WO2020241672A1 - Composition, film and method for producing film - Google Patents

Composition, film and method for producing film Download PDF

Info

Publication number
WO2020241672A1
WO2020241672A1 PCT/JP2020/020886 JP2020020886W WO2020241672A1 WO 2020241672 A1 WO2020241672 A1 WO 2020241672A1 JP 2020020886 W JP2020020886 W JP 2020020886W WO 2020241672 A1 WO2020241672 A1 WO 2020241672A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
mass
bisphenol
parts
Prior art date
Application number
PCT/JP2020/020886
Other languages
French (fr)
Japanese (ja)
Inventor
円 山口
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2020540367A priority Critical patent/JP6795128B1/en
Priority to CN202080039449.2A priority patent/CN113906102B/en
Publication of WO2020241672A1 publication Critical patent/WO2020241672A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to compositions, films, and methods for producing films.
  • Transparent conductive films are used in touch panel film sensors, electronic paper, dye-sensitized solar cells, touch sensors, and the like.
  • the transparent conductive film 10 is known to be composed of an electrode layer (transparent conductive film) 11, a base film 12, an adhesive layer 13, and a protective film 14.
  • Patent Document 1 describes a transparent conductive film laminate having an adhesive layer, a film base material, and a transparent conductive film in this order on a protective film, and at least one of the film base material and the protective film. Has an uneven portion on the surface on the adhesive layer side in each end region from one end portion in the width direction and the other end portion to 100 mm inside in the width direction, respectively.
  • the effective roughness R1 of the surface of the uneven portion in each of the end regions is 0.1 to 20 ⁇ m, and the pressure-sensitive adhesive layer has the uneven portion of one end region and the other in the width direction. From the position where the distance from the uneven portion of the one end region is 0 to 10 mm from the position where the distance from the uneven portion of the end region is 0 to 10 mm, the distance from the uneven portion of the other end region is 0 to 10 mm.
  • a transparent conductive film laminate is disclosed, which is characterized by being provided over such positions. Further, it is described that a polycarbonate resin is used as the protective film.
  • Patent Document 2 describes a polycarbonate resin (A-1) having a polystyrene-equivalent weight average molecular weight (Mw) of 70,000 or more and less than 200,000 and a polystyrene-equivalent weight average molecular weight (Mw) as a resin composition composed of a polycarbonate resin and a polyarylate resin.
  • Mw A resin composition composed of a polycarbonate resin (A) composed of a polycarbonate resin (A-2) of 40,000 or more and less than 70,000 and a polyarylate resin (B) is disclosed. It is described that such a resin composition is used for a flat panel display for a portable device exposed to an impact or the like and a film for a flat panel having excellent repeated bending resistance of a touch panel display.
  • a protective film is usually used as the transparent conductive film.
  • Such a protective film is used to protect the base film when transporting the laminate of the electrode layer and the base film. That is, a protective film is used for anti-blocking on the opposite side of the electrode layer.
  • This protective film is required to have slidability to the extent that it does not stack in order to improve the transportability of the film and prevent winding wrinkles. Further, since the in-line defect inspection is performed on the transparent conductive film with the protective film attached, a transparent film in which turbidity is suppressed is required. Further, heat resistance is also required depending on the application.
  • An object of the present invention is to solve such a problem, and a composition capable of providing a transparent film having high slidability, heat resistance, and suppressed turbidity, and , A film formed from the composition and a method for producing the film.
  • ⁇ 4> A film formed from the composition according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> The dynamic friction coefficient with a film having a root mean square roughness of 0.093 ⁇ m, and the dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N is 2.0 or less, as described in ⁇ 4>.
  • ⁇ 6> The film according to ⁇ 4> or ⁇ 5>, wherein the thickness of the film is 10 ⁇ m or more and 300 ⁇ m or less.
  • ⁇ 7> The film according to any one of ⁇ 4> to ⁇ 6>, wherein the haze is 10% or less.
  • a transparent conductive film having the film according to any one of ⁇ 4> to ⁇ 7>, an adhesive layer, a film base material, and an electrode layer in this order.
  • Bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less is 25 parts by mass or more and 70 parts by mass or less, and the glass transition temperature measured by a differential scanning calorimeter is 160 ° C. or more. , 26.5 parts by mass or more and 71.5 parts by mass or less of aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A), and polyallylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less.
  • the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is a bisphenol AP type polycarbonate.
  • ⁇ 11> The method for producing a film according to ⁇ 9> or ⁇ 10>, wherein the glass transition temperature of the composition measured by a differential scanning calorimeter is 160 ° C. or higher.
  • the film has a coefficient of dynamic friction with a film having a root mean square roughness of 0.093 ⁇ m, and the coefficient of dynamic friction measured under the conditions of a thread of 100 mm / min and a load cell of 10 N is 2.0 or less.
  • ⁇ 13> The method for producing a film according to any one of ⁇ 9> to ⁇ 12>, wherein the thickness of the film is 10 ⁇ m or more and 300 ⁇ m or less.
  • ⁇ 14> The method for producing a film according to any one of ⁇ 9> to ⁇ 13>, wherein the haze of the film is 10% or less.
  • a composition capable of providing a transparent film having high slidability, heat resistance, and suppressed turbidity, a film formed from the composition, and a film It became possible to provide a manufacturing method.
  • FIG. 1 is an example of a schematic cross-sectional view showing a layer structure of a transparent conductive film.
  • FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film
  • FIG. 2B is a schematic view showing a state in which the smooth polycarbonate film is slid on the polycarbonate film having fine irregularities on the surface.
  • a schematic diagram showing a state in which a polycarbonate film having fine irregularities on the surface is slid is shown.
  • FIG. 3 shows an example of a schematic view of the film of the present invention as viewed from the cross-sectional direction.
  • FIG. 4 is an example of a schematic diagram showing a method for producing a film of the present invention.
  • the composition of the present invention has a weight average molecular weight of 20,000 or more and 35,000 or less, 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A), and a glass transition temperature of 160 ° C. measured by a differential scanning calorimeter.
  • aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) (hereinafter, may be referred to as "polycarbonate (B) having a Tg of 160 ° C. or higher”) 26.5 parts by mass or more 71.5 It is characterized by containing 3.5 parts by mass or more and 7.5 parts by mass or less of polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 parts or less.
  • FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film.
  • a method of forming fine irregularities on the surface of a film by using a roll having fine irregularities on the surface can be mentioned.
  • a molten film is passed between rolls having fine irregularities on the surface to form fine irregularities.
  • the shape of the fine irregularities transferred to the film surface may change due to wear of the roll due to long-term use.
  • there is also a method of adding fine particles to the film and forming fine irregularities on the surface of the film by the fine particles there is also a method of adding fine particles to the film and forming fine irregularities on the surface of the film by the fine particles.
  • transparency may be impaired due to the difference in refractive index between the fine particles and the resin.
  • FIG. 3 is a schematic view of the film 30 of the present invention as viewed from the cross-sectional direction, where X indicates polyarylate and Y indicates aromatic polycarbonate. That is, in the present invention, as an aromatic polycarbonate, a bisphenol A type polycarbonate (A) having a relatively small weight average molecular weight is blended with a polycarbonate (B) having a Tg of 160 ° C. or higher, which is excellent in heat resistance, to form an aromatic polycarbonate.
  • A bisphenol A type polycarbonate
  • B polycarbonate having a Tg of 160 ° C. or higher, which is excellent in heat resistance
  • the composition of the present invention has a bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less, a polycarbonate (B) having a Tg of 160 ° C. or more, and a weight average molecular weight of 45,000 or more. It consists of 80,000 or less polyarylate (C) and, if necessary, an antioxidant (D), a transesterification inhibitor (E), a mold release agent (F), and other components.
  • A bisphenol A type polycarbonate
  • B polycarbonate
  • Tg 160 ° C. or more
  • F mold release agent
  • the composition of the present invention contains a bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less.
  • A bisphenol A type polycarbonate
  • the weight average molecular weight of the bisphenol A type polycarbonate (A) is 20,000 or more, preferably 22,000 or more, and more preferably 23,000 or more.
  • the weight average molecular weight of the bisphenol A type polycarbonate (A) is 35,000 or less, preferably 33,000 or less, more preferably 31,000 or less, and 28,000 or less. It may be 26,000 or less.
  • the weight average molecular weight of the bisphenol A type polycarbonate (A) is measured according to the description of Examples described later.
  • the weight average molecular weight is the weight average molecular weight of the mixture of bisphenol A type polycarbonate (A) (hereinafter, the same applies to other physical properties. The same applies to other resin components.)
  • the glass transition temperature (Tg) of the bisphenol A type polycarbonate (A) is usually less than 160 ° C., preferably 155 ° C. or lower, more preferably 145 ° C. or lower, and may be 140 ° C. or lower. It may be 139 ° C. or lower.
  • the lower limit value is, for example, 100 ° C. or higher, and may be 120 ° C. or higher or 130 ° C. or higher.
  • the glass transition temperature (Tg) of the bisphenol A type polycarbonate (A) is measured according to the description of Examples described later.
  • the bisphenol A type polycarbonate refers to a resin having a carbonate constituent unit derived from bisphenol A and a derivative thereof, and preferably has a constituent unit represented by the following formula (A-1). * In the formula represents the bonding position with other structural units or end groups.
  • X 1 represents the following structure.
  • R 5 and R 6 are alkyl groups or hydrogen atoms, preferably at least one of which is a methyl group and more preferably both of which are methyl groups.
  • the formula (A-1) is preferably represented by the following formula (A-2).
  • the content of the structural unit represented by the formula (A-1) in the bisphenol A type polycarbonate (A) is preferably 70 mol% or more, preferably 80 mol% or more, of all the structural units excluding both ends. More preferably, it is more preferably 90 mol% or more.
  • the upper limit value is not particularly limited, and 100 mol% may be a structural unit represented by the formula (A-1).
  • the bisphenol A type polycarbonate is a resin in which substantially all the structural units except both ends are composed of the structural units of the formula (A-1).
  • substantially all constituent units excluding both ends here means that 99.0 mol% or more of all the constituent units excluding both ends is 99.5 mol% or more.
  • the bisphenol A type polycarbonate (A) may have a structural unit other than the carbonate structural unit derived from bisphenol A and its derivative.
  • Examples of the dihydroxy compound constituting such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, and the contents thereof are incorporated in the present specification. ..
  • the method for producing the bisphenol A type polycarbonate (A) is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • the composition of the present invention has an aromatic polycarbonate (B) (Tg of 160 ° C. or higher) other than the bisphenol A type polycarbonate (A) having a glass transition temperature of 160 ° C. or higher as measured by a differential scanning calorimeter. B)) is included.
  • Tg 160 ° C. or higher
  • the polycarbonate (B) having a Tg of 160 ° C. or higher preferably has a glass transition temperature of 165 ° C. or higher, more preferably 168 ° C.
  • the glass transition temperature (Tg) is measured by the method described in Examples described later.
  • the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably a bisphenol AP type polycarbonate, a bisphenol Z type polycarbonate, and a bisphenol TMC type polycarbonate, and more preferably a bisphenol AP type polycarbonate.
  • One embodiment of the polycarbonate (B) having a Tg of 160 ° C. or higher in the present invention comprises at least a bisphenol AP-type polycarbonate.
  • the bisphenol AP type polycarbonate refers to a resin having a carbonate constituent unit derived from bisphenol AP and its derivative. The same applies to bisphenol Z-type polycarbonate.
  • the bisphenol AP-type polycarbonate preferably has a structural unit represented by the following formula (B-1).
  • R 1 to R 4 are independently fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), and carbon atom.
  • It represents an aralkyl group having 7 to 17 atoms (preferably 7 to 11).
  • l represents an integer from 0 to 5.
  • m and n each independently represent an integer of 0 to 4.
  • the structural unit represented by the formula (B-1) is preferably the structural unit represented by the following formula (B-2). * In the formula represents the bonding position with other structural units or end groups.
  • R 1 , R 2 , R 3 , R 4 , l, m, and n are synonymous with those defined by the equation (B-1).
  • the structural unit represented by the formula (B-2) is preferably the structural unit represented by the following formula (B-3). * In the formula represents the bonding position with other structural units or end groups.
  • the content of the structural unit represented by the formula (B-1) in the bisphenol AP-type polycarbonate is preferably 70 mol% or more, preferably 80 mol% or more, of all the structural units excluding both ends. More preferably, it is 90 mol% or more.
  • the upper limit value is not particularly limited, and 100 mol% may be a structural unit represented by the formula (B-1).
  • the bisphenol AP-derived structural unit may be composed of only one type or two or more types.
  • Particularly preferred as the bisphenol AP-type polycarbonate is a resin in which substantially all the structural units except both ends are composed of the structural units of the formula (B-1).
  • substantially all the constituent units excluding both ends mean that the total constituent units excluding both ends are 99.0 mol% or more, preferably 99.5 mol% or more, and 99.9 mol. % Or more is more preferable.
  • the bisphenol Z-type polycarbonate and the bisphenol TMC-type polycarbonate preferably have a structural unit represented by the following formula (B-4). * In the formula represents the bonding position with other structural units or end groups.
  • R 8 independently contains a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), and 6 to 6 carbon atoms. 12 (preferably 6 to 10) aryl groups, 1 to 5 (preferably 1 to 3) alkoxy groups, 2 to 5 (preferably 2 or 3) alkenyl groups or 7 carbon atoms Represents an aralkyl group of ⁇ 17 (preferably 7-11).
  • q represents an integer of 0 to 5, and an integer of 1 to 3 is preferable.
  • R 8 is preferably an alkyl group having 1 to 9 (preferably 1 to 3) carbon atoms independently, and more preferably a methyl group.
  • the structural unit represented by the formula (B-4) is preferably the structural unit represented by the following formula (B-5). * In the formula represents the bonding position with other structural units or end groups. Wherein (B-5), R 8 has the same meaning as R 8 in the formula (B-4), and preferred ranges are also the same.
  • the bisphenol AP type polycarbonate may have other structural units different from the carbonate structural units derived from bisphenol AP and its derivatives.
  • the bisphenol Z-type polycarbonate may have other structural units different from the carbonate structural units derived from bisphenol Z and its derivatives.
  • the bisphenol TMC type polycarbonate may have other constituent units different from the carbonate constituent units derived from bisphenol TMC and its derivatives. Examples of the dihydroxy compound constituting such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, and the contents thereof are incorporated in the present specification. ..
  • the method for producing polycarbonate (B) having a Tg of 160 ° C. or higher is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • the weight average molecular weight of the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably 15,000 or more, more preferably 20,000 or more, and may be more than 35,000.
  • the weight average molecular weight of the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably 100,000 or less, more preferably 80,000 or less, and even more preferably 60,000 or less. ..
  • the weight average molecular weight of the polycarbonate (B) having a Tg of 160 ° C. or higher is measured according to the description of Examples described later.
  • the composition of the present invention contains a polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less.
  • a polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less.
  • the weight average molecular weight of the polyarylate (C) is preferably 50,000 or more, more preferably 55,000 or more, and even more preferably 60,000 or more.
  • the weight average molecular weight of the polyarylate (C) is preferably 75,000 or less, more preferably 70,000 or less, and even more preferably 66,000 or less. By setting the upper limit of the weight average molecular weight of the polyarylate (C) to 80,000 or less, an increase in haze of the film can be effectively suppressed.
  • the glass transition temperature (Tg) of the polyarylate (C) is usually less than 300 ° C, preferably 280 ° C or lower. As the lower limit value, for example, it is 130 ° C. or higher, preferably 150 ° C. or higher, and more preferably 180 ° C. or higher.
  • the glass transition temperature (Tg) of the polyarylate (C) is measured according to the description of Examples described later.
  • the ultimate viscosity of the polyarylate (C) is preferably 0.49 dL / g or more, more preferably 0.55 dL / g or more, further preferably 0.59 dL / g or more, and 0. It is more preferably 62 dL / g or more.
  • the ultimate viscosity of polyarylate (C) is preferably 0.84 dL / g or less, more preferably 0.79 dL / g or less, and even more preferably 0.74 dL / g or less.
  • the ultimate viscosity of polyarylate (C) is measured according to the description of Examples described later.
  • the polyarylate (C) used in the present invention is preferably an aromatic polyester composed of a structural unit derived from an aromatic dicarboxylic acid and a structural unit derived from bisphenol.
  • aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid. , 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid and the like.
  • Examples of the bisphenol include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy-3,). 5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfide , 4,4'-Dihydroxydiphenylketone, 4,4'-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1, Examples thereof include 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane. These compounds may be used alone or in combination of two or more.
  • the method for producing polyarylate (C) is not particularly limited, and those obtained by a known method can be used.
  • the polyarylate (C) obtained by the interfacial polymerization method and the melt polymerization method can be preferably used.
  • composition of the present invention comprises 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A), 26.5 parts by mass or more and 71.5 parts by mass or less of polycarbonate (B) having a Tg of 160 ° C. or more, and polyarylate.
  • C Contains 3.5 parts by mass or more and 7.5 parts by mass or less. With such a blend ratio, it becomes possible to form fine irregularities on the surface of the film.
  • bisphenol A type polycarbonate (A) is 30 parts by mass or more and 50 parts by mass or less, polycarbonate (B) having a Tg of 160 ° C. or more is 40 parts by mass or more and 65 parts by mass or less, and polyarylate (C) is 3.5 parts by mass. It contains more than parts and 7.5 parts by mass or less. More preferably, bisphenol A type polycarbonate (A) is 32 parts by mass or more and 40 parts by mass or less, polycarbonate (B) having a Tg of 160 ° C. or more is 51 parts by mass or more and 65 parts by mass or less, and polyarylate (C) is 4 parts by mass or more. Contains 6 parts by mass or less.
  • the content of the bisphenol A type polycarbonate (A) is preferably 25% by mass or more, and more preferably 32% by mass or more in the composition.
  • the upper limit value is preferably 70% by mass or less, and more preferably 40% by mass or less.
  • the content of the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably 26.5% by mass or more, and more preferably 51% by mass or more in the composition.
  • the upper limit value is preferably 71.5% by mass or less, and more preferably 65% by mass or less.
  • the content of the polyarylate (C) is preferably 3.5% by mass or more, and more preferably 4% by mass or more in the composition.
  • the upper limit value is preferably 7.5% by mass or less, and more preferably 6% by mass or less.
  • the total of the bisphenol A type polycarbonate (A), the polycarbonate (B) having a Tg of 160 ° C. or higher, and the polyarylate (C) does not exceed 100% by mass.
  • the total content of the blend of bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C) is 95% by mass or more of the composition. Further, an embodiment of 97% by mass or more of the composition, particularly an aspect of 98% by mass or more of the composition is exemplified.
  • the composition of the present invention may contain only one type of bisphenol A type polycarbonate (A), or may contain two or more types. When two or more types are included, the total is preferably in the above range.
  • the composition of the present invention may contain only one type of polycarbonate (B) having a Tg of 160 ° C. or higher, or may contain two or more types.
  • composition of the present invention may contain only one type of polyarylate (C), or may contain two or more types of polyarylate (C). When two or more types are included, the total is preferably in the above range.
  • the difference (Mwc-Mwa) between the weight average molecular weight of polyarylate (C) and the weight average molecular weight of bisphenol A type polycarbonate (A) is preferably 25,000 or more, even if it is 30,000 or more. Good. Further, the difference (Mwc-Mwa) is preferably 45,000 or less. Within such a range, better slidability of the film can be achieved.
  • the composition of the present invention preferably contains an antioxidant.
  • the antioxidant include a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, and the like, and a phosphorus-based antioxidant and a phenol-based antioxidant (more preferably hinder).
  • At least one of (dophenol-based antioxidants) is preferable, and phosphorus-based antioxidants are particularly preferable. It is also preferable to use both in combination.
  • a phosphite compound represented by the following formula (1) or (2) is preferable.
  • R 1 and R 2 independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R 3 to R 7 independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl groups represented by R 1 and R 2 are preferably linear or branched alkyl groups having 1 to 10 carbon atoms, respectively.
  • R 1 and R 2 are aryl groups, an aryl group represented by any of the following general formulas (1-a), (1-b), or (1-c) is preferable.
  • R A is independently, in.
  • the formula (1-b) represents an alkyl group having a carbon number of 1 to 10
  • R B are each independently, carbon atoms of 1 to Represents an alkyl group of 10.
  • the phenolic antioxidant examples include a hindered phenolic antioxidant.
  • the phenolic antioxidant described in paragraph 0041 of JP2019-002023 and the phenolic antioxidant described in paragraphs 0033 to 0034 of JP2019-0506035 are preferably used. These contents are incorporated herein by reference.
  • the details of the antioxidant can be referred to in paragraphs 0057 to 0061 of JP-A-2017-031313, and these contents are incorporated in the present specification.
  • the content of the antioxidant in the composition means the total of the resin components (bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C).
  • the same is preferably 0.005 parts by mass or more, more preferably 0.007 parts by mass or more, and further preferably 0.01 parts by mass or more with respect to 100 parts by mass.
  • the upper limit of the content of the antioxidant is preferably 4 parts by mass or less, more preferably 1 part by mass or less, still more preferably 0.5 parts by mass or less, still more preferably 0.5 parts by mass or less, based on 100 parts by mass of the resin component. It is 0.1 part by mass or less.
  • the content of the antioxidant By setting the content of the antioxidant to 0.005 parts by mass or more, the transparency tends to be further improved. Further, by setting the content of the antioxidant to 4 parts by mass or less, the moist heat stability tends to be improved. Further, when a phosphorus-based antioxidant and a phenol-based antioxidant (preferably a hindered phenol-based antioxidant) are used in combination as the antioxidant, the content thereof is phosphorus with respect to 100 parts by mass of the resin component. It is preferable that the system antioxidant is contained in the range of 0.001 to 0.2 parts by mass and the phenolic antioxidant is contained in the range of 0.001 to 0.2 parts by mass. Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
  • the composition of the present invention preferably contains a transesterification inhibitor.
  • the transesterification inhibitor include a phosphorus-based transesterification inhibitor and a sulfur-based transesterification inhibitor.
  • the phosphorus-based ester exchange inhibitor include phosphorous acid, phosphoric acid, phosphonic acid, phosphonic acid, and esters thereof.
  • the description in paragraphs 0035 to 0039 of International Publication No. 2015/190162, paragraph 0037 of JP-A-2019-002023, and paragraph 0041 of JP-A-2018-199745 can be taken into consideration. Is incorporated herein.
  • the content of the transesterification inhibitor in the composition is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, still more preferably 0.005 part by mass or more, based on 100 parts by mass of the resin component. It is 0.007 parts by mass or more.
  • the upper limit of the content of the transesterification inhibitor is preferably 1.0 part by mass or less, more preferably 0.5 part by mass or less, and further preferably 0.3 part by mass with respect to 100 parts by mass of the thermoplastic resin. Parts or less, more preferably 0.1 parts by mass or less.
  • the transesterification inhibitor may contain only one type, or may contain two or more types. When two or more kinds are included, the total amount is preferably in the above range.
  • the composition of the present invention preferably contains a mold release agent.
  • the release agent is at least one selected from the group consisting of an aliphatic carboxylic acid, an ester of an aliphatic carboxylic acid and an alcohol, an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000, and a polysiloxane-based silicone oil.
  • Compounds can be mentioned, and esters of aliphatic carboxylic acids and alcohols are preferable.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (mixture containing myricyl palmitate as the main component), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, and glycerin monostearate.
  • the release agent described in paragraph 0032 of JP-A-2017-226848 and paragraph 0056 of JP-A-2018-199745 can be used, and the contents thereof are incorporated in the present specification. ..
  • the content of the release agent in the composition is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, and preferably 0.005 part by mass or more, based on 100 parts by mass of the resin component. It is 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 part by mass or less. Only one type of release agent may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
  • the above composition includes other thermoplastic resins, heat stabilizers, flame retardants, flame retardants, ultraviolet absorbers, colorants, antistatic agents, fluorescent whitening agents, antifogging agents, and fluidity improving agents. It may contain an agent, a plasticizer, a dispersant, an antibacterial agent, an antiblocking agent, an impact improving agent, a sliding improving agent, a hue improving agent, an acid trapping agent and the like. One type of these components may be used, or two or more types may be used in combination. When contained, the total amount of the other components is preferably 0.001 to 5% by mass, more preferably 0.001 to 2% by mass, and 0.01 to 1% by mass. Is more preferable.
  • the glass transition temperature measured by the differential scanning calorimeter of the composition of the present invention is preferably 160 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly specified, but for example, even if it is 200 ° C. or lower, further 190 ° C. or lower, 180 ° C. or lower, or 170 ° C. or lower, the required performance is sufficiently satisfied. ..
  • the composition of the present invention can be molded into a film.
  • the film preferably has a thickness of 10 ⁇ m or more and 300 ⁇ m or less. By setting the thickness to 300 ⁇ m or less, a transparent film can be obtained. Further, by setting it to 10 ⁇ m or more, the haze tends to be further lowered.
  • the thickness of the film of the present invention may be 20 ⁇ m or more, and further may be 25 ⁇ m or more. Further, it is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, further preferably 100 ⁇ m or less, further preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. It is even more preferable to have.
  • the film of the present invention also preferably has a coefficient of kinetic friction with a film having a root mean square roughness of 0.093 ⁇ m of 2.0 or less, and more preferably 1.8 or less.
  • the lower limit is, for example, 0.1 or more.
  • the coefficient of kinetic friction is a value measured under the conditions of a thread of 100 mm / min and a load cell of 10N, and specifically, it is measured by the method described in Examples described later.
  • the film of the present invention has a total light transmittance of preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more under the condition of a D65 light source 10 ° field of view.
  • the upper limit of the light transmittance is 100%, but even if it is 94% or less, the required performance is sufficiently satisfied.
  • the total light transmittance is measured by the method described in Examples described later.
  • the film of the present invention preferably has a haze of 10% or less, more preferably 8% or less, 6% or less, or 5% or less.
  • the ideal lower limit is 0%, but even if it is 0.1% or more, it is a practical level.
  • the film of the present invention is preferably used as a masking film. More preferably, it is used as a protective film for a transparent conductive film. In particular, it is preferably used as a transparent conductive film having the film of the present invention, an adhesive layer, a film base material, and an electrode layer in this order. Further, the transparent conductive film is preferably used as a transparent conductive film used for a film sensor of a touch panel, electronic paper, a dye-sensitized solar cell, a touch sensor, and the like. In addition to the above, the film of the present invention is preferably used as a film for applications that require high slidability and transparency.
  • the weight average molecular weight is 20,000 or more and 35,000 or less
  • the glass transition temperature measured by a differential scanning calorimeter is 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A).
  • the glass transition temperature measured by a differential scanning calorimeter is 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A).
  • At 160 ° C. or higher 26.5 parts by mass or more and 71.5 parts by mass or less of aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A), and a weight average molecular weight of 45,000 or more and 80,000 or less.
  • FIG. 4 is an example of a schematic diagram showing a method for producing a film of the present invention. In the production method of the present invention, for example, as shown in FIG.
  • the composition 41 containing the above-mentioned bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C) is used.
  • the melted and sheet-like composition 41 is pressure-bonded by the pair of rolls 43 as it passes between the pair of rolls 43 (the first roll 43a and the second roll 43b).
  • a roll having a type A durometer hardness of 10 to 99 on the roll surface is used.
  • the first roll 43a is a roll having a surface durometer hardness of 10 to 99.
  • a roll having a soft surface is used as the first roll 43a.
  • a portion of the polyarylate (C) that is not compatible with the bisphenol A type polycarbonate (A) appears on the surface of the film and becomes on the surface of the film. Form fine irregularities. As a result, high slidability can be achieved.
  • the durometer hardness of the roll surface is preferably 30 or more, more preferably 50 or more, and more preferably 80 or less, more preferably 75 or less. By setting the range in such a range, the roll has an appropriate softness. Examples of rolls having a surface durometer hardness of 10 to 99 include mirrored rubber rolls.
  • the temperature of the roll having a surface durometer hardness of 10 to 99 is preferably 30 to 90 ° C, more preferably 40 to 70 ° C.
  • the composition passes between the pair of rolls 43 (first roll 43a and second roll 43b) and then further passes through the transport roll 44.
  • Rolls other than rolls having a surface durometer hardness of 10 to 99 for example, in FIG. 4, the second roll 43b and the transport roll 44 include metal rolls.
  • the metal roll reaches a durometer hardness of 100, which is the measurement limit.
  • Examples of the metal roll include a mirror rigid body roll and a metal elastic roll.
  • the surface temperature of rolls other than rolls having a surface durometer hardness of 10 to 99 is preferably 70 to 170 ° C, more preferably 100 to 160 ° C.
  • the durometer hardness of at least one roll surface of the first roll and the second roll may be in the above range, but the surfaces of both the first roll and the second roll may satisfy the above durometer hardness. .. In this case, desired fine irregularities are formed on the surface of the film.
  • the film after passing between the pair of rolls 43 is cooled while passing through the transport roll 44, or by passing through a cooling zone or a cooling roll. To. After cooling, it may be further wound up. That is, in the present invention, it can be a wound body having the core material and the film of the present invention wound around the core material.
  • the film obtained by the above film manufacturing method preferably has a film thickness of 10 ⁇ m or more and 300 ⁇ m or less.
  • the details of the film obtained by the method for producing the film of the present invention are the same as those of the above-mentioned film of the present invention.
  • a transparent conductive film can be produced by laminating the film of the present invention obtained above, the pressure-sensitive adhesive layer, the film base material, and the electrode layer.
  • A1 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, E-2000F, weight average molecular weight: 52,800 Tg: 151 ° C)
  • A2 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, S-3000F, weight average molecular weight: 41,300 Tg: 148 ° C.)
  • A3 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, H-4000F, weight average molecular weight: 29,200 Tg: 143 ° C)
  • A4) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, H-7000F
  • B Polycarbonate (B) with Tg of 160 ° C or higher
  • B1 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol AP as a starting material (manufactured by Mitsubishi Gas Chemical Company, FPC-0220, weight average molecular weight: 49,900, Tg: 184 ° C.)
  • B2 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol AP as a starting material (manufactured by Mitsubishi Gas Chemical Company, FPC-0210, weight average molecular weight: 24,800, Tg: 170 ° C.)
  • B3 Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol Z as a starting material (manufactured by Mitsubishi Gas Chemical Company, PCZ-200, weight average molecular weight: 32,100, Tg: 176 ° C.)
  • C1 Unitika Ltd., U-powder D type, weight average molecular weight 63,000, ultimate viscosity 0.65 dL / g Tg: 201 ° C.
  • C2 Unitika Ltd., U-powder L type, weight average molecular weight 40,800, ultimate viscosity 0.48 dL / g Tg: 195 ° C.
  • D1 Tris (2,4-di-tert-butylphenyl) phosphite (phosphorus antioxidant, manufactured by ADEKA Corporation, ADEKA STAB 2112)
  • D2 Tetrakiss [3- (3', 5'-di-tert-butyl-4-hydroxyphenyl) propionic acid] Pentaerythritol (Hindered phenolic antioxidant ADEKA Corporation, ADEKA STAB AO-60)
  • the weight average molecular weight (Mw) of bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C) is specifically measured by gel permeation chromatography as follows. It was. An LC-20AD system (manufactured by Shimadzu Corporation) was used as a gel permeation chromatography apparatus, and LF-804 (manufactured by Shodex) was connected and used as a column. The column temperature was 40 ° C. As the detector, an RI detector of RID-10A (manufactured by Shimadzu Corporation) was used.
  • Chloroform was used as the eluent, and the calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation. If the gel permeation chromatography device, column, or detector is difficult to obtain, the measurement is performed using another device having the same performance.
  • Tg glass transition temperature
  • the bisphenol A type polycarbonate (A), the polycarbonate (B) and polyarylate (C) having a Tg of 160 ° C. or higher, and the glass transition temperature (Tg) of the composition are raised according to the following DSC measurement conditions. , The temperature was lowered for 2 cycles, and the glass transition temperature at the time of raising the temperature in the 2nd cycle was measured.
  • the intersection of the straight line extending the baseline on the low temperature side to the high temperature side and the tangent line of the inflection point is the starting glass transition temperature
  • the intersection of the straight line extending the baseline on the high temperature side to the low temperature side and the tangent line of the inflection point is The end glass transition temperature
  • Tg glass transition temperature
  • the measurement start temperature was 30 ° C.
  • the temperature rise rate was 10 ° C./min
  • the ultimate temperature was 250 ° C.
  • the temperature decrease rate was 20 ° C./min.
  • a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Corporation, "DSC7020" was used.
  • a film was produced by the following method.
  • the film was extruded in a molten state under the conditions of a discharge rate of 10 kg / h and a screw rotation speed of 63 rpm, crimped with a first roll and a second roll, and then cooled and solidified to prepare a film.
  • the cylinder / die head temperature was 280 ° C.
  • the final film thickness was adjusted by changing the roll speeds of the first roll and the second roll so as to have the values shown in Table 1 or Table 2.
  • first roll and the second roll used are as follows.
  • -First roll Silicone rubber roll (IT68S-MCG) manufactured by Mochida Shoko Co., Ltd. Dimensions Diameter: Outer diameter 260 mm x Width 600 mm Durometer hardness of roll surface (type A type): 70
  • Roll temperature 130 ° C
  • the dynamic friction coefficient of the obtained film was measured using a friction coefficient measuring machine. Specifically, the bisphenol A type polycarbonate film having a root mean square roughness of 0.093 ⁇ m and the obtained film were placed so as to overlap each other, and the threads were placed on the polycarbonate film under the conditions of 100 mm / min and a load cell of 10N. The film was slid and the dynamic friction coefficient was measured.
  • a friction coefficient measuring machine manufactured by Toyo Seiki Seisakusho Co., Ltd. (“friction tester”) was used.
  • the bisphenol A type polycarbonate film having a root mean square roughness of 0.093 ⁇ m a bisphenol A type polycarbonate film with a single-sided masking film (manufactured by Mitsubishi Gas Chemical Company, FE-2000, thickness 100 ⁇ m) was used.
  • the unmasked side of the bisphenol A type polycarbonate film with a single-sided masking film is turned to the upper surface, and fixed to the right end of the test table with tape so that the long axis coincides with the long axis of the test table, 63 mm ⁇
  • the obtained film was attached to the underside of a 63 mm, 200 g thread, and the polycarbonate film and the obtained film were placed so as to overlap each other.
  • the obtained film was slid and the dynamic friction coefficient was measured. In the comparative example, the film did not slip and the coefficient of dynamic friction could not be measured.
  • the surface roughness of the bisphenol A type polycarbonate film used for measuring the dynamic friction coefficient was specifically measured by the following method using a surface roughness measuring machine.
  • the detector of the device was made “integrated”, and a "standard drive unit” was attached to the drive unit of the detector.
  • the film was fixed in the shape of a glass plate with tape, and the surface roughness measuring machine was installed on it so that it would not move. After that, the measurement was performed under the standard "JIS B 0601-2001", the measurement speed was 0.5 mm / s, the cutoff value was 0.8, and the number of sections was 3, and the root mean square roughness Rq was measured.
  • the root mean square roughness Rq was measured three times at different locations of the film and used as the average value.
  • As the measuring machine "SJ-210" manufactured by Mitutoyo Co., Ltd. was used.
  • Transparent conductive film 11 Electrode layer (transparent conductive film) 12 Base film 13 Adhesive layer 14 Protective film 21 Polycarbonate film with smooth surface 22 Polycarbonate film with fine irregularities on the surface 30 Film 41 Composition 42 Die 43 Pair of rolls 44 Conveyance roll

