WO2021095748A1 - Film and method for producing film - Google Patents

Film and method for producing film Download PDF

Info

Publication number
WO2021095748A1
WO2021095748A1 PCT/JP2020/041995 JP2020041995W WO2021095748A1 WO 2021095748 A1 WO2021095748 A1 WO 2021095748A1 JP 2020041995 W JP2020041995 W JP 2020041995W WO 2021095748 A1 WO2021095748 A1 WO 2021095748A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
less
resin composition
aromatic
Prior art date
Application number
PCT/JP2020/041995
Other languages
French (fr)
Japanese (ja)
Inventor
円 山口
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2021506006A priority Critical patent/JP6879444B1/en
Publication of WO2021095748A1 publication Critical patent/WO2021095748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a film and a method for producing a film.
  • Transparent conductive films are used in touch panel film sensors, electronic paper, dye-sensitized solar cells, touch sensors, and the like.
  • the transparent conductive film 10 is known to be composed of, for example, an electrode layer (transparent conductive film) 11, a base material 12, an adhesive layer 13, and a protective film 14.
  • Patent Document 1 describes a transparent conductive film laminate having an adhesive layer, a film base material, and a transparent conductive film in this order on a protective film, and at least one of the film base material and the protective film. Has an uneven portion on the surface on the pressure-sensitive adhesive layer side in each end region from one end portion in the width direction and the other end portion to 100 mm inside in the width direction, respectively.
  • the effective roughness R1 of the surface of the uneven portion in each of the end regions is 0.1 to 20 ⁇ m, and the pressure-sensitive adhesive layer has the uneven portion of one end region and the other in the width direction. From the position where the distance from the uneven portion of the one end region is 0 to 10 mm from the position where the distance from the uneven portion of the one end region is 0 to 10 mm, the distance from the uneven portion of the other end region is 0 to 10 mm.
  • a transparent conductive film laminate characterized in that it is provided over such positions is disclosed. Further, it is described that a polycarbonate resin is used as the protective film.
  • Patent Document 2 a resin composition containing a polycarbonate resin and a polyarylate resin is disclosed in Patent Document 2, Patent Document 3, and the like.
  • a protective film is usually used as the transparent conductive film.
  • Such a protective film is used to protect the base material when transporting the laminate of the electrode layer and the base material. That is, the transparent conductive film is often manufactured by roll-to-roll industrially, but at this time, it is required to improve the transportability of the film and prevent winding wrinkles. Poor film transport and winding wrinkles can be reduced by suppressing adhesion (blocking) between the films. Therefore, for anti-blocking on the opposite side of the electrode layer of the transparent conductive film, the protective film is required to have slidability to the extent that the films do not stack with each other.
  • An object of the present invention is to solve such a problem, and to produce a resin composition, a film, and a film capable of providing a transparent film having good slidability and suppressed turbidity.
  • the purpose is to provide a method.
  • the above aromatic polyarylate resin (C) is contained, and the aromatic polyarylate resin (B) is added to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C).
  • ⁇ 2> The resin composition according to ⁇ 1>, wherein the aromatic polycarbonate resin (A) has an ultimate viscosity of 0.34 dL / g or less.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein the difference in the ultimate viscosity between the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is 0.28 dL / g or more.
  • ⁇ 4> The resin according to any one of ⁇ 1> to ⁇ 3>, wherein at least one of the glass transition temperature or the plurality of glass transition temperatures measured by a differential scanning calorimeter of the resin composition indicates 150 ° C. or higher. Composition.
  • ⁇ 10> The film according to ⁇ 8> or ⁇ 9>, wherein the film thickness is 10 ⁇ m or more and 300 ⁇ m or less.
  • ⁇ 11> The film according to any one of ⁇ 8> to ⁇ 10>, wherein the haze is 10% or less.
  • ⁇ 12> An anti-blocking film formed from the resin composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 13> The dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N measured with a film having a root mean square roughness of 0.093 ⁇ m is 2.00 or less, according to ⁇ 12>. Anti-blocking film.
  • ⁇ 14> The anti-blocking film according to ⁇ 12> or ⁇ 13>, wherein the film thickness is 10 ⁇ m or more and 300 ⁇ m or less.
  • ⁇ 15> The anti-blocking film according to any one of ⁇ 12> to ⁇ 14>, wherein the haze is 10% or less.
  • ⁇ 17> A method for producing a film, wherein the resin composition according to any one of ⁇ 1> to ⁇ 7> is extruded into a sheet in a molten state and pressure-bonded with a pair of rolls.
  • the film is the film according to any one of ⁇ 8> to ⁇ 11> or the anti-blocking film according to any one of ⁇ 12> to ⁇ 15>, ⁇ 17>.
  • the present invention has made it possible to provide a resin composition, a film, and a method for producing a film, which can provide a transparent film having slidability and suppressed turbidity.
  • FIG. 1 is an example of a schematic cross-sectional view showing a layer structure of a transparent conductive film.
  • FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film
  • FIG. 2B is a schematic view showing a state in which the smooth polycarbonate film is slid on the polycarbonate film having fine irregularities on the surface.
  • a schematic diagram showing a state in which a polycarbonate film having fine irregularities on the surface is slid is shown.
  • FIG. 3 shows an example of a schematic view of the film of the present invention as viewed from the cross-sectional direction.
  • FIG. 4 is an example of a schematic diagram showing a method for producing a film of the present invention.
  • the resin composition of the present invention has an aromatic polycarbonate resin (A) having an ultimate viscosity of 0.37 dL / g or less, an aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less, and an aromatic polyarylate resin (B).
  • the aromatic polyarylate resin (C) is contained in an amount of 0.60 dL / g or more, and the aromatic polyarylate is based on a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). It is characterized by containing 10 to 70 parts by mass of the resin (B).
  • the film formed from the above resin composition (hereinafter, may be referred to as "the film of the present invention") has good slidability and turbidity is suppressed. It becomes a transparent film (with low haze). Further, the film of the present invention can have a high total light transmittance. That is, the protective film of a film manufactured by roll-to-roll such as a transparent conductive film is required to suppress adhesion between the films (anti-blocking property) from the viewpoint of improving the transportability of the film and preventing winding wrinkles. .. That is, the protective film is required to have slidability to the extent that the films do not stack with each other.
  • the slidability of the film will be described with reference to FIG.
  • FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film.
  • the smooth polycarbonate film is placed on the smooth polycarbonate film as described above, there is no slidability.
  • 21 is a polycarbonate film having a smooth surface
  • 22 is a polycarbonate film having fine irregularities on the surface.
  • FIG. 3 is a schematic view of the film 30 of the present invention as viewed from the cross-sectional direction, and X mainly covers a region made of an aromatic polyarylate resin (C) having an intrinsic viscosity of 0.60 dL / g or more.
  • Y mainly indicate a region composed of a mixture of an aromatic polycarbonate resin (A) having an intrinsic viscosity of 0.37 dL / g or less and an aromatic polyarylate resin (B) having an intrinsic viscosity of 0.50 dL / g or less. ing. That is, in the film of the present invention, both the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (B) have a small ultimate viscosity and a small molecular weight, so that they are easily mixed with each other. On the other hand, since both the aromatic polyarylate resin (B) and the aromatic polyarylate resin (C) are polyarylate resins, they are also easily mixed.
  • Aromatic polyarylate resin (B) acts as a compatibilizer moderately, the resin components can be mixed without increasing the haze to the extent that it becomes a problem, and a sea-island structure can be formed, and slidability is achieved. It is presumed that.
  • the composition comprises 10 to 70 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). This makes it possible to improve the heat resistance of the film.
  • the present invention will be described in detail.
  • the composition of the present invention contains an aromatic polycarbonate resin (A) having an ultimate viscosity of 0.37 dL / g or less.
  • the ultimate viscosity of the aromatic polycarbonate resin (A) is preferably 0.35 dL / g or less, and more preferably 0.34 dL / g or less.
  • the lower limit of the ultimate viscosity of the aromatic polycarbonate resin (A) is not particularly defined, but is, for example, 0.10 dL / g or more, and further 0.20 dL / g or more, particularly 0.25 dL / g. It may be the above.
  • the resin composition of the present invention contains two or more kinds of aromatic polycarbonate resins (A) having different ultimate viscosities, the ultimate viscosity of the aromatic polycarbonate resin (A) is the above two or more kinds of aromatic polycarbonate resins (A).
  • the weight average molecular weight of the aromatic polycarbonate resin (A) is preferably 10,000 or more, more preferably 15,000 or more, and may be 20,000 or more. By setting the value to the lower limit or more, the heat resistance of the film tends to be improved, and the moldability and bending durability of the film tend to be further improved.
  • the weight average molecular weight of the aromatic polycarbonate resin (A) is preferably 40,000 or less, more preferably 35,000 or less, and may be 30,000 or less. By setting the value to the upper limit or less, the compatibility with the aromatic polyarylate resin (B) tends to be further improved.
  • the weight average molecular weight of the aromatic polycarbonate resin (A) is measured according to the description of Examples described later.
  • the glass transition temperature (Tg) of the aromatic polycarbonate resin (A) is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and even more preferably 140 ° C. or higher. By setting the value to the above lower limit or more, the morphology of the protective film tends to be maintained more effectively even when the protective film is thermoformed.
  • the upper limit value is not particularly specified, but may be, for example, 170 ° C. or lower, and further may be 160 ° C. or lower.
  • the glass transition temperature (Tg) of the aromatic polycarbonate resin (A) is measured according to the description of Examples described later.
  • the aromatic polycarbonate resin (A) used in the present invention is preferably a bisphenol A type polycarbonate resin.
  • the bisphenol A type polycarbonate resin refers to a resin having a carbonate constituent unit derived from bisphenol A and a derivative thereof, and preferably has a constituent unit represented by the following formula (A-1). * In the formula represents the connection position.
  • X 1 represents the following structure.
  • Each of R 15 and R 16 is independently a hydrogen atom or an alkyl group, preferably at least one is a methyl group, and more preferably both are methyl groups.
  • the formula (A-1) is preferably represented by the following formula (A-2).
  • the content of the structural unit represented by the formula (A-1) in the aromatic polycarbonate resin (A) is preferably 70 mol% or more, preferably 80 mol% or more, of all the structural units excluding both ends. More preferably, it is more preferably 90 mol% or more.
  • the upper limit value is not particularly limited, and 100 mol% may be a structural unit represented by the formula (A-1).
  • the bisphenol A type polycarbonate resin is a resin in which substantially the entire amount excluding both ends is composed of the structural units of the formula (A-1).
  • the substantially total amount here specifically means that it is 99.0 mol% or more of all the constituent units, preferably 99.5 mol% or more, and more preferably 99.9 mol% or more. ..
  • the aromatic polycarbonate resin (A) may have a structural unit other than the carbonate structural unit derived from bisphenol A and its derivative.
  • Examples of the dihydroxy compound constituting such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, and the contents thereof are incorporated in the present specification. ..
  • the method for producing the aromatic polycarbonate resin (A) is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in the resin composition in a proportion of 20% by mass or more, preferably 40% by mass or more, and more than 50% by mass. You may. Further, the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in the resin composition in a proportion of 80% by mass or less, more preferably 70% by mass or less, and 65% by mass. It may be as follows. Further, the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in a proportion of 20% by mass or more, and may be 40% by mass or more, in the resin component contained in the resin composition. It may be more than 50% by mass.
  • the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in a proportion of 80% by mass or less, more preferably 70% by mass or less, in the resin component contained in the resin composition. , 65% by mass or less. Within the above range, the effects of the present invention tend to be exhibited more effectively.
  • the resin composition of the present invention may contain only one type of aromatic polycarbonate resin (A), or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
  • the resin composition of the present invention contains an aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less. Since such an aromatic polyarylate resin (B) tends to be compatible with the aromatic polycarbonate resin (A), it is possible to improve the heat resistance while increasing the transparency of the obtained film.
  • the ultimate viscosity of the aromatic polyarylate resin (B) is preferably 0.49 dL / g or less.
  • the lower limit of the ultimate viscosity of the aromatic polyarylate resin (B) is not particularly specified, but may be, for example, 0.10 dL / g or more and 0.20 dL / g or more.
  • the ultimate viscosity of the aromatic polyarylate resin (B) is measured according to the description of Examples described later.
  • the weight average molecular weight of the aromatic polyarylate resin (B) is preferably 10,000 or more, more preferably 20,000 or more, and may be 30,000 or more. By setting the value to the lower limit or more, the heat resistance of the film tends to be improved, and the moldability and bending durability of the film tend to be further improved.
  • the weight average molecular weight of the aromatic polyarylate resin (B) is preferably 100,000 or less, more preferably 60,000 or less, and may be 50,000 or less. By setting the value to the upper limit or less, the compatibility with the polycarbonate resin (A) tends to be further improved.
  • the weight average molecular weight of the aromatic polyarylate resin (B) is measured according to the description of Examples described later.
  • the glass transition temperature (Tg) of the aromatic polyarylate resin (B) is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 185 ° C. or higher, still more preferably 190 ° C. or higher. is there. By setting the value to the lower limit or more, the heat resistance of the obtained resin composition tends to be further improved.
  • the upper limit value is, for example, 250 ° C. or lower, and may be 230 ° C. or lower or 210 ° C. or lower.
  • the glass transition temperature (Tg) of the aromatic polyarylate resin (B) is measured according to the description of Examples described later.
  • the aromatic polyarylate resin (B) used in the present invention contains a structural unit derived from an aromatic dicarboxylic acid (preferably an aromatic dicarboxylic acid containing isophthalic acid and / or terephthalic acid as a main component) and bisphenol (preferably bisphenol A). It is preferable that it is an aromatic polyester composed of a constituent unit derived from bisphenol) containing the above.
  • the main component means a component having the highest content ratio, and preferably 90 mol% or more (hereinafter, the same applies to the main component).
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid.
  • aromatic dicarboxylic acid examples include acids, 3,3'-diphenyldicarboxylic acid and 4,4'-diphenyletherdicarboxylic acid.
  • bisphenol examples include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy-3,).
  • 5-dibromophenyl) propane 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfide, 4,4'-Dihydroxydiphenylketone, 4,4'-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1 Examples thereof include -bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and 2,2-bis (4-hydroxyphenyl) propane is preferable. These compounds may be used alone or in combination of two or more.
  • the method for producing the aromatic polyarylate resin (B) is not particularly limited, and those obtained by a known method can be used.
  • the aromatic polyarylate resin (B) obtained by the interfacial polymerization method or the melt polymerization method can be preferably used.
  • the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in the resin composition in a proportion of 8% by mass or more, preferably 10% by mass or more, and 18% by mass or more. There may be. In particular, when the content is 18% by mass or more, the transparency of the film tends to be further improved. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in the resin composition in a proportion of 60% by mass or less, more preferably 55% by mass or less, and 47% by mass. It is more preferably less than or equal to%.
  • the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in a proportion of 8% by mass or more in the resin component contained in the resin composition, and may be 10% by mass or more. , 18% by mass or more. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in a proportion of 60% by mass or less, and more preferably 55% by mass or less, in the resin component contained in the resin composition. It is preferably 47% by mass or less, and more preferably 47% by mass or less.
  • the resin composition of the present invention may contain only one type of aromatic polyarylate resin (B), or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
  • the resin composition of the present invention contains an aromatic polyarylate resin (C) having an ultimate viscosity of 0.60 dL / g or more. Since such an aromatic polyarylate resin tends to be compatible with the aromatic polyarylate resin (B), it is possible to improve the heat resistance while increasing the transparency of the obtained film. In addition, since it is difficult to mix with the aromatic polycarbonate resin (A), it is presumed that the sea-island structure can be easily formed.
  • the ultimate viscosity of the aromatic polyarylate resin (C) is preferably 0.62 dL / g or more.
  • the upper limit of the ultimate viscosity of the aromatic polyarylate resin (C) is not particularly specified, but may be, for example, 0.90 dL / g or less and 0.80 dL / g or less.
  • the ultimate viscosity of the aromatic polyarylate resin (C) is measured according to the description of Examples described later.
  • the difference in the ultimate viscosities of the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is preferably 0.28 dL / g or more, and more preferably 0.30 dL / g or more. Preferably, it may be 0.33 dL / g or more. By setting the value to the lower limit or more, the slidability is more effectively exhibited in the produced film.
  • the upper limit of the difference in the ultimate viscosity between the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is, for example, 0.50 dL / g or less, and further, 0.40 dL / g or less. it can.
  • the weight average molecular weight of the aromatic polyarylate resin (C) is preferably 10,000 or more, more preferably 30,000 or more, and may be 50,000 or more. By setting the value to the lower limit or more, the sea-island structure tends to be easily formed, and the slidability tends to be more easily imparted.
  • the weight average molecular weight of the aromatic polyarylate resin (C) is preferably 150,000 or less, more preferably 100,000 or less, and may be 80,000 or less. By setting the value to the upper limit or less, the transparency and moldability of the film tend to be further improved.
  • the weight average molecular weight of the aromatic polyarylate resin (C) is measured according to the description of Examples described later.
  • the glass transition temperature (Tg) of the aromatic polyarylate resin (C) is preferably more than 185 ° C, more preferably 190 ° C or higher, and even more preferably 195 ° C or higher. By setting the Tg to more than 185 ° C., the heat resistance of the obtained resin composition or film can be further improved.
  • the upper limit may be, for example, 270 ° C. or lower, and further may be 250 ° C. or lower and 230 ° C. or lower.
  • the glass transition temperature (Tg) of the aromatic polyarylate resin (C) is measured according to the description of Examples described later.
  • the aromatic polyarylate resin (C) used in the present invention contains a structural unit derived from an aromatic dicarboxylic acid (preferably an aromatic dicarboxylic acid containing isophthalic acid and / or terephthalic acid as a main component) and bisphenol (preferably bisphenol A). It is preferable that it is an aromatic polyester composed of a constituent unit derived from bisphenol) containing the above.
  • aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid.
  • bisphenol examples include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy-3,).
  • 5-dibromophenyl) propane 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfide , 4,4'-Dihydroxydiphenylketone, 4,4'-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1, Examples thereof include 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane is preferable. These compounds may be used alone or in combination of two or more.
  • the method for producing the aromatic polyarylate resin (C) is not particularly limited, and those obtained by a known method can be used.
  • the aromatic polyarylate resin (C) obtained by the interfacial polymerization method or the melt polymerization method can be preferably used.
  • the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in the resin composition in a proportion of 10% by mass or more, and may be 12% by mass or more. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in the resin composition in a proportion of 40% by mass or less, more preferably 35% by mass or less, and 28% by mass. It may be less than or equal to%. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in a proportion of 10% by mass or more, and may be 12% by mass or more, in the resin component contained in the resin composition. ..
  • the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in a proportion of 40% by mass or less, and more preferably 35% by mass or less, in the resin component contained in the resin composition. Preferably, it may be 28% by mass or less.
  • the resin composition of the present invention may contain only one type of aromatic polyarylate resin (C), or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
  • the resin composition of the present invention contains 10 to 70 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). It is preferable that the aromatic polyarylate resin (B) is contained in an amount of 10 to 60 parts by mass with respect to a total of 40 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). It is more preferable that the aromatic polyarylate resin (B) is contained in an amount of 10 to 50 parts by mass with respect to a total of 50 to 90 parts by mass of the aromatic polyarylate resin (C) and the aromatic polycarbonate resin (A).
  • the aromatic polycarbonate resin (A) and the aromatic polyarylate resin are more preferably contained. It is even more preferable to contain 10 to 35 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 65 to 90 parts by mass of (C). In particular, when the total of the aromatic polycarbonate resin (A), the aromatic polyarylate resin (B) and the aromatic polyarylate resin (C) is 100 parts by mass, it is preferable to satisfy the above blending ratio.
  • the mass ratio of the aromatic polyarylate resin (B) to the aromatic polyarylate resin (C) is preferably 3: 1 to 1: 3, and is 2.5: 1. It is more preferably ⁇ 1: 2.5. With such a configuration, the effect of the present invention tends to be exhibited more effectively. Further, in the resin composition of the present invention, the total of the aromatic polycarbonate resin (A), the aromatic polyarylate resin (B) and the aromatic polyarylate resin (C) accounts for 95% by mass or more of the resin composition. It is preferable to occupy 98% by mass or more.
  • the resin composition of the present invention is, in addition to the above-mentioned aromatic polycarbonate resin (A), aromatic polyarylate resin (B) and aromatic polyarylate resin (C), an antioxidant as long as the gist of the present invention is not deviated. It may contain other components such as (E), transesterification inhibitor (F), and mold release agent (G).
  • the resin composition of the present invention preferably contains an antioxidant.
  • the antioxidant include a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, and the like, and a phosphorus-based antioxidant and a phenol-based antioxidant (more preferably hinder). At least one of (dophenol-based antioxidants) is preferable, and phosphorus-based antioxidants are particularly preferable.
  • a phosphite compound represented by the following formula (1) or (2) is preferable.
  • R 1 and R 2 independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R 3 to R 7 independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl groups represented by R 1 and R 2 are preferably linear or branched alkyl groups having 1 to 10 carbon atoms, respectively.
  • R 1 and R 2 are aryl groups, an aryl group represented by any of the following general formulas (1-a), (1-b), or (1-c) is preferable.
  • R A is independently, in.
  • the formula (1-b) represents an alkyl group having a carbon number of 1 to 10
  • R B are each independently, carbon atoms of 1 to Represents 10 alkyl groups.
  • phenolic antioxidant examples include hindered phenolic antioxidants.
  • the phenolic antioxidant described in paragraph 0041 of JP-A-2019-002023 and the phenol-based antioxidant described in paragraphs 0033 to 0034 of JP-A-2019-0506035 are preferably used. These contents are incorporated herein by reference.
  • the details of the antioxidant can be referred to in paragraphs 0057 to 0061 of JP-A-2017-031313, and these contents are incorporated in the present specification.
  • the content of the antioxidant in the resin composition is preferably 0.005 parts by mass or more, more preferably 0.007 parts by mass, based on 100 parts by mass of the resin component contained in the resin composition. It is by mass or more, more preferably 0.01 parts by mass or more.
  • the upper limit of the content of the antioxidant is preferably 4 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass with respect to 100 parts by mass of the resin component contained in the resin composition. Parts or less, more preferably 0.1 parts by mass or less.
  • the moist heat stability of the film tends to be improved. Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
  • Transesterification inhibitor (F) The resin composition of the present invention preferably contains a transesterification inhibitor.
  • the transesterification inhibitor include a phosphorus-based transesterification inhibitor and a sulfur-based transesterification inhibitor.
  • the descriptions in paragraphs 0035 to 0039 of International Publication No. 2015/190162, paragraphs 0037 of JP-A-2019-002023, and paragraphs 0041 of JP-A-2018-199745 can be referred to. Is incorporated herein.
  • the content of the transesterification inhibitor (F) in the resin composition is preferably 0.001 part by mass or more, more preferably 0.001 part by mass or more, based on 100 parts by mass of the resin component contained in the resin composition. It is 0.005 parts by mass or more, more preferably 0.007 parts by mass or more.
  • the upper limit of the content of the ester exchange inhibitor is preferably 1.0 part by mass or less, more preferably 0.5 part by mass or less, still more preferably, with respect to 100 parts by mass of the resin component contained in the resin composition. Is 0.3 parts by mass or less, more preferably 0.1 parts by mass or less. Only one type of transesterification inhibitor may be contained, or two or more types may be contained. When two or more types are included, the total amount is preferably in the above range.
  • the resin composition of the present invention preferably contains a mold release agent.
  • the release agent is at least one selected from the group consisting of an aliphatic carboxylic acid, an ester of an aliphatic carboxylic acid and an alcohol, an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000, and a polysiloxane-based silicone oil. Species of compounds can be mentioned, preferably esters of aliphatic carboxylic acids and alcohols.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (mixture containing myricyl palmitate as the main component), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, and glycerin monostearate.
  • the release agent described in paragraph 0032 of JP-A-2017-226848 and paragraph 0056 of JP-A-2018-199745 can be used, and the contents thereof are incorporated in the present specification. Is done.
  • the content of the release agent in the resin composition is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, based on 100 parts by mass of the resin component contained in the resin composition. It is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 part by mass or less. Only one type of release agent may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
  • the resin composition of the present invention contains other thermoplastic resins, heat stabilizers, flame retardants, flame retardants, ultraviolet absorbers, colorants, antistatic agents, and the like. It may contain a fluorescent whitening agent, an antifogging agent, a fluidity improving agent, a plasticizer, a dispersant, an antibacterial agent, an antiblocking agent, an impact improving agent, a sliding improving agent, a hue improving agent, an acid trapping agent and the like. .. These components may be used alone or in combination of two or more. When contained, the total amount of the components other than the above (A) to (G) is preferably 0.001 to 5% by mass, and preferably 0.001 to 2% by mass. More preferably, it is 0.01 to 1% by mass.
  • At least one of the glass transition temperature or a plurality of glass transition temperatures measured by a differential scanning calorimeter preferably exhibits 150 ° C. or higher, and more preferably at least one exhibits 160 ° C. or higher. Further, it is preferable that either the glass transition temperature or the plurality of glass transition temperatures measured by the differential scanning calorimeter is 140 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly defined, but it is practical that, for example, either the glass transition temperature or the plurality of glass transition temperatures is 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the glass transition temperature is measured according to the description of Examples described later.
  • the film manufacturing method of the present invention is a film manufacturing method in which the resin composition of the present invention is extruded into a sheet in a molten state and pressure-bonded with a pair of rolls, and at least one of the pair of rolls
  • the roll surface is characterized by having a type A durometer hardness of 10 to 99.
  • the aromatic polyarylate resin (B) acts as a compatibilizer to the aromatic polycarbonate resin (A) and the polyarylate resin (C) moderately, and haze becomes a problem. It is presumed that the resin components can be mixed and the sea-island structure can be formed without increasing the height, and the slidability of the film can be achieved.
  • FIG. 4 is an example of a partial schematic view showing a method for producing a film of the present invention.
  • the composition 41 of the present invention is extruded from a die 42 in a molten state into a sheet.
  • the melted and sheet-like composition 41 is pressure-bonded by the pair of rolls when it is passed between the pair of rolls (the first roll 43a and the second roll 43b).
  • the first roll 43a and the second roll 43b it is preferable to use a roll having a type A durometer hardness of 10 to 99 on the roll surface.
  • the first roll 43a is a roll having a surface durometer hardness of 10 to 99. That is, as the first roll 43a, a roll having a soft surface is used.
  • a roll having a surface durometer hardness of 10 to 99 the portion of the aromatic polyarylate resin (C) and the aromatic polycarbonate resin (A) that are incompatible with the aromatic polyarylate resin (B) is formed of the film. It is presumed that it appears on the surface and forms fine irregularities on the surface of the film. As a result, slidability can be achieved.
  • the durometer hardness of the roll surface is preferably 30 or more, more preferably 50 or more, preferably 80 or less, and more preferably 75 or less.
  • the roll has an appropriate softness.
  • rolls having a surface durometer hardness of 10 to 99 include mirrored rubber rolls.
  • the temperature of the roll having a surface durometer hardness of 10 to 99 is preferably 30 to 90 ° C, more preferably 40 to 70 ° C.
  • the composition 41 passes between the pair of rolls (first roll 43a and second roll 43b) and then further passes over the transport roll 44.
  • Rolls other than rolls having a surface durometer hardness of 10 to 99 for example, in FIG. 4, examples of the second roll 43b and the transport roll 44 include metal rolls.
  • Metal rolls reach a durometer hardness of 100, which is the measurement limit. Examples of the metal roll include a mirror rigid body roll and a metal elastic roll.
  • the surface temperature of rolls other than rolls having a surface durometer hardness of 10 to 99 is preferably 70 to 170 ° C, more preferably 100 to 160 ° C.
  • the durometer hardness of at least one roll surface of the first roll and the second roll may be in the above range, but the surfaces of both the first roll and the second roll may satisfy the above durometer hardness. .. In this case, desired fine irregularities are formed on both surfaces of the film.
  • the film after passing between the pair of rolls (first roll 43a and second roll 43b) is cooled while passing through the transport roll 44, or by passing through a cooling zone or a cooling roll. .. After cooling, it may be further wound around a core material. That is, in the present invention, it can be a wound body having the core material and the film of the present invention wound around the core material.
  • the film obtained by the above film manufacturing method preferably has a film thickness of 10 ⁇ m or more and 300 ⁇ m or less.
  • the details of the film obtained by the method for producing the film of the present invention are the same as those of the above-mentioned film of the present invention.
  • a transparent conductive film can also be produced by laminating the film of the present invention obtained above, the pressure-sensitive adhesive layer, the film base material, and the electrode layer.
  • the thickness of the film of the present invention is preferably 10 ⁇ m or more and 300 ⁇ m or less. By setting the thickness within the above range, a more transparent film can be obtained.
  • the thickness of the film of the present invention is preferably 20 ⁇ m or more, and may be 25 ⁇ m or more. Further, it is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and further preferably 150 ⁇ m or less.
  • the film of the present invention also preferably has a coefficient of kinetic friction with a film having a root mean square roughness of 0.093 ⁇ m of 2.00 or less, more preferably 1.80 or less. It is more preferably 50 or less, and may be 1.33 or less. The lower limit is, for example, 0.86 or more, and may be 0.90 or more.
  • the coefficient of kinetic friction is a value measured under the conditions of a thread of 100 mm / min and a load cell of 10N, and more specifically, it is measured by the method described in Examples described later.
  • the total light transmittance under the condition of a D65 light source 10 ° field of view is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
  • the upper limit of the total light transmittance is 100%, but even if it is 94% or less, the required performance is sufficiently satisfied.
  • the total light transmittance is measured by the method described in Examples described later.
  • the haze of the film of the present invention is preferably 10% or less, more preferably 8% or less, further preferably 6% or less, and further 5% or less and 4% or less. ..
  • the ideal lower limit is 0%, but even if it is 0.1% or more, it is a practical level. Haze is measured by the method described in Examples described below.
  • the film of the present invention is preferably used as a masking film. More preferably, it is used as an anti-blocking film. It is also preferably used as a protective film for transparent conductive films.
  • the film of the present invention and a multilayer body having an adhesive layer, a base material and an electrode layer in this order are preferably used as a transparent conductive film.
  • the transparent conductive film is preferably used as a transparent conductive film used for a film sensor of a touch panel, an electronic paper, a dye-sensitized solar cell, a touch sensor, and the like.
  • the film of the present invention is preferably used as a film for applications that require slidability and transparency.
  • A1 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material, manufactured by Mitsubishi Engineering Plastics, H-7000F, weight average molecular weight: 24,900, ultimate viscosity 0.30 dL / g, Tg: 141 ° C
  • A2 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material, manufactured by Mitsubishi Engineering Plastics, H-4000F, weight average molecular weight: 29,200, ultimate viscosity 0.35 dL / g, Tg: 143 ° C -Polycarbonate resin (A') (for comparison)
  • A3 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material, manufactured by Mitsubishi Engineering Plastics, S-3000F, weight average molecular weight: 41,300, ultimate viscosity 0.43 dL / g, Tg: 148 ° C
  • -Polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less (B) Unitika Ltd., U-powder L type, weight average molecular weight 40,800, ultimate viscosity 0.48 dL / g, Tg: 195 ° C.
  • G Glycerin monostearate, manufactured by RIKEN Vitamin, Rikemar S-100A
  • the weight average molecular weight (Mw) of each resin was measured by gel permeation chromatography. Specifically, an LC-20AD system (manufactured by Shimadzu Corporation) was used as a gel permeation chromatography apparatus, and LF-804 (manufactured by Shodex) was connected and used as a column. The column temperature was 40 ° C. The detector used was an RI detector of RID-10A (manufactured by Shimadzu Corporation). Chloroform was used as the eluent, and the calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation. If the gel permeation chromatography device, column, or detector is difficult to obtain, measure using another device having equivalent performance.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • the measurement start temperature was 30 ° C.
  • the temperature rising rate was 10 ° C./min
  • the reached temperature was 250 ° C.
  • the temperature lowering rate was 20 ° C./min.
  • a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Corporation, "DSC7020") was used.
  • a film was produced by the following method.
  • a discharge rate of 10 kg / h and a screw rotation speed of 63 rpm the film was extruded in a molten state, crimped with a first roll and a second roll, and then cooled and solidified to prepare a film.
  • the cylinder / die head temperature was 280 ° C.
  • the final film thickness was adjusted by changing the roll speeds of the first roll and the second roll so as to have the values shown in Table 1 or Table 2.
  • first roll and the second roll used are as follows.
  • -First roll Silicone rubber roll (IT68S-MCG) manufactured by Mochida Shoko Co., Ltd.
  • Roll temperature 130 ° C
  • the dynamic friction coefficient of the obtained film was measured using a friction coefficient measuring machine. Specifically, the film having a root mean square roughness of 0.093 ⁇ m and the film obtained above were placed so as to overlap each other, and the thread was set at 100 mm / min and the load cell was 10N. The obtained film was slid on a film of .093 ⁇ m, and the dynamic friction coefficient was measured.
  • a friction coefficient measuring machine manufactured by Toyo Seiki Seisakusho Co., Ltd. (“friction tester”) was used.
  • a bisphenol A type polycarbonate film with a single-sided masking film manufactured by Mitsubishi Gas Chemical Company, FE-2000, thickness 100 ⁇ m
  • the unmasked side of the bisphenol A type polycarbonate film with a single-sided masking film is turned to the upper surface, and fixed to the right end of the test table with tape so that the long axis coincides with the long axis of the test table, 63 mm ⁇
  • the obtained film was attached to the underside of a 63 mm, 200 g thread, and the polycarbonate film and the obtained film were placed so as to overlap each other. As described above, the obtained film was slid and the dynamic friction coefficient was measured.
  • "x" means unmeasurable.
  • the surface roughness of the film having a root mean square roughness of 0.093 ⁇ m used for measuring the dynamic friction coefficient was specifically measured by the following method using a surface roughness measuring machine.
  • the detector of the device was made "integrated", and a "standard drive unit” was attached to the drive unit of the detector.
  • the film was fixed on a glass plate with tape, and the surface roughness measuring machine was installed on it so as not to move. Then, the measurement was performed under the standard "JIS B 0601-2001", the measurement speed was 0.5 mm / s, the cutoff value was 0.8, and the number of sections was 3, and the root mean square roughness Rq was measured.
  • the root mean square roughness Rq was measured three times at different locations of the film and used as the average value.
  • As the measuring machine "SJ-210" manufactured by Mitutoyo Co., Ltd. was used.
  • Transparent conductive film 11
  • Electrode layer (transparent conductive film) 12
  • Base material 13
  • Adhesive layer 14
  • Protective film 21
  • Polycarbonate film with smooth surface 22
  • Polycarbonate film with fine irregularities on the surface 30
  • Composition 42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A transparent film having slidability and suppressed turbidity, and a method for producing a film are provided. This resin composition contains an aromatic polycarbonate resin (A) with a limiting viscosity of less than or equal to 0.37 dL/g, an aromatic polyarylate resin (B) with a limiting viscosity of less than or equal to 0.50 dL/g and an aromatic polyarylate resin (C) with a limiting viscosity of greater than or equal to 0.60 dL/g, and contains 10-70 parts by mass of the aromatic polyarylate resin (B) relative to a total of 30-90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (B).

