WO2021095841A1 - Laser light emission device - Google Patents

Laser light emission device Download PDF

Info

Publication number
WO2021095841A1
WO2021095841A1 PCT/JP2020/042411 JP2020042411W WO2021095841A1 WO 2021095841 A1 WO2021095841 A1 WO 2021095841A1 JP 2020042411 W JP2020042411 W JP 2020042411W WO 2021095841 A1 WO2021095841 A1 WO 2021095841A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
laser light
holding member
expansion
Prior art date
Application number
PCT/JP2020/042411
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 渡邊
義瑞 飯田
知弘 梶山
聖也 井上
渡辺 正浩
達雄 針山
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Publication of WO2021095841A1 publication Critical patent/WO2021095841A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a laser light emitting device.
  • the large airflow measuring means irradiates a floating minute substance (called an object) in the air near the nacelle of a wind turbine arranged at a specific altitude from the ground with a laser beam before and after the object moves.
  • a method of measuring the atmospheric flow at a specific altitude from the ground by capturing the reflected waves from the object and capturing the minute frequency fluctuations of these reflected waves due to the Doppler effect is used.
  • the measurement means is composed of a laser light emitting device that emits laser light and an analyzer that captures and analyzes the reflected wave thereof, and the present invention relates to the laser light emitting device.
  • the laser beam emitting device includes a laser beam emitting unit having a laser beam emitting unit that emits a laser beam, a lens barrel, a plurality of optical system lenses, and a lens holding member that holds the optical system lens in the lens barrel. It is composed of a position adjusting means for engaging the optical system unit, the laser beam emitting unit and the optical system unit, and adjusting the position of the laser beam irradiation unit of the laser beam emitting unit.
  • the laser beam emitting device irradiates an object with laser light with high accuracy by maintaining the positional relationship from the laser beam emitting portion to the first optical system lens and from the laser light emitting portion to the second optical system lens. Is.
  • Patent Document 1 discloses a temperature-corrected optical device that prevents fluctuations in the focal position as an optical device even when the length of the lens barrel is changed due to a temperature change in an optical device composed of a lens barrel and a lens. Has been done.
  • an optical device (colimeter) composed of a lens barrel whose tube length is changed by a temperature change and a lens held in the lens barrel
  • the focal length of the lens is changed according to the temperature change. It is disclosed that the lens is formed of a material that can be changed and that the change in the focal length and the change in the length of the lens barrel cancel each other out to hold the focal position of the lens at a fixed position.
  • it is difficult to adjust the focal length of the lens in response to a temperature change and there is a difficulty in feasibility.
  • the present invention has been made to solve the above-mentioned problems, and accurately irradiates an object existing at a specific altitude from the ground in response to the influence of fluctuations in the ambient temperature of the installation site. It is an object of the present invention to provide a laser light emitting device capable of the above.
  • the laser beam emitting device of the present invention includes a laser beam emitting unit having a laser beam emitting unit for emitting laser light, a lens barrel, a first optical system lens, and a second optical system.
  • the optical system unit including the lens, and the position of the laser light emitting portion of the laser light emitting unit, which is arranged at an intermediate position between the laser light emitting unit and the optical system unit and engages with the laser light emitting unit and the optical system unit. It is configured to include a position adjusting means for adjusting (the size of the distance between the laser beam emitting unit and the optical system unit).
  • the position adjustment means expansion and contraction amount indicating the amount of influence on the position adjustment means and the mirror showing the amount of influence on the lens barrel. It is composed of a first member having a characteristic of maintaining a positional relationship between a laser beam emitting portion and a first optical system lens so as to correct a deviation in the irradiation position of the laser beam due to the amount of expansion and contraction of the cylinder.
  • a second member is composed of a first lens holding member that holds the first optical system lens and a second member that has a characteristic of holding a positional relationship between the laser beam emitting portion and the second optical system lens. It is characterized by including a second lens holding member for holding an optical system lens.
  • the present invention it is possible to accurately irradiate an object existing at a specific altitude from the ground even if the ambient temperature of the laser light emitting device fluctuates.
  • FIG. 1 is a diagram showing an outline of a laser Doppler speedometer including a laser light emitting device 100 according to the present embodiment.
  • the laser Doppler velocimeter generates laser light with the light source unit 40, irradiates the object in the atmosphere with the laser light, acquires the reflected wave from the object, and measures the moving speed of the object by the Doppler effect.
  • the laser light emitting device 100 is included in the laser Doppler velocimeter and is used to accurately irradiate an object with laser light.
  • the laser light emitting device 100 includes a laser light emitting unit 10 having a laser light emitting unit 11 that emits laser light, a lens barrel 27 (see FIG. 2), a first optical system lens 21, and a second optical system lens.
  • the optical system unit 20 including the 22 and the laser light emitting unit 10 and the optical system unit 20 are arranged at an intermediate position and engaged with the laser light emitting unit 10 and the optical system unit 20 to engage with the laser of the laser light emitting unit 10. It includes a position adjusting means 30 for adjusting the position of the light emitting unit 11 (the size of the distance between the laser light emitting unit 10 and the optical system unit 20).
  • the laser light emitting device 100 Since the laser light emitting device 100 is used throughout the year including midwinter and midsummer, it is necessary to correct the fluctuation amount of the laser light emitting device 100 and keep the focal length constant when a temperature fluctuation occurs. This is because the laser light emitting device 100 according to the present embodiment is used for weather prediction for predicting the amount of power generation of the wind turbine, and the height near the nacelle of the wind turbine (rotation axis of the wind turbine: height about 100 m from the ground). This is because it is necessary to accurately irradiate an object at a specific altitude from the ground with a laser beam in order to accurately measure the atmospheric flow. Therefore, the laser light emitting device 100 needs to maintain the focal length even if the temperature fluctuates.
  • the focal length of the laser light emitting device 100 changes by 0.1 mm to 0.2 mm
  • the focal length 100 m ahead changes by several tens of meters, which greatly deviates from the target nacelle height. Bring results. Therefore, a method of correcting the fluctuation amount of the laser light emitting device 100 will be described below with reference to FIGS. 2 to 5.
  • FIG. 2 is a diagram showing details of the laser light emitting device 100 according to the present embodiment.
  • the laser light emitting device 100 has a position adjusting means expansion / contraction amount X11 (see FIG. 4) indicating the amount of influence on the position adjusting means 30 and a lens barrel showing the amount of influence on the lens barrel when a temperature fluctuation occurs. It is composed of a first member 23m having a characteristic of maintaining a positional relationship between the laser light emitting portion 11 and the first optical system lens 21 so as to correct the deviation of the irradiation position of the laser light due to the amount of expansion and contraction.
  • first lens holding member 23 that holds the first optical system lens 21
  • second member 24 m that has a characteristic of holding a positional relationship between the laser light emitting portion 11 and the second optical system lens 22.
  • a second lens holding member 24 for holding the second optical system lens 22 is provided.
  • the laser beam emitting device 100 includes a laser beam emitting unit 11, a center point (optical axis) of the incident hole 25 of the lens barrel 27 in which the laser beam is incident on the optical system unit 20, and a center point (optical axis) of the emitting hole 26.
  • the axis) is arranged on the same straight line, and the position adjusting means 30 is provided with a laser beam passing hole 32 having a center point (optical axis) on the same straight line (on the optical axis).
  • FIG. 2 shows a state in which the laser light emitting device 100 is operating normally without causing temperature fluctuation.
  • the laser light emitting part is the origin x0, the distance from the origin x0 to the incident hole position x1 (the length of the position adjusting means) is X1, the distance from the origin x0 to the first lens position x2 is X2, and the distance from the origin x0 to the second Let X3 be the distance to the lens position x3.
  • X2 and X3 in order to accurately irradiate the object with the laser beam, it is necessary to maintain the distances of X2 and X3. The method of maintaining the distance between X2 and X3 will be described later with reference to FIG.
  • the amount of expansion and contraction thereof is calculated as follows.
  • the total length of the lens barrel is 200 mm, and the temperature fluctuation is 60 ° C. from -10 ° C in midwinter to 50 ° C in midsummer. Since the coefficient of linear expansion of the aluminum alloy A2017 is 23.6 ⁇ 10-6 / ° C, the amount of dimensional variation of the lens barrel is calculated to be 0.2832 mm by 23.6 ⁇ 10-6 ⁇ 200 ⁇ 60. To.
  • FIG. 3 is a diagram showing the configuration of the position adjusting means 30.
  • the position adjusting means 30 adjusts the position of the laser light emitting unit 11 of the laser light emitting unit 10, and turns the screw mechanism 31 to bring the laser light emitting unit 10 and the optical system unit 20 together. The size of the interval can be adjusted. By turning the screw mechanism 31 to the right, the laser light emitting unit 11 moves away from the lens barrel 27, and by turning the screw mechanism 31 to the left, the laser light emitting unit 11 moves toward the lens barrel 27. To do.