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are: a composition capable of providing a transparent film which exhibits high sliding properties and heat resistance and in which turbidity is suppressed; a film formed from the composition; and a method for producing the film. This composition contains: 25-70 parts by mass of a bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000-35,000; 26.5-71.5 parts by mass of an aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A), which has a glass transition temperature of 160°C or higher when measured using a differential scanning calorimeter; and 3.5-7.5 parts by mass of a polyarylate (C) having a weight average molecular weight of 45,000-80,000.

Description

組成物、フィルム、およびフィルムの製造方法Compositions, films, and methods of making films
 本発明は、組成物、フィルム、およびフィルムの製造方法に関する。 The present invention relates to compositions, films, and methods for producing films.
 タッチパネルのフィルムセンサー、電子ペーパーや色素増感型太陽電池、タッチセンサー等には、透明導電性フィルムが用いられている。透明導電性フィルム10は、例えば、図1に示すように、電極層(透明導電膜)11と、基材フィルム12と、粘着剤層13と、保護フィルム14とから構成されるものが知られている。
 例えば、特許文献1には、保護フィルム上に、粘着剤層、フィルム基材および透明導電膜をこの順で有する透明導電性フィルム積層体であって、前記フィルム基材および前記保護フィルムの少なくとも一方は、幅手方向の一方の最端部および他方の最端部からそれぞれ前記幅手方向の内側100mmまでの各端部領域における前記粘着剤層側の面に、凹凸部を有しており、前記各端部領域における前記凹凸部の表面の実効粗さR1は、0.1~20μmであり、前記粘着剤層は、前記幅手方向において、一方の端部領域の凹凸部と、他方の端部領域の凹凸部との間で、前記一方の端部領域の凹凸部との離間距離が0~10mmとなる位置から、前記他方の端部領域の凹凸部との離間距離が0~10mmとなる位置にわたって設けられていることを特徴とする透明導電性フィルム積層体が開示されている。また、上記保護フィルムとして、ポリカーボネート系樹脂を用いることが記載されている。
Transparent conductive films are used in touch panel film sensors, electronic paper, dye-sensitized solar cells, touch sensors, and the like. As shown in FIG. 1, for example, the transparent conductive film 10 is known to be composed of an electrode layer (transparent conductive film) 11, a base film 12, an adhesive layer 13, and a protective film 14. ing.
For example, Patent Document 1 describes a transparent conductive film laminate having an adhesive layer, a film base material, and a transparent conductive film in this order on a protective film, and at least one of the film base material and the protective film. Has an uneven portion on the surface on the adhesive layer side in each end region from one end portion in the width direction and the other end portion to 100 mm inside in the width direction, respectively. The effective roughness R1 of the surface of the uneven portion in each of the end regions is 0.1 to 20 μm, and the pressure-sensitive adhesive layer has the uneven portion of one end region and the other in the width direction. From the position where the distance from the uneven portion of the one end region is 0 to 10 mm from the position where the distance from the uneven portion of the end region is 0 to 10 mm, the distance from the uneven portion of the other end region is 0 to 10 mm. A transparent conductive film laminate is disclosed, which is characterized by being provided over such positions. Further, it is described that a polycarbonate resin is used as the protective film.
 一方、特許文献2には、ポリカーボネート樹脂とポリアリレート樹脂からなる樹脂組成物として、ポリスチレン換算重量平均分子量(Mw)7万以上20万未満のポリカーボネート樹脂(A-1)およびポリスチレン換算重量平均分子量(Mw)4万以上7万未満のポリカーボネート樹脂(A-2)からなるポリカーボネート樹脂(A)とポリアリレート樹脂(B)からなる樹脂組成物が開示されている。かかる樹脂組成物は、衝撃等にさらされる携帯機器用フラットパネルディスプレイやタッチパネルディスプレイの繰り返し耐屈曲性に優れるフラットパネル用フィルムに用いられることが記載されている。 On the other hand, Patent Document 2 describes a polycarbonate resin (A-1) having a polystyrene-equivalent weight average molecular weight (Mw) of 70,000 or more and less than 200,000 and a polystyrene-equivalent weight average molecular weight (Mw) as a resin composition composed of a polycarbonate resin and a polyarylate resin. Mw) A resin composition composed of a polycarbonate resin (A) composed of a polycarbonate resin (A-2) of 40,000 or more and less than 70,000 and a polyarylate resin (B) is disclosed. It is described that such a resin composition is used for a flat panel display for a portable device exposed to an impact or the like and a film for a flat panel having excellent repeated bending resistance of a touch panel display.
特開2018-152187号公報JP-A-2018-152187 特開2014-015509号公報Japanese Unexamined Patent Publication No. 2014-015509
 透明導電性フィルムには、通常、保護フィルムが用いられている。このような保護フィルムは、電極層と基材フィルムの積層体を搬送する際、基材フィルムを保護するために用いられる。すなわち、電極層の反対側のアンチブロッキングのために、保護フィルムが使用される。
 この保護フィルムは、フィルムの搬送性向上や巻きジワ防止のため、スタックしない程度の摺動性が求められる。また、透明導電性フィルムは、保護フィルムが貼りついた状態で、インライン欠点検査が行われるため、濁りが抑制された透明なフィルムが求められる。さらに、用途に応じて、耐熱性も求められる。
 本発明はかかる課題を解決することを目的とするものであって、高い摺動性を有し、耐熱性を有し、かつ、濁りが抑制された透明なフィルムを提供可能な組成物、ならびに、前記組成物から形成されるフィルムおよびフィルムの製造方法を提供することを目的とする。
A protective film is usually used as the transparent conductive film. Such a protective film is used to protect the base film when transporting the laminate of the electrode layer and the base film. That is, a protective film is used for anti-blocking on the opposite side of the electrode layer.
This protective film is required to have slidability to the extent that it does not stack in order to improve the transportability of the film and prevent winding wrinkles. Further, since the in-line defect inspection is performed on the transparent conductive film with the protective film attached, a transparent film in which turbidity is suppressed is required. Further, heat resistance is also required depending on the application.
An object of the present invention is to solve such a problem, and a composition capable of providing a transparent film having high slidability, heat resistance, and suppressed turbidity, and , A film formed from the composition and a method for producing the film.
 上記課題のもと、本発明者が検討を行った結果、特定のポリアリレートと特定の芳香族ポリカーボネートと用い、その含有量比を調整することによって、耐熱性が高く、かつ、透明性が悪くならないようにしつつ、かつ、相溶性を悪くして、摺動性を高めることに成功し、本発明を完成するに至った。具体的には、下記手段により、上記課題は解決された。
<1> 重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)26.5質量部以上71.5質量部以下、および、重量平均分子量が45,000以上80,000以下のポリアリレート(C)3.5質量部以上7.5質量部以下を含有する、組成物。
<2> 前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)が、ビスフェノールAP型ポリカーボネートである、<1>に記載の組成物。
<3> 前記組成物の示差走査熱量計によって測定したガラス転移温度が160℃以上である、<1>または<2>に記載の組成物。
<4> <1>~<3>のいずれか1つに記載の組成物から形成されたフィルム。
<5> 二乗平均平方根粗さが0.093μmのフィルムとの動摩擦係数であって、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.0以下である、<4>に記載のフィルム。
<6> 前記フィルムの厚みが10μm以上300μm以下である、<4>または<5>に記載のフィルム。
<7> ヘイズが10%以下である、<4>~<6>のいずれか1つに記載のフィルム。
<8> <4>~<7>のいずれか1つに記載のフィルムと、粘着剤層、フィルム基材および電極層をこの順で有する、透明導電性フィルム。
<9> 重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)26.5質量部以上71.5質量部以下、および、重量平均分子量が45,000以上80,000以下のポリアリレート(C)3.5質量部以上7.5質量部以下を含有する組成物を、溶融状態でシート状に押し出し、一対のロールで圧着して作製するフィルムの製造方法であって、前記一対のロールの少なくとも1つのロール表面のタイプA型のデュロメーター硬度が10~99である、フィルムの製造方法。
<10> 前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)が、ビスフェノールAP型ポリカーボネートである、<9>に記載のフィルムの製造方法。
<11> 前記組成物の示差走査熱量計によって測定したガラス転移温度が160℃以上である、<9>または<10>に記載のフィルムの製造方法。
<12> 前記フィルムは、二乗平均平方根粗さが0.093μmのフィルムとの動摩擦係数であって、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.0以下である、<9>~<11>のいずれか1つに記載のフィルムの製造方法。
<13> 前記フィルムの厚みが10μm以上300μm以下である、<9>~<12>のいずれか1つに記載のフィルムの製造方法。
<14> 前記フィルムのヘイズが10%以下である、<9>~<13>のいずれか1つに記載のフィルムの製造方法。
As a result of investigation by the present inventor based on the above problems, heat resistance is high and transparency is poor by using a specific polyarylate and a specific aromatic polycarbonate and adjusting the content ratio thereof. The present invention has been completed by succeeding in improving the slidability by deteriorating the compatibility while preventing the above. Specifically, the above problems have been solved by the following means.
<1> Bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less is 25 parts by mass or more and 70 parts by mass or less, and the glass transition temperature measured by a differential scanning calorimeter is 160 ° C. or more. , 26.5 parts by mass or more and 71.5 parts by mass or less of aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A), and polyallylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less. A composition containing 3.5 parts by mass or more and 7.5 parts by mass or less.
<2> The composition according to <1>, wherein the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is a bisphenol AP type polycarbonate.
<3> The composition according to <1> or <2>, wherein the glass transition temperature of the composition measured by a differential scanning calorimeter is 160 ° C. or higher.
<4> A film formed from the composition according to any one of <1> to <3>.
<5> The dynamic friction coefficient with a film having a root mean square roughness of 0.093 μm, and the dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N is 2.0 or less, as described in <4>. Film.
<6> The film according to <4> or <5>, wherein the thickness of the film is 10 μm or more and 300 μm or less.
<7> The film according to any one of <4> to <6>, wherein the haze is 10% or less.
<8> A transparent conductive film having the film according to any one of <4> to <7>, an adhesive layer, a film base material, and an electrode layer in this order.
<9> Bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less is 25 parts by mass or more and 70 parts by mass or less, and the glass transition temperature measured by a differential scanning calorimeter is 160 ° C. or more. , 26.5 parts by mass or more and 71.5 parts by mass or less of aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A), and polyallylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less. A method for producing a film produced by extruding a composition containing 3.5 parts by mass or more and 7.5 parts by mass or less into a sheet in a molten state and pressure-bonding it with a pair of rolls, wherein at least of the pair of rolls. A method for producing a film, wherein the type A durometer hardness of one roll surface is 10 to 99.
<10> The method for producing a film according to <9>, wherein the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is a bisphenol AP type polycarbonate.
<11> The method for producing a film according to <9> or <10>, wherein the glass transition temperature of the composition measured by a differential scanning calorimeter is 160 ° C. or higher.
<12> The film has a coefficient of dynamic friction with a film having a root mean square roughness of 0.093 μm, and the coefficient of dynamic friction measured under the conditions of a thread of 100 mm / min and a load cell of 10 N is 2.0 or less. The method for producing a film according to any one of 9> to <11>.
<13> The method for producing a film according to any one of <9> to <12>, wherein the thickness of the film is 10 μm or more and 300 μm or less.
<14> The method for producing a film according to any one of <9> to <13>, wherein the haze of the film is 10% or less.
 本発明により、高い摺動性を有し、耐熱性を有し、かつ、濁りが抑制された透明なフィルムを提供可能な組成物、ならびに、前記組成物から形成されるフィルム、および、フィルムの製造方法を提供可能になった。 According to the present invention, a composition capable of providing a transparent film having high slidability, heat resistance, and suppressed turbidity, a film formed from the composition, and a film. It became possible to provide a manufacturing method.
図1は、透明導電性フィルムの層構成を示す断面模式図の一例である。FIG. 1 is an example of a schematic cross-sectional view showing a layer structure of a transparent conductive film. 図2(a)は、平滑なポリカーボネートフィルムの上で、平滑なポリカーボネートフィルムを滑らせる状態を示す模式図であり、図2(b)は、表面に微細な凹凸を設けたポリカーボネートフィルムの上に、表面に微細な凹凸を設けたポリカーボネートフィルムを滑らせる状態を示す模式図を示す。FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film, and FIG. 2B is a schematic view showing a state in which the smooth polycarbonate film is slid on the polycarbonate film having fine irregularities on the surface. , A schematic diagram showing a state in which a polycarbonate film having fine irregularities on the surface is slid is shown. 図3は、本発明のフィルムの断面方向からみた模式図の一例を示す。FIG. 3 shows an example of a schematic view of the film of the present invention as viewed from the cross-sectional direction. 図4は、本発明のフィルムの製造方法を示す模式図の一例である。FIG. 4 is an example of a schematic diagram showing a method for producing a film of the present invention.
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。 The contents of the present invention will be described in detail below. In addition, in this specification, "-" is used in the meaning that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 本発明の組成物は、重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)(以下、「Tgが160℃以上のポリカーボネート(B)」ということがある)26.5質量部以上71.5質量部以下、および、重量平均分子量が45,000以上80,000以下のポリアリレート(C)3.5質量部以上7.5質量部以下を含有することを特徴とする。
 このような構成とすることにより、高い摺動性を有し、耐熱性を有し、かつ、濁りが抑制された(低ヘイズ)透明のフィルムを提供可能になる。さらに、全光線透過率も高くできる。
 すなわち、本発明の組成物から形成されるフィルムには、フィルムの搬送性の向上や巻きジワ防止の観点から、フィルム同士の密着の抑制(アンチブロッキング性)が求められる。アンチブロッキングとは、フィルム同士が密着しても容易に剥離できるようにすることをいう。つまり、本発明の組成物から形成されるフィルムには、スタックしない程度の摺動性が求められる。図2(a)は、平滑なポリカーボネートフィルムの上で、平滑なポリカーボネートフィルムを滑らせる状態を示す模式図である。このように平滑なポリカーボネートフィルムの上に、平滑なポリカーボネートフィルムを載せた場合、摺動性がない。このようなポリカーボネートフィルムに摺動性を付与するには、図2(b)に模式図を示すように、フィルムの表面に微細な凹凸を設けることが考えられる。フィルムの表面に微細な凹凸を設けると、フィルム同士の接触面積が減り、高い摺動性が達成される。なお、図2において、21は表面が平滑なポリカーボネートフィルムであり、22は表面に微細な凹凸を設けたポリカーボネートフィルムである。
 このようにフィルムの表面に微細な凹凸を設ける手段としては、既に公知の方法が知られている。例えば、表面に微細な凹凸を有するロールを用いて、フィルムの表面に微細な凹凸を形成する方法が挙げられる。この方法では、表面に微細な凹凸を有するロールの間に、溶融したフィルムを通過させ、微細な凹凸を形成する。しかしながら、表面に微細な凹凸を有するロールを用いる方法では、長期使用によるロールの摩耗によって、フィルム表面に転写された微細な凹凸形状が変化してしまう場合がある。また、別の方法として、フィルムに微粒子を添加して、微粒子によって、フィルムの表面に微細な凹凸を形成する方法もある。しかしながら、微粒子を添加する方法では、微粒子と樹脂の屈折率の違いにより、透明性が損なわれる場合がある。
 そこで、本発明では、新たな方法として、ポリマーブレンドによって、フィルムの表面に微細な凹凸を形成することとした。具体的には、以下のメカニズムによると推定される。
 すなわち、図3は、本発明のフィルム30の断面方向からみた模式図であって、Xはポリアリレートを、Yは芳香族ポリカーボネートを示している。すなわち、本発明では、芳香族ポリカーボネートとして、重量平均分子量が比較的小さいビスフェノールA型ポリカーボネート(A)に、耐熱性に優れたTgが160℃以上のポリカーボネート(B)をブレンドすることにより、芳香族ポリカーボネート全体としての耐熱性を高めつつ、これらの芳香族ポリカーボネート同士を相溶させて、透明性を維持している。さらに、ポリアリレートXと芳香族ポリカーボネートYの相溶性をあえて悪くすることによって、海島構造を形成させ、摺動性を高めている。より具体的には、重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)と、重量平均分子量が45,000以上80,000以下のポリアリレート(C)を採用することにより、両者の相溶を抑制し、フィルムの表面に微細な凹凸を形成している。また、ポリアリレート(C)の量を調整することにより、濁りを抑制し、透明性の高いフィルムを得られたと推測される。
The composition of the present invention has a weight average molecular weight of 20,000 or more and 35,000 or less, 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A), and a glass transition temperature of 160 ° C. measured by a differential scanning calorimeter. As described above, aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) (hereinafter, may be referred to as "polycarbonate (B) having a Tg of 160 ° C. or higher") 26.5 parts by mass or more 71.5 It is characterized by containing 3.5 parts by mass or more and 7.5 parts by mass or less of polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 parts or less.
With such a configuration, it is possible to provide a transparent film having high slidability, heat resistance, and suppressed turbidity (low haze). Furthermore, the total light transmittance can be increased.
That is, the film formed from the composition of the present invention is required to suppress adhesion between the films (anti-blocking property) from the viewpoint of improving the transportability of the film and preventing winding wrinkles. Anti-blocking refers to making it easy to peel off even if the films are in close contact with each other. That is, the film formed from the composition of the present invention is required to have slidability to the extent that it does not stack. FIG. 2A is a schematic view showing a state in which the smooth polycarbonate film is slid on the smooth polycarbonate film. When the smooth polycarbonate film is placed on the smooth polycarbonate film as described above, there is no slidability. In order to impart slidability to such a polycarbonate film, it is conceivable to provide fine irregularities on the surface of the film as shown in a schematic diagram in FIG. 2 (b). When the surface of the film is provided with fine irregularities, the contact area between the films is reduced and high slidability is achieved. In FIG. 2, 21 is a polycarbonate film having a smooth surface, and 22 is a polycarbonate film having fine irregularities on the surface.