Description

フィルムおよびフィルムの製造方法Film and film manufacturing method
 本発明は、フィルムおよびフィルムの製造方法に関する。 The present invention relates to a film and a method for producing a film.
 タッチパネルのフィルムセンサー、電子ペーパーや色素増感型太陽電池、タッチセンサー等には、透明導電性フィルムが用いられている。透明導電性フィルム10は、例えば、図1に示すように、電極層(透明導電膜)11と、基材12と、粘着剤層13と、保護フィルム14とから構成されるものが知られている。
 例えば、特許文献1には、保護フィルム上に、粘着剤層、フィルム基材および透明導電膜をこの順で有する透明導電性フィルム積層体であって、前記フィルム基材および前記保護フィルムの少なくとも一方は、幅手方向の一方の最端部および他方の最端部からそれぞれ前記幅手方向の内側100mmまでの各端部領域における前記粘着剤層側の面に、凹凸部を有しており、前記各端部領域における前記凹凸部の表面の実効粗さR1は、0.1~20μmであり、前記粘着剤層は、前記幅手方向において、一方の端部領域の凹凸部と、他方の端部領域の凹凸部との間で、前記一方の端部領域の凹凸部との離間距離が0~10mmとなる位置から、前記他方の端部領域の凹凸部との離間距離が0~10mmとなる位置にわたって設けられていることを特徴とする透明導電性フィルム積層体が開示されている。また、上記保護フィルムとして、ポリカーボネート系樹脂を用いることが記載されている。
Transparent conductive films are used in touch panel film sensors, electronic paper, dye-sensitized solar cells, touch sensors, and the like. As shown in FIG. 1, the transparent conductive film 10 is known to be composed of, for example, an electrode layer (transparent conductive film) 11, a base material 12, an adhesive layer 13, and a protective film 14. There is.
For example, Patent Document 1 describes a transparent conductive film laminate having an adhesive layer, a film base material, and a transparent conductive film in this order on a protective film, and at least one of the film base material and the protective film. Has an uneven portion on the surface on the pressure-sensitive adhesive layer side in each end region from one end portion in the width direction and the other end portion to 100 mm inside in the width direction, respectively. The effective roughness R1 of the surface of the uneven portion in each of the end regions is 0.1 to 20 μm, and the pressure-sensitive adhesive layer has the uneven portion of one end region and the other in the width direction. From the position where the distance from the uneven portion of the one end region is 0 to 10 mm from the position where the distance from the uneven portion of the one end region is 0 to 10 mm, the distance from the uneven portion of the other end region is 0 to 10 mm. A transparent conductive film laminate characterized in that it is provided over such positions is disclosed. Further, it is described that a polycarbonate resin is used as the protective film.
 一方、ポリカーボネート樹脂とポリアリレート樹脂を含む樹脂組成物は、特許文献2、特許文献3等に開示されている。 On the other hand, a resin composition containing a polycarbonate resin and a polyarylate resin is disclosed in Patent Document 2, Patent Document 3, and the like.
特開2018-152187号公報JP-A-2018-152187 特開2009-040866号公報Japanese Unexamined Patent Publication No. 2009-040866 特開平05-156147号公報Japanese Unexamined Patent Publication No. 05-156147
 透明導電性フィルムには、上述の通り、通常、保護フィルムが用いられている。このような保護フィルムは、電極層と基材の積層体を搬送する際、基材を保護するために用いられる。すなわち、透明導電性フィルムは、工業的にはロールトゥロールで製造されることが多いが、この際、フィルムの搬送性向上や巻きジワ防止が求められる。フィルムの搬送不良や巻きジワは、フィルム同士の密着(ブロッキング)を抑制することにより、減らすことができる。そこで、透明導電性フィルムの電極層の反対側のアンチブロッキングのために、保護フィルムには、フィルム同士がスタックしない程度の摺動性が求められている。また、透明導電性フィルムは、保護フィルムが貼りついた状態で、インライン欠点検査が行われるため、濁りが抑制された透明なフィルムであることが求められる。
 本発明はかかる課題を解決することを目的とするものであって、良好な摺動性を有し、かつ、濁りが抑制された透明なフィルムを提供可能な樹脂組成物、フィルムおよびフィルムの製造方法を提供することを目的とする。
As described above, a protective film is usually used as the transparent conductive film. Such a protective film is used to protect the base material when transporting the laminate of the electrode layer and the base material. That is, the transparent conductive film is often manufactured by roll-to-roll industrially, but at this time, it is required to improve the transportability of the film and prevent winding wrinkles. Poor film transport and winding wrinkles can be reduced by suppressing adhesion (blocking) between the films. Therefore, for anti-blocking on the opposite side of the electrode layer of the transparent conductive film, the protective film is required to have slidability to the extent that the films do not stack with each other. Further, since the in-line defect inspection is performed on the transparent conductive film with the protective film attached, it is required to be a transparent film in which turbidity is suppressed.
An object of the present invention is to solve such a problem, and to produce a resin composition, a film, and a film capable of providing a transparent film having good slidability and suppressed turbidity. The purpose is to provide a method.
 上記課題のもと、本発明者が検討を行った結果、極限粘度が低いポリカーボネート樹脂に対し、極限粘度が低いポリアリレート樹脂と極限粘度が高いポリアリレート樹脂をブレンドすることにより、これらの樹脂の相溶性を向上させつつ、フィルムに摺動性を付与できることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>極限粘度が0.37dL/g以下の芳香族ポリカーボネート樹脂(A)と、極限粘度が0.50dL/g以下の芳香族ポリアリレート樹脂(B)と、極限粘度が0.60dL/g以上の芳香族ポリアリレート樹脂(C)を含み、前記芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計30~90質量部に対し、前記芳香族ポリアリレート樹脂(B)を10~70質量部含む、樹脂組成物。
<2>前記芳香族ポリカーボネート樹脂(A)の極限粘度が0.34dL/g以下である、<1>に記載の樹脂組成物。
<3>前記芳香族ポリカーボネート樹脂(A)と前記芳香族ポリアリレート(C)の極限粘度の差が0.28dL/g以上である、<1>または<2>に記載の樹脂組成物。
<4>前記樹脂組成物の示差走査熱量計によって測定したガラス転移温度または複数のガラス転移温度の少なくとも1つが150℃以上を示す、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>さらに、酸化防止剤(E)を含む、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>さらに、エステル交換防止剤(F)を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>さらに、離型剤(G)を含む、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8><1>~<7>のいずれか1つに記載の樹脂組成物から形成されたフィルム。
<9>二乗平均平方根粗さが0.093μmのフィルムとの間で測定される、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.00以下である、<8>に記載のフィルム。
<10>膜厚が10μm以上300μm以下である、<8>または<9>に記載のフィルム。
<11>ヘイズが10%以下である、<8>~<10>のいずれか1つに記載のフィルム。
<12><1>~<7>のいずれか1つに記載の樹脂組成物から形成された、アンチブロッキングフィルム。
<13>二乗平均平方根粗さが0.093μmのフィルムとの間で測定される、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.00以下である、<12>に記載のアンチブロッキングフィルム。
<14>膜厚が10μm以上300μm以下である、<12>または<13>に記載のアンチブロッキングフィルム。
<15>ヘイズが10%以下である、<12>~<14>のいずれか1つに記載のアンチブロッキングフィルム。
<16><8>~<11>のいずれか1つに記載のフィルム、または、<12>~<15>のいずれか1つに記載のアンチブロッキングフィルムと、粘着剤層と、基材と、電極層とをこの順で有する、透明導電性フィルム。
<17><1>~<7>のいずれか1つに記載の樹脂組成物を、溶融状態でシート状に押し出し、一対のロールで圧着して作製するフィルムの製造方法であって、前記一対のロールの少なくとも1つのロール表面のタイプA型のデュロメーター硬度が10~99である、フィルムの製造方法。
<18>前記フィルムが、<8>~<11>のいずれか1つに記載のフィルム、または、<12>~<15>のいずれか1つに記載のアンチブロッキングフィルムである、<17>に記載のフィルムの製造方法。
As a result of studies by the present inventor based on the above problems, a polyarylate resin having a low ultimate viscosity and a polyarylate resin having a high limit viscosity are blended with a polycarbonate resin having a low ultimate viscosity to obtain these resins. It has been found that slidability can be imparted to the film while improving compatibility.
Specifically, the above problems have been solved by the following means.
<1> An aromatic polycarbonate resin (A) having an ultimate viscosity of 0.37 dL / g or less, an aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less, and an aromatic polyarylate resin (B) having an ultimate viscosity of 0.60 dL / g. The above aromatic polyarylate resin (C) is contained, and the aromatic polyarylate resin (B) is added to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). A resin composition containing 10 to 70 parts by mass.
<2> The resin composition according to <1>, wherein the aromatic polycarbonate resin (A) has an ultimate viscosity of 0.34 dL / g or less.
<3> The resin composition according to <1> or <2>, wherein the difference in the ultimate viscosity between the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is 0.28 dL / g or more.
<4> The resin according to any one of <1> to <3>, wherein at least one of the glass transition temperature or the plurality of glass transition temperatures measured by a differential scanning calorimeter of the resin composition indicates 150 ° C. or higher. Composition.
<5> The resin composition according to any one of <1> to <4>, which further contains an antioxidant (E).
<6> The resin composition according to any one of <1> to <5>, further comprising a transesterification inhibitor (F).
<7> The resin composition according to any one of <1> to <6>, further containing a release agent (G).
<8> A film formed from the resin composition according to any one of <1> to <7>.
<9> The dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N measured with a film having a root mean square roughness of 0.093 μm is 2.00 or less, according to <8>. Film.
<10> The film according to <8> or <9>, wherein the film thickness is 10 μm or more and 300 μm or less.
<11> The film according to any one of <8> to <10>, wherein the haze is 10% or less.
<12> An anti-blocking film formed from the resin composition according to any one of <1> to <7>.
<13> The dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N measured with a film having a root mean square roughness of 0.093 μm is 2.00 or less, according to <12>. Anti-blocking film.
<14> The anti-blocking film according to <12> or <13>, wherein the film thickness is 10 μm or more and 300 μm or less.
<15> The anti-blocking film according to any one of <12> to <14>, wherein the haze is 10% or less.
The film according to any one of <16><8> to <11>, or the anti-blocking film according to any one of <12> to <15>, the pressure-sensitive adhesive layer, and the base material. , A transparent conductive film having an electrode layer in this order.
<17> A method for producing a film, wherein the resin composition according to any one of <1> to <7> is extruded into a sheet in a molten state and pressure-bonded with a pair of rolls. A method for producing a film, wherein the type A durometer hardness of at least one roll surface of the roll is 10 to 99.
<18> The film is the film according to any one of <8> to <11> or the anti-blocking film according to any one of <12> to <15>, <17>. The method for producing a film according to.
 本発明により摺動性を有し、かつ、濁りが抑制された透明なフィルムを提供可能な樹脂組成物、フィルムおよびフィルムの製造方法を提供可能になった。 The present invention has made it possible to provide a resin composition, a film, and a method for producing a film, which can provide a transparent film having slidability and suppressed turbidity.
図1は、透明導電性フィルムの層構成を示す断面模式図の一例である。FIG. 1 is an example of a schematic cross-sectional view showing a layer structure of a transparent conductive film. 図2(a)は、平滑なポリカーボネートフィルムの上で、平滑なポリカーボネートフィルムを滑らせる状態を示す模式図であり、図2(b)は、表面に微細な凹凸を設けたポリカーボネートフィルムの上に、表面に微細な凹凸を設けたポリカーボネートフィルムを滑らせる状態を示す模式図を示す。FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film, and FIG. 2B is a schematic view showing a state in which the smooth polycarbonate film is slid on the polycarbonate film having fine irregularities on the surface. , A schematic diagram showing a state in which a polycarbonate film having fine irregularities on the surface is slid is shown. 図3は、本発明のフィルムの断面方向からみた模式図の一例を示す。FIG. 3 shows an example of a schematic view of the film of the present invention as viewed from the cross-sectional direction. 図4は、本発明のフィルムの製造方法を示す模式図の一例である。FIG. 4 is an example of a schematic diagram showing a method for producing a film of the present invention.
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
Hereinafter, the contents of the present invention will be described in detail. In addition, in this specification, "-" is used in the meaning that the numerical values described before and after it are included as the lower limit value and the upper limit value.
In the present specification, various physical property values and characteristic values shall be at 23 ° C. unless otherwise specified.
 本発明の樹脂組成物は、極限粘度が0.37dL/g以下の芳香族ポリカーボネート樹脂(A)と、極限粘度が0.50dL/g以下の芳香族ポリアリレート樹脂(B)と、極限粘度が0.60dL/g以上の芳香族ポリアリレート樹脂(C)を含み、前記芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計30~90質量部に対し、前記芳香族ポリアリレート樹脂(B)を10~70質量部含むことを特徴とする。 The resin composition of the present invention has an aromatic polycarbonate resin (A) having an ultimate viscosity of 0.37 dL / g or less, an aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less, and an aromatic polyarylate resin (B). The aromatic polyarylate resin (C) is contained in an amount of 0.60 dL / g or more, and the aromatic polyarylate is based on a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). It is characterized by containing 10 to 70 parts by mass of the resin (B).
 このような構成とすることにより、上記樹脂組成物から形成されるフィルム(以下、「本発明のフィルム」ということがある)は、良好な摺動性を有し、かつ、濁りが抑制された(低ヘイズの)透明なフィルムとなる。さらに、本発明のフィルムは、全光線透過率も高くできる。すなわち、透明導電性フィルム等のロールトゥロールで製造されるフィルムの保護フィルムには、フィルムの搬送性の向上や巻きジワ防止の観点から、フィルム同士の密着の抑制(アンチブロッキング性)が求められる。つまり、保護フィルムには、フィルム同士がスタックしない程度の摺動性が求められる。
 以下、フィルムの摺動性について、図2を参照しつつ説明する。図2(a)は、平滑なポリカーボネートフィルムの上で、平滑なポリカーボネートフィルムを滑らせる状態を示す模式図である。このように平滑なポリカーボネートフィルムの上に、平滑なポリカーボネートフィルムを載せた場合、摺動性がない。このようなポリカーボネートフィルムに摺動性を付与するには、図2(b)に模式図を示すように、フィルムの表面に微細な凹凸を設けることが考えられる。すなわち、フィルムの表面に微細な凹凸を設けると、フィルム同士の接触面積が減り、十分な摺動性が達成される。なお、図2において、21は表面が平滑なポリカーボネートフィルムであり、22は表面に微細な凹凸を設けたポリカーボネートフィルムである。
 このようにフィルムの表面に微細な凹凸を設ける手段としては、既に公知の方法がある。例えば、表面に微細な凹凸を有するロールを用いて、フィルムの表面に微細な凹凸を形成する方法が挙げられる。この方法では、表面に微細な凹凸を有するロールの間に、溶融したフィルムを通過させ、微細な凹凸を形成する。しかしながら、表面に微細な凹凸を有するロールを用いる方法では、長期間の使用によるロールの摩耗によって、フィルム表面に転写された微細な凹凸形状が変化してしまう場合がある。また、別の方法として、フィルムに微粒子を添加して、微粒子によって、フィルムの表面に微細な凹凸を形成する方法もある。しかしながら、微粒子を添加する方法では、微粒子と樹脂の屈折率の違いにより、フィルムの透明性が損なわれる場合がある。
 そこで、本発明では、新たな方法として、ポリマーブレンドによって、フィルムの表面に微細な凹凸を形成することとした。具体的には、以下のメカニズムによると推定される。
 すなわち、図3は、本発明のフィルム30の断面方向からみた模式図であって、Xは、主に、極限粘度が0.60dL/g以上の芳香族ポリアリレート樹脂(C)からなる領域を、Yは、主に、極限粘度が0.37dL/g以下の芳香族ポリカーボネート樹脂(A)および極限粘度が0.50dL/g以下の芳香族ポリアリレート樹脂(B)の混合物からなる領域を示している。すなわち、本発明のフィルムでは、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(B)は共に極限粘度が小さく、分子量が小さいため、互いに混ざりやすい。一方、芳香族ポリアリレート樹脂(B)と芳香族ポリアリレート樹脂(C)は共にポリアリレート樹脂であるため、これらも混ざりやすい。そして、前記芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計30~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~70質量部含むように調整することにより、芳香族ポリアリレート樹脂(B)がほどよく相溶化剤として働き、ヘイズが問題となる程度にまで高くなることなく樹脂成分が混合し、かつ、海島構造を形成でき、摺動性が達成されると推測される。
 さらに、本発明では、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計30~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~70質量部含む組成とすることにより、フィルムの耐熱性も向上させることが可能になる。
 以下、本発明について詳細に説明する。
With such a configuration, the film formed from the above resin composition (hereinafter, may be referred to as "the film of the present invention") has good slidability and turbidity is suppressed. It becomes a transparent film (with low haze). Further, the film of the present invention can have a high total light transmittance. That is, the protective film of a film manufactured by roll-to-roll such as a transparent conductive film is required to suppress adhesion between the films (anti-blocking property) from the viewpoint of improving the transportability of the film and preventing winding wrinkles. .. That is, the protective film is required to have slidability to the extent that the films do not stack with each other.
Hereinafter, the slidability of the film will be described with reference to FIG. FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film. When the smooth polycarbonate film is placed on the smooth polycarbonate film as described above, there is no slidability. In order to impart slidability to such a polycarbonate film, it is conceivable to provide fine irregularities on the surface of the film as shown in a schematic diagram in FIG. 2 (b). That is, if the surface of the film is provided with fine irregularities, the contact area between the films is reduced and sufficient slidability is achieved. In FIG. 2, 21 is a polycarbonate film having a smooth surface, and 22 is a polycarbonate film having fine irregularities on the surface.