  • An aluminum alloy is generally used for the position adjusting means 30.
  • FIG. 4 is a diagram showing a correction method for improving the influence of temperature fluctuation according to the present embodiment, (a) is a comparative example, and (b) is an example of the present embodiment.
  • FIG. 4A is a diagram showing a laser light emitting device to which the present invention is not applied in a state of being affected by temperature fluctuations.
  • the distance from the origin x0 after being affected at each position is calculated as follows.
  • Distance to x1 X1 + X11 ...
  • Distance to x2 X2 + (X11 + X21) ...
  • Distance to x3 X3 + (X11 + X31) ...
  • X11 the amount of expansion and contraction indicating the amount of influence of temperature fluctuation
  • the amount of expansion and contraction of the position adjusting means 30 in the x-axis + direction the amount of expansion and contraction of the position adjusting means
  • X21 the amount of expansion and contraction indicating the amount of influence of temperature fluctuation.
  • the amount of expansion and contraction of the lens barrel 27 in the x-axis + direction (the amount of expansion and contraction of the first lens barrel) at the first lens position x2 of the arrangement position of the optical system lens 21, X31: expansion and contraction indicating the amount of influence of temperature fluctuation.
  • This is the amount of expansion and contraction of the lens barrel 27 in the x-axis + direction (the amount of expansion and contraction of the second lens barrel) at the second lens position x3 of the arrangement position of the optical system lens 22.
  • FIG. 4B is an example of the present embodiment and shows the correction of expansion and contraction due to the influence of temperature fluctuation.
  • the position adjusting means expansion / contraction amount X11, the first lens barrel expansion / contraction amount X21, and the second lens barrel expansion / contraction amount X31, which are the expansion / contraction amounts caused by the influence of temperature fluctuation, are set to zero, that is, FIG. 4A.
  • the position of the first lens position x2 moved due to the influence of the temperature fluctuation is corrected as the position of the new first lens position x2 in FIG. 4B, and the influence of the temperature fluctuation is shown in FIG. 4A.
  • the first lens holding member and the second lens holding member are expanded and contracted so as to correct the position of the second lens position x3 moved by the above as the position of the new second lens position x3 in FIG. 4 (b).
  • the configuration is such that the arrangement positions of the first optical system lens and the second optical system lens are moved in the opposite direction (x-axis-direction) by the same amount as the amount to correct the lens.
  • Distance to x2 X2 + (X11 + X21)-(X11 + X21) ...
  • Distance to x3 X3 + (X11 + X31)-(X11 + X31) ...
  • a material having an expansion / contraction amount of ⁇ (X11 + X31) with respect to temperature fluctuation is used.
  • Table 1 shows examples of the first member 23 m and the second member 24 m.
  • A2017 is a heat-treated aluminum alloy having excellent machinability and strength, and is also known as duralumin.
  • Aluminum containing Cu (copper) tends to have high strength and low workability (plastic working).
  • A5056 is an aluminum alloy having excellent corrosion resistance and a good surface finish by cutting.
  • the laser beam emitting portion 11 is set as the origin x0, the position adjusting means expansion / contraction amount X11 in the longitudinal direction of the laser light emitting device 100, and the arrangement of the first optical system lens 21. It has a first expansion / contraction characteristic that expands / contracts by the same amount as the first total expansion / contraction amount (X11 + X21), which is the total expansion / contraction amount of the first lens barrel expansion / contraction amount X21 at the first lens position x2, which is the position. It is a member.
  • the second member 24m has the laser beam emitting unit 11 as the origin x0, the position adjusting means expansion / contraction amount X11 in the longitudinal direction of the laser beam emitting device 100, and the arrangement of the second optical system lens 22. It has a second expansion / contraction characteristic that expands / contracts by the same amount as the second total expansion / contraction amount (X11 + X31), which is the total expansion / contraction amount of the second lens barrel expansion / contraction amount X31 at the second lens position x3, which is the position. It is a member.
  • the first lens holding member 23 and the second lens holding member 24 hold the first optical system lens 21 and the second optical system lens 22 in the longitudinal direction of the lens barrel. Has the required size for.
  • the first position is a position where the first optical system lens 21 and the second optical system lens 22 are held in the lens barrel 27 so as to irradiate the laser beam at a desired position in a state where the temperature does not fluctuate.
  • a first lens holding member 23 and a second lens holding member 24 are arranged at the lens position x2 and the second lens position x3, respectively.
  • the first lens holding member 23 and the second lens holding member 24 are end portions on the exit hole 26 side where the laser beam is emitted from the optical system unit 20 so as to expand and contract toward the laser beam emitting portion 11 side when the temperature fluctuates. Is fixed to the inner wall of the lens barrel 27 (see the fixed portion 28). As a result, when the temperature fluctuates (rises), the first member 23m and the second member 24m extend toward the laser beam emitting portion 11, and the extension of the position adjusting means 30 and the lens barrel 27 can be cancelled. ..
  • FIG. 5 is a diagram showing a configuration of a lens holding member according to the present embodiment, in which (a) is a pair-type mounting member and (b) is an annular mounting member.
  • the first lens holding member 23 will be described as an example, but the same applies to the second lens holding member 24.
  • the first lens holding member 23 has a predetermined width in the circumferential direction of the inner wall of the lens barrel 27, and is sandwiched between the first optical system lenses 21 at opposite positions. It has the above.
  • the first lens holding member 23 is formed in an annular shape in the circumferential direction so as to surround the periphery of the first optical system lens 21.
  • the first lens holding member 23 has a predetermined width in the circumferential direction of the inner wall of the lens barrel 27, and a pair or more of the first lens holding members 23 sandwich the first optical system lens 21 at opposite positions.
  • the second lens holding member 24 has a predetermined width in the circumferential direction of the inner wall of the lens barrel 27, and is provided with a pair or more so as to sandwich the second optical system lens 22 at opposite positions. You may.
  • the first lens holding member 23 is formed in an annular shape in the circumferential direction so as to surround the periphery of the first optical system lens 21, and the second lens holding member 24 surrounds the periphery of the second optical system lens 22. It may be formed in an annular shape in the circumferential direction as described above.
  • the first lens holding member 23 includes a pair or more so as to sandwich the first optical system lens 21 at a position opposite to each other, and the second lens holding member 24 surrounds the periphery of the second optical system lens 22. It may be formed in an annular shape in the circumferential direction as described above.
  • the second lens holding member 24 includes a pair or more so as to sandwich the second optical system lens 22 at a position opposite to each other, and the first lens holding member 23 surrounds the periphery of the first optical system lens 21. It may be formed in a ring shape in the circumferential direction.
  • the first member 23m and the second member 24m expand and contract toward the laser beam emitting portion 11 side according to the fluctuation of the ambient temperature, and cancel the expansion and contraction of the position adjusting means 30 and the lens barrel 27. be able to. This makes it possible to accurately irradiate the object with the laser light even if the ambient temperature of the laser light emitting device 100 fluctuates.
  • CFRP Carbon Fiber Reinforced Plastic
  • CFRP is a fiber reinforced plastic that uses carbon fiber as a reinforcing material.
  • Epoxy resin is mainly used as the base material of CFRP, and it is also simply called carbon resin or carbon.
  • the first lens barrel expansion / contraction amount X21 and the second lens barrel expansion / contraction amount X31 are zero. (Including an error), the first total expansion / contraction amount (X11 + X21) and the second total expansion / contraction amount (X11 + X31) are made of a material equal to the position adjustment means expansion / contraction amount X11, respectively, and the first lens holding member. And the second lens holding member may be configured.
  • the position adjusting means expansion / contraction amount X11 is zero (including an error), and the first total expansion / contraction amount is zero.
  • (X11 + X21) is a material equal to the first lens barrel expansion / contraction amount X21, constitutes the first lens holding member 23, and the second total expansion / contraction amount (X11 + X31) is the second lens barrel expansion / contraction amount X31.
  • the second lens holding member 24 may be made of the same material.
  • the first member 23m and the second member 24m expand and contract toward the laser beam emitting portion 11 side according to the temperature fluctuation, and the expansion and contraction of the position adjusting means 30 or the lens barrel 27 can be canceled. .. This makes it possible to accurately irradiate the object with the laser beam even if the temperature fluctuates.
  • Laser light emitting unit 11 Laser light emitting unit 20
  • Optical system unit 21 First optical system lens 22
  • Second optical system lens 23 First lens holding member 23m First member 24
  • Second lens holding member 24m Second 25
  • Incident hole 26 Exit hole 27
  • Lens barrel 28 Fixed part 30
  • Position adjustment means 32 Laser light passage hole 40
  • Light source unit 100 Laser light emission device x0 Origin (reference point) x1 Incident hole position x2 First lens position x3 Second lens position X1 Distance from origin x0 to incident hole x1 X2 Distance from origin x0 to first lens position x2 X3 Origin x0 to second lens position x3 Distance X11
  • Position adjustment means Expansion / contraction amount X21 First lens barrel expansion / contraction amount X31 Second lens barrel expansion / contraction amount