As a means for providing fine irregularities on the surface of the film as described above, a known method is already known. For example, a method of forming fine irregularities on the surface of a film by using a roll having fine irregularities on the surface can be mentioned. In this method, a molten film is passed between rolls having fine irregularities on the surface to form fine irregularities. However, in the method using a roll having fine irregularities on the surface, the shape of the fine irregularities transferred to the film surface may change due to wear of the roll due to long-term use. Further, as another method, there is also a method of adding fine particles to the film and forming fine irregularities on the surface of the film by the fine particles. However, in the method of adding fine particles, transparency may be impaired due to the difference in refractive index between the fine particles and the resin.
Therefore, in the present invention, as a new method, it is decided to form fine irregularities on the surface of the film by polymer blending. Specifically, it is presumed to be due to the following mechanism.
That is, FIG. 3 is a schematic view of the film 30 of the present invention as viewed from the cross-sectional direction, where X indicates polyarylate and Y indicates aromatic polycarbonate. That is, in the present invention, as an aromatic polycarbonate, a bisphenol A type polycarbonate (A) having a relatively small weight average molecular weight is blended with a polycarbonate (B) having a Tg of 160 ° C. or higher, which is excellent in heat resistance, to form an aromatic polycarbonate. While increasing the heat resistance of the polycarbonate as a whole, these aromatic polycarbonates are compatible with each other to maintain transparency. Further, the compatibility between the polyarylate X and the aromatic polycarbonate Y is intentionally deteriorated to form a sea-island structure and enhance the slidability. More specifically, bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less and polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less are adopted. As a result, the compatibility between the two is suppressed, and fine irregularities are formed on the surface of the film. Further, it is presumed that by adjusting the amount of polyarylate (C), turbidity was suppressed and a highly transparent film was obtained.
 本発明の組成物は、重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)、Tgが160℃以上のポリカーボネート(B)、および、重量平均分子量が45,000以上80,000以下のポリアリレート(C)、ならびに、必要に応じ配合される、酸化防止剤(D)、エステル交換防止剤(E)、離型剤(F)、および他の成分とからなる。 The composition of the present invention has a bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less, a polycarbonate (B) having a Tg of 160 ° C. or more, and a weight average molecular weight of 45,000 or more. It consists of 80,000 or less polyarylate (C) and, if necessary, an antioxidant (D), a transesterification inhibitor (E), a mold release agent (F), and other components.
<ビスフェノールA型ポリカーボネート(A)>
 本発明の組成物は、重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)を含む。このように比較的低分子量の芳香族ポリカーボネートを、比較的高分子量のポリアリレートとブレンドすることにより、ポリアリレート(C)とビスフェノールA型ポリカーボネート(A)の相溶性が高くなりすぎないように調整している。
 前記ビスフェノールA型ポリカーボネート(A)の重量平均分子量は、20,000以上であり、22,000以上であることが好ましく、23,000以上であることがより好ましい。また、前記ビスフェノールA型ポリカーボネート(A)の重量平均分子量は、35,000以下であり、33,000以下であることが好ましく、31,000以下であることがより好ましく、28,000以下であってもよく、さらには26,000以下であってもよい。
 ビスフェノールA型ポリカーボネート(A)の重量平均分子量は、後述する実施例の記載に従って測定される。
 組成物が、ビスフェノールA型ポリカーボネート(A)を2種以上含む場合の重量平均分子量は、ビスフェノールA型ポリカーボネート(A)の混合物の重量平均分子量とする(以下、他の物性についても同じ。また、他の樹脂成分についても同じ。)。
<Bisphenol A type polycarbonate (A)>
The composition of the present invention contains a bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less. By blending the relatively low molecular weight aromatic polycarbonate with the relatively high molecular weight polyarylate in this way, the compatibility between the polyarylate (C) and the bisphenol A type polycarbonate (A) is adjusted so as not to become too high. doing.
The weight average molecular weight of the bisphenol A type polycarbonate (A) is 20,000 or more, preferably 22,000 or more, and more preferably 23,000 or more. The weight average molecular weight of the bisphenol A type polycarbonate (A) is 35,000 or less, preferably 33,000 or less, more preferably 31,000 or less, and 28,000 or less. It may be 26,000 or less.
The weight average molecular weight of the bisphenol A type polycarbonate (A) is measured according to the description of Examples described later.
When the composition contains two or more kinds of bisphenol A type polycarbonate (A), the weight average molecular weight is the weight average molecular weight of the mixture of bisphenol A type polycarbonate (A) (hereinafter, the same applies to other physical properties. The same applies to other resin components.)
 ビスフェノールA型ポリカーボネート(A)のガラス転移温度(Tg)は、通常、160℃未満であり、好ましくは155℃以下であり、より好ましくは145℃以下であり、140℃以下であってもよく、139℃以下であってもよい。下限値としては、例えば、100℃以上であり、さらには、120℃以上、130℃以上であってもよい。
 ビスフェノールA型ポリカーボネート(A)のガラス転移温度(Tg)は、後述する実施例の記載に従って測定される。
The glass transition temperature (Tg) of the bisphenol A type polycarbonate (A) is usually less than 160 ° C., preferably 155 ° C. or lower, more preferably 145 ° C. or lower, and may be 140 ° C. or lower. It may be 139 ° C. or lower. The lower limit value is, for example, 100 ° C. or higher, and may be 120 ° C. or higher or 130 ° C. or higher.
The glass transition temperature (Tg) of the bisphenol A type polycarbonate (A) is measured according to the description of Examples described later.
 ビスフェノールA型ポリカーボネートとは、ビスフェノールAおよびその誘導体由来のカーボネート構成単位を有する樹脂をいい、下記式(A-1)で表される構成単位を有していることが好ましい。式中の*は、他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000001
 式(A-1)中、Xは下記構造を表す。
Figure JPOXMLDOC01-appb-C000002
 RおよびRは、アルキル基または水素原子であり、少なくとも一方がメチル基であることが好ましく、両方がメチル基であることがより好ましい。
 式(A-1)は下記式(A-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000003
The bisphenol A type polycarbonate refers to a resin having a carbonate constituent unit derived from bisphenol A and a derivative thereof, and preferably has a constituent unit represented by the following formula (A-1). * In the formula represents the bonding position with other structural units or end groups.
Figure JPOXMLDOC01-appb-C000001
In formula (A-1), X 1 represents the following structure.
Figure JPOXMLDOC01-appb-C000002
R 5 and R 6 are alkyl groups or hydrogen atoms, preferably at least one of which is a methyl group and more preferably both of which are methyl groups.
The formula (A-1) is preferably represented by the following formula (A-2).
Figure JPOXMLDOC01-appb-C000003
 ビスフェノールA型ポリカーボネート(A)における、式(A-1)で表される構成単位の含有量は、両末端を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(A-1)で表される構成単位であってもよい。ビスフェノールA型ポリカーボネートとして特に好ましくは実質的に両末端を除く全構成単位が式(A-1)の構成単位で構成された樹脂である。ここでの実質的に両末端を除く全構成単位とは、具体的には、両末端を除く全構成単位中、99.0モル%以上であることを意味し、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
 ビスフェノールA型ポリカーボネート(A)は、ビスフェノールAおよびその誘導体由来のカーボネート構成単位以外の他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
The content of the structural unit represented by the formula (A-1) in the bisphenol A type polycarbonate (A) is preferably 70 mol% or more, preferably 80 mol% or more, of all the structural units excluding both ends. More preferably, it is more preferably 90 mol% or more. The upper limit value is not particularly limited, and 100 mol% may be a structural unit represented by the formula (A-1). Particularly preferably, the bisphenol A type polycarbonate is a resin in which substantially all the structural units except both ends are composed of the structural units of the formula (A-1). The term "substantially all constituent units excluding both ends" here means that 99.0 mol% or more of all the constituent units excluding both ends is 99.5 mol% or more. Preferably, 99.9 mol% or more is more preferable.
The bisphenol A type polycarbonate (A) may have a structural unit other than the carbonate structural unit derived from bisphenol A and its derivative. Examples of the dihydroxy compound constituting such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, and the contents thereof are incorporated in the present specification. ..
 ビスフェノールA型ポリカーボネート(A)の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。 The method for producing the bisphenol A type polycarbonate (A) is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
<ガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)>
 本発明の組成物は、示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)(Tgが160℃以上のポリカーボネート(B))を含む。このように耐熱性の高いポリカーボネートをブレンドすることにより、組成物やフィルムの耐熱性を向上させることができる。
 Tgが160℃以上のポリカーボネート(B)は、ガラス転移温度が、165℃以上であることが好ましく、168℃以上であることがより好ましく、172℃以上であってもよく、さらには、175℃以上であってもよい。上限としては、210℃以下であることが好ましく、200℃以下であることがより好ましく、190℃以下であることがさらに好ましい。
 ガラス転移温度(Tg)は後述する実施例に記載の方法で測定される。
<Aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) having a glass transition temperature of 160 ° C. or higher>
The composition of the present invention has an aromatic polycarbonate (B) (Tg of 160 ° C. or higher) other than the bisphenol A type polycarbonate (A) having a glass transition temperature of 160 ° C. or higher as measured by a differential scanning calorimeter. B)) is included. By blending polycarbonate having high heat resistance in this way, the heat resistance of the composition or film can be improved.
The polycarbonate (B) having a Tg of 160 ° C. or higher preferably has a glass transition temperature of 165 ° C. or higher, more preferably 168 ° C. or higher, may be 172 ° C. or higher, and further, 175 ° C. or higher. It may be the above. The upper limit is preferably 210 ° C. or lower, more preferably 200 ° C. or lower, and even more preferably 190 ° C. or lower.
The glass transition temperature (Tg) is measured by the method described in Examples described later.
 Tgが160℃以上のポリカーボネート(B)として好ましくは、ビスフェノールAP型ポリカーボネート、ビスフェノールZ型ポリカーボネート、および、ビスフェノールTMC型ポリカーボネートであり、より好ましくはビスフェノールAP型ポリカーボネートである。
 本発明におけるTgが160℃以上のポリカーボネート(B)の一実施形態は、少なくとも、ビスフェノールAP型ポリカーボネートを含む。
 ビスフェノールAP型ポリカーボネートとは、ビスフェノールAPおよびその誘導体由来のカーボネート構成単位を有する樹脂をいう。ビスフェノールZ型ポリカーボネートも同様に考える。
 ビスフェノールAP型ポリカーボネートは、下記式(B-1)で表される構成単位を有していることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000004
 式(B-1)中、R~Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素原子数1~9(好ましくは1~3)のアルキル基、炭素原子数6~12(好ましくは6~10)のアリール基、炭素原子数1~5(好ましくは1~3)のアルコキシ基、炭素原子数2~5(好ましくは2または3)のアルケニル基または炭素原子数7~17(好ましくは7~11)のアラルキル基を表す。lは0~5の整数を表す。mおよびnはそれぞれ独立に0~4の整数を表す。
The polycarbonate (B) having a Tg of 160 ° C. or higher is preferably a bisphenol AP type polycarbonate, a bisphenol Z type polycarbonate, and a bisphenol TMC type polycarbonate, and more preferably a bisphenol AP type polycarbonate.
One embodiment of the polycarbonate (B) having a Tg of 160 ° C. or higher in the present invention comprises at least a bisphenol AP-type polycarbonate.
The bisphenol AP type polycarbonate refers to a resin having a carbonate constituent unit derived from bisphenol AP and its derivative. The same applies to bisphenol Z-type polycarbonate.
The bisphenol AP-type polycarbonate preferably has a structural unit represented by the following formula (B-1). * In the formula represents the bonding position with other structural units or end groups.
Figure JPOXMLDOC01-appb-C000004
In the formula (B-1), R 1 to R 4 are independently fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), and carbon atom. An aryl group having a number of 6 to 12 (preferably 6 to 10), an alkoxy group having 1 to 5 (preferably 1 to 3) carbon atoms, and an alkenyl group or carbon having 2 to 5 (preferably 2 or 3) carbon atoms. It represents an aralkyl group having 7 to 17 atoms (preferably 7 to 11). l represents an integer from 0 to 5. m and n each independently represent an integer of 0 to 4.
 式(B-1)で表される構成単位は、下記式(B-2)で表される構成単位であることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000005
 R、R、R、R、l、m、nは、式(B-1)で定義したものと同義である。
The structural unit represented by the formula (B-1) is preferably the structural unit represented by the following formula (B-2). * In the formula represents the bonding position with other structural units or end groups.
Figure JPOXMLDOC01-appb-C000005
R 1 , R 2 , R 3 , R 4 , l, m, and n are synonymous with those defined by the equation (B-1).
 式(B-2)で表される構成単位は、下記式(B-3)で表される構成単位であることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000006
The structural unit represented by the formula (B-2) is preferably the structural unit represented by the following formula (B-3). * In the formula represents the bonding position with other structural units or end groups.
Figure JPOXMLDOC01-appb-C000006
 ビスフェノールAP型ポリカーボネートにおける、式(B-1)で表される構成単位の含有量は、両末端を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(B-1)で表される構成単位であってもよい。ビスフェノールAP由来の構成単位は1種のみでも、2種以上で構成されていてもよい。ビスフェノールAP型ポリカーボネートとして特に好ましくは、実質的に両末端を除く全構成単位が式(B-1)の構成単位で構成された樹脂が挙げられる。ここでの実質的に両末端を除く全構成単位とは、両末端を除く全構成単位の99.0モル%以上であることを意味し、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。 The content of the structural unit represented by the formula (B-1) in the bisphenol AP-type polycarbonate is preferably 70 mol% or more, preferably 80 mol% or more, of all the structural units excluding both ends. More preferably, it is 90 mol% or more. The upper limit value is not particularly limited, and 100 mol% may be a structural unit represented by the formula (B-1). The bisphenol AP-derived structural unit may be composed of only one type or two or more types. Particularly preferred as the bisphenol AP-type polycarbonate is a resin in which substantially all the structural units except both ends are composed of the structural units of the formula (B-1). Here, substantially all the constituent units excluding both ends mean that the total constituent units excluding both ends are 99.0 mol% or more, preferably 99.5 mol% or more, and 99.9 mol. % Or more is more preferable.
 ビスフェノールZ型ポリカーボネートおよびビスフェノールTMC型ポリカーボネートは、下記式(B-4)で表される構成単位を有していることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000007
 式(B-4)中、Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素原子数1~9(好ましくは1~3)のアルキル基、炭素原子数6~12(好ましくは6~10)のアリール基、炭素原子数1~5(好ましくは1~3)のアルコキシ基、炭素原子数2~5(好ましくは2または3)のアルケニル基または炭素原子数7~17(好ましくは7~11)のアラルキル基を表す。qは0~5の整数を表し、1~3の整数が好ましい。
 Rは、それぞれ独立に、炭素原子数1~9(好ましくは1~3)のアルキル基が好ましく、メチル基がより好ましい。
The bisphenol Z-type polycarbonate and the bisphenol TMC-type polycarbonate preferably have a structural unit represented by the following formula (B-4). * In the formula represents the bonding position with other structural units or end groups.
Figure JPOXMLDOC01-appb-C000007
In the formula (B-4), R 8 independently contains a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), and 6 to 6 carbon atoms. 12 (preferably 6 to 10) aryl groups, 1 to 5 (preferably 1 to 3) alkoxy groups, 2 to 5 (preferably 2 or 3) alkenyl groups or 7 carbon atoms Represents an aralkyl group of ~ 17 (preferably 7-11). q represents an integer of 0 to 5, and an integer of 1 to 3 is preferable.
R 8 is preferably an alkyl group having 1 to 9 (preferably 1 to 3) carbon atoms independently, and more preferably a methyl group.
 式(B-4)で表される構成単位は、下記式(B-5)で表される構成単位であることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000008
 式(B-5)中、Rは式(B-4)におけるRと同義であり、好ましい範囲も同様である。
