 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of compound 2-2.
(수율 66%, MS: [M+H] += 637)(Yield 66%, MS: [M+H] + = 637)
합성예 2-3: 화합물 2-3의 제조Synthesis Example 2-3: Preparation of Compound 2-3
Figure PCTKR2020095135-appb-img-000106
Figure PCTKR2020095135-appb-img-000106
질소 분위기에서 중간체 2-3-1(10 g, 25.2 mmol)와 중간체 2-3-2(10.1 g, 27.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-3을 9 g 제조하였다.In a nitrogen atmosphere, intermediate 2-3-1 (10 g, 25.2 mmol) and intermediate 2-3-2 (10.1 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9 g of compound 2-3.
(수율 56%, MS: [M+H] += 637)(Yield 56%, MS: [M+H] + = 637)
합성예 2-4: 화합물 2-4의 제조Synthesis Example 2-4: Preparation of compound 2-4
Figure PCTKR2020095135-appb-img-000107
Figure PCTKR2020095135-appb-img-000107
질소 분위기에서 중간체 2-4-1(10 g, 25.2 mmol)와 중간체 2-4-2(9.3 g, 27.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-4를 7.8 g 제조하였다.In a nitrogen atmosphere, intermediate 2-4-1 (10 g, 25.2 mmol) and intermediate 2-4-2 (9.3 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.8 g of compound 2-4.
(수율 51%, MS: [M+H] += 611)(Yield 51%, MS: [M+H] + = 611)
합성예 2-5: 화합물 2-5의 제조Synthesis Example 2-5: Preparation of compound 2-5
Figure PCTKR2020095135-appb-img-000108
Figure PCTKR2020095135-appb-img-000108
질소 분위기에서 중간체 2-5-1(10 g, 25.2 mmol)와 중간체 2-5-2(10.1 g, 27.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-5를 10.4 g 제조하였다.In a nitrogen atmosphere, intermediate 2-5-1 (10 g, 25.2 mmol) and intermediate 2-5-2 (10.1 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.4 g of compound 2-5.
(수율 65%, MS: [M+H] += 637)(Yield 65%, MS: [M+H] + = 637)
합성예 2-6: 화합물 2-6의 제조Synthesis Example 2-6: Preparation of compound 2-6
Figure PCTKR2020095135-appb-img-000109
Figure PCTKR2020095135-appb-img-000109
질소 분위기에서 중간체 2-6-1(10 g, 25.2 mmol)와 중간체 2-6-2(11.4 g, 27.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-6을 10.5 g 제조하였다.In a nitrogen atmosphere, intermediate 2-6-1 (10 g, 25.2 mmol) and intermediate 2-6-2 (11.4 g, 27.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.9 g, 100.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.5 g of compound 2-6.
(수율 61%, MS: [M+H] += 687)(Yield 61%, MS: [M+H] + = 687)
합성예 2-7: 화합물 2-7의 제조Synthesis Example 2-7: Preparation of Compound 2-7
Figure PCTKR2020095135-appb-img-000110
Figure PCTKR2020095135-appb-img-000110
질소 분위기에서 중간체 2-7-1(10 g, 22.4 mmol)와 중간체 2-7-2(10.2 g, 24.6 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(12.4 g, 89.5 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-7을 11 g 제조하였다.In a nitrogen atmosphere, intermediate 2-7-1 (10 g, 22.4 mmol) and intermediate 2-7-2 (10.2 g, 24.6 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.4 g, 89.5 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11 g of compound 2-7.
(수율 67%, MS: [M+H] += 737)(Yield 67%, MS: [M+H] + = 737)
합성예 2-8: 화합물 2-8의 제조Synthesis Example 2-8: Preparation of compound 2-8
Figure PCTKR2020095135-appb-img-000111
Figure PCTKR2020095135-appb-img-000111
질소 분위기에서 중간체 2-8-1(10 g, 17.9 mmol)와 중간체 2-8-2(5.6 g, 19.7 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(9.9 g, 71.5 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-8을 7.8 g 제조하였다.In a nitrogen atmosphere, intermediate 2-8-1 (10 g, 17.9 mmol) and intermediate 2-8-2 (5.6 g, 19.7 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (9.9 g, 71.5 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.8 g of compound 2-8.
(수율 60%, MS: [M+H] += 723)(Yield 60%, MS: [M+H] + = 723)
합성예 2-9: 화합물 2-9의 제조Synthesis Example 2-9: Preparation of Compound 2-9
Figure PCTKR2020095135-appb-img-000112
Figure PCTKR2020095135-appb-img-000112
질소 분위기에서 중간체 2-9-1(10 g, 21.1 mmol)와 중간체 2-9-2(6.7 g, 23.3 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(11.7 g, 84.6 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-9를 7.4 g 제조하였다.In a nitrogen atmosphere, intermediate 2-9-1 (10 g, 21.1 mmol) and intermediate 2-9-2 (6.7 g, 23.3 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (11.7 g, 84.6 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.4 g of compound 2-9.
(수율 55%, MS: [M+H] += 637)(Yield 55%, MS: [M+H] + = 637)
합성예 2-10: 화합물 2-10의 제조Synthesis Example 2-10: Preparation of Compound 2-10
Figure PCTKR2020095135-appb-img-000113
Figure PCTKR2020095135-appb-img-000113
질소 분위기에서 중간체 2-10-1(10 g, 27 mmol)와 중간체 2-10-2(10 g, 29.6 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(14.9 g, 107.8 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-10을 11 g 제조하였다.In a nitrogen atmosphere, intermediate 2-10-1 (10 g, 27 mmol) and intermediate 2-10-2 (10 g, 29.6 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (14.9 g, 107.8 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11 g of compound 2-10.
(수율 70%, MS: [M+H] += 585)(Yield 70%, MS: [M+H] + = 585)
합성예 2-11: 화합물 2-11의 제조Synthesis Example 2-11: Preparation of Compound 2-11
Figure PCTKR2020095135-appb-img-000114
Figure PCTKR2020095135-appb-img-000114
질소 분위기에서 중간체 2-11-1(10 g, 27 mmol)와 중간체 2-11-2(11.5 g, 29.6 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(14.9 g, 107.8 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-11을 11.5 g 제조하였다.In a nitrogen atmosphere, intermediate 2-11-1 (10 g, 27 mmol) and intermediate 2-11-2 (11.5 g, 29.6 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (14.9 g, 107.8 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.5 g of compound 2-11.
(수율 67%, MS: [M+H] += 635)(Yield 67%, MS: [M+H] + = 635)
합성예 2-12: 화합물 2-12의 제조Synthesis Example 2-12: Preparation of Compound 2-12
Figure PCTKR2020095135-appb-img-000115
Figure PCTKR2020095135-appb-img-000115
질소 분위기에서 중간체 2-12-1(10 g, 23.8 mmol)와 중간체 2-12-2(8.8 g, 26.1 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.1 g, 95 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-12를 10.4 g 제조하였다.In a nitrogen atmosphere, intermediate 2-12-1 (10 g, 23.8 mmol) and intermediate 2-12-2 (8.8 g, 26.1 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.1 g, 95 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.4 g of compound 2-12.
(수율 69%, MS: [M+H] += 635)(Yield 69%, MS: [M+H] + = 635)
합성예 2-13: 화합물 2-13의 제조Synthesis Example 2-13: Preparation of Compound 2-13
Figure PCTKR2020095135-appb-img-000116
Figure PCTKR2020095135-appb-img-000116
질소 분위기에서 중간체 2-13-1(10 g, 24.3 mmol)와 중간체 2-13-2(11.1 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-13을 9 g 제조하였다.In a nitrogen atmosphere, intermediate 2-13-1 (10 g, 24.3 mmol) and intermediate 2-13-2 (11.1 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9 g of compound 2-13.
