WO2021095794A1 - Liquid crystal display protective plate - Google Patents

Liquid crystal display protective plate Download PDF

Info

Publication number
WO2021095794A1
WO2021095794A1 PCT/JP2020/042195 JP2020042195W WO2021095794A1 WO 2021095794 A1 WO2021095794 A1 WO 2021095794A1 JP 2020042195 W JP2020042195 W JP 2020042195W WO 2021095794 A1 WO2021095794 A1 WO 2021095794A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
resin
protective plate
display protective
Prior art date
Application number
PCT/JP2020/042195
Other languages
French (fr)
Japanese (ja)
Inventor
侑史 大澤
翔 多賀
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021556139A priority Critical patent/JP7538138B2/en
Publication of WO2021095794A1 publication Critical patent/WO2021095794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a liquid crystal display protective plate.
  • a protective plate may be provided on the front side thereof in order to prevent scratches on the surface.
  • this protective plate is referred to as a "liquid crystal display protective plate”.
  • the liquid crystal display protective plate includes a resin plate composed of at least one thermoplastic resin layer and, if necessary, a cured film formed on at least one surface of the resin plate.
  • Patent Document 1 discloses a scratch-resistant resin plate that includes a methacrylic resin plate and a cured film formed on at least one of the surfaces thereof and is suitable as a display window protective plate for a portable information terminal.
  • Patent Document 2 describes a polycarbonate system for a liquid crystal display cover, which includes a laminated plate in which a methacrylic resin layer is laminated on one surface of a polycarbonate resin layer, and a cured film formed on the methacrylic resin layer of the laminated plate.
  • a resin laminate is disclosed (claim 1, paragraph 0008, etc.).
  • the liquid crystal display protective plate is installed on the front side (viewer side) of the liquid crystal display, and the viewer sees the screen of the liquid crystal display through this protective plate.
  • the liquid crystal display protective plate hardly changes the polarization property of the light emitted from the liquid crystal display, when the screen is viewed through a polarizing filter such as polarized sunglasses, the angle formed by the polarization axis of the emitted light and the transmission axis of the polarizing filter Depending on the situation, the screen may become dark and the visibility of the image may decrease (blackout phenomenon).
  • Patent Document 3 comprises a scratch-resistant resin plate having a cured film formed on at least one surface of the resin plate, and has an in-plane retardation value (also referred to as “Re value”) of 85 to 300 nm.
  • a liquid crystal display protective plate is disclosed (claim 1).
  • the resin plate is preferably a laminated plate in which a methacrylic resin layer is laminated on at least one surface of the polycarbonate resin layer (claim 6).
  • the birefringence of the polycarbonate-based resin layer can be adjusted by adjusting the molding conditions according to the thickness of the resin plate, and the Re value of the liquid crystal display protective plate can be adjusted within a suitable range. (Paragraph 0036, etc.).
  • FIG. 6 shows an image diagram showing the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
  • the polycarbonate resin used in Patent Document 3 has a very large absolute value of photoelastic coefficient of 90 ⁇ 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, rainbow unevenness may be observed due to the variation in the Re value.
  • the methacrylic resin used in Patent Document 1 has a small absolute value of photoelastic coefficient of 3.2 ⁇ 10-12 / Pa, and the Re value is unlikely to change due to stress. Therefore, when a methacrylic resin is used, an optically uniform liquid crystal display protective plate can be obtained.
  • the absolute value of the orientation birefringence of the methacrylic resin is as small as 4.0 ⁇ 10 -4 , the Re value of the obtained liquid crystal display protective plate tends to be as small as about 20 nm, although it depends on the thickness.
  • the Re value of the liquid crystal display protective plate when the Re value of the liquid crystal display protective plate is larger than the preferable range, the difference in light transmittance of each wavelength in the visible light region becomes large when visually recognized through a polarizing filter, and various colors can be seen. Visibility may be reduced (colored phenomenon).
  • the present invention has been made in view of the above circumstances, and suppresses deterioration of visibility such as rainbow unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter. It is an object of the present invention to provide a liquid crystal display protective plate capable of providing a protective plate.
  • the present invention provides the following liquid crystal display protective plates [1] to [6].
  • a test piece having an absolute value of photoelastic coefficient (CA) of 10.0 ⁇ 10-12 / Pa or less and a width of 20 mm, a length of 40 mm, and a thickness of 1 mm is 10 ° C. higher than the glass transition temperature.
  • the absolute value of orientation birefringence ( ⁇ n A ) obtained by uniaxially stretching at a rate of 3 mm / min at a temperature of 3 mm / min and measuring the in-plane retardation value of the central portion of the test piece is 10.0.
  • a resin plate having a phase difference adjusting layer containing a transparent thermoplastic resin (A) of ⁇ 10 -4 to 100.0 ⁇ 10 -4 is included.
  • the transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit and contains. Transparent thermoplastic resin content of the aromatic vinyl monomer units in (A) and V [wt%], when the thickness of the phase difference adjusting layer was T A [mm], the following formula (1)
  • the resin plate further when the absolute value of photoelastic coefficient (C B) is 10.0 ⁇ 10 -12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, the glass Orientation birefringence ( ⁇ n B ) obtained by uniaxially stretching at a rate of 3 mm / min at a temperature 10 ° C. higher than the transition temperature at a stretching rate of 100% and measuring the in-plane retardation value of the central portion of the test piece.
  • the liquid crystal display protective plate according to any one of [1] to [3], which has a base material layer containing a transparent thermoplastic resin (B) having an absolute value of less than 10.0 ⁇ 10 -4.
  • a liquid crystal display protective plate capable of suppressing deterioration of visibility such as rainbow unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter is provided. Can be provided.
  • the terms “film”, “sheet”, or “plate” are used depending on the thickness, but there is no clear distinction between them.
  • the "resin plate” referred to in the present specification shall include a “resin film” and a “resin sheet”.
  • the present invention relates to a liquid crystal display protective plate.
  • the liquid crystal display protective plate can be suitably used for protecting the liquid crystal display and the touch panel display in which the liquid crystal display and the touch panel are combined.
  • the liquid crystal display protective plate of the present invention includes a retardation adjusting layer, more preferably a base material layer and / or a cured film.
  • the liquid crystal display protective plate of the present invention preferably includes a phase difference adjusting layer, a resin plate including a base material layer if necessary, and a cured film formed on at least one surface of the resin plate.
  • the resin plate is preferably an extruded plate.
  • FIGS. 1 to 3 are schematic cross-sectional views of the liquid crystal display protective plate of the first to third embodiments according to the present invention.
  • reference numerals 1 to 3 indicate a liquid crystal display protective plate
  • reference numerals 16X and 16Y indicate a resin plate
  • reference numeral 21 indicates a retardation adjusting layer
  • reference numeral 22 indicates a base material layer
  • reference numeral 31 indicates a cured film.
  • the liquid crystal display protective plate 1 of the first embodiment is made of a resin plate 16X having a single layer structure including only the phase difference adjusting layer 21.
  • the liquid crystal display protective plate 2 of the second embodiment is made of a resin plate 16Y having a two-layer structure including a retardation adjusting layer 21 and a base material layer 22.
  • the liquid crystal display protective plate 3 of the third embodiment has a cured coating 31 formed on at least one surface of a resin plate 16Y having a two-layer structure composed of a retardation adjusting layer 21 and a base material layer 22.
  • the cured coating 31 is formed on both sides of the resin plate 16Y.
  • the configuration of the liquid crystal display protective plate is not limited to the illustrated example, and the design can be appropriately changed as long as the gist of the present invention is not deviated.
  • Retadation is the phase difference between the light in the direction of the molecular main chain and the light in the direction perpendicular to it.
  • a polymer can be obtained by heating and melting to obtain an arbitrary shape, but it is known that the molecules are oriented by the stress generated in the process of heating and cooling to generate retardation.
  • “retamination” means in-plane retardation unless otherwise specified.
  • the Re value of the resin plate is represented by the following formula (i).
  • [Re value of resin plate] [birefringence ( ⁇ N)] ⁇ [thickness (d)] ...
  • Birefringence ( ⁇ N) is represented by the following equation (ii).
  • [Brefringence] [Stress birefringence] + [Orientation birefringence] ...
  • the stress birefringence and the orientation birefringence are represented by the following equations (iii) and (iv), respectively.
  • [Stress birefringence] [photoelastic coefficient (C)] ⁇ [stress] ...
  • FIG. 6 shows an image diagram showing the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
  • the optical characteristics of the transparent thermoplastic resin (A) and the transparent thermoplastic resin (B) described later are specified by the photoelastic coefficient and orientation birefringence shown in FIG.
  • the liquid crystal display protective plate of the present invention includes the phase difference adjusting layer containing the transparent thermoplastic resin (A) having the above-mentioned specific optical characteristics, the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter.
  • a polarizing filter it is possible to suppress deterioration of visibility such as uneven rainbow and blackout.
  • the "Re value of the liquid crystal display protective plate” is an average value of the Re values of about 110,000 birefringent pixels within the measurement range of 17 cm in width and 22 cm in length, unless otherwise specified.
  • the “standard deviation of the Re value of the liquid crystal display protective plate” is the standard deviation of the Re value of about 110,000 birefringent pixels within the measurement range of 17 cm in width and 22 cm in length.
  • the Re value of the liquid crystal display protective plate is preferably 50 to 330 nm, more preferably 70 to 250 nm, particularly preferably 80 to 200 nm, and most preferably 90 to 150 nm. If the Re value is less than the above lower limit, blackout may occur when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, regardless of the relationship between the polarizing axis of the emitted light and the transmission axis of the polarizing filter. There is. If the Re value exceeds the above upper limit value, the difference in light transmittance of each wavelength in the visible light region becomes large when visually recognized through a polarizing filter, and various colors may be seen and the visibility may be deteriorated (coloring phenomenon). ..
  • the standard deviation of the Re value is preferably 15 nm or less, more preferably 10 nm or less, still more preferably 7 nm or less, particularly preferably 5 nm or less, and most preferably 4 nm or less.
  • the standard deviation of the Re value is not more than the above upper limit value, when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, rainbow unevenness due to the variation of the Re value is suppressed and the visibility is improved.
  • the average value and standard deviation of the Re value of the liquid crystal display protective plate are measured, for example, by using the retardation measuring device "WPA-100-L" manufactured by Photonic Lattice Co., Ltd. and the method described in the section [Example] below. be able to.
  • the overall thickness (d) of the liquid crystal display protective plate is not particularly limited, and is preferably 0.2 to 6.0 mm, more preferably 0.3 to 5.0 mm, and particularly preferably 0.4 to 3.0 mm. .. If it is too thin, the rigidity of the liquid crystal display protective plate may be insufficient, and if it is too thick, it may hinder the weight reduction of the liquid crystal display or the touch panel display including the liquid crystal display.
  • the liquid crystal display protective plate of the present invention includes a resin plate having a phase difference adjusting layer.
  • the phase difference adjusting layer is a layer that mainly determines the Re value of the liquid crystal display protective plate, and contains a transparent thermoplastic resin (A) having specific optical characteristics.
  • the absolute value of the photoelastic coefficient of the transparent thermoplastic resin (A) (C A) is a 10.0 ⁇ 10 -12 / Pa or less, preferably 8.0 ⁇ 10 -12 / Pa or less, more preferably 6 It is 0.0 ⁇ 10-12 / Pa or less, particularly preferably 5.0 ⁇ 10-12 / Pa or less, and most preferably 4.0 ⁇ 10-12 / Pa or less. If the absolute value of photoelastic coefficient (C A) is at more than the above upper limit, small stress birefringence due to the residual stress generated during molding of the extrusion molding (see FIG. 6.), Liquid crystal display protective plate The standard deviation of the Re value of can be reduced. As a result, when the liquid crystal display protective plate on the liquid crystal screen is observed through the polarizing filter, rainbow unevenness due to the variation of the Re value is suppressed, and the visibility is improved.
  • the absolute value of the orientation compound refraction ( ⁇ n A ) of the transparent thermoplastic resin (A) is 10.0 ⁇ 10 -4 to 100.0 ⁇ 10 -4 , preferably 20.0 ⁇ 10 -4 to 90. It is 0 ⁇ 10 -4 , more preferably 30.0 ⁇ 10 -4 to 70.0 ⁇ 10 -4 , and particularly preferably 35.0 ⁇ 10 -4 to 60.0 ⁇ 10 -4 .
  • the absolute value of the orientation birefringence ( ⁇ n A ) of the transparent thermoplastic resin (A) is within the above range, the Re value of the liquid crystal display protective plate can be controlled within an appropriate range. Since the orientation birefringence depends on the degree of orientation of the polymer, it is affected by manufacturing conditions such as molding conditions and stretching conditions. In the present specification, unless otherwise specified, "orientation birefringence" shall be measured by the method described in the section [Example] below.
  • Transparent thermoplastic resin (A) if a transparent thermoplastic resin which satisfies the range of photoelastic coefficient specified in the present invention (C A) and orientation birefringence ([Delta] n A), is not particularly limited.
  • the transparent thermoplastic resin (A) can contain one or more aromatic vinyl monomer units.
  • the aromatic vinyl monomer is not particularly limited, and styrene (St); nuclear alkyl substitutions such as 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, and 4-tert-butylstyrene.
  • Styrene ⁇ -methylstyrene, ⁇ -alkyl substituted styrene such as 4-methyl- ⁇ -methylstyrene and the like can be mentioned.
  • styrene (St) is preferable from the viewpoint of availability.
  • V ⁇ T A The content of the aromatic vinyl monomer units in the transparent thermoplastic resin (A) and V [wt%], the thickness of the phase difference adjusting layer and T A [mm].
  • These product (V ⁇ T A) preferably satisfies the following formula (1).
  • Transparent thermoplastic resin (A) the absolute value of photoelastic coefficient (C A) is small, the stress birefringence is substantially zero.
  • the transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit such as a styrene (St) unit
  • the orientation compound refraction ( ⁇ n A ) is an aromatic vinyl monomer unit in the transparent thermoplastic resin (A).
  • V ⁇ T A is strongly correlated with Re value of the liquid crystal display protection panel. If V ⁇ T A satisfies the above formula (1), it is possible to control the Re value of the liquid crystal display protective plate to a suitable range.
  • the transparent thermoplastic resin (A) includes, in addition to the aromatic vinyl monomer unit, a methacrylic acid ester unit such as a methyl methacrylate (MMA) unit; an acid anhydride unit such as a maleic anhydride unit; an acrylonitrile unit and the like. It may be a copolymer having a monomer unit of.
  • a methacrylic acid ester unit such as a methyl methacrylate (MMA) unit
  • an acid anhydride unit such as a maleic anhydride unit
  • an acrylonitrile unit and the like. It may be a copolymer having a monomer unit of.
  • Specific examples of the transparent thermoplastic resin (A) containing an aromatic vinyl monomer unit include methacrylic acid ester-styrene copolymer (MS resin); styrene-maleic anhydride copolymer (SMA resin); styrene-.
  • the content V [mass%] of the aromatic vinyl monomer unit in the transparent thermoplastic resin (A) is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 80% by mass.
  • Transparent thermoplastic resin (A) as long as it satisfies the range of photoelastic coefficient specified in the present invention (C A) and orientation birefringence ([Delta] n A), a resin containing no aromatic vinyl monomer unit There may be.
  • the transparent thermoplastic resin (A) containing no aromatic vinyl monomer unit includes a methacrylic acid ester unit such as a methyl methacrylate unit, a glutarimide unit, an N-substituted or unsubstituted mylemid unit, and a lactone ring unit. Modified methacrylic resins containing at least one unit of choice. These can be used alone or in combination of two or more.
  • Transparent thermoplastic resin (A) is a resin containing an aromatic vinyl monomer unit satisfying the range of photoelastic coefficient (C A) and orientation birefringence ([Delta] n A) specified in the present invention, defined in the present invention or it may be a mixture of a photoelastic coefficient (C a) and does not contain an aromatic vinyl monomer unit satisfying the range of orientation birefringence ([Delta] n a) resin (modified methacrylic resin).
  • general methacrylic resins (non-modified methacrylic resins) and polycarbonate resins other than the above have a photoelastic coefficient and / or orientation birefringence outside the specified range of the present invention, and are transparent thermoplastic resins.
  • the polycarbonate resin has a very large absolute value of the photoelastic coefficient of 90 ⁇ 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, rainbow unevenness may be observed due to the variation in the Re value.
  • the absolute value of the photoelastic coefficient of the methacrylic resin is as small as 3.2 ⁇ 10-12 / Pa, and the Re value is unlikely to change due to stress. Therefore, when a methacrylic resin is used, an optically uniform liquid crystal display protective plate can be obtained. However, since the absolute value of the orientation birefringence of the methacrylic resin is as small as 4.0 ⁇ 10 -4 , the Re value of the obtained liquid crystal display protective plate tends to be as small as about 20 nm, although it depends on the thickness.
  • the thickness of the phase difference adjusting layer (T A) is not particularly limited, the transparent thermoplastic resin (A) may contain aromatic vinyl monomer unit is preferably designed so as to satisfy the above equation (1).
  • the lower limit of T A is preferably 0.05 mm, more preferably 0.075 mm, more preferably 0.10 mm, particularly preferably 0.15 mm, most preferably 0.20 mm.
  • the upper limit value of T A is preferably 3.0 mm, more preferably 1.0 mm, more preferably 0.50 mm, particularly preferably 0.40 mm, most preferably 0.30 mm.
  • the retardation adjusting layer may contain, in a small amount, one or more other polymers whose photoelastic coefficient and / or orientation birefringence is out of the scope of the transparent thermoplastic resin (A).
  • the types of other polymers are not particularly limited, and are generally non-modified methacrylic resins, polycarbonate resins, polyolefins such as polyethylene and polypropylene, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, and polyphenylene oxides. , Polyethylene, polyetherimide, and other thermoplastic resins such as polyacetal; thermocurable resins such as phenolic resin, melamine resin, silicone resin, and epoxy resin.
  • a general non-modified methacrylic resin is, for example, a resin composed of one or more kinds of methacrylic acid ester units.
  • the content of the transparent thermoplastic resin (A) in the retardation adjusting layer is preferably large, preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more.
  • the content of the other polymer in the retardation adjusting layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the phase difference adjusting layer can contain various additives, if necessary.
  • Additives include colorants, antioxidants, thermal deterioration inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, light diffusing agents, and matting agents. Examples thereof include rubber components (impact resistance modifiers) such as agents, core-shell particles and block copolymers, and phosphors.
  • the content of the additive can be appropriately set as long as the effect of the present invention is not impaired.
  • the content of the antioxidant is 0.01 to 1 part by mass
  • the content of the ultraviolet absorber is 0.01 to 3 parts by mass
  • the light stabilizer is 100 parts by mass with respect to 100 parts by mass of the constituent resin of the retardation adjusting layer.
  • the content is preferably 0.01 to 3 parts by mass, and the content of the lubricant is preferably 0.01 to 3 parts by mass.
  • the timing of addition may be during or after the polymerization of the transparent thermoplastic resin (A).
  • the phase difference adjusting layer may be a resin layer made of a resin composition containing a transparent thermoplastic resin (A) and a known rubber component (impact resistance modifier).
  • the rubber component include multi-layer polymer particles having a core-shell structure, a rubber-like polymer having a salami structure, and a block polymer.
  • the rubber component may contain a diene-based monomer unit, an alkyl acrylate-based monomer unit, and the like. From the viewpoint of the transparency of the retardation adjusting layer, it is preferable that the difference between the refractive index of the rubber component and the refractive index of the transparent thermoplastic resin (A) as the main component is smaller.
  • the resin plate included in the liquid crystal display protective plate of the present invention may include a base material layer, if necessary, in accordance with the phase difference adjusting layer.
  • the base material layer can be laminated on the phase difference adjusting layer for the purpose of increasing the overall thickness (d) of the liquid crystal display protective plate and improving the rigidity of the liquid crystal display protective plate.
  • the base material layer is preferably a resin layer that does not affect the Re value of the liquid crystal display protective plate, and is a resin layer containing a transparent thermoplastic resin (B) having a sufficiently small photoelastic coefficient and orientation birefringence. Is preferable.
  • the orientation birefringence ( ⁇ n B ) of the transparent thermoplastic resin (B) is preferably small, preferably less than 10.0 ⁇ 10 -4 , more preferably 8.0 ⁇ 10 -4 or less, still more preferably 6.0. It is ⁇ 10 -4 or less, particularly preferably 4.0 ⁇ 10 -4 or less, and most preferably 2.0 ⁇ 10 -4 or less.
  • the absolute value of the orientation birefringence ( ⁇ n B ) of the transparent thermoplastic resin (B) is not more than the above upper limit value, the influence on the Re value of the liquid crystal display protective plate is sufficiently small (see FIG. 6). , The Re value of the liquid crystal display protective plate can be satisfactorily controlled within an appropriate range.
  • Transparent thermoplastic resin (B) if a transparent thermoplastic resin which satisfies the range of photoelastic coefficient specified in the present invention (C B) and orientation birefringence ([Delta] n B), are not particularly limited. Specific examples include a general non-modified methacrylic resin (PM), a modified methacrylic resin modified with a glutarimide unit, an N-substituted or unsubstituted mylemid unit, a lactone ring unit, and a cycloolefin polymer (COP). ) Etc. can be mentioned.
  • the transparent thermoplastic resin (B) can be used alone or in combination of two or more.
  • the methacrylic resin (PM) is a homopolymer or copolymer containing a structural unit derived from one or more kinds of methacrylic acid esters. From the viewpoint of transparency, the content of the methacrylic acid ester monomer unit in the methacrylic acid resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more. , 100% by mass.
  • Preferred methacrylic acid esters include, for example, methyl methacrylate (MMA), ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate; monocyclic aliphatic methacrylate.
  • Carbide ester; methacrylic acid polycyclic aliphatic hydrocarbon ester and the like can be mentioned.
  • the methacrylic resin (PM) preferably contains MMA units, and the content of MMA units in the methacrylic resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more. , Especially preferably 90% by mass or more, and may be 100% by mass.
  • the methacrylic resin (PM) may contain a structural unit derived from one or more other monomers other than the methacrylic acid ester.
  • Other monomers include methyl acrylate (MA), ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and the like.
  • MA is preferable from the viewpoint of transparency.
  • a copolymer of MMA and MA has excellent transparency and is preferable.
  • the content of MMA in this copolymer is preferably 80% by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • the methacrylic resin (PM) is preferably obtained by polymerizing one or more kinds of methacrylic acid esters containing MMA and, if necessary, other monomers.
  • a plurality of types of monomers usually, a plurality of types of monomers are mixed to prepare a monomer mixture, and then polymerization is performed.
  • the polymerization method is not particularly limited, and from the viewpoint of productivity, a radical polymerization method such as a massive polymerization method, a suspension polymerization method, a solution polymerization method, and an emulsion polymerization method is preferable.
  • thermoplastic resin (B) As a transparent thermoplastic resin (B), illustrated type as the transparent thermoplastic resin (A) Resins (specifically, MS resin, SMA resin, SMM resin, AS resin, modified methacrylic resin, etc.) may be used. Depending on the monomer composition or the modification rate, the type of resin exemplified as the transparent thermoplastic resin (A) may be used as the transparent thermoplastic resin (B).
  • Resins specifically, MS resin, SMA resin, SMM resin, AS resin, modified methacrylic resin, etc.
  • the type of resin exemplified as the transparent thermoplastic resin (A) may be used as the transparent thermoplastic resin (B).
  • the polycarbonate-based resin is not included in the transparent thermoplastic resin (B) because the photoelastic coefficient and the orientation birefringence are outside the specified range of the present invention.
  • the polycarbonate resin has a very large absolute value of the photoelastic coefficient of 90 ⁇ 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, rainbow unevenness may be observed due to the variation in the Re value.
  • the thickness of the substrate layer (T B) is not particularly limited, and is appropriately designed in accordance with the desired thickness and rigidity of the liquid crystal display protection panel.
  • the lower limit of T B is preferably 0.05 mm, more preferably 0.5 mm, more preferably 1.0 mm, particularly preferably 2.0 mm, most preferably 3.0 mm.
  • the upper limit of T B is preferably 6.0 mm, more preferably 5.0 mm, more preferably 4.0 mm, particularly preferably 3.0 mm, most preferably 2.0 mm.
  • the base material layer may contain, in a small amount, one or more other polymers whose photoelastic coefficient and / or orientation birefringence is out of the scope of the transparent thermoplastic resin (B).
  • the type of other polymer is not particularly limited, and is not particularly limited, such as polycarbonate resin, polyolefins such as polyethylene and polypropylene, polyamide, polyphenylene sulfide, polyetheretherketone, polyester, polysulfone, polyphenylene oxide, polyimide, polyetherimide, and polyacetal.
  • Other thermoplastic resins include thermosetting resins such as phenolic resins, melamine resins, silicone resins, and epoxy resins.
  • the content of the transparent thermoplastic resin (B) in the base material layer is preferably large, preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more.
  • the content of the other polymer in the base material layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the base material layer can contain various additives, if necessary. Examples of the types of additives and preferable addition amounts are the same as those of additives that can be used for the retardation adjustment layer. When another polymer and / or additive is added to the base material layer, the timing of addition may be during or after the polymerization of the transparent thermoplastic resin (B).
  • the base material layer may be a resin layer composed of a resin composition containing a transparent thermoplastic resin (B) and a known rubber component (impact resistance modifier).
  • a transparent thermoplastic resin (B) e.g., ethylene glycol dimethacrylate (ABS), ethylene glycol dimethacrylate (B), ethylene glycol dimethacrylate (B), ethylene glycol dimethacrylate (B), ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate (B)-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co
  • the resin plate included in the liquid crystal display protective plate of the present invention may have a phase difference adjusting layer and, if necessary, a resin layer other than the base material layer.
  • the laminated structure of the resin plate includes a two-layer structure of a retardation adjusting layer-a base material layer; a three-layer structure of a base material layer-a retardation adjusting layer-another resin layer; another resin layer-a base material layer-a phase difference. Examples thereof include a three-layer structure of the adjusting layer.
  • the liquid crystal display protective plate of the present invention may have a cured film formed on at least one surface of the resin plate including the retardation adjusting layer, if necessary.
  • the liquid crystal display protective plate of the present invention may have a cured film on at least one outermost surface.
  • the cured film can function as a scratch resistant layer (hard coat layer) or a low reflective layer for the effect of improving visibility.
  • the cured film can be formed by a known method. Examples of the material of the cured film include inorganic, organic, organic-inorganic, and silicone-based materials, and organic-based and organic-inorganic-based materials are preferable from the viewpoint of productivity.
  • the inorganic cured film is formed by forming an inorganic material such as a metal oxide such as SiO 2 , Al 2 O 3 , TIO 2 , and ZrO 2 by vapor deposition such as vacuum deposition and sputtering. be able to.
  • an inorganic material such as a metal oxide such as SiO 2 , Al 2 O 3 , TIO 2 , and ZrO 2
  • vapor deposition such as vacuum deposition and sputtering.
  • a paint containing a resin such as a melamine resin, an alkyd resin, a urethane resin, and an acrylic resin is applied and heat-cured, or a paint containing a polyfunctional acrylic resin is applied. It can be formed by curing with ultraviolet rays.
  • the organic-inorganic cured film is coated with an ultraviolet curable hard coat paint containing inorganic ultrafine particles such as silica ultrafine particles having a photopolymerization-reactive functional group introduced on the surface and a curable organic component, and irradiated with ultraviolet rays. It can be formed by polymerizing a curable organic component and a photopolymerization-reactive functional group of inorganic ultrafine particles. In this method, a network-like crosslinked coating film in which the inorganic ultrafine particles are chemically bonded to the organic matrix and dispersed in the organic matrix can be obtained.
  • inorganic ultrafine particles such as silica ultrafine particles having a photopolymerization-reactive functional group introduced on the surface and a curable organic component, and irradiated with ultraviolet rays. It can be formed by polymerizing a curable organic component and a photopolymerization-reactive functional group of inorganic ultrafine particles.
  • the silicone-based cured film can be formed, for example, by polycondensing a partial hydrolyzate such as carbon functional alkoxysilane, alkyltrialkoxysilane, and tetraalkoxysilane, or a material containing colloidal silica.
  • a partial hydrolyzate such as carbon functional alkoxysilane, alkyltrialkoxysilane, and tetraalkoxysilane, or a material containing colloidal silica.
  • examples of the material coating method include various roll coats such as dip coat and gravure roll coat, flow coat, rod coat, blade coat, spray coat, die coat, and bar coat.
  • the thickness of the scratch resistant (hard coat property) cured film is preferably 2 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. If it is too thin, the surface hardness will be insufficient, and if it is too thick, cracks may occur due to bending during the manufacturing process.
  • the thickness of the low-reflection cured film is preferably 80 to 200 nm, more preferably 100 to 150 nm. If it is too thin or too thick, the low reflection performance may be insufficient.
  • the liquid crystal display protective plate of the present invention may have a known surface treatment layer such as an anti-glare layer, an anti-reflection layer, and an anti-fingerprint layer on the surface, if necessary.
  • a known surface treatment layer such as an anti-glare layer, an anti-reflection layer, and an anti-fingerprint layer on the surface, if necessary.
  • the method for manufacturing a liquid crystal display protective plate of the present invention includes a step (X) of preparing a resin plate having a single-layer structure or a laminated structure, which includes a retardation adjusting layer and, if necessary, a base material layer.
  • the method for producing a liquid crystal display protective plate of the present invention further includes a step (Y) of forming a cured film on at least one surface of the obtained resin plate, if necessary.
  • a resin plate having a single-layer structure or a laminated structure including a retardation adjusting layer can be molded by a known method such as a cast molding method, an injection molding method, or an extrusion molding method. Above all, the extrusion molding method is preferable. In the case of a laminated structure, a coextrusion molding method is preferable.
  • a resin plate having a single-layer structure consisting of only a phase difference adjusting layer can be formed by extruding from a die in a plate-like form, pressurizing and cooling using a plurality of cooling rolls, and taking over by a take-up roll.
  • FIG. 4 shows a schematic view of an extrusion molding apparatus including a T-die 11, first to third cooling rolls 12 to 14, and a pair of take-up rolls 15 as an embodiment.
  • the molten resin plate extruded from the T-die 11 is pressurized and cooled by using a plurality of cooling rolls 12 to 14.
  • the pressurized and cooled resin plate 16 is picked up by a pair of picking rolls 15.
  • the number of cooling rolls can be appropriately designed.
  • the above extrusion, cooling, and pick-up steps are carried out continuously.
  • the resin raw materials of each layer in the molten state are laminated by a feed block method in which the resin raw materials are laminated before the inflow of the T die or a multi-manifold method in which the resin raw materials are laminated inside the T die, and then extruded from the T die in a plate shape. It can be molded by pressurizing and cooling with a plurality of cooling rolls and taking over with a take-up roll.
  • the resin plate is molded so that the Re value of the resin plate is 50 to 330 nm.
  • the Re value it is necessary to control the orientation of the molecule.
  • the orientation of the molecules is generated, for example, by the stress during molding near the glass transition temperature of the polymer.
  • Step (Y) In the step (Y), an inorganic or organic cured film is formed on at least one surface of the resin plate obtained in the step (X) by a known method. Since the method for forming the cured film has been described above, it is omitted here.
  • the method for manufacturing a liquid crystal display protective plate of the present invention may have steps other than the above steps (X) and (Y), if necessary.
  • steps other than the above steps (X) and (Y) for example, with respect to the surface of the resin plate obtained in step (X) on which the cured film is formed, for the purpose of improving the adhesion of the cured film to the resin plate between the steps (X) and (Y).
  • Primer treatment, sandblasting, and surface unevenness treatment such as solvent treatment; even if a step of performing surface treatment such as corona discharge treatment, chromium acid treatment, ozone irradiation treatment, and surface oxidation treatment such as ultraviolet irradiation treatment is added.
  • surface treatment such as corona discharge treatment, chromium acid treatment, ozone irradiation treatment, and surface oxidation treatment such as ultraviolet irradiation treatment is added.
  • surface treatment such as corona discharge treatment, chromium acid treatment, ozone irradiation treatment
  • a liquid crystal display protective plate can be provided.
  • the liquid crystal display protective plate of the present invention is, for example, an ATM of a financial institution such as a bank; a vending machine; a television; a mobile information terminal (PDA) such as a mobile phone (including a smartphone), a personal computer, a tablet-type personal computer, or a digital audio. It is suitable as a protective plate for a liquid crystal display or a touch panel display used in digital information devices such as players, portable game machines, copying machines, fax machines, and car navigation systems.
  • the liquid crystal display protective plate of the present invention is suitable as, for example, a protective plate for an in-vehicle liquid crystal display.
  • the evaluation items and evaluation methods are as follows. (Content of aromatic vinyl monomer unit in transparent thermoplastic resin (A)) The content (V mass%) of the aromatic vinyl monomer unit in the MS resin or SMM resin was determined by 1 H-NMR method using a nuclear magnetic resonance apparatus (“GX-270” manufactured by JEOL Ltd.). ..
  • Glass transition temperature (Tg) of transparent thermoplastic resin The glass transition temperature (Tg) of the transparent thermoplastic resin was measured using a differential scanning calorimeter (“DSC-50”, manufactured by Rigaku Co., Ltd.). 10 mg of the transparent thermoplastic resin was placed in an aluminum pan and set in the above apparatus. After performing nitrogen substitution for 30 minutes or more, the temperature was once raised from 25 ° C. to 200 ° C. at a rate of 20 ° C./min in a nitrogen stream of 10 ml / min, held for 10 minutes, and cooled to 25 ° C. (primary scanning). ). Next, the temperature was raised to 200 ° C.
  • Tg glass transition temperature
  • the transparent thermoplastic resin was press-molded to obtain a resin plate having a thickness of 1.0 mm.
  • a test piece having a width of 15 mm and a length of 80 mm was cut out from the central portion of the obtained resin plate. Both ends of the test piece in the longitudinal direction were gripped by a pair of chucks. The distance between the chucks was 70 mm.
  • Tension was applied to the test piece using an "X-axis dovetail stage" manufactured by Oji Measuring Instruments Co., Ltd. The tension was gradually increased by 10N from 0N to 30N. The tension was monitored by "Sensor Separate Type Digital Force Gauge ZTS-DPU-100N" manufactured by Imada Co., Ltd.
  • the following measurements were carried out for the tension applying conditions at each stage from 0N to 100N.
  • the phase difference value [nm] of the central portion of the test piece in a tensioned state was measured using "KOBRA-WR" manufactured by Oji Measuring Instruments Co., Ltd. under the condition of a measurement wavelength of 589.5 nm. After that, the test piece was removed from the pair of chucks, and the thickness (d [mm]) of the phase difference measuring portion was measured.
  • the transparent thermoplastic resin was press-molded to obtain a resin plate having a thickness of 1.0 mm.
  • a test piece having a width of 20 mm and a length of 50 mm was cut out from the central portion of the obtained resin plate and set in an autograph with a heating chamber (manufactured by SHIMADZU).
  • the distance between the chucks was 20 mm.
  • the stretched test piece is removed from the above apparatus, cooled to 23 ° C., the thickness (d) is measured, and the Re value of the central portion is measured using "KOBRA-WR" manufactured by Oji Measuring Instruments Co., Ltd. at a measurement wavelength of 589. It was measured under the condition of 5 nm. The value of orientation birefringence was calculated by dividing the obtained Re value by the thickness (d) of the test piece.
  • a test piece having a width of 21 cm and a length of 30 cm was cut out from the central portion of the extruded plate so that the extrusion direction (resin flow direction) was the long side direction.
  • a standard lens (FUJINON HF12.5HA-1B) was attached to "WPA-100-L" manufactured by Photonic Lattice Co., Ltd. The height of the lens was adjusted so that the measurement range was 17 cm in width and 22 cm in length. Then, the Re value of the number of birefringent pixels of about 110,000 points was measured, and the average value and the standard deviation were obtained.
  • the liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizing element on the visual side of the liquid crystal display and the extrusion molding direction of the liquid crystal display protective plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the rainbow unevenness due to the variation in the Re value became the strongest was visually evaluated in the following three stages. A: There is no rainbow unevenness, and the visibility of the liquid crystal display does not deteriorate. B: There is some rainbow unevenness, and the visibility of the liquid crystal display is slightly reduced. C: There is remarkable rainbow unevenness, and the visibility of the liquid crystal display is greatly reduced.
  • the liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizing element on the visual side of the liquid crystal display and the extrusion molding direction of the liquid crystal display protective plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the transmitted light intensity of the liquid crystal display was minimized was visually evaluated in the following three stages.
  • B The transmitted light intensity is slightly low, and the visibility of characters and the like displayed on the liquid crystal display is slightly reduced.
  • C The transmitted light intensity is almost zero, and the characters and the like displayed on the liquid crystal display cannot be visually recognized.
  • the liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizing element on the visual side of the liquid crystal display and the extrusion molding direction of the liquid crystal display protective plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the coloring of the liquid crystal display was maximized was visually evaluated in the following three stages. A: There is no noticeable coloring, and the visibility of the liquid crystal display does not deteriorate. B: There is coloring, and the visibility of the liquid crystal display is slightly reduced. C: There is remarkable coloring, and the visibility of the liquid crystal display is lowered.
  • MS resin copolymer of methyl methacrylate (MMA) and styrene (St)
  • MMA methyl methacrylate
  • St styrene
  • the following three types of MS resins were produced by changing the mass ratio of MMA and St charged in the autoclave.
  • a resin for the phase difference adjusting layer (transparent thermoplastic resin (A) or comparative resin) was melt-extruded using a 50 mm ⁇ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). The molten resin is discharged from the T-die in a plate shape, sandwiched between the first cooling roll and the second cooling roll adjacent to each other, wound around the second cooling roll, and the second cooling roll and the third cooling roll. It was cooled by sandwiching it between the two and winding it around a third cooling roll. The resin plate obtained after cooling was taken up by a pair of taking-up rolls.
  • a resin for the base material layer (transparent thermoplastic resin (B) or comparative resin) was melt-extruded using a 50 mm ⁇ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.).
  • a resin for the phase difference adjusting layer (transparent thermoplastic resin (A) or comparative resin) was melt-extruded using a 30 mm ⁇ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). These melted resins were laminated via a multi-manifold type die, and a thermoplastic resin laminate having a two-kind two-layer structure was co-extruded from the T-die.
  • a resin having a two-layer structure of two types in a molten state is discharged from a T-die, sandwiched between the first cooling roll and the second cooling roll adjacent to each other, wound around the second cooling roll, and the second cooling roll and the third. It was cooled by sandwiching it with a cooling roll and winding it around a third cooling roll. The resin plate obtained after cooling was taken up by a pair of taking-up rolls. In this way, a liquid crystal display protective plate having a two-kind two-layer structure composed of a phase difference adjusting layer and a base material layer was obtained.
  • Table 1 and Table 2 the evaluation results of the liquid crystal display protection panel
  • Example 9 to 12 A resin for the base material layer (transparent thermoplastic resin (B) was melt-extruded using a 50 mm ⁇ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). A 30 mm ⁇ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.) was used. , The resin for the phase difference adjusting layer (transparent thermoplastic resin (A)) was melt-extruded. These resins in the molten state were laminated via a multi-manifold type die, and the phase difference was formed from the T die to both sides of the base material layer.
  • thermoplastic resin laminate having a two-kind three-layer structure in which adjustment layers are laminated was co-extruded.
  • a molten two-kind three-layer resin was discharged from a T-die, and adjacent first cooling rolls and second cooling were performed.
  • the resin plate obtained after cooling was cooled by being sandwiched between the rolls, wrapped around the second cooling roll, sandwiched between the second cooling roll and the third cooling roll, and wrapped around the third cooling roll. It was taken up by a pair of take-up rolls.
  • a liquid crystal display protective plate having a two-kind three-layer structure in which phase difference adjusting layers were laminated on both sides of the base material layer was obtained. types and characteristics, the thickness of each layer, V ⁇ T a, and the evaluation results of the liquid crystal display protection panel, shown in Table 1 and Table 2.
  • the liquid crystal display protective plates obtained in Examples 1 to 8 have an average Re value of 50 to 330 nm in the range of 17 cm in width and 22 cm in length, and Re in the range of 17 cm in width and 22 cm in length. The standard deviation of the values was 15.0 nm or less.
  • the V ⁇ T A value from 6.0 to 30.0 in an exemplary 1 to 3 and 6 to 8, exemplary values of V ⁇ T A is outside the range of 6.0 to 30.0 Example Better results were obtained than 4 and 5.
  • V ⁇ of T value of A is outside the range of 6.0 to 30.0 Examples 4 and 5, the blackout in Re value is less Example 4 B rating higher embodiments Re value 5 Then the coloring was B rating
  • Example 7 a PMMA base material layer was added to the configuration of Example 1.
  • Example 8 a PMMA substrate layer was added to the configuration of Example 6.
  • the overall thickness (d) could be increased without significantly changing the average value and standard deviation of the Re value of the liquid crystal display protective plate.
  • the overall thickness (d) could be increased without significantly changing the average value and standard deviation of the Re value of the liquid crystal display protective plate as compared with Example 6.
  • the photoelastic coefficient (C A) and / or orientation birefringence ([Delta] n A) is a liquid crystal display protective plate having a single layer structure of the phase difference adjusting layer formed of a comparative resin is defined outside of the present invention Manufactured.
  • the obtained liquid crystal display protective plate had a small Re value of less than 50 nm, and blackout occurred when the liquid crystal display protective plate on the liquid crystal screen was observed through a polarizing filter. It was.
  • Comparative Example 4 using the polycarbonate-based resin rainbow unevenness occurred when the liquid crystal display protective plate on the liquid crystal screen was observed through the polarizing filter.
  • a liquid crystal display protective plate having a laminated structure with a base material layer made of an outer comparative resin was manufactured.
  • the liquid crystal display protective plate obtained in these comparative examples has a large standard deviation of the Re value (large variation in the Re value), and when the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter, rainbow unevenness occurs. occured.
  • FIGS. 5A and 5B show the distribution of Re values of the liquid crystal display protective plates obtained in Example 7 and Comparative Example 6. It is shown that the Re value of the liquid crystal display protective plate obtained in Example 7 has a small variation, whereas the Re value of the liquid crystal display protective plate obtained in Comparative Example 6 has a large variation.
  • the present invention is not limited to the above embodiments and examples, and the design can be appropriately changed as long as the gist of the present invention is not deviated.
  • Liquid crystal display protection plate 11 T die 12 to 14 Cooling roll 15 Take-up roll 16, 16X, 16Y Resin plate 21 Phase difference adjustment layer 22 Base material layer 31 Hardened film