The structural unit represented by the formula (B-4) is preferably the structural unit represented by the following formula (B-5). * In the formula represents the bonding position with other structural units or end groups.
Figure JPOXMLDOC01-appb-C000008
Wherein (B-5), R 8 has the same meaning as R 8 in the formula (B-4), and preferred ranges are also the same.
 ビスフェノールAP型ポリカーボネートは、ビスフェノールAPおよびその誘導体由来のカーボネート構成単位とは異なる他の構成単位を有していてもよい。ビスフェノールZ型ポリカーボネートは、ビスフェノールZおよびその誘導体由来のカーボネート構成単位とは異なる他の構成単位を有していてもよい。ビスフェノールTMC型ポリカーボネートは、ビスフェノールTMCおよびその誘導体由来のカーボネート構成単位とは異なる他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。 The bisphenol AP type polycarbonate may have other structural units different from the carbonate structural units derived from bisphenol AP and its derivatives. The bisphenol Z-type polycarbonate may have other structural units different from the carbonate structural units derived from bisphenol Z and its derivatives. The bisphenol TMC type polycarbonate may have other constituent units different from the carbonate constituent units derived from bisphenol TMC and its derivatives. Examples of the dihydroxy compound constituting such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, and the contents thereof are incorporated in the present specification. ..
 Tgが160℃以上のポリカーボネート(B)の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。 The method for producing polycarbonate (B) having a Tg of 160 ° C. or higher is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
 Tgが160℃以上のポリカーボネート(B)の重量平均分子量は、15,000以上であることが好ましく、20,000以上であることがより好ましく、35,000超であってもよい。また、前記Tgが160℃以上のポリカーボネート(B)の重量平均分子量は、100,000以下であることが好ましく、80,000以下であることがより好ましく、60,000以下であることがさらに好ましい。
 Tgが160℃以上のポリカーボネート(B)の重量平均分子量は、後述する実施例の記載に従って測定される。
The weight average molecular weight of the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably 15,000 or more, more preferably 20,000 or more, and may be more than 35,000. The weight average molecular weight of the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably 100,000 or less, more preferably 80,000 or less, and even more preferably 60,000 or less. ..
The weight average molecular weight of the polycarbonate (B) having a Tg of 160 ° C. or higher is measured according to the description of Examples described later.
<ポリアリレート(C)>
 本発明の組成物は、重量平均分子量が45,000以上80,000以下のポリアリレート(C)を含む。このように比較的高分子量のポリアリレートを、比較的低分子量のビスフェノールA型ポリカーボネート(A)とブレンドすることにより、ビスフェノールA型ポリカーボネート(A)とポリアリレート(C)の相溶性が高くなりすぎないように調整している。
 前記ポリアリレート(C)の重量平均分子量は、50,000以上であることが好ましく、55,000以上であることがより好ましく、60,000以上であることがさらに好ましい。また、前記ポリアリレート(C)の重量平均分子量は、75,000以下であることが好ましく、70,000以下であることがさらに好ましく、66,000以下であることが一層好ましい。前記ポリアリレート(C)の重量平均分子量の上限値を80,000以下とすることにより、フィルムのヘイズの上昇を効果的に抑制できる。
<Polyarylate (C)>
The composition of the present invention contains a polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less. By blending the relatively high molecular weight polyarylate with the relatively low molecular weight bisphenol A type polycarbonate (A) in this way, the compatibility between the bisphenol A type polycarbonate (A) and the polyarylate (C) becomes too high. It is adjusted so that it does not exist.
The weight average molecular weight of the polyarylate (C) is preferably 50,000 or more, more preferably 55,000 or more, and even more preferably 60,000 or more. The weight average molecular weight of the polyarylate (C) is preferably 75,000 or less, more preferably 70,000 or less, and even more preferably 66,000 or less. By setting the upper limit of the weight average molecular weight of the polyarylate (C) to 80,000 or less, an increase in haze of the film can be effectively suppressed.
 ポリアリレート(C)のガラス転移温度(Tg)は、通常、300℃未満であり、好ましくは280℃以下である。下限値としては、例えば、130℃以上であり、150℃以上であることが好ましく、180℃以上であることがより好ましい。
 ポリアリレート(C)のガラス転移温度(Tg)は、後述する実施例の記載に従って測定される。
The glass transition temperature (Tg) of the polyarylate (C) is usually less than 300 ° C, preferably 280 ° C or lower. As the lower limit value, for example, it is 130 ° C. or higher, preferably 150 ° C. or higher, and more preferably 180 ° C. or higher.
The glass transition temperature (Tg) of the polyarylate (C) is measured according to the description of Examples described later.
 ポリアリレート(C)の極限粘度は、0.49dL/g以上であることが好ましく、0.55dL/g以上であることがより好ましく、0.59dL/g以上であることがさらに好ましく、0.62dL/g以上であることが一層好ましい。前記ポリアリレート(C)の極限粘度の下限値を0.49dL/g以上とすることにより、フィルムを作成した際に、摺動性がより効果的に発揮される。また、ポリアリレート(C)の極限粘度は、0.84dL/g以下であることが好ましく、0.79dL/g以下であることがより好ましく、0.74dL/g以下であることがさらに好ましい。前記ポリアリレート(C)の極限粘度の上限値を0.84dL/g以下とすることにより、フィルムのヘイズの上昇をより効果的に抑制することが可能になる。
 ポリアリレート(C)の極限粘度は、後述する実施例の記載に従って測定される。
The ultimate viscosity of the polyarylate (C) is preferably 0.49 dL / g or more, more preferably 0.55 dL / g or more, further preferably 0.59 dL / g or more, and 0. It is more preferably 62 dL / g or more. By setting the lower limit of the ultimate viscosity of the polyarylate (C) to 0.49 dL / g or more, slidability is more effectively exhibited when a film is produced. The ultimate viscosity of polyarylate (C) is preferably 0.84 dL / g or less, more preferably 0.79 dL / g or less, and even more preferably 0.74 dL / g or less. By setting the upper limit of the ultimate viscosity of the polyarylate (C) to 0.84 dL / g or less, it becomes possible to more effectively suppress the increase in haze of the film.
The ultimate viscosity of polyarylate (C) is measured according to the description of Examples described later.
 本発明で用いるポリアリレート(C)は、芳香族ジカルボン酸由来の構成単位とビスフェノール由来の構成単位とから構成される芳香族ポリエステルであることが好ましい。
 芳香族ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ベンゾフェノンジカルボン酸、4,4’-ジフェニルジカルボン酸、3,3’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等が挙げられる。
 ビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4‘-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4‘-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられる。これらの化合物は単独で使用してもよいし、あるいは、2種以上混合して使用してもよい。
The polyarylate (C) used in the present invention is preferably an aromatic polyester composed of a structural unit derived from an aromatic dicarboxylic acid and a structural unit derived from bisphenol.
Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid. , 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid and the like.
Examples of the bisphenol include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy-3,). 5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfide , 4,4'-Dihydroxydiphenylketone, 4,4'-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1, Examples thereof include 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane. These compounds may be used alone or in combination of two or more.
 ポリアリレート(C)の製造方法は、特に限定はされず、公知の方法により得られたものを使用することができる。界面重合法、溶融重合法で得られたポリアリレート(C)は好適に用いることができる。 The method for producing polyarylate (C) is not particularly limited, and those obtained by a known method can be used. The polyarylate (C) obtained by the interfacial polymerization method and the melt polymerization method can be preferably used.
<ビスフェノールA型ポリカーボネート(A)と、Tgが160℃以上のポリカーボネート(B)とポリアリレート(C)のブレンド>
 本発明の組成物は、ビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、Tgが160℃以上のポリカーボネート(B)26.5質量部以上71.5質量部以下、および、ポリアリレート(C)3.5質量部以上7.5質量部以下を含有する。このようなブレンド比とすることにより、フィルムの表面に微細凹凸を形成することが可能になる。
 より好ましくは、ビスフェノールA型ポリカーボネート(A)30質量部以上50質量部以下、Tgが160℃以上のポリカーボネート(B)40質量部以上65質量部以下、および、ポリアリレート(C)3.5質量部以上7.5質量部以下を含有する。
 さらに好ましくは、ビスフェノールA型ポリカーボネート(A)32質量部以上40質量部以下、Tgが160℃以上のポリカーボネート(B)51質量部以上65質量部以下、および、ポリアリレート(C)4質量部以上6質量部以下を含有する。
<Blend of bisphenol A type polycarbonate (A), polycarbonate (B) with Tg of 160 ° C or higher, and polyarylate (C)>
The composition of the present invention comprises 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A), 26.5 parts by mass or more and 71.5 parts by mass or less of polycarbonate (B) having a Tg of 160 ° C. or more, and polyarylate. (C) Contains 3.5 parts by mass or more and 7.5 parts by mass or less. With such a blend ratio, it becomes possible to form fine irregularities on the surface of the film.
More preferably, bisphenol A type polycarbonate (A) is 30 parts by mass or more and 50 parts by mass or less, polycarbonate (B) having a Tg of 160 ° C. or more is 40 parts by mass or more and 65 parts by mass or less, and polyarylate (C) is 3.5 parts by mass. It contains more than parts and 7.5 parts by mass or less.
More preferably, bisphenol A type polycarbonate (A) is 32 parts by mass or more and 40 parts by mass or less, polycarbonate (B) having a Tg of 160 ° C. or more is 51 parts by mass or more and 65 parts by mass or less, and polyarylate (C) is 4 parts by mass or more. Contains 6 parts by mass or less.
 ビスフェノールA型ポリカーボネート(A)の含有量は、組成物中、25質量%以上であることが好ましく、32質量%以上であることがより好ましい。上限値としては、70質量%以下であることが好ましく、40質量%以下であることがより好ましい。
 Tgが160℃以上のポリカーボネート(B)の含有量は、組成物中、26.5質量%以上であることが好ましく、51質量%以上であることがより好ましい。上限値としては、71.5質量%以下であることが好ましく、65質量%以下であることがより好ましい。
 ポリアリレート(C)の含有量は、組成物中、3.5質量%以上であることが好ましく、4質量%以上であることがより好ましい。上限値としては、7.5質量%以下であることが好ましく、6質量%以下であることがより好ましい。
 ただし、ビスフェノールA型ポリカーボネート(A)と、Tgが160℃以上のポリカーボネート(B)とポリアリレート(C)の合計が100質量%を超えることはない。
The content of the bisphenol A type polycarbonate (A) is preferably 25% by mass or more, and more preferably 32% by mass or more in the composition. The upper limit value is preferably 70% by mass or less, and more preferably 40% by mass or less.
The content of the polycarbonate (B) having a Tg of 160 ° C. or higher is preferably 26.5% by mass or more, and more preferably 51% by mass or more in the composition. The upper limit value is preferably 71.5% by mass or less, and more preferably 65% by mass or less.
The content of the polyarylate (C) is preferably 3.5% by mass or more, and more preferably 4% by mass or more in the composition. The upper limit value is preferably 7.5% by mass or less, and more preferably 6% by mass or less.
However, the total of the bisphenol A type polycarbonate (A), the polycarbonate (B) having a Tg of 160 ° C. or higher, and the polyarylate (C) does not exceed 100% by mass.
 本発明の組成物の一実施形態として、ビスフェノールA型ポリカーボネート(A)とTgが160℃以上のポリカーボネート(B)とポリアリレート(C)のブレンドの合計含有量が、組成物の95質量%以上である態様、さらには、組成物の97質量%以上である態様、特には組成物の98質量%以上である態様が例示される。
 本発明の組成物は、ビスフェノールA型ポリカーボネート(A)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計が上記範囲となることが好ましい。
 本発明の組成物は、Tgが160℃以上のポリカーボネート(B)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計が上記範囲となることが好ましい。
 本発明の組成物は、ポリアリレート(C)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計が上記範囲となることが好ましい。
As one embodiment of the composition of the present invention, the total content of the blend of bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C) is 95% by mass or more of the composition. Further, an embodiment of 97% by mass or more of the composition, particularly an aspect of 98% by mass or more of the composition is exemplified.
The composition of the present invention may contain only one type of bisphenol A type polycarbonate (A), or may contain two or more types. When two or more types are included, the total is preferably in the above range.
The composition of the present invention may contain only one type of polycarbonate (B) having a Tg of 160 ° C. or higher, or may contain two or more types. When two or more types are included, the total is preferably in the above range.
The composition of the present invention may contain only one type of polyarylate (C), or may contain two or more types of polyarylate (C). When two or more types are included, the total is preferably in the above range.
 また、ポリアリレート(C)の重量平均分子量とビスフェノールA型ポリカーボネート(A)の重量平均分子量の差(Mwc-Mwa)は、25,000以上であることが好ましく、30,000以上であってもよい。また、前記差(Mwc-Mwa)は、45,000以下であることが好ましい。このような範囲とすることにより、フィルムのより良好な摺動性を達成できる。 The difference (Mwc-Mwa) between the weight average molecular weight of polyarylate (C) and the weight average molecular weight of bisphenol A type polycarbonate (A) is preferably 25,000 or more, even if it is 30,000 or more. Good. Further, the difference (Mwc-Mwa) is preferably 45,000 or less. Within such a range, better slidability of the film can be achieved.
<酸化防止剤(D)>
 本発明の組成物は、酸化防止剤を含有することが好ましい。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤などが挙げられ、リン系酸化防止剤およびフェノール系酸化防止剤(より好ましくはヒンダードフェノール系酸化防止剤)の少なくとも1種が好ましく、特にリン系酸化防止剤が好ましい。また両者を併用することも好ましい。
 リン系酸化防止剤としては、以下の式(1)または(2)で表されるホスファイト化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、RおよびRはそれぞれ独立に、炭素原子数1~30のアルキル基または炭素原子数6~30のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000010
(式(2)中、R~Rは、それぞれ独立に、水素原子、炭素原子数6~20のアリール基または炭素原子数1~20のアルキル基を表す。)
<Antioxidant (D)>
The composition of the present invention preferably contains an antioxidant.
Examples of the antioxidant include a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, and the like, and a phosphorus-based antioxidant and a phenol-based antioxidant (more preferably hinder). At least one of (dophenol-based antioxidants) is preferable, and phosphorus-based antioxidants are particularly preferable. It is also preferable to use both in combination.
As the phosphorus-based antioxidant, a phosphite compound represented by the following formula (1) or (2) is preferable.
Figure JPOXMLDOC01-appb-C000009
(In the formula (1), R 1 and R 2 independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000010
(In the formula (2), R 3 to R 7 independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.)
 上記式(1)中、R、Rで表されるアルキル基は、それぞれ独立に、炭素原子数1~10の直鎖または分岐のアルキル基であることが好ましい。R、Rがアリール基である場合、以下の一般式(1-a)、(1-b)、または(1-c)のいずれかで表されるアリール基が好ましい。 In the above formula (1), the alkyl groups represented by R 1 and R 2 are preferably linear or branched alkyl groups having 1 to 10 carbon atoms, respectively. When R 1 and R 2 are aryl groups, an aryl group represented by any of the following general formulas (1-a), (1-b), or (1-c) is preferable.
Figure JPOXMLDOC01-appb-C000011
(式(1-a)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。式(1-b)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula (1-a), R A is independently, in. The formula (1-b) represents an alkyl group having a carbon number of 1 to 10, R B are each independently, carbon atoms of 1 to Represents an alkyl group of 10.)
 フェノール系酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。フェノール系酸化防止剤としては、特開2019-002023号公報の段落0041に記載のフェノール系酸化防止剤および特開2019-056035号公報の段落0033~0034に記載のフェノール系酸化防止剤が好ましく用いられ、これらの内容は本明細書に組み込まれる。
 その他、酸化防止剤の詳細は、特開2017-031313号公報の段落0057~0061の記載を参酌でき、これらの内容は本明細書に組み込まれる。
Examples of the phenolic antioxidant include a hindered phenolic antioxidant. As the phenolic antioxidant, the phenolic antioxidant described in paragraph 0041 of JP2019-002023 and the phenolic antioxidant described in paragraphs 0033 to 0034 of JP2019-0506035 are preferably used. These contents are incorporated herein by reference.
In addition, the details of the antioxidant can be referred to in paragraphs 0057 to 0061 of JP-A-2017-031313, and these contents are incorporated in the present specification.
 組成物中の酸化防止剤の含有量は、含有する場合、樹脂成分(ビスフェノールA型ポリカーボネート(A)、Tgが160℃以上のポリカーボネート(B)、ポリアリレート(C)の合計を意味する、以下同じ)100質量部に対して、好ましくは0.005質量部以上であり、より好ましくは0.007質量部以上、さらに好ましくは0.01質量部以上である。また、酸化防止剤の含有量の上限値は、樹脂成分100質量部に対して、好ましくは4質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下、一層好ましくは0.1質量部以下である。
 酸化防止剤の含有量を0.005質量部以上とすることにより、透明性がより向上する傾向にある。また、酸化防止剤の含有量を4質量部以下とすることにより、湿熱安定性が向上する傾向にある。
 また、酸化防止剤としてリン系酸化防止剤とフェノール系酸化防止剤(好ましくはヒンダードフェノール系酸化防止剤)を組み合わせて使用する場合、その含有量は、樹脂成分100質量部に対して、リン系酸化防止剤を0.001~0.2質量部、フェノール系酸化防止剤を0.001~0.2質量部の範囲で含有することが好ましい。
 酸化防止剤は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
