WO2021095651A1 - Graphene dispersion, positive electrode paste, and lithium ion battery positive electrode - Google Patents

Graphene dispersion, positive electrode paste, and lithium ion battery positive electrode Download PDF

Info

Publication number
WO2021095651A1
WO2021095651A1 PCT/JP2020/041519 JP2020041519W WO2021095651A1 WO 2021095651 A1 WO2021095651 A1 WO 2021095651A1 JP 2020041519 W JP2020041519 W JP 2020041519W WO 2021095651 A1 WO2021095651 A1 WO 2021095651A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
positive electrode
weight
polyvinyl alcohol
dispersion
Prior art date
Application number
PCT/JP2020/041519
Other languages
French (fr)
Japanese (ja)
Inventor
加藤智博
竹内孝
片瀬郁也
玉木栄一郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020563574A priority Critical patent/JPWO2021095651A5/en
Publication of WO2021095651A1 publication Critical patent/WO2021095651A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphene dispersion, a method for producing the same, a positive electrode paste, and a positive electrode of a lithium ion battery.
  • Lithium-ion batteries used in these fields are required to suppress a decrease in battery capacity due to repeated charging and discharging to improve battery life.
  • conductive auxiliary agents such as carbon nanotubes and graphene are used.
  • a dispersion liquid containing a dispersion liquid medium, a polymer dispersion auxiliary agent, and carbon nanotubes dispersed in the dispersion liquid medium, wherein the carbon nanotubes have a specific aggregated form is dispersed.
  • An electrode for a secondary battery having a liquid see, for example, Patent Document 1
  • an active material for a secondary battery and a mixture layer containing graphene, and the content of graphene in the mixture layer and the void ratio of the mixture layer.
  • Patent Document 2 and the like have been proposed.
  • the conductive auxiliary agent forming the conductive path is uniformly mixed with the material such as the positive electrode active material to form a homogeneous and stable coating film.
  • the present invention provides a graphene dispersion in which graphene can be uniformly mixed when mixed with a positive electrode active material and a positive electrode paste using the same, thereby providing a lithium ion battery positive electrode having an improved battery life. Make it an issue.
  • the present invention is a graphene dispersion containing graphene and polyvinyl alcohol, in which the average thickness of the graphene is 0.3 nm or more and 10 nm or less, and the saponification rate of the polyvinyl alcohol is 70.
  • Another aspect of the present invention is a positive electrode paste containing a positive electrode active material, graphene and polyvinyl alcohol, in which the average thickness of the graphene is 0.3 nm or more and 10 nm or less, and the saponification rate of the polyvinyl alcohol is 70.
  • another aspect of the present invention is a lithium ion battery positive electrode containing a positive electrode active material, graphene and polyvinyl alcohol, wherein the graphene has an average thickness of 0.3 nm or more and 10 nm or less, and the polyvinyl alcohol is saponified.
  • a lithium ion battery positive electrode having a rate of 70% or more and 100% or less and containing 10 parts by weight or more and 300 parts by weight or less of the polyvinyl alcohol with respect to 100 parts by weight of the graphene.
  • the graphene dispersion of the present invention has excellent fluidity and excellent graphene uniformity when mixed with the positive electrode active material.
  • the positive electrode paste of the present invention has excellent coating film uniformity, can increase the solid content, and can improve battery life.
  • the graphene dispersion of the present invention contains graphene having an average thickness of 0.3 nm or more and 10 nm or less and polyvinyl alcohol having a saponification rate of 70% or more and 100% or less.
  • Thin graphene with an average thickness of 0.3 nm or more and 10 nm or less is flexible and follows the surface of the positive electrode active material well, and easily forms a conductive path.
  • thin graphene tends to cause aggregation, it is conventionally difficult to maintain dispersibility in the graphene dispersion and the positive electrode paste when such thin graphene is used, and the fluidity of the dispersion becomes poor. It was inadequate.
  • polyvinyl alcohol having a specific saponification rate is used together with such thin graphene.
  • Such polyvinyl alcohol functions as a dispersant for enhancing the dispersibility of graphene in the graphene dispersion liquid, and at the same time, functions as a structural material for forming a uniform coating film at the time of forming a coating film.
  • the graphene dispersion of the present invention when used for a positive electrode paste or a positive electrode of a lithium ion battery, it is easy to obtain a uniform coating film in which a positive electrode active material and a highly fluid graphene dispersion are uniformly mixed, and the positive electrode paste can be used.
  • the solid content ratio can be increased. Further, since the binding of the positive electrode of the lithium ion battery is strengthened, deterioration of the conductive path due to repeated charging and discharging can be suppressed, and the battery life can be improved.
  • Graphene is useful as a conductive auxiliary agent because it has a thin layer shape and has many conductive paths per unit weight, and it is easy to form a good conductive network in the electrode.
  • Graphene in a narrow sense, refers to a sheet of sp 2- bonded carbon atoms (single-layer graphene) having a thickness of one atom, but in the present specification, it also includes those having a flaky form in which single-layer graphene is laminated. It is called graphene.
  • graphene oxide is also referred to as a name including those having a laminated flaky form.
  • graphene oxide having an O / C ratio of more than 0.4 which is the ratio of oxygen atoms to carbon atoms measured by X-ray photoelectron spectroscopy (XPS), is 0.4 or less.
  • the thing is called graphene.
  • reduced graphene obtained by reducing graphene oxide and having an O / C ratio of 0.4 or less is also referred to as graphene.
  • graphene and graphene oxide may be surface-treated for the purpose of improving dispersibility, etc., but in the present specification, graphene or graphene oxide to which such a surface treatment agent is attached is also included in “graphene”. It shall be referred to as “graphene” or “graphene oxide”.
  • the average thickness of graphene used in the graphene dispersion of the present invention is 0.3 nm or more and 10 nm or less.
  • the graphene dispersion of the present invention uses a thin graphene in a range in which the average thickness is applied, thereby improving the followability of the graphene to the surface of the positive electrode active material while maintaining the conductivity, and facilitating the formation of a conductive path. Can be done. If the average thickness of graphene is less than 0.3 nm, defects are likely to occur, so that the conductivity is lowered and the battery life is shortened. On the other hand, when the average thickness of graphene exceeds 10 nm, the dispersibility is lowered and the coating film uniformity is lowered.
  • the average thickness of graphene is 8 nm or less from the viewpoint of making it easier to increase the solid content of the positive electrode paste, further improving the uniformity of the coating film, and more effectively forming the conductive path and further improving the battery life. It is preferably 6 nm or less, and more preferably 6 nm or less.
  • the average thickness of graphene in the graphene dispersion is observed by collecting graphene from the graphene dispersion and magnifying it to a viewing range of about 1 to 10 ⁇ m square using an atomic force microscope so that the graphene can be observed appropriately.
  • each graphene shall be the arithmetic mean value of the measured values of the thicknesses of five randomly selected points in each graphene.
  • the size of graphene in the direction parallel to the graphene layer is preferably 0.1 ⁇ m or more from the viewpoint of increasing the uniformity of the coating film of the positive electrode paste, increasing the contact area with the positive electrode active material, and further improving the battery life. , 0.5 ⁇ m or more is more preferable, and 1 ⁇ m or more is further preferable.
  • the size of graphene in the direction parallel to the graphene layer further improves the dispersibility, improves the fluidity of the positive electrode paste, makes it easier to increase the solid content ratio, and further improves the uniformity of the coating film. Therefore, 100 ⁇ m or less is preferable, 50 ⁇ m or less is more preferable, and 20 ⁇ m or less is further preferable.
  • the size of graphene in the graphene dispersion in the direction parallel to the graphene layer is such that graphene is sampled from the graphene dispersion and an electron microscope is used so that the graphene is appropriately within the field of view.
  • the length of the longest part (major axis) and the length of the shortest part (minor axis) in the direction parallel to the graphene layer were determined. It can be calculated by measuring each and obtaining the arithmetic average value of the numerical values obtained by (major axis + minor axis) / 2.
  • the size of graphene in the direction parallel to the graphene layer can be easily adjusted to the above-mentioned range by refining graphene oxide or graphene after reduction by the method described later. Further, commercially available graphene oxide or graphene having a desired size may be used.
  • the element ratio (O / C ratio) of oxygen to carbon measured by X-ray photoelectron spectroscopy of graphene is from the viewpoint of further improving the dispersibility by the residual functional group and further improving the coating uniformity of the positive electrode paste. , 0.05 or more, more preferably 0.07 or more, still more preferably 0.08 or more.
  • the O / C ratio is determined from the viewpoint of further improving the fluidity of the graphene dispersion liquid and from the viewpoint of restoring the ⁇ -electron conjugated structure by reduction to further improve the conductivity and further improving the coating film uniformity and the battery life. It is preferably 0.35 or less, more preferably 0.20 or less, and even more preferably 0.15 or less.
  • the O / C ratio of graphene in the graphene dispersion can be measured by collecting graphene from the graphene dispersion and using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the peak near 284.3 eV was assigned to the C1s main peak based on carbon atoms
  • the peak near 533 eV was assigned to the O1s peak based on oxygen atoms
  • the O / C ratio was calculated from the area ratio of each peak. Round off the third decimal place of the value to obtain the second decimal place.
  • the O / C ratio of graphene can be easily adjusted to the above range by, for example, when the chemical stripping method is used, the degree of oxidation of graphene oxide as a raw material and the degree of reduction according to the reduction reaction conditions are adjusted. Can be done. Further, commercially available graphene oxide or graphene having a desired O / C ratio may be used.
  • graphene and graphene oxide may be surface-treated, and in particular, surface-treating agents containing nitrogen atoms tend to enhance the dispersibility of graphene.
  • the surface treatment agent can enhance the interaction with polyvinyl alcohol, which will be described later, further enhance the effect of improving the dispersibility, and can further improve the binding force when used for the positive electrode of a lithium ion battery.
  • the amount of surface treatment agent adhering to graphene is the atomic ratio of nitrogen to carbon (N / C ratio) measured using X-ray photoelectron spectroscopy. Can be obtained from.
  • the N / C ratio of graphene is preferably 0.005 or more from the viewpoint of further improving the dispersibility, further improving the fluidity of the graphene dispersion liquid and the coating film uniformity of the positive electrode paste, and further improving the battery life. 0.006 or more is more preferable, and 0.008 or more is further preferable.
  • the N / C ratio of graphene is preferably 0.020 or less from the viewpoint of further improving the fluidity of the graphene dispersion and further improving the conductivity and the battery life and the uniformity of the coating film, and is 0. .018 or less is more preferable, and 0.016 or less is further preferable.
  • the N / C ratio of graphene in the graphene dispersion can be measured by collecting graphene from the graphene dispersion and measuring it by X-ray photoelectron spectroscopy (XPS).
  • the peak near 284.3 eV was assigned to the C1s main peak based on carbon atoms
  • the peak near 402 eV was assigned to the N1s peak based on nitrogen atoms
  • the N / C ratio was calculated from the area ratio of each peak. Round the 4th decimal place of the value to the 3rd decimal place.
  • the N / C ratio of graphene can be easily adjusted to the above-mentioned range by, for example, the amount of the surface treatment agent adhered to be described later.
  • the surface treatment agent is present on the surface of graphene, so that it exerts the effect of further enhancing the dispersibility of graphene.
  • graphene in a state where such a surface treatment agent is attached is referred to as "surface treatment graphene".
  • the fact that the surface treatment agent is present on graphene means that the cleaning step of dispersing the surface treatment graphene in water having a mass ratio of 100 times and filtering it is repeated 5 times or more, and then freeze-dried. It means that the surface treatment agent remains in the surface treatment graphene after being dried by a method such as drying or spray drying.
  • the residual surface treatment agent means that when the surface treatment graphene after drying is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the surface treatment agent molecules are protonated in the positive secondary ion spectrum. It means that it can be detected in the form of a molecule. However, when the surface treatment agent is a neutralizing salt, it can be detected in the form of protons added to the surface treatment agent molecules from which the anion molecules have been removed.
  • the chemical structure of the surface treatment agent contained in the surface treatment graphene can be specified by TOF-SIMS.
  • the quantification of the surface treatment agent is carried out using a sample obtained by repeating the washing step of dispersing the surface treatment graphene in water having a mass ratio of 100 times and filtering it 5 times or more, and then freeze-drying.
  • a compound having an aromatic ring is preferable from the viewpoint of easily adsorbing on the graphene surface.
  • the surface treatment agent preferably has an acidic group and / or a basic group.
  • the acidic group a group selected from a hydroxy group, a phenolic hydroxy group, a nitro group, a carboxyl group and a carbonyl group is preferable, and two or more of these may be present. Of these, phenolic hydroxy groups are preferred.
  • Examples of the compound having a phenolic hydroxy group and an aromatic ring include phenol, nitrophenol, cresol, and catechol. Some of the hydrogen in these compounds may be substituted.
  • catechol and its derivatives are preferable from the viewpoint of adhesion to graphene and dispersibility in a dispersion medium, for example, catechol, dopamine hydrochloride, 3- (3,4-dihydroxyphenyl) -L-alanine, and the like.
  • 4- (1-Hydroxy-2-aminoethyl) catechol, 3,4-dihydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, caffeic acid, 4-methylcatechol and 4-tert-butylpyrocatechol are preferable.
  • an amino group is preferable.
  • Examples of the compound having an amino group and an aromatic ring include benzylamine, phenylethylamine and salts thereof. Some of the hydrogen in these compounds may be substituted.
  • the graphene used in the present invention may be manufactured by a physical stripping method or may be manufactured by a chemical stripping method.
  • the method for producing graphene oxide is not particularly limited, and a known method such as the Hammers method can be used. Alternatively, commercially available graphene oxide may be purchased.
  • the chemical stripping method preferably includes a step of oxidatively stripping graphite to obtain graphene oxide (graphite stripping step) and a step of reducing (reducing step) in this order. If necessary, between the graphite stripping step and the reduction step, a step of adhering a surface treatment agent to graphene (surface treatment step) and / or a step of adjusting the size of graphene in a direction parallel to the graphene layer (fine). (Chemicalization step) may be performed.
  • the surface-treating agent may be attached to graphene after the reduction step, or may be subjected to the reduction treatment after being attached to graphene oxide.
  • graphene oxide may be miniaturized, or graphene after reduction may be miniaturized.
  • graphite peeling process First, graphite is oxidatively exfoliated to obtain graphene oxide.
  • the degree of oxidation of graphene oxide can be adjusted by changing the amount of the oxidizing agent used in the oxidation reaction of graphite.
  • sodium nitrate and potassium permanganate can be used as the oxidizing agent.
  • the weight ratio of sodium nitrate to graphite is preferably 0.200 or more and 0.800 or less.
  • the weight ratio of potassium permanganate to graphite is preferably 1.00 or more and 4.00 or less.
  • the mixing method include a method of mixing using a mixer such as an automatic mortar, a three-roll, a bead mill, a planetary ball mill, a homogenizer, a homodisper, a homomixer, a planetary mixer, and a twin-screw kneader, or a kneader. ..
  • a mixer such as an automatic mortar, a three-roll, a bead mill, a planetary ball mill, a homogenizer, a homodisper, a homomixer, a planetary mixer, and a twin-screw kneader, or a kneader.
  • miniaturization process Next, graphene oxide is refined.
  • the miniaturization method include a method of colliding a pressure-applied dispersion with a single ceramic ball, and a method of using a liquid-liquid shear type wet jet mill in which pressure-applied dispersions collide with each other to disperse. , A method of applying ultrasonic waves to the dispersion liquid and the like.
  • graphene oxide or graphene tends to be miniaturized as the treatment pressure and output are higher and the treatment time is longer. It is possible to adjust the size of graphene after reduction depending on the type of miniaturization treatment, treatment conditions, and treatment time in the miniaturization step.
  • the solid content concentration of graphene oxide or graphene in the miniaturization step is preferably 0.01% by weight or more and 2% by weight or less. Further, when performing ultrasonic treatment, the ultrasonic output is preferably 100 W or more and 3000 W or less.
  • the finely divided graphene oxide is reduced.
  • chemical reduction is preferable.
  • examples of the reducing agent include an organic reducing agent and an inorganic reducing agent, but the inorganic reducing agent is more preferable because of the ease of cleaning after reduction.
  • Examples of the organic reducing agent include an aldehyde-based reducing agent, a hydrazine derivative reducing agent, and an alcohol-based reducing agent. Of these, alcohol-based reducing agents are particularly suitable because they can be reduced relatively gently. Examples of the alcohol-based reducing agent include methanol, ethanol, propanol, isopropyl alcohol, butanol, benzyl alcohol, phenol, ethanolamine, ethylene glycol, propylene glycol, diethylene glycol and the like.
  • Examples of the inorganic reducing agent include sodium dithionite, potassium dithionite, phosphorous acid, sodium borohydride, hydrazine and the like.
  • sodium dithionite or potassium dithionite can be reduced while relatively retaining an acidic group, so graphene having high dispersibility in a solvent can be produced and is preferably used.
  • the purity of graphene can be improved by carrying out a washing step of preferably diluting with water and filtering.
  • polyvinyl alcohol having a specific saponification rate is used together with thin graphene.
  • the dispersibility of graphene is improved by the interaction between the hydroxyl group on polyvinyl alcohol and the oxygen-containing functional group on graphene and / or the functional group on the surface treatment agent, and the dispersibility of graphene is improved, and the dispersibility of graphene and polyvinyl alcohol is improved.
  • the binding force is improved. Therefore, in the present invention, the hydroxyl group content of polyvinyl alcohol, that is, the saponification rate is important.
  • the saponification rate of polyvinyl alcohol used in the graphene dispersion of the present invention is 70% or more and 100% or less. By setting the saponification rate within such a range, the dispersibility can be improved by the interaction with graphene. If the saponification rate of polyvinyl alcohol is less than 70%, the interaction with graphene is insufficient, and the effect of improving dispersibility is insufficient, so that the battery life is shortened. From the viewpoint of further improving the dispersibility of graphene and the fluidity of the graphene dispersion liquid and further improving the battery life, the saponification rate of polyvinyl alcohol is preferably 75% or more, more preferably 80% or more, and 85% or more. More preferred.
  • the saponification rate of polyvinyl alcohol is preferably 99.9% or less, more preferably 98% or less, still more preferably 95% or less.
  • the saponification rate of polyvinyl alcohol can be determined according to JIS K6726-1994.
  • % in the saponification rate means mol%.
  • the polyvinyl alcohol may be unmodified polyvinyl alcohol or modified polyvinyl alcohol.
  • Examples of the unmodified polyvinyl alcohol include the product name "Kuraray Poval” (registered trademark) "(Kuraray Co., Ltd.), the product name” Gosenol “(registered trademark)” (Mitsubishi Chemical Co., Ltd.), and the product name “Denka”. Examples include “Poval” (registered trademark) "(Denka Co., Ltd.) and the product name” J-Poval “(Japan Vam & Poval Co., Ltd.).
  • modified polyvinyl alcohol examples include those having a group selected from a carboxyl group, a sulfonic acid group, a cationic group (quaternary ammonium salt) and an ethylene oxide group in the side chain.
  • a group selected from a carboxyl group, a sulfonic acid group, a cationic group (quaternary ammonium salt) and an ethylene oxide group in the side chain Specifically, for example, the product name "Gosenex” (registered trademark) "(Mitsubishi Chemical Corporation) L, T, WO series and the like can be mentioned.
  • modified polyvinyl alcohol having a carboxyl group or a sulfonic acid group in the side chain is more preferable from the viewpoint of further improving the dispersibility of graphene and the fluidity of the graphene dispersion and further improving the battery life.
  • the degree of polymerization of polyvinyl alcohol is preferably 100 or more, more preferably 200 or more, still more preferably 300 or more, from the viewpoint that the effect of improving dispersibility can be easily obtained.
  • the degree of polymerization of polyvinyl alcohol is preferably 10,000 or less, preferably 5,000 or less, from the viewpoint of further improving the fluidity of the graphene dispersion, increasing the solid content of the positive electrode paste, and further improving the battery life. The following is more preferable, and 2,000 or less is further preferable.
  • the degree of polymerization of the unmodified polyvinyl alcohol can be determined according to JIS6726-1994.
  • Two or more kinds of polyvinyl alcohol may be contained.
  • the saponification rate and the degree of polymerization of the two or more kinds of polyvinyl alcohols as a whole are within the above ranges.
  • the graphene dispersion of the present invention contains 10 parts by weight or more and 300 parts by weight or less of the above-mentioned polyvinyl alcohol with respect to 100 parts by weight of the above-mentioned graphene. If the content of polyvinyl alcohol is less than 10 parts by weight, the effect of improving the dispersibility of polyvinyl alcohol cannot be sufficiently obtained, the fluidity of the graphene dispersion is lowered, and the uniformity of the coating film of the positive electrode paste and the battery life are lowered. To do.
  • the content of polyvinyl alcohol is preferably 15 parts by weight or more, more preferably 20 parts by weight or more.
  • the content of polyvinyl alcohol exceeds 300 parts by weight, the electric resistance becomes high when the coating film is formed, so that the battery life is shortened.
  • the fluidity of the graphene dispersion is reduced, the solid content of the positive electrode paste and the uniformity of the coating film are reduced.
  • the content of polyvinyl alcohol is preferably 200 parts by weight or less, more preferably 100 parts by weight or less.
  • the content of graphene and polyvinyl alcohol in the graphene dispersion of the present invention can be determined by the following method. First, graphene and polyvinyl alcohol are separated by filtration. The graphene content can be determined by thoroughly washing the graphene-containing filter medium with a solvent and then drying the filter medium. Further, the content of polyvinyl alcohol can be determined by distilling off the solvent from the filtrate (including polyvinyl alcohol), drying the mixture, and measuring the weight. However, if the raw material composition used for the graphene dispersion is known, it can be calculated from the raw material composition.
  • the graphene dispersion of the present invention preferably further contains a solvent.
  • a solvent a polar solvent is preferable from the viewpoint of excellent solubility of polyvinyl alcohol.
  • a solvent selected from N, N-dimethylformamide, N-methylpyrrolidone and N, N-dimethylacetamide is preferable from the viewpoint of affinity with the binder polymer solution. Two or more of these may be contained. Among these, it is more preferable to contain N-methylpyrrolidone from the viewpoint of more effectively exerting the effect of improving the dispersibility of the surface treatment agent. Dispersibility is further enhanced by solvating N-methylpyrrolidone with the surface treatment agent attached to graphene.
  • the graphene dispersion of the present invention preferably has fluidity.
  • the term “fluid” means that 1 g of graphene dispersion is dropped on one end of a clean and flat aluminum foil having a width of 5 cm and a length of 15 cm in a circular shape having a diameter of about 1 cm.
  • the aluminum foil is erected vertically, held without vibration, and after standing for 10 minutes, the distance that the graphene dispersion liquid drips due to its own weight is 3 cm or more. Refers to something.
  • the distance at which the graphene dispersion drips can be determined by measuring the distance before and after the graphene dispersion drips at the end of the graphene dispersion in the direction in which gravity is applied when the aluminum foil is erected vertically.
  • Examples of the method for producing the graphene dispersion include a method in which a graphene powder or a graphene dispersion is mixed with a solution of polyvinyl alcohol in the solvent. From the viewpoint of further suppressing graphene aggregation, it is preferable to use a graphene dispersion.
  • a device capable of applying a shearing force is preferable.
  • a planetary mixer "Fillmix” (registered trademark) (Primix Corporation), a self-revolving mixer.
  • a planetary ball mill, a three-roll mill, or the like can be used.
  • a high shear mixer may be used to perform a strong stirring step in which the shearing process is performed at a shear rate of 5,000 to 50,000 per second. By peeling the graphene with a high shear mixer in the strong stirring step, the stack of graphene can be eliminated and the average thickness of the graphene can be adjusted.
  • a thin film swirl system As the high shear mixer, a thin film swirl system, a rotor / stator system, or a media mill system is preferable. Specifically, for example, "Filmix” (registered trademark) 30-30 type (Primix), "Clearmix” (registered trademark) CLM-0.8S (M Technique), "Laboster” (registered trademark). ) Mini LMZ015 (Ashizawa Finetech), Super Share Mixer SDRT0.35-0.75 (Satake Chemical Machinery Co., Ltd.) and the like.
  • the shear rate in the strong stirring step is preferably 5,000 to 50,000 per second. By setting the shear rate to 5,000 or more per second, the peeling of graphene can be promoted, and the average thickness of graphene can be easily adjusted to the above range.
  • the processing time of the strong stirring step is preferably 15 seconds to 300 seconds.
  • a graphene-containing film can be formed by applying the above graphene dispersion liquid onto a substrate.
  • the graphene dispersion coating method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, a spray coating method, an inkjet method, and a flexographic method. Be done.
  • the spray method or the coater method is preferable from the viewpoint of ease of application to the positive electrode paste and the positive electrode of the lithium ion battery.
  • Additives may be further mixed with the graphene dispersion of the present invention.
  • the additive include a positive electrode active material, a binder, a cross-linking agent, a deterioration inhibitor, an inorganic filler and the like.
  • the positive electrode paste of the present invention contains a positive electrode active material, graphene having an average thickness of 0.3 nm or more and 10 nm or less, and polyvinyl alcohol having a saponification rate of 70% or more and 100% or less. Further, if necessary, a conductive auxiliary agent other than graphene may be contained.
  • Examples of graphene include those exemplified as the material of the graphene dispersion liquid.
  • the average thickness of graphene, the size in the direction parallel to the graphene layer, the O / C ratio and the N / C ratio can be obtained by collecting graphene from the positive electrode paste and using the method described above.
  • polyvinyl alcohol examples include those exemplified as the material of the graphene dispersion liquid.
  • the positive electrode active material is a material capable of electrochemically occluding and releasing lithium ions.
  • some substituted ternary (LiNi x Mn y Co 1- x-y O 2), a portion of a cobalt-aluminum-substituted ternary (LiNi x Co y Al 1- x-y O 2), V 2 O metal oxide such as 5 active material and TiS 2, MoS 2, metal compound-based active material such as NbSe 2, lithium iron phosphate (LiFePO 4) of olivine structure, lithium manganese phosphate (LiMnPO 4), a solid solution system Examples include active materials. Two or more of these may be used. Among these, an active material containing lithium and nickel is preferable.
  • Examples of the active material containing lithium and nickel include lithium nickelate (LiNiO 2 ), a ternary system in which nickel is partially replaced with manganese and cobalt (LiNi x Mn y Co 1-x-y O 2 ), and cobalt. aluminum some substituted ternary (LiNi x Co y Al 1- x-y O 2) , etc. are preferred, it is possible to improve the energy density.
  • the granulated material means spherical particles obtained by spray-drying a slurry in which powder is dispersed.
  • Positive electrode active materials used as granules include a ternary system (LiNi x Mn y Co 1-x-y O 2 ) and LiNi x Co y Al 1-x-y O 2 .
  • the primary particles are aggregated to form the secondary particles, the surface tends to have an uneven shape, and it is necessary to increase the contact surface between the positive electrode active material and the conductive auxiliary agent. The effect is noticeable.
  • the particle size of the positive electrode active material is preferably 20 ⁇ m or less from the viewpoint of ease of forming a conductive path with graphene described above.
  • the particle size means the median diameter (D 50 ).
  • the median diameter can be measured by a laser scattering particle size distribution measuring device (for example, Microtrack HRX-100 manufactured by Nikkiso Co., Ltd.).
  • the "particle size of the positive electrode active material” means the secondary particle size when the positive electrode active material is a granulated material.
  • the positive electrode paste of the present invention contains 10 parts by weight or more and 300 parts by weight or less of the above-mentioned polyvinyl alcohol with respect to 100 parts by weight of the above-mentioned graphene. If the content of polyvinyl alcohol is less than 10 parts by weight, the effect of improving the dispersibility of polyvinyl alcohol cannot be sufficiently obtained, the fluidity of the positive electrode paste is lowered, and the uniformity of the coating film and the battery life are lowered. In addition, it becomes difficult to increase the solid content of the positive electrode paste.
  • the content of polyvinyl alcohol is preferably 15 parts by weight or more, more preferably 20 parts by weight or more.
  • the content of polyvinyl alcohol exceeds 300 parts by weight, the content of the positive electrode active material and graphene is relatively lowered, and the electric resistance is likely to increase, so that the battery life is shortened.
  • the solid content of the positive electrode paste is lowered, and the uniformity of the coating film is lowered.
  • the content of polyvinyl alcohol is preferably 200 parts by weight or less, more preferably 100 parts by weight or less.
  • the solid content of the positive electrode paste of the present invention is a value obtained by placing 1 g of the positive electrode paste on a slide glass, heating and drying in a vacuum oven at 120 ° C. for 5 hours, and dividing the weight after drying by the weight before drying. Say.
  • the positive electrode paste of the present invention preferably contains the above-mentioned graphene in an amount of 0.05 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
  • the graphene content is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more.
  • the content of the positive electrode active material, graphene and polyvinyl alcohol in the positive electrode paste of the present invention can be determined by the following method.
  • the solid content is collected from the positive electrode paste by filtration, washed with a solvent, and then the weight of the dried powder is measured to determine the total weight of the positive electrode active material and the conductive additive.
  • the positive electrode active material in the solid content is dissolved with an acid such as hydrochloric acid and nitric acid, and the conductive auxiliary agent is separated by filtering.
  • the content of the conductive additive can be measured by washing the filter with water, drying it, and measuring the weight.
  • the weight of the positive electrode active material can be obtained from the total weight of the positive electrode active material and the conductive auxiliary agent and the weight of the conductive auxiliary agent.
  • the conductive auxiliary agent contains graphene and other materials, determine the size of each conductive auxiliary agent from the SEM image of the powder, and sieve the sieve so that only graphene passes through or is captured. The content of graphene alone can be determined by using and recovering. When the sizes of the plurality of conductive auxiliaries are about the same and sieving is difficult, the content of each can be obtained from the ratio of the cross-sectional areas of the surface SEM images of the powder. However, if the raw material composition used for the positive electrode paste is known, it can be calculated from the raw material composition.
  • the positive electrode paste of the present invention may further contain a binder, a conductive auxiliary agent other than graphene, and other additives.
  • binder examples include fluoropolymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); rubbers such as styrene butadiene rubber (SBR) and natural rubber; polysaccharides such as carboxymethyl cellulose; polyimide precursors. And / or polyimide resin, polyamideimide resin, polyamide resin, polyacrylic acid, sodium polyacrylate, acrylic resin, polyacrylonitrile and the like can be mentioned. Two or more of these may be contained.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • polysaccharides such as carboxymethyl cellulose
  • polyimide precursors such as polyimide precursors.
  • polyimide resin, polyamideimide resin, polyamide resin, polyacrylic acid, sodium polyacrylate, acrylic resin, polyacrylonitrile and the like can be mentioned. Two or more of these may be contained
  • the content of the binder is preferably 0.2 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the content of the positive electrode active material.
  • the content of the binder is preferably 0.2 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the content of the positive electrode active material.
  • the conductive auxiliary agent other than graphene preferably has high electron conductivity.
  • fiber-shaped carbon nanofibers, carbon nanotubes, or "VGCF” (registered trademark) -H are preferable, and the conductivity in the thickness direction of the electrode can be improved.
  • the content of the conductive additive other than graphene is preferably 0.1 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the content of the positive electrode active material.
  • the content of the conductive auxiliary agent other than graphene is preferably 0.1 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the content of the positive electrode active material.
  • the solid content is collected from the positive electrode paste by filtration, washed with a solvent, and then dried, and the powder is measured by X-ray diffraction to measure the type of positive electrode active material. Can be identified.
  • the mixing ratio of the positive electrode active materials is obtained by further analyzing the powder by energy dispersion X-ray spectroscopy or ICP-MS (inductively coupled plasma mass spectrometer). be able to.
  • the raw material composition used for the positive electrode paste is known, it can be calculated from the raw material composition.
  • the filtrate obtained by the above filtration is measured by FT-IR and CF absorption derived from PVDF is observed from the obtained spectrum, it can be determined that PVDF is contained as a binder. Further, the content of the binder in the positive electrode paste can be measured by drying the filtrate and measuring the weight. In addition, other binders can be identified by redissolving the dried filtrate in a heavy solvent and analyzing it using NMR (nuclear magnetic resonance spectroscopy).
  • the viscosity of the positive electrode paste of the present invention at 25 ° C. is preferably 1,800 mPa ⁇ s or more and 2,200 mPa ⁇ s or less from the viewpoint of coatability.
  • the viscosity of the paste at 25 ° C. was determined by using a Brookfield viscometer LVDVII + to determine the rotor No. It can be measured under the condition of 6 or 60 rpm.
  • the solid content of the positive electrode paste is a slide in the positive electrode paste after the viscosity measured by the above measurement method is adjusted to be 1800 mPa ⁇ s or more and 2,200 mPa ⁇ s or less. It refers to a value obtained by placing 1 g of positive electrode paste on glass, heating and drying in a vacuum oven at 120 ° C. for 5 hours, and dividing the weight after drying by the weight before drying.
  • the solid content of the positive electrode paste is preferably 70% by weight or more from the viewpoint of forming a conductive path and improving the battery life.
  • the fluidity of the graphene dispersion is high, the mixed state of each material in the positive electrode paste is improved, the amount of the solvent required for adjusting the viscosity is reduced, and the solid content ratio of the positive electrode paste can be increased.
  • the positive electrode paste of the present invention for example, the above-mentioned graphene dispersion of the present invention, the positive electrode active material, and a binder or a binder solution are mixed in a desired ratio, and then the viscosity is measured by the above-mentioned method. Then, a method of adding a solvent so as to be 1,800 mPa ⁇ s or more and 2,000 mPa ⁇ s or less and then mixing again can be mentioned.
  • a graphene dispersion liquid containing no polyvinyl alcohol, a positive electrode active material, a binder or a binder solution, and a polyvinyl alcohol solution are mixed in a desired ratio, and then described above.
  • Another method is to measure the viscosity by a method, add a solvent so that the viscosity is 1800 mPa ⁇ s or more and 2,000 mPa ⁇ s or less, and then mix again.
  • the solvent include those exemplified as the solvent of the graphene dispersion liquid.
  • Conductive aids other than graphene and other additives may be added before adjusting the viscosity.
  • Examples of the positive electrode paste mixing device include those exemplified as a mixing device of a polyvinyl alcohol solution and graphene powder or a dispersion liquid.
  • the positive electrode of the lithium ion battery of the present invention contains a positive electrode active material, graphene having an average thickness of 0.3 nm or more and 10 nm or less, and polyvinyl alcohol having a saponification rate of 70% or more and 100% or less.
  • the positive electrode of the lithium ion battery is preferably one in which a dry film of the positive electrode paste is formed on the current collecting foil.
  • Examples of graphene include those exemplified as the material of the graphene dispersion liquid.
  • the average thickness of graphene, the size in the direction parallel to the graphene layer, the O / C ratio and the N / C ratio can be obtained by collecting graphene from the positive electrode of the lithium ion battery and using the method described above.
  • polyvinyl alcohol examples include those exemplified as the material of the graphene dispersion liquid.
  • Aluminum or its alloy is preferable as the material constituting the current collector foil. Since aluminum is stable in a positive electrode reaction atmosphere, high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like is preferable.
  • the thickness of the current collector foil is preferably 10 ⁇ m or more and 100 ⁇ m or less. By setting the thickness of the current collector foil to 10 ⁇ m or more, breakage of the positive electrode can be suppressed. On the other hand, by setting the thickness of the current collector foil to 100 ⁇ m or less, the energy density of the positive electrode can be improved.
  • Examples of the method for manufacturing the positive electrode of the lithium ion battery of the present invention include a method of applying the positive electrode paste on the current collecting foil and drying it.
  • Examples of the method of applying the positive electrode paste on the current collector foil include a method of applying the positive electrode paste using a doctor blade, a die coater, a comma coater, a spray, or the like.
  • the solvent After applying the positive electrode paste of the present invention to the current collector foil, it is preferable to remove the solvent by a drying step.
  • a drying step As a method for removing the solvent, drying using an oven or a vacuum oven is preferable.
  • the atmosphere for removing the solvent include air, an inert gas, and a vacuum state.
  • the temperature at which the solvent is removed is preferably 60 ° C. or higher and 250 ° C. or lower.
  • the content of graphene in the positive electrode of the lithium-ion battery and various physical properties and contents of the positive electrode active material can be measured as follows. First, the battery is disassembled in the Ar glove box, the electrodes are washed with dimethyl carbonate, and then vacuum dried in the side box of the inert glove box for 1 hour. Next, a spatula is used to peel off the positive electrode layer of the lithium ion battery from the current collector foil. The obtained powder of the positive electrode layer is dissolved in a solvent such as N-methylpyrrolidone or water and filtered to form a filtrate (positive electrode active material, conductive aid, solvent) and filtrate (solvent, etc.). To separate.
  • a solvent such as N-methylpyrrolidone or water
  • the binder can be identified by drying the obtained filtrate, redissolving it in a heavy solvent, and analyzing it using NMR. Further, the solvent is removed by drying the obtained filter medium, and the total weight of the positive electrode active material and the conductive auxiliary agent is obtained by measuring the weight.
  • the composition ratio of the positive electrode active material in the obtained powder can be analyzed in the same manner as in the case of the positive electrode paste. Further, the positive electrode active material is dissolved by using an acid such as hydrochloric acid and nitric acid, and the filtrate (conductive aid) and the filtrate (dissolved electrode active material, water) are separated by filtration. The content of the conductive additive can be measured by washing the filter with water, drying it, and measuring the weight.
  • the weight of the positive electrode active material can be obtained from the total weight of the positive electrode active material and the conductive auxiliary agent and the weight of the conductive auxiliary agent.
  • the obtained conductive auxiliary agent can be analyzed in the same manner as in the case of the positive electrode paste described above.
  • Graphene on the substrate was magnified and observed using an atomic force microscope (Dimension Icon; Bruker) in a field of view of about 1 to 10 ⁇ m square, and the thickness of each of 10 randomly selected graphenes was measured. ..
  • the thickness of each graphene was taken as the arithmetic mean value of the measured values of the thicknesses at five randomly selected points in each graphene.
  • the graphene thickness was calculated by obtaining the arithmetic mean value of the thicknesses of 10 graphenes. Since the thickness of graphene does not change in the graphene dispersion, the positive electrode paste, and the positive electrode of the lithium ion battery, it was measured using only the graphene dispersion.
  • Graphene on the substrate was magnified and observed at a magnification of 30,000 times using an electron microscope S-5500 (manufactured by Hitachi High-Technologies Corporation), and 10 randomly selected graphenes were observed in a plane parallel to the graphene layer.
  • the graphene layer is obtained by measuring the length (major axis) of the longest part in the direction and the length (minor axis) of the shortest part, respectively, and obtaining the arithmetic average value of the numerical value obtained by (major axis + minor axis) / 2.
  • the size of the plane parallel to is calculated.
  • the excited X-rays were monochromatic Al K ⁇ 1 and 2 rays (1486.6 eV), the X-ray diameter was 200 ⁇ m, and the photoelectron escape angle was 45 °.
  • the peak near 284.3 eV was assigned to the C1s main peak based on carbon atoms
  • the peak near 533 eV was assigned to the O1s peak based on oxygen atoms
  • the peak near 402 eV was assigned to the N1s peak based on nitrogen atoms.
  • the O / C ratio was calculated from the area ratio of the O1s peak and the C1s peak, and the third decimal place of the obtained value was rounded off to obtain the second decimal place.
  • N / C was calculated from the area ratio of the N1s peak and the C1s peak, and the fourth decimal place of the obtained value was rounded off to obtain the third decimal place.
  • the distance at which the graphene dispersion drips was measured by measuring the distance between the end of the graphene dispersion in the direction in which gravity is applied when the aluminum foil is erected vertically, before and after the graphene dispersion drips. ..
  • the case where the graphene dispersion was dripped was 10 cm or more was designated as A, the case where the graphene dispersion was 3 cm or more and less than 10 cm was designated as B, and the case where the graphene dispersion was less than 3 cm was designated as C.
  • Example 1 (Preparation of surface-treated graphene N-methylpyrrolidone dispersion paste)
  • Graphene oxide prepared in Synthesis Example 1 is diluted to a concentration of 30 mg / ml with ion-exchanged water and treated with Homo Disper 2.5 type (Primix Corporation) at a rotation speed of 3,000 rpm for 30 minutes to make it uniform.
  • a graphene oxide dispersion was obtained. 20 ml of the obtained graphene oxide dispersion and 0.3 g of dopamine hydrochloride as a surface treatment agent were mixed and treated with Homo Disper 2.5 type (Primix Corporation) at a rotation speed of 3,000 rpm for 60 minutes.
  • the treated graphene oxide dispersion was applied with ultrasonic waves at an output of 300 W for 30 minutes (miniaturization step) using an ultrasonic device UP400S (heelscher).
  • the graphene oxide dispersion liquid that has undergone the micronization step is diluted to a concentration of 5 mg / ml using ion-exchanged water, 0.3 g of sodium dithionite is added to 20 ml of the diluted dispersion liquid, and homogen is used in a water bath at 40 ° C.
  • a Disper 2.5 type Prior Mix Co., Ltd.
  • NMP N-Methylpyrrolidone
  • NMP was added to the filter medium so that the graphene concentration was 0.5% by weight, and the mixture was treated using Homo Disper 2.5 type (Primix Corporation) at a rotation speed of 3000 rpm for 30 minutes. The steps of diluting and suction-filtering under reduced pressure until the filtrate did not drop were repeated twice to obtain an NMP-dispersed paste containing 5.0% by weight of surface-treated graphene as a filtrate.
  • the thickness of graphene and the size in the direction parallel to the graphene layer were measured according to Measurement Examples 1 and 2. Further, the O / C ratio and the N / C ratio were measured according to Measurement Example 3, and the fluidity of the graphene dispersion was evaluated according to Measurement Example 4. The results are shown in Table 1.
  • the solid content ratio of the positive electrode paste was measured according to Measurement Example 5, and the uniformity of the coating film was evaluated according to Measurement Example 6. The results are shown in Table 3.
  • the obtained positive electrode paste was applied onto an aluminum foil (thickness 18 ⁇ m) using a doctor blade so that the amount of positive electrode paste after drying was 18 mg / cm 2 , dried at 80 ° C. for 15 minutes, and then 120 ° C. Vacuum drying was carried out for 2 hours to obtain an electrode plate.
  • the prepared electrode plate was cut out into a circle having a diameter of 15.9 mm and used as a positive electrode.
  • a coating film composed of 98 parts by weight of graphite, 1 part by weight of sodium carboxymethyl cellulose and 1 part by weight of SBR aqueous dispersion was formed on a copper foil, and cut into a circle having a diameter of 16.1 mm to form a negative electrode.
  • Cellguard # 2400 manufactured by Cellguard
  • a 2032 type coin battery was produced by sandwiching the separator and the electrolytic solution between the positive electrode and the negative electrode, adding 3 mL of the electrolytic solution, and caulking.
  • the battery life (battery capacity retention rate) of the obtained coin battery was measured according to Measurement Example 7.
  • Example 2 A graphene dispersion was obtained in the same manner as in Example 1 except that the treatment time of the strong stirring step was extended to 30 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 3 A graphene dispersion was obtained in the same manner as in Example 1 except that the strong stirring step was shortened to 5 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 4 A graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was extended to 120 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 5 A graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was extended to 90 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 6 A graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was shortened to 10 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 7 instead of the graphene oxide prepared in Synthesis Example 1, the graphene oxide prepared in Synthesis Example 2 was used, and a graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was not performed. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 8 A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of sodium dithionite used was reduced to 0.1 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 9 A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of sodium dithionite used was reduced to 0.05 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 10 A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of sodium dithionite used was reduced to 0.01 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 11 A graphene dispersion was obtained in the same manner as in Example 1 except that the dopamine hydrochloride was changed to catechol. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 12 A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of dopamine hydrochloride was changed to benzylamine hydrochloride and the amount used was reduced to 0.1 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 13 A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of dopamine hydrochloride was changed to phenylethylamine hydrochloride and the amount used was reduced to 0.2 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 14 A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of dopamine hydrochloride used in Example 1 was increased to 0.7 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 15 In the preparation of the graphene dispersion, the same procedure as in Example 1 except that 2 g of 5 wt% polyvinyl alcohol / NMP solution was added to 20 g of NMP dispersion paste containing 5.0 wt% of surface-treated graphene and 3 g of NMP was added. A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 16 A graphene dispersion was prepared in the same manner as in Example 1.
  • polyvinyl alcohol solution 4 g of polyvinyl alcohol and 16 g of NMP are heated to 90 ° C. under stirring of a magnetic stirrer in a closed container to partially dissolve the polyvinyl alcohol to obtain a 20 wt% polyvinyl alcohol / NMP mixture. It was.
  • Example 17 A graphene dispersion was prepared in the same manner as in Example 1.
  • polyvinyl alcohol solution 10 g of polyvinyl alcohol and 10 g of NMP are heated to 90 ° C. under stirring of a magnetic stirrer in a closed container to partially dissolve the polyvinyl alcohol to obtain a 50 wt% polyvinyl alcohol / NMP mixture. It was.
  • Example 18 In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 75% and a degree of polymerization of 500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 19 In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 98% and a degree of polymerization of 500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 20 In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 88% and a degree of polymerization of 1500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 21 In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 88% and a degree of polymerization of 3500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 22 In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 72% and a degree of polymerization of 500 (manufactured by Japan Vam & Poval Co., Ltd., product name “JR-05”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 23 In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 22 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 24 In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 82% and a degree of polymerization of 250 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-10H”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 25 In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 24 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 26 In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 94% and a degree of polymerization of 500 (manufactured by Japan Vam & Poval Co., Ltd., product name “JT-05”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 27 In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 26 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 28 In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 98.5% and a degree of polymerization of 500 (manufactured by Japan Vam & Poval Co., Ltd., product name “JF-05”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 29 In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 28 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 30 In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 99.3% and a degree of polymerization of 240 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-10HH”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 31 In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 30 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 32 In the preparation of polyvinyl alcohol, except that polyvinyl alcohol was an anion-modified polyvinyl alcohol having a saponification rate of 87.8% and a degree of polymerization of 200 (manufactured by Mitsubishi Chemical Corporation, trade name "Gosenex” (registered trademark) L-3266 "). A graphene dispersion was obtained in the same manner as in Example 1. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 33 In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 32 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 34 In the preparation of the graphene dispersion, a graphene dispersion was prepared without using the polyvinyl alcohol / NMP solution, and in the preparation of the positive electrode paste, 1.25 g of the polyvinyl alcohol / NMP of Example 1 was added in the same manner as in Example 1. A positive electrode paste was prepared. Using the obtained positive electrode paste, a 2032 type coin battery was produced in the same manner as in Example 1.
  • Example 35 In the preparation of the positive electrode paste, 1.25 g of polyvinyl alcohol / NMP of Example 32 was added to prepare a positive electrode paste in the same manner. Using the obtained positive electrode paste, a 2032 type coin battery was produced in the same manner as in Example 1.
  • Example 1 A graphene dispersion was obtained in the same manner as in Example 1 except that polyvinyl alcohol was not used. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 2 A graphene dispersion was obtained in the same manner as in Example 1 except that polyvinyl alcohol was changed to polyvinylpyrrolidone K-60 (manufactured by Tokyo Chemical Industry Co., Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 5 A graphene dispersion was obtained in the same manner as in Example 1 except that the strong stirring step was not performed in the preparation of the graphene dispersion. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 7 In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol had a saponification rate of 9.9% and a degree of polymerization of 230 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-10LL”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 8 In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 37.8% and a degree of polymerization of 400 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-20L”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 9 In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 65.4% and a degree of polymerization of 230 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-20M”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • compositions of each example and comparative example are shown in Tables 1 and 2, and the evaluation results are shown in Table 3.
  • Example 36 In the preparation of the positive electrode paste, the positive electrode paste was prepared in the same manner as in Example 1 except that the amount of the graphene dispersion used was reduced to 0.15 g (the surface-treated graphene content was 0.03 parts by weight with respect to 100 parts by weight of the positive electrode active material). And a 2032 type coin battery was manufactured.
  • Example 37 In the preparation of the positive electrode paste, the positive electrode paste was prepared in the same manner as in Example 1 except that the amount of the graphene dispersion used was reduced to 0.5 g (the surface-treated graphene content was 0.1 part by weight with respect to 100 parts by weight of the positive electrode active material). And a 2032 type coin battery was manufactured.
  • Example 38 A graphene dispersion was prepared in the same manner as in Example 1.
  • the amount of the graphene dispersion having a solid content concentration of 6.0% by weight of graphene was set to 6.7 g (2 parts by weight of the surface-treated graphene content with respect to 100 parts by weight of the positive electrode active material).
  • a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
  • Example 39 In the preparation of the positive electrode paste, the amount of the graphene dispersion having a solid content concentration of 6.0% by weight was increased to 10 g, and 0.2 g of PVDF was added as a powder (surface-treated graphene content 3 with respect to 100 parts by weight of the positive electrode active material). A positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1 except for the part by weight.
  • Table 4 shows the main compositions and evaluation results of the positive electrode pastes of Examples 36 to 39.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A graphene dispersion containing graphene and polyvinyl alcohol, wherein the average thickness of the graphene is 0.3 to 10 nm, the polyvinyl alcohol saponification rate is 70 to 100%, and the graphene dispersion contains 10 to 300 weight parts of the polyvinyl alcohol per 100 weight parts of the graphene. Provided are a graphene dispersion and a positive electrode paste that allow graphene to be mixed uniformly when being mixed with a positive electrode active substance, thereby providing a lithium ion battery positive electrode having improved battery life.

