WO2019155979A1 - Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal - Google Patents

Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal Download PDF

Info

Publication number
WO2019155979A1
WO2019155979A1 PCT/JP2019/003380 JP2019003380W WO2019155979A1 WO 2019155979 A1 WO2019155979 A1 WO 2019155979A1 JP 2019003380 W JP2019003380 W JP 2019003380W WO 2019155979 A1 WO2019155979 A1 WO 2019155979A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
liquid crystal
atomic layer
sheet
metal ions
Prior art date
Application number
PCT/JP2019/003380
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 神戸
笙太郎 今岡
藍子 渡邊
山元 公寿
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018020443A external-priority patent/JP6656563B2/en
Priority claimed from JP2019005297A external-priority patent/JP6656564B2/en
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to CN201980005333.4A priority Critical patent/CN111433156B/en
Priority to EP19750494.7A priority patent/EP3663261A4/en
Priority to US16/647,739 priority patent/US11795059B2/en
Priority to KR1020207010432A priority patent/KR102425803B1/en
Publication of WO2019155979A1 publication Critical patent/WO2019155979A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Definitions

  • the present invention relates to a boron atom layer sheet, a laminate sheet, a method for producing the same, and a liquid crystal.
  • Nanostructures with precisely controlled structures such as one-dimensional nanotubes and nanowires, two-dimensional layered materials and nanosheets, three-dimensional porous materials, and dendrimers exhibit various functions and physical properties by utilizing space and shape. To do.
  • graphene an atomic layer material of carbon
  • it has excellent physical properties such as mechanical strength, thermal conductivity, and electrical conductivity, and can be obtained by attaching graphite to Scotch tape and peeling it off. Therefore, applied research has progressed.
  • graphene analogs have been studied from the viewpoint of modification of graphene and change of constituent elements.
  • boron nitride BN
  • silicene Si
  • germanene Ge
  • borophene B
  • Borophene are boron monolayer nanosheets, Wang et al., Performs the synthesis of B 36 clusters of 36 atoms by gas-phase vacuum system, by identifying the structure from a comparison of simulation by photoelectron spectra and theoretical calculations, borophene similar
  • the synthesis of clusters was reported (Non-patent Document 1).
  • Non-Patent Document 2 borophene as a sheet that spreads in two dimensions instead of a unit structure has been described by Guisinger et al.
  • Wu et al Wu et al.
  • Non-Patent Document 3 Synthesis by vacuum deposition of boron on top has been reported. This borophene is a substance that cannot exist in the atmosphere. Borophane, on the other hand, is a boron single-layer nanosheet protected with hydrogen at the end, and the speed and mechanical strength of Dirac particles are expected to exceed that of graphene, and theoretical calculations have predicted that they can exist in the atmosphere. Its synthesis was reported (Non-Patent Document 4).
  • a liquid crystal is a state of a substance that exhibits intermediate properties between crystals and liquids. It is characterized by having liquid-like fluidity while having a long-period orientation of molecules such as crystals, and a phase that appears at a temperature intermediate between the crystalline state at low temperature and the liquid crystal state at high temperature. is there. Since the discovery of the first liquid crystal state in organic molecules in 1888, the physical and chemical properties have been elucidated and the functions have been explored.
  • thermotropic liquid crystal The liquid crystal that appears between the crystal and the liquid due to the temperature change is called a thermotropic liquid crystal.
  • the thermotropic liquid crystal is characterized by having various liquid crystal phases depending on temperature. Even in the same liquid crystal molecule, a state called a smectic phase having a higher degree of orientation and regularity is obtained at a low temperature near the crystallization temperature, and a nematic phase having a lower degree of orientation is often obtained at a high temperature side near the transition temperature to the liquid.
  • the liquid crystal phase formed by such liquid crystal molecules varies greatly depending on the structure and shape of the molecules.
  • the liquid crystal molecules having a chirality in the structure and the banana-type liquid crystal molecules having no asymmetric carbon a chiral phase in which the molecules are aligned while spiraling appears.
  • liquid crystal phases described above are for rod-like molecules having a one-dimensional anisotropy in the rigid part, but the liquid crystal phase is also formed by stacking disk-like molecules by planar molecules such as phthalocyanine and triphenylene introduced with an alkyl chain. To express.
  • various liquid crystal phases can be expressed by utilizing the one-dimensional or two-dimensional anisotropy of the molecule.
  • the lyotropic liquid crystal is a liquid crystal phase mainly found in a surfactant having a hydrophobic site due to an alkyl chain and an ionic hydrophilic site in the structure.
  • Surfactant molecules in an aqueous solution form various micelle structures by self-assembly due to a hydrophobic effect or the like, and form a long-period structure particularly at a high concentration. This is a state in which molecules are periodically arranged like a crystal while being dissolved in a solution, and it is considered to be a liquid crystal and has been widely studied.
  • the lyotropic liquid crystal is characterized in that the phase change strongly depends on the concentration of liquid crystal molecules because it is in solution.
  • thermotropic liquid crystals are completely organic molecules, but there are cases where they are combined with inorganic compounds.
  • This is a liquid crystal molecule in which an inorganic unit is introduced at a rigid site in the molecule.
  • a liquid crystal molecule having a metal complex as a small one and a cluster or metal nanoparticle as an inorganic domain as a large one has been synthesized (Non-patent Documents 5 to 5). 7).
  • thermotropic liquid crystals there are no reports of completely inorganic liquid crystals, but in lyotropic liquid crystals, in 2001, Gabriel et al. Reported completely inorganic liquid crystals based on layered phosphates (Non-patent Document 8). The authors pay attention to the strong two-dimensional anisotropy of nanosheets in inorganic layered materials, and by dispersing phosphoric acid nanosheets peeled off from layered phosphates in water, the lyotropic liquid crystallinity is expressed in the dispersion. I found.
  • the liquid crystallinity of the phosphoric acid nanosheet was confirmed by observing an interference color due to birefringence based on a long-period structure even when in a dispersion state when the dispersion liquid was observed under a polarizing microscope. Further, it has been confirmed that the change in the liquid crystal phase depends on the concentration of the nanosheet in the dispersion, as in the case of the lyotropic liquid crystal by the surfactant molecule.
  • Non-patent Document 9 Such inorganic nanosheet liquid crystals have been reported for ionic layered materials such as metal oxides and clay minerals, which have already been established for exfoliation in dispersions. There are reports on nanosheets such as graphene (Non-Patent Document 10) and graphene oxide (Non-Patent Document 11) that are difficult to peel in solution.
  • [8A] The atomic layer sheet of [6A] or [7A], wherein the constituent element Y is a boron oxide moiety containing B—OH.
  • [9A] In X-ray photoelectron spectroscopy, any one of [6A] to [8A] having peaks derived from B-1s levels at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively Atomic layer sheet.
  • [10A] The atomic layer sheet of [9A], wherein a peak of 190.5 to 193.0 eV corresponds to the component X in the X-ray photoelectron spectroscopy measurement.
  • [15A] The laminated sheet of [14A], wherein the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
  • [16A] A crystal comprising the laminated sheet of any one of [13A] to [15A].
  • [17A] A step of preparing a solution by adding MBH 4 (M represents an alkali metal ion) in an inert gas atmosphere in a solvent containing an organic solvent, and a step of exposing the solution to an atmosphere containing oxygen
  • MBH 4 represents an alkali metal ion
  • the atomic layer sheet has boron and oxygen as skeleton elements and is networked by a nonequilibrium bond having a boron-boron bond, and the molar ratio of oxygen to boron (oxygen / boron) is less than 1.5.
  • the metal ions are alkali metal ions, and the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
  • [20A] including a step of adding any one of the laminated sheets of [13A] to [15A] and at least one selected from crown ether and cryptand to a solvent containing an organic solvent, and peeling the laminated sheet.
  • [21A] A method for producing a peeled product of a laminated sheet, comprising a step of adding the laminated sheet of any one of [13A] to [15A] to an aprotic highly polar solvent and peeling the laminated sheet.
  • [22A] The method according to [20A] or [21A], wherein the exfoliated material includes a single-layer atomic layer sheet.
  • the boron atomic layer sheet and laminated sheet of the present invention can be expected to be applied to various industries due to the structural features disclosed below.
  • the bottom-up synthesis of boron atomic layer materials, liquid-phase synthesis at atmospheric pressure, and stability in the atmosphere are characteristic findings compared to conventional technologies.
  • And can be monolayered by chemical dissolution methods. By applying a physical force to the crystal, a sheet material having a thickness corresponding to a single layer can be obtained on the substrate.
  • the layered single crystal is not soluble in a general aprotic organic solvent, but is dissolved by the addition of cryptand or crown ether that traps metal ions between layers. In a state where metal ions are dissolved, it is presumed that the boron sheet is also dispersed in the solution as a single layer.
  • thermotropic liquid crystal including a laminated sheet containing metal ions between the plurality of atomic layer sheets.
  • thermotropic liquid crystal according to [2B] wherein the metal ions are alkali metal ions, and the laminated sheet has a molar ratio of alkali metal ions to boron (alkali metal ions / boron) of less than 1.
  • the thermotropic liquid crystal according to any one of [1B] to [3B] which maintains a liquid crystal state in a temperature range of at least ⁇ 196 to 350 ° C.
  • the thermotropic liquid crystal according to any one of [1B] to [4B] which can control a reversible phase transition with respect to temperature between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side.
  • MBH 4 M represents an alkali metal ion.
  • the thermotropic liquid crystal according to [7B] wherein the skeleton of the atomic layer sheet has a three-fold symmetry having a boron-boron bond.
  • thermotropic liquid crystal according to [9B] wherein the component Y is a terminal site and / or a defect site.
  • thermotropic liquid crystal A method for producing a thermotropic liquid crystal according to any one of [1B] to [11B], wherein the oxygen has a skeleton element containing boron and oxygen and is networked by a nonequilibrium bond having a boron-boron bond Of a thermotropic liquid crystal comprising a step of heating a crystal including a laminated sheet containing metal ions between a plurality of atomic layer sheets having a molar ratio of oxygen and boron (oxygen / boron) of less than 1.5 to 100 ° C. or higher Method.
  • the method for producing a thermotropic liquid crystal according to [12B] wherein the distance between the atomic layer sheets is increased by the heating.
  • thermotropic liquid crystal according to [12B] or [13B], in which a dehydration condensation reaction between B—OH at a terminal site and / or a defect site of the atomic layer sheet proceeds by the heating.
  • the lyotropic liquid crystal according to [15B] including a laminated sheet containing metal ions between the plurality of atomic layer sheets.
  • [17B] The lyotropic liquid crystal according to [15B] or [16B], wherein the metal ions are alkali metal ions, and the laminated sheet has a molar ratio of alkali metal ions to boron (alkali metal ions / boron) of less than 1.
  • [18B] The lyotropic liquid crystal according to any one of [15B] to [17B], wherein the atomic layer sheet has a skeleton composition of B 5 O 3 .
  • [19B] The lyotropic liquid crystal according to [18B], wherein the skeleton of the atomic layer sheet has a three-fold symmetry having a boron-boron bond.
  • the bottom-up synthesis and liquid phase synthesis of boron atomic layer materials, such as the above boron atomic layer sheet and laminated sheet, and being stable in the atmosphere are characteristic findings in comparison with the prior art,
  • Such changes to liquid crystals by heat alone have never been seen with inorganic compounds, and the first inorganic-free liquid crystals have been achieved with complete inorganic compounds.
  • the change from boron layered crystal to boron liquid crystal is an irreversible change accompanied by chemical change, but since the reversible phase transition with respect to the temperature between liquid crystal phases was shown, boron liquid crystal is the first completely solvent-free liquid crystal. Not only was the first thermotropic liquid crystal proved.
  • the temperature range in which the boron liquid crystal can maintain the liquid crystal phase is from at least ⁇ 50 ° C. on the low temperature side to at least 350 ° C. on the high temperature side.
  • the liquid crystal temperature range of a general organic liquid crystal for example, the most famous 5CB used for a display is 23 to 37 ° C., and the others are generally about 10 to 30 ° C.
  • the liquid crystal temperature range of boron liquid crystal is about 400 ° C., and the liquid crystal phase can be maintained in a very wide temperature range that cannot be realized by existing organic liquid crystals.
  • Such extremely high stability of the boron liquid crystal is considered to be manifested by the two-dimensional strong anisotropy of the boron sheet, and is considered to be derived from the structure unique to the inorganic compound having a nanosheet. . Due to these characteristics, industrial applications are expected in various technical fields such as display optical elements, electronic devices, and external field response elements.
  • (A) is a plane index analysis in the X-ray single crystal structure analysis, and (b) is an XRD pattern of the boron layered crystal in the capillary.
  • (A) is the SEM image of a boron layered crystal
  • (b) is the SEM image of the nanosheet peeled from the boron layered crystal by mechanical pressure. It is an AFM image of the nanosheet peeled from the boron layered crystal.
  • (b) is a polarization microscope of a shape change of the boron layered crystal during cooling from 120 ° C. to 35 ° C. It is a statue.
  • (A) is a TG curve and a DTG curve of a boron layered crystal
  • (b) is a DSC curve of the boron crystal under argon and a vacuum atmosphere (in a capillary).
  • (A) is a change of IR spectrum of boron liquid crystal in 2 hours
  • (b) is a TG-DTA curve of boron liquid crystal during the cooling process in the atmosphere. It is a SEM image of the boron liquid crystal after solidification. It is the TEM image (upper) of the nanosheet of boron liquid crystal, and the lattice pattern (lower) of the nanosheet.
  • 2 is a DSC curve of boron crystals under vacuum in a glass capillary.
  • (b) is a DSC curve of the boron liquid crystal under argon conditions.
  • (A) Polarized microscopic images before (left) and after (right) immersion of boron liquid crystal in liquid nitrogen for 1 minute and 12 hours, (b) Polarized microscopic images of rapidly cooled boron liquid crystal and its phase change. It is. It is the optical microscope image (left) of the dissolved boron layered crystal, and the measurement result (right) of the solubility of the boron layered crystal in various solvents.
  • (A) is formation of a lyotropic liquid crystal in DMF
  • (b) is an optical microscope image showing the DMF volatilization process and crystal formation of the lyotropic liquid crystal. It is a SEM image of the crystal
  • the “atomic layer sheet” is a sheet of a monoatomic layer containing boron and oxygen as main constituent atoms. Also included are single-layer sheets that exist as constituent elements, metal-ion-containing single-layer sheets in which metal ions that maintain charge balance are bound to independent single-layer sheets, and the like. In the present specification, it is also expressed as a boron atomic layer sheet, a nanosheet or the like.
  • the “laminated sheet” is a layered material including the atomic layer sheet and metal ions between the atomic layer sheets, and is also referred to as a boron layered crystal in this specification.
  • Borofene is a sheet-like substance made of boron alone, but its structure and stability are discussed by the ratio of the triangular lattice made by boron and the hexagonal holes made of sp 2 boron.
  • the reason why the triangular lattice exists is that boron simple substances and clusters generally form a stable structure with the triangular lattice formed by multi-center coupling as a unit unit.
  • “networked by a nonequilibrium bond having a boron-boron bond” represents a two-dimensional bonding mode in accordance with the conventional bonding mode discussion in boron-containing atomic layer sheets such as borophene. Is.
  • the atomic layer sheet of the present invention has boron and oxygen as skeleton elements and is networked by a nonequilibrium bond having a boron-boron bond, and the molar ratio of oxygen to boron (oxygen / boron) is less than 1.5. . In a certain aspect, it further contains an alkali metal ion, and the molar ratio of the alkali metal ion to boron (alkali metal ion / boron) is less than 1.
  • the molar ratio of oxygen to boron may be 1.2 or less, 1.0 or less, or 0.8 or less. Moreover, it may be 0.1 or more and 0.3 or more.
  • the molar ratio of alkali metal ions to boron may be 0.8 or less, 0.6 or less, or 0.4 or less. Moreover, it may be 0.01 or more, 0.05 or more, 0.1 or more.
  • the “skeleton” of the atomic layer sheet has a regular structure as shown in FIGS. 2 (b) and 2 (c) and FIGS. 3 (a) and 3 (c) whose composition is B 5 O 3 . It is a part and mainly occupies a sheet part other than the terminal part and the defect part.
  • This atomic layer sheet has a skeletal composition of B 5 O 3 . 2 (b) and 2 (c) and FIGS. 3 (a) and 3 (c), it is an atomic layer composed of boron and oxygen, and bonded to form a hexagon in which boron bonded to oxygen is distorted. However, it forms a two-dimensional flat surface.
  • Boron atoms are classified into those that occupy hexagonal vertices and those that occupy each side of the hexagon in the crystal unit structure. Those that occupy each side of the hexagon are alternately positioned inside and outside the side. Therefore, the skeleton has a three-fold symmetry of a boron-boron bond.
  • Oxygen atoms occupy one of two sides of two boron atoms adjacent to three boron atoms on each side of the hexagon formed by boron atoms (FIGS. 2B and 2C). 3 (a) and (c), oxygen atoms are shown in two places for convenience, but the occupation ratio is 0.5 as shown in FIG. 2 (c).
  • the boron-boron bond distance is between 1.6 mm and 1.9 mm, and the value by X-ray structural analysis is 1.784 mm. This bond distance is close to the average value of the distance between the two types of boron-boron bonds present in borophene, and is an intermediate value between the value reported as a single bond and the value reported as an oxygen bridge.
  • the boron-oxygen bond distance is 1.339 mm for boron located at the hexagonal side and 1.420 mm for boron located at the apex of the hexagon, as determined by X-ray structural analysis.
  • This atomic layer sheet includes a component X that is a skeleton part and a component Y other than that.
  • component Y is a terminal site and / or a defect site.
  • component Y is a boron oxide moiety that includes B—OH.
  • the component Y is a site whose structure is similar to trivalent B 2 O 3 or B (OH) 3 (FIG. 3B), and the bonding state of B—O is different from the skeleton site.
  • the identification by the measurement of the boron layered crystal including the atomic layer sheet it is as follows.
  • the IR measurement infrared absorption spectrum
  • it has two peaks derived from BO stretch around 1300 ⁇ 1500 cm -1, and a peak derived from BO-H stretching in the vicinity of 3100 cm -1.
  • the peak on the low wavenumber side corresponds to the component X.
  • the peak on the low wavenumber side corresponds to the boron sheet of component X
  • the BO stretching peak seen in B (OH) 3 The peak on the high wavenumber side (1420 cm ⁇ 1 vicinity) whose position is similar corresponds to the component Y.
  • the peak derived from BO—H stretching in the vicinity of 3100 cm ⁇ 1 also corresponds to the component Y.
  • peaks derived from the B-1s level are observed at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively.
  • the peak of 190.5 to 193.0 eV corresponds to component X.
  • the peak corresponding to the component X is slightly lower energy than B 2 O 3 (193.3 eV) in which boron is in a trivalent state. Is not progressing.
  • the peak corresponding to the component X can be separated into two components, and each of the two types of boron in the boron sheet of the component X, that is, one that occupies the vertex of a hexagon in the crystal unit structure, and each side of the hexagon It corresponds to what occupies.
  • the peak at 192.5 to 194.0 eV on the most oxidized side coincides with B 2 O 3 having trivalent boron and corresponds to the component Y.
  • the constituent element X which is a skeleton part has a composition of B 5 O 3
  • the constituent element Y which is a boron oxide part containing B—OH has a trivalent B Similar to 2 O 3 and B (OH) 3
  • the molar ratio of oxygen and boron (oxygen / boron) in the entire sheet including these components X and Y is less than 1.5, 1.2 or less, 1.0 or less. Good. Moreover, it is 0.6 or more and may be 0.7 or more.
  • the laminated sheet of the present invention includes a plurality of atomic layer sheets as described above and metal ions between the atomic layer sheets.
  • the atomic layer sheet is as described above, and has a skeleton element containing boron and oxygen, networked by a nonequilibrium bond having a boron-boron bond, and a molar ratio of oxygen to boron (oxygen / boron). Is less than 1.5.
  • the crystal of the present invention includes this laminated sheet.
  • examples of the metal ions between the atomic layer sheets include alkali metal ions and alkaline earth metal ions.
  • alkali metal ions include lithium ions, sodium ions, potassium ions, rubidium ions, cesium ions, and the like.
  • alkaline earth metal ions include beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, and the like.
  • alkali metal ions, particularly potassium ions are a preferred embodiment.
  • the molar ratio of alkali metal ions to boron is less than 1.
  • FIG. 2A is referred to as an example of a laminated sheet.
  • This laminated sheet has a layered structure in which atomic layer sheets containing boron and oxygen as main atoms and metal ions are alternately laminated.
  • the metal ions are located inside the hexagonal shape of boron atoms in the unit structure of the atomic layer sheet in the lamination plane.
  • the crystal is obtained as a rod-shaped single crystal in the manufacturing method described later.
  • the crystal elongation direction coincides with the c-axis direction that is the lamination direction, and the atomic layer sheets are laminated along the elongation direction.
  • the laminated sheet (and crystal) has a weak interlayer bond, and can be easily cleaved in a direction perpendicular to the c-axis direction (extension direction) by applying mechanical pressure.
  • the crystal can be cleaved by pressing the HOPG substrate against the crystal from above, and it can be observed that the nanosheets of crystal pieces attached to the surface are stacked.
  • the laminated sheet (and crystal) of the present invention can be peeled off by adding this laminated sheet and at least one selected from crown ether and cryptand into a solvent containing an organic solvent.
  • the laminated sheet of the present invention is laminated by an ionic interaction between an anionic boron sheet and a cationic metal ion, unlike graphite laminated by van der Waals force, at least selected from crown ether and cryptand
  • the metal ions are eluted in the organic solvent, and the laminated sheet can be peeled while maintaining the sheet structure.
  • the peeled material includes a single atomic layer sheet.
  • the crystal pieces attached to the HOPG surface can be observed as a single layer sheet or a nanosheet close thereto.
  • the organic solvent is not particularly limited.
  • aprotic medium polar solvents nitriles such as acetonitrile and propionitrile, halogenated compounds such as dichloromethane, dichloroethane, chloroform (trichloromethane), and carbon tetrachloride.
  • aprotic highly polar solvents N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethyl phosphate triamide that are compatible with them
  • aprotic low polarity solvents aromatic hydrocarbons such as benzene, toluene, xylene, etc.
  • Aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and octane
  • protic solvents methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc.
  • Alcohols carboxylic acids such as formic acid and
  • the crown ether is a macrocyclic ether represented by (—CH 2 —CH 2 —O—) n , for example, 12-crown-4, 15-crown-5, 18-crown-6 , Dibenzo-18-crown-6, diaza-18-crown-6 and the like.
  • the cryptand is a cage-like multidentate ligand composed of two or more rings, and examples thereof include [2.2.2] cryptand.
  • the addition amount of at least one selected from crown ether and cryptand is not particularly limited, but an excess amount with respect to the laminated sheet is preferable.
  • the laminated sheet (and crystals) of the present invention can also be peeled off by dissolving in an aprotic highly polar solvent.
  • an aprotic highly polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, N , N′-dimethylpropyleneurea, 1-methyl-2-pyrrolidinone and the like.
  • the atomic layer sheet and / or laminated sheet containing boron and oxygen such as the atomic layer sheet and laminated sheet of the present invention, is prepared by, for example, MBH 4 (M is an alkali) in an inert gas atmosphere in a solvent containing an organic solvent. A metal ion.) Can be added to prepare a solution, and this solution can be produced by exposure to an atmosphere containing oxygen. In the step of exposing to an atmosphere containing oxygen, crystals of an atomic layer sheet or a laminated sheet can be grown.
  • MBH 4 M is an alkali
  • a metal ion. Can be added to prepare a solution, and this solution can be produced by exposure to an atmosphere containing oxygen.
  • crystals of an atomic layer sheet or a laminated sheet can be grown.
  • alkali metal ions M of MBH 4 examples include alkali metal ions and alkaline earth metal ions. Among these, potassium ion is a preferred embodiment.
  • the concentration of MBH 4 is not particularly limited, but is preferably 0.5 to 10 mM, more preferably 1 to 2 mM.
  • the inert gas is not particularly limited as long as it does not have reactivity with MBH 4, and examples thereof include rare gases such as argon, nitrogen and the like.
  • the solution is replaced with an inert gas that is not reactive with MBH 4 and MBH 4 is added to a solvent containing an organic solvent.
  • the organic solvent is not particularly limited.
  • aprotic medium polar solvents nitriles such as acetonitrile and propionitrile, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane), carbon tetrachloride, Ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ketones such as acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, cyclohexanone, ethyl acetate , Butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, diisobutyl adipate, etc.
  • aprotic highly polar solvents N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethyl phosphate triamide that are compatible with them
  • aprotic low polarity solvents aromatic hydrocarbons such as benzene, toluene, xylene, etc.
  • Aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and octane
  • protic solvents methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc.
  • Alcohol carb
  • the atmosphere containing oxygen is not particularly limited, it is a preferable aspect to release it to the atmosphere.
  • heating may be performed once.
  • the heating temperature is not particularly limited, but 30 to 40 ° C. is preferable.
  • the heating time is preferably 30 minutes to 2 hours.
  • the temperature and time of exposure to the oxygen-containing atmosphere are not particularly limited. However, from the viewpoint of sufficiently growing the crystal, the temperature is preferably room temperature (15 to 25 ° C.) after the heating, and the time is 3 days to One month is preferred.
  • thermotropic liquid crystal that is a heating product and various other industries.
  • Thermotropic liquid crystal includes the atomic layer sheet described above.
  • a typical embodiment includes a laminated sheet containing metal ions between a plurality of atomic layer sheets. Details regarding the atomic layer sheet, the laminated sheet, the metal ions, and the like in the thermotropic liquid crystal of the present invention are as described above, and a description thereof is omitted.
  • thermotropic liquid crystal of the present invention the solidified product formed by opening to the atmosphere and standing is observed by SEM, the plate-like domains are aligned to form spirals, and the boron sheet is aligned concentrically in the liquid crystal. It is thought that. From TEM observation, it is considered that the sheet is a very thin sheet such as a single layer, two layers, or four to five layers.
  • thermotropic liquid crystal of the present invention can control a reversible phase transition with respect to temperature between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side.
  • the transition of the liquid crystal phases I and II is reversible with temperature and accompanied by endothermic heat generation.
  • the temperature of the phase transition is not limited, but the transition from the liquid crystal phase II to the liquid crystal phase I is observed, for example, in the vicinity of 145 to 155 ° C. during the temperature rising process, and the transition from the liquid crystal phase I to the liquid crystal phase II is In the case of passing through the supercooled state, the temperature can be lower, but for example, it is observed at around 50 to 60 ° C. in the cooling process.
  • both the liquid crystal phase I and the liquid crystal phase II have fluidity like a liquid but exhibit an interference color like a crystal under a polarizing microscope.
  • thermotropic liquid crystal of the present invention can be obtained by heating a crystal containing a laminated sheet containing metal ions between a plurality of atomic layer sheets to 100 ° C. or higher.
  • the heating temperature may be 105 ° C. or higher, 110 ° C. or higher, or 120 ° C. or higher, and the upper limit is not particularly limited as long as it does not exceed the temperature at which the liquid crystal is thermally decomposed.
  • the obtained liquid crystal becomes irreversible with respect to the heating temperature. That is, once the temperature of the crystal is raised to change to a liquid crystal, even if it is cooled, it does not transition to the crystal again, and the liquid crystal state is maintained. This orientation of the liquid crystal is generated from the two-dimensional strong anisotropy of the boron sheet, and the fluidity is considered to be manifested by the weak interlayer bonding.
  • thermotropic liquid crystal of the present invention maintains a liquid crystal state in a temperature range of at least ⁇ 196 to 350 ° C. When heated from room temperature, it showed a stable interference color of liquid crystal phase I up to 350 ° C. When the cooling process of liquid crystal phase II to -50 ° C was measured by DSC under argon, other than the phase transition between liquid crystal phases I and II No peak is observed on the low temperature side. From this, it is considered that the transition point from the liquid crystal to the crystal exists on the lower temperature side than ⁇ 50 ° C. Further, even when the boron liquid crystal is immersed in liquid nitrogen ( ⁇ 196 ° C.), no change is observed in the liquid crystal structure.
  • the thermotropic liquid crystal of the present invention When the thermotropic liquid crystal of the present invention is produced by heating the crystal to 100 ° C. or higher, the heating increases the distance between the atomic layer sheets.
  • the boron sheet structure of the liquid crystal phase II includes (001), (101), and (111) peaks containing a component in the c-axis direction, which is the stacking direction, as shown in FIG. According to the measurement results to be described later, the (001) plane spacing indicating the layer spacing is 3.47 mm in the crystalline state, whereas it is 3.54 mm in the liquid crystal phase II, which is about 0. It has expanded by 1cm. That is, the liquid crystal phase II is in a state where only the stacking direction is expanded while maintaining the alignment order in the in-plane direction of the boron sheet, and it is considered that the fluidity of the liquid crystal is caused by the expansion in the interlayer direction.
  • the atomic layer sheet when the skeleton composition of the atomic layer sheet is B 5 O 3 , the atomic layer sheet includes the component X that is the skeleton portion and the other component Y.
  • the component X is as described above, and a detailed description thereof is omitted.
  • the component Y is as follows.
  • the change from the boron layered crystal to the boron liquid crystal due to the heating at 100 ° C. or higher is not a thermal phase transition observed in a general organic liquid crystal but a change accompanied by a chemical change.
  • B (OH) 3 undergoes dehydration condensation between B—OH at the end of the boron sheet and at the defect site where B (OH) 3 undergoes dehydration condensation and changes to B 2 O 3 .
  • the peak derived from the terminal site BO—H which was observed in the vicinity of 3100 cm ⁇ 1 in the boron layered crystal, disappears after changing to the liquid crystal.
  • B (OH) 3 is a molecule having a perfect planar structure, but takes a three-dimensional tetrahedral structure by dehydrating condensation and changing to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / deletion site also causes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that fluidity is generated between the sheets and liquid crystallinity is developed by the change of the end and the defect that breaks the lamination of the sheets.
  • the lyotropic liquid crystal of the present invention includes the atomic layer sheet described above.
  • a typical embodiment includes a laminated sheet containing metal ions between a plurality of atomic layer sheets. Details regarding the atomic layer sheet, the laminated sheet, the metal ions, and the like in the lyotropic liquid crystal of the present invention are as described above, and the description thereof is omitted.
  • the lyotropic liquid crystal of the present invention can be obtained by dissolving a crystal containing a laminated sheet in a solvent.
  • a solvent for example, when the solvent is volatilized after being dissolved in the solvent, the solution has fluidity but exhibits an interference color like crystals and a hemispherical liquid crystal phase appears.
  • This liquid crystal phase has an interference color along the periphery of the droplet, and when observed with a polarizing microscope, a dark color portion appears in the vertical cross direction along the direction of the two polarizing plates. It is thought to be derived from the orientation of the boron sheet.
  • the lyotropic liquid crystal of the present invention can be prepared as a composition comprising a solvent and a lyotropic liquid crystal in the solvent.
  • the solvent containing an organic solvent and the solvent containing an aprotic highly polar solvent are preferable among these.
  • the aprotic highly polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, N , N′-dimethylpropyleneurea, 1-methyl-2-pyrrolidinone and the like.
  • N, N-dimethylformamide is a preferred solvent.
  • solvents include, but are not limited to, aprotic medium polar solvents (nitriles such as acetonitrile and propionitrile, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane), and carbon tetrachloride.
  • aprotic medium polar solvents nitriles such as acetonitrile and propionitrile
  • halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane), and carbon tetrachloride.
  • aprotic low polarity solvents aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and octane
  • protic solvents methanol, ethanol, Examples thereof include alcohols such as 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol and decanol, carboxylic acids such as formic acid and acetic acid, nitromethane and the like, and water.
  • solvents are preferably used in a form compatible with them together with an aprotic highly polar solvent.
  • FIG. 2A a layered structure in which atomic layers composed of boron and oxygen and potassium ions are alternately stacked was obtained.
  • FIG. 2B a layered structure in which atomic layers composed of boron and oxygen and potassium ions are alternately stacked.
  • Occupancy rate is 1 for K
  • B at the hexagonal apex is 1
  • B on the side of the hexagon is 0.635
  • O is 0.5
  • O is considered to occupy one of the two positions on each side of the hexagon formed by B (FIG. 2 (c)).
  • the composition was determined in consideration of the presence of the terminal portion in the boron sheet (FIGS. 3A and 3B described later).
  • BB in the crystal is intermediate between a single bond of 1.61Z (Z. Anorg. Allg. Chem. 2017,3643, 517) and oxygen bridge of 1.824 ⁇ (Inorg. Chem. 2015, 54, 2910). (Fig. 3 (c)).
  • the broad peak on the high wavenumber side (1420 cm ⁇ 1 ) is similar in position to the BO stretching peak seen in B (OH) 3 , so the BO region Of these two types of peaks, it is considered that the peak on the high energy side is derived from the terminal / defect site, and the sharp peak on the low wave number side (1350 cm ⁇ 1 ) is derived from the boron sheet. Further, since a peak derived from BO—H stretching was observed in the vicinity of 3100 cm ⁇ 1 , it was found that a B—OH bond was present at the terminal site.
  • the broad peak of the obtained boron layered crystal can be separated into three components (FIG. 5 (a)).
  • peak 3 on the most oxidized side coincided with B 2 O 3 having trivalent boron, and peaks 1 and 2 were located on the reducing side more than that. Therefore, it is considered that peak 3 corresponds to a B (OH) 3 similar end site, and peaks 1 and 2 correspond to two types of boron in the boron sheet, respectively.
  • the unit cell ratio was 3.1: 1.0.
  • the elongation direction of the crystal can also be confirmed from powder XRD measurement.
  • the powder XRD measurement of the boron layered crystal in the capillary was performed, and the obtained diffraction pattern was compared with the simulation of the diffraction pattern calculated from the crystal structure (FIG. 6B). Since the boron layered crystal has a rod-like shape, it is oriented in the capillary so that the extending direction of the crystal is parallel to the tube. Since the X-rays are incident on the rotating capillary from the vertical direction, it is expected that almost no diffraction lines in the crystal elongation direction are observed.
  • the diffraction peak of the surface including only the a and b axis components such as (100), (110), and (200) was observed at the diffraction angle that coincided with the simulation, while the peak including the c axis component was Almost no appearance was observed, and only a very weak diffraction peak of (001) which was a layer interval was observed. From this, it was confirmed that the stacking direction coincided with the elongation direction of the crystal, and it was found that the rod-shaped crystal was formed by stacking the boron atom layers. 1-4. Absorption spectrum of boron layered crystal The absorption spectrum of the boron layered crystal was measured (FIG. 7).
  • the boron layered crystal has absorption in the near infrared region of 1000 to 2500 nm (4000 to 10,000 cm ⁇ 1 ) (FIG. 7B).
  • B 2 O 3 and B (OH) 3 are also absorbed at a wavelength different from that of the boron layered crystal, so these are absorptions derived from the vibrational structure of BO and OH. it is conceivable that. 1-5.
  • Shape observation by SEM and mechanical properties of boron layered crystal As a result of FE-SEM observation to investigate the shape of the boron layered single crystal in more detail, it was confirmed that the crystal was a hexagonal rod shape (FIG. 8). (A)). When the side surface portion of the rod is enlarged, it can be observed that the layered structure develops along the crystal extension direction, and it is found that the single crystal stripe pattern is derived from the layered structure.
  • the boron layered crystal can be easily cleaved in the direction perpendicular to the extension direction by applying mechanical pressure with a spatula or the like. As a result of observing the cleaved crystal with SEM, it was confirmed that the nanosheet was partially generated due to the collapse of the layer structure (FIG. 8B). In some cases, a very smooth nanosheet surface of micron order was observed. Such ease of mechanical peeling suggested that the interlayer bonding of the boron layered crystal was very weak. 1-6. Nanosheet observation by AFM Since it was found that nanosheets were easily generated by mechanical peeling of boron layered crystals, the surface of the nanosheet was observed by AFM (FIGS. 9 and 10).
  • the crystal was cleaved by pressing the HOPG substrate against the boron layered crystal from above, and the crystal piece adhering to the surface was directly observed by AFM (FIG. 9A). Although there were many parts where the nanosheets were distorted and not completely horizontal, we observed that some of the nanosheets were stacked almost horizontally (FIG. 9B). Since the phase was clearly different between the sheet portion and the underlying HOPG portion, it was determined to be a boron sheet. As a result of actually measuring the height of the sheet with the smallest thickness of the shape image, it was found that the thickness was about 2.0 nm on average although the sheet was not completely flat and varied. (FIG. 10).
  • these sheets are very thin sheets of about a single layer to several layers.
  • AFM observation a plurality of laminated sheets were confirmed, and a single layer sheet having a height of about 0.9 nm was successfully observed at the thinnest portion. It is correlated with the fact that the height of the single-layer graphene by AFM measurement is 0.8 nm (Science, 2004, 306, 666.). .
  • a liquid crystal is a state that exhibits interference color like a crystal under a polarizing microscope while having fluidity like a liquid.
  • the crystal was vacuum sealed in a capillary, and changes in morphology and interference color during the heating process were observed using a polarizing microscope with a heating stage.
  • B (OH) 3 is a molecule having a perfect planar structure, but takes a three-dimensional tetrahedral structure by dehydrating condensation and changing to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / deletion site also causes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that fluidity is generated between the sheets due to changes in the ends and defects so as to break the lamination of the sheets, and liquid crystallinity is expressed (FIG. 16B). Even if the boron layered crystal is once liquid crystallized and then cooled to 35 ° C, the transition from liquid crystal to crystal is not observed because of the irreversible dehydration condensation between B and OH that produces a liquid crystal state. It is done.
  • the weight loss of about 19% in the vicinity of the liquid crystallizing temperature observed in the TG measurement is a value more than 5 times when it is assumed that all the boron sheet ends and defect sites are dehydrated and condensed. It can also be seen that the decrease starts from the low temperature side even compared with the dehydration temperature of B (OH) 3 .
  • a differential curve was created for the weight loss of TG near 100 ° C. As a result, it can be separated into two stages of weight loss: a broad decrease from around 75 ° C and a sharp decrease around 125 ° C. Okay ( Figure 17 (a)).
  • the decrease on the high temperature side corresponds to the dehydration condensation temperature of B (OH) 3
  • the decrease of about 3% on the high temperature side corresponds to the dehydration condensation between B—OH at the end of the boron sheet. It is thought that the decrease of about 16% is due to the desorption of the adsorption solvent such as H 2 O.
  • This phase transition behavior is considered to correspond to the exothermic peak observed by DSC.
  • the liquid crystal phase II that exhibits the interference color on the entire liquid crystal is considered to be in a higher degree of orientation.
  • this liquid crystal domain has a liquid crystal structure called a schlieren structure, which is characterized by a dark color portion extending in a cross shape from the center along the polarization direction of the two polarizing plates (FIG. 23B).
  • the stability of liquid crystal phase I in the high temperature region was evaluated using a polarizing microscope. Boron liquid crystal sealed in a capillary tube was heated to verify how many times the liquid crystal interference color was retained. As a result of heating from room temperature, it was found that the interference color of liquid crystal phase I was stably exhibited up to 350 ° C. On the other hand, after exceeding 350 ° C., it was found that the interference color at the peripheral portion showed an unstable behavior in which blinking repeated, and the interference color disappeared completely from around 365 ° C. Once the interference color disappears, the interference sheet did not appear again even after cooling, so the boron sheet is probably decomposed. From this, it was found that the maximum temperature at which the boron liquid crystal maintains the liquid crystal phase is 350 ° C.
  • the decomposition behavior at 350 ° C. or higher can also be confirmed from TG.
  • TG measurement under argon a weight loss of about 12% was observed from around 350 ° C. (FIG. 25).
  • the boron layered crystal which is a white crystal before the measurement, has turned black after the measurement and has a shape that once melted and solidified again, suggesting that the weight loss at 350 ° C is due to thermal decomposition. It was done.
  • the stability of the boron liquid crystal in the low temperature region was evaluated by cooling the liquid crystal phase II under a polarizing microscope. In order to eliminate the possibility of supercooling, it was gradually cooled at a rate of 5 ° C./min or less using a cooling device, and an attempt was made to verify the temperature at which the liquid crystal phase II transitions to crystals. As a result of cooling from 20 ° C., the liquid crystal structure did not change even when cooled to the device limit temperature of ⁇ 38.5 ° C. (FIG. 26A). From this, it was found that the liquid crystal phase can be stably maintained at least up to about ⁇ 40 ° C.
  • the liquid crystal phase II may be very stable at low temperatures, the liquid crystal phase I was crystallized directly without going through the liquid crystal phase II by quenching from the liquid crystal phase I state.
  • a crystal phase in which numerous structures such as very sharp lines developed immediately after the quenching appeared (FIG. 27B).
  • the sharp lines of the crystal phase began to disappear gradually, and a change in the structure was observed.
  • 40 minutes after quenching it turned out that it changed into the liquid crystal phase II completely. From the fact that the transition to the crystalline phase was visible, it was found that the boron liquid crystal can also be a crystal.
  • liquid crystallinity can be confirmed by observation with a polarizing microscope. If the solution has fluidity but exhibits an interference color like a crystal, it can be said to be in a liquid crystal state. As a result, a transparent solution was obtained immediately after dissolution of the crystals, but the appearance of a hemispherical liquid crystal phase was observed in the process of volatilization of the solvent (FIG. 29 (a)). From this, it was shown that the boron layered crystal develops lyotropic liquid crystallinity like the existing inorganic layered crystal when dissolved in DMF.
  • This liquid crystal phase has an interference color along the peripheral edge of the droplet, and a dark color portion appears in the vertical cross direction along the direction of the two polarizing plates (FIG. 29B). This is thought to be a liquid crystal phase derived from the orientation of the boron sheet. If this liquid crystal phase is further allowed to stand and DMF volatilization proceeds, the interference color at the periphery of the liquid crystal gradually becomes weaker and finally becomes polycrystalline. Was found to produce.
  • the shape of the residual crystal after DMF volatilization was observed by SEM measurement. Successful direct observation of polycrystals observed with a polarizing microscope. As a result, a large amount of plate-like flakes of about 20 nm were observed, and it was found that the plate-like flakes were laminated to form a polycrystal (FIG. 30). When the flakes were partially enlarged, a layered structure in which sheets were laminated was observed. Thus, even after the boron layered crystals were dissolved in DMF, the sheets were not decomposed, indicating that the sheet structure was maintained. 3-3. Atomic layer separation by DMF dissolution Since DMF dissolution of boron layered crystals was shown, atomic layer separation was performed using this. Boron crystals were dissolved in DMF and cast on a HOPG substrate to try to apply a boron sheet to the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are the following: an atomic layer sheet which has boron and oxygen as framework elements, in which a network is formed by non-equilibrium binding having a boron-boron bonds, and in which the molar ratio of oxygen and boron (oxygen/boron) is less than 1.5; a layered sheet that includes a plurality of the atomic layer sheets and metal ions between the sheets; and a thermotropic liquid crystal and lyotropic liquid crystal containing these. Also provided is a method for producing an atomic layer sheet and/or layered sheet containing boron and oxygen, the method including a step for preparing a solution by adding MBH4 (M denotes an alkali metal ion) to an organic solvent-containing solvent in an inert gas atmosphere and a step for exposing the solution to an oxygen-containing atmosphere.