(수율 53%, MS: [M+H] += 701)(Yield 53%, MS: [M+H] + = 701)
합성예 2-14: 화합물 2-14의 제조Synthesis Example 2-14: Preparation of Compound 2-14
Figure PCTKR2020095135-appb-img-000117
Figure PCTKR2020095135-appb-img-000117
질소 분위기에서 중간체 2-14-1(10 g, 24.3 mmol)와 중간체 2-14-2(7.7 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-14를 8.9 g 제조하였다.In a nitrogen atmosphere, intermediate 2-14-1 (10 g, 24.3 mmol) and intermediate 2-14-2 (7.7 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.9 g of compound 2-14.
(수율 64%, MS: [M+H] += 575)(Yield 64%, MS: [M+H] + = 575)
합성예 2-15: 화합물 2-15의 제조Synthesis Example 2-15: Preparation of Compound 2-15
Figure PCTKR2020095135-appb-img-000118
Figure PCTKR2020095135-appb-img-000118
질소 분위기에서 중간체 2-15-1(10 g, 24.3 mmol)와 중간체 2-15-2(9 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-15를 8.4 g 제조하였다.In a nitrogen atmosphere, intermediate 2-15-1 (10 g, 24.3 mmol) and intermediate 2-15-2 (9 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.4 g of compound 2-15.
(수율 55%, MS: [M+H] += 625)(Yield 55%, MS: [M+H] + = 625)
합성예 2-16: 화합물 2-16의 제조Synthesis Example 2-16: Preparation of Compound 2-16
Figure PCTKR2020095135-appb-img-000119
Figure PCTKR2020095135-appb-img-000119
질소 분위기에서 중간체 2-16-1(10 g, 24.3 mmol)와 중간체 2-16-2(11.1 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-16을 11.2 g 제조하였다.In a nitrogen atmosphere, intermediate 2-16-1 (10 g, 24.3 mmol) and intermediate 2-16-2 (11.1 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.2 g of compound 2-16.
(수율 66%, MS: [M+H] += 701)(Yield 66%, MS: [M+H] + = 701)
합성예 2-17: 화합물 2-17의 제조Synthesis Example 2-17: Preparation of Compound 2-17
Figure PCTKR2020095135-appb-img-000120
Figure PCTKR2020095135-appb-img-000120
질소 분위기에서 중간체 2-17-1(10 g, 24.3 mmol)와 중간체 2-17-2(10.1 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-17을 10 g 제조하였다.In a nitrogen atmosphere, intermediate 2-17-1 (10 g, 24.3 mmol) and intermediate 2-17-2 (10.1 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10 g of compound 2-17.
(수율 62%, MS: [M+H] += 665)(Yield 62%, MS: [M+H] + = 665)
합성예 2-18: 화합물 2-18의 제조Synthesis Example 2-18: Preparation of Compound 2-18
Figure PCTKR2020095135-appb-img-000121
Figure PCTKR2020095135-appb-img-000121
질소 분위기에서 중간체 2-18-1(10 g, 24.3 mmol)와 중간체 2-18-2(10.5 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-18을 9.8 g 제조하였다.In a nitrogen atmosphere, intermediate 2-18-1 (10 g, 24.3 mmol) and intermediate 2-18-2 (10.5 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.8 g of compound 2-18.
(수율 59%, MS: [M+H]+= 681)(Yield 59%, MS: [M+H]+= 681)
합성예 2-19: 화합물 2-19의 제조Synthesis Example 2-19: Preparation of Compound 2-19
Figure PCTKR2020095135-appb-img-000122
Figure PCTKR2020095135-appb-img-000122
질소 분위기에서 중간체 2-19-1(10 g, 24.3 mmol)와 중간체 2-19-2(10.5 g, 26.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-19를 11.4 g 제조하였다.In a nitrogen atmosphere, intermediate 2-19-1 (10 g, 24.3 mmol) and intermediate 2-19-2 (10.5 g, 26.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (13.5 g, 97.3 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.4 g of compound 2-19.
(수율 69%, MS: [M+H] += 681)(Yield 69%, MS: [M+H] + = 681)
합성예 2-20: 화합물 2-20의 제조Synthesis Example 2-20: Preparation of Compound 2-20
Figure PCTKR2020095135-appb-img-000123
Figure PCTKR2020095135-appb-img-000123
질소 분위기에서 중간체 2-20-1(10 g, 23.4 mmol)와 중간체 2-20-2(9.4 g, 25.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-20을 9 g 제조하였다.In a nitrogen atmosphere, intermediate 2-20-1 (10 g, 23.4 mmol) and intermediate 2-20-2 (9.4 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9 g of compound 2-20.
(수율 58%, MS: [M+H] += 667)(Yield 58%, MS: [M+H] + = 667)
합성예 2-21: 화합물 2-21의 제조Synthesis Example 2-21: Preparation of Compound 2-21
Figure PCTKR2020095135-appb-img-000124
Figure PCTKR2020095135-appb-img-000124
질소 분위기에서 중간체 2-21-1(10 g, 23.4 mmol)와 중간체 2-21-2(10.6 g, 25.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-21을 10.7 g 제조하였다.In a nitrogen atmosphere, intermediate 2-21-1 (10 g, 23.4 mmol) and intermediate 2-21-2 (10.6 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.7 g of compound 2-21.
(수율 64%, MS: [M+H] += 717)(Yield 64%, MS: [M+H] + = 717)
합성예 2-22: 화합물 2-22의 제조Synthesis Example 2-22: Preparation of Compound 2-22
Figure PCTKR2020095135-appb-img-000125
Figure PCTKR2020095135-appb-img-000125
질소 분위기에서 중간체 2-22-1(10 g, 23.4 mmol)와 중간체 2-22-2(11.3 g, 25.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-22를 9 g 제조하였다.In a nitrogen atmosphere, intermediate 2-22-1 (10 g, 23.4 mmol) and intermediate 2-22-2 (11.3 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9 g of compound 2-22.
(수율 52%, MS: [M+H] += 743)(Yield 52%, MS: [M+H] + = 743)
합성예 2-23: 화합물 2-23의 제조Synthesis Example 2-23: Preparation of Compound 2-23
Figure PCTKR2020095135-appb-img-000126
Figure PCTKR2020095135-appb-img-000126
질소 분위기에서 중간체 2-23-1(10 g, 23.4 mmol)와 중간체 2-23-2(10.1 g, 25.8 mmol)를 THF 200 mL에 넣고 교반 하고 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고 충분히 교반한 후 환류했을 때 비스(트리-tert-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-23을 9.1 g 제조하였다.In a nitrogen atmosphere, intermediate 2-23-1 (10 g, 23.4 mmol) and intermediate 2-23-2 (10.1 g, 25.8 mmol) were added to 200 mL of THF, stirred, and potassium carbonate (12.9 g, 93.7 mmol) was added to water. After dissolving, stirring, and refluxing, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 4 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.1 g of compound 2-23.