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a liquid crystal display protective plate with which it is possible to suppress a reduction in visibility due to rainbow uneveness, blackout, coloring, etc., when said liquid crystal display protective plate on a liquid crystal screen is viewed through a polarization filter. A liquid crystal display protective plate (1) according to the present invention comprises a resin plate (16X) including a phase difference adjustment layer (21) containing a transparent thermoplastic resin (A), which has a photoelastic coefficient (CA) with an absolute value of no more than 10.0×10-12∕Pa and an orientation birefringence (ΔnA) with an absolute value of 10.0×10-4 to 100.0×10-4, as found by uniaxially drawing a 20 mm wide, 40 mm long and 1 mm thick test piece to an elongation degree of 100% at a speed of 3 mm/minute and a temperature 10°C higher than the glass transition temperature thereof, and then measuring the in-plane retardation value of the center section of said test piece, wherein the in-plane retardation value is 50 to 330 nm.

Description

液晶ディスプレイ保護板Liquid crystal display protection plate
 本発明は、液晶ディスプレイ保護板に関する。 The present invention relates to a liquid crystal display protective plate.
 液晶ディスプレイ、及び、液晶ディスプレイとタッチパネルとを組み合わせたタッチパネルディスプレイにおいては、表面の傷付き防止等のため、その前面側に保護板が設けられる場合がある。本明細書では、この保護板のことを「液晶ディスプレイ保護板」と称す。
 液晶ディスプレイ保護板は、少なくとも1層の熱可塑性樹脂層からなる樹脂板、及び必要に応じて樹脂板の少なくとも一方の表面に形成された硬化被膜を含む。
In a liquid crystal display and a touch panel display in which a liquid crystal display and a touch panel are combined, a protective plate may be provided on the front side thereof in order to prevent scratches on the surface. In the present specification, this protective plate is referred to as a "liquid crystal display protective plate".
The liquid crystal display protective plate includes a resin plate composed of at least one thermoplastic resin layer and, if necessary, a cured film formed on at least one surface of the resin plate.
 例えば、特許文献1には、メタクリル系樹脂板と、その少なくとも一方の表面に形成された硬化被膜とを含み、携帯型情報端末の表示窓保護板として好適な耐擦傷性樹脂板が開示されている(請求項1、2、7、段落0010等)。特許文献2には、ポリカーボネート系樹脂層の一方の表面にメタクリル系樹脂層を積層した積層板と、この積層板のメタクリル系樹脂層上に形成された硬化被膜とを含む液晶ディスプレイカバー用ポリカーボネート系樹脂積層体が開示されている(請求項1、段落0008等)。 For example, Patent Document 1 discloses a scratch-resistant resin plate that includes a methacrylic resin plate and a cured film formed on at least one of the surfaces thereof and is suitable as a display window protective plate for a portable information terminal. (Claims 1, 2, 7, paragraph 0010, etc.). Patent Document 2 describes a polycarbonate system for a liquid crystal display cover, which includes a laminated plate in which a methacrylic resin layer is laminated on one surface of a polycarbonate resin layer, and a cured film formed on the methacrylic resin layer of the laminated plate. A resin laminate is disclosed (claim 1, paragraph 0008, etc.).
 液晶ディスプレイ保護板は、液晶ディスプレイの前面側(視認者側)に設置され、視認者はこの保護板を通して液晶ディスプレイの画面を見る。ここで、液晶ディスプレイ保護板は液晶ディスプレイからの出射光の偏光性をほとんど変化させないため、偏光サングラス等の偏光フィルタを通して画面を見ると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が暗くなり、画像の視認性が低下する場合がある(ブラックアウト現象)。 The liquid crystal display protective plate is installed on the front side (viewer side) of the liquid crystal display, and the viewer sees the screen of the liquid crystal display through this protective plate. Here, since the liquid crystal display protective plate hardly changes the polarization property of the light emitted from the liquid crystal display, when the screen is viewed through a polarizing filter such as polarized sunglasses, the angle formed by the polarization axis of the emitted light and the transmission axis of the polarizing filter Depending on the situation, the screen may become dark and the visibility of the image may decrease (blackout phenomenon).
 そこで、偏光フィルタを通して液晶ディスプレイの画面を見る場合の画像の視認性の低下を抑制しうる液晶ディスプレイ保護板が検討されている。例えば、特許文献3には、樹脂板の少なくとも一方の表面に硬化被膜が形成された耐擦傷性樹脂板からなり、面内のリタデーション値(「Re値」とも言う。)が85~300nmである液晶ディスプレイ保護板が開示されている(請求項1)。 Therefore, a liquid crystal display protective plate capable of suppressing a decrease in the visibility of an image when viewing the screen of the liquid crystal display through a polarizing filter is being studied. For example, Patent Document 3 comprises a scratch-resistant resin plate having a cured film formed on at least one surface of the resin plate, and has an in-plane retardation value (also referred to as “Re value”) of 85 to 300 nm. A liquid crystal display protective plate is disclosed (claim 1).
特開2004-299199号公報Japanese Unexamined Patent Publication No. 2004-299199 特開2006-103169号公報Japanese Unexamined Patent Publication No. 2006-103169 特開2010-085978号公報Japanese Unexamined Patent Publication No. 2010-0857978
 特許文献3において、樹脂板は好ましくは、ポリカーボネート系樹脂層の少なくとも一方の表面にメタクリル系樹脂層が積層された積層板である(請求項6)。この積層板では例えば、樹脂板の厚みに応じて成形条件を調整することで、ポリカーボネート系樹脂層の複屈折を調整し、液晶ディスプレイ保護板のRe値を好適な範囲内に調整することができる(段落0036等)。 In Patent Document 3, the resin plate is preferably a laminated plate in which a methacrylic resin layer is laminated on at least one surface of the polycarbonate resin layer (claim 6). In this laminated plate, for example, the birefringence of the polycarbonate-based resin layer can be adjusted by adjusting the molding conditions according to the thickness of the resin plate, and the Re value of the liquid crystal display protective plate can be adjusted within a suitable range. (Paragraph 0036, etc.).
 応力と複屈折との関係、及び、配向複屈折と応力複屈折と光弾性係数との関係を示すイメージ図を図6に示す。
 特許文献3に用いられているポリカーボネート系樹脂は、光弾性係数の絶対値が90×10-12/Paと非常に大きく、わずかな応力でRe値が変化する。そのため、ポリカーボネート系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることが難しい。例えば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、Re値のバラツキに起因して、虹ムラが観察される恐れがある。
FIG. 6 shows an image diagram showing the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
The polycarbonate resin used in Patent Document 3 has a very large absolute value of photoelastic coefficient of 90 × 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, rainbow unevenness may be observed due to the variation in the Re value.
 一方、特許文献1に用いられているメタクリル系樹脂は、光弾性係数の絶対値が3.2×10-12/Paと小さく、応力でRe値が変化しにくい。そのため、メタクリル系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることはできる。しかしながら、メタクリル系樹脂は、配向複屈折の絶対値が4.0×10-4と小さいため、厚みにもよるが、得られる液晶ディスプレイ保護板のRe値は20nm程度と小さくなる傾向がある。そのため、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が真っ暗になるブラックアウトが発生し、画像の視認性が低下する恐れがある。 On the other hand, the methacrylic resin used in Patent Document 1 has a small absolute value of photoelastic coefficient of 3.2 × 10-12 / Pa, and the Re value is unlikely to change due to stress. Therefore, when a methacrylic resin is used, an optically uniform liquid crystal display protective plate can be obtained. However, since the absolute value of the orientation birefringence of the methacrylic resin is as small as 4.0 × 10 -4 , the Re value of the obtained liquid crystal display protective plate tends to be as small as about 20 nm, although it depends on the thickness. Therefore, when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, blackout occurs in which the screen becomes pitch black depending on the angle between the polarizing axis of the emitted light and the transmission axis of the polarizing filter, and the image is visually recognized. There is a risk of reduced sex.
 また、一般的に、液晶ディスプレイ保護板のRe値が好適な範囲より大きい場合、偏光フィルタを通して視認した場合に可視光域の各波長の光透過率の差が大きくなり、様々な色が見えて視認性が低下する恐れがある(色付き現象)。 Further, in general, when the Re value of the liquid crystal display protective plate is larger than the preferable range, the difference in light transmittance of each wavelength in the visible light region becomes large when visually recognized through a polarizing filter, and various colors can be seen. Visibility may be reduced (colored phenomenon).
 本発明は上記事情に鑑みてなされたものであり、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、虹ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and suppresses deterioration of visibility such as rainbow unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter. It is an object of the present invention to provide a liquid crystal display protective plate capable of providing a protective plate.
 本発明は、以下の[1]~[6]の液晶ディスプレイ保護板を提供する。
[1] 光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含む位相差調整層を有する樹脂板を含み、
 面内のリタデーション値が50~330nmである、液晶ディスプレイ保護板。
The present invention provides the following liquid crystal display protective plates [1] to [6].
[1] A test piece having an absolute value of photoelastic coefficient (CA) of 10.0 × 10-12 / Pa or less and a width of 20 mm, a length of 40 mm, and a thickness of 1 mm is 10 ° C. higher than the glass transition temperature. The absolute value of orientation birefringence (Δn A ) obtained by uniaxially stretching at a rate of 3 mm / min at a temperature of 3 mm / min and measuring the in-plane retardation value of the central portion of the test piece is 10.0. A resin plate having a phase difference adjusting layer containing a transparent thermoplastic resin (A) of × 10 -4 to 100.0 × 10 -4 is included.
A liquid crystal display protective plate having an in-plane retardation value of 50 to 330 nm.
[2] 幅17cm、長さ22cmの範囲内の面内のリタデーション値の標準偏差が15.0nm以下である、[1]の液晶ディスプレイ保護板。
[3] 透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含み、
 透明熱可塑性樹脂(A)中の前記芳香族ビニル単量体単位の含有量をV[質量%]とし、前記位相差調整層の厚みをT[mm]としたとき、下記式(1)を満たす、[1]又は[2]の液晶ディスプレイ保護板。
6.0≦V×T≦30.0・・・(1)
[2] The liquid crystal display protective plate of [1], wherein the standard deviation of the in-plane retardation value within the range of 17 cm in width and 22 cm in length is 15.0 nm or less.
[3] The transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit and contains.
Transparent thermoplastic resin content of the aromatic vinyl monomer units in (A) and V [wt%], when the thickness of the phase difference adjusting layer was T A [mm], the following formula (1) The liquid crystal display protective plate of [1] or [2] that satisfies the above conditions.
6.0 ≦ V × T A ≦ 30.0 ··· (1)
[4] 前記樹脂板はさらに、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含む基材層を有する、[1]~[3]のいずれかの液晶ディスプレイ保護板。
[5] さらに、前記樹脂板の少なくとも一方の表面に硬化被膜を備える、[1]~[4]のいずれかの液晶ディスプレイ保護板。
[6] 前記樹脂板は押出成形板である、[1]~[5]のいずれかの液晶ディスプレイ保護板。
[4] the resin plate further when the absolute value of photoelastic coefficient (C B) is 10.0 × 10 -12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, the glass Orientation birefringence (Δn B ) obtained by uniaxially stretching at a rate of 3 mm / min at a temperature 10 ° C. higher than the transition temperature at a stretching rate of 100% and measuring the in-plane retardation value of the central portion of the test piece. The liquid crystal display protective plate according to any one of [1] to [3], which has a base material layer containing a transparent thermoplastic resin (B) having an absolute value of less than 10.0 × 10 -4.
[5] The liquid crystal display protective plate according to any one of [1] to [4], further comprising a cured film on at least one surface of the resin plate.
[6] The liquid crystal display protective plate according to any one of [1] to [5], wherein the resin plate is an extruded plate.
 本発明によれば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、虹ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供することができる。 According to the present invention, a liquid crystal display protective plate capable of suppressing deterioration of visibility such as rainbow unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter is provided. Can be provided.
本発明に係る第1実施形態の液晶ディスプレイ保護板の模式断面図である。It is a schematic cross-sectional view of the liquid crystal display protection plate of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態の液晶ディスプレイ保護板の模式断面図である。It is a schematic cross-sectional view of the liquid crystal display protection plate of the 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態の液晶ディスプレイ保護板の模式断面図である。It is a schematic cross-sectional view of the liquid crystal display protection plate of the 3rd Embodiment which concerns on this invention. 本発明に係る一実施形態の押出成形板の製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the extrusion-molded plate of one Embodiment which concerns on this invention. 実施例7で得られた液晶ディスプレイ保護板のRe値の分布を示すヒストグラムである。It is a histogram which shows the distribution of the Re value of the liquid crystal display protection plate obtained in Example 7. 比較例6で得られた液晶ディスプレイ保護板のRe値の分布を示すヒストグラムである。It is a histogram which shows the distribution of the Re value of the liquid crystal display protection plate obtained in the comparative example 6. 応力と複屈折との関係、及び、配向複屈折と応力複屈折と光弾性係数との関係を示すイメージ図である。It is an image diagram which shows the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
 一般的に、薄膜成形体に対しては、厚みに応じて、「フィルム」、「シート」、又は「板」の用語が使用されるが、これらの間に明確な区別はない。本明細書で言う「樹脂板」には、「樹脂フィルム」及び「樹脂シート」が含まれるものとする。 Generally, for thin film molded products, the terms "film", "sheet", or "plate" are used depending on the thickness, but there is no clear distinction between them. The "resin plate" referred to in the present specification shall include a "resin film" and a "resin sheet".
[液晶ディスプレイ保護板]
 本発明は、液晶ディスプレイ保護板に関する。液晶ディスプレイ保護板は、液晶ディスプレイ、及び、液晶ディスプレイとタッチパネルとを組み合わせたタッチパネルディスプレイの保護用途に好適に用いることができる。
 本発明の液晶ディスプレイ保護板は、位相差調整層を含み、さらに好ましくは基材層及び/又は硬化被膜を含む。本発明の液晶ディスプレイ保護板は好ましくは、位相差調整層、及び必要に応じて基材層を含む樹脂板と、この樹脂板の少なくとも一方の表面に形成された硬化被膜とを含む。樹脂板は、好ましくは押出成形板である。
[Liquid crystal display protection plate]
The present invention relates to a liquid crystal display protective plate. The liquid crystal display protective plate can be suitably used for protecting the liquid crystal display and the touch panel display in which the liquid crystal display and the touch panel are combined.
The liquid crystal display protective plate of the present invention includes a retardation adjusting layer, more preferably a base material layer and / or a cured film. The liquid crystal display protective plate of the present invention preferably includes a phase difference adjusting layer, a resin plate including a base material layer if necessary, and a cured film formed on at least one surface of the resin plate. The resin plate is preferably an extruded plate.
 図1~図3は、本発明に係る第1~第3実施形態の液晶ディスプレイ保護板の模式断面図である。図中、符号1~3は液晶ディスプレイ保護板、符号16X、16Yは樹脂板、符号21は位相差調整層、符号22は基材層、符号31は硬化被膜をそれぞれ示す。
 第1実施形態の液晶ディスプレイ保護板1は、位相差調整層21のみからなる単層構造の樹脂板16Xからなる。
 第2実施形態の液晶ディスプレイ保護板2は、位相差調整層21と基材層22とからなる2層構造の樹脂板16Yからなる。
 第3実施形態の液晶ディスプレイ保護板3は、位相差調整層21と基材層22とからなる2層構造の樹脂板16Yの少なくとも一方の表面に硬化被膜31が形成されたものである。図3に示す例では、樹脂板16Yの両面に硬化被膜31が形成されている。
 液晶ディスプレイ保護板の構成は図示例に限らず、本発明の趣旨を逸脱しない限り、適宜設計変更が可能である。
1 to 3 are schematic cross-sectional views of the liquid crystal display protective plate of the first to third embodiments according to the present invention. In the figure, reference numerals 1 to 3 indicate a liquid crystal display protective plate, reference numerals 16X and 16Y indicate a resin plate, reference numeral 21 indicates a retardation adjusting layer, reference numeral 22 indicates a base material layer, and reference numeral 31 indicates a cured film.
The liquid crystal display protective plate 1 of the first embodiment is made of a resin plate 16X having a single layer structure including only the phase difference adjusting layer 21.
The liquid crystal display protective plate 2 of the second embodiment is made of a resin plate 16Y having a two-layer structure including a retardation adjusting layer 21 and a base material layer 22.
The liquid crystal display protective plate 3 of the third embodiment has a cured coating 31 formed on at least one surface of a resin plate 16Y having a two-layer structure composed of a retardation adjusting layer 21 and a base material layer 22. In the example shown in FIG. 3, the cured coating 31 is formed on both sides of the resin plate 16Y.
The configuration of the liquid crystal display protective plate is not limited to the illustrated example, and the design can be appropriately changed as long as the gist of the present invention is not deviated.
 本発明において、位相差調整層は、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度(Tg)より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、一軸延伸後の試験片の中央部分の面内のリタデーション値(「Re値」とも言う。)を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含む。 In the present invention, the phase difference adjusting layer when the absolute value of photoelastic coefficient (C A) is 10.0 × 10 -12 / Pa or less, a width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, the glass transition Uniaxial stretching at a rate of 3 mm / min at a temperature 10 ° C. higher than the temperature (Tg) at a stretching rate of 100%, and the in-plane retardation value (also referred to as "Re value") of the central portion of the test piece after uniaxial stretching. Includes a transparent thermoplastic resin (A) having an absolute value of orientation double refraction (Δn A ) of 10.0 × 10 -4 to 100.0 × 10 -4.
 「リタデーション」とは、分子主鎖方向の光とそれに垂直な方向の光との位相差である。一般的に高分子は加熱溶融成形されることで任意の形状を得ることができるが、加熱及び冷却の過程において発生する応力によって分子が配向してリタデーションが発生することが知られている。なお、本明細書において、「リタデーション」は特に明記しない限り、面内のリタデーションを示すものとする。 "Retadation" is the phase difference between the light in the direction of the molecular main chain and the light in the direction perpendicular to it. Generally, a polymer can be obtained by heating and melting to obtain an arbitrary shape, but it is known that the molecules are oriented by the stress generated in the process of heating and cooling to generate retardation. In addition, in this specification, "retamination" means in-plane retardation unless otherwise specified.
 一般的に、樹脂板のRe値は、下記式(i)で表される。
[樹脂板のRe値]=[複屈折(ΔN)]×[厚み(d)]・・・(i)
 複屈折(ΔN)は、下記式(ii)で表される。
[複屈折]=[応力複屈折]+[配向複屈折]・・・(ii)
 応力複屈折、配向複屈折はそれぞれ、下記式(iii)、(iv)で表される。
[応力複屈折]=[光弾性係数(C)]×[応力]・・・(iii)
[配向複屈折]=[固有複屈折]×[配向度]・・・(iv)
 式(iv)において、配向度は0~1.0の範囲の値である。
 応力と複屈折との関係、及び、配向複屈折と応力複屈折と光弾性係数との関係を示すイメージ図を図6に示す。
Generally, the Re value of the resin plate is represented by the following formula (i).