Description

ホウ素原子層シートおよび積層シートとその製造方法ならびに液晶Boron atomic layer sheet, laminated sheet, method for producing the same, and liquid crystal
 本発明は、ホウ素原子層シートおよび積層シートその製造方法ならびに液晶に関する。 The present invention relates to a boron atom layer sheet, a laminate sheet, a method for producing the same, and a liquid crystal.
 1次元のナノチューブやナノワイヤ、2次元の層状物質やナノシート、3次元の多孔物質やデンドリマー等の構造を精密に制御したナノ構造体は、空間と形状を利用することで多彩な機能と物性が発現する。 Nanostructures with precisely controlled structures such as one-dimensional nanotubes and nanowires, two-dimensional layered materials and nanosheets, three-dimensional porous materials, and dendrimers exhibit various functions and physical properties by utilizing space and shape. To do.
 これらのうち炭素の原子層物質であるグラフェンは、機械強度、熱伝導性、電気伝導性等の物性に優れ、スコッチテープにグラファイトを貼り付けて剥がすことで得られることが2004年に発見されてから、その応用研究が進み、例えば、グラフェン類縁体は、グラフェンの修飾や構成元素の変更の観点から検討されてきた。 Of these, graphene, an atomic layer material of carbon, was found in 2004 that it has excellent physical properties such as mechanical strength, thermal conductivity, and electrical conductivity, and can be obtained by attaching graphite to Scotch tape and peeling it off. Therefore, applied research has progressed. For example, graphene analogs have been studied from the viewpoint of modification of graphene and change of constituent elements.
 構成元素の変更の観点では、窒化ホウ素(BN)、シリセン(Si)、ゲルマネン(Ge)、ボロフェン(B)等が知られている。ボロフェンは、ホウ素単層ナノシートであり、Wangらは、気相真空系により36原子からなるB36クラスターの合成を行ない、光電子スペクトルと理論計算によるシミュレーションの比較から構造を同定することで、ボロフェン類似クラスターの合成を報告した(非特許文献1)。その後、単位構造ではなく2次元に広がるシートとしてのボロフェンは、Guisingerら(非特許文献2)、Wuら(非特許文献3)によtって、超高真空下でのAg(111)面上へのホウ素の真空蒸着による合成が報告されている。このボロフェンは、大気下では存在し得ない物質である。一方ボロファンは、末端を水素で保護したホウ素単層ナノシートで、ディラック粒子の速度や機械強度がグラフェンを超えると見込まれ、理論計算では大気中で存在可能と予測されていたが、最近になってその合成が報告された(非特許文献4)。 From the viewpoint of changing the constituent elements, boron nitride (BN), silicene (Si), germanene (Ge), borophene (B) and the like are known. Borophene are boron monolayer nanosheets, Wang et al., Performs the synthesis of B 36 clusters of 36 atoms by gas-phase vacuum system, by identifying the structure from a comparison of simulation by photoelectron spectra and theoretical calculations, borophene similar The synthesis of clusters was reported (Non-patent Document 1). After that, borophene as a sheet that spreads in two dimensions instead of a unit structure has been described by Guisinger et al. (Non-Patent Document 2) and Wu et al. (Non-Patent Document 3). Synthesis by vacuum deposition of boron on top has been reported. This borophene is a substance that cannot exist in the atmosphere. Borophane, on the other hand, is a boron single-layer nanosheet protected with hydrogen at the end, and the speed and mechanical strength of Dirac particles are expected to exceed that of graphene, and theoretical calculations have predicted that they can exist in the atmosphere. Its synthesis was reported (Non-Patent Document 4).
 あらゆるディスプレイに使用されている液晶材料は、現代社会を支える非常に重要な機能性材料である。液晶とは、結晶と液体の中間の性質を示す物質の状態である。結晶のような分子の長周期的な配向性を持ちつつも、液体のような流動性を示すことが特徴であり、低温での結晶状態と高温での液晶状態の中間の温度で現れる相である。1888年に最初の有機分子における液晶状態の発見が報告されて以来、その物理的および化学的性質の解明や、機能開拓が盛んに行われてきた。 The liquid crystal materials used in all displays are very important functional materials that support modern society. A liquid crystal is a state of a substance that exhibits intermediate properties between crystals and liquids. It is characterized by having liquid-like fluidity while having a long-period orientation of molecules such as crystals, and a phase that appears at a temperature intermediate between the crystalline state at low temperature and the liquid crystal state at high temperature. is there. Since the discovery of the first liquid crystal state in organic molecules in 1888, the physical and chemical properties have been elucidated and the functions have been explored.
 このような液晶状態が発現するためには、方向を揃えて配列するための異方性部位と、流動性を生み出す部位を分子内に兼ね備える必要がある。一般的な液晶分子はベンゼン環を含む剛直な部位と、末端のアルキル鎖を構造中に持つ。これにより、ベンゼン環による剛直部位が互いに配向する一方で、アルキル鎖が流動性を示すため、結晶のような分子の長周期的な配向と液体のような流動性が同時に発現する。 In order for such a liquid crystal state to be manifested, it is necessary to have an anisotropic site for aligning the directions and a site for producing fluidity in the molecule. General liquid crystal molecules have a rigid site containing a benzene ring and a terminal alkyl chain in the structure. Thereby, while the rigid part by a benzene ring orientates each other, since an alkyl chain shows fluidity | liquidity, long-period orientation of molecules like a crystal | crystallization and fluidity | liquidity like a liquid express simultaneously.
 このように温度変化により結晶と液体の中間に現れる液晶は、サーモトロピック液晶と呼ばれている。サーモトロピック液晶は温度に依存した多彩な液晶相を持つことが特徴である。同じ液晶分子でも、結晶化温度に近い低温ではより配向度や規則性の高いスメクチック相と呼ばれる状態となり、液体への転移温度に近い高温側ではより配向度の低いネマチック相となることが多い。このような液晶分子が形成する液晶相は、その分子の構造や形状によっても大きく異なる。その他にも構造中にキラリティを持つ液晶分子や、不斉炭素を持たないバナナ型液晶分子では、分子が螺旋を巻きながら配向するキラル相が出現する。 The liquid crystal that appears between the crystal and the liquid due to the temperature change is called a thermotropic liquid crystal. The thermotropic liquid crystal is characterized by having various liquid crystal phases depending on temperature. Even in the same liquid crystal molecule, a state called a smectic phase having a higher degree of orientation and regularity is obtained at a low temperature near the crystallization temperature, and a nematic phase having a lower degree of orientation is often obtained at a high temperature side near the transition temperature to the liquid. The liquid crystal phase formed by such liquid crystal molecules varies greatly depending on the structure and shape of the molecules. In addition, in the liquid crystal molecules having a chirality in the structure and the banana-type liquid crystal molecules having no asymmetric carbon, a chiral phase in which the molecules are aligned while spiraling appears.
 上述した液晶相は全て剛直部位が1次元の異方性を持つ棒状分子についてのものであるが、アルキル鎖を導入したフタロシアニンやトリフェニレンなどの平面分子によっても、円盤状分子の積層により液晶相が発現する。このようにサーモトロピック液晶では、分子の持つ1次元または2次元の異方性を利用することで、多彩な液晶相を発現することができる。 All of the liquid crystal phases described above are for rod-like molecules having a one-dimensional anisotropy in the rigid part, but the liquid crystal phase is also formed by stacking disk-like molecules by planar molecules such as phthalocyanine and triphenylene introduced with an alkyl chain. To express. Thus, in the thermotropic liquid crystal, various liquid crystal phases can be expressed by utilizing the one-dimensional or two-dimensional anisotropy of the molecule.
 一方、温度による液晶変化のみではなく、溶液中で発現するリオトロピック液晶と呼ばれる液晶相も存在する。リオトロピック液晶は主に、アルキル鎖による疎水部位とイオン性の親水部位を構造中に持つ界面活性剤に見られる液晶相である。水溶液中での界面活性剤分子は、疎水効果等による自己組織化によって様々なミセル構造を作り、特に高濃度では長周期構造を形成する。これは、溶液中に溶解していながらも結晶のように分子が周期的に配列している状態であるため、液晶であるとされ広く研究されている。リオトロピック液晶は相変化が温度のみに依存するサーモトロピック液晶と異なり、溶液中であるゆえに相変化が液晶分子の濃度に強く依存していることが特徴である。 On the other hand, not only changes in liquid crystal due to temperature, but also a liquid crystal phase called lyotropic liquid crystal that appears in solution. The lyotropic liquid crystal is a liquid crystal phase mainly found in a surfactant having a hydrophobic site due to an alkyl chain and an ionic hydrophilic site in the structure. Surfactant molecules in an aqueous solution form various micelle structures by self-assembly due to a hydrophobic effect or the like, and form a long-period structure particularly at a high concentration. This is a state in which molecules are periodically arranged like a crystal while being dissolved in a solution, and it is considered to be a liquid crystal and has been widely studied. Unlike the thermotropic liquid crystal, in which the phase change depends only on temperature, the lyotropic liquid crystal is characterized in that the phase change strongly depends on the concentration of liquid crystal molecules because it is in solution.
 既存のサーモトロピック液晶はそのほとんどが完全な有機分子であるが、無機化合物との複合化が行われている例もある。これは分子内の剛直部位に無機ユニットを導入した液晶分子であり、小さいものでは金属錯体、大きいものではクラスターや金属ナノ粒子を無機ドメインとした液晶分子が合成されている(非特許文献5~7)。 Most of the existing thermotropic liquid crystals are completely organic molecules, but there are cases where they are combined with inorganic compounds. This is a liquid crystal molecule in which an inorganic unit is introduced at a rigid site in the molecule. A liquid crystal molecule having a metal complex as a small one and a cluster or metal nanoparticle as an inorganic domain as a large one has been synthesized (Non-patent Documents 5 to 5). 7).
 しかし、無機ドメインを持つ液晶でも、全て構造中に必ずアルキル鎖を含んでいる。これは、液晶状態では軟らかいアルキル鎖がほとんど融解した状態であり、液晶内で剛直部位を溶かす溶媒の役割を果たすためとされている。そのため、剛直部位を無機ユニットで構築することができても、流動性を生み出すアルキル鎖は代替することができず、完全に無機化合物のみからなるサーモトロピック液晶は報告例がなかった。 However, all liquid crystals having an inorganic domain always contain an alkyl chain in the structure. This is because the soft alkyl chain is almost melted in the liquid crystal state and serves as a solvent for dissolving the rigid portion in the liquid crystal. Therefore, even if the rigid part can be constructed with inorganic units, the alkyl chain that generates fluidity cannot be substituted, and there has been no report on a thermotropic liquid crystal composed entirely of inorganic compounds.
 サーモトロピック液晶では完全無機液晶の報告例はない一方で、リオトロピック液晶では、2001年にGabrielらによって層状リン酸塩による完全無機の液晶が報告された(非特許文献8)。筆者らは無機層状物質中のナノシートの持つ2次元の強い異方性に着目し、層状リン酸塩から剥離したリン酸ナノシートを水に分散させることで、分散液にリオトロピック液晶性が発現することを見出した。このリン酸ナノシートの液晶性は、偏光顕微鏡下で分散液を観察した際に、分散液状態でありつつも、長周期構造に基づく複屈折による干渉色が見えることから確認された。また、液晶相の変化は、界面活性剤分子によるリオトロピック液晶と同様に、分散液中でのナノシートの濃度に依存することが確認されている。 In thermotropic liquid crystals, there are no reports of completely inorganic liquid crystals, but in lyotropic liquid crystals, in 2001, Gabriel et al. Reported completely inorganic liquid crystals based on layered phosphates (Non-patent Document 8). The authors pay attention to the strong two-dimensional anisotropy of nanosheets in inorganic layered materials, and by dispersing phosphoric acid nanosheets peeled off from layered phosphates in water, the lyotropic liquid crystallinity is expressed in the dispersion. I found. The liquid crystallinity of the phosphoric acid nanosheet was confirmed by observing an interference color due to birefringence based on a long-period structure even when in a dispersion state when the dispersion liquid was observed under a polarizing microscope. Further, it has been confirmed that the change in the liquid crystal phase depends on the concentration of the nanosheet in the dispersion, as in the case of the lyotropic liquid crystal by the surfactant molecule.
 この発見をきっかけに、無機ナノシートの持つ液晶発現への可能性に注目が集められ、無機ナノシート液晶と呼ばれる分野が発展した(非特許文献9)。このような無機ナノシート液晶は、分散液中での剥離法が確立されている金属酸化物や粘土鉱物などのイオン性の層状物質で報告されていたが、2010年以降にはグラファイトからの剥離によるグラフェン(非特許文献10)や酸化グラフェン(非特許文献11)といった、溶液中での剥離が難しいナノシートでの報告もなされている。 Triggered by this discovery, attention was drawn to the possibility of liquid crystal expression of inorganic nanosheets, and a field called inorganic nanosheet liquid crystals developed (Non-patent Document 9). Such inorganic nanosheet liquid crystals have been reported for ionic layered materials such as metal oxides and clay minerals, which have already been established for exfoliation in dispersions. There are reports on nanosheets such as graphene (Non-Patent Document 10) and graphene oxide (Non-Patent Document 11) that are difficult to peel in solution.
 以上の背景において、これまでにない新規なホウ素原子層シートおよび積層シートが得られた知見に基づき、以下の発明を提供する。
[1A]骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シート。
[2A]更にアルカリ金属イオンを含み、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である[1A]の原子層シート。
[3A]MBH(Mはアルカリ金属イオンを示す。)の酸化生成物である[1A]または[2A]の原子層シート。
[4A]骨格組成がBである[1A]~[3A]のいずれかの原子層シート。
[5A]前記骨格がホウ素-ホウ素結合を有する3回対称性を有する[4A]の原子層シート。
[6A]前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む[4A]または[5A]の原子層シート。
[7A]前記構成要素Yが、末端部位および/または欠損部位である[6A]の原子層シート。
[8A]前記構成要素Yが、B-OHを含むホウ素酸化物部位である[6A]または[7A]の原子層シート。
[9A]X線光電子分光測定において、190.5~193.0eVと、192.5~194.0eVに各々B-1s準位に由来するピークを有する[6A]~[8A]のいずれかの原子層シート。
[10A]前記X線光電子分光測定において、190.5~193.0eVのピークが前記構成要素Xに対応している[9A]の原子層シート。
[11A]IR測定において、B-O伸縮に由来する2種類のピークを1300~1500cm-1付近に有し、かつBO-H伸縮に由来するピークを3100cm-1付近に有する[6A]~[10A]のいずれかの原子層シート。
[12A]前記IR測定において、B-O伸縮に由来する2種類のピークのうち低波数側のピークが前記構成要素Xに対応している[11A]の原子層シート。
[13A][1A]~[12A]のいずれかの複数の原子層シートと、前記原子層シート間の金属イオンとを含む積層シート。
[14A]前記金属イオンがアルカリ金属イオンである[13A]の積層シート。
[15A]アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である[14A]の積層シート。
[16A][13A]~[15A]のいずれかの積層シートを含む結晶。
[17A]有機溶媒を含む溶媒中に、不活性ガス雰囲気下でMBH(Mはアルカリ金属イオンを示す。)を添加し溶液を調製する工程と、前記溶液を、酸素を含む雰囲気に曝す工程とを含む、ホウ素と酸素を含む原子層シートおよび/または積層シートの製造方法。
[18A]前記原子層シートが、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートであり、前記積層シートが、複数の前記原子層シートと、前記原子層シート間の金属イオンとを含む[17A]の方法。
[19A]前記金属イオンがアルカリ金属イオンであり、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である[18A]の方法。
[20A][13A]~[15A]のいずれかの積層シートと、クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種とを、有機溶媒を含む溶媒中に添加し、前記積層シートを剥離する工程を含む、積層シートの剥離物の製造方法。
[21A][13A]~[15A]のいずれかの積層シートを、非プロトン性高極性溶媒中に添加し、前記積層シートを剥離する工程を含む、積層シートの剥離物の製造方法。
[22A]前記剥離物は、単層の原子層シートを含む、[20A]または[21A]の方法。
In the above background, the following invention is provided based on the knowledge that a novel boron atom layer sheet and laminated sheet that have never been obtained.
[1A] An atomic layer sheet having a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5, networked by non-equilibrium bonds having boron and oxygen as skeleton elements and having a boron-boron bond.
[2A] The atomic layer sheet of [1A], further containing alkali metal ions, wherein the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
[3A] An atomic layer sheet of [1A] or [2A] that is an oxidation product of MBH 4 (M represents an alkali metal ion).
[4A] The atomic layer sheet according to any one of [1A] to [3A], wherein the skeleton composition is B 5 O 3 .
[5A] The atomic layer sheet of [4A], wherein the skeleton has a three-fold symmetry having a boron-boron bond.
[6A] The atomic layer sheet according to [4A] or [5A], including the component X that is the skeleton part and the other component Y.
[7A] The atomic layer sheet of [6A], wherein the component Y is a terminal site and / or a defective site.
[8A] The atomic layer sheet of [6A] or [7A], wherein the constituent element Y is a boron oxide moiety containing B—OH.
[9A] In X-ray photoelectron spectroscopy, any one of [6A] to [8A] having peaks derived from B-1s levels at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively Atomic layer sheet.
[10A] The atomic layer sheet of [9A], wherein a peak of 190.5 to 193.0 eV corresponds to the component X in the X-ray photoelectron spectroscopy measurement.
[11A] in IR measurement, having two peaks derived from BO stretch around 1300 ~ 1500 cm -1, and a peak derived from BO-H stretching in the vicinity of 3100cm -1 [6A] ~ [ 10A].
[12A] The atomic layer sheet according to [11A], wherein, in the IR measurement, a peak on the low wavenumber side of two types of peaks derived from BO stretching corresponds to the component X.
[13A] A laminated sheet comprising a plurality of atomic layer sheets of any one of [1A] to [12A] and metal ions between the atomic layer sheets.
[14A] The laminated sheet of [13A], wherein the metal ion is an alkali metal ion.
[15A] The laminated sheet of [14A], wherein the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
[16A] A crystal comprising the laminated sheet of any one of [13A] to [15A].
[17A] A step of preparing a solution by adding MBH 4 (M represents an alkali metal ion) in an inert gas atmosphere in a solvent containing an organic solvent, and a step of exposing the solution to an atmosphere containing oxygen A method for producing an atomic layer sheet and / or a laminated sheet containing boron and oxygen.
[18A] The atomic layer sheet has boron and oxygen as skeleton elements and is networked by a nonequilibrium bond having a boron-boron bond, and the molar ratio of oxygen to boron (oxygen / boron) is less than 1.5. The method according to [17A], wherein the laminated sheet includes a plurality of the atomic layer sheets and metal ions between the atomic layer sheets.
[19A] The method according to [18A], wherein the metal ions are alkali metal ions, and the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
[20A] including a step of adding any one of the laminated sheets of [13A] to [15A] and at least one selected from crown ether and cryptand to a solvent containing an organic solvent, and peeling the laminated sheet. The manufacturing method of the peeling material of a lamination sheet.
[21A] A method for producing a peeled product of a laminated sheet, comprising a step of adding the laminated sheet of any one of [13A] to [15A] to an aprotic highly polar solvent and peeling the laminated sheet.
[22A] The method according to [20A] or [21A], wherein the exfoliated material includes a single-layer atomic layer sheet.
 本発明のホウ素原子層シートおよび積層シートは、以下に開示する構造的特徴から、各種産業への応用が期待できる。ホウ素の原子層物質のボトムアップ合成や大気圧中での液相合成、また大気中で安定であることは、従来技術と対比して特徴的な知見であり、このホウ素層状単結晶は物理的および化学的溶解法により単層化することができる。物理的な力を結晶に加えることで、基板上に単層に相当する厚さのシート物質を得ることができる。また、この層状単結晶は非プロトン性の一般的な有機溶媒には溶けないが、層間の金属イオンを捕捉するクリプタンドやクラウンエーテルの添加によって溶解する。金属イオンが溶け出した状態では、ホウ素シートも単層として溶液中に分散していると推測される。 The boron atomic layer sheet and laminated sheet of the present invention can be expected to be applied to various industries due to the structural features disclosed below. The bottom-up synthesis of boron atomic layer materials, liquid-phase synthesis at atmospheric pressure, and stability in the atmosphere are characteristic findings compared to conventional technologies. And can be monolayered by chemical dissolution methods. By applying a physical force to the crystal, a sheet material having a thickness corresponding to a single layer can be obtained on the substrate. The layered single crystal is not soluble in a general aprotic organic solvent, but is dissolved by the addition of cryptand or crown ether that traps metal ions between layers. In a state where metal ions are dissolved, it is presumed that the boron sheet is also dispersed in the solution as a single layer.
 また、これまでにない新規なホウ素原子層シートおよび積層シートが得られ、更に液晶性を示すという知見に基づき、以下の発明を提供する。
[1B]骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートを含むサーモトロピック液晶。
[2B]複数の前記原子層シート間に金属イオンを内包する積層シートを含む[1B]のサーモトロピック液晶。
[3B]前記金属イオンがアルカリ金属イオンであり、前記積層シートは、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である[2B]のサーモトロピック液晶。
[4B]少なくとも-196~350℃の温度領域で、液晶状態を保持する[1B]~[3B]のいずれかのサーモトロピック液晶。
[5B]高温側の液晶相Iと低温側の液晶相IIとの間で、温度に対して可逆な相転移を制御できる[1B]~[4B]のいずれかのサーモトロピック液晶。
[6B]前記原子層シートが、MBH(Mはアルカリ金属イオンを示す。)の酸化生成物である[1B]~[5B]のいずれかのサーモトロピック液晶。
[7B]前記原子層シートは、骨格組成がBである[1B]~[6B]のいずれかのサーモトロピック液晶。
[8B]前記原子層シートの骨格が、ホウ素-ホウ素結合を有する3回対称性を有する[7B]のサーモトロピック液晶。
[9B]前記原子層シートが、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む[7B]または[8B]のサーモトロピック液晶。
[10B]前記構成要素Yが、末端部位および/または欠損部位である[9B]のサーモトロピック液晶。
[11B]前記構成要素Yが、B単位を含むホウ素酸化物部位である[9B]または[10B]のサーモトロピック液晶。
[12B][1B]~[11B]のいずれかのサーモトロピック液晶の製造方法であって、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である複数の原子層シート間に金属イオンを内包する積層シートを含む結晶を、100℃以上に加熱する工程を含むサーモトロピック液晶の製造方法。
[13B]前記加熱によって、前記原子層シート間の距離が増加する[12B]のサーモトロピック液晶の製造方法。
[14B]前記加熱によって、前記原子層シートの末端部位および/または欠損部位におけるB-OH間の脱水縮合反応が進行する[12B]または[13B]のサーモトロピック液晶の製造方法。
[15B]骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートを含むリオトロピック液晶。
[16B]複数の前記原子層シート間に金属イオンを内包する積層シートを含む[15B]のリオトロピック液晶。
[17B]前記金属イオンがアルカリ金属イオンであり、前記積層シートは、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である[15B]または[16B]のリオトロピック液晶。
[18B]前記原子層シートは、骨格組成がBである[15B]~[17B]のいずれかのリオトロピック液晶。
[19B]前記原子層シートの骨格が、ホウ素-ホウ素結合を有する3回対称性を有する[18B]のリオトロピック液晶。
[20B]前記原子層シートが、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む[18B]または[19B]のリオトロピック液晶。
[21B]前記構成要素Yが、末端部位および/または欠損部位である[20B]のリオトロピック液晶。
[22B]前記構成要素Yが、B-OHを含むホウ素酸化物部位である[20B]または[21B]のリオトロピック液晶。
[23B]溶媒と、この溶媒中における[15B]~[22B]のいずれかのリオトロピック液晶とを含む組成物。
[24B]前記溶媒がN,N-ジメチルホルムアミドである[23B]の組成物。
Moreover, the following invention is provided based on the knowledge that novel boron atom layer sheets and laminated sheets that have never been obtained can be obtained, and further exhibit liquid crystallinity.
[1B] An atomic layer sheet having boron and oxygen as skeleton elements and networked by a nonequilibrium bond having a boron-boron bond and having a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5 Including thermotropic liquid crystal.
[2B] The thermotropic liquid crystal according to [1B], including a laminated sheet containing metal ions between the plurality of atomic layer sheets.
[3B] The thermotropic liquid crystal according to [2B], wherein the metal ions are alkali metal ions, and the laminated sheet has a molar ratio of alkali metal ions to boron (alkali metal ions / boron) of less than 1.
[4B] The thermotropic liquid crystal according to any one of [1B] to [3B], which maintains a liquid crystal state in a temperature range of at least −196 to 350 ° C.
[5B] The thermotropic liquid crystal according to any one of [1B] to [4B], which can control a reversible phase transition with respect to temperature between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side.
[6B] The thermotropic liquid crystal according to any one of [1B] to [5B], wherein the atomic layer sheet is an oxidation product of MBH 4 (M represents an alkali metal ion).
[7B] The thermotropic liquid crystal according to any one of [1B] to [6B], wherein the atomic layer sheet has a skeleton composition of B 5 O 3 .
[8B] The thermotropic liquid crystal according to [7B], wherein the skeleton of the atomic layer sheet has a three-fold symmetry having a boron-boron bond.
[9B] The thermotropic liquid crystal according to [7B] or [8B], wherein the atomic layer sheet includes the component X as the skeleton portion and the component Y other than the component X.
[10B] The thermotropic liquid crystal according to [9B], wherein the component Y is a terminal site and / or a defect site.
[11B] The thermotropic liquid crystal according to [9B] or [10B], wherein the constituent element Y is a boron oxide portion containing B 2 O 3 units.
[12B] A method for producing a thermotropic liquid crystal according to any one of [1B] to [11B], wherein the oxygen has a skeleton element containing boron and oxygen and is networked by a nonequilibrium bond having a boron-boron bond Of a thermotropic liquid crystal comprising a step of heating a crystal including a laminated sheet containing metal ions between a plurality of atomic layer sheets having a molar ratio of oxygen and boron (oxygen / boron) of less than 1.5 to 100 ° C. or higher Method.
[13B] The method for producing a thermotropic liquid crystal according to [12B], wherein the distance between the atomic layer sheets is increased by the heating.
[14B] The method for producing a thermotropic liquid crystal according to [12B] or [13B], in which a dehydration condensation reaction between B—OH at a terminal site and / or a defect site of the atomic layer sheet proceeds by the heating.
[15B] An atomic layer sheet having boron and oxygen as skeleton elements and networked by a nonequilibrium bond having a boron-boron bond and having a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5 Including lyotropic liquid crystal.
[16B] The lyotropic liquid crystal according to [15B], including a laminated sheet containing metal ions between the plurality of atomic layer sheets.
[17B] The lyotropic liquid crystal according to [15B] or [16B], wherein the metal ions are alkali metal ions, and the laminated sheet has a molar ratio of alkali metal ions to boron (alkali metal ions / boron) of less than 1.
[18B] The lyotropic liquid crystal according to any one of [15B] to [17B], wherein the atomic layer sheet has a skeleton composition of B 5 O 3 .
[19B] The lyotropic liquid crystal according to [18B], wherein the skeleton of the atomic layer sheet has a three-fold symmetry having a boron-boron bond.
[20B] The lyotropic liquid crystal according to [18B] or [19B], wherein the atomic layer sheet includes the component X that is the skeleton portion and the other component Y.
[21B] The lyotropic liquid crystal according to [20B], wherein the component Y is a terminal site and / or a defect site.
[22B] The lyotropic liquid crystal according to [20B] or [21B], wherein the component Y is a boron oxide portion containing B—OH.