As a means for providing fine irregularities on the surface of the film in this way, there are already known methods. For example, a method of forming fine irregularities on the surface of a film by using a roll having fine irregularities on the surface can be mentioned. In this method, a molten film is passed between rolls having fine irregularities on the surface to form fine irregularities. However, in the method using a roll having fine irregularities on the surface, the shape of the fine irregularities transferred to the film surface may change due to wear of the roll due to long-term use. Another method is to add fine particles to the film and use the fine particles to form fine irregularities on the surface of the film. However, in the method of adding fine particles, the transparency of the film may be impaired due to the difference in the refractive index between the fine particles and the resin.
Therefore, in the present invention, as a new method, it is decided to form fine irregularities on the surface of the film by polymer blending. Specifically, it is presumed to be due to the following mechanism.
That is, FIG. 3 is a schematic view of the film 30 of the present invention as viewed from the cross-sectional direction, and X mainly covers a region made of an aromatic polyarylate resin (C) having an intrinsic viscosity of 0.60 dL / g or more. , Y mainly indicate a region composed of a mixture of an aromatic polycarbonate resin (A) having an intrinsic viscosity of 0.37 dL / g or less and an aromatic polyarylate resin (B) having an intrinsic viscosity of 0.50 dL / g or less. ing. That is, in the film of the present invention, both the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (B) have a small ultimate viscosity and a small molecular weight, so that they are easily mixed with each other. On the other hand, since both the aromatic polyarylate resin (B) and the aromatic polyarylate resin (C) are polyarylate resins, they are also easily mixed. Then, by adjusting so that the aromatic polyarylate resin (B) is contained in an amount of 10 to 70 parts by mass with respect to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). , Aromatic polyarylate resin (B) acts as a compatibilizer moderately, the resin components can be mixed without increasing the haze to the extent that it becomes a problem, and a sea-island structure can be formed, and slidability is achieved. It is presumed that.
Further, in the present invention, the composition comprises 10 to 70 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). This makes it possible to improve the heat resistance of the film.
Hereinafter, the present invention will be described in detail.
<極限粘度が0.37dL/g以下の芳香族ポリカーボネート樹脂(A)>
 本発明の組成物は、極限粘度が0.37dL/g以下の芳香族ポリカーボネート樹脂(A)を含む。このように極限粘度が小さい芳香族ポリカーボネート樹脂を用いることにより、芳香族ポリアリレート樹脂(B)と混ざりやすくすることができる。
 芳香族ポリカーボネート樹脂(A)の極限粘度は、0.35dL/g以下であることが好ましく、0.34dL/g以下であることがより好ましい。上記上限値以下とすることにより、フィルムを作製した際に摺動性がより効果的に発揮される。芳香族ポリカーボネート樹脂(A)の極限粘度の下限値としては、特に定めるものではないが、例えば、0.10dL/g以上であり、さらには0.20dL/g以上、特には0.25dL/g以上であってもよい。
 本発明の樹脂組成物が、極限粘度が異なる2種以上の芳香族ポリカーボネート樹脂(A)を含む場合、芳香族ポリカーボネート樹脂(A)の極限粘度とは、前記2種以上の芳香族ポリカーボネート樹脂(A)を混合した芳香族ポリカーボネート樹脂についての極限粘度の値を意味する(以下、重量平均分子量、ガラス転移温度についても同様に考える。また、他の樹脂成分の極限粘度等についても同様に考える。)。
<Aromatic polycarbonate resin (A) with an ultimate viscosity of 0.37 dL / g or less>
The composition of the present invention contains an aromatic polycarbonate resin (A) having an ultimate viscosity of 0.37 dL / g or less. By using the aromatic polycarbonate resin having a low ultimate viscosity as described above, it is possible to easily mix with the aromatic polyarylate resin (B).
The ultimate viscosity of the aromatic polycarbonate resin (A) is preferably 0.35 dL / g or less, and more preferably 0.34 dL / g or less. By setting the value to the above upper limit or less, the slidability is more effectively exhibited when the film is produced. The lower limit of the ultimate viscosity of the aromatic polycarbonate resin (A) is not particularly defined, but is, for example, 0.10 dL / g or more, and further 0.20 dL / g or more, particularly 0.25 dL / g. It may be the above.
When the resin composition of the present invention contains two or more kinds of aromatic polycarbonate resins (A) having different ultimate viscosities, the ultimate viscosity of the aromatic polycarbonate resin (A) is the above two or more kinds of aromatic polycarbonate resins (A). It means the value of the ultimate viscosity of the aromatic polycarbonate resin mixed with A) (hereinafter, the weight average molecular weight and the glass transition temperature are also considered in the same manner, and the ultimate viscosity of other resin components and the like are also considered in the same manner. ).
 前記芳香族ポリカーボネート樹脂(A)の重量平均分子量は、10,000以上であることが好ましく、15,000以上であることがより好ましく、20,000以上であってもよい。前記下限値以上とすることにより、フィルムの耐熱性が向上し、フィルムの成形性、曲げ耐久性がより向上する傾向にある。また、前記芳香族ポリカーボネート樹脂(A)の重量平均分子量は、40,000以下であることが好ましく、35,000以下であることがより好ましく、30,000以下であってもよい。前記上限値以下とすることにより、芳香族ポリアリレート樹脂(B)との相溶性がより向上する傾向にある。
 芳香族ポリカーボネート樹脂(A)の重量平均分子量は、後述する実施例の記載に従って測定される。
The weight average molecular weight of the aromatic polycarbonate resin (A) is preferably 10,000 or more, more preferably 15,000 or more, and may be 20,000 or more. By setting the value to the lower limit or more, the heat resistance of the film tends to be improved, and the moldability and bending durability of the film tend to be further improved. The weight average molecular weight of the aromatic polycarbonate resin (A) is preferably 40,000 or less, more preferably 35,000 or less, and may be 30,000 or less. By setting the value to the upper limit or less, the compatibility with the aromatic polyarylate resin (B) tends to be further improved.
The weight average molecular weight of the aromatic polycarbonate resin (A) is measured according to the description of Examples described later.
 芳香族ポリカーボネート樹脂(A)のガラス転移温度(Tg)は、好ましくは130℃以上であり、より好ましくは135℃以上であり、さらに好ましくは140℃以上である。上記下限値以上とすることにより、保護フィルムを熱成形する際にもフィルムの形態をより効果的に維持できる傾向にある。
 上限値としては、特に定めるものではないが、例えば、170℃以下であり、さらには、160℃以下であってもよい。
 芳香族ポリカーボネート樹脂(A)のガラス転移温度(Tg)は、後述する実施例の記載に従って測定される。
The glass transition temperature (Tg) of the aromatic polycarbonate resin (A) is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and even more preferably 140 ° C. or higher. By setting the value to the above lower limit or more, the morphology of the protective film tends to be maintained more effectively even when the protective film is thermoformed.
The upper limit value is not particularly specified, but may be, for example, 170 ° C. or lower, and further may be 160 ° C. or lower.
The glass transition temperature (Tg) of the aromatic polycarbonate resin (A) is measured according to the description of Examples described later.
 本発明で用いる芳香族ポリカーボネート樹脂(A)は、ビスフェノールA型ポリカーボネート樹脂であることが好ましい。ビスフェノールA型ポリカーボネート樹脂とは、ビスフェノールAおよびその誘導体由来のカーボネート構成単位を有する樹脂をいい、下記式(A-1)で表される構成単位を有していることが好ましい。式中の*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000001
 式(A-1)中、Xは下記構造を表す。
Figure JPOXMLDOC01-appb-C000002
 R15およびR16は、それぞれ独立に、水素原子またはアルキル基であり、少なくとも一方がメチル基であることが好ましく、両方がメチル基であることがより好ましい。
 式(A-1)は下記式(A-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000003
The aromatic polycarbonate resin (A) used in the present invention is preferably a bisphenol A type polycarbonate resin. The bisphenol A type polycarbonate resin refers to a resin having a carbonate constituent unit derived from bisphenol A and a derivative thereof, and preferably has a constituent unit represented by the following formula (A-1). * In the formula represents the connection position.
Figure JPOXMLDOC01-appb-C000001
In formula (A-1), X 1 represents the following structure.
Figure JPOXMLDOC01-appb-C000002
Each of R 15 and R 16 is independently a hydrogen atom or an alkyl group, preferably at least one is a methyl group, and more preferably both are methyl groups.
The formula (A-1) is preferably represented by the following formula (A-2).
Figure JPOXMLDOC01-appb-C000003
 芳香族ポリカーボネート樹脂(A)における、式(A-1)で表される構成単位の含有量は、両末端を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(A-1)で表される構成単位であってもよい。ビスフェノールA型ポリカーボネート樹脂として特に好ましくは実質的に両末端を除く全量が式(A-1)の構成単位で構成された樹脂である。ここでの実質的に全量とは、具体的には、全構成単位の99.0モル%以上であることを意味し、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
 芳香族ポリカーボネート樹脂(A)は、ビスフェノールAおよびその誘導体由来のカーボネート構成単位以外の他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
The content of the structural unit represented by the formula (A-1) in the aromatic polycarbonate resin (A) is preferably 70 mol% or more, preferably 80 mol% or more, of all the structural units excluding both ends. More preferably, it is more preferably 90 mol% or more. The upper limit value is not particularly limited, and 100 mol% may be a structural unit represented by the formula (A-1). Particularly preferably, the bisphenol A type polycarbonate resin is a resin in which substantially the entire amount excluding both ends is composed of the structural units of the formula (A-1). The substantially total amount here specifically means that it is 99.0 mol% or more of all the constituent units, preferably 99.5 mol% or more, and more preferably 99.9 mol% or more. ..
The aromatic polycarbonate resin (A) may have a structural unit other than the carbonate structural unit derived from bisphenol A and its derivative. Examples of the dihydroxy compound constituting such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, and the contents thereof are incorporated in the present specification. ..
 芳香族ポリカーボネート樹脂(A)の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。 The method for producing the aromatic polycarbonate resin (A) is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
 本発明の樹脂組成物は、芳香族ポリカーボネート樹脂(A)を樹脂組成物中に、20質量%以上の割合で含むことが好ましく、40質量%以上であってもよく、50質量%超であってもよい。また、本発明の樹脂組成物は、芳香族ポリカーボネート樹脂(A)を樹脂組成物中に、80質量%以下の割合で含むことが好ましく、70質量%以下であることがより好ましく、65質量%以下であってもよい。
 また、本発明の樹脂組成物は、樹脂組成物に含まれる樹脂成分中に芳香族ポリカーボネート樹脂(A)を20質量%以上の割合で含むことが好ましく、40質量%以上であってもよく、50質量%超であってもよい。また、本発明の樹脂組成物は、樹脂組成物に含まれる樹脂成分中に芳香族ポリカーボネート樹脂(A)を80質量%以下の割合で含むことが好ましく、70質量%以下であることがより好ましく、65質量%以下であってもよい。
 前記範囲とすることにより、本発明の効果がより効果的に発揮される傾向にある。
 本発明の樹脂組成物は、芳香族ポリカーボネート樹脂(A)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in the resin composition in a proportion of 20% by mass or more, preferably 40% by mass or more, and more than 50% by mass. You may. Further, the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in the resin composition in a proportion of 80% by mass or less, more preferably 70% by mass or less, and 65% by mass. It may be as follows.
Further, the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in a proportion of 20% by mass or more, and may be 40% by mass or more, in the resin component contained in the resin composition. It may be more than 50% by mass. Further, the resin composition of the present invention preferably contains the aromatic polycarbonate resin (A) in a proportion of 80% by mass or less, more preferably 70% by mass or less, in the resin component contained in the resin composition. , 65% by mass or less.
Within the above range, the effects of the present invention tend to be exhibited more effectively.
The resin composition of the present invention may contain only one type of aromatic polycarbonate resin (A), or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
<極限粘度が0.50dL/g以下の芳香族ポリアリレート樹脂(B)>
 本発明の樹脂組成物は、極限粘度が0.50dL/g以下の芳香族ポリアリレート樹脂(B)を含む。このような芳香族ポリアリレート樹脂(B)は、上記芳香族ポリカーボネート樹脂(A)と相溶する傾向にあるため、得られるフィルムの透明性を高くしつつ、耐熱性を向上させることができる。
 芳香族ポリアリレート樹脂(B)の極限粘度は、0.49dL/g以下であることが好ましい。芳香族ポリアリレート樹脂(B)の極限粘度の下限値としては、特に定めるものではないが、例えば、0.10dL/g以上であり、0.20dL/g以上であってもよい。
 芳香族ポリアリレート樹脂(B)の極限粘度は、後述する実施例の記載に従って測定される。
<Aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less>
The resin composition of the present invention contains an aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less. Since such an aromatic polyarylate resin (B) tends to be compatible with the aromatic polycarbonate resin (A), it is possible to improve the heat resistance while increasing the transparency of the obtained film.
The ultimate viscosity of the aromatic polyarylate resin (B) is preferably 0.49 dL / g or less. The lower limit of the ultimate viscosity of the aromatic polyarylate resin (B) is not particularly specified, but may be, for example, 0.10 dL / g or more and 0.20 dL / g or more.
The ultimate viscosity of the aromatic polyarylate resin (B) is measured according to the description of Examples described later.
 芳香族ポリアリレート樹脂(B)の重量平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であってもよい。前記下限値以上とすることにより、フィルムの耐熱性が向上し、フィルムの成形性、曲げ耐久性がより向上する傾向にある。また、前記芳香族ポリアリレート樹脂(B)の重量平均分子量は、100,000以下であることが好ましく、60,000以下であることがより好ましく、50,000以下であってもよい。前記上限値以下とすることにより、ポリカーボネート樹脂(A)との相溶性がより向上する傾向にある。 芳香族ポリアリレート樹脂(B)の重量平均分子量は、後述する実施例の記載に従って測定される。 The weight average molecular weight of the aromatic polyarylate resin (B) is preferably 10,000 or more, more preferably 20,000 or more, and may be 30,000 or more. By setting the value to the lower limit or more, the heat resistance of the film tends to be improved, and the moldability and bending durability of the film tend to be further improved. The weight average molecular weight of the aromatic polyarylate resin (B) is preferably 100,000 or less, more preferably 60,000 or less, and may be 50,000 or less. By setting the value to the upper limit or less, the compatibility with the polycarbonate resin (A) tends to be further improved. The weight average molecular weight of the aromatic polyarylate resin (B) is measured according to the description of Examples described later.
 芳香族ポリアリレート樹脂(B)のガラス転移温度(Tg)は、好ましくは170℃以上であり、より好ましくは180℃以上であり、さらに好ましくは185℃以上であり、一層好ましくは190℃以上である。前記下限値以上とすることにより、得られる樹脂組成物の耐熱性がより向上する傾向にある。上限値としては、例えば、250℃以下であり、さらには、230℃以下、210℃以下であってもよい。
 芳香族ポリアリレート樹脂(B)のガラス転移温度(Tg)は、後述する実施例の記載に従って測定される。
The glass transition temperature (Tg) of the aromatic polyarylate resin (B) is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 185 ° C. or higher, still more preferably 190 ° C. or higher. is there. By setting the value to the lower limit or more, the heat resistance of the obtained resin composition tends to be further improved. The upper limit value is, for example, 250 ° C. or lower, and may be 230 ° C. or lower or 210 ° C. or lower.
The glass transition temperature (Tg) of the aromatic polyarylate resin (B) is measured according to the description of Examples described later.
 本発明で用いる芳香族ポリアリレート樹脂(B)は、芳香族ジカルボン酸(好ましくは、イソフタル酸および/またはテレフタル酸を主成分とする芳香族ジカルボン酸)由来の構成単位とビスフェノール(好ましくはビスフェノールAを主成分とするビスフェノール)由来の構成単位とから構成される芳香族ポリエステルであることが好ましい。主成分とは、最も含有割合の多い成分を意味し、好ましくは90モル%以上のことをいう(以下、主成分について同じ)。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ベンゾフェノンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等が挙げられる。
 ビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4’ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられ、2,2-ビス(4-ヒドロキシフェニル)プロパンが好ましい。これらの化合物は単独で使用してもよいし、あるいは、2種以上混合して使用してもよい。
The aromatic polyarylate resin (B) used in the present invention contains a structural unit derived from an aromatic dicarboxylic acid (preferably an aromatic dicarboxylic acid containing isophthalic acid and / or terephthalic acid as a main component) and bisphenol (preferably bisphenol A). It is preferable that it is an aromatic polyester composed of a constituent unit derived from bisphenol) containing the above. The main component means a component having the highest content ratio, and preferably 90 mol% or more (hereinafter, the same applies to the main component).
Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid. Examples thereof include acids, 3,3'-diphenyldicarboxylic acid and 4,4'-diphenyletherdicarboxylic acid.