(수율 56%, MS: [M+H] += 697)(Yield 56%, MS: [M+H] + = 697)
실시예 1: 유기 발광 소자의 제조Example 1: Fabrication of an organic light emitting device
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with a thin film of ITO (indium tin oxide) having a thickness of 1,000Å was put in distilled water dissolved in a detergent and washed with ultrasonic waves. At this time, a product made by Fischer Co. was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water. After washing the ITO for 30 minutes, it was repeated twice with distilled water to perform ultrasonic cleaning for 10 minutes. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성하였다. The following HI-1 compound was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150Å, but the following compound A-1 was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Subsequently, an electron suppressing layer was formed by vacuum depositing the following EB-1 compound with a film thickness of 150 Å on the hole transport layer.
이어서, 상기 EB-1 증착막 위에 제1 호스트로 상기 합성예 1에서 제조한 화합물 1을, 제2 호스트로 상기 합성예 2-1에서 제조한 화합물 2-1을, 도펀트로 하기 Dp-7 화합물을 진공 증착하여 400Å 두께의 적색 발광층을 형성하였다. 이때, 제1 호스트 및 제2 호스트는 1:1의 중량비로, 호스트 물질 총합과 도펀트 물질은 98:2의 중량비로 사용하였다.Then, on the EB-1 deposition film, the compound 1 prepared in Synthesis Example 1 was used as a first host, the compound 2-1 prepared in Synthesis Example 2-1 was used as a second host, and the following Dp-7 compound was used as a dopant. A red light emitting layer having a thickness of 400Å was formed by vacuum evaporation. In this case, the first host and the second host were used in a weight ratio of 1:1, and the total host material and the dopant material were used in a weight ratio of 98:2.
상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. A hole blocking layer was formed by vacuum depositing the following HB-1 compound with a thickness of 30 Å on the emission layer. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 Å. Lithium fluoride (LiF) in a thickness of 12 Å and aluminum in a thickness of 1,000 Å were sequentially deposited on the electron injection and transport layer to form a negative electrode.
Figure PCTKR2020095135-appb-img-000127
Figure PCTKR2020095135-appb-img-000127
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 x 10 -7 ~ 5 x 10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7Å/sec, the deposition rate of lithium fluoride at the negative electrode was 0.3Å/sec, and the deposition rate of aluminum was 2Å/sec, and the vacuum degree during deposition was 2 x 10 − Maintaining 7 ~ 5 x 10 -6 torr, an organic light emitting device was manufactured.
실시예 2 내지 실시예 100Examples 2 to 100
실시예 1의 유기 발광 소자에서 코호스트 물질로 화합물 1 및 화합물 2-1 대신 하기 표 1 내지 3에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. In the organic light emitting device of Example 1, an organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 1 to 3 were used instead of Compound 1 and Compound 2-1 as cohost materials. .
비교예 1 내지 비교예 37Comparative Examples 1 to 37
실시예 1의 유기 발광 소자에서 코호스트 물질로 화합물 1 및 화합물 2-1 대신 하기 표 4 및 5에 기재된 단일 호스트 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 이때, 표 5의 비교화합물 C-1 내지 C-12의 구조는 하기와 같다.In the organic light-emitting device of Example 1, an organic light-emitting device was prepared in the same manner as in Example 1, except that a single host compound shown in Tables 4 and 5 was used instead of compound 1 and compound 2-1 as cohost materials. Was prepared. At this time, the structures of Comparative Compounds C-1 to C-12 in Table 5 are as follows.
Figure PCTKR2020095135-appb-img-000128
Figure PCTKR2020095135-appb-img-000128
비교예 38 내지 비교예 85Comparative Examples 38 to 85
실시예 1의 유기 발광 소자에서 코호스트 물질로 화합물 1 및 화합물 2-1 대신 하기 표 6 및 7에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. In the organic light emitting device of Example 1, an organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 6 and 7 were used instead of compounds 1 and 2-1 as cohost materials. .
실험예 Experimental example
상기 실시예 1 내지 실시예 100 및 비교예 1 내지 비교예 85에서 제작된 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 수명을 측정(15 mA/cm 2 기준)하고 그 결과를 하기 표 1 내지 7에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.When a current was applied to the organic light-emitting devices prepared in Examples 1 to 100 and Comparative Examples 1 to 85, voltage, efficiency, and lifetime were measured (15 mA/cm 2 basis) and the results are shown in the following table It is shown in 1-7. Life T95 refers to the time it takes for the luminance to decrease from the initial luminance (6,000 nit) to 95%.
구분division 제1호스트Host 1 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
실시예 1Example 1 화합물 1Compound 1 화합물 2-1Compound 2-1 3.763.76 24.324.3 260260 적색Red
실시예 2Example 2 화합물 2-2Compound 2-2 3.783.78 25.425.4 242242 적색Red
실시예 3Example 3 화합물 2-8Compound 2-8 3.773.77 25.925.9 241241 적색Red
실시예 4Example 4 화합물 2-19Compound 2-19 3.763.76 25.425.4 253253 적색Red
실시예 5Example 5 화합물 3Compound 3 화합물 2-9Compound 2-9 3.683.68 24.424.4 235235 적색Red
실시예 6Example 6 화합물 2-10Compound 2-10 3.713.71 24.324.3 242242 적색Red
실시예 7Example 7 화합물 2-12Compound 2-12 3.703.70 25.725.7 224224 적색Red
실시예 8Example 8 화합물 2-16Compound 2-16 3.723.72 24.524.5 246246 적색Red
실시예 9Example 9 화합물 5Compound 5 화합물 2-3Compound 2-3 3.783.78 25.425.4 237237 적색Red
실시예 10Example 10 화합물 2-4Compound 2-4 3.723.72 24.824.8 232232 적색Red
실시예 11Example 11 화합물 2-14Compound 2-14 3.743.74 25.925.9 247247 적색Red
실시예 12Example 12 화합물 2-21Compound 2-21 3.763.76 24.424.4 261261 적색Red
실시예 13Example 13 화합물 9Compound 9 화합물 2-1Compound 2-1 3.653.65 25.125.1 224224 적색Red