[23B] A composition comprising a solvent and the lyotropic liquid crystal according to any one of [15B] to [22B] in the solvent.
[24B] The composition of [23B], wherein the solvent is N, N-dimethylformamide.
 以上のホウ素原子層シートおよび積層シートのような、ホウ素の原子層物質のボトムアップ合成や液相合成、また大気中で安定であることは、従来技術と対比して特徴的な知見であり、ホウ素層状結晶は加熱によって液晶に変化する。こうした熱のみでの液晶への変化は無機化合物ではこれまで例がなく、完全な無機化合物で初となる無溶媒での液晶化を達成した。ホウ素層状結晶からホウ素液晶への変化は化学変化を伴う不可逆な変化であるが、液晶相間の温度に対する可逆な相転移が示されたことから、ホウ素液晶が完全無機物質で初の無溶媒液晶というだけでなく、初のサーモトロピック液晶であることが実証された。ホウ素液晶が液晶相を保持できる温度範囲は、低温側は少なくとも-50℃から、高温側は少なくとも350℃までである。一般的な有機液晶の液晶温度範囲を見ると、例えばディスプレイに使用される最も有名な5CBで23~37℃であり、その他も概ね10~30℃程度の温度範囲である。一方、かなり広いものでは100℃を超えるようなものも存在する。これらに対して、ホウ素液晶の液晶温度範囲は約400℃にも及び、既存の有機液晶では実現できない極めて広い温度範囲で液晶相を保持できる。このようなホウ素液晶の極めて高い安定性は、ホウ素シートの2次元の強い異方性によって発現するものであると考えられ、ナノシートを持つ無機化合物ならではの構造に由来する安定性であると考えられる。このような特性から、ディスプレイの光学素子、電子デバイス、外場応答素子など、様々な技術分野において産業上の利用が期待される。 The bottom-up synthesis and liquid phase synthesis of boron atomic layer materials, such as the above boron atomic layer sheet and laminated sheet, and being stable in the atmosphere are characteristic findings in comparison with the prior art, The boron layered crystal changes to a liquid crystal by heating. Such changes to liquid crystals by heat alone have never been seen with inorganic compounds, and the first inorganic-free liquid crystals have been achieved with complete inorganic compounds. The change from boron layered crystal to boron liquid crystal is an irreversible change accompanied by chemical change, but since the reversible phase transition with respect to the temperature between liquid crystal phases was shown, boron liquid crystal is the first completely solvent-free liquid crystal. Not only was the first thermotropic liquid crystal proved. The temperature range in which the boron liquid crystal can maintain the liquid crystal phase is from at least −50 ° C. on the low temperature side to at least 350 ° C. on the high temperature side. Looking at the liquid crystal temperature range of a general organic liquid crystal, for example, the most famous 5CB used for a display is 23 to 37 ° C., and the others are generally about 10 to 30 ° C. On the other hand, there exists a thing exceeding 100 degreeC in a fairly wide thing. On the other hand, the liquid crystal temperature range of boron liquid crystal is about 400 ° C., and the liquid crystal phase can be maintained in a very wide temperature range that cannot be realized by existing organic liquid crystals. Such extremely high stability of the boron liquid crystal is considered to be manifested by the two-dimensional strong anisotropy of the boron sheet, and is considered to be derived from the structure unique to the inorganic compound having a nanosheet. . Due to these characteristics, industrial applications are expected in various technical fields such as display optical elements, electronic devices, and external field response elements.
 ホウ素原子層シートおよび積層シートは、その非常に強い異方性から、溶媒中へ適切な濃度で分散させることで、シート同士が配向しリオトロピック液晶性が発現する。このような特性から、外場応答性 や高分子材料への複合化、マイクロファイバーの合成や高効率光触媒への利用など、液晶性と無機化合物ならではの性質を利用して、様々な技術分野において産業上の利用が期待される。 Boron atom layer sheets and laminated sheets are dispersed in a solvent at an appropriate concentration due to their extremely strong anisotropy, whereby the sheets are aligned and lyotropic liquid crystallinity is exhibited. Because of these characteristics, liquid crystallinity and properties unique to inorganic compounds are utilized in various technical fields, such as external field response, compounding with polymer materials, synthesis of microfibers, and use in high-efficiency photocatalysts. Industrial use is expected.
実施例において合成した針状結晶の写真である。It is a photograph of the acicular crystal synthesize | combined in the Example. X線構造解析によるホウ素層状結晶の構造を示した図であり、(a)は層状断面、(b)と(c)は平面の結晶構造を示す。It is the figure which showed the structure of the boron layered crystal by X-ray structure analysis, (a) is a layered cross section, (b) and (c) show a planar crystal structure. X線構造解析によるホウ素層状結晶の構造を示した図であり、(a)はホウ素原子層の単位格子の推定構造、(b)は末端・欠損部位の単位格子の推定構造、(c)はB-B結合とB-O結合の距離を示している。It is the figure which showed the structure of the boron layered crystal by X-ray structural analysis, (a) is the estimation structure of the unit cell of a boron atom layer, (b) is the estimation structure of the unit cell of a terminal and a defect | deletion part, (c) is The distance between the BB bond and the BO bond is shown. ホウ素層状結晶(上)とB(OH)(下)のIRスペクトルである。It is an IR spectrum of boron layered crystal (upper) and B (OH) 3 (lower). (a)ホウ素層状結晶と(b)BおよびKBHのXPSスペクトルである。It is an XPS spectrum of (a) boron layered crystal and (b) B 2 O 3 and KBH 4 . (a)はX線単結晶構造解析における面指数分析、(b)はキャピラリー中のホウ素層状結晶のXRDパターンを示す。(A) is a plane index analysis in the X-ray single crystal structure analysis, and (b) is an XRD pattern of the boron layered crystal in the capillary. ホウ素層状結晶、B(OH)およびBの(a)紫外-可視吸収スペクトル、(b)近赤外吸収スペクトルである。(A) UV-visible absorption spectrum and (b) near-infrared absorption spectrum of boron layered crystals, B (OH) 3 and B 2 O 3 . (a)はホウ素層状結晶のSEM像、(b)はホウ素層状結晶から機械的圧力によって剥離したナノシートのSEM像である。(A) is the SEM image of a boron layered crystal, (b) is the SEM image of the nanosheet peeled from the boron layered crystal by mechanical pressure. ホウ素層状結晶から剥離したナノシートのAFM像である。It is an AFM image of the nanosheet peeled from the boron layered crystal. ホウ素層状結晶から剥離したナノシートのAFM像と高さプロファイルである。It is an AFM image and height profile of the nanosheet peeled from the boron layered crystal. ホウ素層状結晶をクラウンエーテルにより溶解しHOPG基板にキャストしたナノシートのAFM像である。It is an AFM image of the nanosheet which melt | dissolved the boron layered crystal with crown ether, and was cast to the HOPG board | substrate. ホウ素層状結晶から剥離したナノシートの(a)STEM像と(b)高分解TEM像である。It is the (a) STEM image and (b) high-resolution TEM image of the nanosheet peeled from the boron layered crystal. ホウ素層状結晶から剥離したナノシートの格子パターンの高分解TEM像である。It is a high-resolution TEM image of the lattice pattern of the nanosheet peeled from the boron layered crystal. (a)は50℃から120℃まで加熱する間におけるホウ素層状結晶の結晶から液晶への相転移過程、(b)は120℃から35℃まで冷却する間におけるホウ素層状結晶の形状変化の偏光顕微鏡像である。(A) is a phase transition process from a crystal of a boron layered crystal to a liquid crystal during heating from 50 ° C. to 120 ° C., and (b) is a polarization microscope of a shape change of the boron layered crystal during cooling from 120 ° C. to 35 ° C. It is a statue. (a)ホウ素層状結晶と(b)B(OH)のTG曲線および(c)ホウ素層状結晶とホウ素液晶のIRスペクトルである。(A) Boron layer crystal and (b) TG curve of B (OH) 3 and (c) IR spectrum of boron layer crystal and boron liquid crystal. (a)はホウ素層状結晶とホウ素液晶のXPSスペクトル、(b)は結晶から液晶への変化として考えられるメカニズムを示す。(A) shows an XPS spectrum of a boron layered crystal and boron liquid crystal, and (b) shows a mechanism considered as a change from the crystal to the liquid crystal. (a)はホウ素層状結晶のTG曲線およびDTG曲線、(b)はアルゴンおよび真空雰囲気下(キャピラリー中)におけるホウ素結晶のDSC曲線である。(A) is a TG curve and a DTG curve of a boron layered crystal, and (b) is a DSC curve of the boron crystal under argon and a vacuum atmosphere (in a capillary). (a)はホウ素液晶の2時間でのIRスペクトルの変化、(b)は大気中での冷却過程の間におけるホウ素液晶のTG-DTA曲線である。(A) is a change of IR spectrum of boron liquid crystal in 2 hours, and (b) is a TG-DTA curve of boron liquid crystal during the cooling process in the atmosphere. 固化後のホウ素液晶のSEM像である。It is a SEM image of the boron liquid crystal after solidification. ホウ素液晶のナノシートのTEM像(上)とナノシートの格子パターン(下)である。It is the TEM image (upper) of the nanosheet of boron liquid crystal, and the lattice pattern (lower) of the nanosheet. ガラスキャピラリー中における真空下でのホウ素結晶のDSC曲線である。2 is a DSC curve of boron crystals under vacuum in a glass capillary. 液晶相Iから液晶相IIへの相転移の間(左)と、液晶相Iと液晶相IIとの可逆相転移の間(右)におけるホウ素液晶の偏光顕微鏡像である。It is a polarization microscope image of boron liquid crystal during a phase transition from liquid crystal phase I to liquid crystal phase II (left) and during a reversible phase transition between liquid crystal phase I and liquid crystal phase II (right). (a)室温におけるホウ素液晶の偏光顕微鏡像と(b)その拡大像である。(A) Polarization microscope image of boron liquid crystal at room temperature and (b) an enlarged image thereof. ホウ素層状結晶(シミュレーション)および液晶相IIのホウ素液晶のXRDパターンである。It is a XRD pattern of boron layered crystal (simulation) and boron liquid crystal of liquid crystal phase II. 高温でのホウ素液晶のTG曲線(左)と処理前後の試料の写真(左)である。It is the TG curve (left) of the boron liquid crystal at high temperature, and the photograph (left) of the sample before and after processing. (a)は20℃から-38.5℃への冷却過程の間におけるホウ素液晶の偏光顕微鏡像、(b)はアルゴン条件におけるホウ素液晶のDSC曲線である。(A) is a polarization microscope image of the boron liquid crystal during the cooling process from 20 ° C. to −38.5 ° C., and (b) is a DSC curve of the boron liquid crystal under argon conditions. (a)はホウ素液晶を液体窒素中に1分および12時間浸漬した前(左)と後(右)の偏光顕微鏡像、(b)は急速に冷却したホウ素液晶とその相変化の偏光顕微鏡像である。(A) Polarized microscopic images before (left) and after (right) immersion of boron liquid crystal in liquid nitrogen for 1 minute and 12 hours, (b) Polarized microscopic images of rapidly cooled boron liquid crystal and its phase change. It is. 溶解したホウ素層状結晶の光学顕微鏡像(左)と各種溶媒へのホウ素層状結晶の溶解度の測定結果(右)である。It is the optical microscope image (left) of the dissolved boron layered crystal, and the measurement result (right) of the solubility of the boron layered crystal in various solvents. (a)はDMF中におけるリオトロピック液晶の形成、(b)はリオトロピック液晶のDMF揮発過程と結晶の生成を示す光学顕微鏡像である。(A) is formation of a lyotropic liquid crystal in DMF, (b) is an optical microscope image showing the DMF volatilization process and crystal formation of the lyotropic liquid crystal. DMF揮発後に堆積した結晶のSEM像である。It is a SEM image of the crystal | crystallization deposited after DMF volatilization. DMF中への溶解によって剥離したホウ素ナノシートのAFM像である。It is an AFM image of the boron nanosheet peeled off by dissolution in DMF.
 以下に、本発明を詳細に説明する。
1.ホウ素原子層シートおよび積層シート
 本発明において、「原子層シート」は、ホウ素および酸素を主構成原子とする単原子層のシートであり、独立した単層シートの他、積層シート中の部分的な構成要素として存在する単層シート、独立した単層シートに電荷のバランスを保つ金属イオンが結合した金属イオン含有単層シート等も含む。本明細書では、ホウ素原子層シート、ナノシート等とも表記している。「積層シート」は、この原子層シートと、当該原子層シート間の金属イオンとを含む層状物質であり、本明細書では、ホウ素層状結晶等とも表記している。
The present invention is described in detail below.
1. Boron atomic layer sheet and laminated sheet In the present invention, the “atomic layer sheet” is a sheet of a monoatomic layer containing boron and oxygen as main constituent atoms. Also included are single-layer sheets that exist as constituent elements, metal-ion-containing single-layer sheets in which metal ions that maintain charge balance are bound to independent single-layer sheets, and the like. In the present specification, it is also expressed as a boron atomic layer sheet, a nanosheet or the like. The “laminated sheet” is a layered material including the atomic layer sheet and metal ions between the atomic layer sheets, and is also referred to as a boron layered crystal in this specification.
 ボロフェンはホウ素単体からなるシート状物質であるが、ホウ素が作る三角形の格子と、spホウ素からなる六角形の空孔の比率によってその構造と安定性が議論される。三角形格子が存在するのは、一般的にホウ素の単体およびクラスターが、多中心結合による三角格子を単位ユニットとして安定な構造を形成するためであるとされている。本発明において「ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された」とは、ボロフェン等のホウ素含有原子層シートにおける従来の結合様式の議論に沿う形で、二次元の結合態様を表現したものである。
(原子層シート)
 本発明の原子層シートは、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化され、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である。ある態様では、更にアルカリ金属イオンを含み、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である。これらの特定は、原子層シートがMBH(Mはアルカリ金属イオンを示す。)の酸化生成物である場合に基づいて、また従来のホウ酸はホウ素-酸素結合のみで、高分子化(重合)した場合は三次元的になり原子層シートにならないことを考慮している。酸素とホウ素のモル比率(酸素/ホウ素)は、1.2以下、1.0以下、0.8以下であってよい。また0.1以上、0.3以上であってよい。アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)は、0.8以下、0.6以下、0.4以下であってよい。また0.01以上、0.05以上、0.1以上であってよい。
Borofene is a sheet-like substance made of boron alone, but its structure and stability are discussed by the ratio of the triangular lattice made by boron and the hexagonal holes made of sp 2 boron. The reason why the triangular lattice exists is that boron simple substances and clusters generally form a stable structure with the triangular lattice formed by multi-center coupling as a unit unit. In the present invention, “networked by a nonequilibrium bond having a boron-boron bond” represents a two-dimensional bonding mode in accordance with the conventional bonding mode discussion in boron-containing atomic layer sheets such as borophene. Is.
(Atomic layer sheet)
The atomic layer sheet of the present invention has boron and oxygen as skeleton elements and is networked by a nonequilibrium bond having a boron-boron bond, and the molar ratio of oxygen to boron (oxygen / boron) is less than 1.5. . In a certain aspect, it further contains an alkali metal ion, and the molar ratio of the alkali metal ion to boron (alkali metal ion / boron) is less than 1. These specifications are based on the case where the atomic layer sheet is an oxidation product of MBH 4 (M represents an alkali metal ion), and conventional boric acid has only a boron-oxygen bond and is polymerized (polymerized). ) Is considered to be three-dimensional and not an atomic layer sheet. The molar ratio of oxygen to boron (oxygen / boron) may be 1.2 or less, 1.0 or less, or 0.8 or less. Moreover, it may be 0.1 or more and 0.3 or more. The molar ratio of alkali metal ions to boron (alkali metal ions / boron) may be 0.8 or less, 0.6 or less, or 0.4 or less. Moreover, it may be 0.01 or more, 0.05 or more, 0.1 or more.
 以上のような本発明の原子層シートのうち、その一つの例として、骨格組成がBである原子層シートについて説明する。
<組成がBである原子層シート>
 上記において、原子層シートの「骨格」とは、組成がBである図2(b)と(c)、図3(a)と(c)に示すような規則的な構造を持つ部位であり、主に末端部位や欠損部位以外のシート部分を占める。
As an example of the atomic layer sheet of the present invention as described above, an atomic layer sheet having a skeleton composition of B 5 O 3 will be described.
<Atomic layer sheet composition is B 5 O 3>
In the above, the “skeleton” of the atomic layer sheet has a regular structure as shown in FIGS. 2 (b) and 2 (c) and FIGS. 3 (a) and 3 (c) whose composition is B 5 O 3 . It is a part and mainly occupies a sheet part other than the terminal part and the defect part.
 この原子層シートは骨格組成がBである。図2(b)と(c)、図3(a)と(c)に示すように、ホウ素と酸素から成る原子層であり、酸素と結合したホウ素同士が歪んだ六角形を作るように結合しながら、二次元状に広がった平面を形成している。 This atomic layer sheet has a skeletal composition of B 5 O 3 . 2 (b) and 2 (c) and FIGS. 3 (a) and 3 (c), it is an atomic layer composed of boron and oxygen, and bonded to form a hexagon in which boron bonded to oxygen is distorted. However, it forms a two-dimensional flat surface.
 ホウ素原子は、結晶の単位構造において六角形の頂点を占めるものと、六角形の各辺を占めるものとに分類される。六角形の各辺を占めるものは、交互に辺の内側、外側に位置している。従って骨格は、ホウ素-ホウ素結合の3回対称性を有する。 Boron atoms are classified into those that occupy hexagonal vertices and those that occupy each side of the hexagon in the crystal unit structure. Those that occupy each side of the hexagon are alternately positioned inside and outside the side. Therefore, the skeleton has a three-fold symmetry of a boron-boron bond.
 酸素原子は、ホウ素原子による六角形の各辺で、3つのホウ素原子の隣接する2つのホウ素原子による2箇所のうち、1箇所を占有している(図2(b)と(c)、図3(a)と(c)において、便宜のために2箇所共に酸素原子を示しているが、図2(c)に示すようにその占有率は0.5である。)。 Oxygen atoms occupy one of two sides of two boron atoms adjacent to three boron atoms on each side of the hexagon formed by boron atoms (FIGS. 2B and 2C). 3 (a) and (c), oxygen atoms are shown in two places for convenience, but the occupation ratio is 0.5 as shown in FIG. 2 (c).
 ホウ素-ホウ素の結合距離は、1.6Åから1.9Åの間にあり、X線構造解析による値は1.784Åである。この結合距離はボロフェンに存在する2種類のホウ素-ホウ素結合の距離の平均値に近い値であり、単結合として報告されている値と酸素架橋として報告されている値の中間の値である。 The boron-boron bond distance is between 1.6 mm and 1.9 mm, and the value by X-ray structural analysis is 1.784 mm. This bond distance is close to the average value of the distance between the two types of boron-boron bonds present in borophene, and is an intermediate value between the value reported as a single bond and the value reported as an oxygen bridge.
 ホウ素-酸素の結合距離は、X線構造解析による値は六角形の辺に位置するホウ素で1.339Å、六角形の頂点に位置するホウ素で1.420Åである。 The boron-oxygen bond distance is 1.339 mm for boron located at the hexagonal side and 1.420 mm for boron located at the apex of the hexagon, as determined by X-ray structural analysis.
 この原子層シートは、骨格部位である構成要素Xと、それ以外の構成要素Yとを含む。典型的な態様において、構成要素Yは、末端部位および/または欠損部位である。 This atomic layer sheet includes a component X that is a skeleton part and a component Y other than that. In typical embodiments, component Y is a terminal site and / or a defect site.
 典型的な態様において、構成要素Yは、B-OHを含むホウ素酸化物部位である。構成要素Yは、その構造が3価のBやB(OH)に類似する部位であり(図3(b))、骨格部位とはB-Oの結合状態が異なる。この原子層シートを含むホウ素層状結晶の測定による同定によれば、次のとおりである。 In a typical embodiment, component Y is a boron oxide moiety that includes B—OH. The component Y is a site whose structure is similar to trivalent B 2 O 3 or B (OH) 3 (FIG. 3B), and the bonding state of B—O is different from the skeleton site. According to the identification by the measurement of the boron layered crystal including the atomic layer sheet, it is as follows.
 IR測定(赤外吸収スペクトル)において、B-O伸縮に由来する2種類のピークを1300~1500cm-1付近に有し、かつBO-H伸縮に由来するピークを3100cm-1付近に有する。B-O伸縮に由来する2種類のピークのうち低波数側のピークが構成要素Xに対応している。具体的には、B-O領域のピークのうち、低波数側(1350cm―1付近)のピークが構成要素Xのホウ素シートに対応し、B(OH)で見られるB-O伸縮ピークと位置が類似する高波数側(1420cm―1付近)のピークが構成要素Yに対応する。3100cm―1付近におけるBO-H伸縮由来のピークも構成要素Yに対応する。 In the IR measurement (infrared absorption spectrum), it has has two peaks derived from BO stretch around 1300 ~ 1500 cm -1, and a peak derived from BO-H stretching in the vicinity of 3100 cm -1. Of the two types of peaks derived from BO stretching, the peak on the low wavenumber side corresponds to the component X. Specifically, among the peaks in the BO region, the peak on the low wavenumber side (near 1350 cm −1 ) corresponds to the boron sheet of component X, and the BO stretching peak seen in B (OH) 3 The peak on the high wavenumber side (1420 cm −1 vicinity) whose position is similar corresponds to the component Y. The peak derived from BO—H stretching in the vicinity of 3100 cm −1 also corresponds to the component Y.
 X線光電子分光測定において、190.5~193.0eVと、192.5~194.0eVに各々B-1s準位に由来するピークを有する。190.5~193.0eVのピークが構成要素Xに対応している。具体的には、構成要素Xに対応するピークはホウ素が3価の状態であるB(193.3eV)と比較すると、やや低エネルギー側であることから、3価までの完全な酸化は進行していない。構成要素Xに対応するピークは2成分に分離可能であり、それぞれ構成要素Xのホウ素シート中の2種類のホウ素、すなわち結晶の単位構造において六角形の頂点を占めるものと、六角形の各辺を占めるものに対応している。最も酸化側の192.5~194.0eVのピークは、3価のホウ素を持つBと一致し、構成要素Yに対応している。 In X-ray photoelectron spectroscopic measurement, peaks derived from the B-1s level are observed at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively. The peak of 190.5 to 193.0 eV corresponds to component X. Specifically, the peak corresponding to the component X is slightly lower energy than B 2 O 3 (193.3 eV) in which boron is in a trivalent state. Is not progressing. The peak corresponding to the component X can be separated into two components, and each of the two types of boron in the boron sheet of the component X, that is, one that occupies the vertex of a hexagon in the crystal unit structure, and each side of the hexagon It corresponds to what occupies. The peak at 192.5 to 194.0 eV on the most oxidized side coincides with B 2 O 3 having trivalent boron and corresponds to the component Y.
 紫外-可視吸収スペクトルにおいて、250nm以下の紫外領域に吸収を持ち、近赤外吸収スペクトルにおいて、1000~2500nmの近赤外領域にB-OやBO-Hの振動構造に由来するバンドを含む吸収を持つ。 Absorption in the ultraviolet region of 250 nm or less in the ultraviolet-visible absorption spectrum, and absorption including a band derived from the vibration structure of BO or BO—H in the near infrared region of 1000 to 2500 nm in the near infrared absorption spectrum. have.
 以上のように、この原子層シートは、骨格部位である構成要素Xは組成がBであり、B-OHを含むホウ素酸化物部位である構成要素Yはその構造が3価のBやB(OH)に類似する。この原子層シートにおいて、これらの構成要素X、Yを含むシート全体における酸素とホウ素のモル比率(酸素/ホウ素)は、1.5未満であり、1.2以下、1.0以下であってよい。また0.6以上であり、0.7以上であってよい。
(積層シート)
 本発明の積層シートは、以上に説明したような複数の原子層シートと、当該原子層シート間の金属イオンとを含む。原子層シートは、以上に説明したとおりのものであり、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化され、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である。また本発明の結晶は、この積層シートを含む。
As described above, in this atomic layer sheet, the constituent element X which is a skeleton part has a composition of B 5 O 3 , and the constituent element Y which is a boron oxide part containing B—OH has a trivalent B Similar to 2 O 3 and B (OH) 3 . In this atomic layer sheet, the molar ratio of oxygen and boron (oxygen / boron) in the entire sheet including these components X and Y is less than 1.5, 1.2 or less, 1.0 or less. Good. Moreover, it is 0.6 or more and may be 0.7 or more.
(Laminated sheet)
The laminated sheet of the present invention includes a plurality of atomic layer sheets as described above and metal ions between the atomic layer sheets. The atomic layer sheet is as described above, and has a skeleton element containing boron and oxygen, networked by a nonequilibrium bond having a boron-boron bond, and a molar ratio of oxygen to boron (oxygen / boron). Is less than 1.5. The crystal of the present invention includes this laminated sheet.
 本発明の積層シートにおいて、原子層シート間の金属イオンとしては、例えば、アルカリ金属イオン、アルカリ土類金属イオン等が挙げられる。アルカリ金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等が挙げられる。アルカリ土類金属イオンとしては、例えば、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。これらの中でも、アルカリ金属イオン、特にカリウムイオンは好ましい態様である。アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)は、1未満である。 In the laminated sheet of the present invention, examples of the metal ions between the atomic layer sheets include alkali metal ions and alkaline earth metal ions. Examples of alkali metal ions include lithium ions, sodium ions, potassium ions, rubidium ions, cesium ions, and the like. Examples of the alkaline earth metal ions include beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, and the like. Among these, alkali metal ions, particularly potassium ions are a preferred embodiment. The molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
 骨格組成がBである原子層シートの場合、図2(a)は積層シートの一例として参照される。この積層シートは、ホウ素と酸素を主原子とする原子層シートと、金属イオンが交互に積層する層状構造をなす。典型的な態様において、金属イオンは、積層面内において、原子層シートの単位構造におけるホウ素原子の六角形の内部に位置する。その結晶は、後述の製造方法では、ロッド状の単結晶として得られる。この針状の単結晶を含む典型的な態様では、結晶の伸長方向と積層方向であるc軸方向が一致し、伸長方向に沿って原子層シートが積層している。この積層シート(および結晶)は、積層シートの層間結合が脆弱で、機械的に圧力をかけることで、c軸方向(伸長方向)と垂直な方向に対し容易にへき開できる。例えば、結晶に対してHOPG基板を上から押し付けることで結晶をへき開し、表面に付着した結晶片のナノシートが積み重なる様子を観測することができる。
(積層シートの剥離物の製造方法)
 本発明の積層シート(および結晶)は、この積層シートと、クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種とを、有機溶媒を含む溶媒中に添加し、積層シートを剥離することができる。本発明の積層シートは、ファンデルワールス力で積層するグラファイトなどと異なり、アニオン性のホウ素シートとカチオン性の金属イオンのイオン性相互作用により積層しているため、クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種で層間の金属イオン捕捉することで、金属イオンを有機溶媒中に溶出させ、シート構造を保持したまま積層シートを剥離することができる。
In the case of an atomic layer sheet having a skeleton composition of B 5 O 3 , FIG. 2A is referred to as an example of a laminated sheet. This laminated sheet has a layered structure in which atomic layer sheets containing boron and oxygen as main atoms and metal ions are alternately laminated. In a typical embodiment, the metal ions are located inside the hexagonal shape of boron atoms in the unit structure of the atomic layer sheet in the lamination plane. The crystal is obtained as a rod-shaped single crystal in the manufacturing method described later. In a typical embodiment including this needle-like single crystal, the crystal elongation direction coincides with the c-axis direction that is the lamination direction, and the atomic layer sheets are laminated along the elongation direction. The laminated sheet (and crystal) has a weak interlayer bond, and can be easily cleaved in a direction perpendicular to the c-axis direction (extension direction) by applying mechanical pressure. For example, the crystal can be cleaved by pressing the HOPG substrate against the crystal from above, and it can be observed that the nanosheets of crystal pieces attached to the surface are stacked.
(Manufacturing method of peeled sheet of laminated sheet)
The laminated sheet (and crystal) of the present invention can be peeled off by adding this laminated sheet and at least one selected from crown ether and cryptand into a solvent containing an organic solvent. Since the laminated sheet of the present invention is laminated by an ionic interaction between an anionic boron sheet and a cationic metal ion, unlike graphite laminated by van der Waals force, at least selected from crown ether and cryptand By capturing the metal ions between the layers with one kind, the metal ions are eluted in the organic solvent, and the laminated sheet can be peeled while maintaining the sheet structure.