Description

グラフェン分散液、正極ペーストおよびリチウムイオン電池正極Graphene dispersion, positive electrode paste and lithium ion battery positive electrode
 本発明は、グラフェン分散液とその製造方法、正極ペーストおよびリチウムイオン電池正極に関する。 The present invention relates to a graphene dispersion, a method for producing the same, a positive electrode paste, and a positive electrode of a lithium ion battery.
 近年、スマートフォン、携帯電話機などの携帯機器、ハイブリッド自動車、電気自動車、家庭用蓄電池等の各種用途において、リチウムイオン電池の研究開発が盛んに行われている。これらの分野に用いられるリチウムイオン電池には、充放電を繰り返すことによる電池容量の減少を抑制し、電池寿命を向上することが求められている。 In recent years, research and development of lithium-ion batteries have been actively carried out in various applications such as mobile devices such as smartphones and mobile phones, hybrid vehicles, electric vehicles, and household storage batteries. Lithium-ion batteries used in these fields are required to suppress a decrease in battery capacity due to repeated charging and discharging to improve battery life.
 その一手段として、カーボンナノチューブやグラフェンなどの導電助剤が用いられている。導電助剤を用いた技術として、これまでに、分散液媒体、ポリマー性分散助剤および前記分散液媒体に分散したカーボンナノチューブを含む分散液であって、カーボンナノチューブが特定の凝集形態を有する分散液(例えば、特許文献1参照)や、二次電池用活物質およびグラフェンを含む合剤層を有する二次電池用電極であって、合剤層におけるグラフェンの含有量および合剤層の空隙率を規定した二次電池用電極(例えば、特許文献2参照)などが提案されている。 As one of the means, conductive auxiliary agents such as carbon nanotubes and graphene are used. As a technique using a conductive auxiliary agent, a dispersion liquid containing a dispersion liquid medium, a polymer dispersion auxiliary agent, and carbon nanotubes dispersed in the dispersion liquid medium, wherein the carbon nanotubes have a specific aggregated form is dispersed. An electrode for a secondary battery having a liquid (see, for example, Patent Document 1), an active material for a secondary battery, and a mixture layer containing graphene, and the content of graphene in the mixture layer and the void ratio of the mixture layer. (For example, see Patent Document 2) and the like have been proposed.
特表2016-514080号公報Special Table 2016-514080 特開2018-174134号公報Japanese Unexamined Patent Publication No. 2018-174134
 リチウムイオン電池の電池寿命向上のためには、充放電の繰り返しに伴う導電パスの劣化を抑制することが重要である。そのためには、導電パスを形成する導電助剤が正極活物質等の材料と均一に混合され、均質かつ安定な塗膜を形成することが重要であると考えられる。 In order to improve the battery life of lithium-ion batteries, it is important to suppress deterioration of the conductive path due to repeated charging and discharging. For that purpose, it is considered important that the conductive auxiliary agent forming the conductive path is uniformly mixed with the material such as the positive electrode active material to form a homogeneous and stable coating film.
 しかしながら、特許文献1に記載された分散液は、カーボンナノチューブの分散が不十分であり、カーボンナノチューブの凝集体によって正極ペーストが不均一となり、塗膜中の空隙が生じやすく、充放電の繰り返しにより電池容量が低下する、すなわち電池寿命が不十分である課題があった。また、特許文献2に記載された二次電池用電極は、グラフェンを用いることにより空隙を生じにくくすることができる。しかしながら、近年、さらなる電池寿命の向上が求められている。 However, in the dispersion liquid described in Patent Document 1, the dispersion of carbon nanotubes is insufficient, the positive electrode paste becomes non-uniform due to the aggregates of carbon nanotubes, voids in the coating film are likely to occur, and charging and discharging are repeated. There is a problem that the battery capacity is lowered, that is, the battery life is insufficient. Further, in the electrode for a secondary battery described in Patent Document 2, it is possible to prevent the formation of voids by using graphene. However, in recent years, further improvement in battery life has been required.
 そこで本発明は、正極活物質と混合した時にグラフェンが均一に混合され得るグラフェン分散液およびそれを用いた正極ペーストを提供し、これらによって電池寿命が向上されたリチウムイオン電池正極を提供することを課題とする。 Therefore, the present invention provides a graphene dispersion in which graphene can be uniformly mixed when mixed with a positive electrode active material and a positive electrode paste using the same, thereby providing a lithium ion battery positive electrode having an improved battery life. Make it an issue.
 上記の課題を解決するために、本発明は、グラフェンおよびポリビニルアルコールを含有するグラフェン分散液であって、前記グラフェンの平均厚みが0.3nm以上10nm以下であり、前記ポリビニルアルコールのケン化率70%以上100%以下であり、かつ、前記グラフェン100重量部に対して、ケン化率70%以上100%以下のポリビニルアルコールを10重量部以上300重量部以下含有する、グラフェン分散液である。 In order to solve the above problems, the present invention is a graphene dispersion containing graphene and polyvinyl alcohol, in which the average thickness of the graphene is 0.3 nm or more and 10 nm or less, and the saponification rate of the polyvinyl alcohol is 70. A graphene dispersion containing 10 parts by weight or more and 300 parts by weight or less of polyvinyl alcohol having a saponification rate of 70% or more and 100% or less with respect to 100 parts by weight of the graphene.
 また、本発明の別の態様は、正極活物質、グラフェンおよびポリビニルアルコールを含有する正極ペーストであって、前記グラフェンの平均厚みが0.3nm以上10nm以下であり、前記ポリビニルアルコールのケン化率70%以上100%以下であり、かつ、前記グラフェン100重量部に対して、前記ポリビニルアルコールを10重量部以上300重量部以下含有する、正極ペーストである。 Another aspect of the present invention is a positive electrode paste containing a positive electrode active material, graphene and polyvinyl alcohol, in which the average thickness of the graphene is 0.3 nm or more and 10 nm or less, and the saponification rate of the polyvinyl alcohol is 70. A positive electrode paste containing 10 parts by weight or more and 300 parts by weight or less of the polyvinyl alcohol with respect to 100 parts by weight of the graphene.
 さらに、本発明の別の態様は、正極活物質、グラフェンおよびポリビニルアルコールを含有するリチウムイオン電池正極であって、前記グラフェンの平均厚みが0.3nm以上10nm以下であり、前記ポリビニルアルコールのケン化率70%以上100%以下であり、かつ、前記グラフェン100重量部に対して、前記ポリビニルアルコールを10重量部以上300重量部以下含有する、リチウムイオン電池正極である。 Further, another aspect of the present invention is a lithium ion battery positive electrode containing a positive electrode active material, graphene and polyvinyl alcohol, wherein the graphene has an average thickness of 0.3 nm or more and 10 nm or less, and the polyvinyl alcohol is saponified. A lithium ion battery positive electrode having a rate of 70% or more and 100% or less and containing 10 parts by weight or more and 300 parts by weight or less of the polyvinyl alcohol with respect to 100 parts by weight of the graphene.
 本発明のグラフェン分散液は流動性に優れ、正極活物質と混合した時のグラフェンの均一性に優れる。本発明の正極ペーストは、塗膜均一性に優れ、固形分率を高め、電池寿命を向上させることができる。 The graphene dispersion of the present invention has excellent fluidity and excellent graphene uniformity when mixed with the positive electrode active material. The positive electrode paste of the present invention has excellent coating film uniformity, can increase the solid content, and can improve battery life.
 まず、本発明のグラフェン分散液について説明する。本発明のグラフェン分散液は、平均厚み0.3nm以上10nm以下のグラフェンおよびケン化率70%以上100%以下のポリビニルアルコールを含有する。平均厚み0.3nm以上10nm以下の薄いグラフェンは、柔軟で正極活物質の表面に対してよく追従し、導電パスを形成しやすい。一方で、薄いグラフェンは凝集を起こしやすいために、従来は、このような薄いグラフェンを用いた場合、グラフェン分散液および正極ペースト中における分散性維持が困難であり、また、分散液の流動性が不十分であった。このため、このような薄いグラフェンを用いた場合、正極ペーストの塗膜均一性や電池寿命が低下したり、正極ペーストの固形分率を高くすることが困難であるなどの課題があった。そこで、本発明においては、かかる薄いグラフェンとともに、特定のケン化率を有するポリビニルアルコールを用いる。かかるポリビニルアルコールは、グラフェン分散液においてグラフェンの分散性を高める分散剤として機能すると同時に、塗膜形成時においては均一な塗膜を形成させる構造材料として機能する。このため、本発明のグラフェン分散液を正極ペーストやリチウムイオン電池正極に用いる場合、正極活物質と流動性の高いグラフェン分散液が均一に混合された均一な塗膜が得られやすく、正極ペーストの固形分率を高めることができる。さらに、リチウムイオン電池正極の結着が強化されるために、充放電の繰り返しに伴う導電パスの劣化が抑制され、電池寿命を向上させることができる。 First, the graphene dispersion of the present invention will be described. The graphene dispersion of the present invention contains graphene having an average thickness of 0.3 nm or more and 10 nm or less and polyvinyl alcohol having a saponification rate of 70% or more and 100% or less. Thin graphene with an average thickness of 0.3 nm or more and 10 nm or less is flexible and follows the surface of the positive electrode active material well, and easily forms a conductive path. On the other hand, since thin graphene tends to cause aggregation, it is conventionally difficult to maintain dispersibility in the graphene dispersion and the positive electrode paste when such thin graphene is used, and the fluidity of the dispersion becomes poor. It was inadequate. Therefore, when such a thin graphene is used, there are problems that the coating film uniformity and battery life of the positive electrode paste are lowered, and it is difficult to increase the solid content ratio of the positive electrode paste. Therefore, in the present invention, polyvinyl alcohol having a specific saponification rate is used together with such thin graphene. Such polyvinyl alcohol functions as a dispersant for enhancing the dispersibility of graphene in the graphene dispersion liquid, and at the same time, functions as a structural material for forming a uniform coating film at the time of forming a coating film. Therefore, when the graphene dispersion of the present invention is used for a positive electrode paste or a positive electrode of a lithium ion battery, it is easy to obtain a uniform coating film in which a positive electrode active material and a highly fluid graphene dispersion are uniformly mixed, and the positive electrode paste can be used. The solid content ratio can be increased. Further, since the binding of the positive electrode of the lithium ion battery is strengthened, deterioration of the conductive path due to repeated charging and discharging can be suppressed, and the battery life can be improved.
 <グラフェン>
 グラフェンは、導電助剤として薄層形状で単位重量当りの導電パスが多く、電極内において良好な導電ネットワークを形成しやすいために有用である。グラフェンとは、狭義には1原子の厚さのsp結合炭素原子のシート(単層グラフェン)を指すが、本明細書においては、単層グラフェンが積層した薄片状の形態を持つものも含めてグラフェンと呼ぶ。また、酸化グラフェンも同様に、積層した薄片状の形態を持つものも含めた呼称とする。
<Graphene>
Graphene is useful as a conductive auxiliary agent because it has a thin layer shape and has many conductive paths per unit weight, and it is easy to form a good conductive network in the electrode. Graphene, in a narrow sense, refers to a sheet of sp 2- bonded carbon atoms (single-layer graphene) having a thickness of one atom, but in the present specification, it also includes those having a flaky form in which single-layer graphene is laminated. It is called graphene. Similarly, graphene oxide is also referred to as a name including those having a laminated flaky form.
 また、本明細書においては、X線光電子分光分析(XPS)によって測定される酸素原子の炭素原子に対する原子割合であるO/C比が0.4を超えるものを酸化グラフェン、0.4以下のものをグラフェンと呼称する。また、酸化グラフェンを還元処理することによって得られる還元型酸化グラフェンであって、O/C比が0.4以下のものもグラフェンと呼称する。 Further, in the present specification, graphene oxide having an O / C ratio of more than 0.4, which is the ratio of oxygen atoms to carbon atoms measured by X-ray photoelectron spectroscopy (XPS), is 0.4 or less. The thing is called graphene. Further, reduced graphene obtained by reducing graphene oxide and having an O / C ratio of 0.4 or less is also referred to as graphene.
 さらに、グラフェンや酸化グラフェンには分散性の向上等を目的とした表面処理がなされる場合があるが、本明細書においては、このような表面処理剤が付着したグラフェンまたは酸化グラフェンも含めて「グラフェン」または「酸化グラフェン」と呼称するものとする。 Further, graphene and graphene oxide may be surface-treated for the purpose of improving dispersibility, etc., but in the present specification, graphene or graphene oxide to which such a surface treatment agent is attached is also included in "graphene". It shall be referred to as "graphene" or "graphene oxide".
 本発明のグラフェン分散液に用いるグラフェンの平均厚みは、0.3nm以上10nm以下である。本発明のグラフェン分散液は、平均厚みがかかる範囲にある薄いグラフェンを用いることにより、導電性を維持しながら正極活物質の表面に対するグラフェンの追従性を向上させ、導電パスを形成しやすくすることができる。グラフェンの平均厚みが0.3nm未満であると、欠陥が生じやすいため、導電性が低下し、電池寿命が短くなる。一方、グラフェンの平均厚みが10nmを超えると、分散性が低下し、塗膜均一性が低下する。また、正極活物質表面に対する追従性が低下するため、導電パス形成が不十分になり、電池寿命が短くなる。正極ペーストの固形分率を高めやすくする観点、塗膜均一性をより向上させる観点および導電パスをより効果的に形成し、電池寿命をより向上させる観点から、グラフェンの平均厚みは、8nm以下が好ましく、6nm以下がより好ましい。ここで、グラフェン分散液中におけるグラフェンの平均厚みは、グラフェン分散液からグラフェンを採取し、原子間力顕微鏡を用いて、グラフェンが適切に観察できる様に、視野範囲1~10μm四方程度に拡大観察し、無作為に選択した10個のグラフェンについて、それぞれ厚みを測定し、その算術平均値を求めることにより算出することができる。なお、各グラフェンの厚みは、それぞれのグラフェンにおいて無作為に選択した5箇所の厚みの測定値の算術平均値とする。 The average thickness of graphene used in the graphene dispersion of the present invention is 0.3 nm or more and 10 nm or less. The graphene dispersion of the present invention uses a thin graphene in a range in which the average thickness is applied, thereby improving the followability of the graphene to the surface of the positive electrode active material while maintaining the conductivity, and facilitating the formation of a conductive path. Can be done. If the average thickness of graphene is less than 0.3 nm, defects are likely to occur, so that the conductivity is lowered and the battery life is shortened. On the other hand, when the average thickness of graphene exceeds 10 nm, the dispersibility is lowered and the coating film uniformity is lowered. Further, since the followability to the surface of the positive electrode active material is lowered, the formation of the conductive path becomes insufficient and the battery life is shortened. The average thickness of graphene is 8 nm or less from the viewpoint of making it easier to increase the solid content of the positive electrode paste, further improving the uniformity of the coating film, and more effectively forming the conductive path and further improving the battery life. It is preferably 6 nm or less, and more preferably 6 nm or less. Here, the average thickness of graphene in the graphene dispersion is observed by collecting graphene from the graphene dispersion and magnifying it to a viewing range of about 1 to 10 μm square using an atomic force microscope so that the graphene can be observed appropriately. However, it can be calculated by measuring the thickness of each of 10 randomly selected graphenes and calculating the arithmetic mean value thereof. The thickness of each graphene shall be the arithmetic mean value of the measured values of the thicknesses of five randomly selected points in each graphene.
 グラフェンの、グラフェン層に平行な方向の大きさは、正極ペーストの塗膜均一性を高めるとともに、正極活物質との接触面積を高め、電池寿命をより向上させる観点から、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。一方、グラフェンの、グラフェン層に平行な方向の大きさは、分散性をより向上させ、正極ペーストの流動性を向上させて固形分率を高めやすくする観点および塗膜均一性をより向上させる観点から、100μm以下が好ましく、50μm以下がより好ましく、20μm以下がさらに好ましい。ここで、グラフェン分散液中におけるグラフェンの、グラフェン層に平行な方向の大きさは、グラフェン分散液からグラフェンを採取し、電子顕微鏡を用いて、グラフェンが適切に視野に収まる様に、倍率1,500~50,000倍に拡大観察し、無作為に選択した10個のグラフェンについて、グラフェン層に平行な方向の最も長い部分の長さ(長径)と最も短い部分の長さ(短径)をそれぞれ測定し、(長径+短径)/2で求められる数値の算術平均値を求めることにより算出することができる。なお、グラフェンの、グラフェン層に平行な方向の大きさは、酸化グラフェンまたは還元後のグラフェンを後述の方法により微細化することにより、前述の範囲に容易に調整することができる。また、所望の大きさの市販の酸化グラフェンやグラフェンを用いてもよい。 The size of graphene in the direction parallel to the graphene layer is preferably 0.1 μm or more from the viewpoint of increasing the uniformity of the coating film of the positive electrode paste, increasing the contact area with the positive electrode active material, and further improving the battery life. , 0.5 μm or more is more preferable, and 1 μm or more is further preferable. On the other hand, the size of graphene in the direction parallel to the graphene layer further improves the dispersibility, improves the fluidity of the positive electrode paste, makes it easier to increase the solid content ratio, and further improves the uniformity of the coating film. Therefore, 100 μm or less is preferable, 50 μm or less is more preferable, and 20 μm or less is further preferable. Here, the size of graphene in the graphene dispersion in the direction parallel to the graphene layer is such that graphene is sampled from the graphene dispersion and an electron microscope is used so that the graphene is appropriately within the field of view. For 10 graphenes randomly selected by magnifying 500 to 50,000 times, the length of the longest part (major axis) and the length of the shortest part (minor axis) in the direction parallel to the graphene layer were determined. It can be calculated by measuring each and obtaining the arithmetic average value of the numerical values obtained by (major axis + minor axis) / 2. The size of graphene in the direction parallel to the graphene layer can be easily adjusted to the above-mentioned range by refining graphene oxide or graphene after reduction by the method described later. Further, commercially available graphene oxide or graphene having a desired size may be used.
 グラフェンの、X線光電子分光法により測定される炭素に対する酸素の元素比(O/C比)は、残存官能基により分散性をより向上させ、正極ペーストの塗膜均一性をより向上させる観点から、0.05以上が好ましく、0.07以上がより好ましく、0.08以上がさらに好ましい。一方、グラフェン分散液の流動性をより向上させる観点および還元によりπ電子共役構造を復元して導電性をより高め、塗膜均一性および電池寿命をより向上させる観点から、O/C比は、0.35以下が好ましく、0.20以下がより好ましく、0.15以下がさらに好ましい。ここで、グラフェン分散液中におけるグラフェンのO/C比は、グラフェン分散液からグラフェンを採取し、X線光電子分光分析(XPS)を用いて測定することができる。284.3eV付近のピークを炭素原子に基づくC1sメインピークに帰属し、533eV付近のピークを酸素原子に基づくO1sピークに帰属し、各ピークの面積比からO/C比を算出し、得られた値の小数点第3位を四捨五入して小数点第2位まで求める。なお、グラフェンのO/C比は、例えば、化学剥離法を用いた場合は、原料となる酸化グラフェンの酸化度や、還元反応条件による還元度の調整により、前述の範囲に容易に調整することができる。また、所望のO/C比を有する市販の酸化グラフェンやグラフェンを用いてもよい。 The element ratio (O / C ratio) of oxygen to carbon measured by X-ray photoelectron spectroscopy of graphene is from the viewpoint of further improving the dispersibility by the residual functional group and further improving the coating uniformity of the positive electrode paste. , 0.05 or more, more preferably 0.07 or more, still more preferably 0.08 or more. On the other hand, the O / C ratio is determined from the viewpoint of further improving the fluidity of the graphene dispersion liquid and from the viewpoint of restoring the π-electron conjugated structure by reduction to further improve the conductivity and further improving the coating film uniformity and the battery life. It is preferably 0.35 or less, more preferably 0.20 or less, and even more preferably 0.15 or less. Here, the O / C ratio of graphene in the graphene dispersion can be measured by collecting graphene from the graphene dispersion and using X-ray photoelectron spectroscopy (XPS). The peak near 284.3 eV was assigned to the C1s main peak based on carbon atoms, the peak near 533 eV was assigned to the O1s peak based on oxygen atoms, and the O / C ratio was calculated from the area ratio of each peak. Round off the third decimal place of the value to obtain the second decimal place. The O / C ratio of graphene can be easily adjusted to the above range by, for example, when the chemical stripping method is used, the degree of oxidation of graphene oxide as a raw material and the degree of reduction according to the reduction reaction conditions are adjusted. Can be done. Further, commercially available graphene oxide or graphene having a desired O / C ratio may be used.
 前述の如く、グラフェンや酸化グラフェンには表面処理がなされる場合があり、特に窒素原子を含む表面処理剤はグラフェンの分散性を高めやすい傾向がある。さらに、表面処理剤は、後述するポリビニルアルコールとの相互作用を高め、分散性向上の効果をより高めると共に、リチウムイオン電池正極に用いた場合に結着力をより向上させることができる。 As mentioned above, graphene and graphene oxide may be surface-treated, and in particular, surface-treating agents containing nitrogen atoms tend to enhance the dispersibility of graphene. Further, the surface treatment agent can enhance the interaction with polyvinyl alcohol, which will be described later, further enhance the effect of improving the dispersibility, and can further improve the binding force when used for the positive electrode of a lithium ion battery.
 窒素原子を含む表面処理剤によりグラフェンを処理した場合、グラフェンに付着している表面処理剤の量を、X線光電子分光法を用いて測定される炭素に対する窒素の原子比(N/C比)から求めることができる。グラフェンのN/C比は、分散性をより向上させ、グラフェン分散液の流動性および正極ペーストの塗膜均一性をより向上させ、電池寿命をより向上させる観点から、0.005以上が好ましく、0.006以上がより好ましく、0.008以上がさらに好ましい。一方、グラフェンのN/C比は、グラフェン分散液の流動性をより向上させる観点および導電性をより高め、電池寿命および塗膜均一性をより向上させる観点から、0.020以下が好ましく、0.018以下がより好ましく、0.016以下がさらに好ましい。ここで、グラフェン分散液中におけるグラフェンのN/C比は、グラフェン分散液からグラフェンを採取し、X線光電子分光分析(XPS)により測定することができる。284.3eV付近のピークを炭素原子に基づくC1sメインピークに帰属し、402eV付近のピークを窒素原子に基づくN1sピークに帰属し、各ピークの面積比からN/C比を算出し、得られた値の小数点第4位を四捨五入して小数点第3位まで求める。なお、グラフェンのN/C比は、例えば、後述する表面処理剤の付着量により前述の範囲に容易に調整することができる。 When graphene is treated with a surface treatment agent containing nitrogen atoms, the amount of surface treatment agent adhering to graphene is the atomic ratio of nitrogen to carbon (N / C ratio) measured using X-ray photoelectron spectroscopy. Can be obtained from. The N / C ratio of graphene is preferably 0.005 or more from the viewpoint of further improving the dispersibility, further improving the fluidity of the graphene dispersion liquid and the coating film uniformity of the positive electrode paste, and further improving the battery life. 0.006 or more is more preferable, and 0.008 or more is further preferable. On the other hand, the N / C ratio of graphene is preferably 0.020 or less from the viewpoint of further improving the fluidity of the graphene dispersion and further improving the conductivity and the battery life and the uniformity of the coating film, and is 0. .018 or less is more preferable, and 0.016 or less is further preferable. Here, the N / C ratio of graphene in the graphene dispersion can be measured by collecting graphene from the graphene dispersion and measuring it by X-ray photoelectron spectroscopy (XPS). The peak near 284.3 eV was assigned to the C1s main peak based on carbon atoms, the peak near 402 eV was assigned to the N1s peak based on nitrogen atoms, and the N / C ratio was calculated from the area ratio of each peak. Round the 4th decimal place of the value to the 3rd decimal place. The N / C ratio of graphene can be easily adjusted to the above-mentioned range by, for example, the amount of the surface treatment agent adhered to be described later.
 表面処理剤は、グラフェンの表面に付着して存在していることにより、グラフェンの分散性をより高める効果を発揮するものである。本明細書においては、このような表面処理剤が付着した状態のグラフェンを「表面処理グラフェン」と呼称するものとする。ここで、本発明において、表面処理剤がグラフェンに付着して存在している、とは、表面処理グラフェンを質量比100倍の水に分散してろ過する洗浄工程を5回以上繰り返し、その後凍結乾燥、スプレードライ等の方法で乾燥させた後に、当該表面処理剤が表面処理グラフェン中に残存していることをいう。表面処理剤が残存していることは、乾燥後の表面処理グラフェンを飛行時間型二次イオン質量分析法(TOF-SIMS)による測定をした時に、正二次イオンスペクトルで表面処理剤分子がプロトン付加分子の形で検出できることを言う。ただし、表面処理剤が中和塩の場合は、アニオン分子が除去された表面処理剤分子にプロトンが付加した形で検出することができる。表面処理グラフェン中に含まれる表面処理剤の化学構造は、TOF-SIMSにより特定することができる。なお、表面処理剤の定量は、表面処理グラフェンを、質量比100倍の水に分散してろ過する洗浄工程を5回以上繰り返し、その後凍結乾燥して得たサンプルを用いて行う。 The surface treatment agent is present on the surface of graphene, so that it exerts the effect of further enhancing the dispersibility of graphene. In the present specification, graphene in a state where such a surface treatment agent is attached is referred to as "surface treatment graphene". Here, in the present invention, the fact that the surface treatment agent is present on graphene means that the cleaning step of dispersing the surface treatment graphene in water having a mass ratio of 100 times and filtering it is repeated 5 times or more, and then freeze-dried. It means that the surface treatment agent remains in the surface treatment graphene after being dried by a method such as drying or spray drying. The residual surface treatment agent means that when the surface treatment graphene after drying is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the surface treatment agent molecules are protonated in the positive secondary ion spectrum. It means that it can be detected in the form of a molecule. However, when the surface treatment agent is a neutralizing salt, it can be detected in the form of protons added to the surface treatment agent molecules from which the anion molecules have been removed. The chemical structure of the surface treatment agent contained in the surface treatment graphene can be specified by TOF-SIMS. The quantification of the surface treatment agent is carried out using a sample obtained by repeating the washing step of dispersing the surface treatment graphene in water having a mass ratio of 100 times and filtering it 5 times or more, and then freeze-drying.