Examples of the bisphenol include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy-3,). 5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfide, 4,4'-Dihydroxydiphenylketone, 4,4'-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1 Examples thereof include -bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and 2,2-bis (4-hydroxyphenyl) propane is preferable. These compounds may be used alone or in combination of two or more.
 芳香族ポリアリレート樹脂(B)の製造方法は、特に限定はされず、公知の方法により得られたものを使用することができる。界面重合法や溶融重合法で得られた芳香族ポリアリレート樹脂(B)は好適に用いることができる。 The method for producing the aromatic polyarylate resin (B) is not particularly limited, and those obtained by a known method can be used. The aromatic polyarylate resin (B) obtained by the interfacial polymerization method or the melt polymerization method can be preferably used.
 本発明の樹脂組成物は、芳香族ポリアリレート樹脂(B)を樹脂組成物中に、8質量%以上の割合で含むことが好ましく、10質量%以上であってもよく、18質量%以上であってもよい。特に、18質量%以上とすることにより、フィルムの透明性がより向上する傾向にある。また、本発明の樹脂組成物は、芳香族ポリアリレート樹脂(B)を樹脂組成物中に、60質量%以下の割合で含むことが好ましく、55質量%以下であることがより好ましく、47質量%以下であることがさらに好ましい。
 また、本発明の樹脂組成物は、樹脂組成物に含まれる樹脂成分中に芳香族ポリアリレート樹脂(B)を8質量%以上の割合で含むことが好ましく、10質量%以上であってもよく、18質量%以上であってもよい。また、本発明の樹脂組成物は、樹脂組成物に含まれる樹脂成分中に芳香族ポリアリレート樹脂(B)を60質量%以下の割合で含むことが好ましく、55質量%以下であることがより好ましく、47質量%以下であることがさらに好ましい。
 本発明の樹脂組成物は、芳香族ポリアリレート樹脂(B)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in the resin composition in a proportion of 8% by mass or more, preferably 10% by mass or more, and 18% by mass or more. There may be. In particular, when the content is 18% by mass or more, the transparency of the film tends to be further improved. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in the resin composition in a proportion of 60% by mass or less, more preferably 55% by mass or less, and 47% by mass. It is more preferably less than or equal to%.
Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in a proportion of 8% by mass or more in the resin component contained in the resin composition, and may be 10% by mass or more. , 18% by mass or more. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (B) in a proportion of 60% by mass or less, and more preferably 55% by mass or less, in the resin component contained in the resin composition. It is preferably 47% by mass or less, and more preferably 47% by mass or less.
The resin composition of the present invention may contain only one type of aromatic polyarylate resin (B), or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
<極限粘度が0.60dL/g以上の芳香族ポリアリレート樹脂(C)>
 本発明の樹脂組成物は、極限粘度が0.60dL/g以上の芳香族ポリアリレート樹脂(C)を含む。このような芳香族ポリアリレート樹脂は、上記芳香族ポリアリレート樹脂(B)と相溶しやすい傾向にあるため、得られるフィルムの透明性を高くしつつ、耐熱性を向上させることができる。また、芳香族ポリカーボネート樹脂(A)と混ざりにくいため、適切に海島構造を形成しやすくなると推測される。
 芳香族ポリアリレート樹脂(C)の極限粘度は、0.62dL/g以上であることが好ましい。芳香族ポリアリレート樹脂(C)の極限粘度の上限値としては、特に定めるものではないが、例えば、0.90dL/g以下であり、0.80dL/g以下であってもよい。
 芳香族ポリアリレート樹脂(C)の極限粘度は、後述する実施例の記載に従って測定される。
<Aromatic polyarylate resin (C) with an ultimate viscosity of 0.60 dL / g or more>
The resin composition of the present invention contains an aromatic polyarylate resin (C) having an ultimate viscosity of 0.60 dL / g or more. Since such an aromatic polyarylate resin tends to be compatible with the aromatic polyarylate resin (B), it is possible to improve the heat resistance while increasing the transparency of the obtained film. In addition, since it is difficult to mix with the aromatic polycarbonate resin (A), it is presumed that the sea-island structure can be easily formed.
The ultimate viscosity of the aromatic polyarylate resin (C) is preferably 0.62 dL / g or more. The upper limit of the ultimate viscosity of the aromatic polyarylate resin (C) is not particularly specified, but may be, for example, 0.90 dL / g or less and 0.80 dL / g or less.
The ultimate viscosity of the aromatic polyarylate resin (C) is measured according to the description of Examples described later.
 また、本発明では、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート(C)の極限粘度の差が0.28dL/g以上であることが好ましく、0.30dL/g以上であることがさらに好ましく、0.33dL/g以上であってもよい。前記下限値以上とすることにより、作製したフィルムにおいて、摺動性がより効果的に発揮される。前記芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート(C)の極限粘度の差の上限値は、例えば、0.50dL/g以下であり、さらには、0.40dL/g以下とすることができる。 Further, in the present invention, the difference in the ultimate viscosities of the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is preferably 0.28 dL / g or more, and more preferably 0.30 dL / g or more. Preferably, it may be 0.33 dL / g or more. By setting the value to the lower limit or more, the slidability is more effectively exhibited in the produced film. The upper limit of the difference in the ultimate viscosity between the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is, for example, 0.50 dL / g or less, and further, 0.40 dL / g or less. it can.
 前記芳香族ポリアリレート樹脂(C)の重量平均分子量は、10,000以上であることが好ましく、30,000以上であることがより好ましく、50,000以上であってもよい。前記下限値以上とすることにより、海島構造が形成されやすくなり、摺動性がより付与されやすくなる傾向にある。また、前記芳香族ポリアリレート樹脂(C)の重量平均分子量は、150,000以下であることが好ましく、100,000以下であることがより好ましく、80,000以下であってもよい。前記上限値以下とすることにより、フィルムの透明性・成形性がより向上する傾向にある。
 芳香族ポリアリレート樹脂(C)の重量平均分子量は、後述する実施例の記載に従って測定される。
The weight average molecular weight of the aromatic polyarylate resin (C) is preferably 10,000 or more, more preferably 30,000 or more, and may be 50,000 or more. By setting the value to the lower limit or more, the sea-island structure tends to be easily formed, and the slidability tends to be more easily imparted. The weight average molecular weight of the aromatic polyarylate resin (C) is preferably 150,000 or less, more preferably 100,000 or less, and may be 80,000 or less. By setting the value to the upper limit or less, the transparency and moldability of the film tend to be further improved.
The weight average molecular weight of the aromatic polyarylate resin (C) is measured according to the description of Examples described later.
 芳香族ポリアリレート樹脂(C)のガラス転移温度(Tg)は、好ましくは185℃超であり、より好ましくは190℃以上であり、さらに好ましくは195℃以上である。Tgを185℃超とすることにより、得られる樹脂組成物やフィルムの耐熱性をより向上させることができる。上限値としては、例えば、270℃以下であり、さらには、250℃以下、230℃以下であってもよい。
 芳香族ポリアリレート樹脂(C)のガラス転移温度(Tg)は、後述する実施例の記載に従って測定される。
The glass transition temperature (Tg) of the aromatic polyarylate resin (C) is preferably more than 185 ° C, more preferably 190 ° C or higher, and even more preferably 195 ° C or higher. By setting the Tg to more than 185 ° C., the heat resistance of the obtained resin composition or film can be further improved. The upper limit may be, for example, 270 ° C. or lower, and further may be 250 ° C. or lower and 230 ° C. or lower.
The glass transition temperature (Tg) of the aromatic polyarylate resin (C) is measured according to the description of Examples described later.
 本発明で用いる芳香族ポリアリレート樹脂(C)は、芳香族ジカルボン酸(好ましくは、イソフタル酸および/またはテレフタル酸を主成分とする芳香族ジカルボン酸)由来の構成単位とビスフェノール(好ましくはビスフェノールAを主成分とするビスフェノール)由来の構成単位とから構成される芳香族ポリエステルであることが好ましい。
 芳香族ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ベンゾフェノンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等が挙げられる。
 ビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4‘-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4‘-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられ、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンが好ましい。これらの化合物は単独で使用してもよいし、あるいは、2種以上混合して使用してもよい。
The aromatic polyarylate resin (C) used in the present invention contains a structural unit derived from an aromatic dicarboxylic acid (preferably an aromatic dicarboxylic acid containing isophthalic acid and / or terephthalic acid as a main component) and bisphenol (preferably bisphenol A). It is preferable that it is an aromatic polyester composed of a constituent unit derived from bisphenol) containing the above.
Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid. , 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid and the like.
Examples of the bisphenol include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy-3,). 5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfide , 4,4'-Dihydroxydiphenylketone, 4,4'-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1, Examples thereof include 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane is preferable. These compounds may be used alone or in combination of two or more.
 芳香族ポリアリレート樹脂(C)の製造方法は、特に限定はされず、公知の方法により得られたものを使用することができる。界面重合法や溶融重合法で得られた芳香族ポリアリレート樹脂(C)は好適に用いることができる。 The method for producing the aromatic polyarylate resin (C) is not particularly limited, and those obtained by a known method can be used. The aromatic polyarylate resin (C) obtained by the interfacial polymerization method or the melt polymerization method can be preferably used.
 本発明の樹脂組成物は、芳香族ポリアリレート樹脂(C)を樹脂組成物中に、10質量%以上の割合で含むことが好ましく、12質量%以上であってもよい。また、本発明の樹脂組成物は、芳香族ポリアリレート樹脂(C)を樹脂組成物中に、40質量%以下の割合で含むことが好ましく、35質量%以下であることがより好ましく、28質量%以下であってもよい。
 また、本発明の樹脂組成物は、樹脂組成物に含まれる樹脂成分中に芳香族ポリアリレート樹脂(C)を10質量%以上の割合で含むことが好ましく、12質量%以上であってもよい。また、本発明の樹脂組成物は、樹脂組成物に含まれる樹脂成分中に芳香族ポリアリレート樹脂(C)を40質量%以下の割合で含むことが好ましく、35質量%以下であることがより好ましく、28質量%以下であってもよい。
 本発明の樹脂組成物は、芳香族ポリアリレート樹脂(C)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in the resin composition in a proportion of 10% by mass or more, and may be 12% by mass or more. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in the resin composition in a proportion of 40% by mass or less, more preferably 35% by mass or less, and 28% by mass. It may be less than or equal to%.
Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in a proportion of 10% by mass or more, and may be 12% by mass or more, in the resin component contained in the resin composition. .. Further, the resin composition of the present invention preferably contains the aromatic polyarylate resin (C) in a proportion of 40% by mass or less, and more preferably 35% by mass or less, in the resin component contained in the resin composition. Preferably, it may be 28% by mass or less.
The resin composition of the present invention may contain only one type of aromatic polyarylate resin (C), or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
<樹脂のブレンド比>
 本発明の樹脂組成物は、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計30~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~70質量部含み、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計40~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~60質量部含むことが好ましく、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計50~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~50質量部含むことがさらに好ましく、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計60~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~40質量部含むことが一層好ましく、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計65~90質量部に対し、芳香族ポリアリレート樹脂(B)を10~35質量部含むことがより一層好ましい。特に、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(B)と芳香族ポリアリレート樹脂(C)の合計を100質量部としたときに、上記ブレンド割合を満たすことが好ましい。
 また、本発明の樹脂組成物において、芳香族ポリアリレート樹脂(B)と芳香族ポリアリレート樹脂(C)の質量比は、3:1~1:3であることが好ましく、2.5:1~1:2.5であることがより好ましい。このような構成とすることにより、本発明の効果がより効果的に発揮される傾向にある。
 さらに、本発明の樹脂組成物は、芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(B)と芳香族ポリアリレート樹脂(C)の合計が樹脂組成物の95質量%以上を占めることが好ましく、98質量%以上を占めることがより好ましい。
<Resin blend ratio>
The resin composition of the present invention contains 10 to 70 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). It is preferable that the aromatic polyarylate resin (B) is contained in an amount of 10 to 60 parts by mass with respect to a total of 40 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C). It is more preferable that the aromatic polyarylate resin (B) is contained in an amount of 10 to 50 parts by mass with respect to a total of 50 to 90 parts by mass of the aromatic polyarylate resin (C) and the aromatic polycarbonate resin (A). It is more preferable to contain 10 to 40 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 60 to 90 parts by mass of the group polyarylate resin (C), and the aromatic polycarbonate resin (A) and the aromatic polyarylate resin are more preferably contained. It is even more preferable to contain 10 to 35 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 65 to 90 parts by mass of (C). In particular, when the total of the aromatic polycarbonate resin (A), the aromatic polyarylate resin (B) and the aromatic polyarylate resin (C) is 100 parts by mass, it is preferable to satisfy the above blending ratio.
Further, in the resin composition of the present invention, the mass ratio of the aromatic polyarylate resin (B) to the aromatic polyarylate resin (C) is preferably 3: 1 to 1: 3, and is 2.5: 1. It is more preferably ~ 1: 2.5. With such a configuration, the effect of the present invention tends to be exhibited more effectively.
Further, in the resin composition of the present invention, the total of the aromatic polycarbonate resin (A), the aromatic polyarylate resin (B) and the aromatic polyarylate resin (C) accounts for 95% by mass or more of the resin composition. It is preferable to occupy 98% by mass or more.
<他の成分>
 本発明の樹脂組成物は、上記芳香族ポリカーボネート樹脂(A)、芳香族ポリアリレート樹脂(B)および芳香族ポリアリレート樹脂(C)に加え、本発明の趣旨を逸脱しない範囲で、酸化防止剤(E)、エステル交換防止剤(F)、離型剤(G)等の他の成分を含んでいてもよい。
<Other ingredients>
The resin composition of the present invention is, in addition to the above-mentioned aromatic polycarbonate resin (A), aromatic polyarylate resin (B) and aromatic polyarylate resin (C), an antioxidant as long as the gist of the present invention is not deviated. It may contain other components such as (E), transesterification inhibitor (F), and mold release agent (G).
<<酸化防止剤(E)>>
 本発明の樹脂組成物は、酸化防止剤を含有することが好ましい。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤などが挙げられ、リン系酸化防止剤およびフェノール系酸化防止剤(より好ましくはヒンダードフェノール系酸化防止剤)の少なくとも1種が好ましく、特にリン系酸化防止剤が好ましい。
 リン系酸化防止剤としては、以下の式(1)または(2)で表されるホスファイト化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、RおよびRはそれぞれ独立に、炭素原子数1~30のアルキル基または炭素原子数6~30のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、R~Rは、それぞれ独立に、水素原子、炭素原子数6~20のアリール基または炭素原子数1~20のアルキル基を表す。)
<< Antioxidant (E) >>
The resin composition of the present invention preferably contains an antioxidant.
Examples of the antioxidant include a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, and the like, and a phosphorus-based antioxidant and a phenol-based antioxidant (more preferably hinder). At least one of (dophenol-based antioxidants) is preferable, and phosphorus-based antioxidants are particularly preferable.
As the phosphorus-based antioxidant, a phosphite compound represented by the following formula (1) or (2) is preferable.
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), R 1 and R 2 independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000005
(In the formula (2), R 3 to R 7 independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.)
 上記式(1)中、R、Rで表されるアルキル基は、それぞれ独立に、炭素原子数1~10の直鎖または分岐のアルキル基であることが好ましい。R、Rがアリール基である場合、以下の一般式(1-a)、(1-b)、または(1-c)のいずれかで表されるアリール基が好ましい。 In the above formula (1), the alkyl groups represented by R 1 and R 2 are preferably linear or branched alkyl groups having 1 to 10 carbon atoms, respectively. When R 1 and R 2 are aryl groups, an aryl group represented by any of the following general formulas (1-a), (1-b), or (1-c) is preferable.
Figure JPOXMLDOC01-appb-C000006
(式(1-a)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。式(1-b)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (1-a), R A is independently, in. The formula (1-b) represents an alkyl group having a carbon number of 1 to 10, R B are each independently, carbon atoms of 1 to Represents 10 alkyl groups.)
 フェノール系酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。フェノール系酸化防止剤としては、特開2019-002023号公報の段落0041に記載のフェノール系酸化防止剤および特開2019-056035号公報の段落0033~0034に記載のフェノール系酸化防止剤が好ましく用いられ、これらの内容は本明細書に組み込まれる。