실시예 14Example 14 화합물 2-2Compound 2-2 3.703.70 25.325.3 211211 적색Red
실시예 15Example 15 화합물 2-8Compound 2-8 3.743.74 26.426.4 223223 적색Red
실시예 16Example 16 화합물 2-19Compound 2-19 3.733.73 25.525.5 234234 적색Red
실시예 17Example 17 화합물 10Compound 10 화합물 2-9Compound 2-9 3.753.75 25.125.1 242242 적색Red
실시예 18Example 18 화합물 2-10Compound 2-10 3.713.71 25.325.3 247247 적색Red
실시예 19Example 19 화합물 2-12Compound 2-12 3.703.70 26.826.8 252252 적색Red
실시예 20Example 20 화합물 2-16Compound 2-16 3.783.78 24.624.6 238238 적색Red
실시예 21Example 21 화합물 14Compound 14 화합물 2-3Compound 2-3 3.773.77 26.126.1 223223 적색Red
실시예 22Example 22 화합물 2-4Compound 2-4 3.763.76 26.526.5 231231 적색Red
실시예 23Example 23 화합물 2-14Compound 2-14 3.813.81 25.225.2 219219 적색Red
실시예 24Example 24 화합물 2-21Compound 2-21 3.843.84 25.825.8 214214 적색Red
실시예 25Example 25 화합물 17Compound 17 화합물 2-1Compound 2-1 3.893.89 24.324.3 231231 적색Red
실시예 26Example 26 화합물 2-2Compound 2-2 3.923.92 25.225.2 245245 적색Red
실시예 27Example 27 화합물 2-8Compound 2-8 3.913.91 25.725.7 227227 적색Red
실시예 28Example 28 화합물 2-19Compound 2-19 3.953.95 24.824.8 236236 적색Red
실시예 29Example 29 화합물 19Compound 19 화합물 2-9Compound 2-9 3.883.88 25.925.9 231231 적색Red
실시예 30Example 30 화합물 2-10Compound 2-10 3.853.85 26.126.1 223223 적색Red
실시예 31Example 31 화합물 2-12Compound 2-12 3.923.92 26.926.9 217217 적색Red
실시예 32Example 32 화합물 2-16Compound 2-16 3.963.96 25.425.4 235235 적색Red
실시예 33Example 33 화합물 21Compound 21 화합물 2-3Compound 2-3 3.903.90 26.726.7 251251 적색Red
실시예 34Example 34 화합물 2-4Compound 2-4 3.913.91 26.526.5 248248 적색Red
실시예 35Example 35 화합물 2-14Compound 2-14 3.843.84 27.327.3 232232 적색Red
실시예 36Example 36 화합물 2-21Compound 2-21 3.933.93 26.726.7 257257 적색Red
실시예 37Example 37 화합물 23Compound 23 화합물 2-1Compound 2-1 3.943.94 25.825.8 221221 적색Red
실시예 38Example 38 화합물 2-2Compound 2-2 3.913.91 26.126.1 216216 적색Red
실시예 39Example 39 화합물 2-8Compound 2-8 3.973.97 25.325.3 214214 적색Red
실시예 40Example 40 화합물 2-19Compound 2-19 3.903.90 26.426.4 218218 적색Red
구분division 제1호스트Host 1 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
실시예 41Example 41 화합물 25Compound 25 화합물 2-9Compound 2-9 3.893.89 25.925.9 228228 적색Red
실시예 42Example 42 화합물 2-10Compound 2-10 3.873.87 24.324.3 220220 적색Red
실시예 43Example 43 화합물 2-12Compound 2-12 3.903.90 25.925.9 234234 적색Red
실시예 44Example 44 화합물 2-16Compound 2-16 3.993.99 26.426.4 230230 적색Red
실시예 45Example 45 화합물 29Compound 29 화합물 2-3Compound 2-3 3.953.95 25.725.7 253253 적색Red
실시예 46Example 46 화합물 2-4Compound 2-4 3.993.99 27.327.3 232232 적색Red
실시예 47Example 47 화합물 2-14Compound 2-14 4.024.02 26.126.1 236236 적색Red
실시예 48Example 48 화합물 2-21Compound 2-21 4.004.00 27.927.9 237237 적색Red
실시예 49Example 49 화합물 30Compound 30 화합물 2-1Compound 2-1 3.923.92 26.526.5 238238 적색Red
실시예 50Example 50 화합물 2-2Compound 2-2 3.913.91 25.325.3 219219 적색Red
실시예 51Example 51 화합물 2-8Compound 2-8 3.983.98 26.226.2 220220 적색Red
실시예 52Example 52 화합물 2-19Compound 2-19 4.014.01 26.026.0 218218 적색Red
실시예 53Example 53 화합물 31Compound 31 화합물 2-9Compound 2-9 3.973.97 25.525.5 251251 적색Red
실시예 54Example 54 화합물 2-10Compound 2-10 4.034.03 25.825.8 263263 적색Red
실시예 55Example 55 화합물 2-12Compound 2-12 4.014.01 25.425.4 230230 적색Red
실시예 56Example 56 화합물 2-16Compound 2-16 4.054.05 24.124.1 259259 적색Red
실시예 57Example 57 화합물 32Compound 32 화합물 2-3Compound 2-3 3.983.98 26.026.0 253253 적색Red
실시예 58Example 58 화합물 2-4Compound 2-4 4.054.05 25.225.2 242242 적색Red
실시예 59Example 59 화합물 2-14Compound 2-14 4.074.07 25.025.0 239239 적색Red
실시예 60Example 60 화합물 2-21Compound 2-21 4.044.04 24.324.3 243243 적색Red
실시예 61Example 61 화합물 33Compound 33 화합물 2-1Compound 2-1 3.913.91 26.826.8 253253 적색Red
실시예 62Example 62 화합물 2-2Compound 2-2 3.983.98 26.126.1 262262 적색Red
실시예 63Example 63 화합물 2-8Compound 2-8 3.843.84 25.425.4 261261 적색Red
실시예 64Example 64 화합물 2-19Compound 2-19 3.903.90 26.226.2 247247 적색Red
실시예 65Example 65 화합물 34Compound 34 화합물 2-9Compound 2-9 3.943.94 27.827.8 249249 적색Red
실시예 66Example 66 화합물 2-10Compound 2-10 4.024.02 27.127.1 250250 적색Red
실시예 67Example 67 화합물 2-12Compound 2-12 4.054.05 26.426.4 256256 적색Red
실시예 68Example 68 화합물 2-16Compound 2-16 3.963.96 27.227.2 247247 적색Red
실시예 69Example 69 화합물 35Compound 35 화합물 2-3Compound 2-3 3.903.90 26.326.3 228228 적색Red
실시예 70Example 70 화합물 2-4Compound 2-4 4.014.01 27.527.5 239239 적색Red
실시예 71Example 71 화합물 2-14Compound 2-14 3.883.88 25.225.2 241241 적색Red
실시예 72Example 72 화합물 2-21Compound 2-21 4.054.05 27.427.4 258258 적색Red
실시예 73Example 73 화합물 36Compound 36 화합물 2-1Compound 2-1 3.813.81 26.726.7 256256 적색Red
실시예 74Example 74 화합물 2-2Compound 2-2 3.843.84 26.126.1 262262 적색Red
실시예 75Example 75 화합물 2-8Compound 2-8 3.803.80 25.625.6 271271 적색Red
실시예 76Example 76 화합물 2-19Compound 2-19 3.923.92 27.027.0 258258 적색Red
실시예 77Example 77 화합물 37Compound 37 화합물 2-9Compound 2-9 3.793.79 25.025.0 262262 적색Red
실시예 78Example 78 화합물 2-10Compound 2-10 3.813.81 25.525.5 247247 적색Red
실시예 79Example 79 화합물 2-12Compound 2-12 3.853.85 26.426.4 243243 적색Red
실시예 80Example 80 화합물 2-16Compound 2-16 3.883.88 27.827.8 260260 적색Red
구분 division 제1호스트Host 1 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
실시예 81Example 81 화합물 38Compound 38 화합물 2-3Compound 2-3 3.743.74 25.525.5 251251 적색Red
실시예 82Example 82 화합물 2-4Compound 2-4 3.783.78 24.624.6 230230 적색Red
실시예 83Example 83 화합물 2-14Compound 2-14 3.723.72 25.425.4 242242 적색Red
실시예 84Example 84 화합물 2-21Compound 2-21 3.753.75 26.826.8 237237 적색Red
실시예 85Example 85 화합물 39Compound 39 화합물 2-1Compound 2-1 3.783.78 27.127.1 271271 적색Red
실시예 86Example 86 화합물 2-2Compound 2-2 3.803.80 26.726.7 264264 적색Red