 剥離物は、単層の原子層シートを含む。例えば、上記方法によって得られた溶液をHOPG基板上に接触させ、溶媒を除去することによって、HOPG表面に付着した結晶片を単層シートもしくはそれに近いナノシートとして観察することができる。 The peeled material includes a single atomic layer sheet. For example, by bringing the solution obtained by the above method into contact with a HOPG substrate and removing the solvent, the crystal pieces attached to the HOPG surface can be observed as a single layer sheet or a nanosheet close thereto.
 上記方法において、有機溶媒としては、特に限定されないが、例えば、非プロトン性中極性溶媒(アセトニトリル、プロピオニトリル等のニトリル類、ジクロロメタン、ジクロロエタン、クロロホルム(トリクロロメタン)、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類、アセトン、2-ブタノン、メチルエチルケトン、イソブチルメチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、デカン酸メチル、ラウリル酸メチル、アジピン酸ジイソブチル等のエステル類等)を含むことが好ましい。 In the above method, the organic solvent is not particularly limited. For example, aprotic medium polar solvents (nitriles such as acetonitrile and propionitrile, halogenated compounds such as dichloromethane, dichloroethane, chloroform (trichloromethane), and carbon tetrachloride. Hydrocarbons, diethyl ether, tetrahydrofuran, 1,4-dioxane, ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ketones such as acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, and cyclohexanone , Ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, dii adipate Preferably contains esters) butyl, and the like.
 また、これらの非プロトン性中極性溶媒と共に、それらと相溶する、非プロトン性高極性溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等)、非プロトン性低極性溶媒(ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類等)、プロトン性溶媒(メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノール等のアルコール類、ギ酸、酢酸等のカルボン酸類、ニトロメタン等)を混合した溶媒であってもよい。また、有機溶媒を含む溶媒としては、水を含むものであってもよい。 In addition to these aprotic medium polar solvents, aprotic highly polar solvents (N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethyl phosphate triamide that are compatible with them) 1,3-dimethyl-2-imidazolidinone, N, N′-dimethylpropyleneurea, 1-methyl-2-pyrrolidinone, etc.), aprotic low polarity solvents (aromatic hydrocarbons such as benzene, toluene, xylene, etc.) , Aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and octane), protic solvents (methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc.) Alcohols, carboxylic acids such as formic acid and acetic acid, nitromethane, etc.) Or a solvent. Further, the solvent containing an organic solvent may contain water.
 上記方法において、クラウンエーテルは、(-CH-CH-O-)で表される大環状のエーテルであり、例えば、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6、ジアザ-18-クラウン-6等が挙げられる。クリプタンドは、2つ以上の環からなるかご状の多座配位子であり、例えば、[2.2.2]クリプタンド等が挙げられる。 In the above method, the crown ether is a macrocyclic ether represented by (—CH 2 —CH 2 —O—) n , for example, 12-crown-4, 15-crown-5, 18-crown-6 , Dibenzo-18-crown-6, diaza-18-crown-6 and the like. The cryptand is a cage-like multidentate ligand composed of two or more rings, and examples thereof include [2.2.2] cryptand.
 クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種の添加量は、特に限定されないが、積層シートに対して過剰となる量が好ましい。 The addition amount of at least one selected from crown ether and cryptand is not particularly limited, but an excess amount with respect to the laminated sheet is preferable.
 本発明の積層シート(および結晶)は、非プロトン性高極性溶媒に溶解することによっても、積層シートを剥離することができる。得られた溶液をHOPG基板上に接触させ、溶媒を除去することによって、HOPG表面に付着した結晶片を単層シートもしくはそれに近いナノシートとして観察することができる。非プロトン性高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等が挙げられる。
(原子層シート、積層シートの製造方法)
 本発明の原子層シートや積層シートのような、ホウ素と酸素を含む原子層シートおよび/または積層シートは、例えば、有機溶媒を含む溶媒中に、不活性ガス雰囲気下でMBH(Mはアルカリ金属イオンを示す。)を添加し溶液を調製し、この溶液を、酸素を含む雰囲気に曝すことによって製造することができる。酸素を含む雰囲気に曝す工程では、原子層シートや積層シートの結晶を成長させることができる。
The laminated sheet (and crystals) of the present invention can also be peeled off by dissolving in an aprotic highly polar solvent. By bringing the obtained solution into contact with the HOPG substrate and removing the solvent, the crystal pieces attached to the HOPG surface can be observed as a single layer sheet or a nanosheet close thereto. Examples of the aprotic highly polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, N , N′-dimethylpropyleneurea, 1-methyl-2-pyrrolidinone and the like.
(Atomic layer sheet, laminated sheet manufacturing method)
The atomic layer sheet and / or laminated sheet containing boron and oxygen, such as the atomic layer sheet and laminated sheet of the present invention, is prepared by, for example, MBH 4 (M is an alkali) in an inert gas atmosphere in a solvent containing an organic solvent. A metal ion.) Can be added to prepare a solution, and this solution can be produced by exposure to an atmosphere containing oxygen. In the step of exposing to an atmosphere containing oxygen, crystals of an atomic layer sheet or a laminated sheet can be grown.
 MBHのアルカリ金属イオンMとしては、例えば、アルカリ金属イオン、アルカリ土類金属イオン等が挙げられる。これらの中でも、カリウムイオンは好ましい態様である。 Examples of the alkali metal ions M of MBH 4 include alkali metal ions and alkaline earth metal ions. Among these, potassium ion is a preferred embodiment.
 MBHの濃度は、特に限定されないが、好ましくは0.5~10mM、より好ましくは1~2mMである。 The concentration of MBH 4 is not particularly limited, but is preferably 0.5 to 10 mM, more preferably 1 to 2 mM.
 不活性ガスとしては、MBHとの反応性を有しないものであれば特に限定されないが、例えば、アルゴン等の希ガス、窒素等が挙げられる。例えば、グローブボックスのような大気中の酸素を遮断し得る環境下で、MBHとの反応性を有しない不活性ガスに置換して、有機溶媒を含む溶媒中にMBHを添加し溶液を調製する。 The inert gas is not particularly limited as long as it does not have reactivity with MBH 4, and examples thereof include rare gases such as argon, nitrogen and the like. For example, in an environment that can block atmospheric oxygen such as a glove box, the solution is replaced with an inert gas that is not reactive with MBH 4 and MBH 4 is added to a solvent containing an organic solvent. Prepare.
 有機溶媒としては、特に限定されないが、例えば、非プロトン性中極性溶媒(アセトニトリル、プロピオニトリル等のニトリル類、ジクロロメタン、ジクロロエタン、クロロホルム(トリクロロメタン)、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類、アセトン、2-ブタノン、メチルエチルケトン、イソブチルメチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、デカン酸メチル、ラウリル酸メチル、アジピン酸ジイソブチル等のエステル類等)を含むことが好ましい。また、これらの非プロトン性中極性溶媒と共に、それらと相溶する、非プロトン性高極性溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等)、非プロトン性低極性溶媒(ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類等)、プロトン性溶媒(メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノール等のアルコール類、ギ酸、酢酸等のカルボン酸類、ニトロメタン等)を混合した溶媒であってもよい。また、有機溶媒を含む溶媒としては、水を含むものであってもよい。 The organic solvent is not particularly limited. For example, aprotic medium polar solvents (nitriles such as acetonitrile and propionitrile, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane), carbon tetrachloride, Ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ketones such as acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, cyclohexanone, ethyl acetate , Butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, diisobutyl adipate, etc. Preferably includes a class, etc.). In addition to these aprotic medium polar solvents, aprotic highly polar solvents (N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethyl phosphate triamide that are compatible with them) 1,3-dimethyl-2-imidazolidinone, N, N′-dimethylpropyleneurea, 1-methyl-2-pyrrolidinone, etc.), aprotic low polarity solvents (aromatic hydrocarbons such as benzene, toluene, xylene, etc.) , Aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and octane), protic solvents (methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc.) Alcohol, carboxylic acids such as formic acid and acetic acid, nitromethane, etc.) It may be a solvent. Further, the solvent containing an organic solvent may contain water.
 酸素を含む雰囲気としては、特に限定されないが、大気下に解放することは好ましい態様である。 Although the atmosphere containing oxygen is not particularly limited, it is a preferable aspect to release it to the atmosphere.
 酸素を含む雰囲気に曝した後、一旦加熱してもよい。加熱温度としては、特に限定されないが、30~40℃が好ましい。加熱時間は、30分~2時間が好ましい。 ¡After exposure to an atmosphere containing oxygen, heating may be performed once. The heating temperature is not particularly limited, but 30 to 40 ° C. is preferable. The heating time is preferably 30 minutes to 2 hours.
 酸素を含む雰囲気に曝した後、当該雰囲気において静置することが好ましい。酸素を含む雰囲気に曝す温度と時間は、特に限定されないが、結晶を十分に成長させる点等から、上記加熱した場合はその後、温度は室温(15~25℃)が好ましく、時間は3日間~1ケ月が好ましい。 After exposure to an atmosphere containing oxygen, it is preferable to stand still in the atmosphere. The temperature and time of exposure to the oxygen-containing atmosphere are not particularly limited. However, from the viewpoint of sufficiently growing the crystal, the temperature is preferably room temperature (15 to 25 ° C.) after the heating, and the time is 3 days to One month is preferred.
 本発明の原子層シートおよび積層シートは、加熱生成物であるサーモトロピック液晶や、その他にも様々な産業への利用が期待できる。
2.サーモトロピック液晶
 本発明のサーモトロピック液晶は、以上に説明した原子層シートを含む。典型的な態様では、複数の原子層シート間に金属イオンを内包する積層シートを含む。本発明のサーモトロピック液晶における、原子層シートおよび積層シートや金属イオン等に関する詳細は、前述のとおりでありその説明を省略する。
The atomic layer sheet and the laminated sheet of the present invention can be expected to be used for a thermotropic liquid crystal that is a heating product and various other industries.
2. Thermotropic liquid crystal The thermotropic liquid crystal of the present invention includes the atomic layer sheet described above. A typical embodiment includes a laminated sheet containing metal ions between a plurality of atomic layer sheets. Details regarding the atomic layer sheet, the laminated sheet, the metal ions, and the like in the thermotropic liquid crystal of the present invention are as described above, and a description thereof is omitted.
 本発明のサーモトロピック液晶は、大気に開放し静置することによって生成する固化物をSEM観察より、板状のドメインが配向して渦巻きを形成し、液晶中でホウ素シートが同心円状に配向していると考えられる。TEM観察より、シートがそれぞれ単層や2層、4~5層といった、非常に薄いシートであると考えられる。 According to the thermotropic liquid crystal of the present invention, the solidified product formed by opening to the atmosphere and standing is observed by SEM, the plate-like domains are aligned to form spirals, and the boron sheet is aligned concentrically in the liquid crystal. It is thought that. From TEM observation, it is considered that the sheet is a very thin sheet such as a single layer, two layers, or four to five layers.
 本発明のサーモトロピック液晶は、高温側の液晶相Iと低温側の液晶相IIとの間で、温度に対して可逆な相転移を制御できる。液晶相IとIIの転移は、温度に対して可逆であり吸発熱を伴う。相転移の温度は、限定的ではないが、液晶相IIから液晶相Iへの転移は、例えば昇温過程において145~155℃付近でみられ、液晶相Iから液晶相IIへの転移は、過冷却状態を経由する場合にはより低温となり得るが、例えば冷却過程において50~60℃付近でみられる。液晶の周縁部にのみ干渉色が見える液晶相Iと比べ、液晶全体に干渉色を呈する液晶相IIは、より配向度が高い状態であると考えられる。本発明のサーモトロピック液晶は、液晶相Iと液晶相IIのいずれも、液体のような流動性を持ちつつも、偏光顕微鏡下で結晶のような干渉色を呈する。 The thermotropic liquid crystal of the present invention can control a reversible phase transition with respect to temperature between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side. The transition of the liquid crystal phases I and II is reversible with temperature and accompanied by endothermic heat generation. The temperature of the phase transition is not limited, but the transition from the liquid crystal phase II to the liquid crystal phase I is observed, for example, in the vicinity of 145 to 155 ° C. during the temperature rising process, and the transition from the liquid crystal phase I to the liquid crystal phase II is In the case of passing through the supercooled state, the temperature can be lower, but for example, it is observed at around 50 to 60 ° C. in the cooling process. Compared with the liquid crystal phase I in which the interference color is visible only at the peripheral edge of the liquid crystal, the liquid crystal phase II that exhibits the interference color on the entire liquid crystal is considered to be in a higher degree of orientation. In the thermotropic liquid crystal of the present invention, both the liquid crystal phase I and the liquid crystal phase II have fluidity like a liquid but exhibit an interference color like a crystal under a polarizing microscope.
 本発明のサーモトロピック液晶は、複数の原子層シート間に金属イオンを内包する積層シートを含む結晶を、100℃以上に加熱することにより得ることができる。加熱温度は、105℃以上、110℃以上、あるいは120℃以上であってよく、その上限は、液晶が熱分解する温度を超えない限り、特に限定されないが、例えば350℃以下である。 The thermotropic liquid crystal of the present invention can be obtained by heating a crystal containing a laminated sheet containing metal ions between a plurality of atomic layer sheets to 100 ° C. or higher. The heating temperature may be 105 ° C. or higher, 110 ° C. or higher, or 120 ° C. or higher, and the upper limit is not particularly limited as long as it does not exceed the temperature at which the liquid crystal is thermally decomposed.
 得られた液晶は、上記加熱温度に対して不可逆となる。すなわち結晶を一度昇温して液晶に変化した後は、冷却しても再び結晶へ転移することはなく、液晶状態を保持する。この液晶の配向性は、ホウ素シートの2次元の強い異方性から生み出され、流動性は層間結合の弱さによって発現していると考えられる。 The obtained liquid crystal becomes irreversible with respect to the heating temperature. That is, once the temperature of the crystal is raised to change to a liquid crystal, even if it is cooled, it does not transition to the crystal again, and the liquid crystal state is maintained. This orientation of the liquid crystal is generated from the two-dimensional strong anisotropy of the boron sheet, and the fluidity is considered to be manifested by the weak interlayer bonding.
 本発明のサーモトロピック液晶は、少なくとも-196~350℃の温度領域で、液晶状態を保持する。室温から加熱すると、350℃まで安定に液晶相Iの干渉色を示し、液晶相IIの-50℃までの冷却過程をアルゴン下でDSCにより測定すると、液晶相IとIIの間の相転移以外には低温側にピークは観測されない。このことから、液晶から結晶への転移点は-50℃よりも低温側に存在すると考えられる。更にホウ素液晶を液体窒素(-196℃)に浸漬しても、液晶組織に変化は見られない。 The thermotropic liquid crystal of the present invention maintains a liquid crystal state in a temperature range of at least −196 to 350 ° C. When heated from room temperature, it showed a stable interference color of liquid crystal phase I up to 350 ° C. When the cooling process of liquid crystal phase II to -50 ° C was measured by DSC under argon, other than the phase transition between liquid crystal phases I and II No peak is observed on the low temperature side. From this, it is considered that the transition point from the liquid crystal to the crystal exists on the lower temperature side than −50 ° C. Further, even when the boron liquid crystal is immersed in liquid nitrogen (−196 ° C.), no change is observed in the liquid crystal structure.
 本発明のサーモトロピック液晶は、結晶を100℃以上に加熱することによって生成すると、前記加熱によって、原子層シート間の距離が増加する。液晶相IIのホウ素シート構造は、図6に示すように積層方向であるc軸方向の成分を含む(001)や(101)、(111)のピークは前記加熱前の結晶よりも低角度側にシフトし、後述の測定結果によれば、層間隔を示す(001)の面間隔は、結晶状態では3.47Åであるのに対して、液晶相IIでは3.54Åであり、約0.1Å拡大している。すなわち、液晶相IIはホウ素シート面内方向の配向秩序は保持しつつ、積層方向のみが拡大している状態であり、こうした層間方向の拡大から、液晶の流動性が生じていると考えられる。 When the thermotropic liquid crystal of the present invention is produced by heating the crystal to 100 ° C. or higher, the heating increases the distance between the atomic layer sheets. The boron sheet structure of the liquid crystal phase II includes (001), (101), and (111) peaks containing a component in the c-axis direction, which is the stacking direction, as shown in FIG. According to the measurement results to be described later, the (001) plane spacing indicating the layer spacing is 3.47 mm in the crystalline state, whereas it is 3.54 mm in the liquid crystal phase II, which is about 0. It has expanded by 1cm. That is, the liquid crystal phase II is in a state where only the stacking direction is expanded while maintaining the alignment order in the in-plane direction of the boron sheet, and it is considered that the fluidity of the liquid crystal is caused by the expansion in the interlayer direction.
 本発明のサーモトロピック液晶は、前記原子層シートの骨格組成がBである場合、前記原子層シートは、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む。構成要素Xについては前述のとおりでありその詳細な説明を省略する。 In the thermotropic liquid crystal of the present invention, when the skeleton composition of the atomic layer sheet is B 5 O 3 , the atomic layer sheet includes the component X that is the skeleton portion and the other component Y. The component X is as described above, and a detailed description thereof is omitted.
 構成要素Yについては次のとおりである。前記100℃以上の加熱によるホウ素層状結晶からホウ素液晶への変化は、一般的な有機液晶で見られる熱相転移ではなく、化学変化を伴う変化である。具体的には、B(OH)が脱水縮合してBへと変化する、ホウ素シート末端・欠損部位のB-OH間の脱水縮合を伴う。IR測定によれば、ホウ素層状結晶で3100cm-1付近に見られていた末端部位BO-H由来のピークが、液晶へ変化後には消失する。XPS測定によれば、結晶で見られていた末端・欠損部位由来の高酸化状態のホウ素に対応するピークが、低エネルギー側のピークと比較して相対的に減少する。B(OH)は完全な平面構造の分子であるが、脱水縮合してBに変化することで、立体的な四面体構造をとる。そのため、ホウ素シート末端・欠損部位の平面上のB(OH)も、シート内の隣接末端と脱水縮合することで立体的な構造変化を起こすと考えられる。こうしたシートの積層を崩すような末端・欠損の変化により、シート間に流動性が生まれ、液晶性が発現すると考えられる。ホウ素層状結晶を一度液晶化させた後、冷却しても液晶から結晶への転移が見られないのは、液晶状態を生み出すB-OH間の脱水縮合が不可逆であるためと考えられる。
3.リオトロピック液晶
 本発明のリオトロピック液晶は、以上に説明した原子層シートを含む。典型的な態様では、複数の原子層シート間に金属イオンを内包する積層シートを含む。本発明のリオトロピック液晶における、原子層シートおよび積層シートや金属イオン等に関する詳細は、前述のとおりでありその説明を省略する。
The component Y is as follows. The change from the boron layered crystal to the boron liquid crystal due to the heating at 100 ° C. or higher is not a thermal phase transition observed in a general organic liquid crystal but a change accompanied by a chemical change. Specifically, B (OH) 3 undergoes dehydration condensation between B—OH at the end of the boron sheet and at the defect site where B (OH) 3 undergoes dehydration condensation and changes to B 2 O 3 . According to the IR measurement, the peak derived from the terminal site BO—H, which was observed in the vicinity of 3100 cm −1 in the boron layered crystal, disappears after changing to the liquid crystal. According to XPS measurement, the peak corresponding to boron in a highly oxidized state derived from the terminal / defect site, which was observed in the crystal, is relatively decreased as compared with the peak on the low energy side. B (OH) 3 is a molecule having a perfect planar structure, but takes a three-dimensional tetrahedral structure by dehydrating condensation and changing to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / deletion site also causes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that fluidity is generated between the sheets and liquid crystallinity is developed by the change of the end and the defect that breaks the lamination of the sheets. The reason why the transition from the liquid crystal to the crystal is not observed even after cooling the boron layered crystal once it is liquid crystallized is that the dehydration condensation between B—OH that produces a liquid crystal state is irreversible.
3. Lyotropic liquid crystal The lyotropic liquid crystal of the present invention includes the atomic layer sheet described above. A typical embodiment includes a laminated sheet containing metal ions between a plurality of atomic layer sheets. Details regarding the atomic layer sheet, the laminated sheet, the metal ions, and the like in the lyotropic liquid crystal of the present invention are as described above, and the description thereof is omitted.
 本発明のリオトロピック液晶は、積層シートを含む結晶を溶媒に溶解することによって得られる。例えば、溶媒へ溶解後、溶媒を揮発させると、溶液が流動性を持ちつつも、結晶のような干渉色を示し、半球状の液晶相が出現する。この液晶相は液滴の周縁部に沿って干渉色が呈色しており、偏光顕微鏡で観察すると、2枚の偏光板の方向に沿って、垂直な十字方向に暗色部が現れ、これはホウ素シートの配向に由来すると考えられる。 The lyotropic liquid crystal of the present invention can be obtained by dissolving a crystal containing a laminated sheet in a solvent. For example, when the solvent is volatilized after being dissolved in the solvent, the solution has fluidity but exhibits an interference color like crystals and a hemispherical liquid crystal phase appears. This liquid crystal phase has an interference color along the periphery of the droplet, and when observed with a polarizing microscope, a dark color portion appears in the vertical cross direction along the direction of the two polarizing plates. It is thought to be derived from the orientation of the boron sheet.
 本発明のリオトロピック液晶は、溶媒と、この溶媒中におけるリオトロピック液晶とを含む組成物として調製することができる。溶媒としては、特に限定されないが、有機溶媒を含む溶媒、その中でも非プロトン性高極性溶媒を含む溶媒が好ましい。非プロトン性高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等が挙げられる。これらの中でも、N,N-ジメチルホルムアミドは好ましい溶媒である。 The lyotropic liquid crystal of the present invention can be prepared as a composition comprising a solvent and a lyotropic liquid crystal in the solvent. Although it does not specifically limit as a solvent, The solvent containing an organic solvent and the solvent containing an aprotic highly polar solvent are preferable among these. Examples of the aprotic highly polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, N , N′-dimethylpropyleneurea, 1-methyl-2-pyrrolidinone and the like. Among these, N, N-dimethylformamide is a preferred solvent.
 その他、溶媒としては、特に限定されないが、例えば、非プロトン性中極性溶媒(アセトニトリル、プロピオニトリル等のニトリル類、ジクロロメタン、ジクロロエタン、クロロホルム(トリクロロメタン)、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類、アセトン、2-ブタノン、メチルエチルケトン、イソブチルメチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、デカン酸メチル、ラウリル酸メチル、アジピン酸ジイソブチル等のエステル類等)、非プロトン性低極性溶媒(ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類等)、プロトン性溶媒(メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノール等のアルコール類、ギ酸、酢酸等のカルボン酸類、ニトロメタン等)等の有機溶媒や、水等が挙げられる。これらの溶媒は、非プロトン性高極性溶媒と共に、それらと相溶する形態で使用することが好ましい。 Other solvents include, but are not limited to, aprotic medium polar solvents (nitriles such as acetonitrile and propionitrile, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane), and carbon tetrachloride. , Diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and other ethers, acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, cyclohexanone and other ketones, acetic acid Ethyl, butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, diisobutyl adipate, etc. Tellurium), aprotic low polarity solvents (aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and octane), protic solvents (methanol, ethanol, Examples thereof include alcohols such as 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol and decanol, carboxylic acids such as formic acid and acetic acid, nitromethane and the like, and water. These solvents are preferably used in a form compatible with them together with an aprotic highly polar solvent.
 以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
1.ホウ素層状単結晶
1-1.結晶の合成
 アルゴンガス雰囲気のグローブボックス中において、CHCl:MeCN=1:1の溶媒中に、KBHのMeOH溶液(5.0mg/mL)を添加した。KBHの濃度は1.4mMとした。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
1. 1. Boron layer single crystal 1-1. Crystal Synthesis In a glove box under an argon gas atmosphere, a MeOH solution (5.0 mg / mL) of KBH 4 was added in a solvent of CHCl 3 : MeCN = 1: 1. The concentration of KBH 4 was 1.4 mM.
 得られた溶液を大気下に解放した後、40℃で1時間加熱した。その後、室温で2週間静置した。 After the obtained solution was released to the atmosphere, it was heated at 40 ° C. for 1 hour. Then, it left still at room temperature for 2 weeks.
 静置後、最長で約2cmの針状結晶の生成を確認した(図1)。
1-2.単結晶X線構造解析
 得られた針状結晶の単結晶X線構造解析を行った。
After standing, formation of needle-like crystals having a maximum length of about 2 cm was confirmed (FIG. 1).
1-2. Single crystal X-ray structural analysis The single crystal X-ray structural analysis of the obtained acicular crystal was performed.
 単結晶XRD測定を行ない構造を解析した結果、ホウ素と酸素から成る原子層と、カリウムイオンが交互に積層する層状構造が得られた(図2(a))。ホウ素と酸素の層では、酸素と結合したホウ素同士が歪んだ六角形を作るように結合しながら、二次元状に広がった原子層シートを形成していることがわかった(図2(b)、(c))。また、このホウ素原子層は歪のない完全平面であることがわかった。 As a result of performing single crystal XRD measurement and analyzing the structure, a layered structure in which atomic layers composed of boron and oxygen and potassium ions are alternately stacked was obtained (FIG. 2A). In the layer of boron and oxygen, it was found that an atomic layer sheet that spreads in a two-dimensional form is formed while the boron bonded to oxygen is bonded to form a distorted hexagon (FIG. 2B). (C)). It was also found that this boron atomic layer is a perfect plane with no distortion.
 占有率はKが1、六角形の頂点部のBが1、六角形の辺上のBが0.635、Oが0.5となっている。OはBが作る六角形の各辺で2箇所のうち1箇所を占有していると考えられる(図2(c))。組成はホウ素シートに末端部位が必ず存在することを考慮して決定した(後述 図3(a)、(b))。 Occupancy rate is 1 for K, B at the hexagonal apex is 1, B on the side of the hexagon is 0.635, and O is 0.5. O is considered to occupy one of the two positions on each side of the hexagon formed by B (FIG. 2 (c)). The composition was determined in consideration of the presence of the terminal portion in the boron sheet (FIGS. 3A and 3B described later).
 ホウ素-ホウ素の結合距離1.784Åはボロフェンに存在する2種類のホウ素-ホウ素結合の距離(1.876Å、1.614Å)の平均値に近い値となった。また結晶内B-Bは、単結合の1.61Å(Z. Anorg. Allg. Chem. 2017, 643, 517)と酸素架橋の1.824Å(Inorg. Chem. 2015, 54, 2910)の中間の値となった(図3(c))。 The boron-boron bond distance of 1.784 km was close to the average value of the two types of boron-boron bond distances (1.876 mm, 1.614 mm) present in borophene. In addition, BB in the crystal is intermediate between a single bond of 1.61Z (Z. Anorg. Allg. Chem. 2017,3643, 517) and oxygen bridge of 1.824Å (Inorg. Chem. 2015, 54, 2910). (Fig. 3 (c)).