 表面処理剤としては、グラフェン表面に吸着しやすいという観点から、芳香環を有する化合物が好ましい。 As the surface treatment agent, a compound having an aromatic ring is preferable from the viewpoint of easily adsorbing on the graphene surface.
 また、表面処理剤は、酸性基および/または塩基性基を有することが好ましい。 Further, the surface treatment agent preferably has an acidic group and / or a basic group.
 酸性基としては、ヒドロキシ基、フェノール性ヒドロキシ基、ニトロ基、カルボキシル基およびカルボニル基から選ばれた基が好ましく、これらを2種以上有してもよい。これらの中でも、フェノール性ヒドロキシ基が好ましい。 As the acidic group, a group selected from a hydroxy group, a phenolic hydroxy group, a nitro group, a carboxyl group and a carbonyl group is preferable, and two or more of these may be present. Of these, phenolic hydroxy groups are preferred.
 フェノール性ヒドロキシ基および芳香環を有する化合物としては、例えば、フェノール、ニトロフェノール、クレゾール、カテコールなどが挙げられる。これらの化合物の水素の一部が置換されていてもよい。これらの中でも、グラフェンとの接着性や分散媒への分散性の観点から、カテコールやその誘導体が好ましく、例えば、カテコール、ドーパミン塩酸塩、3-(3,4-ジヒドロキシフェニル)-L-アラニン、4-(1-ヒドロキシ-2-アミノエチル)カテコール、3,4-ジヒドロキシ安息香酸、3,4-ジヒドロキシフェニル酢酸、カフェイン酸、4-メチルカテコールおよび4-tert-ブチルピロカテコールなどが好ましい。 Examples of the compound having a phenolic hydroxy group and an aromatic ring include phenol, nitrophenol, cresol, and catechol. Some of the hydrogen in these compounds may be substituted. Among these, catechol and its derivatives are preferable from the viewpoint of adhesion to graphene and dispersibility in a dispersion medium, for example, catechol, dopamine hydrochloride, 3- (3,4-dihydroxyphenyl) -L-alanine, and the like. 4- (1-Hydroxy-2-aminoethyl) catechol, 3,4-dihydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, caffeic acid, 4-methylcatechol and 4-tert-butylpyrocatechol are preferable.
 塩基性基としては、アミノ基が好ましい。 As the basic group, an amino group is preferable.
 アミノ基および芳香環を有する化合物としては、例えば、ベンジルアミン、フェニルエチルアミンやこれらの塩などが挙げられる。これらの化合物の水素の一部が置換されていてもよい。 Examples of the compound having an amino group and an aromatic ring include benzylamine, phenylethylamine and salts thereof. Some of the hydrogen in these compounds may be substituted.
 酸性基、塩基性基および芳香環を有する化合物も好ましく、例えば、ドーパミン塩酸塩などが好ましい。 Compounds having an acidic group, a basic group and an aromatic ring are also preferable, and for example, dopamine hydrochloride and the like are preferable.
 本発明に用いられるグラフェンは、物理剥離法で製造されたものであってもよく、化学剥離法で製造されたものであってもよい。化学剥離法で製造される場合、酸化グラフェンの作製法に特に限定はなく、ハマーズ法等の公知の方法を使用できる。また、市販の酸化グラフェンを購入してもよい。 The graphene used in the present invention may be manufactured by a physical stripping method or may be manufactured by a chemical stripping method. When produced by the chemical stripping method, the method for producing graphene oxide is not particularly limited, and a known method such as the Hammers method can be used. Alternatively, commercially available graphene oxide may be purchased.
 化学剥離法は、黒鉛を酸化剥離して酸化グラフェンを得る工程(黒鉛剥離工程)、還元を行う工程(還元工程)をこの順に有することが好ましい。必要に応じて、黒鉛剥離工程と還元工程の間に、表面処理剤をグラフェンに付着させる工程(表面処理工程)および/またはグラフェンの、グラフェン層に平行な方向の大きさを調整する工程(微細化工程)を行ってもよい。表面処理グラフェンをグラフェンに付着させる場合、表面処理剤は還元工程後にグラフェンに付着させてもよく、酸化グラフェンに付着させた後に還元処理を行ってもよい。また、グラフェンを微細化する場合、酸化グラフェンを微細化してもよいし、還元後のグラフェンを微細化してもよい。還元反応の均一性の観点から、酸化グラフェンを微細化した状態で還元工程を行うことが好ましく、微細化工程は還元工程の前または還元工程の最中に行うことが好ましい。このため、黒鉛剥離工程、表面処理工程、微細化工程および還元工程をこの順に含むことが好ましい。 The chemical stripping method preferably includes a step of oxidatively stripping graphite to obtain graphene oxide (graphite stripping step) and a step of reducing (reducing step) in this order. If necessary, between the graphite stripping step and the reduction step, a step of adhering a surface treatment agent to graphene (surface treatment step) and / or a step of adjusting the size of graphene in a direction parallel to the graphene layer (fine). (Chemicalization step) may be performed. When the surface-treated graphene is attached to graphene, the surface-treating agent may be attached to graphene after the reduction step, or may be subjected to the reduction treatment after being attached to graphene oxide. Further, when graphene is miniaturized, graphene oxide may be miniaturized, or graphene after reduction may be miniaturized. From the viewpoint of the uniformity of the reduction reaction, it is preferable to carry out the reduction step in a state where graphene oxide is refined, and it is preferable to carry out the reduction step before or during the reduction step. Therefore, it is preferable to include the graphite stripping step, the surface treatment step, the miniaturization step, and the reduction step in this order.
 [黒鉛剥離工程]
 まず、黒鉛を酸化剥離して酸化グラフェンを得る。酸化グラフェンの酸化度は、黒鉛の酸化反応に用いる酸化剤の量を変化させることにより調整することができる。酸化剤としては、具体的には、硝酸ナトリウムおよび過マンガン酸カリウムを用いることができる。酸化反応の際に用いる、黒鉛に対する酸化剤の量が多いほど、酸化度は高くなり、少ないほど、酸化度は低くなる。黒鉛に対する硝酸ナトリウムの重量比は、0.200以上0.800以下が好ましい。黒鉛に対する過マンガン酸カリウムの重量比は、1.00以上4.00以下が好ましい。
[Graphite peeling process]
First, graphite is oxidatively exfoliated to obtain graphene oxide. The degree of oxidation of graphene oxide can be adjusted by changing the amount of the oxidizing agent used in the oxidation reaction of graphite. Specifically, sodium nitrate and potassium permanganate can be used as the oxidizing agent. The larger the amount of the oxidizing agent for graphite used in the oxidation reaction, the higher the degree of oxidation, and the smaller the amount, the lower the degree of oxidation. The weight ratio of sodium nitrate to graphite is preferably 0.200 or more and 0.800 or less. The weight ratio of potassium permanganate to graphite is preferably 1.00 or more and 4.00 or less.
 [表面処理工程]
 次に、酸化グラフェンと表面処理剤を混合し、グラフェンに表面処理剤を付着させる。混合方法としては、例えば、自動乳鉢、三本ロール、ビーズミル、遊星ボールミル、ホモジナイザー、ホモディスパー、ホモミクサー、プラネタリーミキサー、二軸混練機などのミキサーや混練機を用いて混合する方法などが挙げられる。
[Surface treatment process]
Next, graphene oxide and a surface treatment agent are mixed, and the surface treatment agent is attached to graphene. Examples of the mixing method include a method of mixing using a mixer such as an automatic mortar, a three-roll, a bead mill, a planetary ball mill, a homogenizer, a homodisper, a homomixer, a planetary mixer, and a twin-screw kneader, or a kneader. ..
 [微細化工程]
 次に、酸化グラフェンを微細化する。微細化方法としては、例えば、圧力を印加した分散液を単体のセラミックボールに衝突させる方法、圧力を印加した分散液同士を衝突させて分散を行う液-液せん断型の湿式ジェットミルを用いる方法、分散液に超音波を印加する方法などが挙げられる。微細化工程においては、処理圧力や出力が高いほど、また、処理時間が長いほど酸化グラフェンまたはグラフェンは微細化する傾向にある。微細化工程における微細化処理の種類・処理条件・処理時間により、還元後のグラフェンの大きさを調製することが可能である。グラフェン層に平行な大きさを前述の範囲に調整するためには、微細化工程における酸化グラフェンやグラフェンの固形分濃度は、0.01重量%以上2重量%以下が好ましい。また、超音波処理を行う場合、超音波出力は、100W以上3000W以下が好ましい。
[Miniaturization process]
Next, graphene oxide is refined. Examples of the miniaturization method include a method of colliding a pressure-applied dispersion with a single ceramic ball, and a method of using a liquid-liquid shear type wet jet mill in which pressure-applied dispersions collide with each other to disperse. , A method of applying ultrasonic waves to the dispersion liquid and the like. In the miniaturization step, graphene oxide or graphene tends to be miniaturized as the treatment pressure and output are higher and the treatment time is longer. It is possible to adjust the size of graphene after reduction depending on the type of miniaturization treatment, treatment conditions, and treatment time in the miniaturization step. In order to adjust the size parallel to the graphene layer to the above range, the solid content concentration of graphene oxide or graphene in the miniaturization step is preferably 0.01% by weight or more and 2% by weight or less. Further, when performing ultrasonic treatment, the ultrasonic output is preferably 100 W or more and 3000 W or less.
 [還元工程]
 次に、微細化した酸化グラフェンを還元する。還元方法としては、化学還元が好ましい。化学還元の場合、還元剤としては、有機還元剤、無機還元剤が挙げられるが、還元後の洗浄の容易さから無機還元剤がより好ましい。
[Reduction process]
Next, the finely divided graphene oxide is reduced. As the reduction method, chemical reduction is preferable. In the case of chemical reduction, examples of the reducing agent include an organic reducing agent and an inorganic reducing agent, but the inorganic reducing agent is more preferable because of the ease of cleaning after reduction.
 有機還元剤としては、例えば、アルデヒド系還元剤、ヒドラジン誘導体還元剤、アルコール系還元剤が挙げられる。中でも、アルコール系還元剤は、比較的穏やかに還元することができるため、特に好適である。アルコール系還元剤としては、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、ベンジルアルコール、フェノール、エタノールアミン、エチレングリコール、プロピレングリコール、ジエチレングリコールなどが挙げられる。 Examples of the organic reducing agent include an aldehyde-based reducing agent, a hydrazine derivative reducing agent, and an alcohol-based reducing agent. Of these, alcohol-based reducing agents are particularly suitable because they can be reduced relatively gently. Examples of the alcohol-based reducing agent include methanol, ethanol, propanol, isopropyl alcohol, butanol, benzyl alcohol, phenol, ethanolamine, ethylene glycol, propylene glycol, diethylene glycol and the like.
 無機還元剤としては、例えば、亜ジチオン酸ナトリウム、亜ジチオン酸カリウム、亜リン酸、水素化ホウ素ナトリウム、ヒドラジンなどが挙げられる。中でも、亜ジチオン酸ナトリウムまたは亜ジチオン酸カリウムは、酸性基を比較的保持しながら還元できるので、溶媒への分散性の高いグラフェンが製造でき、好適に用いられる。 Examples of the inorganic reducing agent include sodium dithionite, potassium dithionite, phosphorous acid, sodium borohydride, hydrazine and the like. Among them, sodium dithionite or potassium dithionite can be reduced while relatively retaining an acidic group, so graphene having high dispersibility in a solvent can be produced and is preferably used.
 還元工程を終えた後、好ましくは水で希釈し濾過する洗浄工程を行うことより、グラフェンの純度を向上させることができる。 After the reduction step is completed, the purity of graphene can be improved by carrying out a washing step of preferably diluting with water and filtering.
 <ポリビニルアルコール>
 前述のとおり、本発明においては、薄いグラフェンとともに、特定のケン化率を有するポリビニルアルコールを用いる。ポリビニルアルコール上の水酸基と、グラフェン上の酸素含有官能基および/または表面処理剤上の官能基との間の水素結合等の相互作用により、グラフェンの分散性を向上すると共に、グラフェンとポリビニルアルコールの結着力が向上する。従って、本発明においてはポリビニルアルコールの水酸基含有率、即ちケン化率が重要となる。
<Polyvinyl alcohol>
As described above, in the present invention, polyvinyl alcohol having a specific saponification rate is used together with thin graphene. The dispersibility of graphene is improved by the interaction between the hydroxyl group on polyvinyl alcohol and the oxygen-containing functional group on graphene and / or the functional group on the surface treatment agent, and the dispersibility of graphene is improved, and the dispersibility of graphene and polyvinyl alcohol is improved. The binding force is improved. Therefore, in the present invention, the hydroxyl group content of polyvinyl alcohol, that is, the saponification rate is important.
 本発明のグラフェン分散液に用いる、ポリビニルアルコールのケン化率は、70%以上100%以下である。ケン化率をかかる範囲にすることにより、グラフェンとの相互作用によって分散性を向上させることができる。ポリビニルアルコールのケン化率が70%未満であると、グラフェンとの相互作用が不足し、分散性向上効果が不十分になるために、電池寿命が低下する。グラフェンの分散性およびグラフェン分散液の流動性をより向上させ、電池寿命をより向上させる観点から、ポリビニルアルコールのケン化率は、75%以上が好ましく、80%以上がより好ましく、85%以上がさらに好ましい。一方、有機溶媒中へのポリビニルアルコールの溶解性を向上させる観点から、ポリビニルアルコールのケン化率は、99.9%以下が好ましく、98%以下がより好ましく、95%以下がさらに好ましい。ここで、ポリビニルアルコールのケン化率は、JISK6726-1994に従って求めることができる。また、ケン化率における%はモル%を意味する。 The saponification rate of polyvinyl alcohol used in the graphene dispersion of the present invention is 70% or more and 100% or less. By setting the saponification rate within such a range, the dispersibility can be improved by the interaction with graphene. If the saponification rate of polyvinyl alcohol is less than 70%, the interaction with graphene is insufficient, and the effect of improving dispersibility is insufficient, so that the battery life is shortened. From the viewpoint of further improving the dispersibility of graphene and the fluidity of the graphene dispersion liquid and further improving the battery life, the saponification rate of polyvinyl alcohol is preferably 75% or more, more preferably 80% or more, and 85% or more. More preferred. On the other hand, from the viewpoint of improving the solubility of polyvinyl alcohol in an organic solvent, the saponification rate of polyvinyl alcohol is preferably 99.9% or less, more preferably 98% or less, still more preferably 95% or less. Here, the saponification rate of polyvinyl alcohol can be determined according to JIS K6726-1994. In addition,% in the saponification rate means mol%.
 ポリビニルアルコールは、未変性ポリビニルアルコールであっても変性ポリビニルアルコールであってもよい。 The polyvinyl alcohol may be unmodified polyvinyl alcohol or modified polyvinyl alcohol.
 未変性ポリビニルアルコールとしては、例えば、商品名「“クラレポバール”(登録商標)」(株式会社クラレ)、商品名「“ゴーセノール”(登録商標)」(三菱ケミカル株式会社)、商品名「“デンカポバール”(登録商標)」(デンカ株式会社)、商品名「J-ポバール」(日本酢ビ・ポバール株式会社)などが挙げられる。 Examples of the unmodified polyvinyl alcohol include the product name "Kuraray Poval" (registered trademark) "(Kuraray Co., Ltd.), the product name" Gosenol "(registered trademark)" (Mitsubishi Chemical Co., Ltd.), and the product name "Denka". Examples include "Poval" (registered trademark) "(Denka Co., Ltd.) and the product name" J-Poval "(Japan Vam & Poval Co., Ltd.).
 変性ポリビニルアルコールとしては、例えば、側鎖にカルボキシル基、スルホン酸基、カチオン基(4級アンモニウム塩)およびエチレンオキサイド基から選ばれた基を有するものが挙げられる。具体的には、例えば、商品名「“ゴーセネックス”(登録商標)」(三菱ケミカル株式会社)L、T、WOシリーズなどが挙げられる。グラフェンの分散性およびグラフェン分散液の流動性をより向上させ、電池寿命をより向上させる観点から、これらのうち、側鎖にカルボキシル基またはスルホン酸基を有する変性ポリビニルアルコールがより好ましい。具体的には、例えば商品名“ゴーセネックス”(登録商標)」(三菱ケミカル株式会社)TシリーズまたはLシリーズが挙げられる。さらにスルホン酸基を有するものがさらに好ましく、例えば商品名“ゴーセネックス”(登録商標)」(三菱ケミカル株式会社)Lシリーズが挙げられる。 Examples of the modified polyvinyl alcohol include those having a group selected from a carboxyl group, a sulfonic acid group, a cationic group (quaternary ammonium salt) and an ethylene oxide group in the side chain. Specifically, for example, the product name "Gosenex" (registered trademark) "(Mitsubishi Chemical Corporation) L, T, WO series and the like can be mentioned. Of these, modified polyvinyl alcohol having a carboxyl group or a sulfonic acid group in the side chain is more preferable from the viewpoint of further improving the dispersibility of graphene and the fluidity of the graphene dispersion and further improving the battery life. Specific examples thereof include the trade name "Gosenex" (registered trademark) "(Mitsubishi Chemical Corporation) T series or L series. Further, those having a sulfonic acid group are more preferable, and examples thereof include the trade name "Gosenex" (registered trademark) "(Mitsubishi Chemical Corporation) L series.
 また、ポリビニルアルコールの重合度は、分散性向上効果が得られやすい観点から、100以上が好ましく、200以上がより好ましく、300以上がさらに好ましい。一方、ポリビニルアルコールの重合度は、グラフェン分散液の流動性をより向上させ、正極ペーストの固形分率を高め、また、電池寿命をより向上させる観点から、10,000以下が好ましく、5,000以下がより好ましく、2,000以下がさらに好ましい。ここで、未変性ポリビニルアルコールの重合度は、JIS6726-1994に従って求めることができる。 Further, the degree of polymerization of polyvinyl alcohol is preferably 100 or more, more preferably 200 or more, still more preferably 300 or more, from the viewpoint that the effect of improving dispersibility can be easily obtained. On the other hand, the degree of polymerization of polyvinyl alcohol is preferably 10,000 or less, preferably 5,000 or less, from the viewpoint of further improving the fluidity of the graphene dispersion, increasing the solid content of the positive electrode paste, and further improving the battery life. The following is more preferable, and 2,000 or less is further preferable. Here, the degree of polymerization of the unmodified polyvinyl alcohol can be determined according to JIS6726-1994.
 ポリビニルアルコールを2種以上含有してもよい。かかる場合、2種以上のポリビニルアルコール全体としてのケン化率および重合度が前記範囲内であることが好ましい。 Two or more kinds of polyvinyl alcohol may be contained. In such a case, it is preferable that the saponification rate and the degree of polymerization of the two or more kinds of polyvinyl alcohols as a whole are within the above ranges.
 本発明のグラフェン分散液は、前述のグラフェン100重量部に対して、前述のポリビニルアルコールを10重量部以上300重量部以下含有する。ポリビニルアルコールの含有量が10重量部未満であると、ポリビニルアルコールの分散性向上効果が十分に得られず、グラフェン分散液の流動性が低下し、正極ペーストの塗膜均一性や電池寿命が低下する。ポリビニルアルコールの含有量は、15重量部以上が好ましく、20重量部以上がより好ましい。一方、ポリビニルアルコールの含有量が300重量部を超えると、塗膜を形成した際に電気抵抗が高くなるため、電池寿命が低下する。また、グラフェン分散液の流動性が低下するため、正極ペーストの固形分率および塗膜均一性が低下する。ポリビニルアルコールの含有量は、200重量部以下が好ましく、100重量部以下がより好ましい。 The graphene dispersion of the present invention contains 10 parts by weight or more and 300 parts by weight or less of the above-mentioned polyvinyl alcohol with respect to 100 parts by weight of the above-mentioned graphene. If the content of polyvinyl alcohol is less than 10 parts by weight, the effect of improving the dispersibility of polyvinyl alcohol cannot be sufficiently obtained, the fluidity of the graphene dispersion is lowered, and the uniformity of the coating film of the positive electrode paste and the battery life are lowered. To do. The content of polyvinyl alcohol is preferably 15 parts by weight or more, more preferably 20 parts by weight or more. On the other hand, if the content of polyvinyl alcohol exceeds 300 parts by weight, the electric resistance becomes high when the coating film is formed, so that the battery life is shortened. In addition, since the fluidity of the graphene dispersion is reduced, the solid content of the positive electrode paste and the uniformity of the coating film are reduced. The content of polyvinyl alcohol is preferably 200 parts by weight or less, more preferably 100 parts by weight or less.
 本発明のグラフェン分散液中におけるグラフェンおよびポリビニルアルコールの含有量は、以下の方法により求めることができる。まず、ろ過によってグラフェンとポリビニルアルコールを分離する。グラフェンを含むろ物を、溶媒を用いてよく洗浄した後、ろ物を乾燥することにより、グラフェンの含有量を求めることができる。また、ろ液(ポリビニルアルコールを含む)から溶媒を留去した後に乾燥し、重量を測定することにより、ポリビニルアルコールの含有量を求めることができる。ただし、グラフェン分散液に用いる原料組成が既知である場合には、原料組成から計算により求めることもできる。 The content of graphene and polyvinyl alcohol in the graphene dispersion of the present invention can be determined by the following method. First, graphene and polyvinyl alcohol are separated by filtration. The graphene content can be determined by thoroughly washing the graphene-containing filter medium with a solvent and then drying the filter medium. Further, the content of polyvinyl alcohol can be determined by distilling off the solvent from the filtrate (including polyvinyl alcohol), drying the mixture, and measuring the weight. However, if the raw material composition used for the graphene dispersion is known, it can be calculated from the raw material composition.
 本発明のグラフェン分散液は、さらに溶媒を含有することが好ましい。溶媒としては、ポリビニルアルコールの溶解性に優れる観点から、極性溶媒が好ましい。特に、リチウムイオン電池用途においては、バインダーポリマー溶液との親和性の観点から、N,N-ジメチルホルムアミド、N-メチルピロリドンおよびN,N-ジメチルアセトアミドから選ばれた溶媒が好ましい。これらを2種以上含有してもよい。これらの中でも、表面処理剤による分散性向上効果をより効果的に奏する観点から、N-メチルピロリドンを含むことがより好ましい。N-メチルピロリドンがグラフェンに付着された表面処理剤に溶媒和することにより、分散性がより高められる。 The graphene dispersion of the present invention preferably further contains a solvent. As the solvent, a polar solvent is preferable from the viewpoint of excellent solubility of polyvinyl alcohol. In particular, in lithium ion battery applications, a solvent selected from N, N-dimethylformamide, N-methylpyrrolidone and N, N-dimethylacetamide is preferable from the viewpoint of affinity with the binder polymer solution. Two or more of these may be contained. Among these, it is more preferable to contain N-methylpyrrolidone from the viewpoint of more effectively exerting the effect of improving the dispersibility of the surface treatment agent. Dispersibility is further enhanced by solvating N-methylpyrrolidone with the surface treatment agent attached to graphene.
 本発明のグラフェン分散液は、流動性を有することが好ましい。本明細書中において、流動性を有するとは、グラフェン分散液1gを、清浄かつ平坦な幅5cm長さ15cmのアルミ箔の非光沢面の一端に直径1cm程度の円形状に滴下し、アルミ箔のグラフェン分散液を設置した側を把持して上に引き上げることによりアルミ箔を垂直に立て、振動を与えずに保持し、10分間静置後にグラフェン分散液が自重によって垂れた距離が3cm以上であることを指す。グラフェン分散液が垂れた距離は、アルミ箔を垂直に立てた時に重力のかかる方向のグラフェン分散液の端部について、グラフェン分散液が垂れる前後の距離を測定することにより求めることができる。グラフェン分散液が垂れた距離が大きいほど流動性が高いことを意味する。正極ペーストの各材料の混合をしやすくして、電池寿命をより向上させる観点から、グラフェン分散液が自重によって垂れた距離は、10cm以上がより好ましい。 The graphene dispersion of the present invention preferably has fluidity. In the present specification, the term “fluid” means that 1 g of graphene dispersion is dropped on one end of a clean and flat aluminum foil having a width of 5 cm and a length of 15 cm in a circular shape having a diameter of about 1 cm. By grasping the side where the graphene dispersion liquid is installed and pulling it up, the aluminum foil is erected vertically, held without vibration, and after standing for 10 minutes, the distance that the graphene dispersion liquid drips due to its own weight is 3 cm or more. Refers to something. The distance at which the graphene dispersion drips can be determined by measuring the distance before and after the graphene dispersion drips at the end of the graphene dispersion in the direction in which gravity is applied when the aluminum foil is erected vertically. The greater the dripping distance of the graphene dispersion, the higher the fluidity. From the viewpoint of facilitating the mixing of each material of the positive electrode paste and further improving the battery life, the distance that the graphene dispersion drips due to its own weight is more preferably 10 cm or more.
 次に、本発明のグラフェン分散液の製造方法について説明する。グラフェン分散液の製造方法としては、例えば、前記溶媒中にポリビニルアルコールを溶解させたものに、グラフェン粉末またはグラフェン分散液を混合する方法などが挙げられる。グラフェンの凝集をより抑制する観点から、グラフェン分散液を用いることが好ましい。 Next, the method for producing the graphene dispersion of the present invention will be described. Examples of the method for producing the graphene dispersion include a method in which a graphene powder or a graphene dispersion is mixed with a solution of polyvinyl alcohol in the solvent. From the viewpoint of further suppressing graphene aggregation, it is preferable to use a graphene dispersion.
 ポリビニルアルコール溶液とグラフェン粉末またはグラフェン分散液との混合装置としては、せん断力を加えることのできる装置が好ましく、例えば、プラネタリーミキサー、“フィルミックス”(登録商標)(プライミクス社)、自公転ミキサー、遊星ボールミル、3本ロールミルなどを用いることができる。 As a mixing device for the polyvinyl alcohol solution and the graphene powder or graphene dispersion, a device capable of applying a shearing force is preferable. For example, a planetary mixer, "Fillmix" (registered trademark) (Primix Corporation), a self-revolving mixer. , A planetary ball mill, a three-roll mill, or the like can be used.
 高せん断ミキサーを用いて、せん断速度毎秒5,000~毎秒50,000で撹拌処理する強撹拌工程を行ってもよい。強撹拌工程において高せん断ミキサーによりグラフェンを剥離することにより、グラフェン同士のスタックを解消することができ、グラフェンの平均厚みを調整することができる。高せん断ミキサーとしては、薄膜旋回方式、ローター/ステーター式またはメディアミル式を採用したものが好ましい。具体的には、例えば、“フィルミックス”(登録商標)30-30型(プライミクス社)、“クレアミックス”(登録商標)CLM-0.8S(エム・テクニック社)、“ラボスター”(登録商標)ミニLMZ015(アシザワ・ファインテック社)、スーパーシェアミキサーSDRT0.35-0.75(佐竹化学機械工業社)などが挙げられる。 A high shear mixer may be used to perform a strong stirring step in which the shearing process is performed at a shear rate of 5,000 to 50,000 per second. By peeling the graphene with a high shear mixer in the strong stirring step, the stack of graphene can be eliminated and the average thickness of the graphene can be adjusted. As the high shear mixer, a thin film swirl system, a rotor / stator system, or a media mill system is preferable. Specifically, for example, "Filmix" (registered trademark) 30-30 type (Primix), "Clearmix" (registered trademark) CLM-0.8S (M Technique), "Laboster" (registered trademark). ) Mini LMZ015 (Ashizawa Finetech), Super Share Mixer SDRT0.35-0.75 (Satake Chemical Machinery Co., Ltd.) and the like.