 その他、酸化防止剤の詳細は、特開2017-031313号公報の段落0057~0061の記載を参酌でき、これらの内容は本明細書に組み込まれる。
Examples of the phenolic antioxidant include hindered phenolic antioxidants. As the phenolic antioxidant, the phenolic antioxidant described in paragraph 0041 of JP-A-2019-002023 and the phenol-based antioxidant described in paragraphs 0033 to 0034 of JP-A-2019-0506035 are preferably used. These contents are incorporated herein by reference.
In addition, the details of the antioxidant can be referred to in paragraphs 0057 to 0061 of JP-A-2017-031313, and these contents are incorporated in the present specification.
 樹脂組成物中の酸化防止剤の含有量は、含有する場合、樹脂組成物に含まれる樹脂成分の100質量部に対して、好ましくは0.005質量部以上であり、より好ましくは0.007質量部以上、さらに好ましくは0.01質量部以上である。また、酸化防止剤の含有量の上限値は、樹脂組成物に含まれる樹脂成分100質量部に対して、好ましくは4質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下、一層好ましくは0.1質量部以下である。
 酸化防止剤の含有量を0.005質量部以上とすることにより、フィルムの透明性がより向上する傾向にある。また、酸化防止剤の含有量を4質量部以下とすることにより、フィルムの湿熱安定性が向上する傾向にある。
 酸化防止剤は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
When contained, the content of the antioxidant in the resin composition is preferably 0.005 parts by mass or more, more preferably 0.007 parts by mass, based on 100 parts by mass of the resin component contained in the resin composition. It is by mass or more, more preferably 0.01 parts by mass or more. The upper limit of the content of the antioxidant is preferably 4 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass with respect to 100 parts by mass of the resin component contained in the resin composition. Parts or less, more preferably 0.1 parts by mass or less.
By setting the content of the antioxidant to 0.005 parts by mass or more, the transparency of the film tends to be further improved. Further, by setting the content of the antioxidant to 4 parts by mass or less, the moist heat stability of the film tends to be improved.
Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
<<エステル交換防止剤(F)>>
 本発明の樹脂組成物は、エステル交換防止剤を含有することが好ましい。
 エステル交換防止剤としては、リン系エステル交換防止剤および硫黄系エステル交換防止剤が挙げられる。
 エステル交換防止剤としては、国際公開第2015/190162号の段落0035~0039、特開2019-002023号公報の段落0037、特開2018-199745号公報の段落0041の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<< Transesterification inhibitor (F) >>
The resin composition of the present invention preferably contains a transesterification inhibitor.
Examples of the transesterification inhibitor include a phosphorus-based transesterification inhibitor and a sulfur-based transesterification inhibitor.
As the transesterification inhibitor, the descriptions in paragraphs 0035 to 0039 of International Publication No. 2015/190162, paragraphs 0037 of JP-A-2019-002023, and paragraphs 0041 of JP-A-2018-199745 can be referred to. Is incorporated herein.
 樹脂組成物中のエステル交換防止剤(F)の含有量は、含有する場合、樹脂組成物に含まれる樹脂成分100質量部に対して、好ましくは0.001質量部以上であり、より好ましくは0.005質量部以上、さらに好ましくは0.007質量部以上である。また、エステル交換防止剤の含有量の上限値は、樹脂組成物に含まれる樹脂成分100質量部に対して、好ましくは1.0質量部以下、より好ましくは0.5質量部以下、さらに好ましくは0.3質量部以下、一層好ましくは0.1質量部以下である。
 エステル交換防止剤は、1種のみ含まれていてもよいし、2種以上含まれていてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
When contained, the content of the transesterification inhibitor (F) in the resin composition is preferably 0.001 part by mass or more, more preferably 0.001 part by mass or more, based on 100 parts by mass of the resin component contained in the resin composition. It is 0.005 parts by mass or more, more preferably 0.007 parts by mass or more. The upper limit of the content of the ester exchange inhibitor is preferably 1.0 part by mass or less, more preferably 0.5 part by mass or less, still more preferably, with respect to 100 parts by mass of the resin component contained in the resin composition. Is 0.3 parts by mass or less, more preferably 0.1 parts by mass or less.
Only one type of transesterification inhibitor may be contained, or two or more types may be contained. When two or more types are included, the total amount is preferably in the above range.
<<離型剤(G)>>
 本発明の樹脂組成物は、離型剤を含有することが好ましい。
 離型剤としては、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、およびポリシロキサン系シリコーンオイルからなる群から選ばれる少なくとも1種の化合物を挙げることができ、脂肪族カルボン酸とアルコールとのエステルが好ましい。
 脂肪族カルボン酸とアルコールとのエステルの具体例として、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等を挙げることができる。
 その他、離型剤としては、特開2017-226848号公報の段落0032、特開2018-199745号公報の段落0056に記載の離型剤を用いることができ、これらの内容は本明細書に組み込まれる。
<< Release Agent (G) >>
The resin composition of the present invention preferably contains a mold release agent.
The release agent is at least one selected from the group consisting of an aliphatic carboxylic acid, an ester of an aliphatic carboxylic acid and an alcohol, an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000, and a polysiloxane-based silicone oil. Species of compounds can be mentioned, preferably esters of aliphatic carboxylic acids and alcohols.
Specific examples of esters of aliphatic carboxylic acids and alcohols include beeswax (mixture containing myricyl palmitate as the main component), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, and glycerin monostearate. , Glycerin distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.
In addition, as the release agent, the release agent described in paragraph 0032 of JP-A-2017-226848 and paragraph 0056 of JP-A-2018-199745 can be used, and the contents thereof are incorporated in the present specification. Is done.
 樹脂組成物中の離型剤の含有量は、含有する場合、樹脂組成物に含まれる樹脂成分100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.005質量部以上であり、また、好ましくは2質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。
 離型剤は、1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
When contained, the content of the release agent in the resin composition is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, based on 100 parts by mass of the resin component contained in the resin composition. It is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 part by mass or less.
Only one type of release agent may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
<<その他の成分>>
 本発明の樹脂組成物は、上記(A)~(G)の成分の他、他の熱可塑性樹脂、熱安定剤、難燃剤、難燃助剤、紫外線吸収剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤、アンチブロッキング剤、衝撃改良剤、摺動改良剤、色相改良剤、酸トラップ剤等を含んでいてもよい。これらの成分は、1種を用いてもよいし、2種以上を併用してもよい。
 上記(A)~(G)以外の他の成分の合計量は、含有する場合、樹脂組成物の0.001~5質量%であることが好ましく、0.001~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましい。
<< Other ingredients >>
In addition to the above components (A) to (G), the resin composition of the present invention contains other thermoplastic resins, heat stabilizers, flame retardants, flame retardants, ultraviolet absorbers, colorants, antistatic agents, and the like. It may contain a fluorescent whitening agent, an antifogging agent, a fluidity improving agent, a plasticizer, a dispersant, an antibacterial agent, an antiblocking agent, an impact improving agent, a sliding improving agent, a hue improving agent, an acid trapping agent and the like. .. These components may be used alone or in combination of two or more.
When contained, the total amount of the components other than the above (A) to (G) is preferably 0.001 to 5% by mass, and preferably 0.001 to 2% by mass. More preferably, it is 0.01 to 1% by mass.
<樹脂組成物の特性>
 本発明の樹脂組成物は、示差走査熱量計によって測定したガラス転移温度または複数のガラス転移温度の少なくとも1つが150℃以上を示すことが好ましく、少なくとも1つが160℃以上を示すことがより好ましい。また、示差走査熱量計によって測定したガラス転移温度または複数のガラス転移温度のいずれもが、140℃以上であることが好ましい。前記ガラス転移温度の上限値は特に定めるものではないが、例えば、ガラス転移温度または複数のガラス転移温度のいずれもが、200℃以下、さらには180℃以下を示すことが実際的である。
 ガラス転移温度は、後述する実施例の記載に従って測定される。
<Characteristics of resin composition>
In the resin composition of the present invention, at least one of the glass transition temperature or a plurality of glass transition temperatures measured by a differential scanning calorimeter preferably exhibits 150 ° C. or higher, and more preferably at least one exhibits 160 ° C. or higher. Further, it is preferable that either the glass transition temperature or the plurality of glass transition temperatures measured by the differential scanning calorimeter is 140 ° C. or higher. The upper limit of the glass transition temperature is not particularly defined, but it is practical that, for example, either the glass transition temperature or the plurality of glass transition temperatures is 200 ° C. or lower, more preferably 180 ° C. or lower.
The glass transition temperature is measured according to the description of Examples described later.
<フィルムの製造方法>
 本発明のフィルムの製造方法は、本発明の樹脂組成物を、溶融状態でシート状に押し出し、一対のロールで圧着して作製するフィルムの製造方法であって、前記一対のロールの少なくとも1つのロール表面のタイプA型のデュロメーター硬度が10~99であることを特徴とする。
 このような構成とすることにより、芳香族ポリカーボネート樹脂(A)およびポリアリレート樹脂(C)に対し、芳香族ポリアリレート樹脂(B)がほどよく相溶化剤として働き、ヘイズが問題となる程度にまで高くなることなく樹脂成分が混合し、かつ、海島構造を形成でき、フィルムの摺動性が達成されると推測される。
 以下、本発明の製造方法の詳細について説明する。
 図4は、本発明のフィルムの製造方法を示す一部概略図の一例である。本発明の製造方法では、例えば、図4に示すように、上記本発明の組成物41を、ダイス42から溶融状態で、シート状に押し出す。溶融状態かつシート状の組成物41は、一対のロール(第一のロール43aと第二のロール43b)の間を通過させる際に、前記一対のロールで圧着される。このとき、第一ロール43aおよび第二ロール43bの少なくとも1つについて、そのロール表面のタイプA型のデュロメーター硬度が10~99のロールを用いることが好ましい。図4では、第一ロール43aが表面のデュロメーター硬度が10~99のロールである。すなわち、第一ロール43aとして、表面が柔らかいロールを用いる。表面のデュロメーター硬度が10~99のロールを用いることにより、芳香族ポリアリレート樹脂(B)と相溶していない芳香族ポリアリレート樹脂(C)および芳香族ポリカーボネート樹脂(A)の部分がフィルムの表面に出てきて、フィルムの表面に微細な凹凸を形成すると推測される。結果として、摺動性を達成することができる。ロール表面のデュロメーター硬度は、30以上であることが好ましく、50以上であることがより好ましく、また、80以下であることが好ましく、75以下であることがより好ましい。このような範囲とすることにより、適度な柔らかさのロールとなる。表面のデュロメーター硬度が10~99であるロールとしては、例えば、鏡面ゴムロールが例示される。
 表面のデュロメーター硬度が10~99のロールの温度は、30~90℃であることが好ましく、40~70℃であることがより好ましい。
<Film manufacturing method>
The film manufacturing method of the present invention is a film manufacturing method in which the resin composition of the present invention is extruded into a sheet in a molten state and pressure-bonded with a pair of rolls, and at least one of the pair of rolls The roll surface is characterized by having a type A durometer hardness of 10 to 99.
With such a configuration, the aromatic polyarylate resin (B) acts as a compatibilizer to the aromatic polycarbonate resin (A) and the polyarylate resin (C) moderately, and haze becomes a problem. It is presumed that the resin components can be mixed and the sea-island structure can be formed without increasing the height, and the slidability of the film can be achieved.
Hereinafter, the details of the production method of the present invention will be described.
FIG. 4 is an example of a partial schematic view showing a method for producing a film of the present invention. In the production method of the present invention, for example, as shown in FIG. 4, the composition 41 of the present invention is extruded from a die 42 in a molten state into a sheet. The melted and sheet-like composition 41 is pressure-bonded by the pair of rolls when it is passed between the pair of rolls (the first roll 43a and the second roll 43b). At this time, for at least one of the first roll 43a and the second roll 43b, it is preferable to use a roll having a type A durometer hardness of 10 to 99 on the roll surface. In FIG. 4, the first roll 43a is a roll having a surface durometer hardness of 10 to 99. That is, as the first roll 43a, a roll having a soft surface is used. By using a roll having a surface durometer hardness of 10 to 99, the portion of the aromatic polyarylate resin (C) and the aromatic polycarbonate resin (A) that are incompatible with the aromatic polyarylate resin (B) is formed of the film. It is presumed that it appears on the surface and forms fine irregularities on the surface of the film. As a result, slidability can be achieved. The durometer hardness of the roll surface is preferably 30 or more, more preferably 50 or more, preferably 80 or less, and more preferably 75 or less. By setting it in such a range, the roll has an appropriate softness. Examples of rolls having a surface durometer hardness of 10 to 99 include mirrored rubber rolls.
The temperature of the roll having a surface durometer hardness of 10 to 99 is preferably 30 to 90 ° C, more preferably 40 to 70 ° C.
 図4では、組成物41は上記一対のロール(第一ロール43aと第二ロール43b)の間を通過した後、さらに搬送ロール44の上を通過する。
 表面のデュロメーター硬度が10~99であるロール以外のロール、例えば、図4では、第二ロール43bと搬送ロール44としては、金属製のロールが挙げられる。金属製のロールは、デュロメーター硬度が測定限界である100に達する。金属製のロールとしては、鏡面剛体ロールや金属弾性ロールが例示される。また、表面のデュロメーター硬度が10~99のロール以外のロールの表面温度は、70~170℃であることが好ましく、100~160℃であることがより好ましい。
In FIG. 4, the composition 41 passes between the pair of rolls (first roll 43a and second roll 43b) and then further passes over the transport roll 44.
Rolls other than rolls having a surface durometer hardness of 10 to 99, for example, in FIG. 4, examples of the second roll 43b and the transport roll 44 include metal rolls. Metal rolls reach a durometer hardness of 100, which is the measurement limit. Examples of the metal roll include a mirror rigid body roll and a metal elastic roll. The surface temperature of rolls other than rolls having a surface durometer hardness of 10 to 99 is preferably 70 to 170 ° C, more preferably 100 to 160 ° C.
 本発明では、第一ロールおよび第二ロールの少なくとも1つのロール表面のデュロメーター硬度が上記範囲であればよいが、第一ロールおよび第二ロールの両方の表面が上記デュロメーター硬度を満たしていてもよい。この場合、フィルムの両方の表面に所望の微細な凹凸が形成される。 In the present invention, the durometer hardness of at least one roll surface of the first roll and the second roll may be in the above range, but the surfaces of both the first roll and the second roll may satisfy the above durometer hardness. .. In this case, desired fine irregularities are formed on both surfaces of the film.
 上記一対のロール(第一ロール43aと第二ロール43b)の間を通過した後のフィルムは、搬送ロール44を通過する間、あるいは、冷却ゾーンや、冷却ロールを通過することによって、冷却される。冷却後、さらに、芯材に、巻き取ってもよい。すなわち、本発明では、芯材と、芯材に巻き取られた本発明のフィルムとを有する巻取体とすることができる。
 上記フィルムの製造方法で得られるフィルムは、フィルムの厚みが10μm以上300μm以下であることが好ましい。その他、本発明のフィルムの製造方法で得られるフィルムの詳細は、上述の本発明のフィルムと同様である。
 また、上記で得られた本発明のフィルムと、粘着剤層と、フィルム基材と、電極層とを積層することにより、透明導電性フィルムを製造することもできる。
The film after passing between the pair of rolls (first roll 43a and second roll 43b) is cooled while passing through the transport roll 44, or by passing through a cooling zone or a cooling roll. .. After cooling, it may be further wound around a core material. That is, in the present invention, it can be a wound body having the core material and the film of the present invention wound around the core material.
The film obtained by the above film manufacturing method preferably has a film thickness of 10 μm or more and 300 μm or less. In addition, the details of the film obtained by the method for producing the film of the present invention are the same as those of the above-mentioned film of the present invention.
Further, a transparent conductive film can also be produced by laminating the film of the present invention obtained above, the pressure-sensitive adhesive layer, the film base material, and the electrode layer.
<フィルムの特性>
 本発明のフィルムの厚みは10μm以上300μm以下であることが好ましい。厚みを上記範囲とすることにより、より透明なフィルムとすることができる。
 本発明のフィルムの厚みは、20μm以上であることが好ましく、25μm以上であってもよい。また、250μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることがさらに好ましい。
<Film characteristics>
The thickness of the film of the present invention is preferably 10 μm or more and 300 μm or less. By setting the thickness within the above range, a more transparent film can be obtained.
The thickness of the film of the present invention is preferably 20 μm or more, and may be 25 μm or more. Further, it is preferably 250 μm or less, more preferably 200 μm or less, and further preferably 150 μm or less.
 本発明のフィルムは、また、二乗平均平方根粗さが0.093μmのフィルムとの間の動摩擦係数が、2.00以下であることが好ましく、1.80以下であることがより好ましく、1.50以下であることがさらに好ましく、1.33以下であってもよい。下限値は、例えば、0.86以上であり、0.90以上であってもよい。
 動摩擦係数は、スレッド100mm/分、ロードセル10Nの条件で測定した値であり、より具体的には、後述する実施例に記載の方法で測定される。