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)

Abstract

A laser light emission device (100) is provided with, in order to correct displacement of a laser light irradiation position due to a positioning means expansion/contraction amount indicating the amount of influence on a positioning means (30) and a lens barrel body expansion/contraction amount indicating the amount of influence on a lens barrel body when temperature fluctuation occurs in a surrounding environment in which the laser light emission device (100) is installed, a first lens holding member (23) that comprises a first member (23m) having a property of holding a positional relationship between a laser light emission part (11) and a first optical system lens (21) and holds the first optical system lens (21), and a second lens holding member (24) that comprises a second member (24m) having a property of holding a positional relationship between the laser light emission part (11) and a second optical system lens (22), and holds the second optical system lens (22).

Description

レーザ光出射装置Laser light emitting device
 本発明は、レーザ光出射装置に関する。 The present invention relates to a laser light emitting device.
 風力発電の分野において、将来の発電量を予測するために大気流、主に風速を計測することが行われる。大気流の計測手段は、地上から特定の高度に配設された風車のナセル近傍の空気中の浮遊微小物質(対象物という)にレーザ光を照射して、当該対象物の移動前と移動後の当該対象物からの反射波を捉え、ドップラー効果によるこれら反射波の微小な周波数変動を捉えることで、地上から特定の高度の大気流を計測する方法が利用されている。 In the field of wind power generation, atmospheric flow, mainly wind speed, is measured in order to predict future power generation. The large airflow measuring means irradiates a floating minute substance (called an object) in the air near the nacelle of a wind turbine arranged at a specific altitude from the ground with a laser beam before and after the object moves. A method of measuring the atmospheric flow at a specific altitude from the ground by capturing the reflected waves from the object and capturing the minute frequency fluctuations of these reflected waves due to the Doppler effect is used.
 前記の計測手段は、レーザ光を出射するレーザ光出射装置と、その反射波を取り込んで分析する分析装置から構成され、本件発明はレーザ光出射装置に関するものである。 The measurement means is composed of a laser light emitting device that emits laser light and an analyzer that captures and analyzes the reflected wave thereof, and the present invention relates to the laser light emitting device.
 レーザ光出射装置は、レーザ光を出射するレーザ光出射部を有するレーザ光出射ユニットと、鏡筒体と複数の光学系レンズと鏡筒体に光学系レンズを保持するレンズ保持部材と、を含む光学系ユニットと、レーザ光出射ユニットと光学系ユニットとを係合し、レーザ光出射ユニットのレーザ光照射部の位置を調整する位置調整手段から構成される。レーザ光出射装置は、レーザ光出射部から第1の光学系レンズ、レーザ光出射部から第2の光学系レンズまでの位置関係を保持することにより、対象物にレーザ光を精度良く照射するものである。 The laser beam emitting device includes a laser beam emitting unit having a laser beam emitting unit that emits a laser beam, a lens barrel, a plurality of optical system lenses, and a lens holding member that holds the optical system lens in the lens barrel. It is composed of a position adjusting means for engaging the optical system unit, the laser beam emitting unit and the optical system unit, and adjusting the position of the laser beam irradiation unit of the laser beam emitting unit. The laser beam emitting device irradiates an object with laser light with high accuracy by maintaining the positional relationship from the laser beam emitting portion to the first optical system lens and from the laser light emitting portion to the second optical system lens. Is.
特開平6-130267号公報Japanese Unexamined Patent Publication No. 6-130267
 レーザ光出射装置を構成する部材によっては、その設置場所の周辺環境温度の変動により影響を受けてレーザ光の照射位置にずれが生じるという課題がある。 Depending on the members that make up the laser light emitting device, there is a problem that the laser light irradiation position shifts due to the influence of fluctuations in the ambient temperature of the installation location.
 特許文献1は、鏡筒とレンズで構成される光学装置において、温度変化により鏡筒の長さが変化された場合でも、光学装置としての焦点位置の変動を防止した温度補正型光学装置が開示されている。特許文献1では、温度変化により筒長が変化される鏡筒と、この鏡筒内に保持されたレンズとで構成される光学装置(コリメータ)において、レンズを、温度変化に応じて焦点距離が変化され、かつその焦点距離の変化と鏡筒の筒長の長さの変化が相殺してレンズの焦点位置を一定位置に保持し得る素材で形成することが開示されている。しかしながら、レンズを、温度変化に応じて焦点距離が変化させることは調整が困難で、実現性に難点がある。 Patent Document 1 discloses a temperature-corrected optical device that prevents fluctuations in the focal position as an optical device even when the length of the lens barrel is changed due to a temperature change in an optical device composed of a lens barrel and a lens. Has been done. In Patent Document 1, in an optical device (colimeter) composed of a lens barrel whose tube length is changed by a temperature change and a lens held in the lens barrel, the focal length of the lens is changed according to the temperature change. It is disclosed that the lens is formed of a material that can be changed and that the change in the focal length and the change in the length of the lens barrel cancel each other out to hold the focal position of the lens at a fixed position. However, it is difficult to adjust the focal length of the lens in response to a temperature change, and there is a difficulty in feasibility.
 本発明は、前記した課題を解決するためになされたものであり、設置場所の周辺環境温度の変動の影響に応じて地上から特定の高度に存在する対象物に精度良くレーザ光を照射することを可能とするレーザ光出射装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and accurately irradiates an object existing at a specific altitude from the ground in response to the influence of fluctuations in the ambient temperature of the installation site. It is an object of the present invention to provide a laser light emitting device capable of the above.
 前記目的を達成するため、本発明のレーザ光出射装置は、レーザ光を出射するレーザ光出射部を有するレーザ光出射ユニットと、鏡筒体と、第1の光学系レンズ及び第2の光学系レンズと、を含む光学系ユニットと、レーザ光出射ユニットと光学系ユニットの中間位置に配設されてレーザ光出射ユニット及び光学系ユニットに係合し、レーザ光出射ユニットのレーザ光出射部の位置(レーザ光出射ユニットと光学系ユニットとの間隔の大きさ)を調整する位置調整手段と、を含んで構成される。 In order to achieve the above object, the laser beam emitting device of the present invention includes a laser beam emitting unit having a laser beam emitting unit for emitting laser light, a lens barrel, a first optical system lens, and a second optical system. The optical system unit including the lens, and the position of the laser light emitting portion of the laser light emitting unit, which is arranged at an intermediate position between the laser light emitting unit and the optical system unit and engages with the laser light emitting unit and the optical system unit. It is configured to include a position adjusting means for adjusting (the size of the distance between the laser beam emitting unit and the optical system unit).
 レーザ光出射装置が設置された周辺環境に温度変動(温度変動という)が生じたときに、位置調整手段への影響量を示す位置調整手段伸縮量と、鏡筒体への影響量を示す鏡筒体伸縮量と、によるレーザ光の照射位置のずれを補正するように、レーザ光出射部と第1の光学系レンズとの位置関係を保持する特性を有する第1の部材で構成されて、第1の光学系レンズを保持する第1のレンズ保持部材と、レーザ光出射部と第2の光学系レンズとの位置関係を保持する特性を有する第2の部材で構成されて、第2の光学系レンズを保持する第2のレンズ保持部材と、を備えることを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。 When temperature fluctuations (called temperature fluctuations) occur in the surrounding environment where the laser beam emitting device is installed, the position adjustment means expansion and contraction amount indicating the amount of influence on the position adjustment means and the mirror showing the amount of influence on the lens barrel. It is composed of a first member having a characteristic of maintaining a positional relationship between a laser beam emitting portion and a first optical system lens so as to correct a deviation in the irradiation position of the laser beam due to the amount of expansion and contraction of the cylinder. A second member is composed of a first lens holding member that holds the first optical system lens and a second member that has a characteristic of holding a positional relationship between the laser beam emitting portion and the second optical system lens. It is characterized by including a second lens holding member for holding an optical system lens. Other aspects of the present invention will be described in embodiments described below.
 本発明によれば、レーザ光出射装置の周辺温度が変動しても地上から特定の高度に存在する対象物に精度良くレーザ光を照射することを可能とする。 According to the present invention, it is possible to accurately irradiate an object existing at a specific altitude from the ground even if the ambient temperature of the laser light emitting device fluctuates.
本実施形態に係るレーザ光出射装置を含むレーザドップラー速度計の概要を示す図である。It is a figure which shows the outline of the laser Doppler speedometer including the laser light emitting device which concerns on this embodiment. 本実施形態に係るレーザ光出射装置の詳細を示す図である。It is a figure which shows the detail of the laser light emitting apparatus which concerns on this embodiment. 位置調整手段の構成を示す図である。It is a figure which shows the structure of the position adjusting means. 本実施形態に係る温度変動の影響を改善する補正方法を示す図であり、(a)は比較例、(b)は本実施形態の例である。It is a figure which shows the correction method which improves the influence of the temperature fluctuation which concerns on this embodiment, (a) is a comparative example, (b) is an example of this embodiment. 本実施形態に係るレンズ保持部材の構成を示す図であり、(a)は一対型取付部材の場合、(b)環状型取付部材の場合である。It is a figure which shows the structure of the lens holding member which concerns on this embodiment, (a) is the case of a pair type mounting member, and (b) is the case of an annular type mounting member.