 強撹拌工程におけるせん断速度は、上述のとおり、毎秒5,000~毎秒50,000が好ましい。せん断速度を毎秒5,000以上とすることにより、グラフェンの剥離を促進し、グラフェンの平均厚みを前述の範囲に容易に調整することができる。また、強撹拌工程の処理時間は15秒から300秒が好ましい。 As described above, the shear rate in the strong stirring step is preferably 5,000 to 50,000 per second. By setting the shear rate to 5,000 or more per second, the peeling of graphene can be promoted, and the average thickness of graphene can be easily adjusted to the above range. The processing time of the strong stirring step is preferably 15 seconds to 300 seconds.
 上記のグラフェン分散液を基板上に塗工することにより、グラフェン含有膜を形成することができる。グラフェン分散液の塗工方法としては、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法、スプレーコート法、インクジェット法、フレキソ法などが挙げられる。これらの中でも、正極ペーストやリチウムイオン電池正極への適用のしやすさの観点から、スプレー法またはコーター法が好ましい。 A graphene-containing film can be formed by applying the above graphene dispersion liquid onto a substrate. Examples of the graphene dispersion coating method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, a spray coating method, an inkjet method, and a flexographic method. Be done. Among these, the spray method or the coater method is preferable from the viewpoint of ease of application to the positive electrode paste and the positive electrode of the lithium ion battery.
 本発明のグラフェン分散液には、さらに添加剤を混合してもよい。添加剤としては、例えば、正極活物質やバインダー、架橋剤、劣化防止剤、無機フィラーなどが挙げられる。 Additives may be further mixed with the graphene dispersion of the present invention. Examples of the additive include a positive electrode active material, a binder, a cross-linking agent, a deterioration inhibitor, an inorganic filler and the like.
 次に、本発明の正極ペーストについて説明する。本発明の正極ペーストは、正極活物質、平均厚み0.3nm以上10nm以下のグラフェンおよびケン化率70%以上100%以下のポリビニルアルコールを含有する。さらに必要に応じて、グラフェン以外の導電助剤を含有してもよい。 Next, the positive electrode paste of the present invention will be described. The positive electrode paste of the present invention contains a positive electrode active material, graphene having an average thickness of 0.3 nm or more and 10 nm or less, and polyvinyl alcohol having a saponification rate of 70% or more and 100% or less. Further, if necessary, a conductive auxiliary agent other than graphene may be contained.
 グラフェンとしては、前記グラフェン分散液の材料として例示したものが挙げられる。グラフェンの平均厚み、グラフェン層に平行な方向の大きさ、O/C比およびN/C比は、それぞれ正極ペーストからグラフェンを採取し、前述の方法により求めることができる。 Examples of graphene include those exemplified as the material of the graphene dispersion liquid. The average thickness of graphene, the size in the direction parallel to the graphene layer, the O / C ratio and the N / C ratio can be obtained by collecting graphene from the positive electrode paste and using the method described above.
 ポリビニルアルコールとしては、前記グラフェン分散液の材料として例示したものが挙げられる。 Examples of polyvinyl alcohol include those exemplified as the material of the graphene dispersion liquid.
 正極活物質は、リチウムイオンを電気化学的に吸蔵・放出可能な材料である。例えば、スピネル型構造のマンガン酸リチウム(LiMn)、岩塩型構造のマンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルをマンガン・コバルトで一部置換した三元系(LiNiMnCo1-x-y)、コバルト・アルミニウムで一部置換した三元系(LiNiCoAl1-x-y)、V等の金属酸化物活物質やTiS、MoS、NbSeなどの金属化合物系活物質、オリビン型構造のリン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、固溶体系活物質などが挙げられる。これらを2種以上用いてもよい。これらの中でも、リチウムとニッケルを含有する活物質が好ましい。リチウムとニッケルを含有する活物質としては、例えば、ニッケル酸リチウム(LiNiO)、ニッケルをマンガン・コバルトで一部置換した三元系(LiNiMnCo1-x-y)、コバルト・アルミニウムで一部置換した三元系(LiNiCoAl1-x-y)等が好ましく、エネルギー密度を向上させることができる。 The positive electrode active material is a material capable of electrochemically occluding and releasing lithium ions. For example, spinel-type structure lithium manganate (LiMn 2 O 4 ), rock salt-type structure lithium manganate (LiMnO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), nickel with manganese cobalt. some substituted ternary (LiNi x Mn y Co 1- x-y O 2), a portion of a cobalt-aluminum-substituted ternary (LiNi x Co y Al 1- x-y O 2), V 2 O metal oxide such as 5 active material and TiS 2, MoS 2, metal compound-based active material such as NbSe 2, lithium iron phosphate (LiFePO 4) of olivine structure, lithium manganese phosphate (LiMnPO 4), a solid solution system Examples include active materials. Two or more of these may be used. Among these, an active material containing lithium and nickel is preferable. Examples of the active material containing lithium and nickel include lithium nickelate (LiNiO 2 ), a ternary system in which nickel is partially replaced with manganese and cobalt (LiNi x Mn y Co 1-x-y O 2 ), and cobalt. aluminum some substituted ternary (LiNi x Co y Al 1- x-y O 2) , etc. are preferred, it is possible to improve the energy density.
 さらに、造粒体の正極活物質を用いる場合は、グラフェンが正極活物質表面の凹凸形状に追従しつつ面で接する傾向があるため、特に本発明の効果が顕著になる。造粒体とは粉体を分散させたスラリーを噴霧乾燥することなどによって得られる球状粒子を意味する。造粒体として用いられる正極活物質には三元系(LiNiMnCo1-x-y)やLiNiCoAl1-x-yなどがある。造粒体は、一次粒子が集合して二次粒子が形成されているため、表面が凹凸形状となる傾向があり、正極活物質と導電助剤の接する面を増やす必要があるため本発明の効果が顕著に発揮される。 Further, when the positive electrode active material of the granulated product is used, graphene tends to come into contact with the surface while following the uneven shape of the surface of the positive electrode active material, so that the effect of the present invention is particularly remarkable. The granulated material means spherical particles obtained by spray-drying a slurry in which powder is dispersed. Positive electrode active materials used as granules include a ternary system (LiNi x Mn y Co 1-x-y O 2 ) and LiNi x Co y Al 1-x-y O 2 . In the granulated material, since the primary particles are aggregated to form the secondary particles, the surface tends to have an uneven shape, and it is necessary to increase the contact surface between the positive electrode active material and the conductive auxiliary agent. The effect is noticeable.
 正極活物質の粒子径は、前述のグラフェンによる導電パス形成のしやすさの観点から、20μm以下が好ましい。なお、本明細書において粒子径はメジアン径(D50)を意味するものとする。メジアン径は、レーザー散乱粒度分布測定装置(例えば、日機装社製マイクロトラックHRAX-100)により測定することができる。また、本明細書において「正極活物質の粒子径」は、正極活物質が造粒体の場合には二次粒子径を意味するものとする。 The particle size of the positive electrode active material is preferably 20 μm or less from the viewpoint of ease of forming a conductive path with graphene described above. In this specification, the particle size means the median diameter (D 50 ). The median diameter can be measured by a laser scattering particle size distribution measuring device (for example, Microtrack HRX-100 manufactured by Nikkiso Co., Ltd.). Further, in the present specification, the "particle size of the positive electrode active material" means the secondary particle size when the positive electrode active material is a granulated material.
 本発明の正極ペーストは、前述のグラフェン100重量部に対して、前述のポリビニルアルコールを10重量部以上300重量部以下含有する。ポリビニルアルコールの含有量が10重量部未満であると、ポリビニルアルコールの分散性向上効果が十分に得られず、正極ペーストの流動性が低下し、塗膜均一性や電池寿命が低下する。また、正極ペーストの固形分率を高くすることが困難となる。ポリビニルアルコールの含有量は、15重量部以上が好ましく、20重量部以上がより好ましい。一方、ポリビニルアルコールの含有量が300重量部を超えると、相対的に正極活物質やグラフェンの含有量が低下し、電気抵抗も増加しやすいことから、電池寿命が低下する。また、正極ペーストの固形分率が低下し、塗膜均一性が低下する。ポリビニルアルコールの含有量は、200重量部以下が好ましく、100重量部以下がより好ましい。ここで、本発明の正極ペーストの固形分率は、スライドガラスに1gの正極ペーストを乗せ、120℃の真空オーブンで5時間加熱乾燥し、乾燥後の重量を乾燥前の重量で除した値をいう。 The positive electrode paste of the present invention contains 10 parts by weight or more and 300 parts by weight or less of the above-mentioned polyvinyl alcohol with respect to 100 parts by weight of the above-mentioned graphene. If the content of polyvinyl alcohol is less than 10 parts by weight, the effect of improving the dispersibility of polyvinyl alcohol cannot be sufficiently obtained, the fluidity of the positive electrode paste is lowered, and the uniformity of the coating film and the battery life are lowered. In addition, it becomes difficult to increase the solid content of the positive electrode paste. The content of polyvinyl alcohol is preferably 15 parts by weight or more, more preferably 20 parts by weight or more. On the other hand, when the content of polyvinyl alcohol exceeds 300 parts by weight, the content of the positive electrode active material and graphene is relatively lowered, and the electric resistance is likely to increase, so that the battery life is shortened. In addition, the solid content of the positive electrode paste is lowered, and the uniformity of the coating film is lowered. The content of polyvinyl alcohol is preferably 200 parts by weight or less, more preferably 100 parts by weight or less. Here, the solid content of the positive electrode paste of the present invention is a value obtained by placing 1 g of the positive electrode paste on a slide glass, heating and drying in a vacuum oven at 120 ° C. for 5 hours, and dividing the weight after drying by the weight before drying. Say.
 本発明の正極ペーストは、正極活物質100重量部に対して、前述のグラフェンを0.05重量部以上2.5重量部以下含有することが好ましい。グラフェンの含有量を0.05重量部以上とすることにより、正極ペースト固形分率を高くすることができる。グラフェンの含有量は、0.1重量部以上が好ましく、0.2重量部以上がより好ましい。一方、グラフェンの含有量を2.5重量部以下とすることにより、導電パスを形成しやすく、電池寿命をより向上させることができる。 The positive electrode paste of the present invention preferably contains the above-mentioned graphene in an amount of 0.05 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. By setting the graphene content to 0.05 parts by weight or more, the solid content of the positive electrode paste can be increased. The graphene content is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more. On the other hand, by setting the graphene content to 2.5 parts by weight or less, it is easy to form a conductive path, and the battery life can be further improved.
 本発明の正極ペースト中における正極活物質、グラフェンおよびポリビニルアルコールの含有量は、以下の方法により求めることができる。正極ペーストから固形分をろ過により採取し、溶媒で洗浄した後、乾燥させた粉末の重量を測定し、正極活物質と導電助剤の総重量を求める。さらに塩酸および硝酸などの酸を用いて該固形分中の正極活物質を溶解し、ろ過を行うことにより導電助剤を分離する。ろ物を水で洗浄後、乾燥し、重量を測定することにより導電助剤の含有量を測定することができる。また、正極活物質と導電助剤の総重量と導電助剤の重量から、正極活物質の重量を求めることができる。なお、導電助剤にグラフェンとそれ以外の材料が含まれている場合は、粉体のSEM画像から、それぞれの導電助剤の大きさを求め、グラフェンのみを通過、あるいは捕捉するように篩を用いて回収することにより、グラフェンのみの含有量を求めることができる。複数の導電助剤の大きさが同程度であり、篩がけが困難な場合は、粉体の表面SEM画像の断面面積の比率から、それぞれの含有量を求めることができる。ただし、正極ペーストに用いる原料組成が既知である場合には、原料組成から計算により求めることもできる。 The content of the positive electrode active material, graphene and polyvinyl alcohol in the positive electrode paste of the present invention can be determined by the following method. The solid content is collected from the positive electrode paste by filtration, washed with a solvent, and then the weight of the dried powder is measured to determine the total weight of the positive electrode active material and the conductive additive. Further, the positive electrode active material in the solid content is dissolved with an acid such as hydrochloric acid and nitric acid, and the conductive auxiliary agent is separated by filtering. The content of the conductive additive can be measured by washing the filter with water, drying it, and measuring the weight. Further, the weight of the positive electrode active material can be obtained from the total weight of the positive electrode active material and the conductive auxiliary agent and the weight of the conductive auxiliary agent. If the conductive auxiliary agent contains graphene and other materials, determine the size of each conductive auxiliary agent from the SEM image of the powder, and sieve the sieve so that only graphene passes through or is captured. The content of graphene alone can be determined by using and recovering. When the sizes of the plurality of conductive auxiliaries are about the same and sieving is difficult, the content of each can be obtained from the ratio of the cross-sectional areas of the surface SEM images of the powder. However, if the raw material composition used for the positive electrode paste is known, it can be calculated from the raw material composition.
 本発明の正極ペーストは、さらに、バインダー、グラフェン以外の導電助剤やその他添加剤を含有してもよい。 The positive electrode paste of the present invention may further contain a binder, a conductive auxiliary agent other than graphene, and other additives.
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などのフッ素系重合体;スチレンブタジエンゴム(SBR)、天然ゴムなどのゴム;カルボキシメチルセルロース等の多糖類;ポリイミド前駆体および/またはポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアクリル酸、ポリアクリル酸ナトリウム、アクリル樹脂、ポリアクリロニトリル等が挙げられる。これらを2種以上含有してもよい。 Examples of the binder include fluoropolymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); rubbers such as styrene butadiene rubber (SBR) and natural rubber; polysaccharides such as carboxymethyl cellulose; polyimide precursors. And / or polyimide resin, polyamideimide resin, polyamide resin, polyacrylic acid, sodium polyacrylate, acrylic resin, polyacrylonitrile and the like can be mentioned. Two or more of these may be contained.
 バインダーの含有量は、正極活物質の含有量100重量部に対して、0.2重量部以上2重量部以下が好ましい。バインダーの含有量を0.2重量部以上とすることにより、電池寿命をより向上させることができる。一方、バインダーの含有量を2重量部以下とすることにより、正極ペーストの流動性をより向上させ、固形分率をより高くすることができる。なお、本発明のグラフェン分散液および正極ペーストは、自立膜を形成し、正極活物質を保持する特徴を有するため、バインダーを含有しなくてもよい。 The content of the binder is preferably 0.2 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the content of the positive electrode active material. By setting the content of the binder to 0.2 parts by weight or more, the battery life can be further improved. On the other hand, by setting the content of the binder to 2 parts by weight or less, the fluidity of the positive electrode paste can be further improved and the solid content ratio can be further increased. Since the graphene dispersion liquid and the positive electrode paste of the present invention have the characteristics of forming a self-supporting film and retaining the positive electrode active material, they do not have to contain a binder.
 グラフェン以外の導電助剤としては、高い電子伝導性を有することが好ましく、例えば、炭素繊維、カーボンブラック、アセチレンブラック、カーボンナノファイバー、カーボンナノチューブ、“VGCF”(登録商標)-H(昭和電工社製)などの炭素材料;銅、ニッケル、アルミニウム、銀などの金属材料などが挙げられる。これらを2種以上含有してもよい。これらの中でも、繊維形状のカーボンナノファイバー、カーボンナノチューブまたは“VGCF”(登録商標)-H(昭和電工社製)が好ましく、電極の厚み方向の導電性を向上させることができる。 The conductive auxiliary agent other than graphene preferably has high electron conductivity. For example, carbon fiber, carbon black, acetylene black, carbon nanofiber, carbon nanotube, "VGCF" (registered trademark) -H (Showa Denko Co., Ltd.) (Manufactured); carbon materials such as copper, nickel, aluminum, silver and the like. Two or more of these may be contained. Among these, fiber-shaped carbon nanofibers, carbon nanotubes, or "VGCF" (registered trademark) -H (manufactured by Showa Denko Co., Ltd.) are preferable, and the conductivity in the thickness direction of the electrode can be improved.
 グラフェン以外の導電助剤の含有量は、正極活物質の含有量100重量部に対して、0.1重量部以上2重量部以下が好ましい。グラフェン以外の導電助剤の含有量を0.1重量部以上とすることにより、電池寿命をより向上させることができる。一方、グラフェン以外の導電助剤の含有量を2重量部以下とすることにより、正極ペーストの流動性をより向上させ、固形分率をより向上させることができる。 The content of the conductive additive other than graphene is preferably 0.1 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the content of the positive electrode active material. By setting the content of the conductive auxiliary agent other than graphene to 0.1 parts by weight or more, the battery life can be further improved. On the other hand, by setting the content of the conductive auxiliary agent other than graphene to 2 parts by weight or less, the fluidity of the positive electrode paste can be further improved and the solid content ratio can be further improved.
 正極ペーストの構成材料および組成比を分析する方法としては、正極ペーストから固形分をろ過により採取し、溶媒で洗浄した後に乾燥させた粉末を、X線回折測定することにより、正極活物質の種類を特定することができる。2種類以上の正極活物質が混ざっている場合は、さらに粉末をエネルギー分散型X線分光法またはICP-MS(誘導結合プラズマ質量分析計)により分析することにより、正極活物質の混合比率を求めることができる。ただし、正極ペーストに用いる原料組成が既知である場合には、原料組成から計算により求めることもできる。 As a method for analyzing the constituent materials and composition ratio of the positive electrode paste, the solid content is collected from the positive electrode paste by filtration, washed with a solvent, and then dried, and the powder is measured by X-ray diffraction to measure the type of positive electrode active material. Can be identified. When two or more types of positive electrode active materials are mixed, the mixing ratio of the positive electrode active materials is obtained by further analyzing the powder by energy dispersion X-ray spectroscopy or ICP-MS (inductively coupled plasma mass spectrometer). be able to. However, if the raw material composition used for the positive electrode paste is known, it can be calculated from the raw material composition.
 また、上記のろ過により得られたろ液をFT-IRで測定し、得られたスペクトルよりPVDF由来のC-F吸収が観測された場合、バインダーとしてPVDFが含まれていると判断できる。また、ろ液を乾燥させ、重量を測定することで正極ペースト中のバインダーの含有量を測定することができる。また、ろ液を乾燥させたものを重溶媒に再溶解し、NMR(核磁気共鳴分光装置)を用いて分析することにより、その他のバインダーについても同定することができる。 Further, when the filtrate obtained by the above filtration is measured by FT-IR and CF absorption derived from PVDF is observed from the obtained spectrum, it can be determined that PVDF is contained as a binder. Further, the content of the binder in the positive electrode paste can be measured by drying the filtrate and measuring the weight. In addition, other binders can be identified by redissolving the dried filtrate in a heavy solvent and analyzing it using NMR (nuclear magnetic resonance spectroscopy).
 本発明の正極ペーストの25℃における粘度は、塗工性の観点から、1,800mPa・s以上2,200mPa・s以下が好ましい。ペーストの粘度がこの範囲内にない場合、所望の粘度になるように、溶媒を混合して調整することが好ましい。ここで、正極ペーストの25℃における粘度は、ブルックフィールド粘度計LVDVII+を用いて、ローターNo.6、60rpmの条件による測定することができる。 The viscosity of the positive electrode paste of the present invention at 25 ° C. is preferably 1,800 mPa · s or more and 2,200 mPa · s or less from the viewpoint of coatability. When the viscosity of the paste is not within this range, it is preferable to mix and adjust the solvent so as to obtain the desired viscosity. Here, the viscosity of the positive electrode paste at 25 ° C. was determined by using a Brookfield viscometer LVDVII + to determine the rotor No. It can be measured under the condition of 6 or 60 rpm.
 本明細書中において、正極ペーストの固形分率とは、上記の測定法で測定した粘度が1,800mPa・s以上2,200mPa・s以下となる様に調整された後の正極ペーストにおいて、スライドガラスに1gの正極ペーストを乗せ、120℃の真空オーブンで5時間加熱乾燥し、乾燥後の重量を乾燥前の重量で除した値を指す。 In the present specification, the solid content of the positive electrode paste is a slide in the positive electrode paste after the viscosity measured by the above measurement method is adjusted to be 1800 mPa · s or more and 2,200 mPa · s or less. It refers to a value obtained by placing 1 g of positive electrode paste on glass, heating and drying in a vacuum oven at 120 ° C. for 5 hours, and dividing the weight after drying by the weight before drying.
 正極ペーストの固形分率は、導電パスを形成させ電池寿命を向上する観点から、70重量%以上が好ましい。グラフェン分散液の流動性が高ければ、正極ペーストのおける各材料の混合状態が向上し、粘度の調整に要する溶媒の量が少なくなり、正極ペーストの固形分率を高められる。 The solid content of the positive electrode paste is preferably 70% by weight or more from the viewpoint of forming a conductive path and improving the battery life. When the fluidity of the graphene dispersion is high, the mixed state of each material in the positive electrode paste is improved, the amount of the solvent required for adjusting the viscosity is reduced, and the solid content ratio of the positive electrode paste can be increased.
 本発明の正極ペーストの製造方法としては、例えば、前述の本発明のグラフェン分散液と、正極活物質と、バインダーまたはバインダー溶液と、を所望の比率で混合した後、前述の方法で粘度を測定し、1,800mPa・s以上2,000mPa・s以下となる様に溶媒を追加した後、再度混合する方法が挙げられる。正極ペーストの製造方法の別の態様として、例えば、ポリビニルアルコールを含有しないグラフェン分散液と、正極活物質と、バインダーまたはバインダー溶液と、ポリビニルアルコール溶液と、を所望の比率で混合した後、前述の方法で粘度を測定し、1,800mPa・s以上2,000mPa・s以下となる様に溶媒を追加した後、再度混合する方法も挙げられる。溶媒としては、グラフェン分散液の溶媒として例示したものが挙げられる。粘度を調整する前に、グラフェン以外の導電助剤およびその他添加物を加えてもよい。 As a method for producing the positive electrode paste of the present invention, for example, the above-mentioned graphene dispersion of the present invention, the positive electrode active material, and a binder or a binder solution are mixed in a desired ratio, and then the viscosity is measured by the above-mentioned method. Then, a method of adding a solvent so as to be 1,800 mPa · s or more and 2,000 mPa · s or less and then mixing again can be mentioned. As another embodiment of the method for producing a positive electrode paste, for example, a graphene dispersion liquid containing no polyvinyl alcohol, a positive electrode active material, a binder or a binder solution, and a polyvinyl alcohol solution are mixed in a desired ratio, and then described above. Another method is to measure the viscosity by a method, add a solvent so that the viscosity is 1800 mPa · s or more and 2,000 mPa · s or less, and then mix again. Examples of the solvent include those exemplified as the solvent of the graphene dispersion liquid. Conductive aids other than graphene and other additives may be added before adjusting the viscosity.
 正極ペーストの混合装置としては、例えば、ポリビニルアルコール溶液とグラフェン粉末または分散液との混合装置として例示したものが挙げられる。 Examples of the positive electrode paste mixing device include those exemplified as a mixing device of a polyvinyl alcohol solution and graphene powder or a dispersion liquid.
 次に、本発明のリチウムイオン電池正極について説明する。本発明のリチウムイオン電池正極は、正極活物質、平均厚み0.3nm以上10nm以下のグラフェンおよびケン化率70%以上100%以下のポリビニルアルコールを含有する。リチウムイオン電池正極は、集電箔上に、前記正極ペーストの乾燥膜形成されたものが好ましい。 Next, the positive electrode of the lithium ion battery of the present invention will be described. The positive electrode of the lithium ion battery of the present invention contains a positive electrode active material, graphene having an average thickness of 0.3 nm or more and 10 nm or less, and polyvinyl alcohol having a saponification rate of 70% or more and 100% or less. The positive electrode of the lithium ion battery is preferably one in which a dry film of the positive electrode paste is formed on the current collecting foil.
 グラフェンとしては、前記グラフェン分散液の材料として例示したものが挙げられる。グラフェンの平均厚み、グラフェン層に平行な方向の大きさ、O/C比およびN/C比は、それぞれリチウムイオン電池正極からグラフェンを採取し、前述の方法により求めることができる。 Examples of graphene include those exemplified as the material of the graphene dispersion liquid. The average thickness of graphene, the size in the direction parallel to the graphene layer, the O / C ratio and the N / C ratio can be obtained by collecting graphene from the positive electrode of the lithium ion battery and using the method described above.
 ポリビニルアルコールとしては、前記グラフェン分散液の材料として例示したものが挙げられる。 Examples of polyvinyl alcohol include those exemplified as the material of the graphene dispersion liquid.
 集電箔を構成する材料は、アルミニウムやその合金が好ましい。アルミニウムは、正極反応雰囲気下で安定であることから、JIS規格1030、1050、1085、1N90、1N99等に代表される高純度アルミニウムが好ましい。集電箔の厚みは、10μm以上100μm以下が好ましい。集電箔の厚みを10μm以上とすることにより、正極の破断を抑制することができる。一方、集電箔の厚みを100μm以下とすることにより、正極のエネルギー密度を向上させることができる。 Aluminum or its alloy is preferable as the material constituting the current collector foil. Since aluminum is stable in a positive electrode reaction atmosphere, high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like is preferable. The thickness of the current collector foil is preferably 10 μm or more and 100 μm or less. By setting the thickness of the current collector foil to 10 μm or more, breakage of the positive electrode can be suppressed. On the other hand, by setting the thickness of the current collector foil to 100 μm or less, the energy density of the positive electrode can be improved.
 本発明のリチウムイオン電池正極の製造方法としては、前記正極ペーストを集電箔上に塗工し、乾燥させる方法などが挙げられる。 Examples of the method for manufacturing the positive electrode of the lithium ion battery of the present invention include a method of applying the positive electrode paste on the current collecting foil and drying it.