When contained, the content of the antioxidant in the composition means the total of the resin components (bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C). The same) is preferably 0.005 parts by mass or more, more preferably 0.007 parts by mass or more, and further preferably 0.01 parts by mass or more with respect to 100 parts by mass. The upper limit of the content of the antioxidant is preferably 4 parts by mass or less, more preferably 1 part by mass or less, still more preferably 0.5 parts by mass or less, still more preferably 0.5 parts by mass or less, based on 100 parts by mass of the resin component. It is 0.1 part by mass or less.
By setting the content of the antioxidant to 0.005 parts by mass or more, the transparency tends to be further improved. Further, by setting the content of the antioxidant to 4 parts by mass or less, the moist heat stability tends to be improved.
Further, when a phosphorus-based antioxidant and a phenol-based antioxidant (preferably a hindered phenol-based antioxidant) are used in combination as the antioxidant, the content thereof is phosphorus with respect to 100 parts by mass of the resin component. It is preferable that the system antioxidant is contained in the range of 0.001 to 0.2 parts by mass and the phenolic antioxidant is contained in the range of 0.001 to 0.2 parts by mass.
Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
<エステル交換防止剤(E)>
 本発明の組成物は、エステル交換防止剤を含有することが好ましい。
 エステル交換防止剤としては、リン系エステル交換防止剤および硫黄系エステル交換防止剤が挙げられる。
 リン系エステル交換防止剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられる。
 エステル交換防止剤としては、国際公開第2015/190162号の段落0035~0039、特開2019-002023号公報の段落0037、特開2018-199745号公報の段落0041の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<Transesterification inhibitor (E)>
The composition of the present invention preferably contains a transesterification inhibitor.
Examples of the transesterification inhibitor include a phosphorus-based transesterification inhibitor and a sulfur-based transesterification inhibitor.
Examples of the phosphorus-based ester exchange inhibitor include phosphorous acid, phosphoric acid, phosphonic acid, phosphonic acid, and esters thereof.
As the transesterification inhibitor, the description in paragraphs 0035 to 0039 of International Publication No. 2015/190162, paragraph 0037 of JP-A-2019-002023, and paragraph 0041 of JP-A-2018-199745 can be taken into consideration. Is incorporated herein.
 組成物中のエステル交換防止剤の含有量は、含有する場合、樹脂成分100質量部に対して、好ましくは0.001質量部以上であり、より好ましくは0.005質量部以上、さらに好ましくは0.007質量部以上である。また、エステル交換防止剤の含有量の上限値は、熱可塑性樹脂100質量部に対して、好ましくは1.0質量部以下、より好ましくは0.5質量部以下、さらに好ましくは0.3質量部以下、一層好ましくは0.1質量部以下である。
 エステル交換防止剤は、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
When contained, the content of the transesterification inhibitor in the composition is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, still more preferably 0.005 part by mass or more, based on 100 parts by mass of the resin component. It is 0.007 parts by mass or more. The upper limit of the content of the transesterification inhibitor is preferably 1.0 part by mass or less, more preferably 0.5 part by mass or less, and further preferably 0.3 part by mass with respect to 100 parts by mass of the thermoplastic resin. Parts or less, more preferably 0.1 parts by mass or less.
The transesterification inhibitor may contain only one type, or may contain two or more types. When two or more kinds are included, the total amount is preferably in the above range.
<離型剤(F)>
 本発明の組成物は、離型剤を含有することが好ましい。
 離型剤としては、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルの群から選ばれる少なくとも1種の化合物を挙げることができ、脂肪族カルボン酸とアルコールとのエステルが好ましい。
 脂肪族カルボン酸とアルコールとのエステルの具体例として、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等を挙げることができる。
 その他、離型剤としては、特開2017-226848号公報の段落0032、特開2018-199745号公報の段落0056に記載の離型剤を用いることができ、この内容は本明細書に組み込まれる。
<Release agent (F)>
The composition of the present invention preferably contains a mold release agent.
The release agent is at least one selected from the group consisting of an aliphatic carboxylic acid, an ester of an aliphatic carboxylic acid and an alcohol, an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15,000, and a polysiloxane-based silicone oil. Compounds can be mentioned, and esters of aliphatic carboxylic acids and alcohols are preferable.
Specific examples of esters of aliphatic carboxylic acids and alcohols include beeswax (mixture containing myricyl palmitate as the main component), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, and glycerin monostearate. , Glycerin distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.
In addition, as the release agent, the release agent described in paragraph 0032 of JP-A-2017-226848 and paragraph 0056 of JP-A-2018-199745 can be used, and the contents thereof are incorporated in the present specification. ..
 組成物中の離型剤の含有量は、含有する場合、樹脂成分100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.005質量部以上であり、また、好ましくは2質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。
 離型剤は、1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
When contained, the content of the release agent in the composition is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, and preferably 0.005 part by mass or more, based on 100 parts by mass of the resin component. It is 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 part by mass or less.
Only one type of release agent may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
<その他の成分>
 上記組成物は、上記の他、他の熱可塑性樹脂、熱安定剤、難燃剤、難燃助剤、紫外線吸収剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤、アンチブロッキング剤、衝撃改良剤、摺動改良剤、色相改良剤、酸トラップ剤等を含んでいてもよい。これらの成分は、1種を用いてもよいし、2種以上を併用してもよい。
 上記他の成分の合計量は、含有する場合、組成物の0.001~5質量%であることが好ましく、0.001~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましい。
<Other ingredients>
In addition to the above, the above composition includes other thermoplastic resins, heat stabilizers, flame retardants, flame retardants, ultraviolet absorbers, colorants, antistatic agents, fluorescent whitening agents, antifogging agents, and fluidity improving agents. It may contain an agent, a plasticizer, a dispersant, an antibacterial agent, an antiblocking agent, an impact improving agent, a sliding improving agent, a hue improving agent, an acid trapping agent and the like. One type of these components may be used, or two or more types may be used in combination.
When contained, the total amount of the other components is preferably 0.001 to 5% by mass, more preferably 0.001 to 2% by mass, and 0.01 to 1% by mass. Is more preferable.
<組成物の特性>
 本発明の組成物の示差走査熱量計によって測定したガラス転移温度は、160℃以上であることが好ましい。前記ガラス転移温度の上限値については、特に定めるものではないが、例えば、200℃以下、さらには、190℃以下、180℃以下、170℃以下であっても十分に要求性能を満たすものである。
<Characteristics of composition>
The glass transition temperature measured by the differential scanning calorimeter of the composition of the present invention is preferably 160 ° C. or higher. The upper limit of the glass transition temperature is not particularly specified, but for example, even if it is 200 ° C. or lower, further 190 ° C. or lower, 180 ° C. or lower, or 170 ° C. or lower, the required performance is sufficiently satisfied. ..
<フィルムの特性>
 本発明の組成物は、フィルムに成形することができる。前記フィルムは、厚みが10μm以上300μm以下であることが好ましい。厚みを300μm以下とすることにより、透明なフィルムとすることができる。また、10μm以上とすることにより、よりヘイズを低くできる傾向にある。
 本発明のフィルムの厚みは、20μm以上であってもよく、さらには25μm以上であってもよい。また、250μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることがさらに好ましく、100μm以下であることが一層好ましく、80μm以下であることがより一層好ましく、60μm以下であることがさらに一層好ましい。
<Film characteristics>
The composition of the present invention can be molded into a film. The film preferably has a thickness of 10 μm or more and 300 μm or less. By setting the thickness to 300 μm or less, a transparent film can be obtained. Further, by setting it to 10 μm or more, the haze tends to be further lowered.
The thickness of the film of the present invention may be 20 μm or more, and further may be 25 μm or more. Further, it is preferably 250 μm or less, more preferably 200 μm or less, further preferably 150 μm or less, further preferably 100 μm or less, further preferably 80 μm or less, and even more preferably 60 μm or less. It is even more preferable to have.
 本発明のフィルムは、また、二乗平均平方根粗さが0.093μmのフィルムとの間の動摩擦係数が、2.0以下であることが好ましく、1.8以下であることがより好ましい。下限値は、例えば、0.1以上である。
 動摩擦係数は、スレッド100mm/分、ロードセル10Nの条件で測定した値であり、具体的には、後述する実施例に記載の方法で測定される。
The film of the present invention also preferably has a coefficient of kinetic friction with a film having a root mean square roughness of 0.093 μm of 2.0 or less, and more preferably 1.8 or less. The lower limit is, for example, 0.1 or more.
The coefficient of kinetic friction is a value measured under the conditions of a thread of 100 mm / min and a load cell of 10N, and specifically, it is measured by the method described in Examples described later.
 本発明のフィルムは、D65光源10°視野の条件における全光線透過率が、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。前記光線透過率の上限は100%が理想であるが、94%以下であっても十分に要求性能を満たすものである。
 全光線透過率は、後述する実施例に記載の方法で測定される。
The film of the present invention has a total light transmittance of preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more under the condition of a D65 light source 10 ° field of view. Ideally, the upper limit of the light transmittance is 100%, but even if it is 94% or less, the required performance is sufficiently satisfied.
The total light transmittance is measured by the method described in Examples described later.
 本発明のフィルムは、ヘイズが10%以下であることが好ましく、8%以下であることがより好ましく、6%以下であってもよく、5%以下であってもよい。下限値については、0%が理想であるが、0.1%以上であっても実用レベルである。特に、厚さを10μm~300μmとしたときのヘイズが上記範囲であることが好ましい。
 ヘイズは、後述する実施例に記載の方法で測定される。
The film of the present invention preferably has a haze of 10% or less, more preferably 8% or less, 6% or less, or 5% or less. The ideal lower limit is 0%, but even if it is 0.1% or more, it is a practical level. In particular, it is preferable that the haze when the thickness is 10 μm to 300 μm is in the above range.
Haze is measured by the method described in Examples described below.
<用途>
 本発明のフィルムは、マスキングフィルムとして好ましく用いられる。より好ましくは、透明導電性フィルムの保護フィルムとして用いられる。特に、本発明のフィルムと、粘着剤層、フィルム基材および電極層をこの順で有する、透明導電性フィルムとして好ましく用いられる。
 また、上記透明導電性フィルムは、タッチパネルのフィルムセンサー、電子ペーパーや色素増感型太陽電池、タッチセンサー等に用いる透明導電性フィルムとして好ましく用いられる。
 また、本発明のフィルムは、上記以外でも、高い摺動性と透明性が求められる用途のフィルムに好ましく用いられる。
<Use>
The film of the present invention is preferably used as a masking film. More preferably, it is used as a protective film for a transparent conductive film. In particular, it is preferably used as a transparent conductive film having the film of the present invention, an adhesive layer, a film base material, and an electrode layer in this order.
Further, the transparent conductive film is preferably used as a transparent conductive film used for a film sensor of a touch panel, electronic paper, a dye-sensitized solar cell, a touch sensor, and the like.
In addition to the above, the film of the present invention is preferably used as a film for applications that require high slidability and transparency.
<フィルムの製造方法>
 本発明のフィルムの製造方法は、重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)26.5質量部以上71.5質量部以下、および、重量平均分子量が45,000以上80,000以下のポリアリレート(C)3.5質量部以上7.5質量部以下を含有する組成物を、溶融状態でシート状に押し出し、一対のロールで圧着して作製するフィルムの製造方法であって、前記一対のロールの少なくとも1つのロール表面のタイプA型のデュロメーター硬度が10~99であることを特徴とする。
 このような構成とすることにより、ポリカーボネート中に、ポリアリレート(C)の島が形成されたフィルムが得られる。
 以下、本発明の製造方法の詳細について説明する。
 図4は、本発明のフィルムの製造方法を示す模式図の一例である。本発明の製造方法では、例えば、図4に示すように、上記ビスフェノールA型ポリカーボネート(A)、Tgが160℃以上のポリカーボネート(B)、および、ポリアリレート(C)を含有する組成物41を、ダイス42から溶融状態で、シート状に押し出す。溶融状態かつシート状の組成物41は、一対のロール43(第一のロール43aと第二のロール43b)の間を通過する際に、前記一対のロール43で圧着される。このとき、第一ロール43aおよび第二ロール43bの少なくとも1つについて、そのロール表面のタイプA型のデュロメーター硬度が10~99のロールを用いる。
 図4では、第一ロール43aが表面のデュロメーター硬度が10~99のロールである。すなわち、第一ロール43aとして、表面が柔らかいロールを用いる。表面のデュロメーター硬度が10~99のロールを用いることにより、ポリアリレート(C)のうち、ビスフェノールA型ポリカーボネート(A)と相溶していない部分がフィルムの表面に出てきて、フィルムの表面に微細な凹凸を形成する。結果として、高い摺動性を達成することができる。ロール表面のデュロメーター硬度は、30以上であることが好ましく、50以上であることがより好ましく、また、80以下であることが好ましく、75以下であることがより好ましい。このような範囲とすることにより、適度な柔らかさのロールとなる。表面のデュロメーター硬度が10~99であるロールは、例えば、鏡面ゴムロールが例示される。
 表面のデュロメーター硬度が10~99のロールの温度は、30~90℃であることが好ましく、40~70℃であることがより好ましい。
<Film manufacturing method>
In the method for producing a film of the present invention, the weight average molecular weight is 20,000 or more and 35,000 or less, and the glass transition temperature measured by a differential scanning calorimeter is 25 parts by mass or more and 70 parts by mass or less of bisphenol A type polycarbonate (A). At 160 ° C. or higher, 26.5 parts by mass or more and 71.5 parts by mass or less of aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A), and a weight average molecular weight of 45,000 or more and 80,000 or less. A method for producing a film produced by extruding a composition containing 3.5 parts by mass or more and 7.5 parts by mass or less of the polycarbonate (C) in a molten state into a sheet and crimping it with a pair of rolls. The type A durometer hardness of the surface of at least one of the pair of rolls is 10 to 99.
With such a configuration, a film in which polyarylate (C) islands are formed in polycarbonate can be obtained.
Hereinafter, the details of the production method of the present invention will be described.
FIG. 4 is an example of a schematic diagram showing a method for producing a film of the present invention. In the production method of the present invention, for example, as shown in FIG. 4, the composition 41 containing the above-mentioned bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C) is used. , Extruded from the die 42 into a sheet in a molten state. The melted and sheet-like composition 41 is pressure-bonded by the pair of rolls 43 as it passes between the pair of rolls 43 (the first roll 43a and the second roll 43b). At this time, for at least one of the first roll 43a and the second roll 43b, a roll having a type A durometer hardness of 10 to 99 on the roll surface is used.
In FIG. 4, the first roll 43a is a roll having a surface durometer hardness of 10 to 99. That is, as the first roll 43a, a roll having a soft surface is used. By using a roll having a surface durometer hardness of 10 to 99, a portion of the polyarylate (C) that is not compatible with the bisphenol A type polycarbonate (A) appears on the surface of the film and becomes on the surface of the film. Form fine irregularities. As a result, high slidability can be achieved. The durometer hardness of the roll surface is preferably 30 or more, more preferably 50 or more, and more preferably 80 or less, more preferably 75 or less. By setting the range in such a range, the roll has an appropriate softness. Examples of rolls having a surface durometer hardness of 10 to 99 include mirrored rubber rolls.
The temperature of the roll having a surface durometer hardness of 10 to 99 is preferably 30 to 90 ° C, more preferably 40 to 70 ° C.
 図4では、組成物が上記一対のロール43(第一ロール43aと第二ロール43b)の間を通過した後、さらに搬送ロール44を通過する。
 表面のデュロメーター硬度が10~99であるロール以外のロール、例えば、図4では、第二ロール43bと搬送ロール44は、金属製のロールが挙げられる。金属製のロールは、デュロメーター硬度が測定限界である100に達する。金属製のロールとしては、鏡面剛体ロールや金属弾性ロールが例示される。また、表面のデュロメーター硬度が10~99のロール以外のロールの表面温度は、70~170℃であることが好ましく、100~160℃であることがより好ましい。
In FIG. 4, the composition passes between the pair of rolls 43 (first roll 43a and second roll 43b) and then further passes through the transport roll 44.
Rolls other than rolls having a surface durometer hardness of 10 to 99, for example, in FIG. 4, the second roll 43b and the transport roll 44 include metal rolls. The metal roll reaches a durometer hardness of 100, which is the measurement limit. Examples of the metal roll include a mirror rigid body roll and a metal elastic roll. The surface temperature of rolls other than rolls having a surface durometer hardness of 10 to 99 is preferably 70 to 170 ° C, more preferably 100 to 160 ° C.
