WO2021095619A1 - Two dimensional borohydride-containing sheet manufacturing method, two dimensional borohydride-containing sheet composition, and method for manufacturing same - Google Patents
Two dimensional borohydride-containing sheet manufacturing method, two dimensional borohydride-containing sheet composition, and method for manufacturing same Download PDFInfo
- Publication number
- WO2021095619A1 WO2021095619A1 PCT/JP2020/041288 JP2020041288W WO2021095619A1 WO 2021095619 A1 WO2021095619 A1 WO 2021095619A1 JP 2020041288 W JP2020041288 W JP 2020041288W WO 2021095619 A1 WO2021095619 A1 WO 2021095619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- containing sheet
- dimensional
- hydrogen
- metal
- acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
Definitions
- the present invention relates to a method for producing a two-dimensional hydrogen boride-containing sheet.
- the present invention also relates to a two-dimensional hydrogen boride-containing sheet composition and a method for producing the same.
- Hydrogen is attracting attention as a clean energy because the substance discharged by combustion or reaction is water.
- technological development using hydrogen as a negative electrode active material for fuel cells and using it as a fuel for automobiles and power supply equipment is being energetically promoted.
- Non-Patent Document 1 A system that supplies high-pressure hydrogen as a hydrogen supply source (Patent Document 1) and a hydrogen storage alloy (Patent Document 2) have attracted attention, and various proposals have been made. Further, a two-dimensional hydrogen boride-containing sheet that releases hydrogen by heating to 150 to 1200 ° C. has been proposed (Non-Patent Document 1 and Patent Document 3). This two-dimensional hydrogen boride-containing sheet is excellent in that it has a high hydrogen storage capacity per unit mass and can extract hydrogen at a relatively low temperature of 150 ° C. or higher. Furthermore, in this two-dimensional hydrogen boride-containing sheet, the present inventors have reported that hydrogen can be released by irradiating with light (Non-Patent Document 2).
- the two-dimensional hydrogen booxide-containing sheet is superior in terms of safety and weight reduction compared to a system that supplies high-pressure hydrogen as a hydrogen supply source and a hydrogen storage alloy.
- the method of generating hydrogen at room temperature by light is advantageous from the viewpoint of convenience.
- simplification of the manufacturing process is required.
- the present invention has been made in view of the above background, and an object of the present invention is to provide a method for producing a two-dimensional hydrogen borohydride-containing sheet, a two-dimensional hydrogen borohydride-containing sheet composition, and a method for producing the same, which can shorten the production time. And.
- the diboride metal is MB 2 type structure, wherein M is at least one selected Al, Mg, Ta, Zr, Re, Cr, from the group consisting of Ti and V, (BH) n (n A method for producing a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of ⁇ 4).
- the diboride metal is MB 2 type structure,
- the M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V, and consists of at least a part of the acid and (BH) n (n ⁇ 4).
- a method for producing a two-dimensional hydrogen booxide-containing sheet composition which comprises a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network.
- the two-dimensional network is characterized in that boron atoms are arranged in a hexagonal honeycomb shape, and two adjacent boron atoms have a site where they are bonded to the same hydrogen atom [4] or.
- the present invention it is possible to provide a method for producing a two-dimensional hydrogen booxide-containing sheet capable of shortening the production time, a two-dimensional hydrogen booxide-containing sheet composition, and a method for producing the same.
- FIG. FT-IR spectra of the products of Example 1, Example 2 and Reference Example 1.
- the method for producing a two-dimensional hydrogen boride-containing sheet is a method for producing a sheet having a two-dimensional network consisting of (BH) n (n ⁇ 4), and includes the following steps. That is, it has a step of mixing a diborated metal, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent.
- diboride metal is MB 2 type structure, wherein M is at least one selected Al, Mg, Ta, Zr, Re, Cr, from the group consisting of Ti and V.
- the two-dimensional hydrogen booxide-containing sheet is composed of (BH) n (n ⁇ 4, where n is an integer) in which a boron atom (B) and a hydrogen atom (H) are formed in a molar ratio of 1: 1. It is a sheet-like substance having a two-dimensional network (see Non-Patent Document 1).
- the two-dimensional hydrogen boride-containing sheet may or may not be an oxide at the end.
- FIG. 1 to 3 show a schematic diagram of the local structure of a two-dimensional network consisting of (BH) n (n ⁇ 4).
- boron atoms are arranged in a hexagonal honeycomb shape (a network formed by connecting hexagons formed by the boron atoms), and the boron atoms are adjacent to each other.
- the two have a site that binds to the same hydrogen atom.
- a honeycomb atom has a honeycomb-shaped sheet-like hexagonal lattice structure, and one hydrogen atom has a hexagonal lattice structure above and below the sheet, as shown in FIGS. 2 and 3, respectively. It is bonded in a bridge shape to two adjacent boron atoms among the atoms.
- the borohydride does not have to have long-range order.
- the bonds between the atoms may be tilted in the Z direction of FIGS. 2 and 3, or the sheet itself may be bent to form a structure.
- not all hydrogen atoms are necessarily bonded in a bridge shape.
- the two-dimensional hydrogen boride-containing sheet is a thin-film substance, and may be a single layer or laminated.
- the total number of boron atoms (B) and hydrogen atoms (H) forming the above-mentioned network-like surface structure is 1000 or more.
- the bond distance d1 (see FIG. 1) between two adjacent boron atoms (B) is, for example, 0.155 nm to 0.190 nm. Further, when visually recognized from the Z direction, the bond distance d2 (see FIG. 2) between two adjacent boron atoms (B) via one hydrogen atom (H) is 0.155 nm to 0.190 nm. is there.
- the bond distance d3 (see FIG. 2) between the adjacent boron atom (B) and hydrogen atom (H) is 0.12 nm to 0.15 nm.
- the thickness of the two-dimensional hydrogen boride-containing sheet is 0.2 nm to 10 nm.
- the length of the two-dimensional hydrogen boride-containing sheet in at least one direction is preferably 100 nm or more.
- the two-dimensional hydrogen boride-containing sheet of the present embodiment can be used more effectively as an electronic material, a catalyst carrier material, a catalyst material, a superconducting material, and the like.
- the size (area) of the two-dimensional hydrogen boride-containing sheet of the present embodiment is not particularly limited, and can be formed into an arbitrary size by the production method of the present embodiment described later.
- the two-dimensional hydrogen boride-containing sheet of the present embodiment is a substance having a crystal structure. Further, according to the two-dimensional hydrogen boride-containing sheet of the present embodiment, the bonding force between the boron atoms (B) forming the hexagonal ring and between the boron atoms (B) and the hydrogen atoms (H) is high. strong. Therefore, the two-dimensional hydrogen boride-containing sheet of the present embodiment can be easily cleaved along the crystal plane, even if a plurality of stacked crystals (aggregates) are formed at the time of production. , It is possible to separate (recover) as a single-layer two-dimensional sheet.
- the two-dimensional hydrogen boride-containing sheet shows a peak near 188 eV derived from B1s of negatively charged boron in X-ray photoelectron spectroscopy. Further, in electron beam energy loss spectroscopy, it has a spectrum derived from the sp 2 structure of boron showing two peaks below 200 eV. Further, the molar ratio of boron to hydrogen is 1: 1 (HB) n (n ⁇ 4) is calculated by the temperature-temperature desorption gas analysis and the mass measurement before and after the temperature rise.
- Method for producing a two-dimensional borohydride-containing sheet of the present embodiment includes a diboride metal MB 2 -type structure, an ion exchange resin coordinated with the metal ion and the ion exchangeable ions constituting the diboride metal And the acid are mixed in a polar organic solvent (hereinafter, referred to as "first step").
- M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V.
- the diboride metal MB 2 -type structure those having a structure of hexagonal ring is used.
- Chromium (CrB 2 ), titanium diboride (TiB 2 ), and vanadium diboride (VB 2 ) are used.
- Magnesium diboride is preferably used because it can easily exchange ions with an ion exchange resin in a polar organic solvent.
- the ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diboride metal is not particularly limited.
- an ion exchange resin for example, a polymer of styrene having a functional group (hereinafter, referred to as “functional group ⁇ ”) in which an ion-exchangeable ion is coordinated with a metal ion constituting a diborated metal.
- functional group ⁇ a polymer of styrene having a functional group in which an ion-exchangeable ion is coordinated with a metal ion constituting a diborated metal.
- Examples thereof include a polymer of divinylbenzene having a functional group ⁇ and a copolymer of styrene having a functional group ⁇ and divinylbenzene having a functional group ⁇ .
- Examples of the functional group ⁇ include a sulfo group and a carboxyl group.
- a sulfo group is preferable because it can easily exchange ions with metal ions constituting the dibolated metal in a polar organic solvent.
- the acid examples include acetic acid, carbonic acid, tartaric acid, malic acid, maleic acid, propionic acid, formic acid, succinic acid, citric acid, oxalic acid, lactic acid, hydrochloric acid, sulfuric acid, and phosphoric acid. Of these, formic acid and hydrochloric acid are preferable.
- the time for ion exchange between the metal ions constituting the dibolated metal and the ion exchange resin in the polar solvent can be significantly shortened.
- the reason is considered to be that the hydrogen ions of the acid mediate the ion exchange between the metal ions and the ion exchange resin. That is, it is considered that the production time can be shortened by exchanging the hydrogen ions of the acid with the metal ions and then performing the ion exchange between the metal ions and the ion exchange resin.
- the polar organic solvent is not particularly limited, and examples thereof include acetonitrile, N, N-dimethylformamide, and methanol. Among these, acetonitrile is preferable because it does not contain oxygen and has a low boiling point and is advantageous for vacuum drying.
- a metal diboride, an ion exchange resin, and an acid are added to the polar organic solvent, and a mixed solution containing the polar organic solvent, the metal diboride, and the ion exchange resin is stirred to exchange the metal diboride ion. Thorough contact of resin and acid. Stirring may be performed by ultrasonic treatment.
- the metal ions constituting the dibolated metal and the ions of the functional group ⁇ of the ion exchange resin are ion-exchanged via the hydrogen ion of the acid, and the boron atom and the functional group ⁇ of the ion exchange resin are exchanged.
- a two-dimensional hydrogen boride-containing sheet having a two-dimensional network formed by hydrogen derived from or an acid hydrogen is produced. By mediating the hydrogen ion of the acid, the production time can be significantly shortened.
- magnesium diboride is used as the metal diboride
- an ion exchange resin having a sulfo group is used as the ion exchange resin
- formic acid is used as the acid
- the mixture is stirred or ultrasonically treated in a polar solvent.
- Magnesium ion (Mg 2+ ) of magnesium diboride and hydrogen ion (H + ) of formic acid are replaced, and then magnesium ion (Mg 2+ ) and hydrogen ion (H + ) of the sulfo group of the ion exchange resin are replaced.
- Substitution produces a two-dimensional hydrogen boride-containing sheet having a two-dimensional network consisting of a boron atom (B) and a hydrogen atom (H) as described above.
- B boron atom
- H hydrogen atom
- the first step is carried out in an inert atmosphere composed of an inert gas such as nitrogen (N 2) or argon (Ar).
- an inert gas such as nitrogen (N 2) or argon (Ar).
- N 2 nitrogen
- Ar argon
- the temperature of the mixed solution can be, for example, 0 to 80 ° C, preferably 15 ° C to 35 ° C.
- the time for stirring the mixed solution is not particularly limited, but can be, for example, about 10 minutes to 240 minutes.
- this stirring time required about 700 to 7000 minutes.
- the stirring time can be set to, for example, about 10 to 240 minutes, and the production time can be significantly shortened. This is due to the effect of adding acid.