The film of the present invention also preferably has a coefficient of kinetic friction with a film having a root mean square roughness of 0.093 μm of 2.00 or less, more preferably 1.80 or less. It is more preferably 50 or less, and may be 1.33 or less. The lower limit is, for example, 0.86 or more, and may be 0.90 or more.
The coefficient of kinetic friction is a value measured under the conditions of a thread of 100 mm / min and a load cell of 10N, and more specifically, it is measured by the method described in Examples described later.
 本発明のフィルムは、D65光源10°視野の条件における全光線透過率が、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。全光線透過率の上限は100%が理想であるが、94%以下であっても十分に要求性能を満たすものである。
 全光線透過率は、後述する実施例に記載の方法で測定される。
In the film of the present invention, the total light transmittance under the condition of a D65 light source 10 ° field of view is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more. Ideally, the upper limit of the total light transmittance is 100%, but even if it is 94% or less, the required performance is sufficiently satisfied.
The total light transmittance is measured by the method described in Examples described later.
 本発明のフィルムのヘイズは10%以下であることが好ましく、8%以下であることがより好ましく、6%以下であることがさらに好ましく、さらには5%以下、4%以下であってもよい。下限値については、0%が理想であるが、0.1%以上であっても実用レベルである。
 ヘイズは、後述する実施例に記載の方法で測定される。
The haze of the film of the present invention is preferably 10% or less, more preferably 8% or less, further preferably 6% or less, and further 5% or less and 4% or less. .. The ideal lower limit is 0%, but even if it is 0.1% or more, it is a practical level.
Haze is measured by the method described in Examples described below.
<用途>
 本発明のフィルムは、マスキングフィルムとして好ましく用いられる。より好ましくは、アンチブロッキングフィルムとして用いられる。また、透明導電性フィルムの保護フィルムとしても好ましく用いられる。特に、本発明のフィルムと、粘着剤層、基材および電極層をこの順で有する多層体は、透明導電性フィルムとして好ましく用いられる。
 また、上記透明導電性フィルムは、タッチパネルのフィルムセンサー、電子ペーパーや色素増感型太陽電池、タッチセンサー等に用いる透明導電性フィルムとして好ましく用いられる。
 また、本発明のフィルムは、上記以外でも、摺動性と透明性が求められる用途のフィルムに好ましく用いられる。
<Use>
The film of the present invention is preferably used as a masking film. More preferably, it is used as an anti-blocking film. It is also preferably used as a protective film for transparent conductive films. In particular, the film of the present invention and a multilayer body having an adhesive layer, a base material and an electrode layer in this order are preferably used as a transparent conductive film.
Further, the transparent conductive film is preferably used as a transparent conductive film used for a film sensor of a touch panel, an electronic paper, a dye-sensitized solar cell, a touch sensor, and the like.
In addition to the above, the film of the present invention is preferably used as a film for applications that require slidability and transparency.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described in more detail with reference to examples below. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<原料>
・ポリカーボネート樹脂(A)
(A1)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート、三菱エンジニアリングプラスチックス社製、H-7000F、重量平均分子量:24,900、極限粘度0.30dL/g、Tg:141℃
(A2)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート、三菱エンジニアリングプラスチックス社製、H-4000F、重量平均分子量:29,200、極限粘度0.35dL/g、Tg:143℃
・ポリカーボネート樹脂(A’)(比較用)
(A3)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート、三菱エンジニアリングプラスチックス社製、S-3000F、重量平均分子量:41,300、極限粘度0.43dL/g、Tg:148℃
<Raw materials>
-Polycarbonate resin (A)
(A1) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material, manufactured by Mitsubishi Engineering Plastics, H-7000F, weight average molecular weight: 24,900, ultimate viscosity 0.30 dL / g, Tg: 141 ° C
(A2) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material, manufactured by Mitsubishi Engineering Plastics, H-4000F, weight average molecular weight: 29,200, ultimate viscosity 0.35 dL / g, Tg: 143 ° C
-Polycarbonate resin (A') (for comparison)
(A3) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material, manufactured by Mitsubishi Engineering Plastics, S-3000F, weight average molecular weight: 41,300, ultimate viscosity 0.43 dL / g, Tg: 148 ° C
・極限粘度が0.50dL/g以下のポリアリレート樹脂(B)
(B)ユニチカ社製、U-パウダー Lタイプ、重量平均分子量40,800、極限粘度0.48dL/g、Tg:195℃
-Polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less
(B) Unitika Ltd., U-powder L type, weight average molecular weight 40,800, ultimate viscosity 0.48 dL / g, Tg: 195 ° C.
・極限粘度が0.60dL/g以上のポリアリレート樹脂(C)
(C)ユニチカ社製、U-パウダー Dタイプ、重量平均分子量63,000、極限粘度0.65dL/g、Tg:201℃
-Polyarylate resin (C) with an ultimate viscosity of 0.60 dL / g or more
(C) Unitika Ltd., U-powder D type, weight average molecular weight 63,000, ultimate viscosity 0.65 dL / g, Tg: 201 ° C.
・ポリアリレート樹脂(B)とポリアリレート樹脂(C)のアロイ(D)
(D)ユニチカ社製、U-100、重量平均分子量46,000、極限粘度0.55dL/g、Tg:195℃、U-パウダー LタイプとU-パウダー Dタイプの質量比率が2:1のペレット
-Alloy (D) of polyarylate resin (B) and polyarylate resin (C)
(D) Unitika Ltd., U-100, weight average molecular weight 46,000, ultimate viscosity 0.55 dL / g, Tg: 195 ° C., mass ratio of U-powder L type and U-powder D type is 2: 1. pellet
・酸化防止剤(E)
(E)ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、リン系酸化防止剤、ADEKA社製、アデカスタブPEP-36
・ Antioxidant (E)
(E) Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phosphorus-based antioxidant, ADEKA, ADEKA STAB PEP-36
・エステル交換防止剤(F)
(F)オクタデシルホスフェート、ADEKA社製、AX-71
・ Transesterification inhibitor (F)
(F) Octadecyl phosphate, manufactured by ADEKA, AX-71
・離型剤(G)
(G)グリセリンモノステアレート、理研ビタミン社製、リケマールS-100A
・ Release agent (G)
(G) Glycerin monostearate, manufactured by RIKEN Vitamin, Rikemar S-100A
<重量平均分子量の測定方法>
 各種樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィーによって測定した。
 具体的には、ゲル浸透クロマトグラフィー装置には、LC-20AD system(島津製作所社製)を用い、カラムとして、LF-804(Shodex社製)を接続して用いた。カラム温度は40℃とした。検出器はRID-10A(島津製作所社製)のRI検出器を用いた。溶離液として、クロロホルムを用い、検量線は、東ソー社製の標準ポリスチレンを使用して作成した。
 上記ゲル浸透クロマトグラフィー装置、カラム、検出器が入手困難な場合、同等の性能を有する他の装置等を用いて測定する。
<Measurement method of weight average molecular weight>
The weight average molecular weight (Mw) of each resin was measured by gel permeation chromatography.
Specifically, an LC-20AD system (manufactured by Shimadzu Corporation) was used as a gel permeation chromatography apparatus, and LF-804 (manufactured by Shodex) was connected and used as a column. The column temperature was 40 ° C. The detector used was an RI detector of RID-10A (manufactured by Shimadzu Corporation). Chloroform was used as the eluent, and the calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation.
If the gel permeation chromatography device, column, or detector is difficult to obtain, measure using another device having equivalent performance.
<極限粘度の測定方法>
 樹脂の極限粘度[η](単位dL/g)は、溶媒としてメチレンクロライドを使用して測定した。測定温度は25℃とした。ウベローデ粘度計にて、各溶液濃度[C](g/dL)での比粘度[ηsp]を測定した。得られた比粘度の値と濃度から下記式により極限粘度を算出した。
Figure JPOXMLDOC01-appb-M000007
<Measurement method of extreme viscosity>
The ultimate viscosity [η] (unit: dL / g) of the resin was measured using methylene chloride as a solvent. The measurement temperature was 25 ° C. The specific viscosity [η sp ] at each solution concentration [C] (g / dL) was measured with an Ubbelohde viscometer. The ultimate viscosity was calculated from the obtained specific viscosity values and concentrations by the following formula.
Figure JPOXMLDOC01-appb-M000007
<ガラス転移温度(Tg)の測定>
 各種樹脂ならびに樹脂組成物(ペレット)のガラス転移温度(Tg)は、下記の示差走査熱量計(DSC)の測定条件のとおりに、昇温、降温を2サイクル行い、2サイクル目の昇温時のガラス転移温度を測定した。
 低温側のベースラインを高温側に延長した直線と、変曲点の接線の交点を開始ガラス転移温度とし、高温側のベースラインを低温側に延長した直線と、変曲点の接線の交点を終了ガラス転移温度とし、開始ガラス転移温度と終了ガラス転移温度の中間地点をガラス転移温度(Tg)とした。測定開始温度:30℃、昇温速度:10℃/分、到達温度:250℃、降温速度:20℃/分とした。
 測定装置は、示差走査熱量計(DSC、日立ハイテクサイエンス社製、「DSC7020」)を使用した。
<Measurement of glass transition temperature (Tg)>
The glass transition temperature (Tg) of various resins and resin compositions (pellets) is raised and lowered in two cycles according to the measurement conditions of the differential scanning calorimeter (DSC) below, and at the time of the second cycle of raising the temperature. The glass transition temperature of the glass was measured.
The intersection of the straight line extending the baseline on the low temperature side to the high temperature side and the tangent of the turning point is the starting glass transition temperature, and the intersection of the straight line extending the baseline on the high temperature side to the low temperature side and the tangent of the turning point is The end glass transition temperature was defined, and the intermediate point between the start glass transition temperature and the end glass transition temperature was defined as the glass transition temperature (Tg). The measurement start temperature was 30 ° C., the temperature rising rate was 10 ° C./min, the reached temperature was 250 ° C., and the temperature lowering rate was 20 ° C./min.
As a measuring device, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Corporation, "DSC7020") was used.
実施例1~8、比較例1~7
<樹脂組成物(ペレット)の製造>
 上記各成分A~Gを、それぞれ表1または表2に記載の含有量(各成分の含有量は質量部である)となるように計量した。その後、タンブラーにて15分間混合した後、スクリュー径32mmのベント付二軸押出機(日本製鋼所社製「TEX30α」)により、シリンダー温度300℃として溶融混練し、ストランドカットによりペレットを得た。
Examples 1-8, Comparative Examples 1-7
<Manufacturing of resin composition (pellet)>
Each of the above components A to G was weighed so as to have the content shown in Table 1 or Table 2 (the content of each component is a part by mass). Then, after mixing with a tumbler for 15 minutes, melt-kneading was performed at a cylinder temperature of 300 ° C. by a twin-screw extruder with a vent having a screw diameter of 32 mm (“TEX30α” manufactured by Japan Steel Works, Ltd.), and pellets were obtained by strand cutting.
<フィルムの製造>
 得られたペレットを用いて、以下の方法でフィルムを製造した。
 上記で得られたペレットを、バレル直径32mm、スクリューのL/D=31.5のベント付き二軸押出機(日本製鋼所社製、「TEX30α」)からなるTダイ溶融押出機を用いて、吐出量10Kg/h、スクリュー回転数63rpmの条件で、溶融状に押し出し、第一ロールと第二ロールで圧着した後、冷却固化し、フィルムを作製した。シリンダー・ダイヘッド温度は280℃とした。
 最終的に得られるフィルム厚みの調整は、表1または表2に記載の値となるように、第一ロールおよび第二ロールのロール速度を変更して行った。
<Manufacturing of film>
Using the obtained pellets, a film was produced by the following method.
The pellets obtained above were subjected to a T-die melt extruder consisting of a twin-screw extruder (manufactured by Japan Steel Works, Ltd., "TEX30α") with a barrel diameter of 32 mm and a screw L / D = 31.5. Under the conditions of a discharge rate of 10 kg / h and a screw rotation speed of 63 rpm, the film was extruded in a molten state, crimped with a first roll and a second roll, and then cooled and solidified to prepare a film. The cylinder / die head temperature was 280 ° C.
The final film thickness was adjusted by changing the roll speeds of the first roll and the second roll so as to have the values shown in Table 1 or Table 2.
 用いた第一ロールおよび第二ロールの詳細は以下の通りである。
・第一ロール:持田商工社製、シリコーンゴムロール(IT68S-MCG)
 寸法径:外径260mm×幅600mm
 ロール表面のデュロメーター硬度(タイプA型):70
 ロール温度:50℃
・第二ロール:JSW社製、金属剛体ロール(表面:ハードクロム処理)
 芯金径:外径250mm×幅600mm
 ロール表面のデュロメーター硬度(タイプA型):測定限界である100に達した。
 ロール温度:130℃
Details of the first roll and the second roll used are as follows.
-First roll: Silicone rubber roll (IT68S-MCG) manufactured by Mochida Shoko Co., Ltd.
Dimensional diameter: Outer diameter 260 mm x width 600 mm
Durometer hardness of roll surface (type A type): 70
Roll temperature: 50 ° C
-Second roll: JSW, metal rigid body roll (surface: hard chrome treatment)
Core metal diameter: outer diameter 250 mm x width 600 mm
Durometer hardness of roll surface (type A type): The measurement limit of 100 has been reached.
Roll temperature: 130 ° C
<全光線透過率、ヘイズの測定>
 ヘイズメーターを用いて、D65光源10°視野の条件にて、得られたフィルムの全光線透過率(%)およびヘイズ(%)を測定した。
 ヘイズメーターは、村上色彩技術研究所社製「HM-150」を用いた。
<Measurement of total light transmittance and haze>
Using a haze meter, the total light transmittance (%) and haze (%) of the obtained film were measured under the condition of a D65 light source 10 ° field of view.
As the haze meter, "HM-150" manufactured by Murakami Color Technology Research Institute Co., Ltd. was used.
<動摩擦係数の測定>
 得られたフィルムの動摩擦係数の測定は摩擦係数測定機を用いて測定した。具体的には、二乗平均平方根粗さが0.093μmのフィルムと上記で得られたフィルムが重なるように設置し、スレッドを100mm/分、ロードセル10Nの条件で、前記二乗平均平方根粗さが0.093μmのフィルム上を、得られたフィルムを滑らせて、動摩擦係数を測定した。
 摩擦係数測定機は、東洋精機製作所社製(「フリクションテスター」)を用いた。
 二乗平均平方根粗さが0.093μmのフィルムは、片面マスキングフィルム付きビスフェノールA型ポリカーボネートフィルム(三菱ガス化学社製、FE-2000、厚み100μm品)を用いた。本実施例では、片面マスキングフィルム付きビスフェノールA型ポリカーボネートフィルムのマスキングを剥がした面を上面にし、長軸が試験テーブルの長軸に一致するように、テープで試験テーブルの右端に固定し、63mm×63mm、200gのスレッドの下側に、得られたフィルムを貼り付け、ポリカーボネートフィルムと得られたフィルムが重なるように設置し、上述の通り、得られたフィルムを滑らせて動摩擦係数を測定した。
 表1または2において、「×」は測定不可を意味する。
<Measurement of dynamic friction coefficient>
The dynamic friction coefficient of the obtained film was measured using a friction coefficient measuring machine. Specifically, the film having a root mean square roughness of 0.093 μm and the film obtained above were placed so as to overlap each other, and the thread was set at 100 mm / min and the load cell was 10N. The obtained film was slid on a film of .093 μm, and the dynamic friction coefficient was measured.
A friction coefficient measuring machine manufactured by Toyo Seiki Seisakusho Co., Ltd. (“friction tester”) was used.
As a film having a root mean square roughness of 0.093 μm, a bisphenol A type polycarbonate film with a single-sided masking film (manufactured by Mitsubishi Gas Chemical Company, FE-2000, thickness 100 μm) was used. In this embodiment, the unmasked side of the bisphenol A type polycarbonate film with a single-sided masking film is turned to the upper surface, and fixed to the right end of the test table with tape so that the long axis coincides with the long axis of the test table, 63 mm × The obtained film was attached to the underside of a 63 mm, 200 g thread, and the polycarbonate film and the obtained film were placed so as to overlap each other. As described above, the obtained film was slid and the dynamic friction coefficient was measured.
In Table 1 or 2, "x" means unmeasurable.
<二乗平均平方根粗さRqの測定>
 動摩擦係数の測定に用いた二乗平均平方根粗さが0.093μmのフィルムの表面粗さの測定は表面粗さ測定機を用いて具体的に以下の方法で行った。装置の検出器を「一体型」にして、検出器の駆動部には「標準駆動ユニット」を装着した。ガラス板上にテープでフィルムを固定し、その上で表面粗さ測定機が動かないように設置した。その後、測定条件を規格「JIS B 0601-2001」、測定速度0.5mm/s、カットオフ値0.8、区間数3で測定を行い、二乗平均平方根粗さRqを測定した。二乗平均平方根粗さRqはフィルムの場所を変えて、3回測定して、その平均値とした。
 測定機は、ミツトヨ社製、「SJ-210」を用いた。
<Measurement of root mean square roughness Rq>
The surface roughness of the film having a root mean square roughness of 0.093 μm used for measuring the dynamic friction coefficient was specifically measured by the following method using a surface roughness measuring machine. The detector of the device was made "integrated", and a "standard drive unit" was attached to the drive unit of the detector. The film was fixed on a glass plate with tape, and the surface roughness measuring machine was installed on it so as not to move. Then, the measurement was performed under the standard "JIS B 0601-2001", the measurement speed was 0.5 mm / s, the cutoff value was 0.8, and the number of sections was 3, and the root mean square roughness Rq was measured. The root mean square roughness Rq was measured three times at different locations of the film and used as the average value.
As the measuring machine, "SJ-210" manufactured by Mitutoyo Co., Ltd. was used.
 結果を下記表1および表2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
10  透明導電性フィルム
11  電極層(透明導電膜)
12  基材
13  粘着剤層
14  保護フィルム
21  表面が平滑なポリカーボネートフィルム
22  表面に微細な凹凸を設けたポリカーボネートフィルム
30  フィルム
41  組成物
42  ダイス
43a、43b ロール
44  搬送ロール
10 Transparent conductive film 11 Electrode layer (transparent conductive film)
12 Base material 13 Adhesive layer 14 Protective film 21 Polycarbonate film with smooth surface 22 Polycarbonate film with fine irregularities on the surface 30 Film 41 Composition 42 Dice 43a, 43b Roll 44 Transport roll