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、本実施形態に係るレーザ光出射装置100を含むレーザドップラー速度計の概要を示す図である。レーザドップラー速度計は、光源ユニット40でレーザ光を生成して大気中の対象物にレーザ光を照射し、対象物からの反射波を取得して、ドップラー効果により対象物の移動速度を計測するものであり、レーザ光出射装置100は、当該レーザドップラー速度計に含まれ、レーザ光を対象物に精度よく照射するために使用するものである。
Embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
FIG. 1 is a diagram showing an outline of a laser Doppler speedometer including a laser light emitting device 100 according to the present embodiment. The laser Doppler velocimeter generates laser light with the light source unit 40, irradiates the object in the atmosphere with the laser light, acquires the reflected wave from the object, and measures the moving speed of the object by the Doppler effect. The laser light emitting device 100 is included in the laser Doppler velocimeter and is used to accurately irradiate an object with laser light.
 レーザ光出射装置100は、レーザ光を出射するレーザ光出射部11を有するレーザ光出射ユニット10と、鏡筒体27(図2参照)と第1の光学系レンズ21及び第2の光学系レンズ22とを含む光学系ユニット20と、レーザ光出射ユニット10と光学系ユニット20の中間位置に配設されてレーザ光出射ユニット10及び光学系ユニット20に係合し、レーザ光出射ユニット10のレーザ光出射部11の位置(レーザ光出射ユニット10と光学系ユニット20との間隔の大きさ)を調整する位置調整手段30と、を含んで構成される。 The laser light emitting device 100 includes a laser light emitting unit 10 having a laser light emitting unit 11 that emits laser light, a lens barrel 27 (see FIG. 2), a first optical system lens 21, and a second optical system lens. The optical system unit 20 including the 22 and the laser light emitting unit 10 and the optical system unit 20 are arranged at an intermediate position and engaged with the laser light emitting unit 10 and the optical system unit 20 to engage with the laser of the laser light emitting unit 10. It includes a position adjusting means 30 for adjusting the position of the light emitting unit 11 (the size of the distance between the laser light emitting unit 10 and the optical system unit 20).
 レーザ光出射装置100は、真冬、真夏を含む1年を通じて使用されるため、温度変動を生じた場合に、レーザ光出射装置100の変動量を補正して焦点距離を一定に保つ必要がある。これは、本実施形態に係るレーザ光出射装置100は、風車の発電量を予測するための気象予測に使用され、風車のナセル近傍(風車の回転軸:地上からの高さ約100m)の高さの大気流を精度よく計測するために、地上から特定の高度の対象物に精度よくレーザ光を照射する必要があることなどの理由による。従って、レーザ光出射装置100は、温度変動が生じても、その焦点距離を保持する必要がある。例えば、レーザ光出射装置100の焦点距離が、0.1mm~0.2mm変化しただけで、100m先の焦点は、数十m変化してしまい、目標とするナセルの高さを大きく外れてしまう結果を招く。このため、レーザ光出射装置100の変動量を補正する方法を、以下図2~図5を参照して説明する。 Since the laser light emitting device 100 is used throughout the year including midwinter and midsummer, it is necessary to correct the fluctuation amount of the laser light emitting device 100 and keep the focal length constant when a temperature fluctuation occurs. This is because the laser light emitting device 100 according to the present embodiment is used for weather prediction for predicting the amount of power generation of the wind turbine, and the height near the nacelle of the wind turbine (rotation axis of the wind turbine: height about 100 m from the ground). This is because it is necessary to accurately irradiate an object at a specific altitude from the ground with a laser beam in order to accurately measure the atmospheric flow. Therefore, the laser light emitting device 100 needs to maintain the focal length even if the temperature fluctuates. For example, even if the focal length of the laser light emitting device 100 changes by 0.1 mm to 0.2 mm, the focal length 100 m ahead changes by several tens of meters, which greatly deviates from the target nacelle height. Bring results. Therefore, a method of correcting the fluctuation amount of the laser light emitting device 100 will be described below with reference to FIGS. 2 to 5.
 図2は、本実施形態に係るレーザ光出射装置100の詳細を示す図である。レーザ光出射装置100は、温度変動が生じたときに、位置調整手段30への影響量を示す位置調整手段伸縮量X11(図4参照)と、鏡筒体への影響量を示す鏡筒体伸縮量とによるレーザ光の照射位置のずれを補正するように、レーザ光出射部11と第1の光学系レンズ21との位置関係を保持する特性を有する第1の部材23mで構成されて、第1の光学系レンズ21を保持する第1のレンズ保持部材23と、レーザ光出射部11と第2の光学系レンズ22との位置関係を保持する特性を有する第2の部材24mで構成されて、第2の光学系レンズ22を保持する第2のレンズ保持部材24と、を備える。 FIG. 2 is a diagram showing details of the laser light emitting device 100 according to the present embodiment. The laser light emitting device 100 has a position adjusting means expansion / contraction amount X11 (see FIG. 4) indicating the amount of influence on the position adjusting means 30 and a lens barrel showing the amount of influence on the lens barrel when a temperature fluctuation occurs. It is composed of a first member 23m having a characteristic of maintaining a positional relationship between the laser light emitting portion 11 and the first optical system lens 21 so as to correct the deviation of the irradiation position of the laser light due to the amount of expansion and contraction. It is composed of a first lens holding member 23 that holds the first optical system lens 21, and a second member 24 m that has a characteristic of holding a positional relationship between the laser light emitting portion 11 and the second optical system lens 22. A second lens holding member 24 for holding the second optical system lens 22 is provided.
 レーザ光出射装置100は、レーザ光出射部11と、光学系ユニット20にレーザ光が入射される鏡筒体27の入射孔25の中心点(光軸)と、出射孔26の中心点(光軸)とを同一直線上に配し、位置調整手段30に、同一直線上(前記の光軸上)に中心点(光軸)を有するレーザ光の通過孔32を備える。 The laser beam emitting device 100 includes a laser beam emitting unit 11, a center point (optical axis) of the incident hole 25 of the lens barrel 27 in which the laser beam is incident on the optical system unit 20, and a center point (optical axis) of the emitting hole 26. The axis) is arranged on the same straight line, and the position adjusting means 30 is provided with a laser beam passing hole 32 having a center point (optical axis) on the same straight line (on the optical axis).
 図2において、レーザ光出射装置100の長手方向をx軸方向とし、右方向(延伸する方向)を+、左方向(補正する方向)を-として仮定する。図2は、温度変動を生じず、レーザ光出射装置100が正常に動作している状態を示している。 In FIG. 2, it is assumed that the longitudinal direction of the laser beam emitting device 100 is the x-axis direction, the right direction (stretching direction) is +, and the left direction (correction direction) is-. FIG. 2 shows a state in which the laser light emitting device 100 is operating normally without causing temperature fluctuation.
 レーザ光出射部を原点x0、原点x0から入射孔位置x1までの距離(位置調整手段の長さ)をX1、原点x0から第1のレンズ位置x2までの距離をX2、原点x0から第2のレンズ位置x3までの距離をX3とする。図2において、レーザ光を対象物に精度良く照射するためには、X2、X3の距離を保持する必要がある。X2、X3の距離を保持する方法については、図4を参照して後記する。 The laser light emitting part is the origin x0, the distance from the origin x0 to the incident hole position x1 (the length of the position adjusting means) is X1, the distance from the origin x0 to the first lens position x2 is X2, and the distance from the origin x0 to the second Let X3 be the distance to the lens position x3. In FIG. 2, in order to accurately irradiate the object with the laser beam, it is necessary to maintain the distances of X2 and X3. The method of maintaining the distance between X2 and X3 will be described later with reference to FIG.
 鏡筒体27をアルミニウム合金A2017で製作した場合、その伸縮量は次のように計算される。鏡筒体の全長を200mmとし、温度変動を、真冬のマイナス10℃から真夏の50℃まで60℃とする。アルミニウム合金A2017の線膨張係数は、23.6×10-6/℃であるので、鏡筒体の寸法変動量は、23.6×10-6×200×60により、0.2832mmと算出される。 When the lens barrel 27 is made of aluminum alloy A2017, the amount of expansion and contraction thereof is calculated as follows. The total length of the lens barrel is 200 mm, and the temperature fluctuation is 60 ° C. from -10 ° C in midwinter to 50 ° C in midsummer. Since the coefficient of linear expansion of the aluminum alloy A2017 is 23.6 × 10-6 / ° C, the amount of dimensional variation of the lens barrel is calculated to be 0.2832 mm by 23.6 × 10-6 × 200 × 60. To.
 図3は、位置調整手段30の構成を示す図である。位置調整手段30は、前記したように、レーザ光出射ユニット10のレーザ光出射部11の位置を調整するものであり、ネジ機構31を回して、レーザ光出射ユニット10と光学系ユニット20との間隔の大きさを調節できる。ネジ機構31を右に回すことにより、レーザ光出射部11は鏡筒体27から離れる方向に、ネジ機構31を左に回すことにより、レーザ光出射部11は鏡筒体27に近づく方向に移動する。なお、位置調整手段30は一般にアルミニウム合金が用いられる。 FIG. 3 is a diagram showing the configuration of the position adjusting means 30. As described above, the position adjusting means 30 adjusts the position of the laser light emitting unit 11 of the laser light emitting unit 10, and turns the screw mechanism 31 to bring the laser light emitting unit 10 and the optical system unit 20 together. The size of the interval can be adjusted. By turning the screw mechanism 31 to the right, the laser light emitting unit 11 moves away from the lens barrel 27, and by turning the screw mechanism 31 to the left, the laser light emitting unit 11 moves toward the lens barrel 27. To do. An aluminum alloy is generally used for the position adjusting means 30.