- the method for removing the acid is not particularly limited, and examples thereof include heating, drying under reduced pressure, and a precipitation recovery method. Among these, removal by vacuum drying is easy, and for example, powder can be obtained by drying under reduced pressure of room temperature to 80 ° C.
- the method for filtering the mixed solution is not particularly limited, and for example, methods such as natural filtration, vacuum filtration, pressure filtration, and centrifugal filtration are used.
- the filter medium may be appropriately selected according to the solvent used. Examples of the filter medium include a filter paper using cellulose, PTFE or the like as a base material, a membrane filter, a filter plate obtained by compression molding glass fiber or the like.
- a solution containing a product separated from a precipitate by filtration and recovered is naturally dried, dried under reduced pressure, heated, or the like to form a two-dimensional boring having a two-dimensional network that is finally a product.
- Examples of the method for analyzing the product obtained by the method for producing the two-dimensional hydrogen boride-containing sheet of the present embodiment include an X-ray Photoelectron Spectroscopy (XPS) and a transmission electron microscope (XPS).
- Examples include energy dispersive X-ray analysis (Energy dispersive X-ray Spectroscopy, EDS) and electron energy loss spectroscopy (Electron energy loss Spectroscopy, EELS) performed in a transmission electron microscope (TEM) and a transmission electron microscope.
- XPS X-ray photoelectron spectroscopy
- JPS9010TR X-ray photoelectron spectroscopy analyzer
- JEOL Nippon Denshi
- the product is observed by observing the product using a transmission electron microscope (trade name: JEM-2100F TEM / STEM) manufactured by JEOL Ltd. Analyze the shape (appearance) of the If a film-like (sheet-like) substance is observed in this analysis, it can be said that the product is a two-dimensional sheet-like substance.
- EDS energy dispersive X-ray analysis
- a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network formed by an atom derived from a boron atom and an ion exchange resin or an acid hydrogen is obtained. It can be easily generated. Note that by using a large crystal diboride metal MB 2 type structure can be produced from a two-dimensional borohydride-containing sheet having a larger area.
- the production time can be significantly shortened by using an acid.
- the two-dimensional hydrogen booxide-containing sheet composition of the present embodiment has a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of at least (BH) n (n ⁇ 4) and an acid. Since the description of the two-dimensional hydrogen boride-containing sheet is the same as that of the above embodiment, it is omitted here.
- the acid is at least a part or / of the acid derived from the manufacturing process obtained by the method for producing the two-dimensional hydrogen boride-containing sheet described above, and the acid not derived from the manufacturing process.
- Storage stability can be improved by adding an acid to the two-dimensional hydrogen boride-containing sheet composition of the present embodiment. It is considered that this is because the acid serves as a hydrogen supply source for the two-dimensional hydrogen boride-containing sheet.
- the two-dimensional hydrogen boride-containing sheet composition of the present embodiment may further contain a dispersion solvent.
- the dispersion solvent is not particularly limited, and examples thereof include alcohols such as acetonitrile, acetone, methyl alcohol, ethyl alcohol, and isopropanol, aldehydes such as formaldehyde and acetaldehyde, and ethyl acetate.
- the solvent can be used alone or in combination of two or more.
- the two-dimensional hydrogen boride-containing sheet composition of the present embodiment comprises a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diboride metal in a polar organic solvent. And can be obtained through the step of mixing the acid.
- the method for producing the two-dimensional hydrogen boride-containing sheet composition of the present embodiment is not limited to the above method. After producing the two-dimensional hydrogen boride-containing sheet without using an acid, the acid may be added by post-addition.
- additives such as a dopant can be further added in the structure or on the surface.
- dopants for example, elements such as carbon, nitrogen, oxygen, fluorine, phosphorus, sulfur, chlorine, arsenic, selenium, bromine, antimony, tellurium, iodine, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc.
- Example 1 Synthesis was carried out in the same manner as in Reference Example 1 except that 0.5 mL of formic acid (manufactured by Kanto Chemical Co., Inc.) (same below) was further added to the mixed solution to obtain a yellow product. The yield was 45.2%.
- formic acid manufactured by Kanto Chemical Co., Inc.
- Example 2 Synthesis was carried out in the same manner as in Reference Example 1 except that 2.0 mL of formic acid was further added to the mixed solution to obtain a yellow product. The yield was 51.5%.
- Example 3 Synthesis was carried out in the same manner as in Reference Example 1 except that 3.0 mL of formic acid was further added to the mixed solution to obtain a yellow product.
- Example 3 The product obtained in Example 3 was observed with a scanning transmission electron microscope (trade name: JEM-2100F TEM / STEM) manufactured by JEOL Ltd. The observation results are shown in FIG. From the results of FIG. 4, it was confirmed that the obtained product formed a two-dimensional sheet.
- 5A to 5C show STEM images of Reference Examples 1 and 1 and 2. In each example, a thin sheet structure could be confirmed.
- the result of electron beam energy loss spectroscopy for the product obtained in Example 1 is shown in FIG. As shown in FIG. 6, it was confirmed that the peak of electron energy loss spectroscopy showing the sp 2 structure of boron (B) below 200eV is observed. Also, verify that the peak due to carbon (C), nitrogen (N) and oxygen (O) is not observed, sheet-like material, it was confirmed that consists of boron having sp 2 structure. Further, from XPS analysis, as shown in the figure, it was confirmed that the peak of B1s (188 eV) indicating that it was a boride in magnesium diboride was present even after the synthesis.
- FIG. 8 shows the results of Fourier transform infrared spectroscopic analysis (FTIR) (analyzer: manufactured by JASCO Corporation) for the products of Reference Examples 1 and 1 and 2. It was confirmed that the products of Examples 1 and 2 had a peak derived from BH and a peak derived from BHB, similarly to the product of Reference Example 1. In addition, it was confirmed that no formic acid added in the production steps of Examples 1 and 2 remained.
- FTIR Fourier transform infrared spectroscopic analysis
- Example 4 Synthesis was carried out in the same manner as in Reference Example 2 except that 1.0 mL of hydrochloric acid (manufactured by WAKO) (hereinafter, the same) was added to obtain a yellow product. The yield was 134%.
- Example 5 Synthesis was carried out in the same manner as in Example 4 except that 2.0 mL of hydrochloric acid was added to obtain a yellow product. The yield was 193%.
- FIG. 9 shows the results of FTIR measurement of the samples of Reference Examples 2, Examples 4 and 5.
- a peak derived from BH and a peak derived from BHB were confirmed.
- Example 6 To 50 mL of acetonitrile, 150 mg of titanium diboride (manufactured by ALDRICH) was added, and 15 mL of an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo Corporation) and 3 mL of hydrochloric acid were added to prepare a mixed solution. The mixed solution was stirred at 25 ° C. for 2 hours with a stirrer and then sonicated for 30 minutes. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 ⁇ m, and the filtrate was collected.
- an ion exchange resin having a sulfo group Amberlite IR120B, manufactured by Organo Corporation
- the filtrate was evacuated to evaporate the solvent, but all of it could not be removed, and the solvent was evaporated on a hot plate under atmospheric conditions at room temperature to obtain a product exhibited in a pale yellow color.
- the yield was 193%. The reason why the yield exceeds 100% is considered to be that by-products such as titanium chloride, titanium hydroxide and boric acid are produced.
- Example 7 To 300 mL of acetonitrile, 1.02 g of titanium diboride (purity: 99%, manufactured by High Purity Chemical Laboratory) was added, and an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo Corporation) was added in a volume of 60 mL. It was mixed with a mixed solution containing 0.3 mL of formic acid. The mixed solution was allowed to stand at 25 ° C. for 72 hours. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 ⁇ m, and the filtrate was collected. Then, the filtrate was dried by vacuum drying (heating to room temperature to 70 ° C.) to obtain a yellow product. The yield was 2.6%.
- the two-dimensional hydrogen boride-containing sheet and the two-dimensional hydrogen boride-containing sheet composition of the present embodiment can be used as an electronic material, a catalyst carrier material, a superconducting material, and the like.
- the two-dimensional hydrogen boride-containing sheet of the present embodiment is predicted to exhibit an electronic structure called Dirac Fermion, which exhibits the same mobility as graphene, and is expected to be used as a new electronic device material.
- the two-dimensional sheet of boron is predicted to become a superconductor at 10K to 20K, and can be expected to be used as a new superconductor base material.
- the two-dimensional sheet of boron is predicted to have four times the mechanical strength of iron, and can be expected to be used as a new high-strength material base material (see Patent Document 3).
- the hydrogen storage property can be set to 12.3% by mass by coating the surface of the two-dimensional boron sheet with lithium
- the two-dimensional hydrogen boride-containing sheet of the present embodiment has a hydrogen storage property of 12.3% by mass.
- the capacity of the lithium ion secondary battery provided with the electrode is the capacity of the lithium ion secondary battery provided with an electrode made of graphite. Since it is predicted that the amount will be four times that of the above, the two-dimensional hydrogen boride-containing sheet of the present embodiment can be expected to be used as an electrode material for a new lithium ion secondary battery.
- it is effective as a hydrogen generation system and a fuel cell system that generate hydrogen by light irradiation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
The two dimensional borohydride-containing sheet manufacturing method according to the present invention includes a step for mixing, in a polar organic solvent, a diboride metal, an acid, and an ion exchange resin having coordinated therein an ion capable of undergoing ion exchange with a metal ion constituting the diboride metal. The diboride metal has a MB2 type structure. M represents at least one element selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti, and V. The two dimensional borohydride-containing sheet has a two dimensional network comprising (BH)n (n≥4).
Description
本発明は、二次元ホウ化水素含有シートの製造方法に関する。また、二次元ホウ化水素含有シート組成物およびその製造方法に関する。
The present invention relates to a method for producing a two-dimensional hydrogen boride-containing sheet. The present invention also relates to a two-dimensional hydrogen boride-containing sheet composition and a method for producing the same.
水素は、燃焼又は反応により排出される物質が水であるため、クリーンエネルギーとして注目されている。例えば、水素を燃料電池の負極活物質として用い、自動車や電源設備の燃料とする技術開発が精力的にすすめられている。
Hydrogen is attracting attention as a clean energy because the substance discharged by combustion or reaction is water. For example, technological development using hydrogen as a negative electrode active material for fuel cells and using it as a fuel for automobiles and power supply equipment is being energetically promoted.
水素供給源として高圧水素を供給するシステム(特許文献1)や、水素吸蔵合金(特許文献2)が注目され、種々の提案がなされている。また、150~1200℃に加熱することにより水素を放出する二次元ホウ化水素含有シートが提案されている(非特許文献1、特許文献3)。この二次元ホウ化水素含有シートは、単位質量あたりの水素貯蔵能力が高く、150℃以上という比較的低温で水素を取り出せる点において優れている。更に、この二次元ホウ化水素含有シートにおいて、本発明者らは、光を照射することで水素を放出できることを報告した(非特許文献2)。
A system that supplies high-pressure hydrogen as a hydrogen supply source (Patent Document 1) and a hydrogen storage alloy (Patent Document 2) have attracted attention, and various proposals have been made. Further, a two-dimensional hydrogen boride-containing sheet that releases hydrogen by heating to 150 to 1200 ° C. has been proposed (Non-Patent Document 1 and Patent Document 3). This two-dimensional hydrogen boride-containing sheet is excellent in that it has a high hydrogen storage capacity per unit mass and can extract hydrogen at a relatively low temperature of 150 ° C. or higher. Furthermore, in this two-dimensional hydrogen boride-containing sheet, the present inventors have reported that hydrogen can be released by irradiating with light (Non-Patent Document 2).