 集電箔上への正極ペーストの塗工方法としては、例えば、ドクターブレード、ダイコータ、コンマコータ、スプレー等を用いて塗布する方法が挙げられる。 Examples of the method of applying the positive electrode paste on the current collector foil include a method of applying the positive electrode paste using a doctor blade, a die coater, a comma coater, a spray, or the like.
 本発明の正極ペーストを集電箔に塗布した後、乾燥工程により溶媒を除去することが好ましい。溶媒を除去する方法としては、オーブンや真空オーブンを用いた乾燥が好ましい。溶媒を除去する雰囲気としては、空気、不活性ガス、真空状態などが挙げられる。また、溶媒を除去する温度は、60℃以上250℃以下が好ましい。 After applying the positive electrode paste of the present invention to the current collector foil, it is preferable to remove the solvent by a drying step. As a method for removing the solvent, drying using an oven or a vacuum oven is preferable. Examples of the atmosphere for removing the solvent include air, an inert gas, and a vacuum state. The temperature at which the solvent is removed is preferably 60 ° C. or higher and 250 ° C. or lower.
 また、乾燥後に塗膜の密度を上げるため、正極ペーストを塗布した集電箔をプレスする工程を有することが好ましい。 Further, in order to increase the density of the coating film after drying, it is preferable to have a step of pressing the current collector foil coated with the positive electrode paste.
 リチウムイオン電池正極中のグラフェンの含有量および正極活物質の各種物性および含有量は、以下のように測定することができる。まず電池をArグローブボックス内で解体し、電極をジメチルカーボネートで洗浄した後、不活性のグローブボックスのサイドボックス内で1時間真空乾燥を行う。次にスパチュラを用いて、集電箔からリチウムイオン電池正極層を剥離する。得られた正極層の粉体を、N-メチルピロリドンや水などの溶媒に溶解させ、ろ過を行うことで、ろ物(正極活物質、導電助剤、溶媒)とろ液(溶媒、その他)に分離する。得られたろ液を乾燥後、重溶媒に再溶解し、NMRを用いて分析することにより、バインダーを同定することができる。また、得られたろ物を乾燥することで溶媒を除去し、重量を測定することで正極活物質と導電助剤の総重量を求める。得られた粉末中の正極活物質の組成比は、前記正極ペーストの場合と同様にして分析することができる。さらに塩酸および硝酸などの酸を用いることで正極活物質を溶解し、ろ過を行うことでろ物(導電助剤)とろ液(電極活物質の溶解物、水)に分離する。ろ物を水で洗浄後、乾燥し、重量を測定することで導電助剤の含有量を測定することができる。また、正極活物質と導電助剤の総重量と導電助剤の重量から正極活物質の重量を求めることができる。得られた導電助剤は前述の正極ペーストの場合と同様にして分析することできる。 The content of graphene in the positive electrode of the lithium-ion battery and various physical properties and contents of the positive electrode active material can be measured as follows. First, the battery is disassembled in the Ar glove box, the electrodes are washed with dimethyl carbonate, and then vacuum dried in the side box of the inert glove box for 1 hour. Next, a spatula is used to peel off the positive electrode layer of the lithium ion battery from the current collector foil. The obtained powder of the positive electrode layer is dissolved in a solvent such as N-methylpyrrolidone or water and filtered to form a filtrate (positive electrode active material, conductive aid, solvent) and filtrate (solvent, etc.). To separate. The binder can be identified by drying the obtained filtrate, redissolving it in a heavy solvent, and analyzing it using NMR. Further, the solvent is removed by drying the obtained filter medium, and the total weight of the positive electrode active material and the conductive auxiliary agent is obtained by measuring the weight. The composition ratio of the positive electrode active material in the obtained powder can be analyzed in the same manner as in the case of the positive electrode paste. Further, the positive electrode active material is dissolved by using an acid such as hydrochloric acid and nitric acid, and the filtrate (conductive aid) and the filtrate (dissolved electrode active material, water) are separated by filtration. The content of the conductive additive can be measured by washing the filter with water, drying it, and measuring the weight. Further, the weight of the positive electrode active material can be obtained from the total weight of the positive electrode active material and the conductive auxiliary agent and the weight of the conductive auxiliary agent. The obtained conductive auxiliary agent can be analyzed in the same manner as in the case of the positive electrode paste described above.
 以下に実施例を用いて本発明を説明する。まず、各実施例および比較例における評価方法を説明する。 The present invention will be described below with reference to examples. First, the evaluation method in each Example and Comparative Example will be described.
 [測定例1:グラフェンの厚み]
 各実施例および比較例において作製したグラフェン分散液を、N-メチルピロリドンを用いて0.002重量%にまで希釈した。この時、表面処理グラフェンについては“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20000)で60秒間処理した。希釈液をマイカ基板上に滴下、乾燥し、基板上にグラフェンを付着させた。基板上のグラフェンを、原子間力顕微鏡(Dimension Icon;Bruker社)を用いて、視野範囲1~10μm四方程度に拡大観察して、無作為に選択した10個のグラフェンについて、それぞれ厚みを測定した。なお、各グラフェンの厚みは、それぞれのグラフェンにおいて無作為に選択した5箇所の厚みの測定値の算術平均値とした。10個のグラフェンの厚みの算術平均値を求めることにより、グラフェンの厚みを算出した。なお、グラフェンの厚みは、グラフェン分散液、正極ペースト、リチウムイオン電池正極中で変化しないことから、グラフェン分散液のみを用いて測定した。
[Measurement example 1: Graphene thickness]
The graphene dispersion prepared in each Example and Comparative Example was diluted to 0.002% by weight with N-methylpyrrolidone. At this time, the surface-treated graphene was treated with "Filmix" (registered trademark) 30-30 type (Primix Corporation) at a rotation speed of 40 m / s (shear velocity: 20000 per second) for 60 seconds. The diluted solution was dropped onto a mica substrate, dried, and graphene was adhered onto the substrate. Graphene on the substrate was magnified and observed using an atomic force microscope (Dimension Icon; Bruker) in a field of view of about 1 to 10 μm square, and the thickness of each of 10 randomly selected graphenes was measured. .. The thickness of each graphene was taken as the arithmetic mean value of the measured values of the thicknesses at five randomly selected points in each graphene. The graphene thickness was calculated by obtaining the arithmetic mean value of the thicknesses of 10 graphenes. Since the thickness of graphene does not change in the graphene dispersion, the positive electrode paste, and the positive electrode of the lithium ion battery, it was measured using only the graphene dispersion.
 [測定例2:グラフェンの、グラフェン層に平行な面方向の大きさ]
 各実施例および比較例において作製したグラフェン分散液を、N-メチルピロリドンを用いて0.002重量%に希釈した。この時、表面処理グラフェンについては“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20000)で60秒間処理した。希釈液をマイカ基板上に滴下、乾燥し、基板上にグラフェンを付着させた。基板上のグラフェンを、電子顕微鏡S-5500((株)日立ハイテクノロジーズ製)を用いて倍率30,000倍に拡大観察し、無作為に選択した10個のグラフェンについて、グラフェン層に平行な面方向の最も長い部分の長さ(長径)と最も短い部分の長さ(短径)をそれぞれ測定し、(長径+短径)/2で求められる数値の算術平均値を求めることにより、グラフェン層に平行な面の大きさを算出した。
[Measurement example 2: The size of graphene in the plane direction parallel to the graphene layer]
The graphene dispersion prepared in each Example and Comparative Example was diluted to 0.002% by weight with N-methylpyrrolidone. At this time, the surface-treated graphene was treated with "Filmix" (registered trademark) 30-30 type (Primix Corporation) at a rotation speed of 40 m / s (shear velocity: 20000 per second) for 60 seconds. The diluted solution was dropped onto a mica substrate, dried, and graphene was adhered onto the substrate. Graphene on the substrate was magnified and observed at a magnification of 30,000 times using an electron microscope S-5500 (manufactured by Hitachi High-Technologies Corporation), and 10 randomly selected graphenes were observed in a plane parallel to the graphene layer. The graphene layer is obtained by measuring the length (major axis) of the longest part in the direction and the length (minor axis) of the shortest part, respectively, and obtaining the arithmetic average value of the numerical value obtained by (major axis + minor axis) / 2. The size of the plane parallel to is calculated.
 [測定例3:X線光電子分光法によるO/C比およびN/C比の測定]
 各実施例および比較例において作製した還元後の表面処理グラフェン分散液を、吸引濾過器を用いて濾過した後、水で0.5質量%まで希釈して吸引濾過する洗浄工程を5回繰り返して洗浄し、さらに凍結乾燥して表面処理グラフェン粉末を得た。得られた表面処理グラフェン粉末について、X線光電子分光分析装置Quantera SXM (PHI社製)を用いて、光電子スペクトル測定した。励起X線は、monochromatic Al Kα1,2 線(1486.6eV)とし、X線径は200μm、光電子脱出角度は45°とした。284.3eV付近のピークを炭素原子に基づくC1sメインピークと帰属し、533eV付近のピークを酸素原子に基づくO1sピークと帰属し、402eV付近のピークを窒素原子に基づくN1sピークに帰属した。O1sピークとC1sピークの面積比からO/C比を算出し、得られた値の小数点第3位を四捨五入して小数点第2位まで求めた。また、N1sピークとC1sピークの面積比からN/Cを算出し、得られた値の小数点第4位を四捨五入して小数点第3位まで求めた。
[Measurement Example 3: Measurement of O / C ratio and N / C ratio by X-ray photoelectron spectroscopy]
The reduced surface-treated graphene dispersion prepared in each Example and Comparative Example is filtered using a suction filter, then diluted to 0.5% by mass with water and suction-filtered, and the washing step is repeated 5 times. It was washed and then freeze-dried to obtain a surface-treated graphene powder. The obtained surface-treated graphene powder was subjected to photoelectron spectrum measurement using an X-ray photoelectron spectroscopic analyzer Quantera SXM (manufactured by PHI). The excited X-rays were monochromatic Al K α1 and 2 rays (1486.6 eV), the X-ray diameter was 200 μm, and the photoelectron escape angle was 45 °. The peak near 284.3 eV was assigned to the C1s main peak based on carbon atoms, the peak near 533 eV was assigned to the O1s peak based on oxygen atoms, and the peak near 402 eV was assigned to the N1s peak based on nitrogen atoms. The O / C ratio was calculated from the area ratio of the O1s peak and the C1s peak, and the third decimal place of the obtained value was rounded off to obtain the second decimal place. Further, N / C was calculated from the area ratio of the N1s peak and the C1s peak, and the fourth decimal place of the obtained value was rounded off to obtain the third decimal place.
 [測定例4:グラフェン分散液の流動性]
 各実施例および比較例において作製したグラフェン分散液1gを、清浄かつ平坦な幅5cm長さ15cmのアルミ箔の非光沢面の一端に直径1cm程度の円形状に滴下した。アルミ箔のグラフェン分散液を設置した側を把持して上に引き上げることによりアルミ箔を垂直に立て、振動を与えずに保持し、10分静置後にグラフェン分散液が自重によって垂れた距離を測定した。グラフェン分散液が垂れた距離は、アルミ箔を垂直に立てた時に重力のかかる方向のグラフェン分散液の端部について、グラフェン分散液が垂れる前と垂れた後の前記端部までの距離を測定した。グラフェン分散液が垂れた距離が10cm以上の場合をA、3cm以上10cm未満の場合をB、3cm未満の場合をCとした。
[Measurement Example 4: Fluidity of Graphene Dispersion Liquid]
1 g of the graphene dispersion liquid prepared in each Example and Comparative Example was dropped onto one end of a clean and flat aluminum foil having a width of 5 cm and a length of 15 cm in a circular shape having a diameter of about 1 cm. By grasping the side where the graphene dispersion liquid of aluminum foil is installed and pulling it up, the aluminum foil stands vertically, holds it without vibration, and measures the distance that the graphene dispersion liquid drips due to its own weight after standing for 10 minutes. did. The distance at which the graphene dispersion drips was measured by measuring the distance between the end of the graphene dispersion in the direction in which gravity is applied when the aluminum foil is erected vertically, before and after the graphene dispersion drips. .. The case where the graphene dispersion was dripped was 10 cm or more was designated as A, the case where the graphene dispersion was 3 cm or more and less than 10 cm was designated as B, and the case where the graphene dispersion was less than 3 cm was designated as C.
 [測定例5:正極ペースト固形分率]
 各実施例および比較例において作製した正極ペースト1gを秤量し、スライドガラスに乗せ、120℃の真空オーブンで5時間加熱乾燥した。乾燥後の重量を測定し、乾燥前の重量で除した値の小数点第1位を四捨五入して整数とした値を正極ペースト固形分率とした。
[Measurement Example 5: Solidity Percentage of Positive Electrode Paste]
1 g of the positive electrode paste prepared in each Example and Comparative Example was weighed, placed on a slide glass, and heated and dried in a vacuum oven at 120 ° C. for 5 hours. The weight after drying was measured, and the value obtained by rounding off the first decimal place of the value divided by the weight before drying to obtain an integer was defined as the positive paste solid content.
 [測定例6:塗膜均一性]
 各実施例および比較例において作製した正極ペースト5gを、アルミニウム箔(厚さ18μm)にドクターブレード(300μm)を用いて塗布し、80℃15分間乾燥後、120℃2時間の真空乾燥し、塗膜を作製した。塗膜上から無作為に選出した10箇所について、1箇所あたり1cm四方の外観検査を目視にて行い、塗膜のかすれ、ひび割れ、泡状の欠点やササクレ等の欠点が見られた箇所の数を下記の指標に基づきランク分けした。
A:欠点が全く見られない、B:欠点が1または2箇所、C:欠点が3箇所から5箇所、D:欠点が6箇所以上。
[Measurement example 6: Coating film uniformity]
5 g of the positive electrode paste prepared in each Example and Comparative Example was applied to an aluminum foil (thickness 18 μm) using a doctor blade (300 μm), dried at 80 ° C. for 15 minutes, vacuum dried at 120 ° C. for 2 hours, and coated. A membrane was prepared. The number of places where defects such as faintness, cracks, foamy defects and hangnail of the coating film were found by visually inspecting the appearance of 1 cm square per 10 locations randomly selected from the coating film. Was ranked based on the following indicators.
A: No defects are seen, B: 1 or 2 defects, C: 3 to 5 defects, D: 6 or more defects.
 [測定例7:電池寿命(電池容量維持率)]
 各実施例および比較例において作製した2032型コイン電池について、上限電圧4.2V、下限電圧3.0Vでレート0.1C、1C、5Cの順に充放電測定を各3回ずつ行った後、2Cでさらに291回、計300回の充放電測定を行い、300回目の電池容量を測定し、1回目の電池容量に対する比(百分率)を算出し、電池容量維持率とした。
[Measurement example 7: Battery life (battery capacity retention rate)]
For the 2032 type coin batteries produced in each Example and Comparative Example, charge / discharge measurements were performed three times each in the order of rates 0.1C, 1C, and 5C at an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V, and then 2C. The charge / discharge measurement was further performed 291 times, a total of 300 times, the battery capacity of the 300th time was measured, and the ratio (percentage) to the battery capacity of the first time was calculated, which was used as the battery capacity retention rate.
 [合成例1:酸化グラフェンの調製]
 1500メッシュの天然黒鉛粉末(上海一帆石墨有限会社)を原料とした。氷浴中で10gの天然黒鉛粉末に、220mlの98%濃硫酸、5gの硝酸ナトリウム、30gの過マンガン酸カリウムを入れ、混合液の温度を20℃以下に保持しながら1時間機械撹拌した。この混合液を氷浴から取り出し、35℃水浴中で4時間撹拌した。その後イオン交換水500mlを入れて、得られた懸濁液を90℃でさらに15分間撹拌した。最後に600mlのイオン交換水と50mlの過酸化水素を入れ、5分間撹拌を行い、酸化グラフェン分散液を得た。得られた酸化グラフェン分散液を熱いうちに濾過し、ろ物を希塩酸溶液で洗浄して金属イオンを除去した後、イオン交換水で洗浄して酸を除去した。pHが7になるまでイオン交換水で洗浄を繰り返して酸化グラフェンを調製した。調製した酸化グラフェンの、X線光電子分光法により測定される酸素原子の炭素原子に対する元素比(O/C比)は0.53であった。
[Synthesis Example 1: Preparation of Graphene Oxide]
The raw material was 1500 mesh natural graphite powder (Shanghai Ichiho Ishikumi Co., Ltd.). 220 ml of 98% concentrated sulfuric acid, 5 g of sodium nitrate, and 30 g of potassium permanganate were added to 10 g of natural graphite powder in an ice bath, and the mixture was mechanically stirred for 1 hour while maintaining the temperature of the mixture at 20 ° C. or lower. The mixture was removed from the ice bath and stirred in a 35 ° C. water bath for 4 hours. Then, 500 ml of ion-exchanged water was added, and the obtained suspension was stirred at 90 ° C. for another 15 minutes. Finally, 600 ml of ion-exchanged water and 50 ml of hydrogen peroxide were added, and the mixture was stirred for 5 minutes to obtain a graphene oxide dispersion. The obtained graphene oxide dispersion was filtered while hot, and the filtrate was washed with a dilute hydrochloric acid solution to remove metal ions, and then washed with ion-exchanged water to remove the acid. Graphene oxide was prepared by repeating washing with ion-exchanged water until the pH reached 7. The element ratio (O / C ratio) of the prepared graphene oxide to the carbon atom of the oxygen atom measured by X-ray photoelectron spectroscopy was 0.53.
 [合成例2:酸化グラフェンの調製]
 1500メッシュの天然黒鉛粉末(上海一帆石墨有限会社)にかえてAGB-32(伊藤黒鉛工業株式会社製)に変更したこと以外は合成例1と同様にして酸化グラフェンを調製した。調製した酸化グラフェンの、X線光電子分光法により測定される酸素原子の炭素原子に対する元素比(O/C比)は0.51であった。
[Synthesis Example 2: Preparation of Graphene Oxide]
Graphene oxide was prepared in the same manner as in Synthesis Example 1 except that it was changed to AGB-32 (manufactured by Ito Graphite Industry Co., Ltd.) instead of 1500 mesh natural graphite powder (Shanghai Ichiho Ishikumi Co., Ltd.). The element ratio (O / C ratio) of the prepared graphene oxide to the carbon atom of the oxygen atom measured by X-ray photoelectron spectroscopy was 0.51.
 [実施例1]
 (表面処理グラフェンN-メチルピロリドン分散ペーストの調製)
 合成例1により調製した酸化グラフェンを、イオン交換水を用いて濃度30mg/mlに希釈し、ホモディスパー2.5型(プライミクス社)を用いて回転数3,000rpmで30分間処理し、均一な酸化グラフェン分散液を得た。得られた酸化グラフェン分散液20mlと、表面処理剤として0.3gのドーパミン塩酸塩を混合し、ホモディスパー2.5型(プライミクス社)を用いて、回転数3,000rpmで60分間処理した。処理後の酸化グラフェン分散液を、超音波装置UP400S(hielscher社)を使用して、出力300Wで超音波を30分間印加(微細化工程)した。微細化工程を経た酸化グラフェン分散液を、イオン交換水を用いて濃度5mg/mlに希釈し、希釈した分散液20mlに0.3gの亜ジチオン酸ナトリウムを入れて、40℃の水浴中でホモディスパー2.5型(プライミクス社)を用いて、回転数3,000rpmで1時間撹拌した。その後、減圧吸引濾過器を用いて濾過し、さらにろ物に水を加えて0.5重量%まで希釈して吸引濾過する洗浄工程を5回繰り返して洗浄して、グラフェン水分散液を得た。得られたグラフェン水分散液に、グラフェン濃度が0.5重量%となるようにN-メチルピロリドン(以下、NMP)を添加し、“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて、回転速度40m/s(せん断速度:毎秒20,000)で60秒間処理した。処理後に減圧吸引濾過により溶媒を除去した。さらに水分を除くために、ろ物にグラフェン濃度が0.5重量%になるようにNMPを添加し、ホモディスパー2.5型(プライミクス社)を使用して回転数3000rpmで30分間処理して希釈し、ろ液が落ちなくなるまで減圧吸引濾過する工程を2回繰り返し、ろ物として表面処理グラフェンを5.0重量%含有するNMP分散ペーストを得た。
[Example 1]
(Preparation of surface-treated graphene N-methylpyrrolidone dispersion paste)
Graphene oxide prepared in Synthesis Example 1 is diluted to a concentration of 30 mg / ml with ion-exchanged water and treated with Homo Disper 2.5 type (Primix Corporation) at a rotation speed of 3,000 rpm for 30 minutes to make it uniform. A graphene oxide dispersion was obtained. 20 ml of the obtained graphene oxide dispersion and 0.3 g of dopamine hydrochloride as a surface treatment agent were mixed and treated with Homo Disper 2.5 type (Primix Corporation) at a rotation speed of 3,000 rpm for 60 minutes. The treated graphene oxide dispersion was applied with ultrasonic waves at an output of 300 W for 30 minutes (miniaturization step) using an ultrasonic device UP400S (heelscher). The graphene oxide dispersion liquid that has undergone the micronization step is diluted to a concentration of 5 mg / ml using ion-exchanged water, 0.3 g of sodium dithionite is added to 20 ml of the diluted dispersion liquid, and homogen is used in a water bath at 40 ° C. Using a Disper 2.5 type (Primix Co., Ltd.), the mixture was stirred at a rotation speed of 3,000 rpm for 1 hour. Then, the mixture was filtered using a vacuum suction filter, and water was further added to the filtrate to dilute it to 0.5% by weight, and the washing step of suction filtration was repeated 5 times to obtain a graphene aqueous dispersion. .. N-Methylpyrrolidone (hereinafter, NMP) was added to the obtained aqueous graphene dispersion so that the graphene concentration was 0.5% by weight, and "Filmix" (registered trademark) 30-30 type (Primix Corporation) was added. Was treated at a rotation speed of 40 m / s (shear velocity: 20,000 per second) for 60 seconds. After the treatment, the solvent was removed by suction filtration under reduced pressure. In order to further remove water, NMP was added to the filter medium so that the graphene concentration was 0.5% by weight, and the mixture was treated using Homo Disper 2.5 type (Primix Corporation) at a rotation speed of 3000 rpm for 30 minutes. The steps of diluting and suction-filtering under reduced pressure until the filtrate did not drop were repeated twice to obtain an NMP-dispersed paste containing 5.0% by weight of surface-treated graphene as a filtrate.
 (ポリビニルアルコール溶液の調製)
 NMP95重量%に対し、ポリビニルアルコール(富士フイルム和光純薬株式会社製、ケン化率88%、重合度500)5重量%を加え、密閉された容器中でマグネチックスターラーの撹拌下90℃に加熱し、ポリビニルアルコールを完全に溶解させ、5重量%ポリビニルアルコール/NMP溶液を得た。
(Preparation of polyvinyl alcohol solution)
To 95% by weight of NMP, 5% by weight of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., saponification rate 88%, degree of polymerization 500) was added, and heated to 90 ° C. with stirring of a magnetic stirrer in a closed container. Then, polyvinyl alcohol was completely dissolved to obtain a 5 wt% polyvinyl alcohol / NMP solution.
 (グラフェン分散液の調製)
 上記のようにして得た表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP溶液5gを加えた後、“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20,000)で15分間撹拌し(強撹拌工程)、グラフェン分散液を得た。得られたグラフェン分散液の固形分濃度は4重量%であり、ポリビニルアルコール含有量はグラフェン100重量部に対して25重量部であった。
(Preparation of graphene dispersion)
After adding 5 g of a 5 wt% polyvinyl alcohol / NMP solution to 20 g of the NMP-dispersed paste containing 5.0 wt% of the surface-treated graphene obtained as described above, “Filmix” (registered trademark) 30-30 Using a mold (Primix Corporation), the mixture was stirred at a rotation speed of 40 m / s (shear velocity: 20,000 per second) for 15 minutes (strong stirring step) to obtain a graphene dispersion. The solid content concentration of the obtained graphene dispersion was 4% by weight, and the polyvinyl alcohol content was 25 parts by weight with respect to 100 parts by weight of graphene.
 得られたグラフェン分散液について、測定例1および2に従って、グラフェンの厚みおよびグラフェン層に平行な方向の大きさを測定した。また、測定例3に従って、O/C比およびN/C比を測定し、測定例4に従ってグラフェン分散液の流動性を評価した。結果を表1に示す。 For the obtained graphene dispersion, the thickness of graphene and the size in the direction parallel to the graphene layer were measured according to Measurement Examples 1 and 2. Further, the O / C ratio and the N / C ratio were measured according to Measurement Example 3, and the fluidity of the graphene dispersion was evaluated according to Measurement Example 4. The results are shown in Table 1.
 (正極ペーストの調製)
 正極活物質としてLiNi0.5Co0.2Mn0.3 20gと、導電助剤として4重量%グラフェン分散液5gと、バインダーとして10重量%PVDF/NMP溶液2gを、自公転ミキサーを用いて回転速度2000rpmで15分間混合した。得られた混合物に、NMPを追加した。ここで、ブルックフィールド粘度計LVDVII+を用いて、ローターNo.6、60rpm、25℃の条件で粘度を測定した混合物の粘度が2,000mPa・sとなる様に追加するNMPの量を調整した。この混合物を、再度自公転ミキサーを用いて回転速度2,000rpmで15分間混合して正極ペーストを得た。
(Preparation of positive electrode paste)
LiNi 0.5 Co 0.2 Mn 0.3 O 2 20 g as the positive electrode active material, 5 g of the 4 wt% graphene dispersion as the conductive auxiliary agent, and 2 g of the 10 wt% PVDF / NMP solution as the binder. The mixture was mixed at a rotation speed of 2000 rpm for 15 minutes. NMP was added to the resulting mixture. Here, using the Brookfield viscometer LVDVII +, the rotor No. The amount of NMP to be added was adjusted so that the viscosity of the mixture whose viscosity was measured under the conditions of 6, 60 rpm and 25 ° C. was 2,000 mPa · s. This mixture was mixed again using a rotation mixer at a rotation speed of 2,000 rpm for 15 minutes to obtain a positive electrode paste.
 得られた正極ペーストについて、測定例5に従って正極ペースト固形分率を測定し、測定例6に従って塗膜均一性を評価した。結果を表3に示す。 With respect to the obtained positive electrode paste, the solid content ratio of the positive electrode paste was measured according to Measurement Example 5, and the uniformity of the coating film was evaluated according to Measurement Example 6. The results are shown in Table 3.
 (コイン電池の作製)
 得られた正極ペーストを、アルミニウム箔(厚さ18μm)上に、乾燥後の正極ペースト目付け量が18mg/cmとなるようにドクターブレードを用いて塗布し、80℃15分間乾燥後、120℃2時間の真空乾燥を行い、電極板を得た。
(Making coin batteries)
The obtained positive electrode paste was applied onto an aluminum foil (thickness 18 μm) using a doctor blade so that the amount of positive electrode paste after drying was 18 mg / cm 2 , dried at 80 ° C. for 15 minutes, and then 120 ° C. Vacuum drying was carried out for 2 hours to obtain an electrode plate.