 本発明では、第一ロールおよび第二ロールの少なくとも1つのロール表面のデュロメーター硬度が上記範囲であればよいが、第一ロールおよび第二ロールの両方の表面が上記デュロメーター硬度を満たしていてもよい。この場合、フィルムの表面に所望の微細な凹凸が形成される。 In the present invention, the durometer hardness of at least one roll surface of the first roll and the second roll may be in the above range, but the surfaces of both the first roll and the second roll may satisfy the above durometer hardness. .. In this case, desired fine irregularities are formed on the surface of the film.
 上記一対のロール43(第一ロール43aと第二ロール43b)の間を通過した後のフィルムは、搬送ロール44を通過する間、あるいは、冷却ゾーンや、冷却ロールを通過させることによって、冷却される。冷却後、さらに巻き取られてよい。すなわち、本発明では、芯材と、芯材に巻き取られた本発明のフィルムとを有する巻取体とすることができる。
 上記フィルムの製造方法で得られるフィルムは、フィルムの厚みが10μm以上300μm以下であることが好ましい。その他、本発明のフィルムの製造方法で得られるフィルムの詳細は、上述の本発明のフィルムと同様である。
 さらに、上記で得られた本発明のフィルムと、粘着剤層と、フィルム基材と、電極層とを積層することにより、透明導電性フィルムを製造することもできる。
The film after passing between the pair of rolls 43 (first roll 43a and second roll 43b) is cooled while passing through the transport roll 44, or by passing through a cooling zone or a cooling roll. To. After cooling, it may be further wound up. That is, in the present invention, it can be a wound body having the core material and the film of the present invention wound around the core material.
The film obtained by the above film manufacturing method preferably has a film thickness of 10 μm or more and 300 μm or less. In addition, the details of the film obtained by the method for producing the film of the present invention are the same as those of the above-mentioned film of the present invention.
Further, a transparent conductive film can be produced by laminating the film of the present invention obtained above, the pressure-sensitive adhesive layer, the film base material, and the electrode layer.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described in more detail with reference to examples below. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<原料>
・ビスフェノールA型ポリカーボネート(A)
(A1)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱エンジニアリングプラスチックス社製、E-2000F、重量平均分子量:52,800 Tg:151℃)
(A2)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱エンジニアリングプラスチックス社製、S-3000F、重量平均分子量:41,300 Tg:148℃)
(A3)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱エンジニアリングプラスチックス社製、H-4000F、重量平均分子量:29,200 Tg:143℃)
(A4)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱エンジニアリングプラスチックス社製、H-7000F、重量平均分子量:24,900 Tg:141℃)
<Raw materials>
・ Bisphenol A type polycarbonate (A)
(A1) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, E-2000F, weight average molecular weight: 52,800 Tg: 151 ° C)
(A2) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, S-3000F, weight average molecular weight: 41,300 Tg: 148 ° C.)
(A3) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, H-4000F, weight average molecular weight: 29,200 Tg: 143 ° C)
(A4) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol A as a starting material (manufactured by Mitsubishi Engineering Plastics, H-7000F, weight average molecular weight: 24,900 Tg: 141 ° C.)
・Tgが160℃以上のポリカーボネート(B)
(B1)ビスフェノールAPを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱ガス化学社製、FPC-0220、重量平均分子量:49,900、Tg:184℃)
(B2)ビスフェノールAPを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱ガス化学社製、FPC-0210、重量平均分子量:24,800、Tg:170℃)
(B3)ビスフェノールZを出発原料とする界面重合法により得られた芳香族ポリカーボネート(三菱ガス化学社製、PCZ-200、重量平均分子量:32,100、Tg:176℃)
-Polycarbonate (B) with Tg of 160 ° C or higher
(B1) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol AP as a starting material (manufactured by Mitsubishi Gas Chemical Company, FPC-0220, weight average molecular weight: 49,900, Tg: 184 ° C.)
(B2) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol AP as a starting material (manufactured by Mitsubishi Gas Chemical Company, FPC-0210, weight average molecular weight: 24,800, Tg: 170 ° C.)
(B3) Aromatic polycarbonate obtained by an interfacial polymerization method using bisphenol Z as a starting material (manufactured by Mitsubishi Gas Chemical Company, PCZ-200, weight average molecular weight: 32,100, Tg: 176 ° C.)
・ポリアリレート(C)
(C1)ユニチカ社製、U-パウダー Dタイプ、重量平均分子量63,000、極限粘度0.65dL/g Tg:201℃)
(C2)ユニチカ社製、U-パウダー Lタイプ、重量平均分子量40,800、極限粘度0.48dL/g Tg:195℃)
・ Polyarylate (C)
(C1) Unitika Ltd., U-powder D type, weight average molecular weight 63,000, ultimate viscosity 0.65 dL / g Tg: 201 ° C.)
(C2) Unitika Ltd., U-powder L type, weight average molecular weight 40,800, ultimate viscosity 0.48 dL / g Tg: 195 ° C.)
・酸化防止剤(D)
(D1)トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト(リン系酸化防止剤 ADEKA株式会社製、アデカスタブ2112)
(D2)テトラキス[3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸]ペンタエリトリトール(ヒンダードフェノール系酸化防止剤 ADEKA株式会社製、アデカスタブAO-60)
・ Antioxidant (D)
(D1) Tris (2,4-di-tert-butylphenyl) phosphite (phosphorus antioxidant, manufactured by ADEKA Corporation, ADEKA STAB 2112)
(D2) Tetrakiss [3- (3', 5'-di-tert-butyl-4-hydroxyphenyl) propionic acid] Pentaerythritol (Hindered phenolic antioxidant ADEKA Corporation, ADEKA STAB AO-60)
・エステル交換防止剤(E)
(E1)オクタデシルホスファイト(ADEKA株式会社製、AX-71)
-Transesterification inhibitor (E)
(E1) Octadecylphosphite (manufactured by ADEKA Corporation, AX-71)
・離型剤(F)
(F1)グリセリンモノステアレート(理研ビタミン株式会社製 リケマールS-100A)
・ Release agent (F)
(F1) Glycerin monostearate (Rikemar S-100A manufactured by RIKEN Vitamin Co., Ltd.)
<重量平均分子量の測定方法>
 ビスフェノールA型ポリカーボネート(A)、Tgが160℃以上のポリカーボネート(B)およびポリアリレート(C)の重量平均分子量(Mw)のゲル浸透クロマトグラフィーによる測定は、具体的には以下のようにして行った。
 ゲル浸透クロマトグラフィー装置には、LC-20AD system(島津製作所社製)を用い、カラムとして、LF-804(Shodex社製)を接続して用いた。カラム温度は40℃とした。検出器はRID-10A(島津製作所社製)のRI検出器を用いた。溶離液として、クロロホルムを用い、検量線は、東ソー社製の標準ポリスチレンを使用して作成した。
 上記ゲル浸透クロマトグラフィー装置、カラム、検出器が入手困難な場合、同等の性能を有する他の装置等を用いて測定する。
<Measurement method of weight average molecular weight>
The weight average molecular weight (Mw) of bisphenol A type polycarbonate (A), polycarbonate (B) having a Tg of 160 ° C. or higher, and polyarylate (C) is specifically measured by gel permeation chromatography as follows. It was.
An LC-20AD system (manufactured by Shimadzu Corporation) was used as a gel permeation chromatography apparatus, and LF-804 (manufactured by Shodex) was connected and used as a column. The column temperature was 40 ° C. As the detector, an RI detector of RID-10A (manufactured by Shimadzu Corporation) was used. Chloroform was used as the eluent, and the calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation.
If the gel permeation chromatography device, column, or detector is difficult to obtain, the measurement is performed using another device having the same performance.
<ガラス転移温度(Tg)の測定>
 ビスフェノールA型ポリカーボネート(A)、Tgが160℃以上のポリカーボネート(B)およびポリアリレート(C)、ならびに、組成物のガラス転移温度(Tg)は、下記のDSCの測定条件のとおりに、昇温、降温を2サイクル行い、2サイクル目の昇温時のガラス転移温度を測定した。
 低温側のベースラインを高温側に延長した直線と、変曲点の接線の交点を開始ガラス転移温度とし、高温側のベースラインを低温側に延長した直線と、変曲点の接線の交点を終了ガラス転移温度とし、開始ガラス転移温度と終了ガラス転移温度の中間地点をガラス転移温度(Tg)とした。測定開始温度:30℃、昇温速度:10℃/分、到達温度:250℃、降温速度:20℃/分とした。
 測定装置は、示差走査熱量計(DSC、(株)日立ハイテクサイエンス社製、「DSC7020」)を使用した。
<Measurement of glass transition temperature (Tg)>
The bisphenol A type polycarbonate (A), the polycarbonate (B) and polyarylate (C) having a Tg of 160 ° C. or higher, and the glass transition temperature (Tg) of the composition are raised according to the following DSC measurement conditions. , The temperature was lowered for 2 cycles, and the glass transition temperature at the time of raising the temperature in the 2nd cycle was measured.
The intersection of the straight line extending the baseline on the low temperature side to the high temperature side and the tangent line of the inflection point is the starting glass transition temperature, and the intersection of the straight line extending the baseline on the high temperature side to the low temperature side and the tangent line of the inflection point is The end glass transition temperature was defined, and the intermediate point between the start glass transition temperature and the end glass transition temperature was defined as the glass transition temperature (Tg). The measurement start temperature was 30 ° C., the temperature rise rate was 10 ° C./min, the ultimate temperature was 250 ° C., and the temperature decrease rate was 20 ° C./min.
As a measuring device, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Corporation, "DSC7020") was used.
<極限粘度の測定方法>
 樹脂の極限粘度[η](単位dL/g)は、溶媒としてメチレンクロライドを使用して測定した。温度は25℃条件とした。ウベローデ粘度計にて、各溶液濃度[C](g/dL)での比粘度[ηsp]を測定した。得られた比粘度の値と濃度から下記式により極限粘度を算出した。
Figure JPOXMLDOC01-appb-M000012
<Measurement method of extreme viscosity>
The ultimate viscosity [η] (unit: dL / g) of the resin was measured using methylene chloride as a solvent. The temperature was 25 ° C. The specific viscosity [η sp ] at each solution concentration [C] (g / dL) was measured with an Ubbelohde viscometer. The ultimate viscosity was calculated from the obtained specific viscosity values and concentrations by the following formula.
Figure JPOXMLDOC01-appb-M000012
実施例1~6、比較例1~8
<樹脂ペレットの製造>
 上記各成分を、それぞれ表1または表2に記載の含有量(各成分の含有量は質量部である)となるように計量した。その後、タンブラーにて15分間混合した後、スクリュー径32mmのベント付二軸押出機(日本製鋼所社製「TEX30α」)により、シリンダー温度300℃で溶融混練し、ストランドカットによりペレットを得た。
Examples 1 to 6, Comparative Examples 1 to 8
<Manufacturing of resin pellets>
Each of the above components was weighed so as to have the content shown in Table 1 or Table 2 (the content of each component is a mass part). Then, after mixing with a tumbler for 15 minutes, melt-kneading was performed at a cylinder temperature of 300 ° C. by a twin-screw extruder with a vent having a screw diameter of 32 mm (“TEX30α” manufactured by Japan Steel Works, Ltd.), and pellets were obtained by strand cutting.
<フィルムの製造>
 得られたペレットを用いて、以下の方法でフィルムを製造した。
 上記で得られたペレットを、バレル直径32mm、スクリューのL/D=31.5のベント付き二軸押出機(日本製鋼所社製、「TEX30α」)からなるTダイ溶融押出機を用いて、吐出量10Kg/h、スクリュー回転数63rpmの条件で溶融状に押し出し、第一ロールと第二ロールで圧着した後、冷却固化し、フィルムを作製した。シリンダー・ダイヘッド温度は280℃で行った。
 最終的に得られるフィルム厚みの調整は、表1または表2に記載の値となるように、第一ロールおよび第二ロールのロール速度を変更して行った。
<Manufacturing of film>
Using the obtained pellets, a film was produced by the following method.
The pellets obtained above were subjected to a T-die melt extruder consisting of a twin-screw extruder (manufactured by Japan Steel Works, Ltd., "TEX30α") with a barrel diameter of 32 mm and a screw L / D = 31.5. The film was extruded in a molten state under the conditions of a discharge rate of 10 kg / h and a screw rotation speed of 63 rpm, crimped with a first roll and a second roll, and then cooled and solidified to prepare a film. The cylinder / die head temperature was 280 ° C.
The final film thickness was adjusted by changing the roll speeds of the first roll and the second roll so as to have the values shown in Table 1 or Table 2.
 用いた第一ロールおよび第二ロールの詳細は以下の通りである。
・第一ロール:持田商工社製、シリコーンゴムロール(IT68S-MCG)
 寸法径:外径260mm×幅600mm
 ロール表面のデュロメーター硬度(タイプA型):70
 ロール温度:50℃
・第二ロール:JSW社製、金属剛体ロール(表面:ハードクロム処理)
 芯金径:外径250mm×幅600mm
 ロール表面のデュロメーター硬度(タイプA型):測定限界である100に達した。
 ロール温度:130℃
Details of the first roll and the second roll used are as follows.
-First roll: Silicone rubber roll (IT68S-MCG) manufactured by Mochida Shoko Co., Ltd.
Dimensions Diameter: Outer diameter 260 mm x Width 600 mm
Durometer hardness of roll surface (type A type): 70
Roll temperature: 50 ° C
-Second roll: JSW, metal rigid body roll (surface: hard chrome treatment)
Core metal diameter: outer diameter 250 mm x width 600 mm
Durometer hardness of roll surface (type A type): The measurement limit of 100 has been reached.
Roll temperature: 130 ° C
<動摩擦係数の測定>
 得られたフィルムの動摩擦係数の測定は摩擦係数測定機を用いて測定した。具体的には、二乗平均平方根粗さが0.093μmのビスフェノールA型ポリカーボネートフィルムと得られたフィルムが重なるように設置し、スレッドを100mm/分、ロードセル10Nの条件で、ポリカーボネートフィルム上を、得られたフィルムを滑らせて、動摩擦係数を測定した。 摩擦係数測定機は、東洋精機製作所社製(「フリクションテスター」)を用いた。
 二乗平均平方根粗さが0.093μmのビスフェノールA型ポリカーボネートフィルムは、片面マスキングフィルム付きビスフェノールA型ポリカーボネートフィルム(三菱ガス化学社製、FE-2000、厚み100μm品)を用いた。本実施例では、片面マスキングフィルム付きビスフェノールA型ポリカーボネートフィルムのマスキングを剥がした面を上面にし、長軸が試験テーブルの長軸に一致するように、テープで試験テーブルの右端に固定し、63mm×63mm、200gのスレッドの下側に、得られたフィルムを貼り付け、ポリカーボネートフィルムと得られたフィルムが重なるように設置し、上述の通り、得られたフィルムを滑らせて動摩擦係数を測定した。なお、比較例においてはフィルムが滑らず動摩擦係数を測定できない場合があった。
<Measurement of dynamic friction coefficient>
The dynamic friction coefficient of the obtained film was measured using a friction coefficient measuring machine. Specifically, the bisphenol A type polycarbonate film having a root mean square roughness of 0.093 μm and the obtained film were placed so as to overlap each other, and the threads were placed on the polycarbonate film under the conditions of 100 mm / min and a load cell of 10N. The film was slid and the dynamic friction coefficient was measured. A friction coefficient measuring machine manufactured by Toyo Seiki Seisakusho Co., Ltd. (“friction tester”) was used.
As the bisphenol A type polycarbonate film having a root mean square roughness of 0.093 μm, a bisphenol A type polycarbonate film with a single-sided masking film (manufactured by Mitsubishi Gas Chemical Company, FE-2000, thickness 100 μm) was used. In this embodiment, the unmasked side of the bisphenol A type polycarbonate film with a single-sided masking film is turned to the upper surface, and fixed to the right end of the test table with tape so that the long axis coincides with the long axis of the test table, 63 mm × The obtained film was attached to the underside of a 63 mm, 200 g thread, and the polycarbonate film and the obtained film were placed so as to overlap each other. As described above, the obtained film was slid and the dynamic friction coefficient was measured. In the comparative example, the film did not slip and the coefficient of dynamic friction could not be measured.
<二乗平均平方根粗さRqの測定>
 動摩擦係数の測定に用いたビスフェノールA型ポリカーボネートフィルムの表面粗さの測定は表面粗さ測定機を用いて具体的に以下の方法で測定した。装置の検出器を「一体型」にして、検出器の駆動部には「標準駆動ユニット」を装着した。ガラス板状にテープでフィルムを固定し、その上で表面粗さ測定機が動かないように設置した。その後、測定条件を規格「JIS B 0601-2001」、測定速度0.5mm/s、カットオフ値0.8、区間数3で測定を行い、二乗平均平方根粗さRqを測定した。二乗平均平方根粗さRqはフィルムの場所を変えて、3回測定して、その平均値とした。
 測定機は、ミツトヨ社製、「SJ-210」を用いた。
<Measurement of root mean square roughness Rq>
The surface roughness of the bisphenol A type polycarbonate film used for measuring the dynamic friction coefficient was specifically measured by the following method using a surface roughness measuring machine. The detector of the device was made "integrated", and a "standard drive unit" was attached to the drive unit of the detector. The film was fixed in the shape of a glass plate with tape, and the surface roughness measuring machine was installed on it so that it would not move. After that, the measurement was performed under the standard "JIS B 0601-2001", the measurement speed was 0.5 mm / s, the cutoff value was 0.8, and the number of sections was 3, and the root mean square roughness Rq was measured. The root mean square roughness Rq was measured three times at different locations of the film and used as the average value.
As the measuring machine, "SJ-210" manufactured by Mitutoyo Co., Ltd. was used.
<全光線透過率、ヘイズの測定>
 ヘイズメーターを用いて、D65光源10°視野の条件にて、得られたフィルムの全光線透過率(%)およびヘイズ(%)を測定した。
 ヘイズメーターは、村上色彩技術研究所社製「HM-150」)を用いた。
 結果を下記表1および表2に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
<Measurement of total light transmittance and haze>
Using a haze meter, the total light transmittance (%) and haze (%) of the obtained film were measured under the condition of a D65 light source 10 ° field of view.
As the haze meter, "HM-150" manufactured by Murakami Color Technology Research Institute Co., Ltd.) was used.
The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
10  透明導電性フィルム
11  電極層(透明導電膜)
12  基材フィルム
13  粘着剤層
14  保護フィルム
21  表面が平滑なポリカーボネートフィルム
22  表面に微細な凹凸を設けたポリカーボネートフィルム
30  フィルム
41  組成物
42  ダイス
43  一対のロール
44  搬送ロール
10 Transparent conductive film 11 Electrode layer (transparent conductive film)
12 Base film 13 Adhesive layer 14 Protective film 21 Polycarbonate film with smooth surface 22 Polycarbonate film with fine irregularities on the surface 30 Film 41 Composition 42 Die 43 Pair of rolls 44 Conveyance roll