二次元ホウ化水素含有シートは、水素供給源として高圧水素を供給するシステムや水素吸蔵合金に比べて、安全性および軽量化などの点で優れている。特に光によって常温で水素を発生する方法は、簡便性の観点においても優位性がある。このような二次元ホウ化水素含有シートの普及には、製造工程の簡便化が求められる。
The two-dimensional hydrogen booxide-containing sheet is superior in terms of safety and weight reduction compared to a system that supplies high-pressure hydrogen as a hydrogen supply source and a hydrogen storage alloy. In particular, the method of generating hydrogen at room temperature by light is advantageous from the viewpoint of convenience. In order to popularize such a two-dimensional hydrogen boride-containing sheet, simplification of the manufacturing process is required.
本発明は上記背景に鑑みてなされたものであり、製造時間を短縮できる二次元ホウ化水素含有シートの製造方法、および二次元ホウ化水素含有シート組成物およびその製造方法を提供することを目的とする。
The present invention has been made in view of the above background, and an object of the present invention is to provide a method for producing a two-dimensional hydrogen borohydride-containing sheet, a two-dimensional hydrogen borohydride-containing sheet composition, and a method for producing the same, which can shorten the production time. And.
本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。
[1]: 極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂および酸を混合する工程を有し、
前記二ホウ化金属はMB2型構造であり、前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種である、(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートの製造方法。
[2]: 前記混合する工程後、前記酸を除去する工程を更に有することを特徴とする[1]に記載の二次元ホウ化水素含有シートの製造方法。
[3]: 極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂、および酸を混合する工程を有し、
前記二ホウ化金属はMB2型構造であり、
前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種であり、前記酸の少なくとも一部と、(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートとを含む、二次元ホウ化水素含有シート組成物の製造方法。
[4]: (BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートと、酸とを、含む二次元ホウ化水素含有シート組成物。
[5]: 更に、前記二次元ホウ化水素含有シートの分散溶媒を含むことを特徴とする[4]に記載の二次元ホウ化水素含有シート組成物。
[6]: 前記二次元ネットワークは、ホウ素原子が六角形のハニカム状に配列し、前記ホウ素原子のうち隣接する2つが同一の水素原子と結合する部位を有することを特徴とする[4]又は[5]に記載の二次元ホウ化水素含有シート組成物。 As a result of diligent studies by the present inventors, they have found that the problems of the present invention can be solved in the following aspects, and have completed the present invention.
[1]: A step of mixing a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent.
The diboride metal is MB 2 type structure, wherein M is at least one selected Al, Mg, Ta, Zr, Re, Cr, from the group consisting of Ti and V, (BH) n (n A method for producing a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of ≧ 4).
[2]: The method for producing a two-dimensional hydrogen boride-containing sheet according to [1], which further comprises a step of removing the acid after the mixing step.
[3]: A step of mixing a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent.
The diboride metal is MB 2 type structure,
The M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V, and consists of at least a part of the acid and (BH) n (n ≧ 4). A method for producing a two-dimensional hydrogen booxide-containing sheet composition, which comprises a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network.
[4]: A two-dimensional hydrogen booxide-containing sheet composition containing a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of (BH) n (n ≧ 4) and an acid.
[5]: The two-dimensional hydrogen boride-containing sheet composition according to [4], further comprising a dispersion solvent for the two-dimensional hydrogen boride-containing sheet.
[6]: The two-dimensional network is characterized in that boron atoms are arranged in a hexagonal honeycomb shape, and two adjacent boron atoms have a site where they are bonded to the same hydrogen atom [4] or. The two-dimensional hydrogen borohydride-containing sheet composition according to [5].
[1]: 極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂および酸を混合する工程を有し、
前記二ホウ化金属はMB2型構造であり、前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種である、(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートの製造方法。
[2]: 前記混合する工程後、前記酸を除去する工程を更に有することを特徴とする[1]に記載の二次元ホウ化水素含有シートの製造方法。
[3]: 極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂、および酸を混合する工程を有し、
前記二ホウ化金属はMB2型構造であり、
前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種であり、前記酸の少なくとも一部と、(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートとを含む、二次元ホウ化水素含有シート組成物の製造方法。
[4]: (BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートと、酸とを、含む二次元ホウ化水素含有シート組成物。
[5]: 更に、前記二次元ホウ化水素含有シートの分散溶媒を含むことを特徴とする[4]に記載の二次元ホウ化水素含有シート組成物。
[6]: 前記二次元ネットワークは、ホウ素原子が六角形のハニカム状に配列し、前記ホウ素原子のうち隣接する2つが同一の水素原子と結合する部位を有することを特徴とする[4]又は[5]に記載の二次元ホウ化水素含有シート組成物。 As a result of diligent studies by the present inventors, they have found that the problems of the present invention can be solved in the following aspects, and have completed the present invention.
[1]: A step of mixing a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent.
The diboride metal is MB 2 type structure, wherein M is at least one selected Al, Mg, Ta, Zr, Re, Cr, from the group consisting of Ti and V, (BH) n (n A method for producing a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of ≧ 4).
[2]: The method for producing a two-dimensional hydrogen boride-containing sheet according to [1], which further comprises a step of removing the acid after the mixing step.
[3]: A step of mixing a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent.
The diboride metal is MB 2 type structure,
The M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V, and consists of at least a part of the acid and (BH) n (n ≧ 4). A method for producing a two-dimensional hydrogen booxide-containing sheet composition, which comprises a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network.
[4]: A two-dimensional hydrogen booxide-containing sheet composition containing a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of (BH) n (n ≧ 4) and an acid.
[5]: The two-dimensional hydrogen boride-containing sheet composition according to [4], further comprising a dispersion solvent for the two-dimensional hydrogen boride-containing sheet.
[6]: The two-dimensional network is characterized in that boron atoms are arranged in a hexagonal honeycomb shape, and two adjacent boron atoms have a site where they are bonded to the same hydrogen atom [4] or. The two-dimensional hydrogen borohydride-containing sheet composition according to [5].
本発明によれば、製造時間を短縮できる二次元ホウ化水素含有シートの製造方法、および二次元ホウ化水素含有シート組成物およびその製造方法を提供できるという優れた効果を奏する。
According to the present invention, it is possible to provide a method for producing a two-dimensional hydrogen booxide-containing sheet capable of shortening the production time, a two-dimensional hydrogen booxide-containing sheet composition, and a method for producing the same.
以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれる。また、以降の図における各部材のサイズや比率は、説明の便宜上のものであり、これに限定されるものではない。
Hereinafter, an example of an embodiment to which the present invention is applied will be described. Other embodiments are also included in the scope of the present invention as long as they are consistent with the gist of the present invention. Further, the sizes and ratios of the respective members in the following figures are for convenience of explanation and are not limited thereto.
本実施形態に係る二次元ホウ化水素含有シートの製造方法は、(BH)n(n≧4)からなる二次元ネットワークを有するシートの製造方法であって、以下の工程を含む。即ち、二ホウ化金属と、この二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂と、酸とを極性有機溶媒中で混合する工程を有する。ここで、二ホウ化金属はMB2型構造であり、前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種である。以下、二次元ホウ化水素含有シートおよびその製造方法についてより詳細に説明する。
The method for producing a two-dimensional hydrogen boride-containing sheet according to the present embodiment is a method for producing a sheet having a two-dimensional network consisting of (BH) n (n ≧ 4), and includes the following steps. That is, it has a step of mixing a diborated metal, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent. Here, diboride metal is MB 2 type structure, wherein M is at least one selected Al, Mg, Ta, Zr, Re, Cr, from the group consisting of Ti and V. Hereinafter, the two-dimensional hydrogen boride-containing sheet and the method for producing the same will be described in more detail.
(二次元ホウ化水素含有シート)
二次元ホウ化水素含有シートは、ホウ素原子(B)と水素原子(H)がモル比で1:1の割合で形成される、(BH)n(n≧4、但しnは整数)からなる二次元ネットワークを有するシート状物質である(非特許文献1参照)。二次元ホウ化水素含有シートは、末端が酸化物であってもなくてもよい。 (Two-dimensional hydrogen boride-containing sheet)
The two-dimensional hydrogen booxide-containing sheet is composed of (BH) n (n ≧ 4, where n is an integer) in which a boron atom (B) and a hydrogen atom (H) are formed in a molar ratio of 1: 1. It is a sheet-like substance having a two-dimensional network (see Non-Patent Document 1). The two-dimensional hydrogen boride-containing sheet may or may not be an oxide at the end.
二次元ホウ化水素含有シートは、ホウ素原子(B)と水素原子(H)がモル比で1:1の割合で形成される、(BH)n(n≧4、但しnは整数)からなる二次元ネットワークを有するシート状物質である(非特許文献1参照)。二次元ホウ化水素含有シートは、末端が酸化物であってもなくてもよい。 (Two-dimensional hydrogen boride-containing sheet)
The two-dimensional hydrogen booxide-containing sheet is composed of (BH) n (n ≧ 4, where n is an integer) in which a boron atom (B) and a hydrogen atom (H) are formed in a molar ratio of 1: 1. It is a sheet-like substance having a two-dimensional network (see Non-Patent Document 1). The two-dimensional hydrogen boride-containing sheet may or may not be an oxide at the end.
図1~図3に、(BH)n(n≧4)からなる二次元ネットワークの局所構造の模式図を示す。図1に示すように、二次元ネットワークは、ホウ素原子が六角形のハニカム状に配列し(前記ホウ素原子によって形成される六角形が連接してなる網目状をなし)、前記ホウ素原子のうち隣接する2つが同一の水素原子と結合する部位を有する。ホウ素原子が蜂の巣状(ハニカム状)のシート状の六角形格子構造を取り、シート状の上方および下方それぞれにおいて、図2,図3に示すように、1つの水素原子が六角形格子構造のホウ素原子のうちの隣接する2つのホウ素原子に対してブリッジ状に結合している。また、シート状の六角形格子構造を介して、その上方および下方で2つの水素原子が互いに対向する配置を有している。なお、ホウ化水素素中の水素の配置は、長距離秩序性は有していなくてもよい。また、図2や図3のZ方向に原子同士の結合が傾いていたり、シート自体が曲がったりしている構造を形成したりしていてもよい。また、全ての水素原子が必ずしもブリッジ状に結合していなくてもよい。
1 to 3 show a schematic diagram of the local structure of a two-dimensional network consisting of (BH) n (n ≧ 4). As shown in FIG. 1, in a two-dimensional network, boron atoms are arranged in a hexagonal honeycomb shape (a network formed by connecting hexagons formed by the boron atoms), and the boron atoms are adjacent to each other. The two have a site that binds to the same hydrogen atom. A honeycomb atom has a honeycomb-shaped sheet-like hexagonal lattice structure, and one hydrogen atom has a hexagonal lattice structure above and below the sheet, as shown in FIGS. 2 and 3, respectively. It is bonded in a bridge shape to two adjacent boron atoms among the atoms. Further, it has an arrangement in which two hydrogen atoms face each other above and below the sheet-like hexagonal lattice structure. The arrangement of hydrogen in the borohydride does not have to have long-range order. Further, the bonds between the atoms may be tilted in the Z direction of FIGS. 2 and 3, or the sheet itself may be bent to form a structure. Moreover, not all hydrogen atoms are necessarily bonded in a bridge shape.