Claims (18)

  1. 極限粘度が0.37dL/g以下の芳香族ポリカーボネート樹脂(A)と、
    極限粘度が0.50dL/g以下の芳香族ポリアリレート樹脂(B)と、
    極限粘度が0.60dL/g以上の芳香族ポリアリレート樹脂(C)を含み、
    前記芳香族ポリカーボネート樹脂(A)と芳香族ポリアリレート樹脂(C)の合計30~90質量部に対し、前記芳香族ポリアリレート樹脂(B)を10~70質量部含む、樹脂組成物。
    Aromatic polycarbonate resin (A) with an ultimate viscosity of 0.37 dL / g or less,
    Aromatic polyarylate resin (B) having an ultimate viscosity of 0.50 dL / g or less,
    Contains an aromatic polyarylate resin (C) having an ultimate viscosity of 0.60 dL / g or more.
    A resin composition containing 10 to 70 parts by mass of the aromatic polyarylate resin (B) with respect to a total of 30 to 90 parts by mass of the aromatic polycarbonate resin (A) and the aromatic polyarylate resin (C).
  2. 前記芳香族ポリカーボネート樹脂(A)の極限粘度が0.34dL/g以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the aromatic polycarbonate resin (A) has an ultimate viscosity of 0.34 dL / g or less.
  3. 前記芳香族ポリカーボネート樹脂(A)と前記芳香族ポリアリレート(C)の極限粘度の差が0.28dL/g以上である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the difference in the ultimate viscosity between the aromatic polycarbonate resin (A) and the aromatic polyarylate (C) is 0.28 dL / g or more.
  4. 前記樹脂組成物の示差走査熱量計によって測定したガラス転移温度または複数のガラス転移温度の少なくとも1つが150℃以上を示す、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein at least one of the glass transition temperature or the plurality of glass transition temperatures measured by a differential scanning calorimeter of the resin composition is 150 ° C. or higher.
  5. さらに、酸化防止剤(E)を含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, further comprising an antioxidant (E).
  6. さらに、エステル交換防止剤(F)を含む、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further comprising a transesterification inhibitor (F).
  7. さらに、離型剤(G)を含む、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, further comprising a mold release agent (G).
  8. 請求項1~7のいずれか1項に記載の樹脂組成物から形成されたフィルム。 A film formed from the resin composition according to any one of claims 1 to 7.
  9. 二乗平均平方根粗さが0.093μmのフィルムとの間で測定される、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.00以下である、請求項8に記載のフィルム。 The film according to claim 8, wherein the dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N, which is measured with a film having a root mean square roughness of 0.093 μm, is 2.00 or less.
  10. 膜厚が10μm以上300μm以下である、請求項8または9に記載のフィルム。 The film according to claim 8 or 9, wherein the film thickness is 10 μm or more and 300 μm or less.
  11. ヘイズが10%以下である、請求項8~10のいずれか1項に記載のフィルム。 The film according to any one of claims 8 to 10, wherein the haze is 10% or less.
  12. 請求項1~7のいずれか1項に記載の樹脂組成物から形成された、アンチブロッキングフィルム。 An anti-blocking film formed from the resin composition according to any one of claims 1 to 7.
  13. 二乗平均平方根粗さが0.093μmのフィルムとの間で測定される、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.00以下である、請求項12に記載のアンチブロッキングフィルム。 The anti-blocking according to claim 12, wherein the dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N measured with a film having a root mean square roughness of 0.093 μm is 2.00 or less. the film.
  14. 膜厚が10μm以上300μm以下である、請求項12または13に記載のアンチブロッキングフィルム。 The anti-blocking film according to claim 12 or 13, wherein the film thickness is 10 μm or more and 300 μm or less.
  15. ヘイズが10%以下である、請求項12~14のいずれか1項に記載のアンチブロッキングフィルム。 The anti-blocking film according to any one of claims 12 to 14, wherein the haze is 10% or less.
  16. 請求項8~11のいずれか1項に記載のフィルム、または、請求項12~15のいずれか1項に記載のアンチブロッキングフィルムと、
    粘着剤層と、
    基材と、
    電極層とをこの順で有する、透明導電性フィルム。
    The film according to any one of claims 8 to 11, or the anti-blocking film according to any one of claims 12 to 15.
    Adhesive layer and
    With the base material
    A transparent conductive film having an electrode layer in this order.
  17. 請求項1~7のいずれか1項に記載の樹脂組成物を、溶融状態でシート状に押し出し、一対のロールで圧着して作製するフィルムの製造方法であって、前記一対のロールの少なくとも1つのロール表面のタイプA型のデュロメーター硬度が10~99である、フィルムの製造方法。 A method for producing a film produced by extruding the resin composition according to any one of claims 1 to 7 into a sheet in a molten state and pressure-bonding the resin composition with a pair of rolls, wherein at least one of the pair of rolls is used. A method for producing a film, wherein the type A durometer hardness of one roll surface is 10 to 99.
  18. 前記フィルムが、請求項8~11のいずれか1項に記載のフィルム、または、請求項12~15のいずれか1項に記載のアンチブロッキングフィルムである、請求項17に記載のフィルムの製造方法。 The method for producing a film according to claim 17, wherein the film is the film according to any one of claims 8 to 11 or the anti-blocking film according to any one of claims 12 to 15. ..
PCT/JP2020/041995 2019-11-13 2020-11-11 Film and method for producing film WO2021095748A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021506006A JP6879444B1 (en) 2019-11-13 2020-11-11 Film and film manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205215 2019-11-13
JP2019-205215 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021095748A1 true WO2021095748A1 (en) 2021-05-20