 作製した電極板を直径15.9mmの円形に切り出して正極とした。対極として、銅箔上に黒鉛98重量部、カルボキシメチルセルロースナトリウム1重量部、SBR水分散液1重量部からなる塗布膜を形成し、直径16.1mmの円形に切り出して負極とした。直径17mmの円形に切り出したセルガード#2400(セルガード社製)をセパレータとした。LiPFを1M含有するエチレンカーボネート:ジエチルカーボネート=7:3の溶媒を電解液とした。セパレータおよび電解液を正極および負極で挟んで、電解液3mLを添加し、かしめることで2032型コイン電池を作製した。得られたコイン電池の電池寿命(電池容量維持率)を、測定例7に従って測定した。 The prepared electrode plate was cut out into a circle having a diameter of 15.9 mm and used as a positive electrode. As a counter electrode, a coating film composed of 98 parts by weight of graphite, 1 part by weight of sodium carboxymethyl cellulose and 1 part by weight of SBR aqueous dispersion was formed on a copper foil, and cut into a circle having a diameter of 16.1 mm to form a negative electrode. Cellguard # 2400 (manufactured by Cellguard) cut into a circle with a diameter of 17 mm was used as a separator. A solvent of ethylene carbonate: diethyl carbonate = 7: 3 containing 1 M of LiPF 6 was used as the electrolytic solution. A 2032 type coin battery was produced by sandwiching the separator and the electrolytic solution between the positive electrode and the negative electrode, adding 3 mL of the electrolytic solution, and caulking. The battery life (battery capacity retention rate) of the obtained coin battery was measured according to Measurement Example 7.
 [実施例2]
 強撹拌工程の処理時間を30分間に延長したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 2]
A graphene dispersion was obtained in the same manner as in Example 1 except that the treatment time of the strong stirring step was extended to 30 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例3]
 強撹拌工程を5分間に短縮したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 3]
A graphene dispersion was obtained in the same manner as in Example 1 except that the strong stirring step was shortened to 5 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例4]
 微細化工程を120分間に延長したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 4]
A graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was extended to 120 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例5]
 微細化工程を90分間に延長したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 5]
A graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was extended to 90 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例6]
 微細化工程を10分間に短縮したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 6]
A graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was shortened to 10 minutes. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例7]
 合成例1により調製した酸化グラフェンにかえて合成例2により調製した酸化グラフェンを用い、微細化工程を行わなかったこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 7]
Instead of the graphene oxide prepared in Synthesis Example 1, the graphene oxide prepared in Synthesis Example 2 was used, and a graphene dispersion was obtained in the same manner as in Example 1 except that the miniaturization step was not performed. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例8]
 亜ジチオン酸ナトリウムの使用量を0.1gに減量したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 8]
A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of sodium dithionite used was reduced to 0.1 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例9]
 亜ジチオン酸ナトリウムの使用量を0.05gに減量したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 9]
A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of sodium dithionite used was reduced to 0.05 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例10]
 亜ジチオン酸ナトリウムの使用量を0.01gに減量したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 10]
A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of sodium dithionite used was reduced to 0.01 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例11]
 ドーパミン塩酸塩をカテコールに変更したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 11]
A graphene dispersion was obtained in the same manner as in Example 1 except that the dopamine hydrochloride was changed to catechol. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例12]
 ドーパミン塩酸塩をベンジルアミン塩酸塩に変更し、使用量を0.1gに減量したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 12]
A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of dopamine hydrochloride was changed to benzylamine hydrochloride and the amount used was reduced to 0.1 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例13]
 ドーパミン塩酸塩をフェニルエチルアミン塩酸塩に変更し、使用量を0.2gに減量したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 13]
A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of dopamine hydrochloride was changed to phenylethylamine hydrochloride and the amount used was reduced to 0.2 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例14]
 実施例1のドーパミン塩酸塩の使用量を0.7gに増量したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 14]
A graphene dispersion was obtained in the same manner as in Example 1 except that the amount of dopamine hydrochloride used in Example 1 was increased to 0.7 g. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例15]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP溶液2gを加え、NMP3gを追加したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 15]
In the preparation of the graphene dispersion, the same procedure as in Example 1 except that 2 g of 5 wt% polyvinyl alcohol / NMP solution was added to 20 g of NMP dispersion paste containing 5.0 wt% of surface-treated graphene and 3 g of NMP was added. A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例16]
 実施例1と同様にグラフェン分散液を調製した。
[Example 16]
A graphene dispersion was prepared in the same manner as in Example 1.
 ポリビニルアルコール溶液の調製において、ポリビニルアルコール4gとNMP16gを密閉された容器中でマグネチックスターラーの撹拌下90℃に加熱し、ポリビニルアルコールを部分的に溶解させ、20重量%ポリビニルアルコール/NMP混合物を得た。 In the preparation of the polyvinyl alcohol solution, 4 g of polyvinyl alcohol and 16 g of NMP are heated to 90 ° C. under stirring of a magnetic stirrer in a closed container to partially dissolve the polyvinyl alcohol to obtain a 20 wt% polyvinyl alcohol / NMP mixture. It was.
 グラフェン分散液の調製において、得られた20重量%ポリビニルアルコール/NMP溶液5gに、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gを加え、再度90℃で8時間加熱した後、スパチュラで全体を馴染ませ、“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20,000)で60分間処理し、グラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。 In the preparation of the graphene dispersion, 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene was added to 5 g of the obtained 20 wt% polyvinyl alcohol / NMP solution, and the mixture was heated again at 90 ° C. for 8 hours, and then the spatula. The whole is blended with, and treated with "Fillmix" (registered trademark) 30-30 type (Primix) at a rotation speed of 40 m / s (shear speed: 20,000 per second) for 60 minutes to obtain a graphene dispersion. It was. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例17]
 実施例1と同様にグラフェン分散液を調製した。
[Example 17]
A graphene dispersion was prepared in the same manner as in Example 1.
 ポリビニルアルコール溶液の調製において、ポリビニルアルコール10gとNMP10gを密閉された容器中でマグネチックスターラーの撹拌下90℃に加熱し、ポリビニルアルコールを部分的に溶解させ、50重量%ポリビニルアルコール/NMP混合物を得た。 In the preparation of the polyvinyl alcohol solution, 10 g of polyvinyl alcohol and 10 g of NMP are heated to 90 ° C. under stirring of a magnetic stirrer in a closed container to partially dissolve the polyvinyl alcohol to obtain a 50 wt% polyvinyl alcohol / NMP mixture. It was.
 グラフェン分散液の調製において、得られた50重量%ポリビニルアルコール/NMP混合物5gに、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gを加え、再度90℃で8時間加熱した後、スパチュラで全体を馴染ませ、“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20,000)で60分間処理し、グラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。 In the preparation of the graphene dispersion, 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene was added to 5 g of the obtained 50 wt% polyvinyl alcohol / NMP mixture, and the mixture was heated again at 90 ° C. for 8 hours, and then the spatula. The whole is blended with, and treated with "Filmix" (registered trademark) 30-30 type (Primix) at a rotation speed of 40 m / s (shear speed: 20,000 per second) for 60 minutes to obtain a graphene dispersion. It was. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例18]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率75%、重合度500のもの(富士フイルム和光純薬株式会社製)にしたこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 18]
In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 75% and a degree of polymerization of 500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例19]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率98%、重合度500のもの(富士フイルム和光純薬株式会社製)にしたこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 19]
In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 98% and a degree of polymerization of 500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例20]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率88%、重合度1500のもの(富士フイルム和光純薬株式会社製)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 20]
In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 88% and a degree of polymerization of 1500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例21]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率88%、重合度3500のもの(富士フイルム和光純薬株式会社製)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 21]
In the preparation of polyvinyl alcohol, a graphene dispersion was obtained in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 88% and a degree of polymerization of 3500 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例22]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率72%、重合度500のもの(日本酢ビ・ポバール株式会社製、製品名“JR-05”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 22]
In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 72% and a degree of polymerization of 500 (manufactured by Japan Vam & Poval Co., Ltd., product name “JR-05”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例23]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP2gと、NMP3gを加え、ポリビニルアルコール含有量をグラフェン100重量部に対して10重量部にした以外は実施例22と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 23]
In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 22 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例24]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率82%、重合度250のもの(日本酢ビ・ポバール株式会社製、製品名“JMR-10H”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 24]
In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 82% and a degree of polymerization of 250 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-10H”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例25]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP2gと、NMP3gを加え、ポリビニルアルコール含有量をグラフェン100重量部に対して10重量部にした以外は実施例24と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 25]
In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 24 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例26]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率94%、重合度500のもの(日本酢ビ・ポバール株式会社製、製品名“JT-05”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 26]
In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 94% and a degree of polymerization of 500 (manufactured by Japan Vam & Poval Co., Ltd., product name “JT-05”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例27]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP2gと、NMP3gを加え、ポリビニルアルコール含有量をグラフェン100重量部に対して10重量部にした以外は実施例26と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 27]
In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 26 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例28]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率98.5%、重合度500のもの(日本酢ビ・ポバール株式会社製、製品名“JF-05”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 28]
In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 98.5% and a degree of polymerization of 500 (manufactured by Japan Vam & Poval Co., Ltd., product name “JF-05”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例29]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP2gと、NMP3gを加え、ポリビニルアルコール含有量をグラフェン100重量部に対して10重量部にした以外は実施例28と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 29]
In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 28 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例30]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率99.3%、重合度240のもの(日本酢ビ・ポバール株式会社製、製品名“JMR-10HH”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 30]
In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 99.3% and a degree of polymerization of 240 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-10HH”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例31]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP2gと、NMP3gを加え、ポリビニルアルコール含有量をグラフェン100重量部に対して10重量部にした以外は実施例30と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 31]
In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 30 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例32]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率87.8%、重合度200のアニオン変性ポリビニルアルコール(三菱ケミカル株式会社製、商品名“ゴーセネックス”(登録商標)L-3266”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 32]
In the preparation of polyvinyl alcohol, except that polyvinyl alcohol was an anion-modified polyvinyl alcohol having a saponification rate of 87.8% and a degree of polymerization of 200 (manufactured by Mitsubishi Chemical Corporation, trade name "Gosenex" (registered trademark) L-3266 "). A graphene dispersion was obtained in the same manner as in Example 1. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例33]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP2gと、NMP3gを加え、ポリビニルアルコール含有量をグラフェン100重量部に対して10重量部にした以外は実施例32と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Example 33]
In the preparation of the graphene dispersion, 5% by weight polyvinyl alcohol / NMP 2 g and 3 g of NMP were added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and the polyvinyl alcohol content was adjusted to 100 parts by weight of graphene. A graphene dispersion was obtained in the same manner as in Example 32 except that the amount was 10 parts by weight. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例34]
 グラフェン分散液の調製において、ポリビニルアルコール/NMP溶液を用いずにグラフェン分散液を作製し、正極ペーストの調製において、実施例1のポリビニルアルコール/NMPを1.25g添加して実施例1と同様に正極ペーストを作製した。得られた正極ペーストを用いて、実施例1と同様に2032型コイン電池を作製した。
[Example 34]
In the preparation of the graphene dispersion, a graphene dispersion was prepared without using the polyvinyl alcohol / NMP solution, and in the preparation of the positive electrode paste, 1.25 g of the polyvinyl alcohol / NMP of Example 1 was added in the same manner as in Example 1. A positive electrode paste was prepared. Using the obtained positive electrode paste, a 2032 type coin battery was produced in the same manner as in Example 1.
 [実施例35]
 正極ペーストの調製において、実施例32のポリビニルアルコール/NMPを1.25g添加して同様に正極ペーストを作製した。得られた正極ペーストを用いて、実施例1と同様に2032型コイン電池を作製した。
[Example 35]
In the preparation of the positive electrode paste, 1.25 g of polyvinyl alcohol / NMP of Example 32 was added to prepare a positive electrode paste in the same manner. Using the obtained positive electrode paste, a 2032 type coin battery was produced in the same manner as in Example 1.
 [比較例1]
 ポリビニルアルコールを用いなかったこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 1]
A graphene dispersion was obtained in the same manner as in Example 1 except that polyvinyl alcohol was not used. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例2]
 ポリビニルアルコールをポリビニルピロリドンK-60(東京化成工業株式会社製)に変えたこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 2]
A graphene dispersion was obtained in the same manner as in Example 1 except that polyvinyl alcohol was changed to polyvinylpyrrolidone K-60 (manufactured by Tokyo Chemical Industry Co., Ltd.). Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例3]
 グラフェン分散液の調製において、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gに対し、5重量%ポリビニルアルコール/NMP1gを加え、NMP12.3gを追加したこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 3]
In the preparation of the graphene dispersion liquid, the same procedure as in Example 1 was carried out except that 5% by weight polyvinyl alcohol / NMP 1 g was added to 20 g of the NMP dispersion paste containing 5.0% by weight of the surface-treated graphene, and 12.3 g of NMP was added. A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例4]
 実施例1と同様にグラフェン分散液を調製した。
[Comparative Example 4]
A graphene dispersion was prepared in the same manner as in Example 1.
 グラフェン分散液の調製において、ポリビニルアルコール粉末5gに、表面処理グラフェンを5.0重量%含有するNMP分散ペースト20gを加え、自公転ミキサーを用いて回転速度2000rpmで15分間混合し、90℃で16時間加熱した後、スパチュラで全体を馴染ませ、“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20,000)で60分間処理し、グラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。 In the preparation of the graphene dispersion, 20 g of NMP dispersion paste containing 5.0% by weight of surface-treated graphene was added to 5 g of polyvinyl alcohol powder, mixed at a rotation speed of 2000 rpm for 15 minutes using a rotation speed mixer, and 16 at 90 ° C. After heating for an hour, the whole is blended with a spatula and treated with "Fillmix" (registered trademark) 30-30 type (Primix) at a rotation speed of 40 m / s (shear speed: 20,000 per second) for 60 minutes. , Graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例5]
 グラフェン分散液の調製において、強撹拌工程を行わなかったこと以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 5]
A graphene dispersion was obtained in the same manner as in Example 1 except that the strong stirring step was not performed in the preparation of the graphene dispersion. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例6]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率5%、重合度110のもの(日本酢ビ・ポバール株式会社製、製品名“JMR-3L”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 6]
In the preparation of polyvinyl alcohol, graphene was prepared in the same manner as in Example 1 except that the polyvinyl alcohol had a saponification rate of 5% and a degree of polymerization of 110 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-3L”). A dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例7]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率9.9%、重合度230のもの(日本酢ビ・ポバール株式会社製、製品名“JMR-10LL”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 7]
In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol had a saponification rate of 9.9% and a degree of polymerization of 230 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-10LL”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例8]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率37.8%、重合度400のもの(日本酢ビ・ポバール株式会社製、製品名“JMR-20L”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 8]
In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 37.8% and a degree of polymerization of 400 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-20L”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [比較例9]
 ポリビニルアルコールの調製において、ポリビニルアルコールをケン化率65.4%、重合度230のもの(日本酢ビ・ポバール株式会社製、製品名“JMR-20M”)にした以外は実施例1と同様にしてグラフェン分散液を得た。得られたグラフェン分散液を用いて、実施例1と同様に正極ペーストおよび2032型コイン電池を作製した。
[Comparative Example 9]
In the preparation of polyvinyl alcohol, the same as in Example 1 except that the polyvinyl alcohol has a saponification rate of 65.4% and a degree of polymerization of 230 (manufactured by Japan Vam & Poval Co., Ltd., product name “JMR-20M”). A graphene dispersion was obtained. Using the obtained graphene dispersion, a positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 各実施例および比較例の組成を表1、2に、評価結果を表3に示す。 The compositions of each example and comparative example are shown in Tables 1 and 2, and the evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例36]
 正極ペーストの調製において、グラフェン分散液の使用量を0.15gに減量した(正極活物質100重量部に対する表面処理グラフェン含有量0.03重量部)こと以外は実施例1と同様にして正極ペーストおよび2032型コイン電池を作製した。
[Example 36]
In the preparation of the positive electrode paste, the positive electrode paste was prepared in the same manner as in Example 1 except that the amount of the graphene dispersion used was reduced to 0.15 g (the surface-treated graphene content was 0.03 parts by weight with respect to 100 parts by weight of the positive electrode active material). And a 2032 type coin battery was manufactured.
 [実施例37]
 正極ペーストの調製において、グラフェン分散液の使用量を0.5gに減量した(正極活物質100重量部に対する表面処理グラフェン含有量0.1重量部)こと以外は実施例1と同様にして正極ペーストおよび2032型コイン電池を作製した。
[Example 37]
In the preparation of the positive electrode paste, the positive electrode paste was prepared in the same manner as in Example 1 except that the amount of the graphene dispersion used was reduced to 0.5 g (the surface-treated graphene content was 0.1 part by weight with respect to 100 parts by weight of the positive electrode active material). And a 2032 type coin battery was manufactured.
 [実施例38]
 実施例1と同様にグラフェン分散液を調製した。
[Example 38]
A graphene dispersion was prepared in the same manner as in Example 1.
 表面処理グラフェンNMP分散ペーストの調製において、NMPで希釈後に減圧吸引濾過する工程の2回目において、ろ液が落ちなくなった後も15分間吸引濾過を続け、ろ物として表面処理グラフェンを6.1重量%含有するNMP分散ペーストを得た。 In the preparation of the surface-treated graphene NMP dispersion paste, in the second step of suction-filtering under reduced pressure after diluting with NMP, suction filtration was continued for 15 minutes even after the filtrate did not fall, and 6.1 weight of surface-treated graphene was used as a filter. An NMP-dispersed paste containing% was obtained.
 グラフェン分散液の調製において、ポリビニルアルコール粉末0.3gに、表面処理グラフェンを6.1重量%含有するNMP分散ペースト20gを加え、自公転ミキサーを用いて回転速度2000rpmで15分間混合し、90℃で16時間加熱した後、スパチュラで全体を馴染ませ、“フィルミックス”(登録商標)30-30型(プライミクス社)を用いて回転速度40m/s(せん断速度:毎秒20,000)で60分間処理し、グラフェン分散液を得た。得られたグラフェン分散液のグラフェン固形分濃度は6.0重量%であり、ポリビニルアルコール含有量はグラフェン100重量部に対して25重量部であった。 In the preparation of the graphene dispersion, 20 g of NMP dispersion paste containing 6.1% by weight of surface-treated graphene was added to 0.3 g of polyvinyl alcohol powder, mixed at a rotation speed of 2000 rpm for 15 minutes using a rotation speed mixer, and mixed at 90 ° C. After heating for 16 hours in, blend the whole with a spatula, and use "Fillmix" (registered trademark) 30-30 type (Primix) at a rotation speed of 40 m / s (shear speed: 20,000 per second) for 60 minutes. The treatment was performed to obtain a graphene dispersion. The graphene solid content concentration of the obtained graphene dispersion was 6.0% by weight, and the polyvinyl alcohol content was 25 parts by weight with respect to 100 parts by weight of graphene.
 正極ペーストの調製において、グラフェンの固形分濃度6.0重量%のグラフェン分散液の使用量を6.7gにした(正極活物質100重量部に対する表面処理グラフェン含有量2重量部)こと以外は実施例1と同様にして正極ペーストおよび2032型コイン電池を作製した。 In the preparation of the positive electrode paste, the amount of the graphene dispersion having a solid content concentration of 6.0% by weight of graphene was set to 6.7 g (2 parts by weight of the surface-treated graphene content with respect to 100 parts by weight of the positive electrode active material). A positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1.
 [実施例39]
 正極ペーストの調製において、固形分濃度6.0重量%のグラフェン分散液の使用量を10gに増量し、PVDFを粉末で0.2g加えた(正極活物質100重量部に対する表面処理グラフェン含有量3重量部)こと以外は実施例1と同様にして正極ペーストおよび2032型コイン電池を作製した。
[Example 39]
In the preparation of the positive electrode paste, the amount of the graphene dispersion having a solid content concentration of 6.0% by weight was increased to 10 g, and 0.2 g of PVDF was added as a powder (surface-treated graphene content 3 with respect to 100 parts by weight of the positive electrode active material). A positive electrode paste and a 2032 type coin battery were produced in the same manner as in Example 1 except for the part by weight.
 実施例36~39の正極ペーストの主な組成および評価結果を表4に示す。 Table 4 shows the main compositions and evaluation results of the positive electrode pastes of Examples 36 to 39.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (14)

  1. グラフェンおよびポリビニルアルコールを含有するグラフェン分散液であって、前記グラフェンの平均厚みが0.3nm以上10nm以下であり、前記ポリビニルアルコールのケン化率70%以上100%以下であり、かつ、前記グラフェン100重量部に対して、前記ポリビニルアルコールを10重量部以上300重量部以下含有する、グラフェン分散液。 A graphene dispersion containing graphene and polyvinyl alcohol, wherein the average thickness of the graphene is 0.3 nm or more and 10 nm or less, the saponification rate of the polyvinyl alcohol is 70% or more and 100% or less, and the graphene 100 A graphene dispersion containing 10 parts by weight or more and 300 parts by weight or less of the polyvinyl alcohol with respect to parts by weight.
  2. 前記グラフェンの、X線光電子分光法により測定される炭素に対する酸素の元素比(O/C比)が0.05以上0.35以下である、請求項1に記載のグラフェン分散液。 The graphene dispersion according to claim 1, wherein the element ratio (O / C ratio) of oxygen to carbon measured by X-ray photoelectron spectroscopy of the graphene is 0.05 or more and 0.35 or less.
  3. 前記グラフェンの、X線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)が0.005以上0.020以下である、請求項1または2に記載のグラフェン分散液。 The graphene dispersion according to claim 1 or 2, wherein the element ratio (N / C ratio) of nitrogen to carbon measured by X-ray photoelectron spectroscopy of the graphene is 0.005 or more and 0.020 or less.
  4. さらに、N,N-ジメチルホルムアミド、N-メチルピロリドンおよびN,N-ジメチルアセトアミドからなる群から選ばれた溶媒を含有する、請求項1~3のいずれかに記載のグラフェン分散液。 The graphene dispersion according to any one of claims 1 to 3, further comprising a solvent selected from the group consisting of N, N-dimethylformamide, N-methylpyrrolidone and N, N-dimethylacetamide.
  5. 正極活物質、グラフェンおよびポリビニルアルコールを含有する正極ペーストであって、前記グラフェンの平均厚みが0.3nm以上10nm以下であり、前記ポリビニルアルコールのケン化率70%以上100%以下であり、かつ、前記グラフェン100重量部に対して、前記ポリビニルアルコールを10重量部以上300重量部以下含有する、正極ペースト。 A positive electrode paste containing a positive electrode active material, graphene and polyvinyl alcohol, wherein the average thickness of the graphene is 0.3 nm or more and 10 nm or less, the saponification rate of the polyvinyl alcohol is 70% or more and 100% or less, and A positive electrode paste containing 10 parts by weight or more and 300 parts by weight or less of the polyvinyl alcohol with respect to 100 parts by weight of the graphene.
  6. 前記正極活物質100重量部に対し、前記グラフェンを0.05重量部以上2.5重量部以下含有する、請求項5に記載の正極ペースト。 The positive electrode paste according to claim 5, wherein the graphene is contained in an amount of 0.05 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
  7. 前記グラフェンの、X線光電子分光法により測定される炭素に対する酸素の元素比(O/C比)が0.05以上0.35以下である、請求項5または6に記載の正極ペースト。 The positive electrode paste according to claim 5 or 6, wherein the element ratio (O / C ratio) of oxygen to carbon measured by X-ray photoelectron spectroscopy of graphene is 0.05 or more and 0.35 or less.
  8. 前記グラフェンの、X線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)が0.005以上0.020以下である、請求項5~7のいずれかに記載の正極ペースト。 The positive electrode paste according to any one of claims 5 to 7, wherein the elemental ratio (N / C ratio) of nitrogen to carbon measured by X-ray photoelectron spectroscopy of graphene is 0.005 or more and 0.020 or less. ..
  9. 前記正極活物質が、リチウムおよびニッケルを含む、請求項5~8のいずれかに記載の正極ペースト。 The positive electrode paste according to any one of claims 5 to 8, wherein the positive electrode active material contains lithium and nickel.
  10. 正極活物質、グラフェンおよびポリビニルアルコールを含有するリチウムイオン電池正極であって、前記グラフェンの平均厚みが0.3nm以上10nm以下であり、前記ポリビニルアルコールのケン化率70%以上100%以下であり、かつ、前記グラフェン100重量部に対して、前記ポリビニルアルコールを10重量部以上300重量部以下含有する、リチウムイオン電池正極。 A lithium ion battery positive electrode containing a positive electrode active material, graphene and polyvinyl alcohol, wherein the average thickness of the graphene is 0.3 nm or more and 10 nm or less, and the saponification rate of the polyvinyl alcohol is 70% or more and 100% or less. A positive electrode of a lithium ion battery containing 10 parts by weight or more and 300 parts by weight or less of the polyvinyl alcohol with respect to 100 parts by weight of the graphene.
  11. 前記正極活物質100重量部に対し、前記グラフェンを0.05重量部以上2.5重量部以下含有する、請求項10に記載のリチウムイオン電池正極。 The lithium ion battery positive electrode according to claim 10, wherein the graphene is contained in an amount of 0.05 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
  12. 前記グラフェンの、X線光電子分光法により測定される炭素に対する酸素の元素比(O/C比)が0.05以上0.35以下である、請求項10または11に記載のリチウムイオン電池正極。 The lithium ion battery positive electrode according to claim 10 or 11, wherein the element ratio (O / C ratio) of oxygen to carbon measured by X-ray photoelectron spectroscopy of graphene is 0.05 or more and 0.35 or less.
  13. 前記グラフェンの、X線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)が0.005以上0.020以下である、請求項10~12のいずれかに記載のリチウムイオン電池正極。 The lithium ion according to any one of claims 10 to 12, wherein the element ratio (N / C ratio) of nitrogen to carbon measured by X-ray photoelectron spectroscopy of graphene is 0.005 or more and 0.020 or less. Battery positive electrode.
  14. 前記正極活物質が、リチウムおよびニッケルを含む、請求項10~13のいずれかに記載のリチウムイオン電池正極。 The lithium ion battery positive electrode according to any one of claims 10 to 13, wherein the positive electrode active material contains lithium and nickel.
PCT/JP2020/041519 2019-11-15 2020-11-06 Graphene dispersion, positive electrode paste, and lithium ion battery positive electrode WO2021095651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563574A JPWO2021095651A5 (en) 2020-11-06 Cathode paste and lithium ion battery cathode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-206892 2019-11-15
JP2019206892 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095651A1 true WO2021095651A1 (en) 2021-05-20