 ホウ素シートとその末端・欠損部位では、B-Oの結合状態が異なることが予想されるため、IR測定によるホウ素層状結晶中での結合状態の評価を試みた(図4)。その結果、B-O伸縮が見られる1300~1500cm―1付近に2種類のピークが得られた(図4)。このB-O領域のピークのうち、高波数側(1420cm―1)のブロードなピークが、B(OH)で見られるB-O伸縮ピークと位置が類似しているため、B-O領域の2種類のピークのうち高エネルギー側のピークが末端・欠損部位に由来し、低波数側(1350cm―1)のシャープなピークがホウ素シートに由来すると考えられる。また、3100cm―1付近にBO-H伸縮由来のピークが観測されたことから、末端部位にB-OH結合が存在することがわかった。以上より、ホウ素層状結晶中に、ホウ素原子層シートとその末端・欠損としてB(OH)類似部位の存在が示唆された。
1-3.XPS測定による酸化状態の評価と末端部位の定量
 XPS測定を行ない、ホウ素の酸化状態を評価した(図5)。測定の結果、原料のKBHではB 1s由来のピークが185.6eVに出現するのに対し、ホウ素層状結晶ではピークトップが約6eV高エネルギー側にシフトしており、結晶の生成に伴うホウ素の酸化が示唆された(図5(a)、(b))。一方、Bが3価の状態であるB(193.3eV)と比較すると、やや低エネルギー側であることから、3価までの完全な酸化は進行していなことがわかった(図5(a)、(b))。
Since the bonding state of B—O is expected to be different between the boron sheet and its terminal / defect site, an attempt was made to evaluate the bonding state in the boron layered crystal by IR measurement (FIG. 4). As a result, two types of peaks were obtained in the vicinity of 1300 to 1500 cm −1 where B—O stretching was observed (FIG. 4). Among the peaks in the BO region, the broad peak on the high wavenumber side (1420 cm −1 ) is similar in position to the BO stretching peak seen in B (OH) 3 , so the BO region Of these two types of peaks, it is considered that the peak on the high energy side is derived from the terminal / defect site, and the sharp peak on the low wave number side (1350 cm −1 ) is derived from the boron sheet. Further, since a peak derived from BO—H stretching was observed in the vicinity of 3100 cm −1 , it was found that a B—OH bond was present at the terminal site. From the above, it was suggested that a boron atom layer sheet and the existence of B (OH) 3 -like sites as the ends and defects in the boron layered crystal were suggested.
1-3. Evaluation of oxidation state by XPS measurement and quantification of terminal site XPS measurement was performed to evaluate the oxidation state of boron (FIG. 5). As a result of the measurement, the peak of B 1s appears at 185.6 eV in the raw material KBH 4 , whereas the peak top shifts to about 6 eV on the high energy side in the boron layered crystal, and boron accompanying the formation of the crystal Oxidation was suggested (FIGS. 5 (a) and (b)). On the other hand, when compared with B 2 O 3 (193.3 eV) in which B is in a trivalent state, it was found that complete oxidation up to trivalent did not proceed since it was on the slightly lower energy side (see FIG. 5 (a), (b)).
 さらに、得られたホウ素層状結晶のブロードなピークは3成分に分離可能であることがわかった(図5(a))。ピーク分離の結果、最も酸化側のピーク3が3価のホウ素を持つBと一致し、ピーク1と2がそれよりも還元側に位置していることがわかった。よって、ピーク3がB(OH)類似末端部位に対応し、ピーク1と2がそれぞれホウ素シート中の2種類のホウ素に対応していると考えられる。これらのピークの面積比から、ホウ素シートと末端部位の存在比を算出した結果、単位格子の比で3.1:1.0となることがわかった。 Furthermore, it was found that the broad peak of the obtained boron layered crystal can be separated into three components (FIG. 5 (a)). As a result of peak separation, it was found that peak 3 on the most oxidized side coincided with B 2 O 3 having trivalent boron, and peaks 1 and 2 were located on the reducing side more than that. Therefore, it is considered that peak 3 corresponds to a B (OH) 3 similar end site, and peaks 1 and 2 correspond to two types of boron in the boron sheet, respectively. As a result of calculating the abundance ratio between the boron sheet and the terminal site from the area ratio of these peaks, it was found that the unit cell ratio was 3.1: 1.0.
 単結晶X線構造解析から、ホウ素層状結晶の面指数付けを行なった結果、結晶の伸長方向と積層方向であるc軸方向が一致していることがわかり、伸長方向に沿ってホウ素原子層が積層していることがわかった(図6(a))。 From the single crystal X-ray structural analysis, as a result of performing the surface indexing of the boron layered crystal, it can be seen that the elongation direction of the crystal is coincident with the c-axis direction which is the stacking direction. It turned out that it has laminated | stacked (FIG. 6 (a)).
 結晶の伸長方向は粉末XRD測定からも確認することができる。キャピラリー中でのホウ素層状結晶の粉末XRD測定を行ない、得られた回折パターンと結晶構造から計算される回折パターンのシミュレーションとの比較を行なった(図6(b))。ホウ素層状結晶はロッド状の形状であるため、キャピラリー中では管に対して結晶の伸長方向が平行になるように配向する。そしてX線は回転するキャピラリーに対して垂直方向から入射するため、結晶の伸長方向の回折線はほとんど観測されないことが予想された。測定の結果、(100)や(110)、(200)といったa、b軸成分のみを含む面の回折ピークが、シミュレーションと一致する回折角で観測された一方で、c軸成分を含むピークはほとんど出現せず、層間隔である(001)の非常に弱い回折ピークが観測されたのみであった。このことから、積層方向が結晶の伸長方向に一致することが確認され、ロッド状の結晶がホウ素原子層の積層によって形成されていることが判明した。
1-4.ホウ素層状結晶の吸収スペクトル
 ホウ素層状結晶の吸収スペクトルの測定を行なった(図7)。固体拡散反射用セルを用いることで、結晶状態で拡散反射スペクトルの測定を行ない、Kubelka-Munk変換を行なうことで吸収スペクトルを得た。測定の結果、250nm以下の紫外領域に吸収を観測した(図7(a))。この吸収端からバンドギャップを算出した結果、ホウ素層状結晶が約5.4eVのバンドギャップを持つ半導体であることがわかった。
The elongation direction of the crystal can also be confirmed from powder XRD measurement. The powder XRD measurement of the boron layered crystal in the capillary was performed, and the obtained diffraction pattern was compared with the simulation of the diffraction pattern calculated from the crystal structure (FIG. 6B). Since the boron layered crystal has a rod-like shape, it is oriented in the capillary so that the extending direction of the crystal is parallel to the tube. Since the X-rays are incident on the rotating capillary from the vertical direction, it is expected that almost no diffraction lines in the crystal elongation direction are observed. As a result of the measurement, the diffraction peak of the surface including only the a and b axis components such as (100), (110), and (200) was observed at the diffraction angle that coincided with the simulation, while the peak including the c axis component was Almost no appearance was observed, and only a very weak diffraction peak of (001) which was a layer interval was observed. From this, it was confirmed that the stacking direction coincided with the elongation direction of the crystal, and it was found that the rod-shaped crystal was formed by stacking the boron atom layers.
1-4. Absorption spectrum of boron layered crystal The absorption spectrum of the boron layered crystal was measured (FIG. 7). Using a solid diffuse reflection cell, a diffuse reflection spectrum was measured in a crystalline state, and an absorption spectrum was obtained by performing Kubelka-Munk conversion. As a result of the measurement, absorption was observed in the ultraviolet region of 250 nm or less (FIG. 7A). As a result of calculating the band gap from this absorption edge, it was found that the boron layered crystal is a semiconductor having a band gap of about 5.4 eV.
 また、長波長領域でのスペクトル測定の結果、ホウ素層状結晶が1000~2500nm(4000~10000cm-1)の近赤外領域において吸収を持つことがわかった(図7(b))。近赤外領域においては、BやB(OH)でもホウ素層状結晶と異なる波長で吸収が見られることから、これらはB-OやO-Hの振動構造に由来する吸収であると考えられる。
1-5.SEMによる形状観察とホウ素層状結晶の力学特性
 ホウ素層状単結晶の形状をより詳細に調べるためにFE-SEM観察を行なった結果、結晶が六角柱のロッド形状であることが確認された(図8(a))。ロッドの側面の部分を拡大すると、結晶の伸長方向に沿って層状構造が発達している様子が観察でき、単結晶の縞模様が層状構造に由来するものであることがわかった。
As a result of spectrum measurement in the long wavelength region, it was found that the boron layered crystal has absorption in the near infrared region of 1000 to 2500 nm (4000 to 10,000 cm −1 ) (FIG. 7B). In the near-infrared region, B 2 O 3 and B (OH) 3 are also absorbed at a wavelength different from that of the boron layered crystal, so these are absorptions derived from the vibrational structure of BO and OH. it is conceivable that.
1-5. Shape observation by SEM and mechanical properties of boron layered crystal As a result of FE-SEM observation to investigate the shape of the boron layered single crystal in more detail, it was confirmed that the crystal was a hexagonal rod shape (FIG. 8). (A)). When the side surface portion of the rod is enlarged, it can be observed that the layered structure develops along the crystal extension direction, and it is found that the single crystal stripe pattern is derived from the layered structure.
 このホウ素層状結晶にスパーテル等で機械的に圧力をかけることで、伸長方向と垂直な方向に対し容易にへき開できることがわかった。へき開した結晶をSEMで観察した結果、層構造の崩壊によるナノシートの部分的な生成が確認された(図8(b))。また、一部ではミクロンオーダーの非常に平滑なナノシート表面が見られた。こうした機械的剥離の容易性から、ホウ素層状結晶の層間結合が非常に弱いことが示唆された。
1-6.AFMによるナノシート観察
 ホウ素層状結晶の機械的剥離により容易にナノシートが生成することが判明したため、AFMによるナノシートの表面観察を行なった(図9、図10)。ホウ素層状結晶に対してHOPG基板を上から押し付けることで結晶をへき開し、表面に付着した結晶片をAFMで直接観察した(図9(a))。ナノシートが歪んだ部分や、完全に水平でない部分が多いが、一部でほぼ水平なナノシートが積み重なる様子を観測した(図9(b))。シート部分と下地のHOPG部分で位相が明確に異なることから、ホウ素シートであると判断した。形状像の最も厚さの小さいシートで高さを実測した結果、シートが平面な完全な平坦ではないためばらつきが出てはいるが、平均約2.0nm程度の厚さであることがわかった(図10)。以上から、これらのシートが単層から数層程度の非常に薄いシートであると考えられる。このようにAFM観察の結果、複数枚積層したシートが確認され、最も薄い箇所で高さ約0.9nmの単層シートの観察に成功した。シートの高さが最も薄い箇所で高さが約0.9nmであり、AFM測定による単層グラフェンの高さが0.8nm(Science, 2004, 306, 666.)であることと相関している。
It was found that the boron layered crystal can be easily cleaved in the direction perpendicular to the extension direction by applying mechanical pressure with a spatula or the like. As a result of observing the cleaved crystal with SEM, it was confirmed that the nanosheet was partially generated due to the collapse of the layer structure (FIG. 8B). In some cases, a very smooth nanosheet surface of micron order was observed. Such ease of mechanical peeling suggested that the interlayer bonding of the boron layered crystal was very weak.
1-6. Nanosheet observation by AFM Since it was found that nanosheets were easily generated by mechanical peeling of boron layered crystals, the surface of the nanosheet was observed by AFM (FIGS. 9 and 10). The crystal was cleaved by pressing the HOPG substrate against the boron layered crystal from above, and the crystal piece adhering to the surface was directly observed by AFM (FIG. 9A). Although there were many parts where the nanosheets were distorted and not completely horizontal, we observed that some of the nanosheets were stacked almost horizontally (FIG. 9B). Since the phase was clearly different between the sheet portion and the underlying HOPG portion, it was determined to be a boron sheet. As a result of actually measuring the height of the sheet with the smallest thickness of the shape image, it was found that the thickness was about 2.0 nm on average although the sheet was not completely flat and varied. (FIG. 10). From the above, it is considered that these sheets are very thin sheets of about a single layer to several layers. As a result of the AFM observation, a plurality of laminated sheets were confirmed, and a single layer sheet having a height of about 0.9 nm was successfully observed at the thinnest portion. It is correlated with the fact that the height of the single-layer graphene by AFM measurement is 0.8 nm (Science, 2004, 306, 666.). .
 次に、クラウンエーテルおよびクリプタンドによるホウ素層状結晶の溶解、単層化を試みた。CHCl:MeCN=1:1の溶媒中に、結晶を分散し、18-クラウン-6またはクリプタンドを過剰としてホウ素層状単結晶を溶解した。この溶液をHOPG基板にキャストし、クロロホルムで洗浄し、過剰の18-クラウン-6またはクリプタンドを除去した。単層シートの観察を試みた。AFMでは、表面に付着した結晶片をAFMで観察、HOPG基板上に単層シートと思われる高さ約0.9nmのナノシートが観察され(図11 18-クラウン-6を使用)、STMでも同様に高さ約0.7nm程度シートの観察に成功した。これらの結果から、クラウンエーテル等によるホウ素層状結晶の単層化の達成が示唆された。
1-7.TEMによるナノシート観察
 TEM観察によりナノシートの形状・表面観察も行なった。AFMサンプルの調製方法と同様であり、ホウ素層状結晶の上からマイクロメッシュ付きのTEMグリッドを押し付けることで結晶をへき開し、グリッド表面に付着したシートをTEMで観察した(図12(a):STEM像、図12(b)および図13:高分解TEM像)。その結果、STEMではシートの積層構造とナノシートが直接観察され(図12(a))、高分解TEMではグリッドのメッシュよりコントラストの弱い非常に薄いシートの観測に成功した(図12(b))。観察箇所の中の最も薄いシートで約15層程度であることが確認された。
Next, dissolution and monolayering of boron layered crystals with crown ether and cryptand were attempted. The crystals were dispersed in a solvent of CHCl 3 : MeCN = 1: 1, and 18-crown-6 or cryptand was added to dissolve the boron layered single crystal. This solution was cast on a HOPG substrate and washed with chloroform to remove excess 18-crown-6 or cryptand. Attempts were made to observe single-layer sheets. In AFM, crystal fragments attached to the surface are observed with AFM, and a nanosheet with a height of about 0.9 nm, which seems to be a single-layer sheet, is observed on the HOPG substrate (Fig. 11 18-Crown-6 is used). The sheet was successfully observed about 0.7 nm in height. These results suggest the achievement of monolayer formation of boron layered crystals by crown ether or the like.
1-7. Nanosheet observation by TEM The shape and surface of the nanosheet were also observed by TEM observation. It is the same as the preparation method of the AFM sample. The crystal is cleaved by pressing a TEM grid with a micromesh from the top of the boron layered crystal, and the sheet adhering to the grid surface is observed with TEM (FIG. 12 (a): STEM). Image, FIG. 12 (b) and FIG. 13: high resolution TEM image). As a result, the laminated structure of the sheet and the nanosheet were directly observed in the STEM (FIG. 12A), and a very thin sheet having a lower contrast than the grid mesh was successfully observed in the high resolution TEM (FIG. 12B). . It was confirmed that the thinnest sheet in the observation location was about 15 layers.
 さらに、これらのシートの高倍率観察により、格子を観測することにも成功した(図13)。一部のシート表面からは六角状の回折点が得られ、ホウ素シートと同じ六方対称性が観測された。また、一部では間隔が0.343nmの格子も観測された。これはホウ素層状結晶の層間隔の0.347nmと一致していることから、原子層の積層を実測していることがわかった。これらのことから、機械剥離により非常に薄いナノシートへ剥離可能であると実証され、ホウ素層状結晶の層間相互作用が弱いことが示された。
2.ホウ素層状結晶の熱による液晶化とその特性
2-1.ホウ素層状結晶の熱による液晶化
 液晶への変化は偏光顕微鏡観察により確認することができる。液体のような流動性を持ちつつも、偏光顕微鏡下で結晶のような干渉色を呈する状態が液晶である。酸素や水の影響を遮断するために、結晶をキャピラリー中に真空封管し、加熱ステージ付き偏光顕微鏡を用いて、昇温過程における形態と干渉色の変化を観察した。
Furthermore, the lattice was successfully observed by observing these sheets at a high magnification (FIG. 13). Hexagonal diffraction points were obtained from the surface of some sheets, and the same hexagonal symmetry as the boron sheet was observed. In some cases, a lattice with an interval of 0.343 nm was also observed. This coincides with the 0.347 nm spacing between the boron layered crystals, which indicates that the atomic layer stack was actually measured. From these facts, it was proved that peeling to a very thin nanosheet was possible by mechanical peeling, and it was shown that the interlayer interaction of boron layered crystals was weak.
2. 2. Liquidation of boron layered crystals by heat and its characteristics 2-1. Liquidation of boron layered crystals by heat The change to liquid crystals can be confirmed by observation with a polarizing microscope. A liquid crystal is a state that exhibits interference color like a crystal under a polarizing microscope while having fluidity like a liquid. In order to cut off the influence of oxygen and water, the crystal was vacuum sealed in a capillary, and changes in morphology and interference color during the heating process were observed using a polarizing microscope with a heating stage.
 50℃から120℃まで5℃/min以下の昇温速度でゆっくり加熱した結果、ロッド状のホウ素層状結晶が105℃付近から融けはじめ、形状が液状に変化し始める様子が観測された(図14(a))。形状は液状であるが、その周縁部には干渉色が見られることから、ホウ素結晶が液体ではなく液晶へ変化していることがわかった。 As a result of slowly heating from 50 ° C. to 120 ° C. at a heating rate of 5 ° C./min or less, it was observed that the rod-like boron layered crystal began to melt from around 105 ° C. and the shape started to change into a liquid state (FIG. 14). (A)). Although the shape is liquid, an interference color is seen at the peripheral edge thereof, which indicates that the boron crystal is changed to liquid crystal instead of liquid.
 さらに、120℃まで加熱した後に35℃まで5℃/minで冷却する過程を観察した結果、液晶が徐々に円状へと形状を変える様子が見られた(図14(b))。周縁部に常に干渉色を呈しているにも関わらず、流動的に形状が変化したことから、冷却過程でも液晶状態であることがわかる。このことから、結晶を一度昇温して液晶に変化した後は、35℃まで冷却しても再び結晶へ転移することはなく、液晶状態を保持することがわかった。この液晶の配向性はホウ素シートの2次元の強い異方性から生み出され、流動性は層間結合の弱さによって発現していると考えられる。周縁部に十字の暗色部が見えるのは、直交した偏光板の方向に沿って液晶ドメインの光軸が配向し、偏光を干渉せずにそのまま透過してしまうためである。よって、液晶中でホウ素シートが同心円状に配向していると考えられる。 Furthermore, as a result of observing the process of heating to 120 ° C. and then cooling to 35 ° C. at 5 ° C./min, it was observed that the shape of the liquid crystal gradually changed to a circular shape (FIG. 14B). Although the interference color is always present at the peripheral edge, the shape is fluidly changed, so that it is understood that the liquid crystal is in the cooling process. From this, it was found that after the temperature of the crystal was once raised and changed to a liquid crystal, it was not transferred again to the crystal even when cooled to 35 ° C., and the liquid crystal state was maintained. The orientation of this liquid crystal is produced from the strong two-dimensional anisotropy of the boron sheet, and the fluidity is considered to be manifested by the weak interlayer bonding. The reason why the dark portion of the cross is visible at the peripheral edge is that the optical axis of the liquid crystal domain is aligned along the direction of the orthogonal polarizing plate, and the polarized light is transmitted without interference. Therefore, it is considered that the boron sheets are aligned concentrically in the liquid crystal.
 ホウ素層状結晶からホウ素液晶への変化の熱分析による観測を試みた。アルゴン下でホウ素層状結晶のTG測定を行なった結果、偏光顕微鏡観察で液晶への変化が確認された約100~120℃付近で約19%の重量減少が観測された(図15(a))。このことから、ホウ素層状結晶からホウ素液晶への変化が一般的な有機液晶で見られる熱相転移ではなく、化学変化を伴う変化であると判明した。また、この重量減少温度は、B(OH)が脱水縮合してBへと変化する温度と類似しているため(図15(b))、結晶から液晶への変化が、ホウ素シート末端・欠損部位のB-OH間の脱水縮合を伴うものであると示唆された。 We tried to observe the change from boron layered crystal to boron liquid crystal by thermal analysis. As a result of the TG measurement of the boron layered crystal under argon, a weight loss of about 19% was observed at about 100 to 120 ° C. in which the change to the liquid crystal was confirmed by the polarization microscope observation (FIG. 15 (a)). . From this, it was found that the change from the boron layered crystal to the boron liquid crystal is not a thermal phase transition observed in a general organic liquid crystal but a change accompanied by a chemical change. Further, this weight reduction temperature is similar to the temperature at which B (OH) 3 is dehydrated and condensed to change to B 2 O 3 (FIG. 15 (b)). It was suggested that this was accompanied by dehydration condensation between B-OH at the sheet end and the defect site.
 結晶から液晶への転移に伴い、ホウ素シートの末端・欠損部位のB-OH間の脱水縮合が進行しているかを確認するために、IR測定でBO-H伸縮の観測を試みた。約120℃で真空加熱して液晶に変化させた後に測定を行なった結果、ホウ素層状結晶で3100cm-1付近に見られていた末端部位BO-H由来のピークが、液晶へ変化後には消失することがわかった(図15(c))。このことから、ホウ素層状結晶からホウ素液晶への変化に伴い、末端・欠損部位のB-OH間で脱水縮合が進行していることが示された。 In order to confirm whether dehydration condensation between B—OH at the terminal and defect sites of the boron sheet has progressed with the transition from the crystal to the liquid crystal, an attempt was made to observe BO—H stretching by IR measurement. As a result of measuring after changing to liquid crystal by heating at about 120 ° C. under vacuum, the peak derived from the terminal site BO—H, which was seen in the vicinity of 3100 cm −1 in the boron layered crystal, disappears after the change to liquid crystal. It was found (FIG. 15 (c)). From this, it was shown that dehydration condensation proceeds between B-OH at the terminal and defect sites with the change from boron layered crystal to boron liquid crystal.
 さらにXPS測定により、液晶化前後でのホウ素の酸化状態の比較を行なった。HOPG基板上でホウ素結晶を液晶化させ、測定を行なった。その結果、結晶で見られていた末端・欠損部位由来の高酸化状態のホウ素に対応するピークが、低エネルギー側のピークと比較して相対的に減少していることがわかった(図16(a))。このことからも、液晶化プロセスによって、末端・欠損部位におけるB(OH)部位の構造変化を伴うことが確認された。 Furthermore, by XPS measurement, the oxidation state of boron before and after liquid crystal formation was compared. Boron crystals were converted into liquid crystals on a HOPG substrate and measured. As a result, it was found that the peak corresponding to the highly oxidized boron derived from the terminal / defect site, which was observed in the crystal, was relatively decreased compared to the peak on the low energy side (FIG. 16 ( a)). From this, it was confirmed that the liquid crystallizing process is accompanied by a structural change of the B (OH) 3 site at the terminal / defect site.
 ホウ素シート末端・欠損部位のB-OH間の脱水縮合に伴い液晶に変化することから、液晶化メカニズムを考察した。B(OH)は完全な平面構造の分子であるが、脱水縮合してBに変化することで、立体的な四面体構造をとる。そのため、ホウ素シート末端・欠損部位の平面上のB(OH)も、シート内の隣接末端と脱水縮合することで立体的な構造変化を起こすと考えられる。こうしたシートの積層を崩すようなに末端・欠損の変化により、シート間に流動性が生まれ、液晶性が発現すると考えられる(図16(b))。ホウ素層状結晶を一度液晶化させた後に35℃まで冷却しても、液晶から結晶への転移が見られないのも、液晶状態を生み出すB-OH間の脱水縮合が不可逆であるためだと考えられる。 The mechanism of liquid crystal formation was considered from the fact that it changed to liquid crystal with dehydration condensation between B-OH at the boron sheet end and defect site. B (OH) 3 is a molecule having a perfect planar structure, but takes a three-dimensional tetrahedral structure by dehydrating condensation and changing to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / deletion site also causes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that fluidity is generated between the sheets due to changes in the ends and defects so as to break the lamination of the sheets, and liquid crystallinity is expressed (FIG. 16B). Even if the boron layered crystal is once liquid crystallized and then cooled to 35 ° C, the transition from liquid crystal to crystal is not observed because of the irreversible dehydration condensation between B and OH that produces a liquid crystal state. It is done.
 TG測定で見られた液晶化温度付近での約19%の重量減少は、ホウ素シート末端・欠損部位が全て脱水縮合したと仮定した際の5倍以上の値である。また、B(OH)の脱水温度と比較しても低温側から減少が始まっていることがわかる。この重量減少を解明するために、TGの100℃付近の重量減少について微分曲線を作成した結果、75℃付近からのブロードな減少と125℃付近の鋭い減少の2段階の重量減少に分離できることがわかった(図17(a))。B(OH)の脱水縮合温度に対応するのは高温側の減少であるため、高温側の約3%分の減少がホウ素シート末端部位のB-OH間の脱水縮合に対応し、低温側の約16%の減少はHOなどの吸着溶媒の脱離に由来すると考えられる。 The weight loss of about 19% in the vicinity of the liquid crystallizing temperature observed in the TG measurement is a value more than 5 times when it is assumed that all the boron sheet ends and defect sites are dehydrated and condensed. It can also be seen that the decrease starts from the low temperature side even compared with the dehydration temperature of B (OH) 3 . In order to elucidate this weight loss, a differential curve was created for the weight loss of TG near 100 ° C. As a result, it can be separated into two stages of weight loss: a broad decrease from around 75 ° C and a sharp decrease around 125 ° C. Okay (Figure 17 (a)). Since the decrease on the high temperature side corresponds to the dehydration condensation temperature of B (OH) 3 , the decrease of about 3% on the high temperature side corresponds to the dehydration condensation between B—OH at the end of the boron sheet. It is thought that the decrease of about 16% is due to the desorption of the adsorption solvent such as H 2 O.
 DSC測定による液晶化温度付近の熱流量測定も行なった。結晶を直接Alパンの上に置き、アルゴン下で測定を行なった結果、1周目昇温過程の液晶化温度付近において、約110℃と約125℃付近に2本の吸熱ピークが重なって観測された(図17(b))。それに対して、結晶を真空封管したままキャピラリーごとAlパンに乗せて測定した結果、同じく2本の吸熱ピークが得られたが、高温側の125℃のピークは位置の変化が見られなかった一方で、低温側のピークは強度減少するとともに75℃付近へ低温シフトした。このことから、真空下でも温度が変わらない高温側のピークがシート末端B-OH間の脱水縮合に対応し、真空下で強度減少及び低温シフトした低温側のピークが吸着水の脱離に由来することが示唆された。 Measured heat flow around the liquid crystalization temperature by DSC measurement. The crystal was placed directly on an Al pan and measured under argon. As a result, two endothermic peaks overlapped at about 110 ° C and about 125 ° C in the vicinity of the liquid crystallizing temperature in the first round of heating. (FIG. 17B). On the other hand, as a result of measuring by placing the crystal in an Al pan with the vacuum sealed tube, two endothermic peaks were obtained, but no change in position was observed at the 125 ° C. peak on the high temperature side. On the other hand, the peak on the low temperature side decreased in intensity and shifted to a low temperature around 75 ° C. From this, the peak on the high temperature side where the temperature does not change even under vacuum corresponds to the dehydration condensation between the sheet end B-OH, and the peak on the low temperature side where the intensity decreased and shifted to low temperature under vacuum originated from desorption of adsorbed water It was suggested to do.
 DTGおよびDSC測定の結果から、ホウ素結晶および液晶が吸湿性を持つことが示唆されたため、IRとTG-DTAから水吸着をモニタリングした。ホウ素層状結晶を約150℃で真空加熱して液晶化し、大気開放後のIRの時間経過を測定した。その結果、約3400cm-1のHOのO-H伸縮由来のピークの強度が、液晶化後1回目の測定から5分、1時間、2時間と時間が経過するごとに増大していく様子が観測された(図18(a))。このことから、ホウ素液晶が吸湿性を持つことが示された。 The results of DTG and DSC measurements suggested that the boron crystals and liquid crystals were hygroscopic, so water adsorption was monitored from IR and TG-DTA. Boron layered crystals were heated to about 150 ° C. under vacuum to form liquid crystals, and the time course of IR after opening to the atmosphere was measured. As a result, the intensity of the peak derived from the O—H stretching of H 2 O of about 3400 cm −1 increases with the passage of 5 minutes, 1 hour, and 2 hours from the first measurement after liquid crystallization. A state was observed (FIG. 18A). From this, it was shown that boron liquid crystal has hygroscopicity.
 また、液晶に吸着する水分量を定量するために、液晶化して大気開放した後の質量変化をTG-DTAで測定した。その結果、約40℃以下から約21%の質量増加が観測された(図18(b))。IRの測定結果と合わせると、これはHOの吸着に対応していることがわかる。また、この吸着量は結晶での重量減少分ともほぼ一致していることがわかる。以上から、ホウ素液晶が吸湿性を持つことと、前記において見られたTG測定での重量減少の1段階目が吸着水の脱離に対応することが示唆され、2段階目がB-OH間の脱水縮合に対応していることがわかった。