二次元ホウ化水素含有シートは、薄膜状の物質であり、単層でも積層していてもよい。本実施形態の二次元ホウ化水素含有シートにおいて、上記の網目状の面構造を形成するホウ素原子(B)と水素原子(H)の総数は1000個以上である。
The two-dimensional hydrogen boride-containing sheet is a thin-film substance, and may be a single layer or laminated. In the two-dimensional hydrogen boride-containing sheet of the present embodiment, the total number of boron atoms (B) and hydrogen atoms (H) forming the above-mentioned network-like surface structure is 1000 or more.
隣り合う2つのホウ素原子(B)間の結合距離d1(図1参照)は、例えば、0.155nm~0.190nmである。また、Z方向から視認した際に、1つの水素原子(H)を介して、隣り合う2つのホウ素原子(B)間の結合距離d2(図2参照)は、0.155nm~0.190nmである。また、隣り合うホウ素原子(B)と水素原子(H)間の結合距離d3(図2参照)は、0.12nm~0.15nmである。
The bond distance d1 (see FIG. 1) between two adjacent boron atoms (B) is, for example, 0.155 nm to 0.190 nm. Further, when visually recognized from the Z direction, the bond distance d2 (see FIG. 2) between two adjacent boron atoms (B) via one hydrogen atom (H) is 0.155 nm to 0.190 nm. is there. The bond distance d3 (see FIG. 2) between the adjacent boron atom (B) and hydrogen atom (H) is 0.12 nm to 0.15 nm.
二次元ホウ化水素含有シートの厚さは、0.2nm~10nmである。二次元ホウ化水素含有シートの少なくとも一方向の長さ(例えば、図1においてX方向またはY方向の長さ)は、100nm以上であることが好ましい。少なくとも一方向の長さを100nm以上とすることにより、電子材料、触媒の担体材料、触媒材料、超伝導材料等としてより有効に本実施形態の二次元ホウ化水素含有シートを利用できる。本実施形態の二次元ホウ化水素含有シートの大きさ(面積)は、特に限定されず、後述する本実施形態の製造方法によって、任意の大きさに形成することができる。
The thickness of the two-dimensional hydrogen boride-containing sheet is 0.2 nm to 10 nm. The length of the two-dimensional hydrogen boride-containing sheet in at least one direction (for example, the length in the X direction or the Y direction in FIG. 1) is preferably 100 nm or more. By setting the length in at least one direction to 100 nm or more, the two-dimensional hydrogen boride-containing sheet of the present embodiment can be used more effectively as an electronic material, a catalyst carrier material, a catalyst material, a superconducting material, and the like. The size (area) of the two-dimensional hydrogen boride-containing sheet of the present embodiment is not particularly limited, and can be formed into an arbitrary size by the production method of the present embodiment described later.
本実施形態の二次元ホウ化水素含有シートは、結晶構造を有する物質である。また、本実施形態の二次元ホウ化水素含有シートによれば、六角形の環を形成するホウ素原子(B)間、および、ホウ素原子(B)と水素原子(H)の間の結合力が強い。このため、本実施形態の二次元ホウ化水素含有シートは、製造時に複数積層されてなる結晶(凝集体)を形成していたとしても、グラファイトと同様に、結晶面に沿って容易に劈開し、単層の二次元シートとして分離(回収)することが可能である。
The two-dimensional hydrogen boride-containing sheet of the present embodiment is a substance having a crystal structure. Further, according to the two-dimensional hydrogen boride-containing sheet of the present embodiment, the bonding force between the boron atoms (B) forming the hexagonal ring and between the boron atoms (B) and the hydrogen atoms (H) is high. strong. Therefore, the two-dimensional hydrogen boride-containing sheet of the present embodiment can be easily cleaved along the crystal plane, even if a plurality of stacked crystals (aggregates) are formed at the time of production. , It is possible to separate (recover) as a single-layer two-dimensional sheet.
二次元ホウ化水素含有シートは、X線光電子分光分析において、負に帯電したホウ素のB1sに由来する188eV近傍にピークを示す。また、電子線エネルギー損失分光において、200eV以下に二つのピークを示すホウ素のsp2構造に由来するスペクトルを有する。更に、昇温脱離ガス分析と昇温前後の質量測定により、ホウ素と水素のモル比が1:1である(HB)n(n≧4)が算出される。以下、本実施形態に係る二次元ホウ化水素含有シートの製造方法をより詳細に説明する。
The two-dimensional hydrogen boride-containing sheet shows a peak near 188 eV derived from B1s of negatively charged boron in X-ray photoelectron spectroscopy. Further, in electron beam energy loss spectroscopy, it has a spectrum derived from the sp 2 structure of boron showing two peaks below 200 eV. Further, the molar ratio of boron to hydrogen is 1: 1 (HB) n (n ≧ 4) is calculated by the temperature-temperature desorption gas analysis and the mass measurement before and after the temperature rise. Hereinafter, a method for producing a two-dimensional hydrogen boride-containing sheet according to the present embodiment will be described in more detail.
(二次元ホウ化水素含有シートの製造方法)
本実施形態の二次元ホウ化水素含有シートの製造方法は、MB2型構造の二ホウ化金属と、その二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂と、酸とを極性有機溶媒中で混合する工程(以下、「第1の工程」と言う。)を有する。ここで、前記Mは、Al、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種である。 (Manufacturing method of two-dimensional hydrogen boride-containing sheet)
Method for producing a two-dimensional borohydride-containing sheet of the present embodiment includes a diboride metal MB 2 -type structure, an ion exchange resin coordinated with the metal ion and the ion exchangeable ions constituting the diboride metal And the acid are mixed in a polar organic solvent (hereinafter, referred to as "first step"). Here, M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V.
本実施形態の二次元ホウ化水素含有シートの製造方法は、MB2型構造の二ホウ化金属と、その二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂と、酸とを極性有機溶媒中で混合する工程(以下、「第1の工程」と言う。)を有する。ここで、前記Mは、Al、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種である。 (Manufacturing method of two-dimensional hydrogen boride-containing sheet)
Method for producing a two-dimensional borohydride-containing sheet of the present embodiment includes a diboride metal MB 2 -type structure, an ion exchange resin coordinated with the metal ion and the ion exchangeable ions constituting the diboride metal And the acid are mixed in a polar organic solvent (hereinafter, referred to as "first step"). Here, M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V.
MB2型構造の二ホウ化金属としては、六角形の環状の構造を有するものが用いられる。例えば、二ホウ化アルミニウム(AlB2)、二ホウ化マグネシウム(MgB2)、二ホウ化タンタル(TaB2)、二ホウ化ジルコニウム(ZrB2)、二ホウ化レニウム(ReB2)、二ホウ化クロム(CrB2)、二ホウ化チタン(TiB2)、二ホウ化バナジウム(VB2)が用いられる。
極性有機溶媒中にて、容易にイオン交換樹脂とのイオン交換を行うことができることから、二ホウ化マグネシウムを用いることが好ましい。 The diboride metal MB 2 -type structure, those having a structure of hexagonal ring is used. For example, aluminum diboride (AlB 2 ), magnesium diboride (MgB 2 ), tantalum diboride (TaB 2 ), zirconium diboride (ZrB 2 ), rhenium diboride (ReB 2 ), diboride. Chromium (CrB 2 ), titanium diboride (TiB 2 ), and vanadium diboride (VB 2 ) are used.
Magnesium diboride is preferably used because it can easily exchange ions with an ion exchange resin in a polar organic solvent.
極性有機溶媒中にて、容易にイオン交換樹脂とのイオン交換を行うことができることから、二ホウ化マグネシウムを用いることが好ましい。 The diboride metal MB 2 -type structure, those having a structure of hexagonal ring is used. For example, aluminum diboride (AlB 2 ), magnesium diboride (MgB 2 ), tantalum diboride (TaB 2 ), zirconium diboride (ZrB 2 ), rhenium diboride (ReB 2 ), diboride. Chromium (CrB 2 ), titanium diboride (TiB 2 ), and vanadium diboride (VB 2 ) are used.
Magnesium diboride is preferably used because it can easily exchange ions with an ion exchange resin in a polar organic solvent.
二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂は特に限定されない。このようなイオン交換樹脂としては、例えば、二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位した官能基(以下、「官能基α」と言う。)を有するスチレンの重合体、官能基αを有するジビニルベンゼンの重合体、官能基αを有するスチレンと官能基αを有するジビニルベンゼンの共重合体が例示できる。
官能基αとしては、例えば、スルホ基、カルボキシル基が挙げられる。これらの中でも、極性有機溶媒中にて、容易に二ホウ化金属を構成する金属イオンとのイオン交換を行うことができることから、スルホ基が好適である。 The ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diboride metal is not particularly limited. As such an ion exchange resin, for example, a polymer of styrene having a functional group (hereinafter, referred to as “functional group α”) in which an ion-exchangeable ion is coordinated with a metal ion constituting a diborated metal. Examples thereof include a polymer of divinylbenzene having a functional group α and a copolymer of styrene having a functional group α and divinylbenzene having a functional group α.
Examples of the functional group α include a sulfo group and a carboxyl group. Among these, a sulfo group is preferable because it can easily exchange ions with metal ions constituting the dibolated metal in a polar organic solvent.
官能基αとしては、例えば、スルホ基、カルボキシル基が挙げられる。これらの中でも、極性有機溶媒中にて、容易に二ホウ化金属を構成する金属イオンとのイオン交換を行うことができることから、スルホ基が好適である。 The ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diboride metal is not particularly limited. As such an ion exchange resin, for example, a polymer of styrene having a functional group (hereinafter, referred to as “functional group α”) in which an ion-exchangeable ion is coordinated with a metal ion constituting a diborated metal. Examples thereof include a polymer of divinylbenzene having a functional group α and a copolymer of styrene having a functional group α and divinylbenzene having a functional group α.
Examples of the functional group α include a sulfo group and a carboxyl group. Among these, a sulfo group is preferable because it can easily exchange ions with metal ions constituting the dibolated metal in a polar organic solvent.
酸としては、例えば、酢酸、炭酸、酒石酸、リンゴ酸、マレイン酸、プロピオン酸、ギ酸、コハク酸、クエン酸、シュウ酸、乳酸、塩酸、硫酸、リン酸が例示できる。これらのうちでも、ギ酸、塩酸が好適である。酸を添加することにより、極性溶媒中にて、容易に二ホウ化金属を構成する金属イオンとイオン交換樹脂のイオン交換する時間を大幅に短縮化できる。その理由は、酸の水素イオンが、金属イオンとイオン交換樹脂のイオン交換を仲介することによるものと考えられる。即ち、酸の水素イオンが、金属イオンとイオン交換し、その後、金属イオンとイオン交換樹脂のイオン交換を行うことにより、製造時間の短縮化が達成できたものと考えられる。
Examples of the acid include acetic acid, carbonic acid, tartaric acid, malic acid, maleic acid, propionic acid, formic acid, succinic acid, citric acid, oxalic acid, lactic acid, hydrochloric acid, sulfuric acid, and phosphoric acid. Of these, formic acid and hydrochloric acid are preferable. By adding an acid, the time for ion exchange between the metal ions constituting the dibolated metal and the ion exchange resin in the polar solvent can be significantly shortened. The reason is considered to be that the hydrogen ions of the acid mediate the ion exchange between the metal ions and the ion exchange resin. That is, it is considered that the production time can be shortened by exchanging the hydrogen ions of the acid with the metal ions and then performing the ion exchange between the metal ions and the ion exchange resin.
極性有機溶媒としては、特に限定されず、例えば、アセトニトリル、N,N-ジメチルホルムアミド、メタノールが例示できる。これらの中でも、酸素を含んでいない点および沸点が低く減圧乾燥に有利な点からアセトニトリルが好適である。
The polar organic solvent is not particularly limited, and examples thereof include acetonitrile, N, N-dimethylformamide, and methanol. Among these, acetonitrile is preferable because it does not contain oxygen and has a low boiling point and is advantageous for vacuum drying.