Family

ID=75912924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041519 WO2021095651A1 (en) 2019-11-15 2020-11-06 Graphene dispersion, positive electrode paste, and lithium ion battery positive electrode

Country Status (2)

Country Link
TW (1) TW202135365A (en)
WO (1) WO2021095651A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078289A (en) * 2013-10-16 2015-04-23 日本合成化学工業株式会社 Coating composition, coating film obtained therefrom, multilayer structure, and method of manufacturing multilayer structure
WO2017047523A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
JP2018520494A (en) * 2015-07-20 2018-07-26 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Silicon-carbon composite particle material
JP2019512442A (en) * 2016-03-09 2019-05-16 東レ株式会社 Graphene dispersion liquid, method of manufacturing electrode paste, and method of manufacturing electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078289A (en) * 2013-10-16 2015-04-23 日本合成化学工業株式会社 Coating composition, coating film obtained therefrom, multilayer structure, and method of manufacturing multilayer structure
JP2018520494A (en) * 2015-07-20 2018-07-26 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Silicon-carbon composite particle material
WO2017047523A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
JP2019512442A (en) * 2016-03-09 2019-05-16 東レ株式会社 Graphene dispersion liquid, method of manufacturing electrode paste, and method of manufacturing electrode

Also Published As

Publication number Publication date
TW202135365A (en) 2021-09-16
JPWO2021095651A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
TWI709527B (en) Graphene dispersion, method for producing electrode paste, and method for producing electrode
JP6274355B1 (en) Surface-treated graphene, surface-treated graphene / organic solvent dispersion, surface-treated graphene-electrode active material composite particles, and electrode paste
TWI694053B (en) Graphene/organic solvent dispersion liquid and method for manufacturing the same, and method for manufacturing electrode for lithium ion battery
JP6152925B1 (en) Graphene dispersion and method for producing the same, method for producing graphene-active material composite particles, and method for producing electrode paste
TWI694054B (en) Graphene dispersion liquid and manufacturing method thereof, manufacturing method of graphene-electrode active material composite particles, and manufacturing method of electrode paste
KR102421959B1 (en) Electrode for secondary battery
CA2962721A1 (en) Graphene powder, electrode paste for lithium ion battery and electrode for lithium ion battery
JP6863099B2 (en) Graphene / Organic Solvent Dispersion, Graphene-Active Material Complex Particle Production Method and Electrode Paste Production Method
KR102320435B1 (en) Graphene dispersion, method for preparing same, and electrode for secondary battery
JP6982788B2 (en) Secondary battery electrodes and their manufacturing methods
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
WO2021095652A1 (en) Graphene dispersion liquid and positive electrode paste
WO2021095651A1 (en) Graphene dispersion, positive electrode paste, and lithium ion battery positive electrode
JP2022167301A (en) Positive electrode for lithium ion secondary battery
JP2022071849A (en) Graphene dispersion and lithium ion battery cathode
JP2022174846A (en) Lithium-ion secondary battery positive electrode paste

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020563574

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888183

Country of ref document: EP

Kind code of ref document: A1