2-2.SEMおよびTEM観察
 ホウ素液晶を偏光顕微鏡で観察すると、周縁部に特に強く干渉色を呈した液滴のように見える。この液晶をSEMで観察することにより、液晶構造やドメインの観測を試みた。しかしSEM観察を行なった結果、半球状の液晶の観察には成功したが、液晶の内部はその流動性のために激しく動いており、ドメインや構造の直接観察はできなかった。また、長時間電子線を照射しても液晶が固化することはなかった。
Further, in order to quantify the amount of water adsorbed on the liquid crystal, the change in mass after liquidification and release to the atmosphere was measured by TG-DTA. As a result, a mass increase of about 21% was observed from about 40 ° C. or less (FIG. 18B). When combined with the IR measurement results, it can be seen that this corresponds to the adsorption of H 2 O. It can also be seen that this amount of adsorption is almost consistent with the weight loss in the crystals. From the above, it is suggested that the boron liquid crystal has hygroscopicity, and that the first stage of weight reduction in the TG measurement seen above corresponds to the desorption of adsorbed water, and the second stage is between B-OH. It was found to correspond to the dehydration condensation.
2-2. SEM and TEM observation When a boron liquid crystal is observed with a polarizing microscope, it looks like a droplet having a particularly intense interference color at the periphery. By observing this liquid crystal with an SEM, an attempt was made to observe the liquid crystal structure and domain. However, as a result of SEM observation, the hemispherical liquid crystal was successfully observed, but the inside of the liquid crystal moved vigorously due to its fluidity, and the domain and structure could not be directly observed. Further, the liquid crystal did not solidify even when irradiated with an electron beam for a long time.
 一方、ホウ素液晶は真空下では安定に液晶相を保持できるが、大気開放することで固化することがわかった。これは酸化もしくは水による構造の変化等に起因すると考えられる。液晶状態での直接観察はできなかったので、固化後の形状観察を行なった。 On the other hand, it was found that boron liquid crystal can stably maintain a liquid crystal phase under vacuum, but solidifies when released to the atmosphere. This is thought to be due to structural changes due to oxidation or water. Since direct observation in the liquid crystal state was not possible, the shape after solidification was observed.
 HOPG上でホウ素結晶を液晶化させ、1晩大気開放して固化させた後にSEMで観察した。その結果、板状のドメインが配向して渦巻きを形成している様子が観測された(図19)。内側ほど板状ドメインが立ち、外側ほど寝ている状態である。局所的に拡大すると、板状フレークが互いに一方向に配向している様子も観察できた。このことから、液晶状態での配向を保持したまま固化したと考えられる。また、この板状フレークはホウ素シートにより形成されていると考えられる。 Boron crystals were converted into liquid crystal on HOPG, and then exposed to the atmosphere overnight to solidify, and then observed with SEM. As a result, it was observed that the plate-like domains were oriented to form a spiral (FIG. 19). A plate-like domain stands on the inner side and sleeps on the outer side. When locally expanded, it was also possible to observe that the plate-like flakes were oriented in one direction. From this, it is thought that it solidified, maintaining the orientation in a liquid crystal state. Moreover, this plate-like flake is considered to be formed of a boron sheet.
 さらに、より微細な形状を観察するために、TEM測定を行なった。グリッド上で結晶を真空加熱することで液晶化させ、数日大気下に放置し固化させた後に観察した。その結果、ホウ素結晶を剥離した際と同様の非常にコントラストの薄いシートが観察された(図20)。さらにこのシートの表面の格子の観察にも成功し、格子間隔が0.20nmの六角状の回折点が観測された。これはホウ素シートの面内方向の対称性と一致しているとともに、(200)面の間隔(0.20nm)とも一致しているため、ホウ素シートを直接観察していると考えられる。このことから、液晶化後もシート構造を保持していることが示された。さらに、観察するシートによって、六角状の回折点の組が1組や2組、4~5組のものが存在することがわかった。これはグラフェンで見られる現象であり、層ごとにシートの積み重なりがずれることで、積層するシートの数が六角形の組の数になって回折点に現れていると考えられる。このことから、格子を観測したシートがそれぞれ単層や2層、4~5層といった、非常に薄いシートであることがわかった。
2-3.ホウ素無機液晶のサーモトロピック特性
 ホウ素液晶の2つの液晶相の相転移挙動をDSCにより確認することができた。冷却・昇温速度はどちらも5℃/minとし、キャピラリーに真空封管したホウ素液晶のDSC測定を行なった結果、1周目の冷却過程で液晶相Iから液晶相IIへの転移に由来する鋭い発熱ピークが得られた(図21)。さらに、2周目の昇温過程で約150℃に液晶相IIから液晶相Iへの転移に由来するブロードな吸熱ピークが得られた。昇温過程の吸熱ピークと比べ、冷却過程の発熱ピークが鋭く低温側にあるのは、液晶相IからIIへの転移が過冷却状態を経由しているためであると考えられる。以上から、ホウ素液晶において、液晶相IとIIの間で熱による相転移挙動が観測された。
Furthermore, in order to observe a finer shape, TEM measurement was performed. The crystals were crystallized by heating on a grid under vacuum, and observed after being allowed to solidify in the atmosphere for several days. As a result, a very thin sheet similar to that obtained when the boron crystals were peeled was observed (FIG. 20). Furthermore, the observation of the grating on the surface of this sheet was successful, and hexagonal diffraction spots with a grating interval of 0.20 nm were observed. This coincides with the symmetry in the in-plane direction of the boron sheet, and also coincides with the interval (0.20 nm) of the (200) plane, so it is considered that the boron sheet is directly observed. From this, it was shown that the sheet structure was maintained even after the liquid crystal formation. Further, depending on the sheet to be observed, it was found that there were one set of hexagonal diffraction points, two sets, and four to five sets. This is a phenomenon observed in graphene, and it is considered that the number of sheets to be laminated becomes the number of hexagonal groups and appears at the diffraction point because the stacking of sheets shifts from layer to layer. From this, it was found that the sheets in which the lattice was observed were very thin sheets of single layer, two layers, and 4 to 5 layers, respectively.
2-3. Thermotropic characteristics of boron inorganic liquid crystal The phase transition behavior of two liquid crystal phases of boron liquid crystal could be confirmed by DSC. As a result of DSC measurement of boron liquid crystal sealed in a capillary with a cooling / heating rate of 5 ° C./min, it was derived from the transition from liquid crystal phase I to liquid crystal phase II during the first round of cooling. A sharp exothermic peak was obtained (FIG. 21). Furthermore, a broad endothermic peak derived from the transition from the liquid crystal phase II to the liquid crystal phase I was obtained at about 150 ° C. during the second temperature increase process. The reason why the exothermic peak in the cooling process is sharper on the lower temperature side than the endothermic peak in the temperature raising process is considered to be due to the transition from the liquid crystal phase I to II via the supercooled state. From the above, thermal phase transition behavior was observed between liquid crystal phases I and II in boron liquid crystals.
 DSC測定で観測された液晶相間の転移は、温度可変ステージを用いた偏光顕微鏡で確認することができる。結晶をキャピラリーに真空封管し、偏光顕微鏡で観察しながら200℃まで加熱すると、液晶相Iへと変化する現象が見られた(図22左)。これは前記において見ていた周縁部のみに干渉色を呈する液晶相である。この液晶相IIを10℃/minの速度で冷却する過程を観察した結果、約57℃で全体に干渉色が現れ、有機液晶で見られるような段階的な虹色の干渉色を液晶全体に示す液晶相IIへの転移が観測された。この相転移挙動はDSCで観測された発熱ピークに対応すると考えられる。液晶の周縁部にのみ干渉色が見える液晶相Iと比べ、液晶全体に干渉色を呈する液晶相IIは、より配向度が高い状態であると考えられる。 The transition between liquid crystal phases observed by DSC measurement can be confirmed with a polarizing microscope using a temperature variable stage. When the crystal was vacuum sealed in a capillary and heated to 200 ° C. while observing with a polarizing microscope, a phenomenon of changing to liquid crystal phase I was observed (FIG. 22 left). This is a liquid crystal phase exhibiting an interference color only at the peripheral edge as seen above. As a result of observing the process of cooling this liquid crystal phase II at a rate of 10 ° C./min, an interference color appears on the whole at about 57 ° C., and a rainbow-colored interference color that is gradual as seen in organic liquid crystals appears on the entire liquid crystal. The transition to liquid crystal phase II shown was observed. This phase transition behavior is considered to correspond to the exothermic peak observed by DSC. Compared with the liquid crystal phase I in which the interference color is visible only at the peripheral edge of the liquid crystal, the liquid crystal phase II that exhibits the interference color on the entire liquid crystal is considered to be in a higher degree of orientation.
 さらに、この液晶相間の転移の可逆性を検証した。液晶相IIへ転移した後に室温まで冷却し再び昇温した結果、約140℃付近で液晶相IIの干渉色が消失し始め、再び液晶相Iへと転移することがわかった(図22右)。これはDSCの昇温過程での吸熱ピークに対応する挙動だと考えられる。この液晶相Iを150℃から再び冷却した結果、再び約54℃付近で液晶相IIへと転移することがわかった。これらのことから、液晶相IとIIの転移が温度に対して可逆であることが示された。 Furthermore, the reversibility of the transition between the liquid crystal phases was verified. As a result of cooling to room temperature after transitioning to liquid crystal phase II and raising the temperature again, it was found that the interference color of liquid crystal phase II began to disappear at around 140 ° C. and transitioned to liquid crystal phase I again (right side of FIG. 22). . This is considered to be a behavior corresponding to an endothermic peak in the DSC temperature rising process. As a result of recooling the liquid crystal phase I from 150 ° C., it was found that the liquid crystal phase I changed again to the liquid crystal phase II at about 54 ° C. From these, it was shown that the transition of liquid crystal phases I and II is reversible with respect to temperature.
 DSCの冷却過程では、液晶相IからIIへの変化は過冷却状態を経由することが示唆された。そこで、冷却速度を10℃/minから20℃/minへと変更して、液晶相IからIIへの転移挙動の変化を偏光顕微鏡で観察した。その結果、10℃/minでは約55℃で液晶相IからIIへの転移が見られたが、20℃/minでは室温まで冷却してはじめて液晶相IIの干渉色が出現し始めた(図23(a))。高倍率観察の結果、20℃/minの際よりもかなり小さい数十μm程度の液晶のドメインが観察された。また、この液晶ドメインは、2枚の偏光板の偏光方向に沿って中心から十字に広がる暗色部が特徴的な、シュリーレン組織という液晶組織を持つことがわかった(図23(b))。こうした冷却速度による液晶相IIの転移温度と液晶ドメインサイズの変化からも、液晶相IからIIへの相転移が過冷却状態を経由することが示された。 In the cooling process of DSC, it was suggested that the change from liquid crystal phase I to II goes through a supercooled state. Therefore, the cooling rate was changed from 10 ° C./min to 20 ° C./min, and the change in the transition behavior from the liquid crystal phase I to II was observed with a polarizing microscope. As a result, the transition from liquid crystal phase I to II was observed at about 55 ° C. at 10 ° C./min, but the interference color of liquid crystal phase II began to appear only after cooling to room temperature at 20 ° C./min (FIG. 23 (a)). As a result of high-magnification observation, a liquid crystal domain of about several tens of micrometers, which is considerably smaller than that at 20 ° C./min, was observed. Further, it was found that this liquid crystal domain has a liquid crystal structure called a schlieren structure, which is characterized by a dark color portion extending in a cross shape from the center along the polarization direction of the two polarizing plates (FIG. 23B). The change in the transition temperature and the liquid crystal domain size of the liquid crystal phase II due to the cooling rate indicated that the phase transition from the liquid crystal phase I to II passed through the supercooled state.
 液晶相IIの構造を解明するために、キャピラリーに真空封管したホウ素液晶の室温での粉末XRD測定を行なった。その結果、ホウ素層状結晶と一致する(100)と(110)、(200)の回折パターンが得られ、液晶相IIがホウ素シート構造を保持していることが判明した(図24)。一方で、積層方向であるc軸方向の成分を含む(001)や(101)、(111)のピークは低角度側にシフトしていることがわかった。層間隔を示す(001)の面間隔は、結晶状態では3.47Åであるのに対して、液晶相IIでは3.54Åであり、約0.1Å拡大していることがわかった。このことから、液晶相IIはホウ素シート面内方向の配向秩序は保持しつつ、積層方向のみが拡大している状態であることがわかった。こうした層間方向の拡大から、液晶の流動性が生じていると考えられる。 In order to elucidate the structure of liquid crystal phase II, powder XRD measurement was performed at room temperature on boron liquid crystal sealed in a capillary in a vacuum. As a result, diffraction patterns (100), (110), and (200) corresponding to the boron layered crystals were obtained, and it was found that the liquid crystal phase II retained the boron sheet structure (FIG. 24). On the other hand, it was found that the peaks of (001), (101), and (111) including the component in the c-axis direction that is the stacking direction are shifted to the low angle side. It was found that the (001) plane spacing, which indicates the layer spacing, was 3.47 mm in the crystalline state, but 3.54 mm in the liquid crystal phase II, which was expanded by about 0.1 mm. From this, it was found that the liquid crystal phase II was in a state in which only the stacking direction was expanded while maintaining the alignment order in the in-plane direction of the boron sheet. It is considered that the fluidity of the liquid crystal is caused by the expansion in the interlayer direction.
 偏光顕微鏡を用いて液晶相Iの高温域の安定性を評価した。キャピラリーに真空封管したホウ素液晶を加熱し、液晶の干渉色を何度まで保持するかを検証した。室温から加熱した結果、350℃まで安定に液晶相Iの干渉色を示すことが判明した。一方、350℃を超えた後は、周縁部の干渉色が明滅を繰り返す不安定な挙動を示し、365℃付近から完全に干渉色が消滅することがわかった。一度干渉色が消えた後は、冷却しても再び干渉色が現れることがなかったため、恐らくホウ素シートが分解したものだと考えられる。
このことから、ホウ素液晶が液晶相を保持する最高温度が350℃であることがわかった。分解するまで等方液体にはならず、液晶相を保持し続けるのは、液晶ドメインであるホウ素シートの強い2次元の異方性のために、配向した状態が非常に安定であるためだと考えられる。
The stability of liquid crystal phase I in the high temperature region was evaluated using a polarizing microscope. Boron liquid crystal sealed in a capillary tube was heated to verify how many times the liquid crystal interference color was retained. As a result of heating from room temperature, it was found that the interference color of liquid crystal phase I was stably exhibited up to 350 ° C. On the other hand, after exceeding 350 ° C., it was found that the interference color at the peripheral portion showed an unstable behavior in which blinking repeated, and the interference color disappeared completely from around 365 ° C. Once the interference color disappears, the interference sheet did not appear again even after cooling, so the boron sheet is probably decomposed.
From this, it was found that the maximum temperature at which the boron liquid crystal maintains the liquid crystal phase is 350 ° C. The reason why it does not become an isotropic liquid and keeps the liquid crystal phase until it decomposes is that the aligned state is very stable due to the strong two-dimensional anisotropy of the boron sheet that is the liquid crystal domain. Conceivable.
 350℃以上での分解挙動は、TGからも確認することができる。アルゴン下でのTG測定の結果、350℃付近から約12%の重量減少が見られた(図25)。測定前は白色の結晶であるホウ素層状結晶が、測定後には黒く変色しており、一度融けて再び固化したような形状であることから、350℃での重量減少が熱分解によるものだと示唆された。 The decomposition behavior at 350 ° C. or higher can also be confirmed from TG. As a result of TG measurement under argon, a weight loss of about 12% was observed from around 350 ° C. (FIG. 25). The boron layered crystal, which is a white crystal before the measurement, has turned black after the measurement and has a shape that once melted and solidified again, suggesting that the weight loss at 350 ° C is due to thermal decomposition. It was done.
 偏光顕微鏡下で液晶相IIを冷却することで、ホウ素液晶の低温域における安定性を評価した。過冷却の可能性を排除するために、冷却装置を用いて5℃/min以下の速度で徐冷し、液晶相IIから結晶へ転移する温度の検証を試みた。20℃から冷却した結果、装置限界温度である-38.5℃まで冷却しても液晶組織が変化することはなかった(図26(a))。このことから、少なくとも約-40℃までは液晶相を安定に保持できることがわかった。 The stability of the boron liquid crystal in the low temperature region was evaluated by cooling the liquid crystal phase II under a polarizing microscope. In order to eliminate the possibility of supercooling, it was gradually cooled at a rate of 5 ° C./min or less using a cooling device, and an attempt was made to verify the temperature at which the liquid crystal phase II transitions to crystals. As a result of cooling from 20 ° C., the liquid crystal structure did not change even when cooled to the device limit temperature of −38.5 ° C. (FIG. 26A). From this, it was found that the liquid crystal phase can be stably maintained at least up to about −40 ° C.
 また、-50℃までの冷却過程をアルゴン下でのDSC測定でも検証した結果、液晶相IとIIの間の相転移以外に、低温側にピークは観測されなかった(図26(b))。このことから、液晶から結晶への転移点は-50℃よりも低温側に存在すると考えられる。 Further, as a result of verifying the cooling process to −50 ° C. by DSC measurement under argon, no peak was observed on the low temperature side other than the phase transition between liquid crystal phases I and II (FIG. 26B). . From this, it is considered that the transition point from the liquid crystal to the crystal exists on the lower temperature side than −50 ° C.
 以上から、ホウ素液晶が低温域で安定であるために、冷却装置を使用した偏光顕微鏡観察では、結晶への転移点を観測できないことがわかった。そこで、ホウ素液晶を液体窒素に浸漬することによる結晶化を試みた。キャピラリーごと液体窒素に1分及び1晩浸漬したが、液晶組織に変化は見られなかった(図27(a))。ホウ素液晶が低温域で非常に安定である可能性もある一方、急冷によるガラス状態への転移の可能性も考えられるが、少なくとも液体窒素での冷却による結晶への転移は観測されなかった。 From the above, it was found that since the boron liquid crystal is stable in a low temperature region, the transition point to the crystal cannot be observed by the polarization microscope observation using a cooling device. Therefore, crystallization was attempted by immersing boron liquid crystal in liquid nitrogen. Although the capillary was immersed in liquid nitrogen for 1 minute and overnight, no change was observed in the liquid crystal structure (FIG. 27 (a)). While the boron liquid crystal may be very stable in the low temperature range, it may be possible to transition to a glass state by quenching, but at least a transition to a crystal by cooling with liquid nitrogen was not observed.
 液晶相IIが低温域で非常に安定である可能性が考えられたため、液晶相Iの状態から急冷することで、液晶相IIを経由せずに直接液晶相Iの結晶化を試みた。200℃の液晶相Iの状態から室温に急冷した結果、急冷直後には非常に鋭い線のような組織が無数に発達する結晶相が出現することがわかった(図27(b))。しかし、室温下で静置していると徐々に結晶相の鋭い線が消失しはじめ、組織が変化する様子が観測された。そして急冷から40分後には完全に液晶相IIへ変化したことがわかった。結晶相への転移が見えたことから、ホウ素液晶は結晶にもなりうるということがわかった。そして、結晶相に一度変化した後に、徐々に液晶相IIに変化したことから、室温では液晶相IIが過冷却状態ではないことがわかる。よって、室温における液晶相IIの高い安定性が実証された。
3.溶解による原子層化とリオトロピック液晶性
3-1.ホウ素層状結晶の溶解性検証
 ホウ素層状結晶はファンデルワールス力で積層するグラファイトなどと異なり、アニオン性のホウ素シートとカリウムカチオンのイオン性相互作用により積層しているため、高極性溶媒によりKを溶出させることで、シート構造を保持したまま、ホウ素シートの溶解が期待できる。
Since the liquid crystal phase II may be very stable at low temperatures, the liquid crystal phase I was crystallized directly without going through the liquid crystal phase II by quenching from the liquid crystal phase I state. As a result of quenching from the state of the liquid crystal phase I at 200 ° C. to room temperature, it was found that a crystal phase in which numerous structures such as very sharp lines developed immediately after the quenching appeared (FIG. 27B). However, when standing at room temperature, the sharp lines of the crystal phase began to disappear gradually, and a change in the structure was observed. And 40 minutes after quenching, it turned out that it changed into the liquid crystal phase II completely. From the fact that the transition to the crystalline phase was visible, it was found that the boron liquid crystal can also be a crystal. And since it changed to the liquid crystal phase II gradually after changing to a crystal phase once, it turns out that the liquid crystal phase II is not a supercooled state at room temperature. Therefore, the high stability of liquid crystal phase II at room temperature was demonstrated.
3. 3. Atomic layering by dissolution and lyotropic liquid crystallinity 3-1. Solubility verification boron layered crystal of the boron layer crystal Unlike such as graphite to be stacked in the van der Waals forces, since the laminated by ionic interaction of an anionic boron sheets and potassium cations, the K + by highly polar solvent By elution, dissolution of the boron sheet can be expected while maintaining the sheet structure.
 そこで、ホウ素層状結晶の各種溶媒に対する溶解性を検証した。シャーレ上に置いたホウ素結晶に各溶媒をそれぞれ10μLずつキャストし、溶解する過程を光学顕微鏡で観察した。その結果、溶解性を持つ溶媒をキャストした際には、ロッド状結晶が徐々に小さくなり、最終的に完全に溶解して消失する様子が確認された(図28)。9種類の溶媒に対する溶解性を検証した結果、HOやメタノール、エタノールといったプロトン性溶媒と、DMF、DMSOの非プロトン性高極性溶媒へ溶解することがわかった。 Thus, the solubility of boron layered crystals in various solvents was verified. 10 μL of each solvent was cast on boron crystals placed on a petri dish, and the dissolution process was observed with an optical microscope. As a result, it was confirmed that when a solvent having solubility was cast, the rod-like crystals gradually became smaller and finally completely dissolved and disappeared (FIG. 28). As a result of verifying the solubility in nine types of solvents, it was found that the compound was soluble in protic solvents such as H 2 O, methanol, and ethanol and aprotic highly polar solvents such as DMF and DMSO.
 溶媒へ溶解後のシート構造保持を確認するために、ホウ素結晶を溶解した溶液の吸収スペクトルを測定した。DMF溶液の近赤外領域における吸収スペクトルを測定した結果、ホウ素層状結晶の固体拡散反射で得られたスペクトルと一致する吸収が得られた。このことから、DMF溶液中では、溶解後もホウ素シート構造を保持していることが示唆された。
3-2.リオトロピック液晶性の検証
 HOPG基板上でホウ素層状結晶をDMFに完全に溶解し、溶媒が揮発する過程を偏光顕微鏡で観察することで、ホウ素層状結晶のリオトロピック液晶性を検証した。液晶性の発現は偏光顕微鏡観察により確認することができる。溶液が流動性を持ちつつも、結晶のような干渉色を示せば、液晶状態であるといえる。その結果、結晶の溶解直後は透明な溶液となるが、溶媒が揮発する過程で半球状の液晶相の出現が観測された(図29(a))。このことから、ホウ素層状結晶がDMFへの溶解により、既存の無機層状結晶と同様にリオトロピック液晶性を発現することが示された。
In order to confirm the retention of the sheet structure after dissolution in the solvent, the absorption spectrum of the solution in which the boron crystals were dissolved was measured. As a result of measuring the absorption spectrum in the near-infrared region of the DMF solution, absorption corresponding to the spectrum obtained by solid diffuse reflection of the boron layered crystal was obtained. This suggested that the DMF solution retains the boron sheet structure even after dissolution.
3-2. Verification of lyotropic liquid crystallinity Boron layered crystals were completely dissolved in DMF on a HOPG substrate, and the process of volatilization of the solvent was observed with a polarizing microscope to verify the lyotropic liquid crystallinity of the boron layered crystals. The expression of liquid crystallinity can be confirmed by observation with a polarizing microscope. If the solution has fluidity but exhibits an interference color like a crystal, it can be said to be in a liquid crystal state. As a result, a transparent solution was obtained immediately after dissolution of the crystals, but the appearance of a hemispherical liquid crystal phase was observed in the process of volatilization of the solvent (FIG. 29 (a)). From this, it was shown that the boron layered crystal develops lyotropic liquid crystallinity like the existing inorganic layered crystal when dissolved in DMF.
 この液晶相は液滴の周縁部に沿って干渉色が呈色しており2枚の偏光板の方向に沿って、垂直な十字方向に暗色部が現れていることがわかる(図29(b)。これはホウ素シートの配向に由来する液晶相だと考えられる。この液晶相をさらに放置し、DMFの揮発が進むと、徐々に液晶周縁部の干渉色が弱くなり、最終的に多結晶が生成することがわかった。 This liquid crystal phase has an interference color along the peripheral edge of the droplet, and a dark color portion appears in the vertical cross direction along the direction of the two polarizing plates (FIG. 29B). This is thought to be a liquid crystal phase derived from the orientation of the boron sheet.If this liquid crystal phase is further allowed to stand and DMF volatilization proceeds, the interference color at the periphery of the liquid crystal gradually becomes weaker and finally becomes polycrystalline. Was found to produce.
 SEM測定による、DMF揮発後の残渣結晶の形状観察を行なった。偏光顕微鏡で観察した多結晶の直接観察に成功した。その結果、約20nm程度の板状フレークが大量に見られ、この板状フレークが積層して多結晶を形成していることがわかった(図30)。このフレークを部分的に拡大すると、シートが積層した層状構造が観測されたため、ホウ素層状結晶をDMFに溶解した後もシートは分解せず、シート構造を保持していることが示された。
3-3.DMF溶解による原子層剥離
 ホウ素層状結晶のDMF溶解が示されたため、これを利用した原子層剥離を行なった。ホウ素結晶をDMFに溶解し、HOPG基板上にキャストすることで、ホウ素シートの基板塗布を試みた。
The shape of the residual crystal after DMF volatilization was observed by SEM measurement. Successful direct observation of polycrystals observed with a polarizing microscope. As a result, a large amount of plate-like flakes of about 20 nm were observed, and it was found that the plate-like flakes were laminated to form a polycrystal (FIG. 30). When the flakes were partially enlarged, a layered structure in which sheets were laminated was observed. Thus, even after the boron layered crystals were dissolved in DMF, the sheets were not decomposed, indicating that the sheet structure was maintained.
3-3. Atomic layer separation by DMF dissolution Since DMF dissolution of boron layered crystals was shown, atomic layer separation was performed using this. Boron crystals were dissolved in DMF and cast on a HOPG substrate to try to apply a boron sheet to the substrate.
 ホウ素層状結晶のDMF溶液をHOPG基板上にキャストし、AFM観察を行なった。DMFは高沸点であるため、キャスト後真空下で1週間乾燥させた後に測定した。AFM観察の結果、高さ約2nm程度の均一な原子層の観察に成功した(図31)。結晶構造から予測されるホウ素シートの厚さ(層間0.35nm)よりは厚いが、これはAFMのオフセットによるものと、層表面のカリウムイオンおよびDMFの吸着によるものだと考えられる。 Boron layered crystal DMF solution was cast on a HOPG substrate and AFM observation was performed. Since DMF has a high boiling point, it was measured after drying for one week under vacuum after casting. As a result of AFM observation, a uniform atomic layer having a height of about 2 nm was successfully observed (FIG. 31). Although it is thicker than the thickness of the boron sheet predicted from the crystal structure (interlayer 0.35 nm), this is thought to be due to the offset of AFM and the adsorption of potassium ions and DMF on the layer surface.