 図4は、本実施形態に係る温度変動の影響を改善する補正方法を示す図であり、(a)は比較例、(b)は本実施形態の例である。図4(a)は、温度変動の影響を受けた状態の本願発明を適用しないレーザ光出射装置を示す図である。周辺環境の温度変動の影響を受けて位置調整手段30及び/又は鏡筒体27が伸縮する場合、入射孔位置x1、第1のレンズ位置x2及び第2のレンズ位置x3の位置が影響を受ける。 FIG. 4 is a diagram showing a correction method for improving the influence of temperature fluctuation according to the present embodiment, (a) is a comparative example, and (b) is an example of the present embodiment. FIG. 4A is a diagram showing a laser light emitting device to which the present invention is not applied in a state of being affected by temperature fluctuations. When the position adjusting means 30 and / or the lens barrel 27 expands and contracts under the influence of temperature fluctuations in the surrounding environment, the positions of the incident hole position x1, the first lens position x2, and the second lens position x3 are affected. ..
 それぞれの位置の、影響を受けた後の原点x0からの距離は、次のように演算される。
  x1までの距離=X1+X11            ・・・(1)
  x2までの距離=X2+(X11+X21)      ・・・(2)
  x3までの距離=X3+(X11+X31)      ・・・(3)
 ここで、X11:温度変動の影響量を示す伸縮量である位置調整手段30のx軸+方向への伸縮量(位置調整手段伸縮量)、X21:温度変動の影響量を示す伸縮量である光学系レンズ21の配設位置の第1のレンズ位置x2における鏡筒体27のx軸+方向への伸縮量(第1の鏡筒体伸縮量)、X31:温度変動の影響量を示す伸縮量である光学系レンズ22の配設位置の第2のレンズ位置x3における鏡筒体27のx軸+方向への伸縮量(第2の鏡筒体伸縮量)である。
The distance from the origin x0 after being affected at each position is calculated as follows.
Distance to x1 = X1 + X11 ... (1)
Distance to x2 = X2 + (X11 + X21) ... (2)
Distance to x3 = X3 + (X11 + X31) ... (3)
Here, X11: the amount of expansion and contraction indicating the amount of influence of temperature fluctuation, the amount of expansion and contraction of the position adjusting means 30 in the x-axis + direction (the amount of expansion and contraction of the position adjusting means), and X21: the amount of expansion and contraction indicating the amount of influence of temperature fluctuation. The amount of expansion and contraction of the lens barrel 27 in the x-axis + direction (the amount of expansion and contraction of the first lens barrel) at the first lens position x2 of the arrangement position of the optical system lens 21, X31: expansion and contraction indicating the amount of influence of temperature fluctuation. This is the amount of expansion and contraction of the lens barrel 27 in the x-axis + direction (the amount of expansion and contraction of the second lens barrel) at the second lens position x3 of the arrangement position of the optical system lens 22.
 図4(b)は本実施形態の例であり、温度変動の影響による伸縮の補正を示すものである。温度変動の影響により生じた伸縮量である位置調整手段伸縮量X11、第1の鏡筒体伸縮量X21、第2の鏡筒体伸縮量X31をゼロにするように、すなわち図4(a)において、温度変動の影響により移動した第1のレンズ位置x2の位置を、図4(b)における新たな第1のレンズ位置x2の位置として補正し、図4(a)において、温度変動の影響により移動した第2のレンズ位置x3の位置を、図4(b)における新たな第2のレンズ位置x3の位置として補正するよう、第1のレンズ保持部材及び第2のレンズ保持部材を、伸縮量と同じ大きさだけ反対方向(x軸-方向)に第1の光学系レンズ及び第2の光学系レンズの配設位置を移動して補正する構成とする。
  x2までの距離=X2+(X11+X21)-(X11+X21)
                            ・・・(4)
  x3までの距離=X3+(X11+X31)-(X11+X31)
                            ・・・(5)
 上記2式において、-(X11+X21):第1のレンズ保持部材23の第1のレンズ位置x2における補正量、-(X11+X31):第2のレンズ保持部材24の第2のレンズ位置x3における補正量である。
 当該補正により、第1のレンズ位置x2及び第2のレンズ位置x3は、原点x0からの距離が温度変動の影響を受ける前とそれぞれ等しくなる。
FIG. 4B is an example of the present embodiment and shows the correction of expansion and contraction due to the influence of temperature fluctuation. The position adjusting means expansion / contraction amount X11, the first lens barrel expansion / contraction amount X21, and the second lens barrel expansion / contraction amount X31, which are the expansion / contraction amounts caused by the influence of temperature fluctuation, are set to zero, that is, FIG. 4A. The position of the first lens position x2 moved due to the influence of the temperature fluctuation is corrected as the position of the new first lens position x2 in FIG. 4B, and the influence of the temperature fluctuation is shown in FIG. 4A. The first lens holding member and the second lens holding member are expanded and contracted so as to correct the position of the second lens position x3 moved by the above as the position of the new second lens position x3 in FIG. 4 (b). The configuration is such that the arrangement positions of the first optical system lens and the second optical system lens are moved in the opposite direction (x-axis-direction) by the same amount as the amount to correct the lens.
Distance to x2 = X2 + (X11 + X21)-(X11 + X21)
... (4)
Distance to x3 = X3 + (X11 + X31)-(X11 + X31)
... (5)
In the above two equations,-(X11 + X21): correction amount at the first lens position x2 of the first lens holding member 23,-(X11 + X31): correction amount at the second lens position x3 of the second lens holding member 24. Is.
Due to this correction, the first lens position x2 and the second lens position x3 become equal to the distance from the origin x0 before being affected by the temperature fluctuation, respectively.
 従って、第1のレンズ保持部材23については、第1のレンズ位置x2において温度変動に対して-(X11+X21)の伸縮量を、第2のレンズ保持部材24については、第2のレンズ位置x3において温度変動に対して-(X11+X31)の伸縮量を有する材質を用いることとする。第1の部材23m、第2の部材24mの例として、表1に示す。 Therefore, for the first lens holding member 23, the amount of expansion / contraction of − (X11 + X21) with respect to the temperature fluctuation at the first lens position x2, and for the second lens holding member 24, at the second lens position x3. A material having an expansion / contraction amount of − (X11 + X31) with respect to temperature fluctuation is used. Table 1 shows examples of the first member 23 m and the second member 24 m.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記したA2017は切削加工性、強度に優れた熱処理型のアルミニウム合金で、ジュラルミンの名称でも知られている。Cu(銅)を含むアルミニウムは強度が高く、加工性(塑性加工)は低くなる傾向がある。他方、A5056は、耐食性に優れ、切削加工による表面仕上がりがよいアルミニウム合金である。 The above-mentioned A2017 is a heat-treated aluminum alloy having excellent machinability and strength, and is also known as duralumin. Aluminum containing Cu (copper) tends to have high strength and low workability (plastic working). On the other hand, A5056 is an aluminum alloy having excellent corrosion resistance and a good surface finish by cutting.
 本実施形態に係る第1の部材23mは、レーザ光出射部11を原点x0として、レーザ光出射装置100の長手方向への位置調整手段伸縮量X11と、第1の光学系レンズ21の配設位置である第1のレンズ位置x2における第1の鏡筒体伸縮量X21と、の合計伸縮量である第1の合計伸縮量(X11+X21)と同じ大きさだけ伸縮する第1の伸縮特性を有する部材である。 In the first member 23m according to the present embodiment, the laser beam emitting portion 11 is set as the origin x0, the position adjusting means expansion / contraction amount X11 in the longitudinal direction of the laser light emitting device 100, and the arrangement of the first optical system lens 21. It has a first expansion / contraction characteristic that expands / contracts by the same amount as the first total expansion / contraction amount (X11 + X21), which is the total expansion / contraction amount of the first lens barrel expansion / contraction amount X21 at the first lens position x2, which is the position. It is a member.
 本実施形態に係る第2の部材24mは、レーザ光出射部11を原点x0として、レーザ光出射装置100の長手方向への位置調整手段伸縮量X11と、第2の光学系レンズ22の配設位置である第2のレンズ位置x3における第2の鏡筒体伸縮量X31と、の合計伸縮量である第2の合計伸縮量(X11+X31)と同じ大きさだけ伸縮する第2の伸縮特性を有する部材である。 The second member 24m according to the present embodiment has the laser beam emitting unit 11 as the origin x0, the position adjusting means expansion / contraction amount X11 in the longitudinal direction of the laser beam emitting device 100, and the arrangement of the second optical system lens 22. It has a second expansion / contraction characteristic that expands / contracts by the same amount as the second total expansion / contraction amount (X11 + X31), which is the total expansion / contraction amount of the second lens barrel expansion / contraction amount X31 at the second lens position x3, which is the position. It is a member.
 レーザ光出射装置100において、第1のレンズ保持部材23及び第2のレンズ保持部材24は、鏡筒体の長手方向に、第1の光学系レンズ21及び第2の光学系レンズ22を保持するための必要な大きさを有している。温度変動が生じない状態において、レーザ光を所望の位置に照射するように、第1の光学系レンズ21と第2の光学系レンズ22を鏡筒体27内に保持する位置である第1のレンズ位置x2、第2のレンズ位置x3に、第1のレンズ保持部材23と第2のレンズ保持部材24とがそれぞれ配設されている。 In the laser beam emitting device 100, the first lens holding member 23 and the second lens holding member 24 hold the first optical system lens 21 and the second optical system lens 22 in the longitudinal direction of the lens barrel. Has the required size for. The first position is a position where the first optical system lens 21 and the second optical system lens 22 are held in the lens barrel 27 so as to irradiate the laser beam at a desired position in a state where the temperature does not fluctuate. A first lens holding member 23 and a second lens holding member 24 are arranged at the lens position x2 and the second lens position x3, respectively.
 第1のレンズ保持部材23と第2のレンズ保持部材24は、温度変動時にレーザ光出射部11側に伸縮するように、光学系ユニット20からレーザ光が出射される出射孔26側の端部において、鏡筒体27内壁に固着されている(固着部28参照)。これにより、温度変動(上昇)した場合、第1の部材23m、第2の部材24mが、レーザ光出射部11側に伸び、位置調整手段30及び鏡筒体27の伸びをキャンセルすることができる。 The first lens holding member 23 and the second lens holding member 24 are end portions on the exit hole 26 side where the laser beam is emitted from the optical system unit 20 so as to expand and contract toward the laser beam emitting portion 11 side when the temperature fluctuates. Is fixed to the inner wall of the lens barrel 27 (see the fixed portion 28). As a result, when the temperature fluctuates (rises), the first member 23m and the second member 24m extend toward the laser beam emitting portion 11, and the extension of the position adjusting means 30 and the lens barrel 27 can be cancelled. ..