실시예 87Example 87 화합물 2-8Compound 2-8 3.843.84 25.625.6 270270 적색Red
실시예 88Example 88 화합물 2-19Compound 2-19 3.813.81 24.424.4 257257 적색Red
실시예 89Example 89 화합물 40Compound 40 화합물 2-9Compound 2-9 3.613.61 27.827.8 252252 적색Red
실시예 90Example 90 화합물 2-10Compound 2-10 3.603.60 25.925.9 265265 적색Red
실시예 91Example 91 화합물 2-12Compound 2-12 3.633.63 27.027.0 269269 적색Red
실시예 92Example 92 화합물 2-16Compound 2-16 3.613.61 26.426.4 258258 적색Red
실시예 93Example 93 화합물 41Compound 41 화합물 2-3Compound 2-3 3.733.73 25.625.6 268268 적색Red
실시예 94Example 94 화합물 2-4Compound 2-4 3.763.76 25.825.8 260260 적색Red
실시예 95Example 95 화합물 2-14Compound 2-14 3.743.74 24.724.7 271271 적색Red
실시예 96Example 96 화합물 2-21Compound 2-21 3.733.73 24.424.4 242242 적색Red
실시예 97Example 97 화합물 42Compound 42 화합물 2-1Compound 2-1 3.603.60 25.825.8 247247 적색Red
실시예 98Example 98 화합물 2-2Compound 2-2 3.613.61 25.125.1 234234 적색Red
실시예 99Example 99 화합물 2-8Compound 2-8 3.603.60 25.325.3 259259 적색Red
실시예 100Example 100 화합물 2-19Compound 2-19 3.533.53 25.625.6 252252 적색Red
구분division 물질matter 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
비교예 1Comparative Example 1 화합물 1 Compound 1 20.320.3 122122 적색Red
비교예 2Comparative Example 2 화합물 3 Compound 3 21.121.1 135135 적색Red
비교예 3Comparative Example 3 화합물 5Compound 5 23.223.2 148148 적색Red
비교예 4Comparative Example 4 화합물 9Compound 9 22.622.6 127127 적색Red
비교예 5Comparative Example 5 화합물 10Compound 10 21.821.8 143143 적색Red
비교예 6Comparative Example 6 화합물 14Compound 14 23.223.2 157157 적색Red
비교예 7Comparative Example 7 화합물 17Compound 17 22.622.6 145145 적색Red
비교예 8Comparative Example 8 화합물 19Compound 19 21.421.4 128128 적색Red
비교예 9Comparative Example 9 화합물 21Compound 21 23.523.5 172172 적색Red
비교예 10Comparative Example 10 화합물 23Compound 23 19.419.4 126126 적색Red
비교예 11Comparative Example 11 화합물 25Compound 25 20.220.2 129129 적색Red
비교예 12Comparative Example 12 화합물 29Compound 29 21.321.3 141141 적색Red
비교예 13Comparative Example 13 화합물 30Compound 30 21.521.5 133133 적색Red
비교예 14Comparative Example 14 화합물 31Compound 31 20.220.2 145145 적색Red
비교예 15Comparative Example 15 화합물 32Compound 32 21.621.6 157157 적색Red
비교예 16Comparative Example 16 화합물 33Compound 33 22.322.3 140140 적색Red
비교예 17Comparative Example 17 화합물 34Compound 34 21.621.6 152152 적색Red
비교예 18Comparative Example 18 화합물 35Compound 35 22.222.2 143143 적색Red
비교예 19Comparative Example 19 화합물 36Compound 36 22.822.8 142142 적색Red
비교예 20Comparative Example 20 화합물 37Compound 37 21.621.6 158158 적색Red
비교예 21Comparative Example 21 화합물 38Compound 38 22.322.3 141141 적색Red
비교예 22Comparative Example 22 화합물 39Compound 39 21.521.5 151151 적색Red
비교예 23Comparative Example 23 화합물 40Compound 40 20.720.7 160160 적색Red
비교예 24Comparative Example 24 화합물 41Compound 41 22.622.6 159159 적색Red
비교예 25Comparative Example 25 화합물 42Compound 42 23.423.4 163163 적색Red
구분division 물질matter 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
비교예 26Comparative Example 26 C-1C-1 17.417.4 107107 적색Red
비교예 27Comparative Example 27 C-2C-2 16.116.1 8383 적색Red
비교예 28Comparative Example 28 C-3C-3 16.416.4 9494 적색Red
비교예 29Comparative Example 29 C-4C-4 16.016.0 8787 적색Red
비교예 30Comparative Example 30 C-5C-5 18.718.7 110110 적색Red
비교예 31Comparative Example 31 C-6C-6 16.816.8 5151 적색Red
비교예 32Comparative Example 32 C-7C-7 15.515.5 2424 적색Red
비교예 33Comparative Example 33 C-8C-8 15.115.1 3737 적색Red
비교예 34Comparative Example 34 C-9C-9 17.317.3 7575 적색Red
비교예 35Comparative Example 35 C-10C-10 17.517.5 9292 적색Red
비교예 36Comparative Example 36 C-11C-11 15.815.8 6363 적색Red
비교예 37Comparative Example 37 C-12C-12 16.116.1 7878 적색Red
구분division 제1호스트Host 1 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
비교예 38Comparative Example 38 화합물 C-1Compound C-1 화합물 2-1Compound 2-1 4.254.25 18.118.1 189189 적색Red
비교예 39Comparative Example 39 화합물 2-2Compound 2-2 4.244.24 19.319.3 190190 적색Red
비교예 40Comparative Example 40 화합물 2-8Compound 2-8 4.224.22 17.817.8 176176 적색Red
비교예 41Comparative Example 41 화합물 2-19Compound 2-19 4.234.23 18.518.5 187187 적색Red
비교예 42Comparative Example 42 화합물 C-2Compound C-2 화합물 2-9Compound 2-9 4.204.20 18.018.0 171171 적색Red
비교예 43Comparative Example 43 화합물 2-10Compound 2-10 4.224.22 17.717.7 173173 적색Red
비교예 44Comparative Example 44 화합물 2-12Compound 2-12 4.254.25 18.218.2 182182 적색Red
비교예 45Comparative Example 45 화합물 2-16Compound 2-16 4.214.21 17.417.4 170170 적색Red
비교예 46Comparative Example 46 화합물 C-3Compound C-3 화합물 2-3Compound 2-3 4.214.21 17.217.2 169169 적색Red
비교예 47Comparative Example 47 화합물 2-4Compound 2-4 4.234.23 20.820.8 164164 적색Red
비교예 48Comparative Example 48 화합물 2-14Compound 2-14 4.224.22 19.419.4 158158 적색Red
비교예 49Comparative Example 49 화합물 2-21Compound 2-21 4.084.08 17.017.0 173173 적색Red
비교예 50Comparative Example 50 화합물 C-4Compound C-4 화합물 2-1Compound 2-1 4.054.05 16.816.8 168168 적색Red
비교예 51Comparative Example 51 화합물 2-2Compound 2-2 4.044.04 19.519.5 152152 적색Red
비교예 52Comparative Example 52 화합물 2-8Compound 2-8 4.174.17 17.217.2 150150 적색Red
비교예 53Comparative Example 53 화합물 2-19Compound 2-19 4.104.10 19.319.3 164164 적색Red
비교예 54Comparative Example 54 화합물 C-5Compound C-5 화합물 2-9Compound 2-9 4.234.23 19.019.0 185185 적색Red
비교예 55Comparative Example 55 화합물 2-10Compound 2-10 4.104.10 20.820.8 195195 적색Red
비교예 56Comparative Example 56 화합물 2-12Compound 2-12 4.174.17 19.119.1 187187 적색Red
비교예 57Comparative Example 57 화합물 2-16Compound 2-16 4.124.12 19.519.5 194194 적색Red
비교예 58Comparative Example 58 화합물 C-6Compound C-6 화합물 2-3Compound 2-3 4.204.20 18.118.1 114114 적색Red
비교예 59Comparative Example 59 화합물 2-4Compound 2-4 4.254.25 17.417.4 111111 적색Red
비교예 60Comparative Example 60 화합물 2-14Compound 2-14 4.214.21 19.319.3 105105 적색Red
비교예 61Comparative Example 61 화합물 2-21Compound 2-21 4.184.18 17.017.0 109109 적색Red
비교예 62Comparative Example 62 화합물 C-7Compound C-7 화합물 2-1Compound 2-1 4.124.12 17.617.6 5454 적색Red
비교예 63Comparative Example 63 화합물 2-2Compound 2-2 4.254.25 16.116.1 6363 적색Red
비교예 64Comparative Example 64 화합물 2-8Compound 2-8 4.134.13 18.518.5 5858 적색Red
비교예 65Comparative Example 65 화합물 2-19Compound 2-19 4.174.17 16.416.4 5252 적색Red
비교예 66Comparative Example 66 화합물 C-8Compound C-8 화합물 2-9Compound 2-9 4.054.05 17.017.0 5050 적색Red
비교예 67Comparative Example 67 화합물 2-10Compound 2-10 4.034.03 18.418.4 5454 적색Red
비교예 68Comparative Example 68 화합물 2-12Compound 2-12 4.084.08 16.816.8 5151 적색Red
비교예 69Comparative Example 69 화합물 2-16Compound 2-16 4.094.09 17.517.5 5757 적색Red
비교예 70Comparative Example 70 화합물 C-9Compound C-9 화합물 2-3Compound 2-3 4.114.11 18.518.5 147147 적색Red
비교예 71Comparative Example 71 화합물 2-4Compound 2-4 4.134.13 18.918.9 169169 적색Red
비교예 72Comparative Example 72 화합물 2-14Compound 2-14 4.154.15 19.319.3 163163 적색Red
비교예 73Comparative Example 73 화합물 2-21Compound 2-21 4.144.14 18.718.7 161161 적색Red
비교예 74Comparative Example 74 화합물 C-10Compound C-10 화합물 2-1Compound 2-1 4.064.06 19.319.3 164164 적색Red
비교예 75Comparative Example 75 화합물 2-2Compound 2-2 4.094.09 19.019.0 170170 적색Red
비교예 76Comparative Example 76 화합물 2-8Compound 2-8 4.054.05 19.419.4 178178 적색Red
비교예 77Comparative Example 77 화합물 2-19Compound 2-19 4.024.02 19.119.1 173173 적색Red
구분 division 제1호스트Host 1 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
비교예 78Comparative Example 78 화합물 C-11Compound C-11 화합물 2-9Compound 2-9 4.114.11 18.018.0 134134 적색Red
비교예 79Comparative Example 79 화합물 2-10Compound 2-10 4.184.18 19.119.1 147147 적색Red
비교예 80Comparative Example 80 화합물 2-12Compound 2-12 4.214.21 18.318.3 149149 적색Red
비교예 81Comparative Example 81 화합물 2-16Compound 2-16 4.184.18 18.318.3 150150 적색Red
비교예 82Comparative Example 82 화합물 C-12Compound C-12 화합물 2-1Compound 2-1 4.104.10 18.218.2 158158 적색Red
비교예 83Comparative Example 83 화합물 2-2Compound 2-2 4.114.11 17.517.5 152152 적색Red
비교예 84Comparative Example 84 화합물 2-8Compound 2-8 4.104.10 17.817.8 156156 적색Red
비교예 85Comparative Example 85 화합물 2-19Compound 2-19 4.144.14 17.917.9 151151 적색Red
상기 표 1 내지 7에 나타난 바와 같이, 발광층의 호스트 물질로 상기 화학식 1로 표시되는 제1 화합물 및 상기 화학식 2로 표시되는 제2 화합물을 동시에 사용한 실시예의 유기 발광 소자는, 상기 화학식 1 및 2로 표시되는 화합물 중 하나만을 채용하거나, 둘 다 채용하지 않는 비교예의 유기 발광 소자에 비하여 우수한 발광 효율 및 현저히 향상된 수명 특성을 나타내었다. As shown in Tables 1 to 7, the organic light emitting device of the embodiment in which the first compound represented by Formula 1 and the second compound represented by Formula 2 were simultaneously used as the host material of the emission layer was represented by Formulas 1 and 2. Compared to the organic light-emitting device of Comparative Example in which only one or both of the displayed compounds were not employed, excellent luminous efficiency and remarkably improved lifespan characteristics were exhibited.
구체적으로, 실시예에 따른 소자는, 상기 화학식 1로 표시되는 화합물 을 단일 호스트로 채용한 비교예의 소자에 비하여, 높은 효율 및 긴 수명을 나타내었다. 또한, 실시예에 따른 소자는, 비교예 화합물 C-1 내지 C-12를 제1 호스트로, 상기 화학식 2로 표시되는 화합물을 제2 호스트로 채용한 비교예의 소자에 비해서도 구동 전압, 효율 및 수명 특성 모두가 개선되었다. 이를 통해, 상기 화학식 1로 표시되는 제1 화합물 및 상기 화학식 2로 표시되는 제2 화합물의 조합을 코호스트로 사용 시에, 적색 발광층 내에서 적색 도펀트로의 에너지 전달이 효과적으로 이루어졌음이 확인된다. 이는, 제1 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있으며, 또한 제2 화합물을 동시에 사용함에 따라 정공의 양이 많아지면서 적색 발광층내에 전자와 정공이 더 안정적인 균형을 유지하였기 때문으로 판단된다.Specifically, the device according to the embodiment exhibited higher efficiency and longer life than the device of the comparative example employing the compound represented by Formula 1 as a single host. In addition, the device according to the embodiment has a driving voltage, efficiency, and lifespan compared to the device of the comparative example employing Comparative Examples compounds C-1 to C-12 as a first host and the compound represented by Formula 2 as a second host. All of the characteristics have been improved. Through this, when the combination of the first compound represented by Formula 1 and the second compound represented by Formula 2 was used as a cohost, it was confirmed that energy was effectively transferred to the red dopant in the red light emitting layer. This can be determined because the first compound has high stability against electrons and holes, and also because the amount of holes increased as the second compound was used at the same time, and a more stable balance of electrons and holes was maintained in the red light emitting layer. It is judged as.
따라서, 유기 발광 소자의 호스트 물질로 상기 제1 화합물 과 상기 제2 화합물을 동시에 채용하는 경우, 유기 발광 소자의 구동 전압, 발광 효율 및 수명 특성을 향상시킬 수 있음을 확인할 수 있었다. 이는 일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때 본 발명의 화합물 간의 조합을 채용한 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 나타낸다고 볼 수 있다.Accordingly, it was confirmed that when the first compound and the second compound are simultaneously employed as host materials of the organic light-emitting device, driving voltage, luminous efficiency, and lifetime characteristics of the organic light-emitting device can be improved. In general, when considering that the luminous efficiency and lifetime characteristics of the organic light-emitting device have a trade-off relationship with each other, the organic light-emitting device employing a combination of the compounds of the present invention has significantly improved device characteristics compared to the comparative example device. It can be seen as representing.