第1の工程では、極性有機溶媒に二ホウ化金属、イオン交換樹脂および酸を投入し、極性有機溶媒、二ホウ化金属およびイオン交換樹脂を含む混合溶液を撹拌し、二ホウ化金属イオン交換樹脂および酸を充分に接触させる。撹拌は超音波処理により行ってもよい。混合撹拌工程により、二ホウ化金属を構成する金属イオンと、イオン交換樹脂の官能基αのイオンとが酸の水素イオンを媒介としてイオン交換して、ホウ素原子と、イオン交換樹脂の官能基αに由来する水素または酸の水素によって形成される二次元ネットワークを有する二次元ホウ化水素含有シートが生成する。酸の水素イオンを媒介させることにより、製造時間の大幅な短縮が可能となる。
In the first step, a metal diboride, an ion exchange resin, and an acid are added to the polar organic solvent, and a mixed solution containing the polar organic solvent, the metal diboride, and the ion exchange resin is stirred to exchange the metal diboride ion. Thorough contact of resin and acid. Stirring may be performed by ultrasonic treatment. By the mixing and stirring step, the metal ions constituting the dibolated metal and the ions of the functional group α of the ion exchange resin are ion-exchanged via the hydrogen ion of the acid, and the boron atom and the functional group α of the ion exchange resin are exchanged. A two-dimensional hydrogen boride-containing sheet having a two-dimensional network formed by hydrogen derived from or an acid hydrogen is produced. By mediating the hydrogen ion of the acid, the production time can be significantly shortened.
一例を挙げると、二ホウ化金属として二ホウ化マグネシウムを用い、イオン交換樹脂としてスルホ基を有するイオン交換樹脂、酸としてギ酸を用い、極性溶媒中で混合撹拌や超音波処理をすることにより、二ホウ化マグネシウムのマグネシウムイオン(Mg2+)と、ギ酸の水素イオン(H+)とが置換し、その後、マグネシウムイオン(Mg2+)とイオン交換樹脂のスルホ基の水素イオン(H+)とが置換して、上述のようなホウ素原子(B)と水素原子(H)からなる二次元ネットワークを有する二次元ホウ化水素含有シートが生成する。添加した酸が触媒として働き、速やかに反応する。この反応は、常温・常圧で進行する。
As an example, magnesium diboride is used as the metal diboride, an ion exchange resin having a sulfo group is used as the ion exchange resin, and formic acid is used as the acid, and the mixture is stirred or ultrasonically treated in a polar solvent. Magnesium ion (Mg 2+ ) of magnesium diboride and hydrogen ion (H + ) of formic acid are replaced, and then magnesium ion (Mg 2+ ) and hydrogen ion (H + ) of the sulfo group of the ion exchange resin are replaced. Substitution produces a two-dimensional hydrogen boride-containing sheet having a two-dimensional network consisting of a boron atom (B) and a hydrogen atom (H) as described above. The added acid acts as a catalyst and reacts rapidly. This reaction proceeds at normal temperature and pressure.
第1の工程は、窒素(N2)やアルゴン(Ar)等の不活性ガスからなる不活性雰囲気下で行う。混合溶液を撹拌する際、混合溶液の温度は、例えば0~80℃とすることができ、好適には15℃~35℃とすることができる。混合溶液を撹拌する時間は特に限定されないが、例えば、10分~240分程度とすることが可能となる。
The first step is carried out in an inert atmosphere composed of an inert gas such as nitrogen (N 2) or argon (Ar). When stirring the mixed solution, the temperature of the mixed solution can be, for example, 0 to 80 ° C, preferably 15 ° C to 35 ° C. The time for stirring the mixed solution is not particularly limited, but can be, for example, about 10 minutes to 240 minutes.
特許文献3の方法によれば、この撹拌時間として700分~7000分程度の時間を要していた。一方、本発明の製造方法によれば、撹拌時間を例えば10~240分程度とすることが可能となり、大幅に製造時間を短縮することができる。これは、酸の添加効果によるものである。
According to the method of Patent Document 3, this stirring time required about 700 to 7000 minutes. On the other hand, according to the production method of the present invention, the stirring time can be set to, for example, about 10 to 240 minutes, and the production time can be significantly shortened. This is due to the effect of adding acid.
次いで、酸を除去する(第2の工程)。酸の除去方法は特に限定されないが、加熱、減圧乾燥、沈殿回収法等が例示できる。これらの中でも減圧乾燥による除去が容易であり、例えば、室温~80℃の減圧下での乾燥により、粉末を得ることができる。
Next, the acid is removed (second step). The method for removing the acid is not particularly limited, and examples thereof include heating, drying under reduced pressure, and a precipitation recovery method. Among these, removal by vacuum drying is easy, and for example, powder can be obtained by drying under reduced pressure of room temperature to 80 ° C.
その後、撹拌が終了した混合溶液を濾過する(第3の工程)。混合溶液の濾過方法は、特に限定されず、例えば、自然濾過、減圧濾過、加圧濾過、遠心濾過等の方法が用いられる。濾材は用いる溶剤に応じて適宜選定すればよい。濾材としては、セルロース、PTFE等を基材とする濾紙、メンブレンフィルター、グラスファイバー等を圧縮成型した濾過板等が例示できる。
After that, the mixed solution that has been stirred is filtered (third step). The method for filtering the mixed solution is not particularly limited, and for example, methods such as natural filtration, vacuum filtration, pressure filtration, and centrifugal filtration are used. The filter medium may be appropriately selected according to the solvent used. Examples of the filter medium include a filter paper using cellulose, PTFE or the like as a base material, a membrane filter, a filter plate obtained by compression molding glass fiber or the like.
濾過により沈殿物と分離されて回収された生成物を含む溶液を、自然乾燥するか、減圧乾燥、加熱等により乾燥することにより、最終的に生成物である二次元ネットワークを有する二次元ホウ化水素含有シートを得る。
A solution containing a product separated from a precipitate by filtration and recovered is naturally dried, dried under reduced pressure, heated, or the like to form a two-dimensional boring having a two-dimensional network that is finally a product. Obtain a hydrogen-containing sheet.
本実施形態の二次元ホウ化水素含有シートの製造方法によって得られた、生成物の分析方法としては、例えば、X線光電子分光分析法(X-ray Photoelectron Spectroscopy、XPS)、透過型電子顕微鏡(Transmission Electron Microscope、TEM)および透過型電子顕微鏡内で行うエネルギー分散型X線分析(Energy dispersive X-ray Spectroscopy、EDS)と電子エネルギー損失分光(Electron energy loss Spectroscopy、EELS)による観察等が挙げられる。
Examples of the method for analyzing the product obtained by the method for producing the two-dimensional hydrogen boride-containing sheet of the present embodiment include an X-ray Photoelectron Spectroscopy (XPS) and a transmission electron microscope (XPS). Examples include energy dispersive X-ray analysis (Energy dispersive X-ray Spectroscopy, EDS) and electron energy loss spectroscopy (Electron energy loss Spectroscopy, EELS) performed in a transmission electron microscope (TEM) and a transmission electron microscope.
X線光電子分光分析法(XPS)では、例えば、日本電子(JEOL)社製のX線光電子分光分析装置(商品名:JPS9010TR)を用いて、生成物の表面にX線を照射し、そのときに生じる光電子のエネルギーを測定することによって、生成物の構成元素とその電子状態を分析する。この分析において、原料の二ホウ化金属を構成する金属元素に起因する光電子のエネルギーがほとんど検出されず、ホウ素と水素の結合に由来する光電子のエネルギーのみが検出された場合、生成物はホウ素と水素に由来する元素のみから構成されているといえる。
In the X-ray photoelectron spectroscopy (XPS), for example, an X-ray photoelectron spectroscopy analyzer (trade name: JPS9010TR) manufactured by Nippon Denshi (JEOL) is used to irradiate the surface of the product with X-rays. By measuring the energy of photoelectrons generated in the product, the constituent elements of the product and their electronic states are analyzed. In this analysis, if the photoelectron energy due to the metal elements that make up the raw metal diboronide is barely detected and only the photoelectron energy due to the bond between boron and hydrogen is detected, the product is boron. It can be said that it is composed only of elements derived from hydrogen.
透過型電子顕微鏡(TEM)による観察では、例えば、日本電子(JEOL)社製の透過型電子顕微鏡(商品名:JEM-2100F TEM/STEM)を用いて、生成物を観察することにより、生成物の形状(外観)等を分析する。この分析において、膜状(シート状)の物質が観察されれば、生成物は二次元的なシート状の物質であるといえる。透過型電子顕微鏡内において、エネルギー分散型X線分析(EDS)を行うことにより、生成物のTEM観察した部位における金属元素の存在の有無を観察できる。この分析において、原料の二ホウ化金属を構成する金属元素に起因するX線のエネルギーがほとんど検出されず、金属元素(例えば、Mg)のピークが現われない場合、金属元素が存在しないといえる。また、透過型電子顕微鏡内において、電子エネルギー損失分光(EELS)を行うことにより、生成物のTEM観察した部位における構成元素を観察できる。この分析において、ホウ素に由来するX線エネルギーのみが検出された場合、生成物には炭素、窒素、酸素などの不純物がないといえる。
In the observation with a transmission electron microscope (TEM), for example, the product is observed by observing the product using a transmission electron microscope (trade name: JEM-2100F TEM / STEM) manufactured by JEOL Ltd. Analyze the shape (appearance) of the If a film-like (sheet-like) substance is observed in this analysis, it can be said that the product is a two-dimensional sheet-like substance. By performing energy dispersive X-ray analysis (EDS) in a transmission electron microscope, the presence or absence of metal elements can be observed at the TEM-observed site of the product. In this analysis, if the X-ray energy caused by the metal element constituting the raw material diborated metal is hardly detected and the peak of the metal element (for example, Mg) does not appear, it can be said that the metal element does not exist. In addition, by performing electron energy loss spectroscopy (EELS) in a transmission electron microscope, the constituent elements at the TEM-observed site of the product can be observed. If only the X-ray energy derived from boron is detected in this analysis, it can be said that the product is free of impurities such as carbon, nitrogen and oxygen.
本実施形態の二次元ホウ化水素含有シートの製造方法によれば、ホウ素原子と、イオン交換樹脂または酸の水素に由来する原子によって形成される二次元ネットワークを有する二次元ホウ化水素含有シートを容易に生成することができる。なお、原料のMB2型構造の二ホウ化金属の大きな結晶を用いることにより、より大面積の二次元ホウ化水素含有シートを製造することができる。
According to the method for producing a two-dimensional hydrogen booxide-containing sheet of the present embodiment, a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network formed by an atom derived from a boron atom and an ion exchange resin or an acid hydrogen is obtained. It can be easily generated. Note that by using a large crystal diboride metal MB 2 type structure can be produced from a two-dimensional borohydride-containing sheet having a larger area.
また、本実施形態の二次元ホウ化水素含有シートの製造方法によれば、酸を用いることにより、大幅に製造時間を短縮させることができる。
Further, according to the method for producing a two-dimensional hydrogen boride-containing sheet of the present embodiment, the production time can be significantly shortened by using an acid.
(二次元ホウ化水素含有シート組成物およびその製造方法)
本実施形態の二次元ホウ化水素含有シート組成物は、少なくとも(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートと酸を有する。二次元ホウ化水素含有シートの説明は上記実施形態と同様であるのでここでは割愛する。酸は、上述した二次元ホウ化水素含有シートの製造方法により得られる製造工程由来の酸の少なくとも一部または/および製造工程に由来しない酸である。 (Two-dimensional hydrogen boride-containing sheet composition and its production method)
The two-dimensional hydrogen booxide-containing sheet composition of the present embodiment has a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of at least (BH) n (n ≧ 4) and an acid. Since the description of the two-dimensional hydrogen boride-containing sheet is the same as that of the above embodiment, it is omitted here. The acid is at least a part or / of the acid derived from the manufacturing process obtained by the method for producing the two-dimensional hydrogen boride-containing sheet described above, and the acid not derived from the manufacturing process.
本実施形態の二次元ホウ化水素含有シート組成物は、少なくとも(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートと酸を有する。二次元ホウ化水素含有シートの説明は上記実施形態と同様であるのでここでは割愛する。酸は、上述した二次元ホウ化水素含有シートの製造方法により得られる製造工程由来の酸の少なくとも一部または/および製造工程に由来しない酸である。 (Two-dimensional hydrogen boride-containing sheet composition and its production method)
The two-dimensional hydrogen booxide-containing sheet composition of the present embodiment has a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of at least (BH) n (n ≧ 4) and an acid. Since the description of the two-dimensional hydrogen boride-containing sheet is the same as that of the above embodiment, it is omitted here. The acid is at least a part or / of the acid derived from the manufacturing process obtained by the method for producing the two-dimensional hydrogen boride-containing sheet described above, and the acid not derived from the manufacturing process.
本実施形態の二次元ホウ化水素含有シート組成物に酸を含有させることにより、保存安定性を向上させることができる。これは、酸が二次元ホウ化水素含有シートへの水素供給源となることによりものと考えられる。
Storage stability can be improved by adding an acid to the two-dimensional hydrogen boride-containing sheet composition of the present embodiment. It is considered that this is because the acid serves as a hydrogen supply source for the two-dimensional hydrogen boride-containing sheet.
本実施形態の二次元ホウ化水素含有シート組成物は、更に分散溶媒を含んでいてもよい。分散溶媒は特に限定されないが、例えば、アセトニトリル、アセトン、メチルアルコール、エチルアルコール、イソプロパノールのようなアルコール類、ホルムアルデヒドやアセトアルデヒドのようなアルデヒド類、酢酸エチルが例示できる。溶媒は1種単独または2種以上を併用して用いることができる。
The two-dimensional hydrogen boride-containing sheet composition of the present embodiment may further contain a dispersion solvent. The dispersion solvent is not particularly limited, and examples thereof include alcohols such as acetonitrile, acetone, methyl alcohol, ethyl alcohol, and isopropanol, aldehydes such as formaldehyde and acetaldehyde, and ethyl acetate. The solvent can be used alone or in combination of two or more.
本実施形態の二次元ホウ化水素含有シート組成物は、極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂、および酸を混合する工程を経て得ることができる。但し、本実施形態の二次元ホウ化水素含有シート組成物の製造方法は、前記方法に限定されるものではない。酸を用いずに二次元ホウ化水素含有シートを製造した後に、後添加で酸を添加してもよい。
The two-dimensional hydrogen boride-containing sheet composition of the present embodiment comprises a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diboride metal in a polar organic solvent. And can be obtained through the step of mixing the acid. However, the method for producing the two-dimensional hydrogen boride-containing sheet composition of the present embodiment is not limited to the above method. After producing the two-dimensional hydrogen boride-containing sheet without using an acid, the acid may be added by post-addition.
本実施形態の二次元ホウ化水素含有シート組成物は、更に、構造内、あるいは表面にドーパント等の添加剤を加えることができる。ドーパントとして、例えば、炭素、窒素、酸素、フッ素、リン、硫黄、塩素、ヒ素、セレン、臭素、アンチモン、テルル、ヨウ素などの元素や、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、インジウム、スズ、イットリウム、ニオブ、モリブデンタングステン、タンタル、鉛などの金属元素、また、ルテニウム、ロジウム、パラジウム、銀、金、イリジウム、白金などの貴金属元素からなる群より選択される少なくとも一つの元素からなるドーパントを用いることができる
In the two-dimensional hydrogen boride-containing sheet composition of the present embodiment, additives such as a dopant can be further added in the structure or on the surface. As dopants, for example, elements such as carbon, nitrogen, oxygen, fluorine, phosphorus, sulfur, chlorine, arsenic, selenium, bromine, antimony, tellurium, iodine, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc. , Cadmium, indium, tin, ittium, niobium, molybdenum tungsten, tantalum, lead and other metal elements, and at least one selected from the group consisting of noble metal elements such as ruthenium, rhodium, palladium, silver, gold, iridium and platinum. Palladium consisting of one element can be used
以下、実施例により本発明をさらに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.
[参考例1]
アセトニトリル27mLに、二ホウ化マグネシウム(純度:99%、アルドリッチ社製)150mgを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライト(「アンバーライト」は登録商標(以下同じ))IR120B、オルガノ社製)を体積で10mL加えて、二ホウ化マグネシウムとイオン交換樹脂の混合溶液を調製した。この混合溶液を25℃にて1時間超音波処理した後に、1時間静置した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、窒素雰囲気下、ホットプレートを用いて、80℃にて濾液を減圧乾燥させることにより、黄色に呈した生成物を得た。収率は34.2%であった。 [Reference example 1]
To 27 mL of acetonitrile, 150 mg of magnesium diboride (purity: 99%, manufactured by Aldrich) is added, and an ion exchange resin having a sulfo group (Amberlite (“Amberlite” is a registered trademark (the same applies hereinafter)) IR120B, Organo Co., Ltd. (Manufactured) was added in a volume of 10 mL to prepare a mixed solution of magnesium diboride and an ion exchange resin. The mixed solution was sonicated at 25 ° C. for 1 hour and then allowed to stand for 1 hour. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was dried under reduced pressure at 80 ° C. using a hot plate under a nitrogen atmosphere to obtain a yellow product. The yield was 34.2%.
アセトニトリル27mLに、二ホウ化マグネシウム(純度:99%、アルドリッチ社製)150mgを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライト(「アンバーライト」は登録商標(以下同じ))IR120B、オルガノ社製)を体積で10mL加えて、二ホウ化マグネシウムとイオン交換樹脂の混合溶液を調製した。この混合溶液を25℃にて1時間超音波処理した後に、1時間静置した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、窒素雰囲気下、ホットプレートを用いて、80℃にて濾液を減圧乾燥させることにより、黄色に呈した生成物を得た。収率は34.2%であった。 [Reference example 1]
To 27 mL of acetonitrile, 150 mg of magnesium diboride (purity: 99%, manufactured by Aldrich) is added, and an ion exchange resin having a sulfo group (Amberlite (“Amberlite” is a registered trademark (the same applies hereinafter)) IR120B, Organo Co., Ltd. (Manufactured) was added in a volume of 10 mL to prepare a mixed solution of magnesium diboride and an ion exchange resin. The mixed solution was sonicated at 25 ° C. for 1 hour and then allowed to stand for 1 hour. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was dried under reduced pressure at 80 ° C. using a hot plate under a nitrogen atmosphere to obtain a yellow product. The yield was 34.2%.
[実施例1]
混合溶液に更に、ギ酸(関東化学社製)(以下同様)を0.5mL加えた以外は参考例1と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は45.2%であった。 [Example 1]
Synthesis was carried out in the same manner as in Reference Example 1 except that 0.5 mL of formic acid (manufactured by Kanto Chemical Co., Inc.) (same below) was further added to the mixed solution to obtain a yellow product. The yield was 45.2%.
混合溶液に更に、ギ酸(関東化学社製)(以下同様)を0.5mL加えた以外は参考例1と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は45.2%であった。 [Example 1]
Synthesis was carried out in the same manner as in Reference Example 1 except that 0.5 mL of formic acid (manufactured by Kanto Chemical Co., Inc.) (same below) was further added to the mixed solution to obtain a yellow product. The yield was 45.2%.
[実施例2]
混合溶液に更に、ギ酸を2.0mL加えた以外は参考例1と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は51.5%であった。 [Example 2]
Synthesis was carried out in the same manner as in Reference Example 1 except that 2.0 mL of formic acid was further added to the mixed solution to obtain a yellow product. The yield was 51.5%.
混合溶液に更に、ギ酸を2.0mL加えた以外は参考例1と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は51.5%であった。 [Example 2]
Synthesis was carried out in the same manner as in Reference Example 1 except that 2.0 mL of formic acid was further added to the mixed solution to obtain a yellow product. The yield was 51.5%.
[実施例3]
混合溶液に更に、ギ酸を3.0mL加えた以外は参考例1と同様の方法により合成を行い、黄色に呈した生成物を得た。 [Example 3]
Synthesis was carried out in the same manner as in Reference Example 1 except that 3.0 mL of formic acid was further added to the mixed solution to obtain a yellow product.
混合溶液に更に、ギ酸を3.0mL加えた以外は参考例1と同様の方法により合成を行い、黄色に呈した生成物を得た。 [Example 3]
Synthesis was carried out in the same manner as in Reference Example 1 except that 3.0 mL of formic acid was further added to the mixed solution to obtain a yellow product.
参考例1の生成物の収率と実施例1~3の収率に示すように、酸を添加することにより、酸を加えない場合に比べて収率が高くなることを確認した。また、酸の添加量が増えるにつれて、生成物の収率が高くなることを確認した。
As shown in the yield of the product of Reference Example 1 and the yield of Examples 1 to 3, it was confirmed that the yield was higher by adding the acid than in the case where the acid was not added. It was also confirmed that the yield of the product increased as the amount of acid added increased.
実施例3で得た生成物について、日本電子(JEOL)社製の走査型透過電子顕微鏡(商品名:JEM-2100F TEM/STEM)による観察を行った。観察結果を、図4に示す。図4の結果から、得られた生成物は二次元シートを形成していることを確認した。
図5A~図5Cに、参考例1,実施例1,2のSTEM像を示す。いずれの例においても、薄いシート構造が確認できた。 The product obtained in Example 3 was observed with a scanning transmission electron microscope (trade name: JEM-2100F TEM / STEM) manufactured by JEOL Ltd. The observation results are shown in FIG. From the results of FIG. 4, it was confirmed that the obtained product formed a two-dimensional sheet.
5A to 5C show STEM images of Reference Examples 1 and 1 and 2. In each example, a thin sheet structure could be confirmed.
図5A~図5Cに、参考例1,実施例1,2のSTEM像を示す。いずれの例においても、薄いシート構造が確認できた。 The product obtained in Example 3 was observed with a scanning transmission electron microscope (trade name: JEM-2100F TEM / STEM) manufactured by JEOL Ltd. The observation results are shown in FIG. From the results of FIG. 4, it was confirmed that the obtained product formed a two-dimensional sheet.
5A to 5C show STEM images of Reference Examples 1 and 1 and 2. In each example, a thin sheet structure could be confirmed.
実施例1により得られた生成物について、電子線エネルギー損失分光の結果を図6に示す。図6に示すように、200eV以下にホウ素(B)のsp2構造を示す電子線エネルギー損失分光のピークが観測されることを確認した。また、炭素(C)、窒素(N)および酸素(O)に起因するピークが観測されないことを確認し、シート状の物質は、sp2構造を有するホウ素で構成されていることを確認した。また、XPS分析より、同図に示すように、二ホウ化マグネシウム中のホウ化物であることを示すB1sのピーク(188eV)が合成後も存在していることを確認した。また、正に帯電した酸化されたホウ素種は195eV付近に観測されるが、本発明の生成物ではほとんど見られなかった。一方で原料にて観測されたマグネシウムのMg2pのピークは、生成物から確認されないことを確認した。これらの結果は、イオン交換樹脂および酸によってマグネシウムイオンが水素イオンと交換されたことを示唆するものである(図7A、図7B参照)。
The result of electron beam energy loss spectroscopy for the product obtained in Example 1 is shown in FIG. As shown in FIG. 6, it was confirmed that the peak of electron energy loss spectroscopy showing the sp 2 structure of boron (B) below 200eV is observed. Also, verify that the peak due to carbon (C), nitrogen (N) and oxygen (O) is not observed, sheet-like material, it was confirmed that consists of boron having sp 2 structure. Further, from XPS analysis, as shown in the figure, it was confirmed that the peak of B1s (188 eV) indicating that it was a boride in magnesium diboride was present even after the synthesis. In addition, positively charged oxidized boron species were observed around 195 eV, but were rarely found in the product of the present invention. On the other hand, it was confirmed that the peak of Mg2p of magnesium observed in the raw material was not confirmed from the product. These results suggest that magnesium ions were exchanged for hydrogen ions by the ion exchange resin and acid (see FIGS. 7A and 7B).
図8に、参考例1,実施例1,2の生成物について、フーリエ変換赤外分光分析(FTIR)(分析装置:日本分光株式会社製)測定を行った結果を示す。実施例1,2の生成物は、参考例1の生成物と同様に、B-Hに由来するピーク、B-H-Bに由来するピークがあることを確認した。また、実施例1,2の製造工程において添加したギ酸が残っていないことを確認した。
FIG. 8 shows the results of Fourier transform infrared spectroscopic analysis (FTIR) (analyzer: manufactured by JASCO Corporation) for the products of Reference Examples 1 and 1 and 2. It was confirmed that the products of Examples 1 and 2 had a peak derived from BH and a peak derived from BHB, similarly to the product of Reference Example 1. In addition, it was confirmed that no formic acid added in the production steps of Examples 1 and 2 remained.
[参考例2]
アセトニトリル27mLに、二ホウ化マグネシウム(純度:99%、アルドリッチ社製)150mgを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライトIR120B、オルガノ社製)を体積で10mL加えて、二ホウ化マグネシウムとイオン交換樹脂の混合溶液を調製した。この混合溶液を25℃にて1時間超音波処理した後に、1.5時間静置した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、窒素雰囲気下、ホットプレートを用いて、80℃にて濾液を減圧乾燥させることにより、黄色に呈した生成物を得た。収率は35.6%であった。 [Reference example 2]
Magnesium diboride (purity: 99%, manufactured by Aldrich) is added to 27 mL of acetonitrile, and 10 mL of an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo) is added in volume to magnesium diboride. And an ion exchange resin mixed solution was prepared. The mixed solution was sonicated at 25 ° C. for 1 hour and then allowed to stand for 1.5 hours. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was dried under reduced pressure at 80 ° C. using a hot plate under a nitrogen atmosphere to obtain a yellow product. The yield was 35.6%.
アセトニトリル27mLに、二ホウ化マグネシウム(純度:99%、アルドリッチ社製)150mgを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライトIR120B、オルガノ社製)を体積で10mL加えて、二ホウ化マグネシウムとイオン交換樹脂の混合溶液を調製した。この混合溶液を25℃にて1時間超音波処理した後に、1.5時間静置した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、窒素雰囲気下、ホットプレートを用いて、80℃にて濾液を減圧乾燥させることにより、黄色に呈した生成物を得た。収率は35.6%であった。 [Reference example 2]
Magnesium diboride (purity: 99%, manufactured by Aldrich) is added to 27 mL of acetonitrile, and 10 mL of an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo) is added in volume to magnesium diboride. And an ion exchange resin mixed solution was prepared. The mixed solution was sonicated at 25 ° C. for 1 hour and then allowed to stand for 1.5 hours. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was dried under reduced pressure at 80 ° C. using a hot plate under a nitrogen atmosphere to obtain a yellow product. The yield was 35.6%.
[実施例4]
塩酸(WAKO社製)(以下、同様)を1.0mL加えた以外は、参考例2と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は134%であった。 [Example 4]
Synthesis was carried out in the same manner as in Reference Example 2 except that 1.0 mL of hydrochloric acid (manufactured by WAKO) (hereinafter, the same) was added to obtain a yellow product. The yield was 134%.
塩酸(WAKO社製)(以下、同様)を1.0mL加えた以外は、参考例2と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は134%であった。 [Example 4]
Synthesis was carried out in the same manner as in Reference Example 2 except that 1.0 mL of hydrochloric acid (manufactured by WAKO) (hereinafter, the same) was added to obtain a yellow product. The yield was 134%.
[実施例5]
塩酸を2.0mL加えた以外は実施例4と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は193%であった。 [Example 5]
Synthesis was carried out in the same manner as in Example 4 except that 2.0 mL of hydrochloric acid was added to obtain a yellow product. The yield was 193%.
塩酸を2.0mL加えた以外は実施例4と同様の方法により合成を行い、黄色に呈した生成物を得た。収率は193%であった。 [Example 5]
Synthesis was carried out in the same manner as in Example 4 except that 2.0 mL of hydrochloric acid was added to obtain a yellow product. The yield was 193%.
実施例4,5において収率が100%を超えている理由は、本発明の二次元ホウ化水素含有シートの生成と共に、下記副反応が進行し、塩化マグネシウム(MgCl2)、水酸化マグネシウム(MgOH)、ホウ酸の副生成物が生成していることによるものと考えられる(参考文献:M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao, D. Chen, X. Lu, Q. He, Adv. Healthc. Mater. 2019, 8, 1900157.)。
MgB2+H++H2O→Mg2++B(OH)3+3H2 式(1) The reason why the yield exceeds 100% in Examples 4 and 5 is that the following side reactions proceed with the formation of the two-dimensional hydrogen borate-containing sheet of the present invention, and magnesium chloride (MgCl 2 ) and magnesium hydroxide (MgCl 2) and magnesium hydroxide ( MgOH), which is thought to be due to the formation of by-products of boric acid (References: M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao, D. Chen, X. Lu, Q. He, Adv. Healthc. Mater. 2019, 8, 1900157.).
MgB 2 + H + + H 2 O → Mg 2 ++ B (OH) 3 + 3H 2 formula (1)
MgB2+H++H2O→Mg2++B(OH)3+3H2 式(1) The reason why the yield exceeds 100% in Examples 4 and 5 is that the following side reactions proceed with the formation of the two-dimensional hydrogen borate-containing sheet of the present invention, and magnesium chloride (MgCl 2 ) and magnesium hydroxide (MgCl 2) and magnesium hydroxide ( MgOH), which is thought to be due to the formation of by-products of boric acid (References: M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao, D. Chen, X. Lu, Q. He, Adv. Healthc. Mater. 2019, 8, 1900157.).
MgB 2 + H + + H 2 O → Mg 2 ++ B (OH) 3 + 3H 2 formula (1)
実施例4,5では、原料を混合した段階で分散液が直ちに黄色味を呈することを確認した。図9に、参考例2,実施例4,5のサンプルについて、FTIR測定を行った結果を示す。実施例4,5は、参考例2と同様に、B-Hに由来するピーク、B-H-Bに由来するピークが確認された。
In Examples 4 and 5, it was confirmed that the dispersion immediately turned yellow when the raw materials were mixed. FIG. 9 shows the results of FTIR measurement of the samples of Reference Examples 2, Examples 4 and 5. In Examples 4 and 5, similarly to Reference Example 2, a peak derived from BH and a peak derived from BHB were confirmed.
[実施例6]
アセトニトリル50mLに、二ホウ化チタニウム(ALDRICH社製)150mgを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライトIR120B、オルガノ社製)を体積で15mL、塩酸を3mL加え、混合溶液を調製した。この混合溶液を25℃にて2時間スターラーで攪拌した後、30分超音波処理した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、濾液を真空引きすることで、溶媒を蒸発させたが全て取りきれず、室温の大気条件下にてホットプレートで溶媒を蒸発させ、薄い黄色に呈した生成物を得た。収率は193%であった。収率が100%を超えている理由は、塩化チタン、水酸化チタン、ホウ酸等の副生成物が生成していることによるものと考えられる。 [Example 6]
To 50 mL of acetonitrile, 150 mg of titanium diboride (manufactured by ALDRICH) was added, and 15 mL of an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo Corporation) and 3 mL of hydrochloric acid were added to prepare a mixed solution. The mixed solution was stirred at 25 ° C. for 2 hours with a stirrer and then sonicated for 30 minutes. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was evacuated to evaporate the solvent, but all of it could not be removed, and the solvent was evaporated on a hot plate under atmospheric conditions at room temperature to obtain a product exhibited in a pale yellow color. The yield was 193%. The reason why the yield exceeds 100% is considered to be that by-products such as titanium chloride, titanium hydroxide and boric acid are produced.
アセトニトリル50mLに、二ホウ化チタニウム(ALDRICH社製)150mgを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライトIR120B、オルガノ社製)を体積で15mL、塩酸を3mL加え、混合溶液を調製した。この混合溶液を25℃にて2時間スターラーで攪拌した後、30分超音波処理した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、濾液を真空引きすることで、溶媒を蒸発させたが全て取りきれず、室温の大気条件下にてホットプレートで溶媒を蒸発させ、薄い黄色に呈した生成物を得た。収率は193%であった。収率が100%を超えている理由は、塩化チタン、水酸化チタン、ホウ酸等の副生成物が生成していることによるものと考えられる。 [Example 6]
To 50 mL of acetonitrile, 150 mg of titanium diboride (manufactured by ALDRICH) was added, and 15 mL of an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo Corporation) and 3 mL of hydrochloric acid were added to prepare a mixed solution. The mixed solution was stirred at 25 ° C. for 2 hours with a stirrer and then sonicated for 30 minutes. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was evacuated to evaporate the solvent, but all of it could not be removed, and the solvent was evaporated on a hot plate under atmospheric conditions at room temperature to obtain a product exhibited in a pale yellow color. The yield was 193%. The reason why the yield exceeds 100% is considered to be that by-products such as titanium chloride, titanium hydroxide and boric acid are produced.
[実施例7]
アセトニトリル300mLに、二ホウ化チタニウム(純度:99%、高純度化学研究所社製)1.02gを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライトIR120B、オルガノ社製)を体積で60mL、ギ酸を0.3mL加えた混合溶液と混合させた。この混合溶液を25℃にて、72時間静置した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、濾液を真空乾燥(室温~70℃に加温)の方法で乾燥させることにより、黄色に呈した生成物を得た。収率は2.6%であった。 [Example 7]
To 300 mL of acetonitrile, 1.02 g of titanium diboride (purity: 99%, manufactured by High Purity Chemical Laboratory) was added, and an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo Corporation) was added in a volume of 60 mL. It was mixed with a mixed solution containing 0.3 mL of formic acid. The mixed solution was allowed to stand at 25 ° C. for 72 hours. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was dried by vacuum drying (heating to room temperature to 70 ° C.) to obtain a yellow product. The yield was 2.6%.