Claims (14)

  1.  重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、
     示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)26.5質量部以上71.5質量部以下、および、
     重量平均分子量が45,000以上80,000以下のポリアリレート(C)3.5質量部以上7.5質量部以下を含有する、組成物。
    Bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less, 25 parts by mass or more and 70 parts by mass or less,
    The glass transition temperature measured by the differential scanning calorimeter is 160 ° C or higher, and the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is 26.5 parts by mass or more and 71.5 parts by mass or less, and
    A composition containing 3.5 parts by mass or more and 7.5 parts by mass or less of polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less.
  2.  前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)が、ビスフェノールAP型ポリカーボネートである、請求項1に記載の組成物。 The composition according to claim 1, wherein the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is a bisphenol AP type polycarbonate.
  3.  前記組成物の示差走査熱量計によって測定したガラス転移温度が160℃以上である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the glass transition temperature measured by a differential scanning calorimeter of the composition is 160 ° C. or higher.
  4.  請求項1~3のいずれか1項に記載の組成物から形成されたフィルム。 A film formed from the composition according to any one of claims 1 to 3.
  5.  二乗平均平方根粗さが0.093μmのフィルムとの動摩擦係数であって、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.0以下である、請求項4に記載のフィルム。 The film according to claim 4, wherein the dynamic friction coefficient with a film having a root mean square roughness of 0.093 μm and the dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N is 2.0 or less.
  6.  前記フィルムの厚みが10μm以上300μm以下である、請求項4または5に記載のフィルム。 The film according to claim 4 or 5, wherein the thickness of the film is 10 μm or more and 300 μm or less.
  7.  ヘイズが10%以下である、請求項4~6のいずれか1項に記載のフィルム。 The film according to any one of claims 4 to 6, which has a haze of 10% or less.
  8.  請求項4~7のいずれか1項に記載のフィルムと、粘着剤層、フィルム基材および電極層をこの順で有する、透明導電性フィルム。 A transparent conductive film having the film according to any one of claims 4 to 7, an adhesive layer, a film base material, and an electrode layer in this order.
  9.  重量平均分子量が20,000以上35,000以下であるビスフェノールA型ポリカーボネート(A)25質量部以上70質量部以下、
     示差走査熱量計によって測定したガラス転移温度が160℃以上であって、前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)26.5質量部以上71.5質量部以下、および、
     重量平均分子量が45,000以上80,000以下のポリアリレート(C)3.5質量部以上7.5質量部以下を含有する組成物を、溶融状態でシート状に押し出し、一対のロールで圧着して作製するフィルムの製造方法であって、前記一対のロールの少なくとも1つのロール表面のタイプA型のデュロメーター硬度が10~99である、フィルムの製造方法。
    Bisphenol A type polycarbonate (A) having a weight average molecular weight of 20,000 or more and 35,000 or less, 25 parts by mass or more and 70 parts by mass or less,
    The glass transition temperature measured by the differential scanning calorimeter is 160 ° C or higher, and the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is 26.5 parts by mass or more and 71.5 parts by mass or less, and
    A composition containing 3.5 parts by mass or more and 7.5 parts by mass or less of polyarylate (C) having a weight average molecular weight of 45,000 or more and 80,000 or less is extruded into a sheet in a molten state and pressure-bonded with a pair of rolls. A method for producing a film, wherein the type A durometer hardness of at least one roll surface of the pair of rolls is 10 to 99.
  10.  前記ビスフェノールA型ポリカーボネート(A)以外の芳香族ポリカーボネート(B)が、ビスフェノールAP型ポリカーボネートである、請求項9に記載のフィルムの製造方法。 The method for producing a film according to claim 9, wherein the aromatic polycarbonate (B) other than the bisphenol A type polycarbonate (A) is a bisphenol AP type polycarbonate.
  11.  前記組成物の示差走査熱量計によって測定したガラス転移温度が160℃以上である、請求項9または10に記載のフィルムの製造方法。 The method for producing a film according to claim 9 or 10, wherein the glass transition temperature measured by a differential scanning calorimeter of the composition is 160 ° C. or higher.
  12.  前記フィルムは、二乗平均平方根粗さが0.093μmのフィルムとの動摩擦係数であって、スレッド100mm/分、ロードセル10Nの条件で測定した動摩擦係数が、2.0以下である、請求項9~11のいずれか1項に記載のフィルムの製造方法。 The film has a dynamic friction coefficient with a film having a root mean square roughness of 0.093 μm, and the dynamic friction coefficient measured under the conditions of a thread of 100 mm / min and a load cell of 10 N is 2.0 or less, claim 9 to 9. The method for producing a film according to any one of 11.
  13.  前記フィルムの厚みが10μm以上300μm以下である、請求項9~12のいずれか1項に記載のフィルムの製造方法。 The method for producing a film according to any one of claims 9 to 12, wherein the thickness of the film is 10 μm or more and 300 μm or less.
  14.  前記フィルムのヘイズが10%以下である、請求項9~13のいずれか1項に記載のフィルムの製造方法。
     