[부호의 설명][Explanation of code]
1: 기판 2: 양극1: substrate 2: anode
3: 발광층 4: 음극3: light-emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자억제층 8: 정공저지층7: electron suppression layer 8: hole blocking layer
9: 전자주입 및 수송층9: Electron injection and transport layer

Claims (12)

  1. 양극; anode;
    상기 양극과 대향하여 구비된 음극; 및 A negative electrode provided to face the positive electrode; And
    상기 양극과 음극 사이에 구비된 발광층을 포함하고,Including a light emitting layer provided between the anode and the cathode,
    상기 발광층은 하기 화학식 1로 표시되는 제1 화합물 및 하기 화학식 2로 표시되는 제2 화합물을 포함하는,The emission layer comprises a first compound represented by the following formula 1 and a second compound represented by the following formula 2,
    유기 발광 소자:Organic Light-Emitting Element:
    [화학식 1][Formula 1]
    Figure PCTKR2020095135-appb-img-000129
    Figure PCTKR2020095135-appb-img-000129
    상기 화학식 1에서,In Formula 1,
    X는 O 또는 S이고, X is O or S,
    L 1 및 L 2는 각각 독립적으로 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나이고, L 1 and L 2 are each independently a single bond, or any one selected from the group consisting of,
    Figure PCTKR2020095135-appb-img-000130
    Figure PCTKR2020095135-appb-img-000130
    Ar 1 및 Ar 2 중 하나는 치환 또는 비치환된 C 6-60 아릴이고, 다른 하나는 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, One of Ar 1 and Ar 2 is substituted or unsubstituted C 6-60 aryl, and the other is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
    R은 각각 독립적으로 수소 또는 중수소이고,Each R is independently hydrogen or deuterium,
    a는 1 내지 3의 정수이고,a is an integer of 1 to 3,
    b는 1 내지 6의 정수이고, b is an integer from 1 to 6,
    [화학식 2][Formula 2]
    Figure PCTKR2020095135-appb-img-000131
    Figure PCTKR2020095135-appb-img-000131
    상기 화학식 2에서,In Chemical Formula 2,
    B 1 내지 B 4는 각각 독립적으로 인접한 고리와 융합된 C 6-60 방향족 고리이고, B 1 to B 4 are each independently a C 6-60 aromatic ring fused with an adjacent ring,
    L' 1 및 L' 2는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,L' 1 and L' 2 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a substituted or unsubstituted C 2-60 heteroarylene containing one or more heteroatoms of N, O and S,
    Ar' 1 및 Ar' 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, Ar' 1 and Ar' 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
    R'는 각각 독립적으로 수소 또는 중수소이고,Each R'is independently hydrogen or deuterium,
    c, d, e 및 f는 각각 독립적으로 1 내지 6의 정수이다.c, d, e, and f are each independently an integer of 1 to 6.
  2. 제1항에 있어서,The method of claim 1,
    L 1은 단일 결합,
    Figure PCTKR2020095135-appb-img-000132
    , 또는
    Figure PCTKR2020095135-appb-img-000133
    인,
    L 1 is a single bond,
    Figure PCTKR2020095135-appb-img-000132
    , or
    Figure PCTKR2020095135-appb-img-000133
    sign,
    유기 발광 소자.Organic light emitting device.
  3. 제1항에 있어서,The method of claim 1,
    L 2는 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,L 2 is a single bond, or any one selected from the group consisting of,
    유기 발광 소자:Organic Light-Emitting Element:
    Figure PCTKR2020095135-appb-img-000134
    .
    Figure PCTKR2020095135-appb-img-000134
    .
  4. 제1항에 있어서,The method of claim 1,
    Ar 1 및 Ar 2 중 하나는 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 또는 플루오레닐이고, 다른 하나는 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 카바졸일이며,One of Ar 1 and Ar 2 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, or fluorenyl, and the other is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, flu Orenyl, dibenzofuranyl, dibenzothiophenyl, or carbazolyl,
    여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 중수소, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환된,Here, Ar 1 and Ar 2 are unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl,
    유기 발광 소자.Organic light emitting device.
  5. 제1항에 있어서,The method of claim 1,
    Ar 1은 페닐, 비페닐릴, 또는 나프틸이고,Ar 1 is phenyl, biphenylyl, or naphthyl,
    Ar 2는 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 9,9-디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9-페닐카바졸일, 또는 카바졸일인,Ar 2 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, 9,9-dimethylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9-phenylcarbazolyl, or carbazolyl,
    유기 발광 소자.Organic light emitting device.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 화합물은 하기 화학식 1-1-1 내지 1-1-3 중 어느 하나로 표시되는,The first compound is represented by any one of the following formulas 1-1-1 to 1-1-3,
    유기 발광 소자:Organic Light-Emitting Element:
    Figure PCTKR2020095135-appb-img-000135
    Figure PCTKR2020095135-appb-img-000135
    상기 화학식 1-1-1 내지 1-1-3에서,In Formulas 1-1-1 to 1-1-3,
    X, L 2, Ar 1 및 Ar 2은 제1항에서 정의한 바와 같다.X, L 2 , Ar 1 and Ar 2 are as defined in claim 1.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인, The first compound is any one selected from the group consisting of the following compounds,
    유기 발광 소자:Organic Light-Emitting Element:
    Figure PCTKR2020095135-appb-img-000136
    Figure PCTKR2020095135-appb-img-000136
    Figure PCTKR2020095135-appb-img-000137
    Figure PCTKR2020095135-appb-img-000137
    Figure PCTKR2020095135-appb-img-000138
    Figure PCTKR2020095135-appb-img-000138
    Figure PCTKR2020095135-appb-img-000139
    Figure PCTKR2020095135-appb-img-000139
    Figure PCTKR2020095135-appb-img-000140
    Figure PCTKR2020095135-appb-img-000140
    Figure PCTKR2020095135-appb-img-000141
    Figure PCTKR2020095135-appb-img-000141
    Figure PCTKR2020095135-appb-img-000142
    Figure PCTKR2020095135-appb-img-000142
    Figure PCTKR2020095135-appb-img-000143
    Figure PCTKR2020095135-appb-img-000143
    Figure PCTKR2020095135-appb-img-000144
    Figure PCTKR2020095135-appb-img-000144
    Figure PCTKR2020095135-appb-img-000145
    Figure PCTKR2020095135-appb-img-000145
    Figure PCTKR2020095135-appb-img-000146
    Figure PCTKR2020095135-appb-img-000146
    Figure PCTKR2020095135-appb-img-000147
    Figure PCTKR2020095135-appb-img-000147
    Figure PCTKR2020095135-appb-img-000148
    Figure PCTKR2020095135-appb-img-000148
    Figure PCTKR2020095135-appb-img-000149
    Figure PCTKR2020095135-appb-img-000149
    ..
  8. 제1항에 있어서,The method of claim 1,
    상기 제2 화합물은 하기 화학식 2'로 표시되는,The second compound is represented by the following formula 2',
    유기 발광 소자:Organic Light-Emitting Element:
    [화학식 2'][Formula 2']
    Figure PCTKR2020095135-appb-img-000150
    Figure PCTKR2020095135-appb-img-000150
    상기 화학식 2'에서,In Formula 2',
    B 1 및 B 2는 각각 독립적으로 벤젠 또는 나프탈렌 고리이고,B 1 and B 2 are each independently a benzene or naphthalene ring,
    L' 1, L' 2, Ar' 1, Ar' 2, R', c 및 d는 제1항에서 정의한 바와 같다. L' 1 , L' 2 , Ar' 1 , Ar' 2 , R', c and d are as defined in claim 1.
  9. 제1항에 있어서,The method of claim 1,
    L' 1 및 L' 2는 각각 독립적으로 단일 결합; 비치환되거나 또는 중수소로 치환된 페닐렌; 또는 비치환되거나 또는 중수소로 치환된 나프틸렌인,L' 1 and L' 2 are each independently a single bond; Phenylene unsubstituted or substituted with deuterium; Or naphthylene unsubstituted or substituted with deuterium,
    유기 발광 소자.Organic light emitting device.