[Re value of resin plate] = [birefringence (ΔN)] × [thickness (d)] ... (i)
Birefringence (ΔN) is represented by the following equation (ii).
[Brefringence] = [Stress birefringence] + [Orientation birefringence] ... (ii)
The stress birefringence and the orientation birefringence are represented by the following equations (iii) and (iv), respectively.
[Stress birefringence] = [photoelastic coefficient (C)] × [stress] ... (iii)
[Orientation birefringence] = [Inherent birefringence] x [Orientation degree] ... (iv)
In equation (iv), the degree of orientation is a value in the range of 0 to 1.0.
FIG. 6 shows an image diagram showing the relationship between stress and birefringence, and the relationship between orientation birefringence, stress birefringence, and photoelastic coefficient.
 本発明では、図6に模試的に示される光弾性係数と配向複屈折で透明熱可塑性樹脂(A)及び後記透明熱可塑性樹脂(B)の光学特性を特定している。
 本発明の液晶ディスプレイ保護板では、上記特定の光学特性を有する透明熱可塑性樹脂(A)を含む位相差調整層を含むことで、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、虹ムラ、及びブラックアウト等の視認性の低下を抑制することが可能である。
In the present invention, the optical characteristics of the transparent thermoplastic resin (A) and the transparent thermoplastic resin (B) described later are specified by the photoelastic coefficient and orientation birefringence shown in FIG.
When the liquid crystal display protective plate of the present invention includes the phase difference adjusting layer containing the transparent thermoplastic resin (A) having the above-mentioned specific optical characteristics, the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter. However, it is possible to suppress deterioration of visibility such as uneven rainbow and blackout.
 本明細書において、「液晶ディスプレイ保護板のRe値」は、特に明記しない限り、幅17cm、長さ22cmの測定範囲内の約11万点の複屈折画素数のRe値の平均値である。「液晶ディスプレイ保護板のRe値の標準偏差」は、特に明記しない限り、幅17cm、長さ22cmの測定範囲内の約11万点の複屈折画素数のRe値の標準偏差である。 In the present specification, the "Re value of the liquid crystal display protective plate" is an average value of the Re values of about 110,000 birefringent pixels within the measurement range of 17 cm in width and 22 cm in length, unless otherwise specified. Unless otherwise specified, the "standard deviation of the Re value of the liquid crystal display protective plate" is the standard deviation of the Re value of about 110,000 birefringent pixels within the measurement range of 17 cm in width and 22 cm in length.
 液晶ディスプレイ保護板のRe値は、好ましくは50~330nm、より好ましくは70~250nm、特に好ましくは80~200nm、最も好ましくは90~150nmである。Re値が上記下限値未満では、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、出射光の偏光軸と偏光フィルタの透過軸との関係によらず、ブラックアウトが発生する恐れがある。Re値が上記上限値超では、偏光フィルタを通して視認した際、可視光域の各波長の光透過率の差が大きくなり、様々な色が見えて視認性が低下する恐れがある(色付き現象)。 The Re value of the liquid crystal display protective plate is preferably 50 to 330 nm, more preferably 70 to 250 nm, particularly preferably 80 to 200 nm, and most preferably 90 to 150 nm. If the Re value is less than the above lower limit, blackout may occur when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, regardless of the relationship between the polarizing axis of the emitted light and the transmission axis of the polarizing filter. There is. If the Re value exceeds the above upper limit value, the difference in light transmittance of each wavelength in the visible light region becomes large when visually recognized through a polarizing filter, and various colors may be seen and the visibility may be deteriorated (coloring phenomenon). ..
 液晶ディスプレイ保護板のRe値の標準偏差は、小さい方が、Re値のバラツキが少なく、好ましい。Re値の標準偏差は、好ましくは15nm以下、より好ましくは10nm以下、さらに好ましくは7nm以下、特に好ましくは5nm以下、最も好ましくは4nm以下である。Re値の標準偏差が上記上限値以下であると、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、Re値のバラツキに起因する虹ムラが抑制され、視認性が向上する。 The smaller the standard deviation of the Re value of the liquid crystal display protective plate is, the less the variation of the Re value is, which is preferable. The standard deviation of the Re value is preferably 15 nm or less, more preferably 10 nm or less, still more preferably 7 nm or less, particularly preferably 5 nm or less, and most preferably 4 nm or less. When the standard deviation of the Re value is not more than the above upper limit value, when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, rainbow unevenness due to the variation of the Re value is suppressed and the visibility is improved.
 液晶ディスプレイ保護板のRe値の平均値と標準偏差は例えば、フォトニックラティス社製のリタデーション測定器「WPA-100-L」を用い、後記[実施例]の項に記載の方法にて測定することができる。 The average value and standard deviation of the Re value of the liquid crystal display protective plate are measured, for example, by using the retardation measuring device "WPA-100-L" manufactured by Photonic Lattice Co., Ltd. and the method described in the section [Example] below. be able to.
 液晶ディスプレイ保護板の全体の厚み(d)は特に制限されず、好ましくは0.2~6.0mm、より好ましくは0.3~5.0mm、特に好ましくは0.4~3.0mmである。薄すぎると液晶ディスプレイ保護板の剛性が不充分となる恐れがあり、厚すぎると液晶ディスプレイ又はこれを含むタッチパネルディスプレイの軽量化の妨げになる恐れがある。 The overall thickness (d) of the liquid crystal display protective plate is not particularly limited, and is preferably 0.2 to 6.0 mm, more preferably 0.3 to 5.0 mm, and particularly preferably 0.4 to 3.0 mm. .. If it is too thin, the rigidity of the liquid crystal display protective plate may be insufficient, and if it is too thick, it may hinder the weight reduction of the liquid crystal display or the touch panel display including the liquid crystal display.
(位相差調整層)
 本発明の液晶ディスプレイ保護板は、位相差調整層を有する樹脂板を含む。位相差調整層は液晶ディスプレイ保護板のRe値を主に決定する層であり、特定の光学特性を有する透明熱可塑性樹脂(A)を含む。
(Phase difference adjustment layer)
The liquid crystal display protective plate of the present invention includes a resin plate having a phase difference adjusting layer. The phase difference adjusting layer is a layer that mainly determines the Re value of the liquid crystal display protective plate, and contains a transparent thermoplastic resin (A) having specific optical characteristics.
<透明熱可塑性樹脂(A)>
 透明熱可塑性樹脂(A)の光弾性係数(C)の絶対値は、10.0×10-12/Pa以下であり、好ましくは8.0×10-12/Pa以下、より好ましくは6.0×10-12/Pa以下、特に好ましくは5.0×10-12/Pa以下、最も好ましくは4.0×10-12/Pa以下である。光弾性係数(C)の絶対値が上記上限値以下であると、押出成形等の成形加工時に発生する残存応力による応力複屈折が小さく(図6を参照されたい。)、液晶ディスプレイ保護板のRe値の標準偏差を低減できる。その結果、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、Re値のバラツキに起因する虹ムラが抑制され、視認性が向上する。
<Transparent thermoplastic resin (A)>
The absolute value of the photoelastic coefficient of the transparent thermoplastic resin (A) (C A) is a 10.0 × 10 -12 / Pa or less, preferably 8.0 × 10 -12 / Pa or less, more preferably 6 It is 0.0 × 10-12 / Pa or less, particularly preferably 5.0 × 10-12 / Pa or less, and most preferably 4.0 × 10-12 / Pa or less. If the absolute value of photoelastic coefficient (C A) is at more than the above upper limit, small stress birefringence due to the residual stress generated during molding of the extrusion molding (see FIG. 6.), Liquid crystal display protective plate The standard deviation of the Re value of can be reduced. As a result, when the liquid crystal display protective plate on the liquid crystal screen is observed through the polarizing filter, rainbow unevenness due to the variation of the Re value is suppressed, and the visibility is improved.
 透明熱可塑性樹脂(A)の配向複屈折(Δn)の絶対値は、10.0×10-4~100.0×10-4であり、好ましくは20.0×10-4~90.0×10-4、より好ましくは30.0×10-4~70.0×10-4、特に好ましくは35.0×10-4~60.0×10-4である。透明熱可塑性樹脂(A)の配向複屈折(Δn)の絶対値が上記範囲内であると、液晶ディスプレイ保護板のRe値を適切な範囲に制御することができる。
 配向複屈折はポリマーの配向度に依存するため、成形条件及び延伸条件等の製造条件の影響を受ける。本明細書において、特に明記しない限り、「配向複屈折」は、後記[実施例]の項に記載の方法にて測定するものとする。
The absolute value of the orientation compound refraction (Δn A ) of the transparent thermoplastic resin (A) is 10.0 × 10 -4 to 100.0 × 10 -4 , preferably 20.0 × 10 -4 to 90. It is 0 × 10 -4 , more preferably 30.0 × 10 -4 to 70.0 × 10 -4 , and particularly preferably 35.0 × 10 -4 to 60.0 × 10 -4 . When the absolute value of the orientation birefringence (Δn A ) of the transparent thermoplastic resin (A) is within the above range, the Re value of the liquid crystal display protective plate can be controlled within an appropriate range.
Since the orientation birefringence depends on the degree of orientation of the polymer, it is affected by manufacturing conditions such as molding conditions and stretching conditions. In the present specification, unless otherwise specified, "orientation birefringence" shall be measured by the method described in the section [Example] below.
 透明熱可塑性樹脂(A)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす透明熱可塑性樹脂であれば、特に限定されない。
 一態様において、透明熱可塑性樹脂(A)は、1種又は2種以上の芳香族ビニル単量体単位を含むことができる。芳香族ビニル単量体としては特に制限されず、スチレン(St);2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、及び4-tert-ブチルスチレン等の核アルキル置換スチレン;α-メチルスチレン、及び4-メチル-α-メチルスチレン等のα-アルキル置換スチレン等が挙げられる。中でも、入手性の観点から、スチレン(St)が好ましい。
Transparent thermoplastic resin (A), if a transparent thermoplastic resin which satisfies the range of photoelastic coefficient specified in the present invention (C A) and orientation birefringence ([Delta] n A), is not particularly limited.
In one aspect, the transparent thermoplastic resin (A) can contain one or more aromatic vinyl monomer units. The aromatic vinyl monomer is not particularly limited, and styrene (St); nuclear alkyl substitutions such as 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, and 4-tert-butylstyrene. Styrene; α-methylstyrene, α-alkyl substituted styrene such as 4-methyl-α-methylstyrene and the like can be mentioned. Of these, styrene (St) is preferable from the viewpoint of availability.
 透明熱可塑性樹脂(A)中の芳香族ビニル単量体単位の含有量をV[質量%]とし、位相差調整層の厚みをT[mm]とする。これらの積(V×T)は、下記式(1)を満たすことが好ましい。
6.0≦V×T≦30.0・・・(1)
 透明熱可塑性樹脂(A)は、光弾性係数(C)の絶対値が小さく、応力複屈折はほぼゼロである。透明熱可塑性樹脂(A)がスチレン(St)単位等の芳香族ビニル単量体単位を含む場合、配向複屈折(Δn)は透明熱可塑性樹脂(A)中の芳香族ビニル単量体単位の含有量V[質量%]に依存する傾向がある。そのため、V×Tは液晶ディスプレイ保護板のRe値と強く相関する。V×Tが上記式(1)を満たす場合、液晶ディスプレイ保護板のRe値を適切な範囲に制御することができる。
The content of the aromatic vinyl monomer units in the transparent thermoplastic resin (A) and V [wt%], the thickness of the phase difference adjusting layer and T A [mm]. These product (V × T A) preferably satisfies the following formula (1).
6.0 ≦ V × T A ≦ 30.0 ··· (1)
Transparent thermoplastic resin (A), the absolute value of photoelastic coefficient (C A) is small, the stress birefringence is substantially zero. When the transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit such as a styrene (St) unit, the orientation compound refraction (Δn A ) is an aromatic vinyl monomer unit in the transparent thermoplastic resin (A). Tends to depend on the content V [mass%] of. Therefore, V × T A is strongly correlated with Re value of the liquid crystal display protection panel. If V × T A satisfies the above formula (1), it is possible to control the Re value of the liquid crystal display protective plate to a suitable range.
 透明熱可塑性樹脂(A)は、芳香族ビニル単量体単位の他に、メタクリル酸メチル(MMA)単位等のメタクリル酸エステル単位;無水マレイン酸単位等の酸無水物単位;アクリロニトリル単位等の他の単量体単位を有する共重合体であってもよい。
 芳香族ビニル単量体単位を含む透明熱可塑性樹脂(A)の具体例としては、メタクリル酸エステル-スチレン共重合体(MS樹脂);スチレン-無水マレイン酸共重合体(SMA樹脂);スチレン-メタクリル酸エステル-無水マレイン酸共重合体(SMM樹脂);アクリロニトリル-スチレン共重合体(AS樹脂)等が挙げられる。これらは、1種または2種以上用いることができる。
 透明熱可塑性樹脂(A)中の芳香族ビニル単量体単位の含有量V[質量%]は特に制限されず、好ましくは、10~90質量%、より好ましくは20~80質量%である。
The transparent thermoplastic resin (A) includes, in addition to the aromatic vinyl monomer unit, a methacrylic acid ester unit such as a methyl methacrylate (MMA) unit; an acid anhydride unit such as a maleic anhydride unit; an acrylonitrile unit and the like. It may be a copolymer having a monomer unit of.
Specific examples of the transparent thermoplastic resin (A) containing an aromatic vinyl monomer unit include methacrylic acid ester-styrene copolymer (MS resin); styrene-maleic anhydride copolymer (SMA resin); styrene-. Examples thereof include a methacrylic acid ester-maleic anhydride copolymer (SMM resin); an acrylonitrile-styrene copolymer (AS resin). These can be used alone or in combination of two or more.
The content V [mass%] of the aromatic vinyl monomer unit in the transparent thermoplastic resin (A) is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 80% by mass.
 透明熱可塑性樹脂(A)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たすものであれば、芳香族ビニル単量体単位を含まない樹脂であってもよい。芳香族ビニル単量体単位を含まない透明熱可塑性樹脂(A)としては、メタクリル酸メチル単位等のメタクリル酸エステル単位と、グルタルイミド単位、N-置換又は無置換マイレミド単位、及びラクトン環単位から選ばれる少なくとも1種の単位とを含む変性メタクリル系樹脂が挙げられる。これらは、1種または2種以上用いることができる。 Transparent thermoplastic resin (A), as long as it satisfies the range of photoelastic coefficient specified in the present invention (C A) and orientation birefringence ([Delta] n A), a resin containing no aromatic vinyl monomer unit There may be. The transparent thermoplastic resin (A) containing no aromatic vinyl monomer unit includes a methacrylic acid ester unit such as a methyl methacrylate unit, a glutarimide unit, an N-substituted or unsubstituted mylemid unit, and a lactone ring unit. Modified methacrylic resins containing at least one unit of choice. These can be used alone or in combination of two or more.
 透明熱可塑性樹脂(A)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす芳香族ビニル単量体単位を含む樹脂と、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす芳香族ビニル単量体単位を含まない樹脂(変性メタクリル系樹脂等)との混合物であってもよい。 Transparent thermoplastic resin (A) is a resin containing an aromatic vinyl monomer unit satisfying the range of photoelastic coefficient (C A) and orientation birefringence ([Delta] n A) specified in the present invention, defined in the present invention or it may be a mixture of a photoelastic coefficient (C a) and does not contain an aromatic vinyl monomer unit satisfying the range of orientation birefringence ([Delta] n a) resin (modified methacrylic resin).
 本発明では、上記以外の一般的なメタクリル系樹脂(非変性のメタクリル系樹脂)及びポリカーボネート系樹脂は、光弾性係数及び/又は配向複屈折が本発明の規定範囲外であり、透明熱可塑性樹脂(A)には含まれない。
 ポリカーボネート系樹脂は、光弾性係数の絶対値が90×10-12/Paと非常に大きく、わずかな応力でRe値が変化する。そのため、ポリカーボネート系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることが難しい。例えば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、Re値のバラツキに起因して、虹ムラが観察される恐れがある。
 メタクリル系樹脂は、光弾性係数の絶対値が3.2×10-12/Paと小さく、応力でRe値が変化しにくい。そのため、メタクリル系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることはできる。しかしながら、メタクリル系樹脂は、配向複屈折の絶対値が4.0×10-4と小さいため、厚みにもよるが、得られる液晶ディスプレイ保護板のRe値は20nm程度と小さくなる傾向がある。そのため、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が真っ暗になるブラックアウトが発生し、画像の視認性が低下する恐れがある。
In the present invention, general methacrylic resins (non-modified methacrylic resins) and polycarbonate resins other than the above have a photoelastic coefficient and / or orientation birefringence outside the specified range of the present invention, and are transparent thermoplastic resins. Not included in (A).
The polycarbonate resin has a very large absolute value of the photoelastic coefficient of 90 × 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, rainbow unevenness may be observed due to the variation in the Re value.
The absolute value of the photoelastic coefficient of the methacrylic resin is as small as 3.2 × 10-12 / Pa, and the Re value is unlikely to change due to stress. Therefore, when a methacrylic resin is used, an optically uniform liquid crystal display protective plate can be obtained. However, since the absolute value of the orientation birefringence of the methacrylic resin is as small as 4.0 × 10 -4 , the Re value of the obtained liquid crystal display protective plate tends to be as small as about 20 nm, although it depends on the thickness. Therefore, when observing the liquid crystal display protective plate on the liquid crystal screen through the polarizing filter, blackout occurs in which the screen becomes pitch black depending on the angle between the polarizing axis of the emitted light and the transmission axis of the polarizing filter, and the image is visually recognized. There is a risk of reduced sex.
 位相差調整層の厚み(T)は特に制限されず、透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含む場合、好ましくは上記式(1)を満たすように設計される。Tの下限値は、好ましくは0.05mm、より好ましくは0.075mm、さらに好ましくは0.10mm、特に好ましくは0.15mm、最も好ましくは0.20mmである。Tの上限値は、好ましくは3.0mm、より好ましくは1.0mm、さらに好ましくは0.50mm、特に好ましくは0.40mm、最も好ましくは0.30mmである。 The thickness of the phase difference adjusting layer (T A) is not particularly limited, the transparent thermoplastic resin (A) may contain aromatic vinyl monomer unit is preferably designed so as to satisfy the above equation (1). The lower limit of T A is preferably 0.05 mm, more preferably 0.075 mm, more preferably 0.10 mm, particularly preferably 0.15 mm, most preferably 0.20 mm. The upper limit value of T A is preferably 3.0 mm, more preferably 1.0 mm, more preferably 0.50 mm, particularly preferably 0.40 mm, most preferably 0.30 mm.
 位相差調整層は、光弾性係数及び/又は配向複屈折が透明熱可塑性樹脂(A)として規定外である1種以上の他の重合体を、少量であれば含むことができる。他の重合体の種類としては特に制限されず、一般的な非変性のメタクリル系樹脂、ポリカーボネート系樹脂、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、及びポリアセタール等の他の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びエポキシ樹脂等の熱硬化性樹脂等が挙げられる。
 一般的な非変性のメタクリル系樹脂は例えば、1種以上のメタクリル酸エステル単位からなる樹脂である。
 位相差調整層中の透明熱可塑性樹脂(A)の含有量は多い方が好ましく、好ましくは90質量%以上、より好ましくは95質量%以上、特に好ましくは98質量%以上である。位相差調整層中の他の重合体の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
The retardation adjusting layer may contain, in a small amount, one or more other polymers whose photoelastic coefficient and / or orientation birefringence is out of the scope of the transparent thermoplastic resin (A). The types of other polymers are not particularly limited, and are generally non-modified methacrylic resins, polycarbonate resins, polyolefins such as polyethylene and polypropylene, polyamides, polyphenylene sulfides, polyether ether ketones, polyesters, polysulfones, and polyphenylene oxides. , Polyethylene, polyetherimide, and other thermoplastic resins such as polyacetal; thermocurable resins such as phenolic resin, melamine resin, silicone resin, and epoxy resin.
A general non-modified methacrylic resin is, for example, a resin composed of one or more kinds of methacrylic acid ester units.
The content of the transparent thermoplastic resin (A) in the retardation adjusting layer is preferably large, preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more. The content of the other polymer in the retardation adjusting layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