Family

ID=75911497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041995 WO2021095748A1 (en) 2019-11-13 2020-11-11 Film and method for producing film

Country Status (2)

Country Link
JP (1) JP6879444B1 (en)
WO (1) WO2021095748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117779355A (en) * 2024-02-28 2024-03-29 江苏青昀新材料有限公司 Flash spinning membrane material and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220311A (en) * 2004-02-09 2005-08-18 Unitika Ltd Method for producing polyarylate-based resin composition
JP2011068735A (en) * 2009-09-25 2011-04-07 Unitika Ltd Polyarylate resin, and polyarylate resin composition
JP2011132320A (en) * 2009-12-24 2011-07-07 Unitika Ltd Polyarylate resin, polyarylate resin composition and molded body comprising the polyarylate resin composition
JP2014080577A (en) * 2012-09-28 2014-05-08 Unitika Ltd Resin composition, molded body using the resin composition, reflector parts using the molded body
JP2018197313A (en) * 2017-05-24 2018-12-13 三菱エンジニアリングプラスチックス株式会社 Method for producing polycarbonate resin composition
JP2020180224A (en) * 2019-04-25 2020-11-05 ユニチカ株式会社 Resin composition and molding obtained from the same
JP6795128B1 (en) * 2019-05-29 2020-12-02 三菱瓦斯化学株式会社 Compositions, films, and methods of making films
WO2020241674A1 (en) * 2019-05-29 2020-12-03 三菱瓦斯化学株式会社 Composition, plate-like molded article and method for producing plate-like molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220311A (en) * 2004-02-09 2005-08-18 Unitika Ltd Method for producing polyarylate-based resin composition
JP2011068735A (en) * 2009-09-25 2011-04-07 Unitika Ltd Polyarylate resin, and polyarylate resin composition
JP2011132320A (en) * 2009-12-24 2011-07-07 Unitika Ltd Polyarylate resin, polyarylate resin composition and molded body comprising the polyarylate resin composition
JP2014080577A (en) * 2012-09-28 2014-05-08 Unitika Ltd Resin composition, molded body using the resin composition, reflector parts using the molded body
JP2018197313A (en) * 2017-05-24 2018-12-13 三菱エンジニアリングプラスチックス株式会社 Method for producing polycarbonate resin composition
JP2020180224A (en) * 2019-04-25 2020-11-05 ユニチカ株式会社 Resin composition and molding obtained from the same
JP6795128B1 (en) * 2019-05-29 2020-12-02 三菱瓦斯化学株式会社 Compositions, films, and methods of making films
WO2020241674A1 (en) * 2019-05-29 2020-12-03 三菱瓦斯化学株式会社 Composition, plate-like molded article and method for producing plate-like molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117779355A (en) * 2024-02-28 2024-03-29 江苏青昀新材料有限公司 Flash spinning membrane material and manufacturing method thereof

Also Published As

Publication number Publication date
JP6879444B1 (en) 2021-06-02
JPWO2021095748A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP2064286B1 (en) New aromatic polycarbonate composition
JP5011398B2 (en) Polycarbonate resin laminated sheet
JP2010031174A (en) Polyester resin composition and biaxially oriented film using the same
WO2016129018A1 (en) Polycarbonate resin composition and molded article
JP6879444B1 (en) Film and film manufacturing method
JP6835298B1 (en) Film and film manufacturing method
JP6795128B1 (en) Compositions, films, and methods of making films
JP4811925B2 (en) Thermoplastic resin sheet
WO2020241674A1 (en) Composition, plate-like molded article and method for producing plate-like molded article
JP2016216556A (en) Polycarbonate resin composition and molded article composed of the same
JP6825755B1 (en) Compositions, films and methods for producing films
WO2020241672A1 (en) Composition, film and method for producing film
KR20130074365A (en) Thermoplastic resin composition and molded product using the same
JP5480687B2 (en) Aromatic polycarbonate resin composition with improved surface appearance
JP2022080269A (en) Resin composition, tabular molding, multilayer body and method for producing molding
JP2012126767A (en) Luminance-increasing film
JP2021080345A (en) Resin composition, flat plate-shaped molding, multilayer body, and antireflection film
JP6777269B1 (en) Resin composition and molded product
JP6806286B1 (en) Resin composition and molded product
JP2022080923A (en) Resin composition, film, multilayer film, and method for manufacturing film
JP2022182907A (en) Film, multilayer body, and transparent conductive film
JP2023045395A (en) Resin composition, film, and multilayer film
JP2023101080A (en) Resin composition, film, multilayer body and transparent conductive film
JP2022182086A (en) Film, multilayer body, and transparent conductive film
KR20220070801A (en) Thermoplastic resin composition and article produced therefrom

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021506006

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886902

Country of ref document: EP

Kind code of ref document: A1