 図5は、本実施形態に係るレンズ保持部材の構成を示す図であり、(a)は一対型取付部材の場合、(b)環状型取付部材の場合である。図5においては、第1のレンズ保持部材23を例に説明するが、第2のレンズ保持部材24でも同様である。 FIG. 5 is a diagram showing a configuration of a lens holding member according to the present embodiment, in which (a) is a pair-type mounting member and (b) is an annular mounting member. In FIG. 5, the first lens holding member 23 will be described as an example, but the same applies to the second lens holding member 24.
 図5(a)の場合、第1のレンズ保持部材23は鏡筒体27内壁の周回方向に所定の幅を有して、第1の光学系レンズ21を対向する位置にて挟み込むように一対以上を備えている。他方、図5(b)の場合、第1のレンズ保持部材23は第1の光学系レンズ21の周囲を囲むように周回方向に環状に形成している。 In the case of FIG. 5A, the first lens holding member 23 has a predetermined width in the circumferential direction of the inner wall of the lens barrel 27, and is sandwiched between the first optical system lenses 21 at opposite positions. It has the above. On the other hand, in the case of FIG. 5B, the first lens holding member 23 is formed in an annular shape in the circumferential direction so as to surround the periphery of the first optical system lens 21.
 本実施形態の場合、第1のレンズ保持部材23は、鏡筒体27内壁の周回方向に所定の幅を有して、第1の光学系レンズ21を対向する位置にて挟み込むように一対以上を備え、第2のレンズ保持部材24は、鏡筒体27内壁の周回方向に所定の幅を有して、第2の光学系レンズ22を対向する位置にて挟み込むように一対以上を備えていてもよい。 In the case of the present embodiment, the first lens holding member 23 has a predetermined width in the circumferential direction of the inner wall of the lens barrel 27, and a pair or more of the first lens holding members 23 sandwich the first optical system lens 21 at opposite positions. The second lens holding member 24 has a predetermined width in the circumferential direction of the inner wall of the lens barrel 27, and is provided with a pair or more so as to sandwich the second optical system lens 22 at opposite positions. You may.
 レンズ保持部材については、各種の変形例が考えられる。
(変形例1)
 第1のレンズ保持部材23は、第1の光学系レンズ21の周囲を囲むように周回方向に環状に形成し、第2のレンズ保持部材24は、第2の光学系レンズ22の周囲を囲むように周回方向に環状に形成してもよい。
(変形例2)
 第1のレンズ保持部材23は、第1の光学系レンズ21を対抗する位置にて挟み込むように一対以上を備え、第2のレンズ保持部材24は、第2の光学系レンズ22の周囲を囲むように周回方向に環状に形成してもよい。
(変形例3)
 第2のレンズ保持部材24は第2の光学系レンズ22を対抗する位置にて挟み込むように一対以上を備え、第1のレンズ保持部材23は第1の光学系レンズ21の周囲を囲むように周回方向に環状に形成してもよい。
Various modifications can be considered for the lens holding member.
(Modification example 1)
The first lens holding member 23 is formed in an annular shape in the circumferential direction so as to surround the periphery of the first optical system lens 21, and the second lens holding member 24 surrounds the periphery of the second optical system lens 22. It may be formed in an annular shape in the circumferential direction as described above.
(Modification 2)
The first lens holding member 23 includes a pair or more so as to sandwich the first optical system lens 21 at a position opposite to each other, and the second lens holding member 24 surrounds the periphery of the second optical system lens 22. It may be formed in an annular shape in the circumferential direction as described above.
(Modification example 3)
The second lens holding member 24 includes a pair or more so as to sandwich the second optical system lens 22 at a position opposite to each other, and the first lens holding member 23 surrounds the periphery of the first optical system lens 21. It may be formed in a ring shape in the circumferential direction.
 本実施形態では、周辺温度が変動に応じて、第1の部材23m及び第2の部材24mが、レーザ光出射部11側に伸縮し、位置調整手段30及び鏡筒体27の伸縮をキャンセルすることができる。これにより、レーザ光出射装置100の周辺温度が変動しても対象物に精度良くレーザ光を照射することを可能とする。 In the present embodiment, the first member 23m and the second member 24m expand and contract toward the laser beam emitting portion 11 side according to the fluctuation of the ambient temperature, and cancel the expansion and contraction of the position adjusting means 30 and the lens barrel 27. be able to. This makes it possible to accurately irradiate the object with the laser light even if the ambient temperature of the laser light emitting device 100 fluctuates.
(応用例)
 前記実施形態の説明では、位置調整手段30及び鏡筒体27が金属の場合で説明したが、これに限定されるわけではない。例えば、温度変動の影響を無視できるケースにおいては、以下のように処理する。適宜図4を参照して説明する。
(Application example)
In the description of the embodiment, the case where the position adjusting means 30 and the lens barrel 27 are made of metal has been described, but the present invention is not limited to this. For example, in the case where the influence of temperature fluctuation can be ignored, the processing is performed as follows. This will be described with reference to FIG. 4 as appropriate.
 ケース1:鏡筒体の材質にCFRP(Carbon Fiber Reinforced Plastic、炭素繊維強化プラスチック)を用いる場合は、伸縮量をほとんど無視できるため、X21=X31=0として処理する。CFRPは、強化材に炭素繊維を用いた繊維強化プラスチックである。CFRPは、母材には主にエポキシ樹脂が用いられ、単にカーボン樹脂やカーボンとも呼ばれる。 Case 1: When CFRP (Carbon Fiber Reinforced Plastic) is used as the material of the lens barrel, the amount of expansion and contraction can be almost ignored, so it is treated as X21 = X31 = 0. CFRP is a fiber reinforced plastic that uses carbon fiber as a reinforcing material. Epoxy resin is mainly used as the base material of CFRP, and it is also simply called carbon resin or carbon.
 鏡筒体37を、温度変動の影響を受けにくい低伸縮性素材で形成し、温度変動に影響されない場合、第1の鏡筒体伸縮量X21及び前記第2の鏡筒体伸縮量X31はゼロ(誤差を含む)であり、第1の合計伸縮量(X11+X21)と、第2の合計伸縮量(X11+X31)と、がそれぞれ位置調整手段伸縮量X11と等しくなる材料で、第1のレンズ保持部材及び前記第2のレンズ保持部材を構成するとよい。 When the lens barrel 37 is made of a low elasticity material that is not easily affected by temperature fluctuations and is not affected by temperature fluctuations, the first lens barrel expansion / contraction amount X21 and the second lens barrel expansion / contraction amount X31 are zero. (Including an error), the first total expansion / contraction amount (X11 + X21) and the second total expansion / contraction amount (X11 + X31) are made of a material equal to the position adjustment means expansion / contraction amount X11, respectively, and the first lens holding member. And the second lens holding member may be configured.
 ケース2:位置調整手段の材質にCFRPを用いる場合は、伸縮量をほとんど無視できるため、位置調整手段伸縮量X11=0として処理する。 Case 2: When CFRP is used as the material of the position adjusting means, the amount of expansion and contraction can be almost ignored, so the processing is performed with the amount of expansion and contraction of the position adjusting means X11 = 0.
 位置調整手段30を、温度変動の影響を受けにくい低伸縮性素材で形成し、温度変動に影響されない場合、位置調整手段伸縮量X11はゼロ(誤差を含む)であり、第1の合計伸縮量(X11+X21)が第1の鏡筒体伸縮量X21と等しくなる材料で、第1のレンズ保持部材23を構成し、第2の合計伸縮量(X11+X31)が第2の鏡筒体伸縮量X31と等しくなる材料で、第2のレンズ保持部材24を構成するとよい。 When the position adjusting means 30 is formed of a low elasticity material that is not easily affected by temperature fluctuations and is not affected by temperature fluctuations, the position adjusting means expansion / contraction amount X11 is zero (including an error), and the first total expansion / contraction amount is zero. (X11 + X21) is a material equal to the first lens barrel expansion / contraction amount X21, constitutes the first lens holding member 23, and the second total expansion / contraction amount (X11 + X31) is the second lens barrel expansion / contraction amount X31. The second lens holding member 24 may be made of the same material.
 応用例では、温度変動に応じて、第1の部材23m及び第2の部材24mが、レーザ光出射部11側に伸縮し、位置調整手段30又は鏡筒体27の伸縮をキャンセルすることができる。これにより、温度変動が生じても対象物に精度良くレーザ光を照射することを可能とする。 In the application example, the first member 23m and the second member 24m expand and contract toward the laser beam emitting portion 11 side according to the temperature fluctuation, and the expansion and contraction of the position adjusting means 30 or the lens barrel 27 can be canceled. .. This makes it possible to accurately irradiate the object with the laser beam even if the temperature fluctuates.
 10  レーザ光出射ユニット
 11  レーザ光出射部
 20  光学系ユニット
 21  第1の光学系レンズ
 22  第2の光学系レンズ
 23  第1のレンズ保持部材
 23m  第1の部材
 24  第2のレンズ保持部材
 24m  第2の部材
 25  入射孔
 26  出射孔
 27  鏡筒体
 28  固着部
 30  位置調整手段
 32  レーザ光の通過孔
 40  光源ユニット
 100  レーザ光出射装置
 x0  原点(基準点)
 x1  入射孔位置
 x2  第1のレンズ位置
 x3  第2のレンズ位置
 X1  原点x0から入射孔x1までの距離
 X2  原点x0から第1のレンズ位置x2までの距離
 X3  原点x0から第2のレンズ位置x3までの距離
 X11  位置調整手段伸縮量
 X21  第1の鏡筒体伸縮量
 X31  第2の鏡筒体伸縮量
10 Laser light emitting unit 11 Laser light emitting unit 20 Optical system unit 21 First optical system lens 22 Second optical system lens 23 First lens holding member 23m First member 24 Second lens holding member 24m Second 25 Incident hole 26 Exit hole 27 Lens barrel 28 Fixed part 30 Position adjustment means 32 Laser light passage hole 40 Light source unit 100 Laser light emission device x0 Origin (reference point)
x1 Incident hole position x2 First lens position x3 Second lens position X1 Distance from origin x0 to incident hole x1 X2 Distance from origin x0 to first lens position x2 X3 Origin x0 to second lens position x3 Distance X11 Position adjustment means Expansion / contraction amount X21 First lens barrel expansion / contraction amount X31 Second lens barrel expansion / contraction amount