 位相差調整層は必要に応じて、各種添加剤を含むことができる。添加剤としては、着色剤、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、光拡散剤、艶消し剤、コアシェル粒子及びブロック共重合体等のゴム成分(耐衝撃性改質剤)、及び蛍光体等が挙げられる。添加剤の含有量は、本発明の効果を損なわない範囲で適宜設定できる。位相差調整層の構成樹脂100質量部に対して、例えば、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部が好ましい。
 位相差調整層に他の重合体及び/又は添加剤を添加させる場合、添加タイミングは、透明熱可塑性樹脂(A)の重合時でも重合後でもよい。
The phase difference adjusting layer can contain various additives, if necessary. Additives include colorants, antioxidants, thermal deterioration inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, light diffusing agents, and matting agents. Examples thereof include rubber components (impact resistance modifiers) such as agents, core-shell particles and block copolymers, and phosphors. The content of the additive can be appropriately set as long as the effect of the present invention is not impaired. For example, the content of the antioxidant is 0.01 to 1 part by mass, the content of the ultraviolet absorber is 0.01 to 3 parts by mass, and the light stabilizer is 100 parts by mass with respect to 100 parts by mass of the constituent resin of the retardation adjusting layer. The content is preferably 0.01 to 3 parts by mass, and the content of the lubricant is preferably 0.01 to 3 parts by mass.
When another polymer and / or an additive is added to the retardation adjusting layer, the timing of addition may be during or after the polymerization of the transparent thermoplastic resin (A).
 位相差調整層は、透明熱可塑性樹脂(A)と公知のゴム成分(耐衝撃性改質剤)とを含む樹脂組成物からなる樹脂層であってもよい。ゴム成分としては、コアシェル構造の多層構造重合体粒子、サラミ構造を持つゴム状重合体、及びブロックポリマー等が挙げられる。ゴム成分は、ジエン系単量体単位及びアクリル酸アルキル系単量体単位等を含むことができる。位相差調整層の透明性の観点から、ゴム成分の屈折率と主成分である透明熱可塑性樹脂(A)の屈折率との差はより小さい方が好ましい。 The phase difference adjusting layer may be a resin layer made of a resin composition containing a transparent thermoplastic resin (A) and a known rubber component (impact resistance modifier). Examples of the rubber component include multi-layer polymer particles having a core-shell structure, a rubber-like polymer having a salami structure, and a block polymer. The rubber component may contain a diene-based monomer unit, an alkyl acrylate-based monomer unit, and the like. From the viewpoint of the transparency of the retardation adjusting layer, it is preferable that the difference between the refractive index of the rubber component and the refractive index of the transparent thermoplastic resin (A) as the main component is smaller.
(基材層)
 本発明の液晶ディスプレイ保護板に含まれる樹脂板は、位相差調整層に合わせて、必要に応じて基材層を含むことができる。基材層は、液晶ディスプレイ保護板の全体の厚み(d)を増加させ、液晶ディスプレイ保護板の剛性を向上させる等の目的で、位相差調整層上に積層することできる。基材層は、液晶ディスプレイ保護板のRe値に影響を与えない樹脂層であることが好ましく、光弾性係数及び配向複屈折が充分に小さい透明熱可塑性樹脂(B)を含む樹脂層であることが好ましい。
(Base layer)
The resin plate included in the liquid crystal display protective plate of the present invention may include a base material layer, if necessary, in accordance with the phase difference adjusting layer. The base material layer can be laminated on the phase difference adjusting layer for the purpose of increasing the overall thickness (d) of the liquid crystal display protective plate and improving the rigidity of the liquid crystal display protective plate. The base material layer is preferably a resin layer that does not affect the Re value of the liquid crystal display protective plate, and is a resin layer containing a transparent thermoplastic resin (B) having a sufficiently small photoelastic coefficient and orientation birefringence. Is preferable.
<透明熱可塑性樹脂(B)>
 透明熱可塑性樹脂(B)の光弾性係数(C)の絶対値は小さい方が好ましく、好ましくは10.0×10-12/Pa以下、より好ましくは8.0×10-12/Pa以下、さらに好ましくは6.0×10-12/Pa以下、特に好ましくは5.0×10-12/Pa以下、最も好ましくは4.0×10-12/Pa以下である。光弾性係数(C)の絶対値が上記上限値以下であると、押出成形等の成形加工時に発生する残存応力による応力複屈折が充分に小さく(図6を参照されたい。)、液晶ディスプレイ保護板のRe値の標準偏差を低減できる。その結果、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際、Re値のバラツキに起因する虹ムラが抑制され、視認性が向上する。
<Transparent thermoplastic resin (B)>
Absolute value smaller are preferred photoelastic coefficient of the transparent thermoplastic resin (B) (C B), preferably 10.0 × 10 -12 / Pa or less, more preferably 8.0 × 10 -12 / Pa or less It is more preferably 6.0 × 10-12 / Pa or less, particularly preferably 5.0 × 10-12 / Pa or less, and most preferably 4.0 × 10-12 / Pa or less. If the absolute value of photoelastic coefficient (C B) is less than the above upper limit, sufficiently stress birefringence due to the residual stress generated during molding of the extrusion molding small (see FIG. 6.), Liquid crystal display The standard deviation of the Re value of the protective plate can be reduced. As a result, when the liquid crystal display protective plate on the liquid crystal screen is observed through the polarizing filter, rainbow unevenness due to the variation of the Re value is suppressed, and the visibility is improved.
 透明熱可塑性樹脂(B)の配向複屈折(Δn)は小さい方が好ましく、好ましくは10.0×10-4未満、より好ましくは8.0×10-4以下、さらに好ましくは6.0×10-4以下、特に好ましくは4.0×10-4以下、最も好ましくは2.0×10-4以下である。透明熱可塑性樹脂(B)の配向複屈折(Δn)の絶対値が上記上限値以下であると、液晶ディスプレイ保護板のRe値に与える影響が充分に小さく(図6を参照されたい。)、液晶ディスプレイ保護板のRe値を適切な範囲に良好に制御することができる。 The orientation birefringence (Δn B ) of the transparent thermoplastic resin (B) is preferably small, preferably less than 10.0 × 10 -4 , more preferably 8.0 × 10 -4 or less, still more preferably 6.0. It is × 10 -4 or less, particularly preferably 4.0 × 10 -4 or less, and most preferably 2.0 × 10 -4 or less. When the absolute value of the orientation birefringence (Δn B ) of the transparent thermoplastic resin (B) is not more than the above upper limit value, the influence on the Re value of the liquid crystal display protective plate is sufficiently small (see FIG. 6). , The Re value of the liquid crystal display protective plate can be satisfactorily controlled within an appropriate range.
 透明熱可塑性樹脂(B)は、本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たす透明熱可塑性樹脂であれば、特に限定されない。具体例としては、一般的な非変性のメタクリル系樹脂(PM)、グルタルイミド単位、N-置換又は無置換マイレミド単位、ラクトン環単位等で変性された変性メタクリル系樹脂、及びシクロオレフィンポリマー(COP)等が挙げられる。透明熱可塑性樹脂(B)は、1種または2種以上用いることができる。 Transparent thermoplastic resin (B), if a transparent thermoplastic resin which satisfies the range of photoelastic coefficient specified in the present invention (C B) and orientation birefringence ([Delta] n B), are not particularly limited. Specific examples include a general non-modified methacrylic resin (PM), a modified methacrylic resin modified with a glutarimide unit, an N-substituted or unsubstituted mylemid unit, a lactone ring unit, and a cycloolefin polymer (COP). ) Etc. can be mentioned. The transparent thermoplastic resin (B) can be used alone or in combination of two or more.
 メタクリル系樹脂(PM)は、1種以上のメタクリル酸エステルに由来する構造単位を含む単独重合体又は共重合体である。透明性の観点から、メタクリル系樹脂(PM)中のメタクリル酸エステル単量体単位の含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。 The methacrylic resin (PM) is a homopolymer or copolymer containing a structural unit derived from one or more kinds of methacrylic acid esters. From the viewpoint of transparency, the content of the methacrylic acid ester monomer unit in the methacrylic acid resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more. , 100% by mass.
 好ましいメタクリル酸エステルとしては例えば、メタクリル酸メチル(MMA)、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル;メタクリル酸単環脂肪族炭化水素エステル;メタクリル酸多環脂肪族炭化水素エステル等が挙げられる。透明性の観点から、メタクリル系樹脂(PM)はMMA単位を含むことが好ましく、メタクリル系樹脂(PM)中のMMA単位の含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。 Preferred methacrylic acid esters include, for example, methyl methacrylate (MMA), ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate; monocyclic aliphatic methacrylate. Carbide ester; methacrylic acid polycyclic aliphatic hydrocarbon ester and the like can be mentioned. From the viewpoint of transparency, the methacrylic resin (PM) preferably contains MMA units, and the content of MMA units in the methacrylic resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more. , Especially preferably 90% by mass or more, and may be 100% by mass.
 メタクリル系樹脂(PM)は、メタクリル酸エステル以外の1種以上の他の単量体に由来する構造単位を含んでいてもよい。他の単量体としては、アクリル酸メチル(MA)、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、及びアクリル酸2-ヒドロキシエチル等のアクリル酸エステル;スチレン類;アクリロニトリル、メタクリロニトリル;無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド;等が挙げられる。中でも、透明性の観点から、MAが好ましい。例えば、MMAとMAとの共重合体は、透明性に優れ、好ましい。この共重合体中のMMAの含有量は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。 The methacrylic resin (PM) may contain a structural unit derived from one or more other monomers other than the methacrylic acid ester. Other monomers include methyl acrylate (MA), ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and the like. Acrylic acid esters; styrenes; acrylonitrile, methacrylonitrile; maleic anhydride, phenylmaleimide, cyclohexylmaleimide; and the like. Above all, MA is preferable from the viewpoint of transparency. For example, a copolymer of MMA and MA has excellent transparency and is preferable. The content of MMA in this copolymer is preferably 80% by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
 メタクリル系樹脂(PM)は、好ましくはMMAを含む1種以上のメタクリル酸エステル、及び必要に応じて他の単量体を重合することで得られる。複数種の単量体を用いる場合は、通常、複数種の単量体を混合して単量体混合物を調製した後、重合を行う。重合方法としては特に制限されず、生産性の観点から、塊状重合法、懸濁重合法、溶液重合法、及び乳化重合法等のラジカル重合法が好ましい。 The methacrylic resin (PM) is preferably obtained by polymerizing one or more kinds of methacrylic acid esters containing MMA and, if necessary, other monomers. When a plurality of types of monomers are used, usually, a plurality of types of monomers are mixed to prepare a monomer mixture, and then polymerization is performed. The polymerization method is not particularly limited, and from the viewpoint of productivity, a radical polymerization method such as a massive polymerization method, a suspension polymerization method, a solution polymerization method, and an emulsion polymerization method is preferable.
 本発明で規定する光弾性係数(C)と配向複屈折(Δn)の範囲を満たすものであれば、透明熱可塑性樹脂(B)として、透明熱可塑性樹脂(A)として例示した種類の樹脂(具体的には、MS樹脂、SMA樹脂、SMM樹脂、AS樹脂、及び変性メタクリル系樹脂等)を用いてもよい。単量体組成又は変性率によっては、透明熱可塑性樹脂(A)として例示した種類の樹脂が、透明熱可塑性樹脂(B)として使用できる場合がある。 As long as it satisfies the range of photoelastic coefficient specified in the present invention (C B) and orientation birefringence (Δn B), as a transparent thermoplastic resin (B), illustrated type as the transparent thermoplastic resin (A) Resins (specifically, MS resin, SMA resin, SMM resin, AS resin, modified methacrylic resin, etc.) may be used. Depending on the monomer composition or the modification rate, the type of resin exemplified as the transparent thermoplastic resin (A) may be used as the transparent thermoplastic resin (B).
 ポリカーボネート系樹脂は、光弾性係数及び配向複屈折が本発明の規定範囲外であり、透明熱可塑性樹脂(B)には含まれない。
 ポリカーボネート系樹脂は、光弾性係数の絶対値が90×10-12/Paと非常に大きく、わずかな応力でRe値が変化する。そのため、ポリカーボネート系樹脂を用いる場合、光学的に均一な液晶ディスプレイ保護板を得ることが難しい。例えば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察すると、Re値のバラツキに起因して、虹ムラが観察される恐れがある。
The polycarbonate-based resin is not included in the transparent thermoplastic resin (B) because the photoelastic coefficient and the orientation birefringence are outside the specified range of the present invention.
The polycarbonate resin has a very large absolute value of the photoelastic coefficient of 90 × 10-12 / Pa, and the Re value changes with a slight stress. Therefore, when a polycarbonate resin is used, it is difficult to obtain an optically uniform liquid crystal display protective plate. For example, when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter, rainbow unevenness may be observed due to the variation in the Re value.
 基材層の厚み(T)は特に制限されず、液晶ディスプレイ保護板の所望の厚み及び剛性に応じて適宜設計される。Tの下限値は、好ましくは0.05mm、より好ましくは0.5mm、さらに好ましくは1.0mm、特に好ましくは2.0mm、最も好ましくは3.0mmである。Tの上限値は、好ましくは6.0mm、より好ましくは5.0mm、さらに好ましくは4.0mm、特に好ましくは3.0mm、最も好ましくは2.0mmである。 The thickness of the substrate layer (T B) is not particularly limited, and is appropriately designed in accordance with the desired thickness and rigidity of the liquid crystal display protection panel. The lower limit of T B is preferably 0.05 mm, more preferably 0.5 mm, more preferably 1.0 mm, particularly preferably 2.0 mm, most preferably 3.0 mm. The upper limit of T B is preferably 6.0 mm, more preferably 5.0 mm, more preferably 4.0 mm, particularly preferably 3.0 mm, most preferably 2.0 mm.
 基材層は、光弾性係数及び/又は配向複屈折が透明熱可塑性樹脂(B)として規定外である1種以上の他の重合体を、少量であれば含むことができる。他の重合体の種類としては特に制限されず、ポリカーボネート系樹脂、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、及びポリアセタール等の他の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びエポキシ樹脂等の熱硬化性樹脂等が挙げられる。
 基材層中の透明熱可塑性樹脂(B)の含有量は多い方が好ましく、好ましくは90質量%以上、より好ましくは95質量%以上、特に好ましくは98質量%以上である。基材層中の他の重合体の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
The base material layer may contain, in a small amount, one or more other polymers whose photoelastic coefficient and / or orientation birefringence is out of the scope of the transparent thermoplastic resin (B). The type of other polymer is not particularly limited, and is not particularly limited, such as polycarbonate resin, polyolefins such as polyethylene and polypropylene, polyamide, polyphenylene sulfide, polyetheretherketone, polyester, polysulfone, polyphenylene oxide, polyimide, polyetherimide, and polyacetal. Other thermoplastic resins include thermosetting resins such as phenolic resins, melamine resins, silicone resins, and epoxy resins.
The content of the transparent thermoplastic resin (B) in the base material layer is preferably large, preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 98% by mass or more. The content of the other polymer in the base material layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
 基材層は必要に応じて、各種添加剤を含むことができる。添加剤の種類の例示と好ましい添加量は、位相差調整層に使用可能な添加剤と同様である。
 基材層に他の重合体及び/又は添加剤を添加させる場合、添加タイミングは、透明熱可塑性樹脂(B)の重合時でも重合後でもよい。
The base material layer can contain various additives, if necessary. Examples of the types of additives and preferable addition amounts are the same as those of additives that can be used for the retardation adjustment layer.
When another polymer and / or additive is added to the base material layer, the timing of addition may be during or after the polymerization of the transparent thermoplastic resin (B).
 基材層は、透明熱可塑性樹脂(B)と公知のゴム成分(耐衝撃性改質剤)とを含む樹脂組成物からなる樹脂層であってもよい。ゴム成分の例示は、位相差調整層に使用可能なゴム成分と同様である。基材層の透明性の観点から、ゴム成分の屈折率と主成分である透明熱可塑性樹脂(B)の屈折率との差はより小さい方が好ましい。 The base material layer may be a resin layer composed of a resin composition containing a transparent thermoplastic resin (B) and a known rubber component (impact resistance modifier). Examples of the rubber component are the same as those of the rubber component that can be used for the phase difference adjusting layer. From the viewpoint of the transparency of the base material layer, it is preferable that the difference between the refractive index of the rubber component and the refractive index of the transparent thermoplastic resin (B) as the main component is smaller.
(他の樹脂層)
 本発明の液晶ディスプレイ保護板に含まれる樹脂板は、位相差調整層、及び必要に応じて基材層以外の他の樹脂層を有していてもよい。樹脂板の積層構造としては、位相差調整層-基材層の2層構造;基材層-位相差調整層-他の樹脂層の3層構造;他の樹脂層-基材層-位相差調整層の3層構造等が挙げられる。
(Other resin layer)
The resin plate included in the liquid crystal display protective plate of the present invention may have a phase difference adjusting layer and, if necessary, a resin layer other than the base material layer. The laminated structure of the resin plate includes a two-layer structure of a retardation adjusting layer-a base material layer; a three-layer structure of a base material layer-a retardation adjusting layer-another resin layer; another resin layer-a base material layer-a phase difference. Examples thereof include a three-layer structure of the adjusting layer.
(硬化被膜)
 本発明の液晶ディスプレイ保護板は必要に応じて、位相差調整層を含む樹脂板の少なくとも一方の表面に形成された硬化被膜を有することができる。本発明の液晶ディスプレイ保護板は、少なくとも一方の最表面に硬化被膜を有することができる。
 硬化被膜は、耐擦傷性層(ハードコート層)又は視認性向上効果のための低反射性層として機能することができる。硬化被膜は、公知方法にて形成することができる。
 硬化被膜の材料としては、無機系、有機系、有機無機系、及びシリコーン系等が挙げられ、生産性の観点から、有機系及び有機無機系が好ましい。
(Curing film)
The liquid crystal display protective plate of the present invention may have a cured film formed on at least one surface of the resin plate including the retardation adjusting layer, if necessary. The liquid crystal display protective plate of the present invention may have a cured film on at least one outermost surface.
The cured film can function as a scratch resistant layer (hard coat layer) or a low reflective layer for the effect of improving visibility. The cured film can be formed by a known method.
Examples of the material of the cured film include inorganic, organic, organic-inorganic, and silicone-based materials, and organic-based and organic-inorganic-based materials are preferable from the viewpoint of productivity.
 無機系硬化被膜は例えば、SiO、Al、TiO、及びZrO等の金属酸化物等の無機材料を、真空蒸着及びスパッタリング等の気相成膜で成膜することにより形成することができる。
 有機系硬化被膜は例えば、メラミン系樹脂、アルキッド系樹脂、ウレタン系樹脂、及びアクリル系樹脂等の樹脂を含む塗料を塗工し加熱硬化する、又は、多官能アクリル系樹脂を含む塗料を塗工し紫外線硬化させることにより形成することができる。
 有機無機系硬化被膜は例えば、表面に光重合反応性官能基が導入されたシリカ超微粒子等の無機超微粒子と硬化性有機成分とを含む紫外線硬化性ハードコート塗料を塗工し、紫外線照射により硬化性有機成分と無機超微粒子の光重合反応性官能基とを重合反応させることにより形成することができる。この方法では、無機超微粒子が、有機マトリックスと化学結合した状態で有機マトリックス中に分散した網目状の架橋塗膜が得られる。
 シリコーン系硬化被膜は例えば、カーボンファンクショナルアルコキシシラン、アルキルトリアルコキシシラン、及びテトラアルコキシシラン等の部分加水分解物、又はこれらにコロイダルシリカを配合した材料を重縮合させることにより形成することができる。
 上記方法において、材料の塗工方法としては、ディップコート、グラビアロールコート等の各種ロールコート、フローコート、ロッドコート、ブレードコート、スプレーコート、ダイコート、及びバーコート等が挙げられる。
The inorganic cured film is formed by forming an inorganic material such as a metal oxide such as SiO 2 , Al 2 O 3 , TIO 2 , and ZrO 2 by vapor deposition such as vacuum deposition and sputtering. be able to.
For the organic cured film, for example, a paint containing a resin such as a melamine resin, an alkyd resin, a urethane resin, and an acrylic resin is applied and heat-cured, or a paint containing a polyfunctional acrylic resin is applied. It can be formed by curing with ultraviolet rays.
For example, the organic-inorganic cured film is coated with an ultraviolet curable hard coat paint containing inorganic ultrafine particles such as silica ultrafine particles having a photopolymerization-reactive functional group introduced on the surface and a curable organic component, and irradiated with ultraviolet rays. It can be formed by polymerizing a curable organic component and a photopolymerization-reactive functional group of inorganic ultrafine particles. In this method, a network-like crosslinked coating film in which the inorganic ultrafine particles are chemically bonded to the organic matrix and dispersed in the organic matrix can be obtained.
The silicone-based cured film can be formed, for example, by polycondensing a partial hydrolyzate such as carbon functional alkoxysilane, alkyltrialkoxysilane, and tetraalkoxysilane, or a material containing colloidal silica.
In the above method, examples of the material coating method include various roll coats such as dip coat and gravure roll coat, flow coat, rod coat, blade coat, spray coat, die coat, and bar coat.
 耐擦傷性(ハードコート性)硬化被膜(耐擦傷性層、ハードコート層)の厚みは、好ましくは2~30μm、より好ましくは5~20μmである。薄すぎると表面硬度が不充分となり、厚すぎると製造工程中の折り曲げにより割れが発生する恐れがある。低反射性硬化被膜(低反射性層)の厚みは、好ましくは80~200nm、より好ましくは100~150nmである。薄すぎても厚すぎても低反射性能が不充分となる恐れがある。 The thickness of the scratch resistant (hard coat property) cured film (scratch resistant layer, hard coat layer) is preferably 2 to 30 μm, more preferably 5 to 20 μm. If it is too thin, the surface hardness will be insufficient, and if it is too thick, cracks may occur due to bending during the manufacturing process. The thickness of the low-reflection cured film (low-reflection layer) is preferably 80 to 200 nm, more preferably 100 to 150 nm. If it is too thin or too thick, the low reflection performance may be insufficient.
 その他、本発明の液晶ディスプレイ保護板は必要に応じて、表面に、眩光防止(アンチグレア)層、反射防止(アンチリフレクション)層、及び防指紋層等の公知の表面処理層を有することができる。 In addition, the liquid crystal display protective plate of the present invention may have a known surface treatment layer such as an anti-glare layer, an anti-reflection layer, and an anti-fingerprint layer on the surface, if necessary.
[液晶ディスプレイ保護板の製造方法]
 本発明の液晶ディスプレイ保護板の製造方法は、位相差調整層を含み、必要に応じて基材層を含む、単層構造又は積層構造の樹脂板を用意する工程(X)を有する。
 本発明の液晶ディスプレイ保護板の製造方法はさらに、必要に応じて、得られた樹脂板の少なくとも一方の表面に硬化被膜を形成する工程(Y)を有する。
[Manufacturing method of liquid crystal display protective plate]
The method for manufacturing a liquid crystal display protective plate of the present invention includes a step (X) of preparing a resin plate having a single-layer structure or a laminated structure, which includes a retardation adjusting layer and, if necessary, a base material layer.
The method for producing a liquid crystal display protective plate of the present invention further includes a step (Y) of forming a cured film on at least one surface of the obtained resin plate, if necessary.
(工程(X))
 位相差調整層を含む単層構造又は積層構造の樹脂板は、キャスト成形法、射出成形法、及び押出成形法等の公知方法を用いて成形することができる。中でも、押出成形法が好ましい。積層構造の場合は、共押出成形法が好ましい。
(Step (X))
A resin plate having a single-layer structure or a laminated structure including a retardation adjusting layer can be molded by a known method such as a cast molding method, an injection molding method, or an extrusion molding method. Above all, the extrusion molding method is preferable. In the case of a laminated structure, a coextrusion molding method is preferable.
 以下、押出成形法による樹脂板の製造方法について、説明する。
 1種以上の透明熱可塑性樹脂(A)、必要に応じて他の重合体、及び必要に応じて他の添加剤を押出機に投入し、溶融混練し、得られた溶融状態の樹脂をTダイから板状の形態で押出し、複数の冷却ロールを用いて加圧及び冷却し、引取りロールによって引き取ることで、位相差調整層のみからなる単層構造の樹脂板を成形することができる。
Hereinafter, a method for manufacturing a resin plate by an extrusion molding method will be described.
One or more kinds of transparent thermoplastic resin (A), another polymer if necessary, and other additives if necessary are put into an extruder, melt-kneaded, and the obtained molten resin is T. A resin plate having a single-layer structure consisting of only a phase difference adjusting layer can be formed by extruding from a die in a plate-like form, pressurizing and cooling using a plurality of cooling rolls, and taking over by a take-up roll.
 図4に、一実施形態として、Tダイ11、第1~第3冷却ロール12~14、及び一対の引取りロール15を含む押出成形装置の模式図を示す。Tダイ11から押出された溶融状態の樹脂板は複数の冷却ロール12~14を用いて加圧及び冷却される。加圧及び冷却された樹脂板16は、一対の引取りロール15により引き取られる。冷却ロールの数は、適宜設計することができる。以上の押出、冷却、及び引取りの工程は、連続的に実施される。 FIG. 4 shows a schematic view of an extrusion molding apparatus including a T-die 11, first to third cooling rolls 12 to 14, and a pair of take-up rolls 15 as an embodiment. The molten resin plate extruded from the T-die 11 is pressurized and cooled by using a plurality of cooling rolls 12 to 14. The pressurized and cooled resin plate 16 is picked up by a pair of picking rolls 15. The number of cooling rolls can be appropriately designed. The above extrusion, cooling, and pick-up steps are carried out continuously.
 積層構造の場合は、溶融状態の各層の樹脂原料をTダイ流入前に積層するフィードブロック方式又はTダイ内部で積層するマルチマニホールド方式にて積層した後、Tダイから板状の形態で押出し、複数の冷却ロールを用いて加圧及び冷却し、引取りロールによって引き取ることで、成形することができる。 In the case of a laminated structure, the resin raw materials of each layer in the molten state are laminated by a feed block method in which the resin raw materials are laminated before the inflow of the T die or a multi-manifold method in which the resin raw materials are laminated inside the T die, and then extruded from the T die in a plate shape. It can be molded by pressurizing and cooling with a plurality of cooling rolls and taking over with a take-up roll.
 本発明では、樹脂板のRe値が50~330nmとなるように、樹脂板を成形する。
 Re値を制御するためには、分子の配向を制御する必要がある。分子の配向は例えば、高分子のガラス転移温度近傍での成形時の応力により発生する。押出成形の過程における製造条件を好適化することにより分子の配向を制御し、これによって、樹脂板の押出成形後のRe値を好適化することができる。
In the present invention, the resin plate is molded so that the Re value of the resin plate is 50 to 330 nm.
In order to control the Re value, it is necessary to control the orientation of the molecule. The orientation of the molecules is generated, for example, by the stress during molding near the glass transition temperature of the polymer. By optimizing the production conditions in the process of extrusion molding, the orientation of the molecules can be controlled, whereby the Re value after extrusion molding of the resin plate can be optimized.
(工程(Y))
 工程(Y)では、工程(X)で得られた樹脂板の少なくとも一方の表面に、公知方法にて無機又は有機の硬化被膜を形成する。硬化被膜の形成方法は上記したので、ここでは省略する。
(Step (Y))
In the step (Y), an inorganic or organic cured film is formed on at least one surface of the resin plate obtained in the step (X) by a known method. Since the method for forming the cured film has been described above, it is omitted here.
(その他の工程)
 本発明の液晶ディスプレイ保護板の製造方法は必要に応じて、上記工程(X)、(Y)以外の他の工程を有することができる。
 例えば、工程(X)と工程(Y)との間に、樹脂板に対する硬化被膜の密着性を向上させる目的で、工程(X)で得られた樹脂板の硬化被膜を形成する面に対して、プライマー処理、サンドブラスト処理、及び溶剤処理等の表面凹凸化処理;コロナ放電処理、クロム酸処理、オゾン照射処理、及び紫外線照射処理等の表面酸化処理等の表面処理を施す工程を追加してもよい。
(Other processes)
The method for manufacturing a liquid crystal display protective plate of the present invention may have steps other than the above steps (X) and (Y), if necessary.
For example, with respect to the surface of the resin plate obtained in step (X) on which the cured film is formed, for the purpose of improving the adhesion of the cured film to the resin plate between the steps (X) and (Y). , Primer treatment, sandblasting, and surface unevenness treatment such as solvent treatment; even if a step of performing surface treatment such as corona discharge treatment, chromium acid treatment, ozone irradiation treatment, and surface oxidation treatment such as ultraviolet irradiation treatment is added. Good.
 以上説明したように、本発明によれば、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際の、虹ムラ、ブラックアウト、及び色付き等の視認性の低下を抑制することが可能な液晶ディスプレイ保護板を提供することができる。 As described above, according to the present invention, it is possible to suppress deterioration of visibility such as rainbow unevenness, blackout, and coloring when observing the liquid crystal display protective plate on the liquid crystal screen through a polarizing filter. A liquid crystal display protective plate can be provided.
[用途]
 本発明の液晶ディスプレイ保護板は例えば、銀行等の金融機関のATM;自動販売機;テレビ;携帯電話(スマートフォンを含む)、パーソナルコンピュータ、タブレット型パーソナルコンピュータ等の携帯情報端末(PDA)、デジタルオーディオプレーヤー、携帯ゲーム機、コピー機、ファックス、及びカーナビゲーションシステム等のデジタル情報機器等に使用される、液晶ディスプレイ又はタッチパネルディスプレイの保護板として好適である。
 本発明の液晶ディスプレイ保護板は例えば、車載用液晶ディスプレイの保護板として好適である。
[Use]
The liquid crystal display protective plate of the present invention is, for example, an ATM of a financial institution such as a bank; a vending machine; a television; a mobile information terminal (PDA) such as a mobile phone (including a smartphone), a personal computer, a tablet-type personal computer, or a digital audio. It is suitable as a protective plate for a liquid crystal display or a touch panel display used in digital information devices such as players, portable game machines, copying machines, fax machines, and car navigation systems.
The liquid crystal display protective plate of the present invention is suitable as, for example, a protective plate for an in-vehicle liquid crystal display.
 本発明に係る実施例及び比較例について説明する。
[評価項目及び評価方法]
 評価項目及び評価方法は、以下の通りである。
(透明熱可塑性樹脂(A)中の芳香族ビニル単量体単位の含有量)
 MS樹脂又はSMM樹脂中の芳香族ビニル単量体単位の含有量(V質量%)は、核磁気共鳴装置(日本電子社製「GX-270」)を用い、H-NMR法により求めた。
Examples and comparative examples according to the present invention will be described.
[Evaluation items and evaluation methods]
The evaluation items and evaluation methods are as follows.
(Content of aromatic vinyl monomer unit in transparent thermoplastic resin (A))
The content (V mass%) of the aromatic vinyl monomer unit in the MS resin or SMM resin was determined by 1 H-NMR method using a nuclear magnetic resonance apparatus (“GX-270” manufactured by JEOL Ltd.). ..
(透明熱可塑性樹脂のガラス転移温度(Tg))
 透明熱可塑性樹脂のガラス転移温度(Tg)は、示差走査熱量計(「DSC-50」、株式会社リガク製)を用いて、測定した。透明熱可塑性樹脂10mgをアルミパンに入れ、上記装置にセットした。30分以上窒素置換を行った後、10ml/分の窒素気流中、一旦25℃から200℃まで20℃/分の速度で昇温し、10分間保持し、25℃まで冷却した(1次走査)。次いで、10℃/分の速度で200℃まで昇温し(2次走査)、2次走査で得られた結果から、中点法でガラス転移温度(Tg)を算出した。なお、2種以上の樹脂を含有する樹脂組成物において複数のTgデータが得られる場合は、主成分の樹脂に由来する値をTgデータとして採用した。
(Glass transition temperature (Tg) of transparent thermoplastic resin)
The glass transition temperature (Tg) of the transparent thermoplastic resin was measured using a differential scanning calorimeter (“DSC-50”, manufactured by Rigaku Co., Ltd.). 10 mg of the transparent thermoplastic resin was placed in an aluminum pan and set in the above apparatus. After performing nitrogen substitution for 30 minutes or more, the temperature was once raised from 25 ° C. to 200 ° C. at a rate of 20 ° C./min in a nitrogen stream of 10 ml / min, held for 10 minutes, and cooled to 25 ° C. (primary scanning). ). Next, the temperature was raised to 200 ° C. at a rate of 10 ° C./min (secondary scanning), and the glass transition temperature (Tg) was calculated by the midpoint method from the results obtained by the secondary scanning. When a plurality of Tg data can be obtained in a resin composition containing two or more kinds of resins, the value derived from the resin as the main component was adopted as the Tg data.
(透明熱可塑性樹脂の光弾性係数)
 透明熱可塑性樹脂をプレス成形して、1.0mm厚の樹脂板を得た。得られた樹脂板の中央部から、幅15mm、長さ80mmの試験片を切り出した。この試験片の長手方向の両端部を、一対のチャックで把持した。チャック間距離は70mmとした。
 王子計測機器社製「X軸アリ式ステージ」を用いて、試験片に対して張力を付与した。張力は、0Nから30Nまで、10Nずつ段階的に高くした。張力は、株式会社イマダ製「センサーセパレート型デジタルフォースゲージ ZTS-DPU-100N」によりモニターした。
 0Nから100Nまでの各段階の張力付与条件について、以下の測定を実施した。
 張力が付与された状態の試験片の中央部分の位相差値[nm]を、王子計測機器社製「KOBRA-WR」を用いて、測定波長589.5nmの条件で測定した。この後、一対のチャックから試験片を取り外し、位相差測定部分の厚み(d[mm])を測定した。試験片の断面積(S)[m](=15[mm]×d[mm]×10-6)、応力[Pa](=張力[N]/S[m])、複屈折(=位相差値[nm]×10-6/d[mm])をそれぞれ計算した。横軸に応力、縦軸に複屈折をプロットし、最小自乗法により求め得られた直線の傾きを光弾性係数として求めた。
(Photoelastic coefficient of transparent thermoplastic resin)
The transparent thermoplastic resin was press-molded to obtain a resin plate having a thickness of 1.0 mm. A test piece having a width of 15 mm and a length of 80 mm was cut out from the central portion of the obtained resin plate. Both ends of the test piece in the longitudinal direction were gripped by a pair of chucks. The distance between the chucks was 70 mm.
Tension was applied to the test piece using an "X-axis dovetail stage" manufactured by Oji Measuring Instruments Co., Ltd. The tension was gradually increased by 10N from 0N to 30N. The tension was monitored by "Sensor Separate Type Digital Force Gauge ZTS-DPU-100N" manufactured by Imada Co., Ltd.
The following measurements were carried out for the tension applying conditions at each stage from 0N to 100N.
The phase difference value [nm] of the central portion of the test piece in a tensioned state was measured using "KOBRA-WR" manufactured by Oji Measuring Instruments Co., Ltd. under the condition of a measurement wavelength of 589.5 nm. After that, the test piece was removed from the pair of chucks, and the thickness (d [mm]) of the phase difference measuring portion was measured. Cross-sectional area (S) [m 2 ] (= 15 [mm] x d [mm] x 10-6 ) of test piece, stress [Pa] (= tension [N] / S [m 2 ]), birefringence ( = Phase difference value [nm] × 10-6 / d [mm]) was calculated respectively. Stress was plotted on the horizontal axis and birefringence was plotted on the vertical axis, and the slope of a straight line obtained by the least squares method was obtained as the photoelastic coefficient.
(透明熱可塑性樹脂の配向複屈折)
 透明熱可塑性樹脂をプレス成形して、1.0mm厚の樹脂板を得た。得られた樹脂板の中央部から、幅20mm、長さ50mmの試験片を切り出し、加熱チャンバー付きオートグラフ(SHIMADZU社製)にセットした。チャック間距離は20mmとした。ガラス転移温度(Tg)より10℃高い温度で3分間保持した後、3mm/分の速度で一軸延伸した。延伸率は100%とした。この条件では、延伸後のチャック間距離は40mmとなる。延伸後の試験片を上記装置から取り外し、23℃に冷却した後、厚み(d)を測定し、中央部分のRe値を王子計測機器社製「KOBRA-WR」を用いて、測定波長589.5nmの条件で測定した。得られたRe値を試験片の厚み(d)で除することで、配向複屈折の値を算出した。
(Orientation birefringence of transparent thermoplastic resin)
The transparent thermoplastic resin was press-molded to obtain a resin plate having a thickness of 1.0 mm. A test piece having a width of 20 mm and a length of 50 mm was cut out from the central portion of the obtained resin plate and set in an autograph with a heating chamber (manufactured by SHIMADZU). The distance between the chucks was 20 mm. After holding for 3 minutes at a temperature 10 ° C. higher than the glass transition temperature (Tg), uniaxial stretching was performed at a rate of 3 mm / min. The draw ratio was 100%. Under this condition, the distance between chucks after stretching is 40 mm. The stretched test piece is removed from the above apparatus, cooled to 23 ° C., the thickness (d) is measured, and the Re value of the central portion is measured using "KOBRA-WR" manufactured by Oji Measuring Instruments Co., Ltd. at a measurement wavelength of 589. It was measured under the condition of 5 nm. The value of orientation birefringence was calculated by dividing the obtained Re value by the thickness (d) of the test piece.
(液晶ディスプレイ保護板のRe値の平均値と標準偏差)
 押出成形板の中央部から、押出方向(樹脂の流れ方向)が長辺方向となるように、幅21cm、長さ30cmの試験片を切り出した。株式会社フォトニックラティス製「WPA-100-L」に標準レンズ(FUJINON HF12.5HA-1B)を取り付けた。測定範囲が幅17cm、長さ22cmとなるように、レンズの高さを調整した。その後、約11万点の複屈折画素数のRe値を測定し、平均値と標準偏差を求めた。
(Average value and standard deviation of Re value of liquid crystal display protection plate)
A test piece having a width of 21 cm and a length of 30 cm was cut out from the central portion of the extruded plate so that the extrusion direction (resin flow direction) was the long side direction. A standard lens (FUJINON HF12.5HA-1B) was attached to "WPA-100-L" manufactured by Photonic Lattice Co., Ltd. The height of the lens was adjusted so that the measurement range was 17 cm in width and 22 cm in length. Then, the Re value of the number of birefringent pixels of about 110,000 points was measured, and the average value and the standard deviation were obtained.
(各層の厚み)
 液晶ディスプレイ保護板が単層構造である場合は、株式会社ミツトヨ社製「クーラントプルーフマイクロメータ」を用いて、厚みを測定した。液晶ディスプレイ保護板が積層構造である場合は、株式会社ニコンインステック社製「万能投影機(V-12B)」を用いて各層の厚みを測定した。
(Thickness of each layer)
When the liquid crystal display protective plate had a single-layer structure, the thickness was measured using a "coolant proof micrometer" manufactured by Mitutoyo Co., Ltd. When the liquid crystal display protective plate had a laminated structure, the thickness of each layer was measured using a "universal projector (V-12B)" manufactured by Nikon Instec Co., Ltd.
(虹ムラ)
 液晶ディスプレイの視認側の偏光子の透過軸と液晶ディスプレイ保護板の押出成形方向とが互いに垂直になるように、液晶ディスプレイ保護板を液晶ディスプレイ上に載置した。さらにこの上に偏光フィルムを載置し、偏光フィルムを様々な角度に回転させ、Re値のバラツキに起因する虹ムラが最も強くなる角度での見え方を次の3段階で目視評価した。
A:虹ムラが全くなく、液晶ディスプレイの視認性が低下しない。
B:虹ムラが少しあり、液晶ディスプレイの視認性がわずかに低下する。
C:顕著な虹ムラがあり、液晶ディスプレイの視認性が大きく低下する。
(Rainbow unevenness)
The liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizing element on the visual side of the liquid crystal display and the extrusion molding direction of the liquid crystal display protective plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the rainbow unevenness due to the variation in the Re value became the strongest was visually evaluated in the following three stages.
A: There is no rainbow unevenness, and the visibility of the liquid crystal display does not deteriorate.
B: There is some rainbow unevenness, and the visibility of the liquid crystal display is slightly reduced.
C: There is remarkable rainbow unevenness, and the visibility of the liquid crystal display is greatly reduced.
(ブラックアウト)
 液晶ディスプレイの視認側の偏光子の透過軸と液晶ディスプレイ保護板の押出成形方向とが互いに垂直になるように、液晶ディスプレイ保護板を液晶ディスプレイ上に載置した。さらにこの上に偏光フィルムを載置し、偏光フィルムを様々な角度に回転させ、液晶ディスプレイの透過光強度が最も小さくなる角度での見え方を次の3段階で目視評価した。
A:透過光強度が充分に高く、液晶ディスプレイに表示されている文字等をはっきりと視認できる。
B:透過光強度がやや低く、液晶ディスプレイに表示されている文字等の視認性がわずかに低下する。
C:透過光強度がほぼゼロであり、液晶ディスプレイに表示されている文字等を視認できない。
(Blackout)
The liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizing element on the visual side of the liquid crystal display and the extrusion molding direction of the liquid crystal display protective plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the transmitted light intensity of the liquid crystal display was minimized was visually evaluated in the following three stages.
A: The transmitted light intensity is sufficiently high, and the characters and the like displayed on the liquid crystal display can be clearly seen.
B: The transmitted light intensity is slightly low, and the visibility of characters and the like displayed on the liquid crystal display is slightly reduced.
C: The transmitted light intensity is almost zero, and the characters and the like displayed on the liquid crystal display cannot be visually recognized.
(色付き)
 液晶ディスプレイの視認側の偏光子の透過軸と液晶ディスプレイ保護板の押出成形方向とが互いに垂直になるように、液晶ディスプレイ保護板を液晶ディスプレイ上に載置した。さらにこの上に偏光フィルムを載置し、偏光フィルムを様々な角度に回転させ、液晶ディスプレイの色付きが最も大きくなる角度での見え方を次の3段階で目視評価した。
A:顕著な色付きがなく、液晶ディスプレイの視認性が低下しない。
B:色付きがあり、液晶ディスプレイの視認性がわずかに低下する。
C:顕著な色付きがあり、液晶ディスプレイの視認性が低下する。
(Colored)
The liquid crystal display protective plate was placed on the liquid crystal display so that the transmission axis of the polarizing element on the visual side of the liquid crystal display and the extrusion molding direction of the liquid crystal display protective plate were perpendicular to each other. Further, a polarizing film was placed on the polarizing film, the polarizing film was rotated at various angles, and the appearance at the angle at which the coloring of the liquid crystal display was maximized was visually evaluated in the following three stages.
A: There is no noticeable coloring, and the visibility of the liquid crystal display does not deteriorate.
B: There is coloring, and the visibility of the liquid crystal display is slightly reduced.
C: There is remarkable coloring, and the visibility of the liquid crystal display is lowered.
[材料]
 用いた材料は、以下の通りである。
<MS樹脂>
 特開2003-231785号公報の[実施例]の項に記載の共重合体(A)の製造方法に従って、MS樹脂(メタクリル酸メチル(MMA)とスチレン(St)との共重合体)を重合した。オートクレーブ内に仕込むMMAとStの質量比を変えて、以下の3種のMS樹脂を製造した。
(MS-1)Tg=116℃、芳香族ビニル単量体単位の含有量V=10質量%、
(MS-2)Tg=109℃、芳香族ビニル単量体単位の含有量V=35質量%、
(MS-3)Tg=100℃、芳香族ビニル単量体単位の含有量V=90質量%。
[material]
The materials used are as follows.
<MS resin>
Polymerize MS resin (copolymer of methyl methacrylate (MMA) and styrene (St)) according to the method for producing a copolymer (A) described in the section of [Example] of JP-A-2003-231785. did. The following three types of MS resins were produced by changing the mass ratio of MMA and St charged in the autoclave.
(MS-1) Tg = 116 ° C., content of aromatic vinyl monomer unit V = 10% by mass,
(MS-2) Tg = 109 ° C., content of aromatic vinyl monomer unit V = 35% by mass,
(MS-3) Tg = 100 ° C., content of aromatic vinyl monomer unit V = 90% by mass.
<SMA樹脂> 
(SMA-1)スチレン(St)と無水マレイン酸(MAH)との共重合体、Polyscope株式会社製「XIRAN SO23110」、Tg=152℃、芳香族ビニル単量体単位の含有量V=75質量%。
(SMA-2)
・上記SMA樹脂(SMA-1)と後記メタクリル系樹脂(PMMA-2)とを質量比86:14で混合したアロイ、Tg=145℃、芳香族ビニル単量体単位の含有量V=64.5質量%。
<SMA resin>
(SMA-1) Copolymer of styrene (St) and maleic anhydride (MAH), "XIRAN SO23110" manufactured by Polyscape Co., Ltd., Tg = 152 ° C., content of aromatic vinyl monomer unit V = 75 mass %.
(SMA-2)
-Alloy, which is a mixture of the above SMA resin (SMA-1) and the methacrylic resin (PMMA-2) described later at a mass ratio of 86:14, Tg = 145 ° C., and the content of aromatic vinyl monomer unit V = 64. 5% by mass.
<メタクリル系樹脂>
(PMMA-1)メタクリル酸メチル(MMA)とアクリル酸メチル(MA)との共重合体(MMA/MA(質量比)=98.9:1.1)、株式会社クラレ製「パラペット HR-S」、Tg=119℃、芳香族ビニル単量体単位の含有量V=0質量%。
(PMMA-2)メタクリル酸メチル(MMA)の単独重合体、株式会社クラレ製「パラペット HM」、Tg=120℃、芳香族ビニル単量体単位の含有量V=0質量%。
<Methacrylic resin>
(PMMA-1) Copolymer of methyl methacrylate (MMA) and methyl acrylate (MA) (MMA / MA (mass ratio) = 98.9: 1.1), "Parapet HR-S" manufactured by Kuraray Co., Ltd. , Tg = 119 ° C., content of aromatic vinyl monomer unit V = 0% by mass.
(PMMA-2) Homopolymer of methyl methacrylate (MMA), "Parapet HM" manufactured by Kuraray Co., Ltd., Tg = 120 ° C., content of aromatic vinyl monomer unit V = 0% by mass.
<ポリカーボネート系樹脂>
(PC-1)住化ポリカーボネート株式会社製「SDポリカ 300シリーズ」、Tg=150℃、芳香族ビニル単量体単位の含有量V=0質量%。
<Polycarbonate resin>
(PC-1) "SD Polycarbonate 300 Series" manufactured by Sumika Polycarbonate Limited, Tg = 150 ° C., content of aromatic vinyl monomer unit V = 0% by mass.
[実施例1~6、比較例1~4]
 50mmφ単軸押出機(東芝機械株式会社製)を用いて、位相差調整層用の樹脂(透明熱可塑性樹脂(A)又は比較用樹脂)を溶融押出した。溶融状態の樹脂をTダイより板状に吐出し、互いに隣接する第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛け、第2冷却ロールと第3冷却ロールとの間に挟み込み、第3冷却ロールに巻き掛けることにより冷却した。冷却後に得られた樹脂板を一対の引取りロールによって引き取った。このようにして、位相差調整層のみからなる単層構造の液晶ディスプレイ保護板を得た。各例について、用いた樹脂の種類と特性、位相差調整層の厚み(T)、V×T、及び液晶ディスプレイ保護板の評価結果を、表1及び表2に示す。
[Examples 1 to 6, Comparative Examples 1 to 4]
A resin for the phase difference adjusting layer (transparent thermoplastic resin (A) or comparative resin) was melt-extruded using a 50 mmφ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). The molten resin is discharged from the T-die in a plate shape, sandwiched between the first cooling roll and the second cooling roll adjacent to each other, wound around the second cooling roll, and the second cooling roll and the third cooling roll. It was cooled by sandwiching it between the two and winding it around a third cooling roll. The resin plate obtained after cooling was taken up by a pair of taking-up rolls. In this way, a liquid crystal display protective plate having a single-layer structure composed of only a phase difference adjusting layer was obtained. For each example, the type and characteristics of the resins used, the thickness of the phase difference adjusting layer (T A), V × T A, and the evaluation results of the liquid crystal display protection panel, shown in Table 1 and Table 2.
[実施例7~8、比較例5~6]
 50mmφ単軸押出機(東芝機械株式会社製)を用いて、基材層用の樹脂(透明熱可塑性樹脂(B)又は比較用樹脂)を溶融押出した。30mmφ単軸押出機(東芝機械株式会社製)を用いて、位相差調整層用の樹脂(透明熱可塑性樹脂(A)又は比較用樹脂)を溶融押出した。溶融状態のこれらの樹脂をマルチマニホールド型ダイスを介して積層し、Tダイから2種2層構造の熱可塑性樹脂積層体を共押出した。溶融状態の2種2層構造の樹脂をTダイより吐出し、互いに隣接する第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛け、第2冷却ロールと第3冷却ロールとの間に挟み込み、第3冷却ロールに巻き掛けることにより冷却した。冷却後に得られた樹脂板を一対の引取りロールによって引き取った。このようにして、位相差調整層と基材層とからなる2種2層構造の液晶ディスプレイ保護板を得た。各例について、用いた樹脂の種類と特性、各層の厚み、V×T、及び液晶ディスプレイ保護板の評価結果を、表1及び表2に示す。
[Examples 7 to 8, Comparative Examples 5 to 6]
A resin for the base material layer (transparent thermoplastic resin (B) or comparative resin) was melt-extruded using a 50 mmφ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). A resin for the phase difference adjusting layer (transparent thermoplastic resin (A) or comparative resin) was melt-extruded using a 30 mmφ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). These melted resins were laminated via a multi-manifold type die, and a thermoplastic resin laminate having a two-kind two-layer structure was co-extruded from the T-die. A resin having a two-layer structure of two types in a molten state is discharged from a T-die, sandwiched between the first cooling roll and the second cooling roll adjacent to each other, wound around the second cooling roll, and the second cooling roll and the third. It was cooled by sandwiching it with a cooling roll and winding it around a third cooling roll. The resin plate obtained after cooling was taken up by a pair of taking-up rolls. In this way, a liquid crystal display protective plate having a two-kind two-layer structure composed of a phase difference adjusting layer and a base material layer was obtained. For each example, the type and characteristics of the resins used, the thickness of each layer, V × T A, and the evaluation results of the liquid crystal display protection panel, shown in Table 1 and Table 2.
[実施例9~12]
 50mmφ単軸押出機(東芝機械株式会社製)を用いて、基材層用の樹脂(透明熱可塑性樹脂(B)を溶融押出した。30mmφ単軸押出機(東芝機械株式会社製)を用いて、位相差調整層用の樹脂(透明熱可塑性樹脂(A))を溶融押出した。溶融状態のこれらの樹脂をマルチマニホールド型ダイスを介して積層し、Tダイから基材層の両面に位相差調整層が積層された2種3層構造の熱可塑性樹脂積層体を共押出した。溶融状態の2種3層構造の樹脂をTダイより吐出し、互いに隣接する第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛け、第2冷却ロールと第3冷却ロールとの間に挟み込み、第3冷却ロールに巻き掛けることにより冷却した。冷却後に得られた樹脂板を一対の引取りロールによって引き取った。このようにして、基材層の両面に位相差調整層が積層された2種3層構造の液晶ディスプレイ保護板を得た。各例について、用いた樹脂の種類と特性、各層の厚み、V×T、及び液晶ディスプレイ保護板の評価結果を、表1及び表2に示す。
[Examples 9 to 12]
A resin for the base material layer (transparent thermoplastic resin (B) was melt-extruded using a 50 mmφ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.). A 30 mmφ single-screw extruder (manufactured by Toshiba Machine Co., Ltd.) was used. , The resin for the phase difference adjusting layer (transparent thermoplastic resin (A)) was melt-extruded. These resins in the molten state were laminated via a multi-manifold type die, and the phase difference was formed from the T die to both sides of the base material layer. A thermoplastic resin laminate having a two-kind three-layer structure in which adjustment layers are laminated was co-extruded. A molten two-kind three-layer resin was discharged from a T-die, and adjacent first cooling rolls and second cooling were performed. The resin plate obtained after cooling was cooled by being sandwiched between the rolls, wrapped around the second cooling roll, sandwiched between the second cooling roll and the third cooling roll, and wrapped around the third cooling roll. It was taken up by a pair of take-up rolls. In this way, a liquid crystal display protective plate having a two-kind three-layer structure in which phase difference adjusting layers were laminated on both sides of the base material layer was obtained. types and characteristics, the thickness of each layer, V × T a, and the evaluation results of the liquid crystal display protection panel, shown in Table 1 and Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[結果のまとめ]
 実施例1~6では、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)からなる位相差調整層のみの単層構造の液晶ディスプレイ保護板を製造した。
 実施例7、8では、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)からなる位相差調整層と、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)からなる基材層との積層構造の液晶ディスプレイ保護板を製造した。
[Summary of results]
In Examples 1-6, and the absolute value of the photoelastic coefficient (C A) is 10.0 × 10 -12 / Pa or less, and the absolute value of the orientation birefringence ([Delta] n A) is 10.0 × 10 - A single-layer liquid crystal display protective plate having only a phase difference adjusting layer made of a transparent thermoplastic resin (A) of 4 to 100.0 × 10 -4 was manufactured.
In Examples 7 and 8 when the absolute value of photoelastic coefficient (C A) is 10.0 × 10 -12 / Pa or less, and the absolute value of the orientation birefringence ([Delta] n A) is 10.0 × 10 - and 4 ~ 100.0 × 10 -4 in a transparent thermoplastic resin (a) phase difference adjusting layer formed of an absolute value of photoelastic coefficient (C B) is not more than 10.0 × 10 -12 / Pa, Further, a liquid crystal display protective plate having a laminated structure with a base material layer made of a transparent thermoplastic resin (B) having an absolute value of orientation birefringence (Δn B ) of less than 10.0 × 10 -4 was manufactured.
 実施例1~8で得られた液晶ディスプレイ保護板はいずれも、幅17cm、長さ22cmの範囲内のRe値の平均値が50~330nmであり、幅17cm、長さ22cmの範囲内のRe値の標準偏差が15.0nm以下であった。
 実施例1~8ではいずれも、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、虹ムラ、色付き、及びブラックアウトが効果的に抑制された。特に、V×Tの値が6.0~30.0である実施例1~3、6~8では、V×Tの値が6.0~30.0の範囲外である実施例4、5よりも、良い結果が得られた。なお、V×Tの値が6.0~30.0の範囲外である実施例4、5のうち、Re値が低い実施例4ではブラックアウトがB評価、Re値が高い実施例5では色付きがB評価であった
The liquid crystal display protective plates obtained in Examples 1 to 8 have an average Re value of 50 to 330 nm in the range of 17 cm in width and 22 cm in length, and Re in the range of 17 cm in width and 22 cm in length. The standard deviation of the values was 15.0 nm or less.
In each of Examples 1 to 8, when the liquid crystal display protective plate on the liquid crystal screen was observed through the polarizing filter, rainbow unevenness, coloring, and blackout were effectively suppressed. In particular, the V × T A value from 6.0 to 30.0 in an exemplary 1 to 3 and 6 to 8, exemplary values of V × T A is outside the range of 6.0 to 30.0 Example Better results were obtained than 4 and 5. Incidentally, V × of T value of A is outside the range of 6.0 to 30.0 Examples 4 and 5, the blackout in Re value is less Example 4 B rating higher embodiments Re value 5 Then the coloring was B rating
 実施例7では、実施例1の構成に対してPMMA基材層を追加した。実施例8では、実施例6の構成に対してPMMA基材層を追加した。実施例7では、実施例1と比較して、液晶ディスプレイ保護板のRe値の平均値と標準偏差を大きく変化させることなく、全体の厚み(d)を大きくすることができた。同様に、実施例8では、実施例6と比較して、液晶ディスプレイ保護板のRe値の平均値と標準偏差を大きく変化させることなく、全体の厚み(d)を大きくすることができた。実施例7、8では、剛性が高く、変形等が起こりにくく、タッチパネルディスプレイの保護板等として好適な液晶ディスプレイ保護板が得られた。 In Example 7, a PMMA base material layer was added to the configuration of Example 1. In Example 8, a PMMA substrate layer was added to the configuration of Example 6. In Example 7, as compared with Example 1, the overall thickness (d) could be increased without significantly changing the average value and standard deviation of the Re value of the liquid crystal display protective plate. Similarly, in Example 8, the overall thickness (d) could be increased without significantly changing the average value and standard deviation of the Re value of the liquid crystal display protective plate as compared with Example 6. In Examples 7 and 8, a liquid crystal display protective plate suitable as a protective plate for a touch panel display, which has high rigidity and is less likely to be deformed, was obtained.
 比較例1、2では、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)からなる位相差調整層の単層構造の液晶ディスプレイ保護板を製造した。しかしながら、これら比較例では、V×Tの値が6.0~30.0の範囲外であり、得られた液晶ディスプレイ保護板のRe値の平均値が50~330nmの範囲外となった。これら比較例のうち、Re値が低い比較例1ではブラックアウトがC評価、Re値が高い比較例2では色付きがC評価となった。 In Comparative Examples 1 and 2 when the absolute value of photoelastic coefficient (C A) is 10.0 × 10 -12 / Pa or less, and the absolute value of the orientation birefringence ([Delta] n A) is 10.0 × 10 - A single-layer liquid crystal display protective plate having a phase difference adjusting layer made of a transparent thermoplastic resin (A) having a size of 4 to 100.0 × 10 -4 was manufactured. However, in these comparative examples, outside the scope of V × T A value from 6.0 to 30.0 average value of Re of the obtained liquid crystal display protective plate is out of the range of 50 ~ 330 nm .. Among these comparative examples, in Comparative Example 1 having a low Re value, the blackout was evaluated as C, and in Comparative Example 2 having a high Re value, the colored product was evaluated as C.
 比較例3、4では、光弾性係数(C)及び/又は配向複屈折(Δn)が本発明の規定外である比較用樹脂からなる位相差調整層の単層構造の液晶ディスプレイ保護板を製造した。メタクリル系樹脂を用いた比較例3では、得られた液晶ディスプレイ保護板は、Re値が50nm未満と小さく、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、ブラックアウトが生じた。ポリカーボネート系樹脂を用いた比較例4では、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、虹ムラが生じた。 In Comparative Examples 3 and 4, the photoelastic coefficient (C A) and / or orientation birefringence ([Delta] n A) is a liquid crystal display protective plate having a single layer structure of the phase difference adjusting layer formed of a comparative resin is defined outside of the present invention Manufactured. In Comparative Example 3 using a methacrylic resin, the obtained liquid crystal display protective plate had a small Re value of less than 50 nm, and blackout occurred when the liquid crystal display protective plate on the liquid crystal screen was observed through a polarizing filter. It was. In Comparative Example 4 using the polycarbonate-based resin, rainbow unevenness occurred when the liquid crystal display protective plate on the liquid crystal screen was observed through the polarizing filter.
 比較例5では、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)からなる位相差調整層と、光弾性係数(C)及び配向複屈折(Δn)が好適な範囲外である比較用樹脂からなる基材層との積層構造の液晶ディスプレイ保護板を製造した。
 比較例6では、配向複屈折(Δn)が本発明の規定外である比較用樹脂からなる位相差調整層と、光弾性係数(C)及び配向複屈折(Δn)が好適な範囲外である比較用樹脂からなる基材層との積層構造の液晶ディスプレイ保護板を製造した。
 これら比較例で得られた液晶ディスプレイ保護板は、Re値の標準偏差が大きく(Re値のバラツキが大きく)、偏光フィルタを通して液晶画面上にある液晶ディスプレイ保護板を観察した際に、虹ムラが生じた。
In Comparative Example 5 when the absolute value of photoelastic coefficient (C A) is 10.0 × 10 -12 / Pa or less, and the absolute value of the orientation birefringence ([Delta] n A) is 10.0 × 10 -4 ~ a phase difference adjusting layer consisting of 100.0 × 10 -4 in a transparent thermoplastic resin (a), the a photoelastic coefficient (C B) and orientation birefringence ([Delta] n B) is comparative resin is outside the preferred range A liquid crystal display protective plate having a laminated structure with a base material layer was manufactured.
In Comparative Example 6, a phase difference adjusting layer orientation birefringence ([Delta] n A) is made of comparative resin is defined outside of the present invention, the photoelastic coefficient (C B) and orientation birefringence ([Delta] n B) is a preferable range A liquid crystal display protective plate having a laminated structure with a base material layer made of an outer comparative resin was manufactured.
The liquid crystal display protective plate obtained in these comparative examples has a large standard deviation of the Re value (large variation in the Re value), and when the liquid crystal display protective plate on the liquid crystal screen is observed through a polarizing filter, rainbow unevenness occurs. occured.
 例として、図5A及び図5Bに、実施例7と比較例6で得られた液晶ディスプレイ保護板のRe値の分布を示す。実施例7で得られた液晶ディスプレイ保護板のRe値はバラツキが小さいのに対し、比較例6で得られた液晶ディスプレイ保護板のRe値はバラツキが大きいことが示されている。 As an example, FIGS. 5A and 5B show the distribution of Re values of the liquid crystal display protective plates obtained in Example 7 and Comparative Example 6. It is shown that the Re value of the liquid crystal display protective plate obtained in Example 7 has a small variation, whereas the Re value of the liquid crystal display protective plate obtained in Comparative Example 6 has a large variation.
 本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above embodiments and examples, and the design can be appropriately changed as long as the gist of the present invention is not deviated.
 この出願は、2019年11月15日に出願された日本出願特願2019-207044号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-207044 filed on November 15, 2019, and incorporates all of its disclosures herein.
1~3 液晶ディスプレイ保護板
11 Tダイ
12~14 冷却ロール
15 引取りロール
16、16X、16Y 樹脂板
21 位相差調整層
22 基材層
31 硬化被膜
1 to 3 Liquid crystal display protection plate 11 T die 12 to 14 Cooling roll 15 Take- up roll 16, 16X, 16Y Resin plate 21 Phase difference adjustment layer 22 Base material layer 31 Hardened film

Claims (6)

  1.  光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4~100.0×10-4である透明熱可塑性樹脂(A)を含む位相差調整層を有する樹脂板を含み、
     面内のリタデーション値が50~330nmである、液晶ディスプレイ保護板。
    A test piece having an absolute value of photoelastic coefficient (CA ) of 10.0 × 10-12 / Pa or less and a width of 20 mm, a length of 40 mm, and a thickness of 1 mm is 3 mm at a temperature 10 ° C higher than the glass transition temperature. The absolute value of the orientation birefringence (Δn A ) obtained by uniaxially stretching at a stretching rate of 100% at a rate of / min and measuring the in-plane retardation value of the central portion of the test piece is 10.0 × 10 −. A resin plate having a phase difference adjusting layer containing a transparent thermoplastic resin (A) of 4 to 100.0 × 10 -4 is included.
    A liquid crystal display protective plate having an in-plane retardation value of 50 to 330 nm.
  2.  幅17cm、長さ22cmの範囲内の面内のリタデーション値の標準偏差が15.0nm以下である、請求項1に記載の液晶ディスプレイ保護板。 The liquid crystal display protective plate according to claim 1, wherein the standard deviation of the in-plane retardation value within the range of 17 cm in width and 22 cm in length is 15.0 nm or less.
  3.  透明熱可塑性樹脂(A)が芳香族ビニル単量体単位を含み、
     透明熱可塑性樹脂(A)中の前記芳香族ビニル単量体単位の含有量をV[質量%]とし、前記位相差調整層の厚みをT[mm]としたとき、下記式(1)を満たす、請求項1又は2に記載の液晶ディスプレイ保護板。
    6.0≦V×T≦30.0・・・(1)
    The transparent thermoplastic resin (A) contains an aromatic vinyl monomer unit and contains.
    Transparent thermoplastic resin content of the aromatic vinyl monomer units in (A) and V [wt%], when the thickness of the phase difference adjusting layer was T A [mm], the following formula (1) The liquid crystal display protective plate according to claim 1 or 2, which satisfies the above conditions.
    6.0 ≦ V × T A ≦ 30.0 ··· (1)
  4.  前記樹脂板はさらに、光弾性係数(C)の絶対値が10.0×10-12/Pa以下であり、かつ、幅20mm、長さ40mm、厚み1mmの試験片を、ガラス転移温度より10℃高い温度で3mm/分の速度で100%の延伸率で一軸延伸し、当該試験片の中央部分の面内のリタデーション値を測定して求められる配向複屈折(Δn)の絶対値が10.0×10-4未満である透明熱可塑性樹脂(B)を含む基材層を有する、請求項1~3のいずれか1項に記載の液晶ディスプレイ保護板。 The resin plate further when the absolute value of photoelastic coefficient (C B) is 10.0 × 10 -12 / Pa or less, and the width 20 mm, length 40 mm, a test piece having a thickness of 1 mm, than the glass transition temperature The absolute value of orientation birefringence (Δn B ) obtained by uniaxially stretching at a high temperature of 10 ° C. at a rate of 3 mm / min at a stretching rate of 100% and measuring the in-plane retardation value of the central portion of the test piece is The liquid crystal display protective plate according to any one of claims 1 to 3, which has a base material layer containing a transparent thermoplastic resin (B) having a size of less than 10.0 × 10 -4.
  5.  さらに、前記樹脂板の少なくとも一方の表面に硬化被膜を備える、請求項1~4のいずれか1項に記載の液晶ディスプレイ保護板。 The liquid crystal display protective plate according to any one of claims 1 to 4, further comprising a cured film on at least one surface of the resin plate.
  6.  前記樹脂板は押出成形板である、請求項1~5のいずれか1項に記載の液晶ディスプレイ保護板。 The liquid crystal display protective plate according to any one of claims 1 to 5, wherein the resin plate is an extruded plate.
PCT/JP2020/042195 2019-11-15 2020-11-12 Liquid crystal display protective plate WO2021095794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556139A JP7538138B2 (en) 2019-11-15 2020-11-12 LCD display protection plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207044 2019-11-15
JP2019-207044 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095794A1 true WO2021095794A1 (en) 2021-05-20

Family

ID=75912681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042195 WO2021095794A1 (en) 2019-11-15 2020-11-12 Liquid crystal display protective plate

Country Status (2)

Country Link
JP (1) JP7538138B2 (en)
WO (1) WO2021095794A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050550A (en) * 2005-10-07 2008-03-06 Asahi Kasei Chemicals Corp Light compensation film
KR20100104519A (en) * 2009-03-18 2010-09-29 주식회사 엘지화학 Acryl-based copolymer, optical film and liquid crystal display comprising the same
JP2017125185A (en) * 2016-01-07 2017-07-20 旭化成株式会社 Methacrylic resin, methacrylic resin composition, and film
JP2018060014A (en) * 2016-10-04 2018-04-12 日東電工株式会社 Optical laminate and picture display unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608800B2 (en) 2001-04-16 2011-01-12 コニカミノルタホールディングス株式会社 Method for producing retardation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050550A (en) * 2005-10-07 2008-03-06 Asahi Kasei Chemicals Corp Light compensation film
KR20100104519A (en) * 2009-03-18 2010-09-29 주식회사 엘지화학 Acryl-based copolymer, optical film and liquid crystal display comprising the same
JP2017125185A (en) * 2016-01-07 2017-07-20 旭化成株式会社 Methacrylic resin, methacrylic resin composition, and film
JP2018060014A (en) * 2016-10-04 2018-04-12 日東電工株式会社 Optical laminate and picture display unit

Also Published As

Publication number Publication date
JP7538138B2 (en) 2024-08-21
JPWO2021095794A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6266021B2 (en) Method for manufacturing extruded resin plate, method for manufacturing liquid crystal display protective plate, and liquid crystal display protective plate
WO2017164276A1 (en) Extruded resin sheet manufacturing method and extruded resin sheet
JP6926088B2 (en) Manufacturing method of extruded resin plate and extruded resin plate
JP4827949B2 (en) Laminated optical film having positive (+) wavelength dispersion
JP6542780B2 (en) Method of manufacturing liquid crystal display protection plate
JP6997771B2 (en) Extruded resin plate and its manufacturing method
JP5006891B2 (en) Method for producing acrylic resin film and acrylic resin film
JP7045944B2 (en) Anti-glare protective plate
WO2021215515A1 (en) Liquid crystal display protection plate, curved surface-attached liquid crystal display protection plate, and method for manufacturing same
WO2021095794A1 (en) Liquid crystal display protective plate
WO2021117788A1 (en) Liquid crystal display protective plate
JP7537931B2 (en) Liquid crystal display protective plate, and curved liquid crystal display protective plate and its manufacturing method
WO2021251355A1 (en) Liquid crystal display protection plate, liquid crystal display protection plate with curved surface, and methods for manufacturing same
WO2016002665A1 (en) Optical film and method for manufacturing same
JP7150016B2 (en) Extruded resin plate, manufacturing method thereof, and laminated plate
CN117999160A (en) Extruded resin laminate film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887980

Country of ref document: EP

Kind code of ref document: A1