Claims (46)

  1.  骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シート。 An atomic layer sheet having a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5, networked by non-equilibrium bonds having boron and oxygen as skeleton elements and having a boron-boron bond.
  2.  更にアルカリ金属イオンを含み、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項1に記載の原子層シート。 The atomic layer sheet according to claim 1, further comprising alkali metal ions, wherein the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
  3.  MBH(Mはアルカリ金属イオンを示す。)の酸化生成物である請求項1または2に記載の原子層シート。 The atomic layer sheet according to claim 1 or 2, which is an oxidation product of MBH 4 (M represents an alkali metal ion).
  4.  骨格組成がBである請求項1~3のいずれか一項に記載の原子層シート。 The atomic layer sheet according to any one of claims 1 to 3, wherein the skeleton composition is B 5 O 3 .
  5.  前記骨格がホウ素-ホウ素結合を有する3回対称性を有する請求項4に記載の原子層シート。 The atomic layer sheet according to claim 4, wherein the skeleton has a 3-fold symmetry having a boron-boron bond.
  6.  前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む請求項4または5に記載の原子層シート。 The atomic layer sheet according to claim 4 or 5, comprising the constituent element X which is the skeleton part and the other constituent element Y.
  7.  前記構成要素Yが、末端部位および/または欠損部位である請求項6に記載の原子層シート。 The atomic layer sheet according to claim 6, wherein the constituent element Y is a terminal site and / or a defective site.
  8.  前記構成要素Yが、B-OHを含むホウ素酸化物部位である請求項6または7に記載の原子層シート。 The atomic layer sheet according to claim 6 or 7, wherein the constituent element Y is a boron oxide portion containing B-OH.
  9.  X線光電子分光測定において、190.5~193.0eVと、192.5~194.0eVに各々B-1s準位に由来するピークを有する請求項6~8のいずれか一項に記載の原子層シート。 The atom according to any one of claims 6 to 8, which has peaks derived from B-1s levels at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively, in X-ray photoelectron spectroscopy measurement. Layer sheet.
  10.  前記X線光電子分光測定において、190.5~193.0eVのピークが前記構成要素Xに対応している請求項9に記載の原子層シート。 The atomic layer sheet according to claim 9, wherein a peak of 190.5 to 193.0 eV corresponds to the component X in the X-ray photoelectron spectroscopy measurement.
  11.  IR測定において、B-O伸縮に由来する2種類のピークを1300~1500cm-1付近に有し、かつBO-H伸縮に由来するピークを3100cm-1付近に有する請求項6~10のいずれか一項に記載の原子層シート。 In the IR measurement, any one of claims 6 to 10 having has two peaks derived from BO stretch around 1300 ~ 1500 cm -1, and a peak derived from BO-H stretching in the vicinity of 3100 cm -1 The atomic layer sheet according to one item.
  12.  前記IR測定において、B-O伸縮に由来する2種類のピークのうち低波数側のピークが前記構成要素Xに対応している請求項11に記載の原子層シート。 The atomic layer sheet according to claim 11, wherein, in the IR measurement, a peak on the low wavenumber side of the two types of peaks derived from BO stretching corresponds to the component X.
  13.  請求項1~12のいずれか一項に記載の複数の原子層シートと、前記原子層シート間の金属イオンとを含む積層シート。 A laminated sheet comprising a plurality of atomic layer sheets according to any one of claims 1 to 12 and metal ions between the atomic layer sheets.
  14.  前記金属イオンがアルカリ金属イオンである請求項13に記載の積層シート。 The laminated sheet according to claim 13, wherein the metal ions are alkali metal ions.
  15.  アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項14に記載の積層シート。 The laminated sheet according to claim 14, wherein the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
  16.  請求項13~15のいずれか一項に記載の積層シートを含む結晶。 A crystal comprising the laminated sheet according to any one of claims 13 to 15.
  17.  有機溶媒を含む溶媒中に、不活性ガス雰囲気下でMBH(Mはアルカリ金属イオンを示す。)を添加し溶液を調製する工程と、
     前記溶液を、酸素を含む雰囲気に曝す工程とを含む、ホウ素と酸素を含む原子層シートおよび/または積層シートの製造方法。
    A step of preparing a solution by adding MBH 4 (M represents an alkali metal ion) in an inert gas atmosphere in a solvent containing an organic solvent;
    A method for producing an atomic layer sheet and / or a laminated sheet containing boron and oxygen, comprising the step of exposing the solution to an atmosphere containing oxygen.
  18.  前記原子層シートが、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートであり、前記積層シートが、複数の前記原子層シートと、前記原子層シート間の金属イオンとを含む請求項17に記載の方法。 An atom having a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5, wherein the atomic layer sheet is networked by non-equilibrium bonds having boron and oxygen as skeleton elements and having a boron-boron bond The method according to claim 17, wherein the laminated sheet includes a plurality of the atomic layer sheets and metal ions between the atomic layer sheets.
  19.  前記金属イオンがアルカリ金属イオンであり、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項18に記載の方法。 The method according to claim 18, wherein the metal ions are alkali metal ions, and the molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
  20.  請求項13~15のいずれか一項に記載の積層シートと、クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種とを、有機溶媒を含む溶媒中に添加し、前記積層シートを剥離する工程を含む、積層シートの剥離物の製造方法。 Adding the laminate sheet according to any one of claims 13 to 15 and at least one selected from crown ether and cryptand to a solvent containing an organic solvent, and peeling the laminate sheet; A method for producing a peeled sheet of a laminated sheet.
  21.  請求項13~15のいずれか一項に記載の積層シートを、非プロトン性高極性溶媒中に添加し、前記積層シートを剥離する工程を含む、積層シートの剥離物の製造方法。 A method for producing a peeled product of a laminated sheet, comprising the step of adding the laminated sheet according to any one of claims 13 to 15 to an aprotic highly polar solvent and peeling the laminated sheet.
  22.  前記剥離物は、単層の原子層シートを含む、請求項20または21に記載の方法。 The method according to claim 20 or 21, wherein the exfoliated material includes a single-layer atomic layer sheet.
  23.  請求項1に記載の原子層シートを含むサーモトロピック液晶。 A thermotropic liquid crystal comprising the atomic layer sheet according to claim 1.
  24.  複数の前記原子層シート間に金属イオンを内包する積層シートを含む請求項23に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to claim 23, comprising a laminated sheet containing metal ions between the plurality of atomic layer sheets.
  25.  前記金属イオンがアルカリ金属イオンであり、前記積層シートは、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項24に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to claim 24, wherein the metal ions are alkali metal ions, and the laminated sheet has a molar ratio of alkali metal ions to boron (alkali metal ions / boron) of less than 1.
  26.  少なくとも-196~350℃の温度領域で、液晶状態を保持する請求項23~25のいずれか一項に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to any one of claims 23 to 25, which maintains a liquid crystal state in a temperature range of at least -196 to 350 ° C.
  27.  高温側の液晶相Iと低温側の液晶相IIとの間で、温度に対して可逆な相転移を制御できる請求項23~26のいずれか一項に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to any one of claims 23 to 26, wherein a reversible phase transition with respect to temperature can be controlled between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side.
  28.  前記原子層シートが、MBH(Mはアルカリ金属イオンを示す。)の酸化生成物である請求項23~27のいずれか一項に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to any one of claims 23 to 27, wherein the atomic layer sheet is an oxidation product of MBH 4 (M represents an alkali metal ion).
  29.  前記原子層シートは、骨格組成がBである請求項23~28のいずれか一項に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to any one of claims 23 to 28, wherein the atomic layer sheet has a skeleton composition of B 5 O 3 .
  30.  前記原子層シートの骨格が、ホウ素-ホウ素結合を有する3回対称性を有する請求項29に記載のサーモトロピック液晶。 30. The thermotropic liquid crystal according to claim 29, wherein the skeleton of the atomic layer sheet has a three-fold symmetry having a boron-boron bond.
  31.  前記原子層シートが、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む請求項29または30に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to claim 29 or 30, wherein the atomic layer sheet includes a component X that is the skeleton portion and a component Y other than the component X.
  32.  前記構成要素Yが、末端部位および/または欠損部位である請求項31に記載のサーモトロピック液晶。 32. The thermotropic liquid crystal according to claim 31, wherein the component Y is a terminal site and / or a defect site.
  33.  前記構成要素Yが、B単位を含むホウ素酸化物部位である請求項31または32に記載のサーモトロピック液晶。 The thermotropic liquid crystal according to claim 31 or 32, wherein the constituent element Y is a boron oxide portion containing B 2 O 3 units.
  34.  請求項23~33のいずれか一項に記載のサーモトロピック液晶の製造方法であって、
     骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である複数の原子層シート間に金属イオンを内包する積層シートを含む結晶を、100℃以上に加熱する工程を含むサーモトロピック液晶の製造方法。
    A method for producing the thermotropic liquid crystal according to any one of claims 23 to 33,
    Between atomic sheets with a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5, networked by non-equilibrium bonds having boron and oxygen as skeletal elements and having a boron-boron bond The manufacturing method of thermotropic liquid crystal including the process of heating the crystal | crystallization containing the lamination sheet which includes a metal ion to 100 degreeC or more.
  35.  前記加熱によって、前記原子層シート間の距離が増加する請求項34に記載のサーモトロピック液晶の製造方法。 The method for producing a thermotropic liquid crystal according to claim 34, wherein the distance between the atomic layer sheets is increased by the heating.
  36.  前記加熱によって、前記原子層シートの末端部位および/または欠損部位におけるB-OH間の脱水縮合反応が進行する請求項34または35に記載のサーモトロピック液晶の製造方法。 36. The method for producing a thermotropic liquid crystal according to claim 34 or 35, wherein a dehydration condensation reaction between B—OH at a terminal site and / or a defect site of the atomic layer sheet proceeds by the heating.
  37.  請求項1に記載の原子層シートを含むリオトロピック液晶。 A lyotropic liquid crystal comprising the atomic layer sheet according to claim 1.
  38.  複数の前記原子層シート間に金属イオンを内包する積層シートを含む請求項37に記載のリオトロピック液晶。 The lyotropic liquid crystal according to claim 37, comprising a laminated sheet containing metal ions between the plurality of atomic layer sheets.
  39.  前記金属イオンがアルカリ金属イオンであり、前記積層シートは、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項37または38に記載のリオトロピック液晶。 The lyotropic liquid crystal according to claim 37 or 38, wherein the metal ions are alkali metal ions, and the laminated sheet has a molar ratio of alkali metal ions to boron (alkali metal ions / boron) of less than 1.
  40.  前記原子層シートは、骨格組成がBである請求項37~39のいずれか一項に記載のリオトロピック液晶。 The lyotropic liquid crystal according to any one of claims 37 to 39, wherein the atomic layer sheet has a skeleton composition of B 5 O 3 .
  41.  前記原子層シートの骨格が、ホウ素-ホウ素結合を有する3回対称性を有する請求項40に記載のリオトロピック液晶。 The lyotropic liquid crystal according to claim 40, wherein the skeleton of the atomic layer sheet has a three-fold symmetry having a boron-boron bond.
  42.  前記原子層シートが、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む請求項40または41に記載のリオトロピック液晶。 42. The lyotropic liquid crystal according to claim 40, wherein the atomic layer sheet includes a component X that is the skeleton part and a component Y other than the component X.
  43.  前記構成要素Yが、末端部位および/または欠損部位である請求項42に記載のリオトロピック液晶。 43. The lyotropic liquid crystal according to claim 42, wherein the component Y is a terminal site and / or a defective site.
  44.  前記構成要素Yが、B-OHを含むホウ素酸化物部位である請求項42または43に記載のリオトロピック液晶。 44. The lyotropic liquid crystal according to claim 42, wherein the constituent element Y is a boron oxide portion containing B—OH.
  45.  溶媒と、この溶媒中における請求項37~44のいずれか一項に記載のリオトロピック液晶とを含む組成物。 A composition comprising a solvent and the lyotropic liquid crystal according to any one of claims 37 to 44 in the solvent.
  46.  前記溶媒がN,N-ジメチルホルムアミドである請求項45に記載の組成物。 46. The composition according to claim 45, wherein the solvent is N, N-dimethylformamide.
PCT/JP2019/003380 2018-02-07 2019-01-31 Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal WO2019155979A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980005333.4A CN111433156B (en) 2018-02-07 2019-01-31 Boron atomic layer sheet, laminated sheet, method for producing same, and liquid crystal
EP19750494.7A EP3663261A4 (en) 2018-02-07 2019-01-31 Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal
US16/647,739 US11795059B2 (en) 2018-02-07 2019-01-31 Boron atomic layer sheet and laminated sheet, method for manufacturing the same, and liquid crystals
KR1020207010432A KR102425803B1 (en) 2018-02-07 2019-01-31 Boron atomic layer sheet and laminated sheet, manufacturing method thereof, and liquid crystal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018020443A JP6656563B2 (en) 2018-02-07 2018-02-07 Boron atomic layer sheet and laminated sheet and method for producing the same
JP2018-020443 2018-02-07
JP2018020447 2018-02-07
JP2018-020447 2018-02-07
JP2019-005297 2019-01-16
JP2019005297A JP6656564B2 (en) 2018-02-07 2019-01-16 Liquid crystal of boron atomic layer sheet and laminated sheet