Claims (12)

  1.  レーザ光を出射するレーザ光出射部を有するレーザ光出射ユニットと、
     鏡筒体と、第1の光学系レンズ及び第2の光学系レンズと、を含む光学系ユニットと、
     前記レーザ光出射ユニットと前記光学系ユニットの中間位置に配設されて前記レーザ光出射ユニット及び前記光学系ユニットに係合し、前記レーザ光出射ユニットの前記レーザ光出射部の位置を調整する位置調整手段と、を含んで構成されるレーザ光出射装置であって、
     前記レーザ光出射装置が設置された周辺環境に温度変動が生じたときに、前記位置調整手段への影響量を示す位置調整手段伸縮量と、前記鏡筒体への影響量を示す鏡筒体伸縮量と、による前記レーザ光の照射位置のずれを補正するように、
     前記レーザ光出射部と前記第1の光学系レンズとの位置関係を保持する特性を有する第1の部材で構成されて、前記第1の光学系レンズを保持する第1のレンズ保持部材と、
     前記レーザ光出射部と前記第2の光学系レンズとの位置関係を保持する特性を有する第2の部材で構成されて、前記第2の光学系レンズを保持する第2のレンズ保持部材と、を備えることを特徴とするレーザ光出射装置。
    A laser light emitting unit having a laser light emitting unit that emits laser light,
    An optical system unit including a lens barrel, a first optical system lens, and a second optical system lens,
    A position that is arranged at an intermediate position between the laser light emitting unit and the optical system unit, engages with the laser light emitting unit and the optical system unit, and adjusts the position of the laser light emitting portion of the laser light emitting unit. A laser beam emitting device including an adjusting means.
    When a temperature fluctuation occurs in the surrounding environment in which the laser light emitting device is installed, the amount of expansion and contraction of the position adjusting means indicating the amount of influence on the position adjusting means and the amount of influence on the lens barrel are shown. To correct the deviation of the irradiation position of the laser beam due to the amount of expansion and contraction,
    A first lens holding member that is composed of a first member having a characteristic of maintaining a positional relationship between the laser beam emitting portion and the first optical system lens and holds the first optical system lens.
    A second lens holding member, which is composed of a second member having a characteristic of maintaining a positional relationship between the laser beam emitting portion and the second optical system lens and holds the second optical system lens, and a second lens holding member. A laser beam emitting device comprising.
  2.  前記第1のレンズ保持部材及び前記第2のレンズ保持部材は、前記鏡筒体の長手方向に、前記第1の光学系レンズ及び前記第2の光学系レンズを保持するための必要な大きさを有し、
     前記温度変動が生じない状態において、
     前記レーザ光を所望の位置に照射するように、前記第1の光学系レンズと前記第2の光学系レンズを前記鏡筒体内に保持する位置に、前記第1のレンズ保持部材と前記第2のレンズ保持部材とをそれぞれ配設する
     ことを特徴とする請求項1に記載のレーザ光出射装置。
    The first lens holding member and the second lens holding member have a size required for holding the first optical system lens and the second optical system lens in the longitudinal direction of the lens barrel. Have,
    In a state where the temperature fluctuation does not occur
    The first lens holding member and the second lens are held at positions where the first optical system lens and the second optical system lens are held in the lens barrel so as to irradiate the laser beam at a desired position. The laser beam emitting device according to claim 1, wherein each of the lens holding members is provided.
  3.  前記第1の部材は、前記レーザ光出射部を基準点として、前記レーザ光出射装置の長手方向への前記位置調整手段伸縮量と、前記第1の光学系レンズの配設位置における第1の鏡筒体伸縮量と、の合計伸縮量である第1の合計伸縮量と同じ大きさだけ伸縮する第1の伸縮特性を有する部材であり、
     前記第2の部材は、前記レーザ光出射部を基準点として、前記レーザ光出射装置の長手方向への前記位置調整手段伸縮量と、前記第2の光学系レンズの配設位置における第2の鏡筒体伸縮量と、の合計伸縮量である第2の合計伸縮量と同じ大きさだけ伸縮する第2の伸縮特性を有する部材である
     ことを特徴とする請求項1に記載のレーザ光出射装置。
    The first member has the amount of expansion and contraction of the position adjusting means in the longitudinal direction of the laser light emitting device and the first arrangement position of the first optical system lens with the laser light emitting portion as a reference point. It is a member having a first expansion / contraction characteristic that expands / contracts by the same amount as the first total expansion / contraction amount, which is the total expansion / contraction amount of the lens barrel.
    The second member has the amount of expansion and contraction of the position adjusting means in the longitudinal direction of the laser light emitting device and the second arrangement position of the second optical system lens with the laser light emitting portion as a reference point. The laser beam emission according to claim 1, wherein the member has a second expansion / contraction characteristic that expands / contracts by the same amount as the second total expansion / contraction amount, which is the total expansion / contraction amount of the lens barrel. apparatus.
  4.  前記第1のレンズ保持部材と前記第2のレンズ保持部材は、前記温度変動時に前記レーザ光出射部側に伸縮するように、
     前記光学系ユニットから前記レーザ光が出射される出射孔側の端部において、前記鏡筒体内壁に固着される
     ことを特徴とする請求項2に記載のレーザ光出射装置。
    The first lens holding member and the second lens holding member expand and contract toward the laser beam emitting portion side when the temperature fluctuates.
    The laser beam emitting device according to claim 2, wherein the laser beam is fixed to the inner wall of the lens barrel at an end portion on the exit hole side where the laser beam is emitted from the optical system unit.
  5.  前記第1のレンズ保持部材は、前記鏡筒体内壁の周回方向に所定の幅を有して、前記第1の光学系レンズを対向する位置にて挟み込むように一対以上を備え、
     前記第2のレンズ保持部材は、前記鏡筒体内壁の周回方向に所定の幅を有して、前記第2の光学系レンズを対向する位置にて挟み込むように一対以上を備える
     ことを特徴とする請求項1に記載のレーザ光出射装置。
    The first lens holding member has a predetermined width in the circumferential direction of the lens barrel internal wall, and includes a pair or more so as to sandwich the first optical system lens at opposite positions.
    The second lens holding member has a predetermined width in the circumferential direction of the inner wall of the lens barrel, and is characterized by having a pair or more so as to sandwich the second optical system lens at opposite positions. The laser light emitting device according to claim 1.
  6.  前記第1のレンズ保持部材は、前記第1の光学系レンズの周囲を囲むように周回方向に環状に形成し、
     前記第2のレンズ保持部材は、前記第2の光学系レンズの周囲を囲むように周回方向に環状に形成する
     ことを特徴とする請求項1に記載のレーザ光出射装置。
    The first lens holding member is formed in an annular shape in the circumferential direction so as to surround the periphery of the first optical system lens.
    The laser light emitting device according to claim 1, wherein the second lens holding member is formed in an annular shape in the circumferential direction so as to surround the periphery of the second optical system lens.
  7.  前記第1のレンズ保持部材は前記第1の光学系レンズを対抗する位置にて挟み込むように一対以上を備え、
     前記第2のレンズ保持部材は前記第2の光学系レンズの周囲を囲むように周回方向に環状に形成する
     ことを特徴とする請求項1に記載のレーザ光出射装置。
    The first lens holding member includes a pair or more so as to sandwich the first optical system lens at a position opposite to each other.
    The laser light emitting device according to claim 1, wherein the second lens holding member is formed in an annular shape in the circumferential direction so as to surround the periphery of the second optical system lens.
  8.  前記第2のレンズ保持部材は前記第2の光学系レンズを対抗する位置にて挟み込むように一対以上を備え、
     前記第1のレンズ保持部材は前記第1の光学系レンズの周囲を囲むように周回方向に環状に形成する
     ことを特徴とする請求項1に記載のレーザ光出射装置。
    The second lens holding member includes a pair or more so as to sandwich the second optical system lens at a position opposite to each other.
    The laser light emitting device according to claim 1, wherein the first lens holding member is formed in an annular shape in the circumferential direction so as to surround the periphery of the first optical system lens.
  9.  前記レーザ光出射部と、前記光学系ユニットに前記レーザ光が入射される前記鏡筒体の入射孔の中心点と、前記出射孔の中心点とを同一直線上に配し、
     前記位置調整手段に、前記同一直線上に中心点を有する前記レーザ光の通過孔を備える
     ことを特徴とする請求項4に記載のレーザ光出射装置。
    The laser beam emitting portion, the center point of the incident hole of the lens barrel into which the laser beam is incident on the optical system unit, and the center point of the emitting hole are arranged on the same straight line.
    The laser light emitting device according to claim 4, wherein the position adjusting means is provided with a passage hole for the laser light having a center point on the same straight line.
  10.  前記鏡筒体を、前記温度変動の影響を受けにくい低伸縮性素材で形成し、前記温度変動に影響されない場合、前記第1の鏡筒体伸縮量及び前記第2の鏡筒体伸縮量はゼロであり、前記第1の合計伸縮量と、前記第2の合計伸縮量と、がそれぞれ前記位置調整手段伸縮量と等しくなる材料で、前記第1のレンズ保持部材及び前記第2のレンズ保持部材を構成する
     ことを特徴とする請求項3に記載のレーザ光出射装置。
    When the lens barrel is made of a low elasticity material that is not easily affected by the temperature fluctuation and is not affected by the temperature fluctuation, the first lens barrel expansion and contraction amount and the second lens barrel expansion and contraction amount are A material that is zero and whose first total expansion and contraction amount and the second total expansion and contraction amount are equal to the position adjustment means expansion and contraction amount, respectively, of the first lens holding member and the second lens holding member. The laser beam emitting device according to claim 3, further comprising a member.
  11.  前記位置調整手段を、前記温度変動の影響を受けにくい低伸縮性素材で形成し、前記温度変動に影響されない場合、前記位置調整手段伸縮量はゼロであり、前記第1の合計伸縮量が前記第1の鏡筒体伸縮量と等しくなる材料で、前記第1のレンズ保持部材を構成し、前記第2の合計伸縮量が前記第2の鏡筒体伸縮量と等しくなる材料で、前記第2のレンズ保持部材を構成する
     ことを特徴とする請求項3に記載のレーザ光出射装置。
    When the position adjusting means is formed of a low elasticity material that is not easily affected by the temperature fluctuation and is not affected by the temperature fluctuation, the expansion / contraction amount of the position adjusting means is zero and the first total expansion / contraction amount is the said. The first lens holding member is made of a material equal to the first expansion / contraction amount of the lens barrel, and the second total expansion / contraction amount is equal to the second expansion / contraction amount of the second lens barrel. The laser beam emitting device according to claim 3, further comprising the lens holding member of 2.
  12.  前記レーザ光出射装置は、大気中の浮遊微小物質にレーザ光を照射し、前記浮遊微小物質からの反射波を取得して、ドップラー効果により前記浮遊微小物質の移動速度を計測するレーザドップラー速度計に使用する
     ことを特徴とする請求項1乃至11のいずれか1項に記載のレーザ光出射装置。
    The laser light emitting device irradiates a floating minute substance in the atmosphere with a laser beam, acquires a reflected wave from the floating minute substance, and measures the moving speed of the floating minute substance by the Doppler effect. The laser light emitting device according to any one of claims 1 to 11, wherein the laser light emitting device is used.
PCT/JP2020/042411 2019-11-15 2020-11-13 Laser light emission device WO2021095841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207195A JP6656463B1 (en) 2019-11-15 2019-11-15 Laser light emitting device
JP2019-207195 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095841A1 true WO2021095841A1 (en) 2021-05-20

Family

ID=69997909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042411 WO2021095841A1 (en) 2019-11-15 2020-11-13 Laser light emission device

Country Status (2)

Country Link
JP (1) JP6656463B1 (en)
WO (1) WO2021095841A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259717A (en) * 1988-08-25 1990-02-28 Canon Inc Laser unit
JPH06130267A (en) * 1992-10-14 1994-05-13 Asahi Optical Co Ltd Temperature compensated optical device
JP2001067701A (en) * 1999-08-31 2001-03-16 Sony Corp Optical head, recording/reproducing device and optical head drive method
JP2002014269A (en) * 2000-06-29 2002-01-18 Sony Corp Optical device
JP2015038467A (en) * 2013-07-18 2015-02-26 パナソニックIpマネジメント株式会社 Pathological diagnosis support apparatus and pathological diagnosis support method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427857B2 (en) * 2013-07-17 2018-11-28 株式会社リコー Displacement measuring device, displacement measuring method, and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259717A (en) * 1988-08-25 1990-02-28 Canon Inc Laser unit
JPH06130267A (en) * 1992-10-14 1994-05-13 Asahi Optical Co Ltd Temperature compensated optical device
JP2001067701A (en) * 1999-08-31 2001-03-16 Sony Corp Optical head, recording/reproducing device and optical head drive method
JP2002014269A (en) * 2000-06-29 2002-01-18 Sony Corp Optical device
JP2015038467A (en) * 2013-07-18 2015-02-26 パナソニックIpマネジメント株式会社 Pathological diagnosis support apparatus and pathological diagnosis support method

Also Published As

Publication number Publication date
JP6656463B1 (en) 2020-03-04
JP2021081245A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
CN1304880C (en) Long distance bidimension photoelectric self collimating device for drift amount target feedback control and its method
US9674423B2 (en) Surveying apparatus with function for calibrating focusing optical unit positions to be set in a distance-dependent manner
US7843385B2 (en) Antenna device
JP5723945B2 (en) Distortion adjustment of pseudo-telecentric imaging lens
US7929149B2 (en) Coordinate measuring machine and a method for correcting non-linearities of the interferometers of a coordinate measuring machine
CN104048620B (en) A kind of Radio Telescope Antenna face shape absolute calibration apparatus and method
WO2015004974A1 (en) Shape measuring method and device
CN104316082B (en) A kind of theodolite outfield infinity range correction method
WO2021095841A1 (en) Laser light emission device
CN110631477A (en) Optical imaging unit and system for measurement techniques
CN109873253B (en) Active reflecting surface shape adjusting method based on axial gain measurement
US10953470B2 (en) Scanning mirror navigation apparatus and method
CN114279687A (en) Measuring device and measuring method for relative deflection of primary mirror and secondary mirror
CN106705888B (en) CCD coordinate system and mirror surface coordinate system non-linear relation scaling method in interference detection
CN107817088B (en) Off-axis parabolic mirror optical axis direction calibration method and system
JP4536096B2 (en) Antenna device
CN115291196B (en) Calibration method for mounting posture of laser clearance radar
Shimanskii et al. Alignment of the writing beam with the diffractive structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system
CN108592790B (en) Delay phase calibration method for improved α - β scanning method
Leon-Huerta et al. Alignment of a large outdoor antenna surface using a laser tracker
CN107677456B (en) A kind of telescope optic axis Detection of Stability method
KR102070974B1 (en) Method and apparatus for correcting geometric distortion
CN101349579A (en) Correcting device of measuring system
Vannoni et al. Metrology characterization of ultraprecise bendable mirrors for the European XFEL: from offsite calibration to installation and commissioning
JP2007129454A (en) Antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887660

Country of ref document: EP

Kind code of ref document: A1