アセトニトリル300mLに、二ホウ化チタニウム(純度:99%、高純度化学研究所社製)1.02gを加えるとともに、スルホ基を有するイオン交換樹脂(アンバーライトIR120B、オルガノ社製)を体積で60mL、ギ酸を0.3mL加えた混合溶液と混合させた。この混合溶液を25℃にて、72時間静置した。その後、この混合溶液を、孔径0.2μmのメンブレンフィルターで濾過し、濾液を回収した。その後、濾液を真空乾燥(室温~70℃に加温)の方法で乾燥させることにより、黄色に呈した生成物を得た。収率は2.6%であった。 [Example 7]
To 300 mL of acetonitrile, 1.02 g of titanium diboride (purity: 99%, manufactured by High Purity Chemical Laboratory) was added, and an ion exchange resin having a sulfo group (Amberlite IR120B, manufactured by Organo Corporation) was added in a volume of 60 mL. It was mixed with a mixed solution containing 0.3 mL of formic acid. The mixed solution was allowed to stand at 25 ° C. for 72 hours. Then, this mixed solution was filtered through a membrane filter having a pore size of 0.2 μm, and the filtrate was collected. Then, the filtrate was dried by vacuum drying (heating to room temperature to 70 ° C.) to obtain a yellow product. The yield was 2.6%.
本実施形態の二次元ホウ化水素含有シートおよび二次元ホウ化水素含有シート組成物は、電子材料、触媒の担体材料、超伝導材料等として利用することができる。本実施形態の二次元ホウ化水素含有シートは、グラフェンと同程度の移動度を示すDirac Fermionと呼ばれる電子構造を示すことが予測されており、新しい電子デバイス材料としての利用が期待できる。また、ホウ素の二次元シートは、10K~20Kで超伝導体となることが予測されており、新しい超伝導体母材としての利用が期待できる。更に、ホウ素の二次元シートは、鉄の4倍の機械的強度を有することが予測されており、新規高強度材料母材としての利用が期待できる(特許文献3参照)。
The two-dimensional hydrogen boride-containing sheet and the two-dimensional hydrogen boride-containing sheet composition of the present embodiment can be used as an electronic material, a catalyst carrier material, a superconducting material, and the like. The two-dimensional hydrogen boride-containing sheet of the present embodiment is predicted to exhibit an electronic structure called Dirac Fermion, which exhibits the same mobility as graphene, and is expected to be used as a new electronic device material. Further, the two-dimensional sheet of boron is predicted to become a superconductor at 10K to 20K, and can be expected to be used as a new superconductor base material. Further, the two-dimensional sheet of boron is predicted to have four times the mechanical strength of iron, and can be expected to be used as a new high-strength material base material (see Patent Document 3).
また、ホウ素の二次元シートの表面をリチウムで被覆することにより、水素吸蔵特性を12.3質量%とすることができると予測されているので、本実施形態の二次元ホウ化水素含有シートは、新しい水素吸蔵材料としての利用が期待できる。また、ホウ素の二次元シートは、リチウムイオン二次電池の電極に用いた場合に、その電極を備えたリチウムイオン二次電池の容量が、グラファイトからなる電極を備えたリチウムイオン二次電池の容量の4倍となることが予測されているので、本実施形態の二次元ホウ化水素含有シートは、新しいリチウムイオン二次電池用電極材料としての利用が期待できる。更に、非特許文献2に開示のように、光照射により水素を発生させる水素発生システム、燃料電池システムとして有効である。
Further, since it is predicted that the hydrogen storage property can be set to 12.3% by mass by coating the surface of the two-dimensional boron sheet with lithium, the two-dimensional hydrogen boride-containing sheet of the present embodiment has a hydrogen storage property of 12.3% by mass. , Can be expected to be used as a new hydrogen storage material. Further, when the boron two-dimensional sheet is used as an electrode of a lithium ion secondary battery, the capacity of the lithium ion secondary battery provided with the electrode is the capacity of the lithium ion secondary battery provided with an electrode made of graphite. Since it is predicted that the amount will be four times that of the above, the two-dimensional hydrogen boride-containing sheet of the present embodiment can be expected to be used as an electrode material for a new lithium ion secondary battery. Further, as disclosed in Non-Patent Document 2, it is effective as a hydrogen generation system and a fuel cell system that generate hydrogen by light irradiation.
この出願は、2019年11月15日に出願された日本出願特願2019-207081を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese application Japanese Patent Application No. 2019-207081 filed on November 15, 2019, and incorporates all of its disclosures herein.
Claims (6)
- 極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂および酸とを混合する工程を有し、
前記二ホウ化金属はMB2型構造であり、
前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種である、
(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートの製造方法。 It has a step of mixing a metal diboride, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diborated metal, and an acid in a polar organic solvent.
The diboride metal is MB 2 type structure,
The M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V.
(BH) A method for producing a two-dimensional hydrogen boride-containing sheet having a two-dimensional network consisting of n (n ≧ 4). - 前記混合する工程後、前記酸を除去する工程を更に有することを特徴とする請求項1に記載の二次元ホウ化水素含有シートの製造方法。 The method for producing a two-dimensional hydrogen boride-containing sheet according to claim 1, further comprising a step of removing the acid after the mixing step.
- 極性有機溶媒中で、二ホウ化金属、前記二ホウ化金属を構成する金属イオンとイオン交換可能なイオンを配位したイオン交換樹脂、および酸を混合する工程を有し、
前記二ホウ化金属はMB2型構造であり、
前記MはAl、Mg、Ta、Zr、Re、Cr、TiおよびVからなる群から選択される少なくとも1種であり、
前記酸の少なくとも一部と、(BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートと、を含む二次元ホウ化水素含有シート組成物の製造方法。 It has a step of mixing a diboride metal, an ion exchange resin in which an ion-exchangeable ion is coordinated with a metal ion constituting the diboride metal, and an acid in a polar organic solvent.
The diboride metal is MB 2 type structure,
The M is at least one selected from the group consisting of Al, Mg, Ta, Zr, Re, Cr, Ti and V.
A method for producing a two-dimensional hydrogen booxide-containing sheet composition, which comprises at least a part of the acid and a two-dimensional hydrogen booxide-containing sheet having a two-dimensional network consisting of (BH) n (n ≧ 4). - (BH)n(n≧4)からなる二次元ネットワークを有する二次元ホウ化水素含有シートと、
酸とを、含む二次元ホウ化水素含有シート組成物。 (BH) A two-dimensional hydrogen boride-containing sheet having a two-dimensional network consisting of n (n ≧ 4), and
A two-dimensional hydrogen boride-containing sheet composition containing an acid. - 更に、前記二次元ホウ化水素含有シートの分散溶媒を含むことを特徴とする請求項4に記載の二次元ホウ化水素含有シート組成物。 The two-dimensional hydrogen boride-containing sheet composition according to claim 4, further comprising a dispersion solvent for the two-dimensional hydrogen boride-containing sheet.
- 前記二次元ネットワークは、ホウ素原子が六角形のハニカム状に配列し、前記ホウ素原子のうち隣接する2つが同一の水素原子と結合する部位を有することを特徴とする請求項4又は5に記載の二次元ホウ化水素含有シート組成物。 The two-dimensional network according to claim 4 or 5, wherein the boron atoms are arranged in a hexagonal honeycomb shape, and two adjacent boron atoms have a site where they are bonded to the same hydrogen atom. Two-dimensional hydrogen borohydride-containing sheet composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021556047A JP7578961B2 (en) | 2019-11-15 | 2020-11-05 | Method for producing two-dimensional hydrogen borate-containing sheet, two-dimensional hydrogen borate-containing sheet composition and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019207081 | 2019-11-15 | ||
JP2019-207081 | 2019-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021095619A1 true WO2021095619A1 (en) | 2021-05-20 |
Family
ID=75912884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/041288 WO2021095619A1 (en) | 2019-11-15 | 2020-11-05 | Two dimensional borohydride-containing sheet manufacturing method, two dimensional borohydride-containing sheet composition, and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021095619A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022260116A1 (en) * | 2021-06-09 | 2022-12-15 | 国立大学法人東京工業大学 | Structural body including boron, hydrogen, and oxygen, and method for producing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018074518A1 (en) * | 2016-10-18 | 2018-04-26 | 国立大学法人筑波大学 | Sheet containing two-dimensional borohydride and production method for sheet containing two-dimensional boron compound |
WO2019155979A1 (en) * | 2018-02-07 | 2019-08-15 | 国立大学法人東京工業大学 | Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal |
-
2020
- 2020-11-05 WO PCT/JP2020/041288 patent/WO2021095619A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018074518A1 (en) * | 2016-10-18 | 2018-04-26 | 国立大学法人筑波大学 | Sheet containing two-dimensional borohydride and production method for sheet containing two-dimensional boron compound |
WO2019155979A1 (en) * | 2018-02-07 | 2019-08-15 | 国立大学法人東京工業大学 | Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal |
Non-Patent Citations (1)
Title |
---|
YASHPAL SINGH, SEOIN BACK, YOUSUNG JUNG: "Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 20, no. 32, 1 January 2018 (2018-01-01), pages 21095 - 21104, XP055736944, ISSN: 1463-9076, DOI: 10.1039/C8CP03130D * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022260116A1 (en) * | 2021-06-09 | 2022-12-15 | 国立大学法人東京工業大学 | Structural body including boron, hydrogen, and oxygen, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021095619A1 (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7057569B2 (en) | Method for manufacturing two-dimensional hydrogen borohydride-containing sheet and two-dimensional boron compound-containing sheet | |
Wang et al. | Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries | |
Chen et al. | Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions | |
Cui et al. | Microsized porous SiO x@ C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries | |
Gao et al. | Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H 2 production | |
Wang et al. | Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting | |
JP6782908B2 (en) | MoSx / carbon black nanocomposite material, and its manufacturing method and application | |
CA3041625A1 (en) | Electrocatalyst composition comprising noble metal oxide supported on tin oxide | |
CN105518183A (en) | Production of graphene and graphane | |
Hu et al. | A universal electrochemical activation enabling lattice oxygen activation in nickel-based catalyst for efficient water oxidation | |
Cui et al. | Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance | |
He et al. | Integration of black phosphorene and MXene to improve fire safety and mechanical properties of waterborne polyurethane | |
Chouki et al. | Solvothermal synthesis of iron phosphides and their application for efficient electrocatalytic hydrogen evolution | |
WO2013154997A1 (en) | Method of producing graphene | |
WO2021095619A1 (en) | Two dimensional borohydride-containing sheet manufacturing method, two dimensional borohydride-containing sheet composition, and method for manufacturing same | |
CA3202825A1 (en) | Iridium-containing catalyst for water electrolysis | |
KR20200094003A (en) | Preparation method of catalyst for hydrogen evolution reaction, catalyst prepared thereby, and electrolyte for hydrogen evolution reaction | |
JP2019050185A (en) | METHOD FOR CONTINUOUSLY MANUFACTURING AUTONOMOUS ELECTRODE FOR Li ION BATTERY NOT INCLUDING BINDER AND COLLECTOR BY USING CARBON NANO-TUBE AS ADDITIVE | |
CN111672505A (en) | Silver-based carbon dioxide reduction catalyst and preparation method thereof | |
CN114214661B (en) | Ultrathin hydrotalcite nanosheet coupled metal and nitrogen co-doped porous carbon array composite material and preparation method and application thereof | |
Lardizabal-Guitierrez et al. | Communication—synthesis of self-doped metal-free electrocatalysts from waste leather with high ORR activity | |
Maeng et al. | Electrochemical CO2 reduction over surface-modified Cd-based electrodes and reaction paths for long-chain hydrocarbons | |
JP7578961B2 (en) | Method for producing two-dimensional hydrogen borate-containing sheet, two-dimensional hydrogen borate-containing sheet composition and method for producing same | |
Ramanavičius et al. | Interfacing perovskite strontium molybdate to molybdenum disulfide nanoplatelts for boosting HER from water | |
JP5958132B2 (en) | Method for producing carbon and metal tin and / or tin oxide composite nanosheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20888499 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021556047 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20888499 Country of ref document: EP Kind code of ref document: A1 |