    The method for producing a film according to any one of claims 9 to 13, wherein the haze of the film is 10% or less.
PCT/JP2020/020886 2019-05-29 2020-05-27 Composition, film and method for producing film WO2020241672A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020540367A JP6795128B1 (en) 2019-05-29 2020-05-27 Compositions, films, and methods of making films
CN202080039449.2A CN113906102B (en) 2019-05-29 2020-05-27 Composition, film, and method for producing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-100494 2019-05-29
JP2019100494 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020241672A1 true WO2020241672A1 (en) 2020-12-03

Family

ID=73552253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020886 WO2020241672A1 (en) 2019-05-29 2020-05-27 Composition, film and method for producing film

Country Status (1)

Country Link
WO (1) WO2020241672A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264534A (en) * 2000-03-14 2001-09-26 Kanegafuchi Chem Ind Co Ltd Optical film and its manufacturing method
JP2011516680A (en) * 2008-04-11 2011-05-26 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Plastic film with high breakdown voltage
JP2013040309A (en) * 2011-08-19 2013-02-28 Mitsubishi Chemicals Corp Polycarbonate resin sheet
JP2014015509A (en) * 2012-07-06 2014-01-30 Mitsubishi Gas Chemical Co Inc Resin composition and film using the same
JP2014159542A (en) * 2013-01-24 2014-09-04 Mitsubishi Chemicals Corp Game machine member, partition, touch panel, sheet for card, keyboard component, button component, switch component, building window or vehicle window
JP2016216534A (en) * 2015-05-14 2016-12-22 三菱瓦斯化学株式会社 Polycarbonate resin composition
WO2017204339A1 (en) * 2016-05-27 2017-11-30 出光興産株式会社 Resin composition, electrophotographic photosensitive material, and electrophotographic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264534A (en) * 2000-03-14 2001-09-26 Kanegafuchi Chem Ind Co Ltd Optical film and its manufacturing method
JP2011516680A (en) * 2008-04-11 2011-05-26 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Plastic film with high breakdown voltage
JP2013040309A (en) * 2011-08-19 2013-02-28 Mitsubishi Chemicals Corp Polycarbonate resin sheet
JP2014015509A (en) * 2012-07-06 2014-01-30 Mitsubishi Gas Chemical Co Inc Resin composition and film using the same
JP2014159542A (en) * 2013-01-24 2014-09-04 Mitsubishi Chemicals Corp Game machine member, partition, touch panel, sheet for card, keyboard component, button component, switch component, building window or vehicle window
JP2016216534A (en) * 2015-05-14 2016-12-22 三菱瓦斯化学株式会社 Polycarbonate resin composition
WO2017204339A1 (en) * 2016-05-27 2017-11-30 出光興産株式会社 Resin composition, electrophotographic photosensitive material, and electrophotographic device

Similar Documents

Publication Publication Date Title
JP5011398B2 (en) Polycarbonate resin laminated sheet
JP2010031174A (en) Polyester resin composition and biaxially oriented film using the same
WO2016129018A1 (en) Polycarbonate resin composition and molded article
JP6795128B1 (en) Compositions, films, and methods of making films
JP6835298B1 (en) Film and film manufacturing method
JP6879444B1 (en) Film and film manufacturing method
WO2020241674A1 (en) Composition, plate-like molded article and method for producing plate-like molded article
WO2020241672A1 (en) Composition, film and method for producing film
JP6825755B1 (en) Compositions, films and methods for producing films
JP2022122202A (en) Biaxially oriented film, and laminate film
JP2022080269A (en) Resin composition, tabular molding, multilayer body and method for producing molding
JP5480687B2 (en) Aromatic polycarbonate resin composition with improved surface appearance
JP2022080270A (en) Resin composition, tabular molding, multilayer body, molding, and method for producing molding
JP2021080345A (en) Resin composition, flat plate-shaped molding, multilayer body, and antireflection film
JP6777269B1 (en) Resin composition and molded product
JP6806286B1 (en) Resin composition and molded product
CN114729173B (en) Resin composition, flat molded body, multilayer body, and antireflection film
JP2022182907A (en) Film, multilayer body, and transparent conductive film
WO2021112082A1 (en) Plate-shaped molded body and multi-layer body
JP7150628B2 (en) Transparent conductive film laminate
JP2022080923A (en) Resin composition, film, multilayer film, and method for manufacturing film
JP2022182086A (en) Film, multilayer body, and transparent conductive film
JP2016175357A (en) Release polyester film
JP2024051243A (en) LAMINATED PHASE DIFFERENCE FILM, POLARIZING PLATE WITH PHASE DIFFERENCE LAYER, AND IMAGE DISPLAY DEVICE
JP2023137992A (en) Multilayer body, transparent substrate, transparent protective film, protective film for front surface of touch panel and front plate for display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540367

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813920

Country of ref document: EP

Kind code of ref document: A1