  10. 제1항에 있어서,The method of claim 1,
    Ar' 1 및 Ar' 2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트릴, 트리페닐레닐, 플루오란테닐, 플루오레닐, 9,9-디메틸플루오레닐, 9,9-디페닐플루오레닐, 9,9'-스피로비플루오레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,Ar' 1 and Ar' 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, triphenylenyl, fluoranthenyl, fluorenyl, 9,9-dimethylfluorenyl, 9, 9-diphenylfluorenyl, 9,9'-spirobifluorenyl, dibenzofuranyl, or dibenzothiophenyl,
    유기 발광 소자.Organic light emitting device.
  11. 제1항에 있어서,The method of claim 1,
    상기 제2 화합물은 하기 화학식 2-1로 표시되는,The second compound is represented by the following formula 2-1,
    유기 발광 소자:Organic Light-Emitting Element:
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2020095135-appb-img-000151
    Figure PCTKR2020095135-appb-img-000151
    상기 화학식 2-1에서, In Formula 2-1,
    L' 1, L' 2, Ar' 1, 및 Ar' 2는 제1항에서 정의한 바와 같다. L' 1 , L' 2 , Ar' 1 , and Ar' 2 are as defined in claim 1.
  12. 제1항에 있어서,The method of claim 1,
    상기 제2 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인, The second compound is any one selected from the group consisting of the following compounds,
    유기 발광 소자:Organic Light-Emitting Element:
    Figure PCTKR2020095135-appb-img-000152
    Figure PCTKR2020095135-appb-img-000152
    Figure PCTKR2020095135-appb-img-000153
    Figure PCTKR2020095135-appb-img-000153
    Figure PCTKR2020095135-appb-img-000154
    Figure PCTKR2020095135-appb-img-000154
    Figure PCTKR2020095135-appb-img-000155
    Figure PCTKR2020095135-appb-img-000155
    Figure PCTKR2020095135-appb-img-000156
    Figure PCTKR2020095135-appb-img-000156
    Figure PCTKR2020095135-appb-img-000157
    Figure PCTKR2020095135-appb-img-000157
    Figure PCTKR2020095135-appb-img-000158
    Figure PCTKR2020095135-appb-img-000158
    Figure PCTKR2020095135-appb-img-000159
    Figure PCTKR2020095135-appb-img-000159
    Figure PCTKR2020095135-appb-img-000160
    Figure PCTKR2020095135-appb-img-000160
    Figure PCTKR2020095135-appb-img-000161
    Figure PCTKR2020095135-appb-img-000161
    Figure PCTKR2020095135-appb-img-000162
    Figure PCTKR2020095135-appb-img-000162
    Figure PCTKR2020095135-appb-img-000163
    Figure PCTKR2020095135-appb-img-000163
    Figure PCTKR2020095135-appb-img-000164
    Figure PCTKR2020095135-appb-img-000164
    Figure PCTKR2020095135-appb-img-000165
    Figure PCTKR2020095135-appb-img-000165
    Figure PCTKR2020095135-appb-img-000166
    Figure PCTKR2020095135-appb-img-000166
    Figure PCTKR2020095135-appb-img-000167
    Figure PCTKR2020095135-appb-img-000167
    Figure PCTKR2020095135-appb-img-000168
    Figure PCTKR2020095135-appb-img-000168
    Figure PCTKR2020095135-appb-img-000169
    Figure PCTKR2020095135-appb-img-000169
    Figure PCTKR2020095135-appb-img-000170
    Figure PCTKR2020095135-appb-img-000170
    Figure PCTKR2020095135-appb-img-000171
    Figure PCTKR2020095135-appb-img-000171
    Figure PCTKR2020095135-appb-img-000172
    Figure PCTKR2020095135-appb-img-000172
    ..
PCT/KR2020/095135 2019-11-11 2020-11-11 Organic light-emitting diode WO2021096332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080019625.6A CN113614939A (en) 2019-11-11 2020-11-11 Organic light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0143627 2019-11-11
KR20190143627 2019-11-11
KR10-2020-0150020 2020-11-11
KR1020200150020A KR102427161B1 (en) 2019-11-11 2020-11-11 Organic light emitting device

Publications (1)

Publication Number Publication Date
WO2021096332A1 true WO2021096332A1 (en) 2021-05-20

Family

ID=75913096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/095135 WO2021096332A1 (en) 2019-11-11 2020-11-11 Organic light-emitting diode

Country Status (1)

Country Link
WO (1) WO2021096332A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170065733A (en) * 2015-12-03 2017-06-14 삼성디스플레이 주식회사 Organic light emitting device and display device having the same
KR20180022574A (en) * 2016-08-23 2018-03-06 주식회사 두산 Organic compounds and organic electro luminescence device comprising the same
CN108912063A (en) * 2018-08-06 2018-11-30 长春海谱润斯科技有限公司 One kind containing phenanthrene compound and its organic electroluminescence device
KR20190006448A (en) * 2017-07-10 2019-01-18 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20190114764A (en) * 2018-03-29 2019-10-10 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170065733A (en) * 2015-12-03 2017-06-14 삼성디스플레이 주식회사 Organic light emitting device and display device having the same
KR20180022574A (en) * 2016-08-23 2018-03-06 주식회사 두산 Organic compounds and organic electro luminescence device comprising the same
KR20190006448A (en) * 2017-07-10 2019-01-18 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20190114764A (en) * 2018-03-29 2019-10-10 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN108912063A (en) * 2018-08-06 2018-11-30 长春海谱润斯科技有限公司 One kind containing phenanthrene compound and its organic electroluminescence device

Similar Documents

Publication Publication Date Title
WO2016195441A1 (en) Nitrogen-containing condensed cyclic compound and organic light emitting element using same
WO2020117026A1 (en) Organic light-emitting diode
WO2021182775A1 (en) Organic light-emitting device
WO2021096228A1 (en) Organic light emitting device
WO2021210911A1 (en) Novel compound and organic light-emitting element comprising same
WO2022086168A1 (en) Organic light-emitting device
WO2022039520A1 (en) Novel compound and organic light-emitting device comprising same
WO2021221475A1 (en) Organic light-emitting device
WO2021066623A1 (en) Organic light emitting device
WO2021096331A1 (en) Organic light-emitting diode
WO2020222569A1 (en) Organic light-emitting device
WO2020159333A1 (en) Compound and organic light emitting device comprising same
WO2022086171A1 (en) Organic light-emitting device
WO2022045743A1 (en) Novel compound and organic light-emitting device using same
WO2021261962A1 (en) Organic light-emitting device
WO2021210910A1 (en) Novel compound and organic light emitting device using same
WO2020263000A1 (en) Novel compound and organic light emitting device using same
WO2020159335A1 (en) Compound and organic light emitting diode comprising same
WO2020159337A1 (en) Compound and organic light emitting device comprising same
WO2020111728A1 (en) Organic light emitting device
WO2021096332A1 (en) Organic light-emitting diode
WO2018048247A1 (en) Compound and organic electronic element comprising same
WO2020222564A1 (en) Organic light-emitting device
WO2023287252A1 (en) Novel compound and organic light-emitting device comprising same
WO2023063761A1 (en) Novel compound and organic light-emitting device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886346

Country of ref document: EP

Kind code of ref document: A1