Publications (1)

Publication Number Publication Date
WO2019155979A1 true WO2019155979A1 (en) 2019-08-15

Family

ID=67548902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003380 WO2019155979A1 (en) 2018-02-07 2019-01-31 Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal

Country Status (1)

Country Link
WO (1) WO2019155979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095619A1 (en) * 2019-11-15 2021-05-20 国立大学法人東京工業大学 Two dimensional borohydride-containing sheet manufacturing method, two dimensional borohydride-containing sheet composition, and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274841A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Superconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274841A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Superconductive material

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ACC. CHEM. RES., vol. 49, 2016, pages 1514 - 1523
ANGEW. CHEM. INT. ED., vol. 50, 2011, pages 3043 - 3047
COORDIN. CHEM. REV., vol. 340, 2017, pages 79 - 97
INORG. CHEM., vol. 54, 2015, pages 2910
ISR. J. CHEM., vol. 52, 2012, pages 881 - 894
LUO, W. W. ET AL.: "The adsorption and dissociation of oxygen on Ag (111) supported x3borophene", PHYSICA B: CONDENSED MATTER, vol. 537, 31 January 2018 (2018-01-31), pages 1 - 6, XP085365832, doi:10.1016/j.physb.2018.01.060 *
NAT COMMUN, vol. 5, 2014, pages 3113
NAT. CHEM., vol. 8, 2016, pages 563 - 568
NAT. NANOTECHNOL., vol. 5, 2010, pages 406 - 411
NATURE, vol. 413, 2001, pages 504 - 508
SCIENCE, vol. 306, 2004, pages 666
SCIENCE, vol. 350, 2015, pages 1513 - 1516
See also references of EP3663261A4 *
SOFT MATTER., vol. 6, 2010, pages 5397 - 5400
Z. ANORG. ALLG. CHEM., vol. 643, 2017, pages 517
ZHANG, RUIQI ET AL.: "Two-Dimensional Stoichiometric Boron Oxides as a Versatile Platform for Electronic Structure Engineering", JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 8, no. 18, 2017, pages 4347 - 4353, XP055629710, ISSN: 1948-7185, DOI: 10.1021/acs.jpclett.7b01721 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095619A1 (en) * 2019-11-15 2021-05-20 国立大学法人東京工業大学 Two dimensional borohydride-containing sheet manufacturing method, two dimensional borohydride-containing sheet composition, and method for manufacturing same

Similar Documents

Publication Publication Date Title
Wang et al. 3D hierarchical Zn3 (OH) 2V2O7· 2H2O and Zn3 (VO4) 2 microspheres: synthesis, characterization and photoluminescence
Marx et al. Bent-core liquid crystal (LC) decorated gold nanoclusters: synthesis, self-assembly, and effects in mixtures with bent-core LC hosts
Yang et al. The hydrothermal synthesis and formation mechanism of single-crystalline perovskite BiFeO 3 microplates with dominant (012) facets
Liu et al. Shape-controlled synthesis of monodispersed nano-/micro-NaY (MoO 4) 2 (doped with Eu 3+) without capping agents via a hydrothermal process
Nguyen et al. Two-phase synthesis of colloidal annular-shaped Ce x La1− x CO3OH nanoarchitectures assemblied from small particles and their thermal conversion to derived mixed oxides
Wang et al. Physical control of phase behavior of hexadecane in nanopores
Lian et al. Template-free hydrothermal synthesis of hexagonal ZnO micro-cups and micro-rings assembled by nanoparticles
Wang et al. Template-free facile solution synthesis and optical properties of ZnO mesocrystals
Xin et al. Growth of centimeter-sized [(CH 3) 2 NH 2][Mn (HCOO) 3] hybrid formate perovskite single crystals and Raman evidence of pressure-induced phase transitions
Uthirakumar et al. Nanocrystalline ZnO particles: Low-temperature solution approach from a single molecular precursor
Xu et al. New synthetic route and characterization of magnesium borate nanorods
Gu et al. Preparation and photoluminescence of single-crystalline GdVO4: Eu3+ nanorods by hydrothermal conversion of Gd (OH) 3 nanorods
WO2019155979A1 (en) Boron atom layer sheet and layered sheet, methods for producing same, and liquid crystal
JP6656564B2 (en) Liquid crystal of boron atomic layer sheet and laminated sheet
Lofland et al. A new low temperature methodology to obtain pure nanocrystalline nickel borate
Ibaceta-Jaña et al. Hidden polymorphism of FAPbI 3 discovered by Raman spectroscopy
KR102425803B1 (en) Boron atomic layer sheet and laminated sheet, manufacturing method thereof, and liquid crystal
Chen et al. Tunable synthesis of various hierarchical structures of In (OH) 3 and In2O3 assembled by nanocubes
Chen et al. Synthesis, structure and nonlinear optical properties of solution-processed Bi 2 TeO 5 nanocrystals
JP6656563B2 (en) Boron atomic layer sheet and laminated sheet and method for producing the same
Acharya et al. Investigation of multiferroic behaviour of TbMnO3 nanoplates
Tian et al. Morphological tuning and enhanced luminescence of NaEuF4 nano-/submicro-crystals
Yang et al. Preparation and characterization of ZnS nanocrystal from Zn (II) coordination polymer and ionic liquid
Chen et al. Hierarchical γ-BaB 2 O 4 hollow microspheres: surfactant-assisted hydrothermal formation, phase conversion, optical properties and application as adsorbents
JP6829920B1 (en) Conductive and dielectric devices with boron sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019750494

Country of ref document: EP

Effective date: 20200306

ENP Entry into the national phase

Ref document number: 20207010432

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE