WO2021095344A1 - Motor and electrical equipment including same - Google Patents

Motor and electrical equipment including same Download PDF

Info

Publication number
WO2021095344A1
WO2021095344A1 PCT/JP2020/034410 JP2020034410W WO2021095344A1 WO 2021095344 A1 WO2021095344 A1 WO 2021095344A1 JP 2020034410 W JP2020034410 W JP 2020034410W WO 2021095344 A1 WO2021095344 A1 WO 2021095344A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
end plate
lip
motor
seal ring
Prior art date
Application number
PCT/JP2020/034410
Other languages
French (fr)
Japanese (ja)
Inventor
貴紀 荻原
祥太 飯塚
保治 内田
水上 裕文
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021095344A1 publication Critical patent/WO2021095344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers

Definitions

  • the present invention relates to a motor and an electric device including the motor.
  • the present invention particularly relates to a motor having a structure for preventing the ingress of moisture, oil, etc. from the outside.
  • motors have been widely used for electrical equipment, power tools, etc., or for in-vehicle applications.
  • a small motor is used to drive a hydraulic pump used in an anti-lock braking system (ABS, Anti-lock Break System).
  • ABS Anti-lock Break System
  • Motors used in these applications are required to have higher reliability while being further required to be smaller and lighter.
  • the motor used for ABS is located in the engine compartment of the vehicle. For this reason, moisture from the outside may be applied to the motor in rainy weather, etc., and it is necessary to take sufficient waterproof measures.
  • the above-mentioned moisture etc. mainly enters the inside of the frame from the connecting portion between the end plate and the frame. Therefore, a seal ring such as an O-ring and an X-ring is provided at this connecting portion to prevent moisture or the like from entering the frame.
  • a seal ring such as an O-ring and an X-ring is provided at this connecting portion to prevent moisture or the like from entering the frame.
  • An object of the present invention is to provide a highly reliable motor that maintains the airtightness of a connecting portion between an end plate and a frame, and an electric device using the same.
  • the motor according to the present invention includes a bottomed tubular frame having one end opened, a stator housed in the frame, and a stator housed in the frame.
  • Rotors arranged at intervals, an end plate which is a plate-like member arranged so as to cover the opening in the opening of the frame and having a through hole through which the rotation shaft is inserted, and an annular elasticity. It consists of a body and is equipped with at least a seal ring for maintaining the airtightness inside the frame, and an annular open space is formed between the step formed on the outer peripheral surface of the outer surface of the end plate and the inner peripheral surface of the frame.
  • the seal ring is housed in an open space, the seal ring has an X-shaped cross section and has first to fourth lips, and the fourth lip is in contact with the corner of the step, and the first -At least one of the third lip has a larger cross-sectional area than the fourth lip.
  • the contact pressure of the seal ring at the corner of the open space including the inner peripheral surface of the frame can be increased.
  • the contact pressure of the seal ring at the corner portion formed by this load and the inner peripheral surface of the frame can be increased.
  • the electric device is a load having a motor, a driven portion connected to the motor, driven to a rotating shaft protruding from a through hole on the outside of the end plate, and driven in response to the rotation of the motor.
  • the first lip is formed at the first corner portion formed by the bottom surface of the step and the inner peripheral surface of the frame.
  • the second lip is on the second corner composed of the surface of the load and the inner peripheral surface of the frame
  • the third lip is on the third corner composed of the surface of the load and the side surface of the step
  • the fourth lip is on the step. It is in contact with the fourth corner portion, which is the corner portion of the above.
  • the first to third lips are in predetermined contact with the first to third corners, which correspond to the entry path of moisture from the outside. Contact with surface pressure. Therefore, it is possible to reliably prevent the ingress of moisture or the like into the inside of the frame or the inside of the load. As a result, highly reliable electrical equipment can be realized.
  • FIG. 1 is a schematic cross-sectional view of a main part of an electric device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring for comparison.
  • FIG. 3 is a schematic cross-sectional view of the seal ring.
  • FIG. 4A is a schematic cross-sectional view of a connecting portion between the end plate and the frame before assembling the electrical equipment.
  • FIG. 4B is a schematic cross-sectional view of a connecting portion between the end plate and the frame after assembling the electrical equipment.
  • FIG. 5 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of the seal ring according to the first modification.
  • FIG. 7 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the first modification.
  • FIG. 8 is a schematic cross-sectional view of another seal ring according to the first modification.
  • FIG. 9 is a schematic cross-sectional view of another connecting portion between the end plate and the frame according to the first modification.
  • FIG. 10A is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention.
  • FIG. 10B is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention.
  • FIG. 11 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the second embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second modification.
  • FIG. 13 is another schematic cross-sectional view of the connecting portion between the end plate and the frame according to the second modification.
  • FIG. 1 is a schematic cross-sectional view of a main part of an electric device according to a first embodiment of the present invention.
  • the motor 100 includes a frame 20, an end plate 30, bearings 40 and 41, a rotor 50, a stator 60, a brush 70, and a seal ring 80.
  • the electric device 300 includes a load 200 and a motor 100.
  • the longitudinal direction of the rotating shaft 54 forming a part of the rotor 50 is referred to as an axial direction
  • the radial direction of the end plate 30 is referred to as a radial direction
  • the circumferential direction of the end plate 30 is referred to as a circumferential direction. I may call it.
  • the side of the frame 20 on which the end plate 30 is arranged may be referred to as "upper", and the opposite side of the frame 20 may be referred to as "lower".
  • the details of the load 200 are not shown.
  • the frame 20 is a bottomed semi-cylindrical metal member having a collar around an opening 21 provided at the top.
  • a bearing holding portion 22 inserted into one end of the rotating shaft 54 is formed on the bottom surface of the frame 20.
  • a plurality of plate support portions 24 (see FIGS. 4A to 9) that abut and support the inner surface of the end plate 30 are arranged on the upper side of the inner peripheral surface 23 of the frame 20 at intervals in the circumferential direction. ing.
  • an annular flange 25 bent outward in the radial direction is formed at the upper end of the frame 20, that is, in the vicinity of the opening 21.
  • the end plate 30 is a plate-shaped member formed by molding a resin material.
  • the end plate 30 is formed on a substantially disk-shaped base portion 31, a through hole 32 provided in the center of the base portion 31, a brush holding portion 33 formed on the inner surface of the base portion 31, and an outer surface of the base portion 31.
  • the electric wire drawn from the electric wire outlet is not shown for convenience of explanation.
  • the surface of the end plate 30 facing the inside of the frame 20 is referred to as the “inner surface” of the end plate 30, and the surface of the end plate 30 opposite to the inner surface is referred to as the “outer surface” of the end plate 30.
  • the end plate 30 is press-fitted into the opening 21 of the frame 20 after being positioned with the frame 20.
  • the inner surface of the end plate 30 is in contact with the plate support portion 24 provided on the frame 20.
  • the end plate 30 is arranged in the frame 20 so as to cover the opening 21.
  • the rotor 50 is housed in a space partitioned by the frame 20 and the end plate 30.
  • the rotating shaft 54 is inserted through the through hole 32 of the end plate 30 and projects outward from the end plate 30.
  • the rotating shaft 54 is rotatably supported by a bearing 40 held by the bearing holding portion 22 of the frame 20 and a bearing 41 provided so as to close the through hole 32.
  • a step 36 is formed on the outer peripheral portion of the outer surface of the end plate 30 (see FIG. 2).
  • the bottom surface 38 of the step 36 is a flat surface.
  • the bottom surface 38 is formed so as to be orthogonal to the side surface 37 of the step 36.
  • “Orthogonal” means “orthogonal” including the processing tolerance of the step 36, and does not mean that the two to be compared are strictly orthogonal to each other.
  • the rotor 50 has an armature core 51, a plurality of salient poles 52, an armature winding 53, a rotating shaft 54, a commutator 55, and an insulator 56.
  • a plurality of salient poles 52 projecting outward in the radial direction are arranged on the armature core 51 at predetermined intervals in the circumferential direction.
  • An armature winding 53 is wound around the armature core 51 via an insulator 56, which is an insulating resin, around each of the plurality of salient poles 52.
  • the commutator 55 is connected to the leader wire of the armature winding 53 drawn from the armature core 51.
  • the rotating shaft 54 is provided at the axis of the rotor 50, penetrates the center of the armature core 51 and the commutator 55, and is connected to them.
  • the stator 60 is composed of a frame 20 and a plurality of permanent magnets 61 arranged on the inner peripheral surface 23 of the frame 20 at predetermined intervals in the circumferential direction.
  • the permanent magnets 61 adjacent to each other in the circumferential direction are arranged so as to have different polarities from each other.
  • the frame 20 also functions as a yoke constituting the permanent magnet 61 and the magnetic circuit.
  • the pair of brushes 70 contains a solid lubricant in a carbon brush material such as graphite.
  • the pair of brushes 70 are held in the brush holding portion 33 provided on the inner surface of the end plate 30.
  • the pair of brushes 70 are pressed against the commutator 55 by a brush spring (not shown).
  • the seal ring 80 is made of an annular elastic body, for example, EPDM (ethylene propylene diene rubber, Ethylene Propyrene Diene Monomer Rubber), nitrile rubber, fluororubber, or the like.
  • EPDM ethylene propylene diene rubber, Ethylene Propyrene Diene Monomer Rubber
  • the seal ring 80 has an X-shaped cross section and has four lips 80a to 80d. The shape of the seal ring 80 will be described in detail later.
  • the seal ring 80 is housed in an annular open space S partitioned between the above-mentioned step 36 and the inner peripheral surface 23 of the frame 20 facing the side surface 37 of the step 36.
  • the seal ring 80 seals the connecting portion between the frame 20 and the end plate 30 to prevent moisture and the like from entering the inside of the frame 20 from the outside.
  • the annular open space S is an open space whose upper part is open.
  • the load 200 is arranged on the upper side of the motor 100.
  • the driven portion 210 is drive-connected to the rotating shaft 54 protruding from the through hole 32 on the outside of the end plate 30.
  • the driven unit 210 includes a mechanical element (not shown) that rotates in the same direction or in the opposite direction according to the rotation of the rotating shaft 54, or converts the rotational motion into a linear motion.
  • the load 200 is, for example, a hydraulic pump. However, it is not limited to this.
  • the outer shell 220 of the load 200 is assembled to the motor 100 with its surface 221 in contact with the frame 20 and the second and third lips 80b and 80c of the seal ring 80.
  • the motor 100 and the load 200 are arranged so that the surface 221 of the outer shell 220 and the outer surface of the end plate 30 are separated from each other while maintaining a predetermined clearance.
  • the outer shell 220 is, for example, a block made of aluminum. However, it is not limited to this. Further, in the following description, the surface 221 of the outer shell 220 may be referred to as the surface 221 of the load 200.
  • the seal ring 80 When pressed from the surface 221 of the load 200 to the lower side, that is, to the bottom side of the frame 20, the seal ring 80 is compressed and deformed, and the four lips 80a to 80d are formed into an annular open space S and the surface of the load 200. It is in contact with four corner portions C1 to C4 (see FIGS. 2 to 4B) of the space partitioned by 221.
  • the first lip 80a is in contact with the first corner portion C1 composed of the bottom surface 38 of the step 36 formed on the end plate 30 and the inner peripheral surface 23 of the frame 20.
  • the second lip 80b is in contact with the second corner portion C2 composed of the inner peripheral surface 23 of the frame 20 and the surface 221 of the load 200.
  • a flange 25 bent outward in the radial direction is formed at the upper end of the frame 20. Therefore, in the second corner portion C2, the second lip 80b may not sufficiently contact the inner peripheral surface 23 of the frame 20, and may mainly contact only the surface 221 of the load 200. ..
  • the third lip 80c is in contact with the third corner portion C3 composed of the surface 221 of the load 200 and the side surface 37 of the step 36.
  • the fourth lip 80d is in contact with the fourth corner portion C4 corresponding to the corner portion of the step 36.
  • the first lip 80a is located diagonally to the third lip 80c in cross-sectional view
  • the second lip 80b is located diagonally to the fourth lip 80d in cross-sectional view.
  • the seal ring 80 comes into contact with the load 200, the frame 20 and the end plate 30, and pressure is applied to the contact surface portion.
  • the space between the frame 20 and the end plate 30 and the space between the frame 20 and the load 200 are sealed. Therefore, it is possible to prevent moisture from the outside from entering the inside of the frame 20 from the load 200 side.
  • By sealing between the end plate 30 and the load 200 it is possible to prevent moisture or the like from adhering to the bearing 41 or the rotating shaft 54.
  • FIG. 2 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring for comparison.
  • components other than the frame 20, the end plate 30, the seal ring 80, and the bearing 41 are not shown.
  • At the load 200 only a part of the outer shell 220 including the surface 221 is shown.
  • FIG. 2 the upper figure shows the state immediately after the motor 100 and the load 200 are assembled.
  • each member maintains the arrangement relationship as designed within the range of the assembly tolerance.
  • pressure is applied from the load 200 side to the motor 100 side.
  • pressure is applied to the central portion of the end plate 30 via the bearing 41 housed in the bearing holding portion 34.
  • pressure is applied from the load 200 side to the central portion of the end plate 30.
  • the temperatures of the motor 100 and the load 200 start to rise due to the driving of the motor 100, the operation of the load 200, the temperature of the environment in which the electric device 300 is arranged, and the like. ..
  • the resin material is deformed by thermal creep. Therefore, the end plate 30 formed by using the resin material is deformed so that the central side is pushed downward and the outer peripheral side is lifted upward accordingly.
  • the contact pressure of the third lip 80c at the third corner C3 and the contact pressure of the fourth lip 80d at the fourth corner C4 also weaken.
  • the first to third corner portions C1 to C3 correspond to the entry route of moisture and the like from the outside.
  • the second corner portion C2 is most likely to allow moisture or the like to enter from the outside.
  • the inventors of the present application have found that the sealing property of the seal ring 80 at the first to third corners C1 to C3 is lowered, and a fluid such as moisture easily enters the inside of the frame 20. It was.
  • the inventors of the present application paid attention to the shape of the seal ring 80.
  • the inventors of the present application have found that the airtightness inside the frame 20 can be maintained by changing the shape as described later.
  • FIG. 3 is a schematic cross-sectional view of the seal ring.
  • FIG. 4A is a schematic cross-sectional view of a connecting portion between the end plate and the frame before assembling the electrical equipment.
  • FIG. 4B is a schematic cross-sectional view of a connecting portion between the end plate and the frame after assembling the electrical equipment.
  • FIG. 5 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the present embodiment.
  • FIG. 4A shows a cross section of a connecting portion between the end plate 30 and the frame 20 before the load 200 is attached.
  • FIG. 4B shows a cross section of a connecting portion between the end plate 30 and the frame 20 after the load 200 is attached.
  • FIGS. 4A, 4B, and 5 cross sections of parts of the load 200, the frame 20, and the end plate 30 are also shown.
  • the three lips 80a to 80c of the seal ring 80 are formed so that the cross-sectional area, in other words, the volume is larger than that of the fourth lip 80d.
  • the seal ring 80 is housed in the annular open space S.
  • the first lip 80a is pressed against the first corner portion C1 and the fourth lip 80d is pressed against the fourth corner portion C4, respectively, and is deformed.
  • the second and third lips 80b and 80c each project above the upper surface of the annular open space S, that is, to the load 200 side by the length A.
  • the surface 221 of the load 200 abuts on the second and third lips 80b and 80c of the seal ring 80, respectively, and presses the seal ring 80 downward.
  • the load 200 further lowers the central portion of the end plate 30 via the bearing 41 housed in the bearing holding portion 34.
  • the first to third lips 80a to 80c are formed so that the cross-sectional area is larger than that of the fourth lip 80d. That is, the contact pressure of the seal ring 80 at the first to third corners C1 to C3 is higher than the contact pressure at the fourth corner C4. Therefore, the decrease in the contact surface pressure of the seal ring 80 at the first to third corner portions C1 to C3 due to thermal creep is offset, and the airtightness at the first to third corner portions C1 to C3 is maintained. This makes it possible to prevent moisture and the like from entering the inside of the frame 20.
  • the fourth corner portion C4 is composed of only the end plate 30, it does not directly contribute to the airtightness between the frame 20 and the end plate 30 and the airtightness between the frame 20 and the load 200. Therefore, even if the contact pressure of the seal ring 80 decreases at the fourth corner portion C4, the influence of moisture or the like entering the inside of the frame 20 is small.
  • the motor 100 has a bottomed tubular frame 20 having one end opened, a stator 60 housed in the frame 20, and a stator housed in the frame 20.
  • a rotor 50 arranged at a predetermined interval from the 60, and an end plate 30 which is a resin plate-like member arranged so as to cover the opening 21 in the opening 21 of the frame 20 are provided.
  • a through hole 32 through which the rotating shaft 54 is inserted is provided in the center of the end plate 30.
  • the motor 100 is made of an annular elastic body, includes a seal ring 80 for maintaining airtightness inside the frame 20, and has a step 36 formed on the outer peripheral portion of the outer surface of the end plate 30 and the inside of the frame 20.
  • An annular open space S is formed between the peripheral surface 23 and the seal ring 80, and the seal ring 80 is housed in the annular open space S.
  • the seal ring 80 has an X-shaped cross section and has four lips 80a to 80d, and the fourth lip 80d is in contact with the corner of the step 36. In other words, the fourth lip 80d is in contact with only the end plate 30.
  • the first to third lips 80a to 80c have a larger cross-sectional area than the fourth lip 80d.
  • the contact pressures of the first to third lips 80a to 80c are increased with respect to the first to third corner portions C1 to C3, which correspond to the entry path of moisture and the like from the outside. Be done. As a result, it is possible to reliably prevent moisture and the like from entering the inside of the frame 20 and the inside of the load 200.
  • the cross section of the seal ring 80 into an X shape, there are two seal rings 80 with respect to the bottom surface 38 of the step 36 which is the installation surface of the seal ring 80.
  • the first lip 80a and the fourth lip 80a and the fourth Since the lip 80d comes into contact with the lip 80d, the position of the seal ring 80 in the annular open space S can be stabilized.
  • the cross-sectional area of the fourth lip 80d smaller than that of the other lips 80a to 80c, it is possible to prevent the volume of the seal ring 80 itself from becoming too large. If the volume of the seal ring 80 becomes too large, the seal ring 80 may be abnormally deformed when the load 200 is attached to the motor 100, and the airtightness may not be maintained. By using the seal ring 80 of the present embodiment, it is possible to avoid the occurrence of such a problem.
  • the electric device 300 is connected to the motor 100 and the motor 100, and is driven and connected to the rotating shaft 54 protruding from the through hole 32 to the outside of the end plate 30, and is driven according to the rotation of the motor 100. It includes at least a load 200 having a driven portion 210 to be driven.
  • the seal ring 80 is pressed from the surface 221 of the load 200 toward the bottom of the frame 20, so that the first lip 80a is a first corner portion formed by the bottom surface 38 of the step 36 and the inner peripheral surface 23 of the frame 20.
  • the second lip 80b is on the second corner portion C2 composed of the surface 221 of the load 200 and the inner peripheral surface 23 of the frame 20
  • the third lip 80c is on the surface 221 of the load 200 and the side surface 37 of the step 36.
  • the fourth lip 80d is in contact with the third corner portion C3 composed of the above, and the fourth lip 80d is in contact with the fourth corner portion C4, which is the corner portion of the step 36.
  • the end plate is caused by the heat continuously generated when the motor 100 is driven and the driven portion 210 of the load 200 is operated and the pressure applied to the end plate 30. Even when the 30 is deformed, it is possible to prevent moisture and the like from entering the inside of the frame 20 and the inside of the load 200. Thereby, a highly reliable electric device 300 can be realized.
  • the cross section of the seal ring 80 X-shaped and making the cross-sectional area of each of the first to third lips 80a to 80c larger than the cross-sectional area of the fourth lip 80d moisture from the outside and the like can be prevented.
  • the contact pressure of the first to third lips 80a to 80c is increased with respect to the first to third corner portions C1 to C3 corresponding to the approach path, and moisture or the like enters the inside of the frame 20 or the load 200, respectively. Can be reliably prevented.
  • the electric device 300 of the present embodiment is useful because it can ensure high reliability when it is arranged in an external environment and is continuously used in a state where the environmental temperature reaches several tens of degrees or more.
  • the motor 100 of the present embodiment includes a bottomed tubular frame 20 having one end opened, a stator 60 housed in the frame 20, and a stator 60 housed in the frame 20.
  • At least a certain end plate 30 and a seal ring 80 made of an annular elastic body and for maintaining airtightness inside the frame 20 are provided.
  • An annular open space S is partitioned between the step 36 formed on the outer peripheral portion of the outer surface of the end plate 30 and the inner peripheral surface 23 of the frame 20, and the seal ring 80 is housed in the open space.
  • the seal ring 80 has an X-shaped cross section and has first to fourth lips 80a to 80d.
  • the fourth lip 80d is in contact with the corner of the step 36.
  • At least one of the first to third lips 80a to 80c has a larger cross-sectional area than the fourth lip 80d.
  • the contact pressure of the seal ring 80 at the corner portion of the open space including the inner peripheral surface 23 of the frame 20 can be increased.
  • the contact pressure of the seal ring 80 at the corner portion formed by the load 200 and the inner peripheral surface 23 of the frame 20 can be increased.
  • the electric device 300 of the present embodiment is connected to the motor 100 and the motor 100, and is driven and connected to the rotating shaft 54 protruding from the through hole 32 to the outside of the end plate 30, and is driven and connected according to the rotation of the motor 100. It includes at least a load 200 having a driven portion 210 to be driven.
  • the seal ring 80 When the seal ring 80 is pressed from the surface of the load 200 toward the bottom of the frame 20, the first lip 80a is placed on the first corner portion formed by the bottom surface 38 of the step and the inner peripheral surface of the frame 20.
  • the 2 lip 80b is the second corner portion composed of the surface of the load 200 and the inner peripheral surface 23 of the frame 20
  • the third lip 80c is the third corner portion composed of the surface of the load 200 and the side surface 37 of the step.
  • the fourth lip 80d is in contact with the fourth corner portion, which is the corner portion of the step 36, respectively.
  • the cross section of the seal ring 80 into an X shape, the first to third lips 80a with respect to the first to third corner portions C1 to C3 which correspond to the entry path of moisture and the like from the outside. -80c come into contact with each other at a predetermined contact pressure. Therefore, it is possible to reliably prevent the ingress of moisture or the like into the inside of the frame 20 or the inside of the load. As a result, a highly reliable electric device 300 can be realized.
  • FIG. 6 is a schematic cross-sectional view of the seal ring according to the first modification.
  • FIG. 7 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the first modification.
  • FIG. 8 is a schematic cross-sectional view of another seal ring according to the first modification.
  • FIG. 9 is a schematic cross-sectional view of another connecting portion between the end plate and the frame according to the first modification.
  • FIGS. 6 to 9 the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the seal ring 81 shown in FIG. 6 is formed so that the cross-sectional areas of the first and second lips 81a and 81b are larger than the cross-sectional areas of the fourth lip 81d, respectively. As described above, the first and second lips 81a and 81b abut on the first and second corner portions C1 and C2, respectively, and the first and second corner portions C1 and C2 touch the inner peripheral surface 23 of the frame 20. Each is included.
  • the gap between the inner peripheral surface 23 of the frame 20 and the surface 221 of the load 200 increases in the second corner portion C2 due to the thermal deformation of the end plate 30. For this reason, it is the second corner portion C2 that is most likely to allow moisture or the like to enter from the outside.
  • the path through which moisture or the like directly enters the inside of the frame 20 is the first corner portion C1. Therefore, it is necessary to improve the airtightness at the first corner portion C1.
  • the contact surface pressure of the seal ring 81 at the first and second corner portions C1 and C2 shown in FIG. 7 can be increased, and the inside of the frame 20 and the inside of the load 200 can be increased. It is possible to reliably prevent the ingress of moisture and the like into the water.
  • the cross-sectional area of the third lip 81c equal to the cross-sectional area of the fourth lip 81d, the volume of the seal ring 81 itself can be reduced, and abnormal deformation of the seal ring 81 can be suppressed. As a result, the airtightness inside the frame 20 and the inside of the load 200 can be improved.
  • the upper end portion of the frame 20 is a flange 25 bent outward in the radial direction. Therefore, if the cross-sectional area of the second lip 81b is simply increased, the second lip 81b may not be able to completely seal the second corner portion C2, and the airtightness at the second corner portion C2 may not be maintained.
  • the cross-sectional area of at least one of the first to third lips 81a to 81c and 82a to 82c may be made larger than the cross-sectional area of the fourth lips 81d and 82d.
  • any one or more of the first to third lips 81a to 81c and 82a to 82c may be used more than the fourth lips 81d and 82d.
  • FIG. 10A is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention.
  • FIG. 10B is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention.
  • FIG. 11 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the second embodiment of the present invention. Note that FIG. 10A shows a state in which the seal ring 80 is not housed in the annular open space S. FIG. 10B shows a state in which the seal ring 80 is housed.
  • the bottom surface 38 of the step 36 is a flat surface and is formed so as to be orthogonal to the side surface 37 of the step 36.
  • the bottom surface 38 of the step 36 includes a first bottom surface 38a located on the outer side in the radial direction and a second bottom surface 38b located on the inner side in the radial direction and continuous with the side surface 37 and the first bottom surface 38a of the step 36. Includes.
  • the first bottom surface 38a and the second bottom surface 38b are inclined in different directions with respect to the axial direction.
  • the first bottom surface 38a extends to the radial outer edge of the outer surface of the end plate 30 and is inclined downward toward the radial outer side, that is, toward the bottom side of the frame 20.
  • the outer peripheral portion of the outer surface of the end plate 30 has a forward taper shape toward the lower side.
  • the side surface 37 of the step 36 and the second bottom surface 38b are orthogonal to each other.
  • the first bottom surface 38a is set to be a surface that is inclined at a predetermined inclination angle with respect to the second bottom surface 38b, but the present invention is not particularly limited to this.
  • the inclination angle is the radial width of the bottom surface 38, the axial height of the annular open space S, the filling rate of the seal ring 80 with respect to the annular open space S, the material of the seal ring 80, or the first seal ring 80. It can be appropriately changed depending on the radius of curvature of the lip 80a and the like.
  • the first bottom surface 38a is formed by forming the radial outer edge portion of the outer surface of the end plate 30 in a straight line in a cross-sectional view in the axial direction.
  • the first bottom surface 38a is an inclined surface whose radial outer edge portion extends linearly over the extension of the radial inner portion. Therefore, the first corner portion C1 is configured to form an acute angle in the cross-sectional view in the axial direction.
  • the end plate 30 is a resin member integrally molded using a mold, and the corners are not cut out.
  • the first bottom surface 38a is formed so that the radial width L1 is less than half of the radial width L of the bottom surface 38 of the step 36.
  • the protrusion height A in the axial direction of the seal ring 80 is larger than the height B in the axial direction of the first bottom surface 38a. It is housed in an annular open space S so as to be large.
  • the first bottom surface 38a of the step 36 is the above-mentioned inclined surface, while the second bottom surface 38b is inclined in a direction different from that of the first bottom surface 38a and is orthogonal to the side surface 37 of the step 36.
  • the seal ring 80 in contact with the surface 221 of the load 200 is pressed downward, the amount of deformation and the contact surface pressure of the fourth lip 80d at the fourth corner portion C4 are the same as in the case shown in FIG. 4B.
  • the first corner portion C1 has a larger space volume extending downward, that is, toward the bottom side of the frame 20 than in the case shown in FIG. 4B.
  • the first lip 80a can be displaced along the first bottom surface 38a which is an inclined surface.
  • the amount by which the first lip 80a of the seal ring 80 is deformed and enters the first corner portion C1 becomes larger than that shown in FIG. 4B.
  • the contact pressure of the seal ring 80 at the first corner portion C1 becomes higher than that shown in FIG. 4B.
  • the contact pressure at which the first lip 80a presses the inner peripheral surface 23 of the frame 20 becomes low in the first corner portion C1. It is the same as the case shown in FIG. 4B.
  • the contact pressure of the seal ring 80 at the first corner portion C1 is in a high state in advance. Therefore, it is possible to sufficiently cover the decrease in the contact surface pressure of the seal ring 80 at the first corner portion C1 described above and prevent moisture or the like from entering the inside of the frame 20.
  • a step 36 is formed on the outer peripheral portion of the outer surface of the resin end plate 30 that covers the opening 21 of the frame 20.
  • the first bottom surface 38a located on the outer side in the radial direction extends to the radial outer edge of the outer surface of the end plate 30 and is directed downward toward the outer side in the radial direction, that is, toward the bottom side of the frame 20. It is inclined to.
  • the highly reliable motor 100 can be realized by maintaining the airtightness at the first corner portion C1 which is a path through which moisture or the like directly enters the inside of the frame 20.
  • the first corner portion C1 is compressed and deformed in the radial direction of the first lip 80a. It is possible to suppress the amount from becoming small and maintain the contact pressure of the frame 20 with respect to the inner peripheral surface 23 to a desired value or more. As a result, the airtightness at the first corner portion C1 can be maintained even when the end plate 30 is thermally creep-deformed.
  • the axial protrusion height A of the seal ring 80 is made larger than the axial height B of the first bottom surface 38a. As a result, it is possible to suppress a decrease in the filling rate of the seal ring 80 with respect to the annular open space S, and to secure sufficient airtightness by the seal ring 80.
  • the position of the seal ring 80 in the annular open space S can be stabilized. Further, it is the same as that shown in the first embodiment that the contact surface pressure is dispersed over the entire cross section of the seal ring 80 by reducing the twist.
  • first bottom surface 38a may be an inclined surface extending linearly from the radial outer edge portion to the radial inner portion.
  • FIG. 12 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second modification.
  • FIG. 13 is another schematic cross-sectional view of the connecting portion between the end plate and the frame according to the second modification.
  • the same parts as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the illustration of the seal ring 80 is omitted.
  • FIGS. 10A, 10B, and 11 an example in which the first bottom surface 38a is formed by forming the radial outer edge portion of the outer surface of the end plate 30 in a linear shape in a cross-sectional view in the axial direction.
  • the first bottom surface 38a is such that the space volume extending downward is increased and the first bottom surface 38a and the second bottom surface 38b are inclined in different directions with respect to the axial direction.
  • the shape of the Therefore, as shown in FIG. 12, the radial outer edge of the outer surface of the end plate 30 may be curved outward in the radial direction toward the bottom of the frame 20, that is, an R-chamfered shape. Good.
  • the radial outer edge portion of the first bottom surface 38a may have a fillet shape that curves outward in the radial direction toward the bottom side of the frame 20, that is, an R chamfered shape.
  • the second bottom surface 38b may be an inclined surface on the opposite side of the first bottom surface 38a, and a convex portion may be formed on the bottom surface 38.
  • the shape of the first bottom surface 38a may be the shape shown in FIG. In either case, the airtightness at the first corner portion C1 can be maintained to prevent moisture or the like from entering the inside of the frame 20. Therefore, a highly reliable motor 100 and an electric device 300 can be realized.
  • each modification and each component shown in the first and second embodiments can be appropriately combined to form a new embodiment.
  • the seal rings 81 and 82 shown in the first modification can be applied to the motor 100 shown in the second embodiment.
  • the bottom surface 38 of the step 36 formed on the end plate 30 may be an inclined surface extending linearly from the side surface 37 of the step 36 to the radial outer edge of the outer surface of the end plate 30.
  • the motor 100 is a brushed motor
  • the present invention is not particularly limited to this, and for example, it may be a brushless motor or another type of motor.
  • the case where the motor 100 in the present embodiment is used for a so-called inner rotor type motor in which the stator 60 is arranged on the radial outer side of the rotor 50 has been described.
  • a so-called outer rotor type motor in which rotors 50 are arranged at predetermined intervals on the radial outer side of the stator 60.
  • the bearing 41 arranged on the through hole 32 side of the end plate 30 is housed in the bearing holding portion 34 and is in contact with the outer surface of the end plate 30. However, it may be disposed on the inner surface side of the end plate 30 and housed inside the frame 20.
  • the brush 70 is housed in the brush holding portion 33 provided integrally with the end plate 30.
  • the brush holding portion 33 may be provided inside the frame 20 separately from the end plate 30 to accommodate the brush 70.
  • the stator 60 is composed of a frame 20 and a plurality of permanent magnets 61.
  • a field winding may be wound around each of a plurality of field magnetic poles arranged at predetermined intervals in the circumferential direction to form the stator 60.
  • the motor according to the present invention can prevent the ingress of moisture, oil, etc. from the outside. Therefore, it is useful for application to electric devices including fluid pumps such as hydraulic pumps and electric devices arranged in a high temperature external environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Provided is a motor including: a frame; a stator and a rotor that are stored in the frame; a resin end plate covering the opening of the frame; and a seal ring including an annular elastic body. An annular open space for storing the seal ring is comparted and formed between a step formed on the end plate and the inner peripheral surface of the frame. The seal ring has an X-shaped cross section and includes first to fourth lips. The fourth lip abuts a corner of the step. The first to third lips have a cross sectional area larger than that of the fourth lip.

Description

モータ及びそれを備えた電気機器Motors and electrical equipment equipped with them
 本発明は、モータ及びそれを備えた電気機器に関する。本発明は、特に、外部からの水分または油等の進入を防止する構造を備えたモータに関する。 The present invention relates to a motor and an electric device including the motor. The present invention particularly relates to a motor having a structure for preventing the ingress of moisture, oil, etc. from the outside.
 近年、電装用機器や電動工具等、あるいは車載用途でモータが多用されている。例えば、アンチロック・ブレーキシステム(ABS、Anti-lock Brake System)に用いられる油圧ポンプを駆動するために小型モータが用いられている。これらの用途に用いられるモータは、小型軽量化を一段と要求されながら、高い信頼性が求められている。ABSに用いられるモータは、車両のエンジンルームに配置される。このため、雨天時などに外部からの水分がモータにかかる場合があり、十分な防水対策を行う必要がある。 In recent years, motors have been widely used for electrical equipment, power tools, etc., or for in-vehicle applications. For example, a small motor is used to drive a hydraulic pump used in an anti-lock braking system (ABS, Anti-lock Break System). Motors used in these applications are required to have higher reliability while being further required to be smaller and lighter. The motor used for ABS is located in the engine compartment of the vehicle. For this reason, moisture from the outside may be applied to the motor in rainy weather, etc., and it is necessary to take sufficient waterproof measures.
 そこで、従来、モータの外郭であるフレームの開口に圧入されてこの開口を覆うエンドプレートにおいて、整流子と軸受の間で軸受に回転自在に支持される回転軸の周りに沿って一定の隙間をもった壁を形成することで、上記の課題を解決する技術が提案されている(例えば、特許文献1を参照)。なお、モータ内の回転子及び固定子等との電気的絶縁を図るために、一般に、エンドプレートは樹脂材料で形成されている。 Therefore, conventionally, in an end plate that is press-fitted into an opening of a frame that is an outer shell of a motor and covers this opening, a constant gap is provided between the commutator and the bearing along a rotation shaft that is rotatably supported by the bearing. A technique for solving the above problems by forming a bearing wall has been proposed (see, for example, Patent Document 1). The end plate is generally made of a resin material in order to electrically insulate the rotor and the stator in the motor.
 ところで、上記の水分等は、主に、エンドプレートとフレームとの連結部分からフレームの内部に進入する。そのため、この連結部分にはOリング及びXリング等のシールリングが配設されて水分等がフレーム内に進入するのを防止している。一方、モータと負荷とを組み付けるときに、エンドプレートに負荷側から軸方向に圧力が加わった状態で組み付けられ、この状態が維持される。 By the way, the above-mentioned moisture etc. mainly enters the inside of the frame from the connecting portion between the end plate and the frame. Therefore, a seal ring such as an O-ring and an X-ring is provided at this connecting portion to prevent moisture or the like from entering the frame. On the other hand, when the motor and the load are assembled, the end plate is assembled in a state where pressure is applied in the axial direction from the load side, and this state is maintained.
 しかし、一般に、樹脂材料に圧力が加えられた状態で温度が上昇すると、樹脂材料が熱クリープによる変形を起こすことが知られている。エンドプレートの熱クリープ変形が生じるとエンドプレートとフレームと負荷側とのシールリングの接面圧力が低下し、シールリングとそれらの接触部との間に隙間が生じ、十分な気密性が維持できなくなる。この状態で、外部からその隙間に水がかかるとモータ内部へ水が進入して、モータの信頼性または絶縁性を著しく低下させるおそれがあった。 However, it is generally known that when the temperature rises while pressure is applied to the resin material, the resin material is deformed by thermal creep. When thermal creep deformation of the end plate occurs, the contact pressure of the seal ring between the end plate, the frame, and the load side decreases, a gap is created between the seal ring and their contact area, and sufficient airtightness can be maintained. It disappears. In this state, if water splashes into the gap from the outside, water may enter the inside of the motor, which may significantly reduce the reliability or insulation of the motor.
特開2002-204548号公報Japanese Unexamined Patent Publication No. 2002-204548
 本発明はかかる点に鑑みてなされたものである。本発明の目的は、エンドプレートとフレームとの連結部分の気密性を維持した高信頼性のモータ及びそれを用いた電気機器を提供することにある。 The present invention has been made in view of this point. An object of the present invention is to provide a highly reliable motor that maintains the airtightness of a connecting portion between an end plate and a frame, and an electric device using the same.
 上記の目的を達成するために、本発明に係るモータは、一端が開口された有底筒状のフレームと、フレーム内に収容された固定子と、フレーム内に収容され、固定子と所定の間隔をあけて配置された回転子と、フレームの開口に開口を覆うように配設され、回転軸が挿通される貫通孔が中心に設けられた板状部材であるエンドプレートと、環状の弾性体からなり、フレームの内部の気密を保つためのシールリングと、を少なくとも備え、エンドプレートの外面の外周部に形成された段差とフレームの内周面との間に環状の開放空間が区画形成され、シールリングが開放空間に収容されており、シールリングは断面がX字形状で第1~第4リップを有しており、第4リップは段差の角部に当接しており、第1~第3リップのうちの少なくとも1つは、第4リップよりも断面積が大きい。 In order to achieve the above object, the motor according to the present invention includes a bottomed tubular frame having one end opened, a stator housed in the frame, and a stator housed in the frame. Rotors arranged at intervals, an end plate which is a plate-like member arranged so as to cover the opening in the opening of the frame and having a through hole through which the rotation shaft is inserted, and an annular elasticity. It consists of a body and is equipped with at least a seal ring for maintaining the airtightness inside the frame, and an annular open space is formed between the step formed on the outer peripheral surface of the outer surface of the end plate and the inner peripheral surface of the frame. The seal ring is housed in an open space, the seal ring has an X-shaped cross section and has first to fourth lips, and the fourth lip is in contact with the corner of the step, and the first -At least one of the third lip has a larger cross-sectional area than the fourth lip.
 この構成によれば、フレームの内周面を含む開放空間のコーナー部でのシールリングの接面圧力を高くすることができる。モータの回転軸に負荷が連結された場合、この負荷とフレームの内周面とで構成されるコーナー部でのシールリングの接面圧力を高くすることができる。このことにより、エンドプレートが熱または圧力の影響で変形した場合にもコーナー部での気密性を維持して、フレームの内部への水分等の進入を防止できる。これにより、高信頼性のモータを実現できる。 According to this configuration, the contact pressure of the seal ring at the corner of the open space including the inner peripheral surface of the frame can be increased. When a load is connected to the rotating shaft of the motor, the contact pressure of the seal ring at the corner portion formed by this load and the inner peripheral surface of the frame can be increased. As a result, even when the end plate is deformed due to the influence of heat or pressure, the airtightness at the corners can be maintained and moisture or the like can be prevented from entering the inside of the frame. As a result, a highly reliable motor can be realized.
 本発明に係る電気機器は、モータと、モータに連結され、エンドプレートの外側に貫通孔から突出した回転軸に駆動連結されていて、モータの回転に応じて駆動される被駆動部を有する負荷と、を少なくとも備え、シールリングは、負荷の表面からフレームの底部側に押圧されることで、第1リップが段差の底面とフレームの内周面とで構成される第1コーナー部に、第2リップが負荷の表面とフレームの内周面とで構成される第2コーナー部に、第3リップが負荷の表面と段差の側面とで構成される第3コーナー部に、第4リップが段差の角部である第4コーナー部にそれぞれ当接している。 The electric device according to the present invention is a load having a motor, a driven portion connected to the motor, driven to a rotating shaft protruding from a through hole on the outside of the end plate, and driven in response to the rotation of the motor. When the seal ring is pressed from the surface of the load toward the bottom side of the frame, the first lip is formed at the first corner portion formed by the bottom surface of the step and the inner peripheral surface of the frame. The second lip is on the second corner composed of the surface of the load and the inner peripheral surface of the frame, the third lip is on the third corner composed of the surface of the load and the side surface of the step, and the fourth lip is on the step. It is in contact with the fourth corner portion, which is the corner portion of the above.
 この構成によれば、シールリングの断面をX字形状とすることで、外部からの水分等の進入経路にあたる第1~第3コーナー部に対して、第1~第3リップがそれぞれ所定の接面圧力で当接する。よって、フレームの内部または負荷の内部への水分等の進入を確実に防止できる。これにより、高信頼性の電気機器を実現できる。 According to this configuration, by forming the cross section of the seal ring into an X shape, the first to third lips are in predetermined contact with the first to third corners, which correspond to the entry path of moisture from the outside. Contact with surface pressure. Therefore, it is possible to reliably prevent the ingress of moisture or the like into the inside of the frame or the inside of the load. As a result, highly reliable electrical equipment can be realized.
 以上説明したように、本発明によれば、エンドプレートが熱または圧力の影響で変形した場合にも、フレームの内部への水分等の進入を防止できる。これにより、高信頼性のモータを実現できる。 As described above, according to the present invention, even when the end plate is deformed due to the influence of heat or pressure, it is possible to prevent moisture or the like from entering the inside of the frame. As a result, a highly reliable motor can be realized.
図1は、本発明の実施形態1に係る電気機器の要部の断面模式図である。FIG. 1 is a schematic cross-sectional view of a main part of an electric device according to a first embodiment of the present invention. 図2は、比較のためのエンドプレートとシールリングとの経時変形を説明する模式図である。FIG. 2 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring for comparison. 図3は、シールリングの断面模式図である。FIG. 3 is a schematic cross-sectional view of the seal ring. 図4Aは、電気機器の組立前でのエンドプレートとフレームとの連結部分の断面模式図である。FIG. 4A is a schematic cross-sectional view of a connecting portion between the end plate and the frame before assembling the electrical equipment. 図4Bは、電気機器の組立後でのエンドプレートとフレームとの連結部分の断面模式図である。FIG. 4B is a schematic cross-sectional view of a connecting portion between the end plate and the frame after assembling the electrical equipment. 図5は、実施形態1に係るエンドプレートとシールリングとの経時変形を説明する模式図である。FIG. 5 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the first embodiment. 図6は、変形例1に係るシールリングの断面模式図である。FIG. 6 is a schematic cross-sectional view of the seal ring according to the first modification. 図7は、変形例1に係るエンドプレートとフレームとの連結部分の断面模式図である。FIG. 7 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the first modification. 図8は、変形例1に係る別のシールリングの断面模式図である。FIG. 8 is a schematic cross-sectional view of another seal ring according to the first modification. 図9は、変形例1に係るエンドプレートとフレームとの別の連結部分の断面模式図である。FIG. 9 is a schematic cross-sectional view of another connecting portion between the end plate and the frame according to the first modification. 図10Aは、本発明の実施形態2に係るエンドプレートとフレームとの連結部分の断面模式図である。FIG. 10A is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention. 図10Bは、本発明の実施形態2に係るエンドプレートとフレームとの連結部分の断面模式図である。FIG. 10B is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention. 図11は、本発明の実施形態2に係るエンドプレートとシールリングとの経時変形を説明する模式図である。FIG. 11 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the second embodiment of the present invention. 図12は、変形例2に係るエンドプレートとフレームとの連結部分の断面模式図である。FIG. 12 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second modification. 図13は、変形例2に係るエンドプレートとフレームとの連結部分の別の断面模式図である。FIG. 13 is another schematic cross-sectional view of the connecting portion between the end plate and the frame according to the second modification.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the present invention, its applications or its uses.
 (実施形態1)
 [モータ及び電気機器の構成]
 図1は、本発明の実施形態1に係る電気機器の要部の断面模式図である。
(Embodiment 1)
[Structure of motor and electrical equipment]
FIG. 1 is a schematic cross-sectional view of a main part of an electric device according to a first embodiment of the present invention.
 図1に示すように、モータ100は、フレーム20と、エンドプレート30と、軸受(ベアリング)40,41と、回転子50と、固定子60と、ブラシ70と、シールリング80とを備えている。電気機器300は、負荷200とモータ100とを備えている。なお、以降の説明において、回転子50の一部をなす回転軸54の長手方向を軸方向と呼び、エンドプレート30の半径方向を径方向と呼び、エンドプレート30の円周方向を周方向と呼ぶことがある。軸方向において、フレーム20におけるエンドプレート30が配設された側を「上」と、その反対側であるフレーム20の底部側を「下」と呼ぶことがある。説明の便宜上、負荷200の細部は図示を省略している。 As shown in FIG. 1, the motor 100 includes a frame 20, an end plate 30, bearings 40 and 41, a rotor 50, a stator 60, a brush 70, and a seal ring 80. There is. The electric device 300 includes a load 200 and a motor 100. In the following description, the longitudinal direction of the rotating shaft 54 forming a part of the rotor 50 is referred to as an axial direction, the radial direction of the end plate 30 is referred to as a radial direction, and the circumferential direction of the end plate 30 is referred to as a circumferential direction. I may call it. In the axial direction, the side of the frame 20 on which the end plate 30 is arranged may be referred to as "upper", and the opposite side of the frame 20 may be referred to as "lower". For convenience of explanation, the details of the load 200 are not shown.
 フレーム20は、上部に設けられた開口21の周りに鍔部を有する有底半筒状の金属部材である。フレーム20の底面には回転軸54の一端に挿通される軸受保持部22が形成されている。フレーム20の内周面23のうち上側にはエンドプレート30の内面に当接してこれを支持するプレート支持部24(図4A~図9を参照)が周方向に間隔を開けて複数配設されている。エンドプレート30を開口21に圧入するために、フレーム20の上端部、つまり、開口21の近傍には、径方向外側に屈曲した環状のフランジ25が形成されている。 The frame 20 is a bottomed semi-cylindrical metal member having a collar around an opening 21 provided at the top. A bearing holding portion 22 inserted into one end of the rotating shaft 54 is formed on the bottom surface of the frame 20. A plurality of plate support portions 24 (see FIGS. 4A to 9) that abut and support the inner surface of the end plate 30 are arranged on the upper side of the inner peripheral surface 23 of the frame 20 at intervals in the circumferential direction. ing. In order to press-fit the end plate 30 into the opening 21, an annular flange 25 bent outward in the radial direction is formed at the upper end of the frame 20, that is, in the vicinity of the opening 21.
 エンドプレート30は、樹脂材料を成形してなる板状部材である。エンドプレート30は、実質的に円板状の基部31と、基部31の中心に設けられた貫通孔32と、基部31の内面に形成されたブラシ保持部33と、基部31の外面に形成された軸受保持部34と、モータ100に外部から電力を供給するための電線が引き出された電線引出口(図示せず)と、基部31の外面であって、その外周部に形成された段差36とを有している。エンドプレート30の形状、特に段差36の形状の詳細については後述する。電線引出口から引き出された電線については、説明の便宜上、図示を省略している。上記のように、フレーム20の内部に面したエンドプレート30の表面を、エンドプレート30の「内面」と呼び、内面と反対側のエンドプレート30の表面を、エンドプレート30の「外面」と呼ぶことがある。 The end plate 30 is a plate-shaped member formed by molding a resin material. The end plate 30 is formed on a substantially disk-shaped base portion 31, a through hole 32 provided in the center of the base portion 31, a brush holding portion 33 formed on the inner surface of the base portion 31, and an outer surface of the base portion 31. A bearing holding portion 34, an electric wire outlet (not shown) from which an electric wire for supplying electric power to the motor 100 from the outside is drawn out, and a step 36 formed on the outer peripheral portion of the outer surface of the base portion 31. And have. Details of the shape of the end plate 30, particularly the shape of the step 36, will be described later. The electric wire drawn from the electric wire outlet is not shown for convenience of explanation. As described above, the surface of the end plate 30 facing the inside of the frame 20 is referred to as the "inner surface" of the end plate 30, and the surface of the end plate 30 opposite to the inner surface is referred to as the "outer surface" of the end plate 30. Sometimes.
 エンドプレート30は、フレーム20との位置決めを行った上で、フレーム20の開口21に圧入される。エンドプレート30は、内面がフレーム20に設けられたプレート支持部24に当接される。エンドプレート30は、開口21を覆うようにフレーム20に配設されている。フレーム20とエンドプレート30とで区画される空間に回転子50が収容されている。回転軸54は、エンドプレート30の貫通孔32に挿通されてエンドプレート30から外側に突出している。回転軸54は、フレーム20の軸受保持部22に保持された軸受40及び,貫通孔32を塞ぐように設けられた軸受41によって回転自在に支持されている。エンドプレート30の外面の外周部には段差36が形成されている(図2を参照)。段差36の底面38は平坦面である。底面38は、段差36の側面37と互いに直交するように形成されている。「直交」とは段差36の加工公差を含んで「直交」という意味であり、比較対象となる両者が厳密に直交していることまでを意味するものではない。 The end plate 30 is press-fitted into the opening 21 of the frame 20 after being positioned with the frame 20. The inner surface of the end plate 30 is in contact with the plate support portion 24 provided on the frame 20. The end plate 30 is arranged in the frame 20 so as to cover the opening 21. The rotor 50 is housed in a space partitioned by the frame 20 and the end plate 30. The rotating shaft 54 is inserted through the through hole 32 of the end plate 30 and projects outward from the end plate 30. The rotating shaft 54 is rotatably supported by a bearing 40 held by the bearing holding portion 22 of the frame 20 and a bearing 41 provided so as to close the through hole 32. A step 36 is formed on the outer peripheral portion of the outer surface of the end plate 30 (see FIG. 2). The bottom surface 38 of the step 36 is a flat surface. The bottom surface 38 is formed so as to be orthogonal to the side surface 37 of the step 36. “Orthogonal” means “orthogonal” including the processing tolerance of the step 36, and does not mean that the two to be compared are strictly orthogonal to each other.
 回転子50は、電機子コア51と、複数の突極52と、電機子巻線53と回転軸54と、整流子55と、インシュレータ56とを有している。電機子コア51には径方向外側に突出する複数の突極52が周方向に所定の間隔をあけて配設されている。電機子コア51には、複数の突極52のそれぞれに絶縁性の樹脂であるインシュレータ56を介して電機子巻線53が巻回されている。整流子55には、電機子コア51から引き出された電機子巻線53の引出線が接続されている。回転軸54は回転子50の軸心に設けられ、電機子コア51及び整流子55の中心を貫通してこれらに連結されている。 The rotor 50 has an armature core 51, a plurality of salient poles 52, an armature winding 53, a rotating shaft 54, a commutator 55, and an insulator 56. A plurality of salient poles 52 projecting outward in the radial direction are arranged on the armature core 51 at predetermined intervals in the circumferential direction. An armature winding 53 is wound around the armature core 51 via an insulator 56, which is an insulating resin, around each of the plurality of salient poles 52. The commutator 55 is connected to the leader wire of the armature winding 53 drawn from the armature core 51. The rotating shaft 54 is provided at the axis of the rotor 50, penetrates the center of the armature core 51 and the commutator 55, and is connected to them.
 固定子60は、フレーム20と、周方向に所定の間隔でフレーム20の内周面23に配設された複数の永久磁石61とで構成されている。周方向に隣り合う永久磁石61は互いに極性が異なるように配設されている。フレーム20は、永久磁石61と磁気回路を構成するヨークとしても機能する。 The stator 60 is composed of a frame 20 and a plurality of permanent magnets 61 arranged on the inner peripheral surface 23 of the frame 20 at predetermined intervals in the circumferential direction. The permanent magnets 61 adjacent to each other in the circumferential direction are arranged so as to have different polarities from each other. The frame 20 also functions as a yoke constituting the permanent magnet 61 and the magnetic circuit.
 一対のブラシ70は、黒鉛等のカーボンブラシ材へ固体潤滑剤を含む。一対のブラシ70は、エンドプレート30の内面に設けられたブラシ保持部33内に保持される。一対のブラシ70は、ブラシバネ(図示せず)によって整流子55へと押圧されている。 The pair of brushes 70 contains a solid lubricant in a carbon brush material such as graphite. The pair of brushes 70 are held in the brush holding portion 33 provided on the inner surface of the end plate 30. The pair of brushes 70 are pressed against the commutator 55 by a brush spring (not shown).
 シールリング80は、環状の弾性体、例えば、EPDM(エチレン・プロピレン・ジエンゴム、Ethylene Propylene Diene Monomer Rubber)、ニトリルゴム、またはフッ化ゴム等からなる。シールリング80は、断面がX字形状で4つのリップ80a~80dを有している。なお、シールリング80の形状については後で詳述する。 The seal ring 80 is made of an annular elastic body, for example, EPDM (ethylene propylene diene rubber, Ethylene Propyrene Diene Monomer Rubber), nitrile rubber, fluororubber, or the like. The seal ring 80 has an X-shaped cross section and has four lips 80a to 80d. The shape of the seal ring 80 will be described in detail later.
 シールリング80は、前述の段差36と段差36の側面37に対向するフレーム20の内周面23との間に区画形成された環状の開放空間Sに収容されている。シールリング80は、フレーム20とエンドプレート30との連結部分をシールして、外部からフレーム20の内部への水分等の進入を防止している。なお、環状の開放空間Sは上方が開放された開放空間である。 The seal ring 80 is housed in an annular open space S partitioned between the above-mentioned step 36 and the inner peripheral surface 23 of the frame 20 facing the side surface 37 of the step 36. The seal ring 80 seals the connecting portion between the frame 20 and the end plate 30 to prevent moisture and the like from entering the inside of the frame 20 from the outside. The annular open space S is an open space whose upper part is open.
 以上のように構成されたモータ100の動作について説明する。 The operation of the motor 100 configured as described above will be described.
 エンドプレート30に設けられた電線引出口から引き出された電線(図示せず)を介して外部からモータ100に電力を供給する。これにより、電機子電流がブラシ70及び整流子55を介して電機子巻線53に流れる。固定子60で発生した磁束と、電機子巻線53を流れる電機子電流により発生した磁界との間で相互作用を生じてトルクが発生する。回転軸54が軸受40,41に支持されて回転する。回転軸54の回転に応じて、ブラシ70と整流子55とは接触と離間とを周期的に繰り返し、この周期に対応して電機子巻線53を流れる電機子電流の向きが変更される。 Power is supplied to the motor 100 from the outside via an electric wire (not shown) drawn from an electric wire outlet provided on the end plate 30. As a result, the armature current flows through the armature winding 53 via the brush 70 and the commutator 55. Torque is generated by causing an interaction between the magnetic flux generated by the stator 60 and the magnetic field generated by the armature current flowing through the armature winding 53. The rotating shaft 54 is supported by the bearings 40 and 41 and rotates. In response to the rotation of the rotating shaft 54, the brush 70 and the commutator 55 periodically repeat contact and separation, and the direction of the armature current flowing through the armature winding 53 is changed in accordance with this cycle.
 電気機器300において、モータ100の上側に負荷200が配置されている。エンドプレート30の外側に貫通孔32から突出した回転軸54に対して被駆動部210が駆動連結されている。被駆動部210は、回転軸54の回転に応じて同方向または逆方向に回転するか、あるいは回転運動を直線運動に変換する機械要素(図示せず)を備えている。負荷200は、例えば、油圧ポンプである。ただし、これに限定されない。 In the electric device 300, the load 200 is arranged on the upper side of the motor 100. The driven portion 210 is drive-connected to the rotating shaft 54 protruding from the through hole 32 on the outside of the end plate 30. The driven unit 210 includes a mechanical element (not shown) that rotates in the same direction or in the opposite direction according to the rotation of the rotating shaft 54, or converts the rotational motion into a linear motion. The load 200 is, for example, a hydraulic pump. However, it is not limited to this.
 さらに、負荷200の外郭220は、その表面221がフレーム20とシールリング80の第2及び第3リップ80b,80cとに当接して、モータ100に組み付けられている。外郭220の表面221とエンドプレート30の外面とが所定のクリアランスを保って離間するようにモータ100と負荷200とは配置されている。外郭220は、例えば、アルミニウム製のブロックである。ただし、これに限定されない。また、以降の説明において、外郭220の表面221を、負荷200の表面221と呼ぶことがある。 Further, the outer shell 220 of the load 200 is assembled to the motor 100 with its surface 221 in contact with the frame 20 and the second and third lips 80b and 80c of the seal ring 80. The motor 100 and the load 200 are arranged so that the surface 221 of the outer shell 220 and the outer surface of the end plate 30 are separated from each other while maintaining a predetermined clearance. The outer shell 220 is, for example, a block made of aluminum. However, it is not limited to this. Further, in the following description, the surface 221 of the outer shell 220 may be referred to as the surface 221 of the load 200.
 負荷200の表面221から下側、つまり、フレーム20の底部側に押圧されることにより、シールリング80は圧縮変形して、4つのリップ80a~80dが、環状の開放空間Sと負荷200の表面221とで区画される空間の4つのコーナー部C1~C4(図2~図4Bを参照)に当接している。 When pressed from the surface 221 of the load 200 to the lower side, that is, to the bottom side of the frame 20, the seal ring 80 is compressed and deformed, and the four lips 80a to 80d are formed into an annular open space S and the surface of the load 200. It is in contact with four corner portions C1 to C4 (see FIGS. 2 to 4B) of the space partitioned by 221.
 第1リップ80aは、エンドプレート30に形成された段差36の底面38とフレーム20の内周面23とで構成される第1コーナー部C1に当接している。第2リップ80bは、フレーム20の内周面23と負荷200の表面221とで構成される第2コーナー部C2に当接している。前述したように、フレーム20の上端部には径方向外側に屈曲したフランジ25が形成されている。よって、第2コーナー部C2において、第2リップ80bは、フレーム20の内周面23には十分に当接せずに、さらには、主に負荷200の表面221のみに当接する場合もあり得る。また、第3リップ80cは、負荷200の表面221と段差36の側面37とで構成される第3コーナー部C3に当接している。第4リップ80dは、段差36の角部に相当する第4コーナー部C4に当接している。第1リップ80aは、断面視で第3リップ80cの対角に、第2リップ80bは、断面視で第4リップ80dの対角にそれぞれ位置している。 The first lip 80a is in contact with the first corner portion C1 composed of the bottom surface 38 of the step 36 formed on the end plate 30 and the inner peripheral surface 23 of the frame 20. The second lip 80b is in contact with the second corner portion C2 composed of the inner peripheral surface 23 of the frame 20 and the surface 221 of the load 200. As described above, a flange 25 bent outward in the radial direction is formed at the upper end of the frame 20. Therefore, in the second corner portion C2, the second lip 80b may not sufficiently contact the inner peripheral surface 23 of the frame 20, and may mainly contact only the surface 221 of the load 200. .. Further, the third lip 80c is in contact with the third corner portion C3 composed of the surface 221 of the load 200 and the side surface 37 of the step 36. The fourth lip 80d is in contact with the fourth corner portion C4 corresponding to the corner portion of the step 36. The first lip 80a is located diagonally to the third lip 80c in cross-sectional view, and the second lip 80b is located diagonally to the fourth lip 80d in cross-sectional view.
 このように、シールリング80と負荷200、フレーム20及びエンドプレート30とが当接して、接面部に圧力が加わる。これにより、フレーム20とエンドプレート30との間及びフレーム20と負荷200との間がシールされる。よって、負荷200側からフレーム20の内部へ外部からの水分が進入するのを防止できる。エンドプレート30と負荷200との間もシールされることで、軸受41または回転軸54への水分等の付着を防止できる。 In this way, the seal ring 80 comes into contact with the load 200, the frame 20 and the end plate 30, and pressure is applied to the contact surface portion. As a result, the space between the frame 20 and the end plate 30 and the space between the frame 20 and the load 200 are sealed. Therefore, it is possible to prevent moisture from the outside from entering the inside of the frame 20 from the load 200 side. By sealing between the end plate 30 and the load 200, it is possible to prevent moisture or the like from adhering to the bearing 41 or the rotating shaft 54.
 [本願発明に至った知見]
 図2は、比較のためのエンドプレートとシールリングとの経時変形を説明する模式図である。説明の便宜上、モータ100において、フレーム20とエンドプレート30とシールリング80と軸受41以外の構成部材については図示を省略している。負荷200において、表面221を含む外郭220の一部のみを図示している。
[Findings leading to the invention of the present application]
FIG. 2 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring for comparison. For convenience of explanation, in the motor 100, components other than the frame 20, the end plate 30, the seal ring 80, and the bearing 41 are not shown. At the load 200, only a part of the outer shell 220 including the surface 221 is shown.
 図2において、上側の図は、モータ100と負荷200とが組み付けられた直後の状態を示している。この状態では、各部材は、組立公差の範囲内で設計通りの配置関係を保っている。ただし、この状態で負荷200側からモータ100側に圧力がかかっている。例えば、図2に示す場合では、軸受保持部34に収容された軸受41を介してエンドプレート30の中央部に圧力が加えられている。軸受41がフレーム20の内部に配置されている場合にも、負荷200側からエンドプレート30の中央部に圧力が加えられる。 In FIG. 2, the upper figure shows the state immediately after the motor 100 and the load 200 are assembled. In this state, each member maintains the arrangement relationship as designed within the range of the assembly tolerance. However, in this state, pressure is applied from the load 200 side to the motor 100 side. For example, in the case shown in FIG. 2, pressure is applied to the central portion of the end plate 30 via the bearing 41 housed in the bearing holding portion 34. Even when the bearing 41 is arranged inside the frame 20, pressure is applied from the load 200 side to the central portion of the end plate 30.
 一方、電気機器300を使用し始めると、モータ100の駆動及び負荷200の動作、さらに電気機器300が配設された環境の温度等に起因して、モータ100及び負荷200の温度が上昇し始める。前述したように、樹脂材料に圧力が加えられた状態で温度が上昇すると、樹脂材料が熱クリープにより変形する。このため、樹脂材料を用いて成形されたエンドプレート30は中央側が下方に押されるように、また、それに応じて外周側は上方に持ち上げられるように変形する。 On the other hand, when the electric device 300 is started to be used, the temperatures of the motor 100 and the load 200 start to rise due to the driving of the motor 100, the operation of the load 200, the temperature of the environment in which the electric device 300 is arranged, and the like. .. As described above, when the temperature rises while pressure is applied to the resin material, the resin material is deformed by thermal creep. Therefore, the end plate 30 formed by using the resin material is deformed so that the central side is pushed downward and the outer peripheral side is lifted upward accordingly.
 その結果、図2の下側に示すように、エンドプレート30の外周面とフレーム20の内周面23との間、または、フレーム20の内周面23と負荷200の表面221との間が開いてしまう。特に、第2コーナー部C2において、フレーム20の内周面23と負荷200の表面221との隙間が大きくなる。第2コーナー部C2での第2リップ80bの接面圧力が弱まってしまう。段差36の側面37とフレーム20の内周面23との間が開くことで、第1コーナー部C1での第1リップ80aの接面圧力が弱まってしまう。 As a result, as shown on the lower side of FIG. 2, between the outer peripheral surface of the end plate 30 and the inner peripheral surface 23 of the frame 20, or between the inner peripheral surface 23 of the frame 20 and the surface 221 of the load 200. It will open. In particular, in the second corner portion C2, the gap between the inner peripheral surface 23 of the frame 20 and the surface 221 of the load 200 becomes large. The contact pressure of the second lip 80b at the second corner portion C2 is weakened. By opening the space between the side surface 37 of the step 36 and the inner peripheral surface 23 of the frame 20, the contact pressure of the first lip 80a at the first corner portion C1 is weakened.
 熱クリープによるエンドプレート30の変形により、第3コーナー部C3での第3リップ80cの接面圧力及び第4コーナー部C4での第4リップ80dの接面圧力も弱まってしまう。 Due to the deformation of the end plate 30 due to thermal creep, the contact pressure of the third lip 80c at the third corner C3 and the contact pressure of the fourth lip 80d at the fourth corner C4 also weaken.
 一方、図2から明らかなように、前述の第1~第4コーナー部C1~C4のうち、第1~第3コーナー部C1~C3が、外部からの水分等の進入経路にあたる。なお、4つのコーナー部C1~C4のうち、外部からの水分等の進入が最も起こりやすいのは第2コーナー部C2である。しかし、モータ100の信頼性を確保する上で最も気密性の維持が必要なのは、第1コーナー部C1である。第3コーナー部C3から水分等の進入が起こると、軸受41または回転軸54に対するダメージが大きくなり、モータ100、ひいては電気機器300の性能を低下させるおそれがある。 On the other hand, as is clear from FIG. 2, of the above-mentioned first to fourth corner portions C1 to C4, the first to third corner portions C1 to C3 correspond to the entry route of moisture and the like from the outside. Of the four corner portions C1 to C4, the second corner portion C2 is most likely to allow moisture or the like to enter from the outside. However, in order to ensure the reliability of the motor 100, it is the first corner portion C1 that needs to maintain the airtightness most. If moisture or the like enters from the third corner portion C3, the damage to the bearing 41 or the rotating shaft 54 becomes large, which may deteriorate the performance of the motor 100 and eventually the electric device 300.
 このように、シールリング80による第1~第3コーナー部C1~C3でのシール性が低下し、フレーム20の内部に水分等の流体が進入しやすくなってしまうことを本願発明者等は見出した。 In this way, the inventors of the present application have found that the sealing property of the seal ring 80 at the first to third corners C1 to C3 is lowered, and a fluid such as moisture easily enters the inside of the frame 20. It was.
 そこで、本願発明者等は、シールリング80の形状に着目した。本願発明者等は、その形状を後で述べるように変更することで、フレーム20の内部の気密性を維持できることを見出した。 Therefore, the inventors of the present application paid attention to the shape of the seal ring 80. The inventors of the present application have found that the airtightness inside the frame 20 can be maintained by changing the shape as described later.
 [エンドプレートとフレームとの連結部分の構成]
 図3は、シールリングの断面模式図である。図4Aは、電気機器の組立前でのエンドプレートとフレームとの連結部分の断面模式図である。図4Bは、電気機器の組立後でのエンドプレートとフレームとの連結部分の断面模式図である。図5は、本実施形態に係るエンドプレートとシールリングとの経時変形を説明する模式図である。図4Aは、負荷200が取り付けられる前のエンドプレート30とフレーム20との連結部分の断面を示している。図4Bは、負荷200が取り付けられた後のエンドプレート30とフレーム20との連結部分の断面を示している。図4A,図4B,図5において、負荷200とフレーム20とエンドプレート30のそれぞれの一部の断面も図示している。
[Structure of the connecting part between the end plate and the frame]
FIG. 3 is a schematic cross-sectional view of the seal ring. FIG. 4A is a schematic cross-sectional view of a connecting portion between the end plate and the frame before assembling the electrical equipment. FIG. 4B is a schematic cross-sectional view of a connecting portion between the end plate and the frame after assembling the electrical equipment. FIG. 5 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the present embodiment. FIG. 4A shows a cross section of a connecting portion between the end plate 30 and the frame 20 before the load 200 is attached. FIG. 4B shows a cross section of a connecting portion between the end plate 30 and the frame 20 after the load 200 is attached. In FIGS. 4A, 4B, and 5, cross sections of parts of the load 200, the frame 20, and the end plate 30 are also shown.
 図3に示すように、シールリング80の3つのリップ80a~80cは、第4リップ80dよりも断面積、言い換えると体積が大きくなるように形成されている。 As shown in FIG. 3, the three lips 80a to 80c of the seal ring 80 are formed so that the cross-sectional area, in other words, the volume is larger than that of the fourth lip 80d.
 図4Aに示すように、環状の開放空間Sにシールリング80が収容される。このとき、第1リップ80aは第1コーナー部C1に、第4リップ80dは第4コーナー部C4にそれぞれ押し付けられており、変形している。また、第2及び第3リップ80b,80cは、それぞれ環状の開放空間Sの上面よりも上方、つまり、負荷200側に長さAだけ突出している。 As shown in FIG. 4A, the seal ring 80 is housed in the annular open space S. At this time, the first lip 80a is pressed against the first corner portion C1 and the fourth lip 80d is pressed against the fourth corner portion C4, respectively, and is deformed. Further, the second and third lips 80b and 80c each project above the upper surface of the annular open space S, that is, to the load 200 side by the length A.
 また、図4Bに示すように、モータ100に対して負荷200が組み付けられると、負荷200の表面221が第2及び第3リップ80b,80cにそれぞれ当接して、シールリング80を下側に押圧する。このことにより、第2及び第3リップ80b,80cは、環状の開放空間Sの内部に押し込められるように変形する。このとき、第1~第4リップ80a~80dには元の形状に戻ろうとする復元力が発生する。この復元力により、第1~第4コーナー部C1~C4に当接された第1~第4リップ80a~80dが、第1~第4コーナー部C1~C4をそれぞれ押圧し、フレーム20とエンドプレート30との連結部分、及びフレーム20と負荷200の表面221との連結部分等がシールされる。 Further, as shown in FIG. 4B, when the load 200 is assembled to the motor 100, the surface 221 of the load 200 comes into contact with the second and third lips 80b and 80c, respectively, and presses the seal ring 80 downward. To do. As a result, the second and third lips 80b and 80c are deformed so as to be pushed into the annular open space S. At this time, a restoring force that tries to return to the original shape is generated in the first to fourth lips 80a to 80d. Due to this restoring force, the first to fourth lips 80a to 80d abutting on the first to fourth corner portions C1 to C4 press the first to fourth corner portions C1 to C4, respectively, and the frame 20 and the end The connecting portion with the plate 30 and the connecting portion between the frame 20 and the surface 221 of the load 200 are sealed.
 このようにすることで、フレーム20の内部への水分等の進入を確実に防止することができる。図5を用いてさらに説明する。 By doing so, it is possible to reliably prevent the ingress of moisture and the like into the inside of the frame 20. This will be further described with reference to FIG.
 図5の上側に示すように、負荷200の表面221がシールリング80の第2及び第3リップ80b,80cにそれぞれ当接して、シールリング80を下側に押圧する。図5の下側に示すように、熱クリープにより、負荷200は軸受保持部34に収容された軸受41を介して、エンドプレート30の中央部をさらに下側に押圧する。 As shown on the upper side of FIG. 5, the surface 221 of the load 200 abuts on the second and third lips 80b and 80c of the seal ring 80, respectively, and presses the seal ring 80 downward. As shown on the lower side of FIG. 5, by thermal creep, the load 200 further lowers the central portion of the end plate 30 via the bearing 41 housed in the bearing holding portion 34.
 この状態から熱クリープによりエンドプレート30の外周側が上方に持ち上げられるように変形すると、第1~第4コーナー部C1~C4での第1~第4リップ80a~80dの接面圧力がそれぞれ低くなってくることは、図2に示す場合と同様である。 When the outer peripheral side of the end plate 30 is deformed from this state so as to be lifted upward by thermal creep, the contact pressures of the first to fourth lips 80a to 80d at the first to fourth corner portions C1 to C4 become lower, respectively. It is the same as the case shown in FIG.
 一方、第1~第3リップ80a~80cは、第4リップ80dよりも断面積が大きくなるように形成されている。つまり、第1~第3コーナー部C1~C3におけるシールリング80の接面圧力は、第4コーナー部C4における接面圧力よりも高くなっている。このため、熱クリープによる第1~第3コーナー部C1~C3でのシールリング80の接面圧力の低下は相殺されて、第1~第3コーナー部C1~C3における気密性は維持される。このことにより、フレーム20の内部への水分等の進入を防止することができる。なお、第4コーナー部C4は、エンドプレート30のみで構成されるため、フレーム20とエンドプレート30との間の気密性や、フレーム20と負荷200との間の気密性に直接は寄与しない。よって、第4コーナー部C4で、シールリング80の接面圧力が低下しても、フレーム20の内部への水分等の進入の影響は小さい。 On the other hand, the first to third lips 80a to 80c are formed so that the cross-sectional area is larger than that of the fourth lip 80d. That is, the contact pressure of the seal ring 80 at the first to third corners C1 to C3 is higher than the contact pressure at the fourth corner C4. Therefore, the decrease in the contact surface pressure of the seal ring 80 at the first to third corner portions C1 to C3 due to thermal creep is offset, and the airtightness at the first to third corner portions C1 to C3 is maintained. This makes it possible to prevent moisture and the like from entering the inside of the frame 20. Since the fourth corner portion C4 is composed of only the end plate 30, it does not directly contribute to the airtightness between the frame 20 and the end plate 30 and the airtightness between the frame 20 and the load 200. Therefore, even if the contact pressure of the seal ring 80 decreases at the fourth corner portion C4, the influence of moisture or the like entering the inside of the frame 20 is small.
 [効果等]
 以上説明したように、本実施形態に係るモータ100は、一端が開口された有底筒状のフレーム20と、フレーム20内に収容された固定子60と、フレーム20内に収容され、固定子60と所定の間隔をあけて配置された回転子50と、フレーム20の開口21にこの開口21を覆うように配設された、樹脂製の板状部材であるエンドプレート30と、を備えている。エンドプレート30の中心には、回転軸54が挿通される貫通孔32が設けられている。
[Effects, etc.]
As described above, the motor 100 according to the present embodiment has a bottomed tubular frame 20 having one end opened, a stator 60 housed in the frame 20, and a stator housed in the frame 20. A rotor 50 arranged at a predetermined interval from the 60, and an end plate 30 which is a resin plate-like member arranged so as to cover the opening 21 in the opening 21 of the frame 20 are provided. There is. A through hole 32 through which the rotating shaft 54 is inserted is provided in the center of the end plate 30.
 また、モータ100は、環状の弾性体からなり、フレーム20の内部の気密を保つためのシールリング80を備えており、エンドプレート30の外面の外周部に形成された段差36とフレーム20の内周面23との間に環状の開放空間Sが区画形成され、シールリング80が環状の開放空間Sに収容されている。 Further, the motor 100 is made of an annular elastic body, includes a seal ring 80 for maintaining airtightness inside the frame 20, and has a step 36 formed on the outer peripheral portion of the outer surface of the end plate 30 and the inside of the frame 20. An annular open space S is formed between the peripheral surface 23 and the seal ring 80, and the seal ring 80 is housed in the annular open space S.
 シールリング80は断面がX字形状で、4つのリップ80a~80dを有しており、第4リップ80dは段差36の角部に当接している。言い換えると、第4リップ80dはエンドプレート30のみに当接している。第1~第3リップ80a~80cは、第4リップ80dよりも断面積が大きい。 The seal ring 80 has an X-shaped cross section and has four lips 80a to 80d, and the fourth lip 80d is in contact with the corner of the step 36. In other words, the fourth lip 80d is in contact with only the end plate 30. The first to third lips 80a to 80c have a larger cross-sectional area than the fourth lip 80d.
 モータ100をこのように構成することで、外部からの水分等の進入経路にあたる第1~第3コーナー部C1~C3に対して、第1~第3リップ80a~80cの接面圧力をそれぞれ高められる。これにより、フレーム20の内部や負荷200の内部への水分等の進入を確実に防止できる。 By configuring the motor 100 in this way, the contact pressures of the first to third lips 80a to 80c are increased with respect to the first to third corner portions C1 to C3, which correspond to the entry path of moisture and the like from the outside. Be done. As a result, it is possible to reliably prevent moisture and the like from entering the inside of the frame 20 and the inside of the load 200.
 また、シールリング80の断面をX字形状とすることで、シールリング80の設置面である段差36の底面38に対してシールリング80が2箇所、この場合は、第1リップ80aと第4リップ80dとが当接するため、環状の開放空間S内でのシールリング80の位置を安定にすることができる。 Further, by forming the cross section of the seal ring 80 into an X shape, there are two seal rings 80 with respect to the bottom surface 38 of the step 36 which is the installation surface of the seal ring 80. In this case, the first lip 80a and the fourth lip 80a and the fourth. Since the lip 80d comes into contact with the lip 80d, the position of the seal ring 80 in the annular open space S can be stabilized.
 また、シールリング80の断面をX字形状とすることで、シールリング80を環状の開放空間Sに収容した時のねじれを少なくできる。接面圧力がシールリング80の断面全体に分散されるため、漏れが少なく良好な気密性が得られる。 Further, by making the cross section of the seal ring 80 X-shaped, it is possible to reduce the twist when the seal ring 80 is housed in the annular open space S. Since the contact surface pressure is dispersed over the entire cross section of the seal ring 80, there is little leakage and good airtightness can be obtained.
 また、第4リップ80dの断面積を他のリップ80a~80cよりも小さくすることで、シールリング80自体の体積が大きくなりすぎるのを抑制できる。シールリング80の体積が大きくなりすぎると、モータ100に負荷200が取り付けられたときに、シールリング80が異常変形して、かえって気密性を保てないことがある。本実施形態のシールリング80を用いることで、このような不具合の発生を回避できる。 Further, by making the cross-sectional area of the fourth lip 80d smaller than that of the other lips 80a to 80c, it is possible to prevent the volume of the seal ring 80 itself from becoming too large. If the volume of the seal ring 80 becomes too large, the seal ring 80 may be abnormally deformed when the load 200 is attached to the motor 100, and the airtightness may not be maintained. By using the seal ring 80 of the present embodiment, it is possible to avoid the occurrence of such a problem.
 本実施形態に係る電気機器300は、モータ100と、モータ100に連結され、エンドプレート30の外側に貫通孔32から突出した回転軸54に駆動連結されていて、モータ100の回転に応じて駆動される被駆動部210を有する負荷200と、を少なくとも備えている。 The electric device 300 according to the present embodiment is connected to the motor 100 and the motor 100, and is driven and connected to the rotating shaft 54 protruding from the through hole 32 to the outside of the end plate 30, and is driven according to the rotation of the motor 100. It includes at least a load 200 having a driven portion 210 to be driven.
 シールリング80は、負荷200の表面221からフレーム20の底部側に押圧されることで、第1リップ80aが段差36の底面38とフレーム20の内周面23とで構成される第1コーナー部C1に、第2リップ80bが負荷200の表面221とフレーム20の内周面23とで構成される第2コーナー部C2に、第3リップ80cが負荷200の表面221と段差36の側面37とで構成される第3コーナー部C3に、第4リップ80dが段差36の角部である第4コーナー部C4にそれぞれ当接している。 The seal ring 80 is pressed from the surface 221 of the load 200 toward the bottom of the frame 20, so that the first lip 80a is a first corner portion formed by the bottom surface 38 of the step 36 and the inner peripheral surface 23 of the frame 20. In C1, the second lip 80b is on the second corner portion C2 composed of the surface 221 of the load 200 and the inner peripheral surface 23 of the frame 20, and the third lip 80c is on the surface 221 of the load 200 and the side surface 37 of the step 36. The fourth lip 80d is in contact with the third corner portion C3 composed of the above, and the fourth lip 80d is in contact with the fourth corner portion C4, which is the corner portion of the step 36.
 電気機器300をこのように構成することで、モータ100が駆動し、また負荷200の被駆動部210が動作する際に継続して発生する熱及びエンドプレート30に加わる圧力に起因してエンドプレート30が変形した場合にも、フレーム20の内部や負荷200の内部への水分等の進入を防止できる。これによって、高信頼性の電気機器300を実現できる。特に、シールリング80の断面をX字形状とし、かつ第1~第3リップ80a~80cのそれぞれの断面積を、第4リップ80dの断面積よりも大きくすることで、外部からの水分等の進入経路にあたる第1~第3コーナー部C1~C3に対して、第1~第3リップ80a~80cの接面圧力をそれぞれ高められ、フレーム20の内部や負荷200の内部への水分等の進入を確実に防止できる。 By configuring the electric device 300 in this way, the end plate is caused by the heat continuously generated when the motor 100 is driven and the driven portion 210 of the load 200 is operated and the pressure applied to the end plate 30. Even when the 30 is deformed, it is possible to prevent moisture and the like from entering the inside of the frame 20 and the inside of the load 200. Thereby, a highly reliable electric device 300 can be realized. In particular, by making the cross section of the seal ring 80 X-shaped and making the cross-sectional area of each of the first to third lips 80a to 80c larger than the cross-sectional area of the fourth lip 80d, moisture from the outside and the like can be prevented. The contact pressure of the first to third lips 80a to 80c is increased with respect to the first to third corner portions C1 to C3 corresponding to the approach path, and moisture or the like enters the inside of the frame 20 or the load 200, respectively. Can be reliably prevented.
 また、本実施形態の電気機器300は、外部環境に配設され、環境温度が数十度以上に達した状態で継続使用される場合に高信頼性を確保でき、有用である。 Further, the electric device 300 of the present embodiment is useful because it can ensure high reliability when it is arranged in an external environment and is continuously used in a state where the environmental temperature reaches several tens of degrees or more.
 以上のように、本実施形態のモータ100は、一端が開口された有底筒状のフレーム20と、フレーム20内に収容された固定子60と、フレーム20内に収容され、固定子60と所定の間隔をあけて配置された回転子50と、フレーム20の開口21に開口21を覆うように配設され、回転軸54が挿通される貫通孔32が中心に設けられた板状部材であるエンドプレート30と、環状の弾性体からなり、フレーム20の内部の気密を保つためのシールリング80と、を少なくとも備える。エンドプレート30の外面の外周部に形成された段差36とフレーム20の内周面23との間には、環状の開放空間Sが区画形成され、シールリング80が開放空間に収容されている。シールリング80は断面がX字形状で第1~第4リップ80a~80dを有している。第4リップ80dは段差36の角部に当接している。第1~第3リップ80a~80cのうちの少なくとも1つは、第4リップ80dよりも断面積が大きい。 As described above, the motor 100 of the present embodiment includes a bottomed tubular frame 20 having one end opened, a stator 60 housed in the frame 20, and a stator 60 housed in the frame 20. A plate-shaped member having rotors 50 arranged at predetermined intervals and a through hole 32 arranged in the opening 21 of the frame 20 so as to cover the opening 21 and through which the rotation shaft 54 is inserted. At least a certain end plate 30 and a seal ring 80 made of an annular elastic body and for maintaining airtightness inside the frame 20 are provided. An annular open space S is partitioned between the step 36 formed on the outer peripheral portion of the outer surface of the end plate 30 and the inner peripheral surface 23 of the frame 20, and the seal ring 80 is housed in the open space. The seal ring 80 has an X-shaped cross section and has first to fourth lips 80a to 80d. The fourth lip 80d is in contact with the corner of the step 36. At least one of the first to third lips 80a to 80c has a larger cross-sectional area than the fourth lip 80d.
 この構成によれば、フレーム20の内周面23を含む開放空間のコーナー部でのシールリング80の接面圧力を高くすることができる。モータ100の回転軸54に負荷200が連結された場合、この負荷200とフレーム20の内周面23とで構成されるコーナー部でのシールリング80の接面圧力を高くすることができる。このことにより、エンドプレート30が熱または圧力の影響で変形した場合にもコーナー部C1~C4での気密性を維持して、フレーム20の内部への水分等の進入を防止できる。これにより、高信頼性のモータ100を実現できる。 According to this configuration, the contact pressure of the seal ring 80 at the corner portion of the open space including the inner peripheral surface 23 of the frame 20 can be increased. When the load 200 is connected to the rotating shaft 54 of the motor 100, the contact pressure of the seal ring 80 at the corner portion formed by the load 200 and the inner peripheral surface 23 of the frame 20 can be increased. As a result, even when the end plate 30 is deformed due to the influence of heat or pressure, the airtightness at the corners C1 to C4 can be maintained and moisture or the like can be prevented from entering the inside of the frame 20. Thereby, a highly reliable motor 100 can be realized.
 また、本実施形態の電気機器300は、モータ100と、モータ100に連結され、エンドプレート30の外側に貫通孔32から突出した回転軸54に駆動連結されていて、モータ100の回転に応じて駆動される被駆動部210を有する負荷200と、を少なくとも備える。シールリング80は、負荷200の表面からフレーム20の底部側に押圧されることで、第1リップ80aが段差の底面38とフレーム20の内周面とで構成される第1コーナー部に、第2リップ80bが負荷200の表面とフレーム20の内周面23とで構成される第2コーナー部に、第3リップ80cが負荷200の表面と段差の側面37とで構成される第3コーナー部に、第4リップ80dが段差36の角部である第4コーナー部にそれぞれ当接している。 Further, the electric device 300 of the present embodiment is connected to the motor 100 and the motor 100, and is driven and connected to the rotating shaft 54 protruding from the through hole 32 to the outside of the end plate 30, and is driven and connected according to the rotation of the motor 100. It includes at least a load 200 having a driven portion 210 to be driven. When the seal ring 80 is pressed from the surface of the load 200 toward the bottom of the frame 20, the first lip 80a is placed on the first corner portion formed by the bottom surface 38 of the step and the inner peripheral surface of the frame 20. The 2 lip 80b is the second corner portion composed of the surface of the load 200 and the inner peripheral surface 23 of the frame 20, and the third lip 80c is the third corner portion composed of the surface of the load 200 and the side surface 37 of the step. The fourth lip 80d is in contact with the fourth corner portion, which is the corner portion of the step 36, respectively.
 この構成によれば、シールリング80の断面をX字形状とすることで、外部からの水分等の進入経路にあたる第1~第3コーナー部C1~C3に対して、第1~第3リップ80a~80cがそれぞれ所定の接面圧力で当接する。よって、フレーム20の内部または負荷の内部への水分等の進入を確実に防止できる。これにより、高信頼性の電気機器300を実現できる。 According to this configuration, by forming the cross section of the seal ring 80 into an X shape, the first to third lips 80a with respect to the first to third corner portions C1 to C3 which correspond to the entry path of moisture and the like from the outside. -80c come into contact with each other at a predetermined contact pressure. Therefore, it is possible to reliably prevent the ingress of moisture or the like into the inside of the frame 20 or the inside of the load. As a result, a highly reliable electric device 300 can be realized.
 <変形例1>
 図6は、変形例1に係るシールリングの断面模式図である。図7は、変形例1に係るエンドプレートとフレームとの連結部分の断面模式図である。図8は、変形例1に係る別のシールリングの断面模式図である。図9は、変形例1に係るエンドプレートとフレームとの別の連結部分の断面模式図である。なお、図6~図9において、実施形態1と同様の個所については同一の符号を付して詳細な説明を省略する。
<Modification example 1>
FIG. 6 is a schematic cross-sectional view of the seal ring according to the first modification. FIG. 7 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the first modification. FIG. 8 is a schematic cross-sectional view of another seal ring according to the first modification. FIG. 9 is a schematic cross-sectional view of another connecting portion between the end plate and the frame according to the first modification. In FIGS. 6 to 9, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図6に示すシールリング81は、第1及び第2リップ81a,81bの断面積が第4リップ81dの断面積よりも大きくなるようにそれぞれ形成されている。前述したように、第1及び第2リップ81a,81bは、第1及び第2コーナー部C1,C2にそれぞれ当接し、第1及び第2コーナー部C1,C2はフレーム20の内周面23をそれぞれ含んでいる。 The seal ring 81 shown in FIG. 6 is formed so that the cross-sectional areas of the first and second lips 81a and 81b are larger than the cross-sectional areas of the fourth lip 81d, respectively. As described above, the first and second lips 81a and 81b abut on the first and second corner portions C1 and C2, respectively, and the first and second corner portions C1 and C2 touch the inner peripheral surface 23 of the frame 20. Each is included.
 シールリング81をこのように構成することで、第1及び第2コーナー部C1,C2でのシールリング81の接面圧力を高めることができる。 By configuring the seal ring 81 in this way, it is possible to increase the contact pressure of the seal ring 81 at the first and second corner portions C1 and C2.
 エンドプレート30の熱変形により、第2コーナー部C2において、フレーム20の内周面23と負荷200の表面221との隙間が大きくなることは前述のとおりである。このため、外部からの水分等の進入が最も起こりやすいのは第2コーナー部C2である。一方、フレーム20の内部に水分等が直接進入する経路は第1コーナー部C1である。よって、第1コーナー部C1での気密性も高める必要がある。 As described above, the gap between the inner peripheral surface 23 of the frame 20 and the surface 221 of the load 200 increases in the second corner portion C2 due to the thermal deformation of the end plate 30. For this reason, it is the second corner portion C2 that is most likely to allow moisture or the like to enter from the outside. On the other hand, the path through which moisture or the like directly enters the inside of the frame 20 is the first corner portion C1. Therefore, it is necessary to improve the airtightness at the first corner portion C1.
 図6に示すシールリング81を用いることで、図7に示す第1及び第2コーナー部C1,C2でのシールリング81の接面圧力を高めることができ、フレーム20の内部や負荷200の内部への水分等の進入を確実に防止できる。なお、第3リップ81cの断面積を第4リップ81dの断面積と同等にすることで、シールリング81自体の体積を小さくして、シールリング81が異常変形するのを抑制できる。このことにより、フレーム20の内部や負荷200の内部の気密性を高めることができる。 By using the seal ring 81 shown in FIG. 6, the contact surface pressure of the seal ring 81 at the first and second corner portions C1 and C2 shown in FIG. 7 can be increased, and the inside of the frame 20 and the inside of the load 200 can be increased. It is possible to reliably prevent the ingress of moisture and the like into the water. By making the cross-sectional area of the third lip 81c equal to the cross-sectional area of the fourth lip 81d, the volume of the seal ring 81 itself can be reduced, and abnormal deformation of the seal ring 81 can be suppressed. As a result, the airtightness inside the frame 20 and the inside of the load 200 can be improved.
 前述したように、フレーム20の上端部は、径方向外側に屈曲したフランジ25である。よって、単に第2リップ81bの断面積を大きくするだけでは第2リップ81bが第2コーナー部C2をシールしきれず、第2コーナー部C2での気密性を保てない場合がある。 As described above, the upper end portion of the frame 20 is a flange 25 bent outward in the radial direction. Therefore, if the cross-sectional area of the second lip 81b is simply increased, the second lip 81b may not be able to completely seal the second corner portion C2, and the airtightness at the second corner portion C2 may not be maintained.
 図8に示すように、第2リップ82bの形状をフレーム20のフランジ25の内周面23に沿うような形状とすることで、図9に示す第2コーナー部C2での気密性を確実に維持することができる。したがって、フレーム20の内部や負荷200の内部への水分等の進入を確実に防止できる。 As shown in FIG. 8, by making the shape of the second lip 82b along the inner peripheral surface 23 of the flange 25 of the frame 20, the airtightness at the second corner portion C2 shown in FIG. 9 is ensured. Can be maintained. Therefore, it is possible to reliably prevent the ingress of moisture and the like into the inside of the frame 20 and the inside of the load 200.
 なお、第1~第3リップ81a~81c、82a~82cのうちの少なくとも1つの断面積を第4リップ81d、82dの断面積より大きくするようにしてもよい。モータ100または負荷200のサイズ、また、エンドプレート30の変形の度合いによっては、第1~第3リップ81a~81c、82a~82cのうちのいずれ1つあるいは複数を第4リップ81d、82dよりも断面積が大きくなるようにすることで、フレーム20の内部や負荷200の内部への水分等の進入を防止することも可能である。 The cross-sectional area of at least one of the first to third lips 81a to 81c and 82a to 82c may be made larger than the cross-sectional area of the fourth lips 81d and 82d. Depending on the size of the motor 100 or the load 200 and the degree of deformation of the end plate 30, any one or more of the first to third lips 81a to 81c and 82a to 82c may be used more than the fourth lips 81d and 82d. By increasing the cross-sectional area, it is possible to prevent moisture and the like from entering the inside of the frame 20 and the load 200.
 (実施形態2)
 図10Aは、本発明の実施形態2に係るエンドプレートとフレームとの連結部分の断面模式図である。図10Bは、本発明の実施形態2に係るエンドプレートとフレームとの連結部分の断面模式図である。図11は、本発明の実施形態2に係るエンドプレートとシールリングとの経時変形を説明する模式図である。なお、図10Aでは、環状の開放空間Sにシールリング80が収容されていない状態を示す。図10Bでは、シールリング80が収容された状態を示す。
(Embodiment 2)
FIG. 10A is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention. FIG. 10B is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second embodiment of the present invention. FIG. 11 is a schematic view illustrating the time-dependent deformation of the end plate and the seal ring according to the second embodiment of the present invention. Note that FIG. 10A shows a state in which the seal ring 80 is not housed in the annular open space S. FIG. 10B shows a state in which the seal ring 80 is housed.
 図1~図4Bに示したエンドプレート30では、段差36の底面38は平坦面であり、かつ段差36の側面37と互いに直交するように形成されている。本実施形態において、段差36の底面38は、径方向外側に位置する第1底面38aと、径方向内側に位置し、段差36の側面37及び第1底面38aに連続する第2底面38bとを含んでいる。第1底面38aと第2底面38bとは軸方向に関して互いに異なる方向に傾斜している。第1底面38aは、エンドプレート30の外面の径方向外縁まで延びかつ径方向外側に向かって下側、つまりフレーム20の底部側に向かうように傾斜している。言い換えると、エンドプレート30の外面の外周部は、下側に向かう順テーパー形状となっている。段差36の側面37と第2底面38bとは互いに直交している。軸方向での断面視において、第1底面38aが第2底面38bに対して所定の傾斜角で傾斜する面となるようにしているが、特にこれに限定されない。この傾斜角は、底面38の径方向の幅、環状の開放空間Sの軸方向の高さ、環状の開放空間Sに対するシールリング80の充填率、シールリング80の材質あるいはシールリング80の第1リップ80aの曲率半径等により適宜変更され得る。 In the end plates 30 shown in FIGS. 1 to 4B, the bottom surface 38 of the step 36 is a flat surface and is formed so as to be orthogonal to the side surface 37 of the step 36. In the present embodiment, the bottom surface 38 of the step 36 includes a first bottom surface 38a located on the outer side in the radial direction and a second bottom surface 38b located on the inner side in the radial direction and continuous with the side surface 37 and the first bottom surface 38a of the step 36. Includes. The first bottom surface 38a and the second bottom surface 38b are inclined in different directions with respect to the axial direction. The first bottom surface 38a extends to the radial outer edge of the outer surface of the end plate 30 and is inclined downward toward the radial outer side, that is, toward the bottom side of the frame 20. In other words, the outer peripheral portion of the outer surface of the end plate 30 has a forward taper shape toward the lower side. The side surface 37 of the step 36 and the second bottom surface 38b are orthogonal to each other. In the cross-sectional view in the axial direction, the first bottom surface 38a is set to be a surface that is inclined at a predetermined inclination angle with respect to the second bottom surface 38b, but the present invention is not particularly limited to this. The inclination angle is the radial width of the bottom surface 38, the axial height of the annular open space S, the filling rate of the seal ring 80 with respect to the annular open space S, the material of the seal ring 80, or the first seal ring 80. It can be appropriately changed depending on the radius of curvature of the lip 80a and the like.
 図10A及び図10Bに示す場合では、軸方向の断面視において、エンドプレート30の外面の径方向外縁部を直線状に切り欠いた形状とすることで、第1底面38aが形成されている。言い換えると、第1底面38aは、その径方向外縁部が径方向内側部の延長上にまで直線状に延びる傾斜面となっている。従って、軸方向での断面視において、第1コーナー部C1は鋭角をなすように構成されている。なお、実際には、エンドプレート30は金型を用いて一体成形された樹脂製の部材であり、角部の切欠き加工等は行われない。また、第1底面38aは、径方向の幅L1が段差36の底面38の径方向の幅Lの半分以下になるように形成されている。 In the cases shown in FIGS. 10A and 10B, the first bottom surface 38a is formed by forming the radial outer edge portion of the outer surface of the end plate 30 in a straight line in a cross-sectional view in the axial direction. In other words, the first bottom surface 38a is an inclined surface whose radial outer edge portion extends linearly over the extension of the radial inner portion. Therefore, the first corner portion C1 is configured to form an acute angle in the cross-sectional view in the axial direction. In reality, the end plate 30 is a resin member integrally molded using a mold, and the corners are not cut out. Further, the first bottom surface 38a is formed so that the radial width L1 is less than half of the radial width L of the bottom surface 38 of the step 36.
 図10Bに示すように、負荷200が下側のモータ100を押圧していない状態で、シールリング80は、軸方向の突出高さAが、第1底面38aの軸方向の高さBよりも大きくなるように環状の開放空間Sに収容される。 As shown in FIG. 10B, in a state where the load 200 does not press the lower motor 100, the protrusion height A in the axial direction of the seal ring 80 is larger than the height B in the axial direction of the first bottom surface 38a. It is housed in an annular open space S so as to be large.
 このようにシールリング80が配設されたモータ100に対して負荷200が組み付けられると、図11の上側に示すように、負荷200の表面221がシールリング80を下側に押圧して、第1~第4リップ80a~80dが、第1~第4コーナー部C1~C4にそれぞれ当接する。このことにより、フレーム20とエンドプレート30との連結部分、及びフレーム20と負荷200の表面221との連結部分等がシールされることは前述のとおりである。 When the load 200 is assembled to the motor 100 on which the seal ring 80 is arranged in this way, the surface 221 of the load 200 presses the seal ring 80 downward as shown in the upper side of FIG. The 1st to 4th lips 80a to 80d come into contact with the 1st to 4th corner portions C1 to C4, respectively. As described above, the connecting portion between the frame 20 and the end plate 30 and the connecting portion between the frame 20 and the surface 221 of the load 200 are sealed by this.
 ここで、段差36の第1底面38aが上記の傾斜面である一方、第2底面38bは第1底面38aと異なる方向に傾斜し、段差36の側面37と互いに直交している。負荷200の表面221に当接したシールリング80が下側に押圧された場合、第4コーナー部C4での第4リップ80dの変形量及び接面圧力は図4Bに示す場合と同様である。一方、第1コーナー部C1は、図4Bに示す場合よりも下方、つまり、フレーム20の底部側に延びる空間体積が大きくなっている。かつ、第1リップ80aは傾斜面である第1底面38aに沿って変位可能である。これにより、図10Bに示すように、シールリング80の第1リップ80aが変形して第1コーナー部C1に入り込む量が、図4Bに示す場合よりも大きくなる。この入り込み量の増加に応じて、第1コーナー部C1でのシールリング80の接面圧力は図4Bに示す場合よりも高くなる。この状態から熱クリープによりエンドプレート30の外周側が上方に持ち上げられるように変形すると、第1コーナー部C1において、第1リップ80aがフレーム20の内周面23を押圧する接面圧力が低くなってくることは、図4Bに示す場合と同様である。しかし、本実施形態では、上述の通り、第1コーナー部C1におけるシールリング80の接面圧力が予め高い状態になっている。このため、上述した第1コーナー部C1でのシールリング80の接面圧力の低下を十分にカバーして、フレーム20の内部への水分等の進入を防止することができる。 Here, the first bottom surface 38a of the step 36 is the above-mentioned inclined surface, while the second bottom surface 38b is inclined in a direction different from that of the first bottom surface 38a and is orthogonal to the side surface 37 of the step 36. When the seal ring 80 in contact with the surface 221 of the load 200 is pressed downward, the amount of deformation and the contact surface pressure of the fourth lip 80d at the fourth corner portion C4 are the same as in the case shown in FIG. 4B. On the other hand, the first corner portion C1 has a larger space volume extending downward, that is, toward the bottom side of the frame 20 than in the case shown in FIG. 4B. Moreover, the first lip 80a can be displaced along the first bottom surface 38a which is an inclined surface. As a result, as shown in FIG. 10B, the amount by which the first lip 80a of the seal ring 80 is deformed and enters the first corner portion C1 becomes larger than that shown in FIG. 4B. As the amount of penetration increases, the contact pressure of the seal ring 80 at the first corner portion C1 becomes higher than that shown in FIG. 4B. When the outer peripheral side of the end plate 30 is deformed so as to be lifted upward by thermal creep from this state, the contact pressure at which the first lip 80a presses the inner peripheral surface 23 of the frame 20 becomes low in the first corner portion C1. It is the same as the case shown in FIG. 4B. However, in the present embodiment, as described above, the contact pressure of the seal ring 80 at the first corner portion C1 is in a high state in advance. Therefore, it is possible to sufficiently cover the decrease in the contact surface pressure of the seal ring 80 at the first corner portion C1 described above and prevent moisture or the like from entering the inside of the frame 20.
 以上、説明したように、本実施形態に係るモータ100では、フレーム20の開口21を覆う樹脂製のエンドプレート30の外面の外周部に段差36を形成する。段差36の底面38のうち、径方向外側に位置する第1底面38aは、エンドプレート30の外面の径方向外縁まで延びかつ径方向外側に向かって下側、つまりフレーム20の底部側に向かうように傾斜している。 As described above, in the motor 100 according to the present embodiment, a step 36 is formed on the outer peripheral portion of the outer surface of the resin end plate 30 that covers the opening 21 of the frame 20. Of the bottom surface 38 of the step 36, the first bottom surface 38a located on the outer side in the radial direction extends to the radial outer edge of the outer surface of the end plate 30 and is directed downward toward the outer side in the radial direction, that is, toward the bottom side of the frame 20. It is inclined to.
 このような構成とすることで、シールリング80に上方から下方に向かう押圧力を加えた場合に、第1コーナー部C1において、シールリング80の入り込み量が増加して、シールリング80の接面圧力を高くすることができる。このことにより、フレーム20の内部に水分等が直接進入する経路である第1コーナー部C1での気密性を維持して、高信頼性のモータ100を実現できる。 With such a configuration, when a pressing force is applied to the seal ring 80 from above to downward, the amount of penetration of the seal ring 80 increases at the first corner portion C1, and the contact surface of the seal ring 80 is increased. The pressure can be increased. As a result, the highly reliable motor 100 can be realized by maintaining the airtightness at the first corner portion C1 which is a path through which moisture or the like directly enters the inside of the frame 20.
 また、第1底面38aの径方向の幅L1を底面38の径方向の幅Lの半分以下になるようにすることで、第1コーナー部C1において、第1リップ80aの径方向での圧縮変形量が小さくなるのを抑制して、フレーム20の内周面23への接面圧力を所望の値以上に維持できる。このことにより、エンドプレート30の熱クリープ変形時にも、第1コーナー部C1での気密性を維持できる。 Further, by making the radial width L1 of the first bottom surface 38a less than half the radial width L of the bottom surface 38, the first corner portion C1 is compressed and deformed in the radial direction of the first lip 80a. It is possible to suppress the amount from becoming small and maintain the contact pressure of the frame 20 with respect to the inner peripheral surface 23 to a desired value or more. As a result, the airtightness at the first corner portion C1 can be maintained even when the end plate 30 is thermally creep-deformed.
 また、シールリング80を環状の開放空間Sに収容したときに、シールリング80の軸方向の突出高さAを第1底面38aの軸方向の高さBよりも大きくする。これにより、環状の開放空間Sに対するシールリング80の充填率の低下を抑制して、シールリング80による十分な気密性を確保できる。 Further, when the seal ring 80 is housed in the annular open space S, the axial protrusion height A of the seal ring 80 is made larger than the axial height B of the first bottom surface 38a. As a result, it is possible to suppress a decrease in the filling rate of the seal ring 80 with respect to the annular open space S, and to secure sufficient airtightness by the seal ring 80.
 また、シールリング80の断面をX字形状とすることで、環状の開放空間S内でのシールリング80の位置を安定にできる。また、ねじれを少なくして、接面圧力がシールリング80の断面全体に分散されることは実施形態1に示すのと同様である。 Further, by making the cross section of the seal ring 80 X-shaped, the position of the seal ring 80 in the annular open space S can be stabilized. Further, it is the same as that shown in the first embodiment that the contact surface pressure is dispersed over the entire cross section of the seal ring 80 by reducing the twist.
 また、第1底面38aは、径方向外縁部から径方向内側部まで直線状に延びる傾斜面であってもよい。 Further, the first bottom surface 38a may be an inclined surface extending linearly from the radial outer edge portion to the radial inner portion.
 <変形例2>
 図12は、変形例2に係るエンドプレートとフレームとの連結部分の断面模式図である。図13は、変形例2に係るエンドプレートとフレームとの連結部分の別の断面模式図である。なお、図12,13において、実施形態1,2と同様の個所については同一の符号を付して詳細な説明を省略する。説明の便宜上、シールリング80の図示を省略している。
<Modification 2>
FIG. 12 is a schematic cross-sectional view of a connecting portion between the end plate and the frame according to the second modification. FIG. 13 is another schematic cross-sectional view of the connecting portion between the end plate and the frame according to the second modification. In FIGS. 12 and 13, the same parts as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted. For convenience of explanation, the illustration of the seal ring 80 is omitted.
 図10A,図10B,図11において、軸方向の断面視において、エンドプレート30の外面の径方向外縁部を直線状に切り欠いた形状とすることで、第1底面38aが形成される例を示す。前述のとおり、第1コーナー部C1において、下方に延びる空間体積を増加させるように、また、第1底面38aと第2底面38bとが軸方向に関して互いに異なる方向に傾斜するように第1底面38aの形状を決定すればよい。従って、図12に示すように、エンドプレート30の外面の径方向外縁部を、径方向外側に向かってフレーム20の底部側に向かうように湾曲するフィレット形状、つまり、R面取りされた形状としてもよい。より具体的には、第1底面38aの径方向外縁部は、径方向外側に向かってフレーム20の底部側に向かうように湾曲するフィレット形状、つまり、R面取りされた形状としてもよい。図13に示すように、第2底面38bを第1底面38aと反対側に傾斜面として、底面38に凸部が形成されるようにしてもよい。図13に示す場合に、第1底面38aの形状を図12に示す形状としてもよい。いずれの場合も、第1コーナー部C1での気密性を維持して、フレーム20の内部への水分等の進入を防止できる。したがって、高信頼性のモータ100及び電気機器300を実現できる。 In FIGS. 10A, 10B, and 11, an example in which the first bottom surface 38a is formed by forming the radial outer edge portion of the outer surface of the end plate 30 in a linear shape in a cross-sectional view in the axial direction. Shown. As described above, in the first corner portion C1, the first bottom surface 38a is such that the space volume extending downward is increased and the first bottom surface 38a and the second bottom surface 38b are inclined in different directions with respect to the axial direction. The shape of the Therefore, as shown in FIG. 12, the radial outer edge of the outer surface of the end plate 30 may be curved outward in the radial direction toward the bottom of the frame 20, that is, an R-chamfered shape. Good. More specifically, the radial outer edge portion of the first bottom surface 38a may have a fillet shape that curves outward in the radial direction toward the bottom side of the frame 20, that is, an R chamfered shape. As shown in FIG. 13, the second bottom surface 38b may be an inclined surface on the opposite side of the first bottom surface 38a, and a convex portion may be formed on the bottom surface 38. In the case shown in FIG. 13, the shape of the first bottom surface 38a may be the shape shown in FIG. In either case, the airtightness at the first corner portion C1 can be maintained to prevent moisture or the like from entering the inside of the frame 20. Therefore, a highly reliable motor 100 and an electric device 300 can be realized.
 (その他の実施形態)
 各変形例及び実施形態1,2に示した各構成要素を適宜組み合わせて新たな実施形態とすることもできる。例えば、変形例1に示すシールリング81,82を実施形態2に示すモータ100に適用することもできる。
(Other embodiments)
Each modification and each component shown in the first and second embodiments can be appropriately combined to form a new embodiment. For example, the seal rings 81 and 82 shown in the first modification can be applied to the motor 100 shown in the second embodiment.
 なお、実施形態2において、エンドプレート30に形成された段差36の底面38は、段差36の側面37からエンドプレート30の外面の径方向外縁まで直線状に延びる傾斜面であってもよい。また、変形例1~3を含む実施形態1,2において、モータ100がブラシ付きモータである場合を例示した。しかし、特にこれに限定されず、例えば、ブラシレスモータであってもよいし、他の種類のモータであってもよい。また、本実施形態におけるモータ100は、回転子50の径方向外側に固定子60が配置された、いわゆるインナーロータ型のモータに用いる場合について説明した。しかし、別の種類のモータ、例えば、固定子60の径方向外側に所定の間隔をあけて回転子50が配置された、いわゆるアウターロータ型のモータにも適用できることは言うまでもない。 In the second embodiment, the bottom surface 38 of the step 36 formed on the end plate 30 may be an inclined surface extending linearly from the side surface 37 of the step 36 to the radial outer edge of the outer surface of the end plate 30. Further, in the first and second embodiments including the first to third modifications, the case where the motor 100 is a brushed motor is illustrated. However, the present invention is not particularly limited to this, and for example, it may be a brushless motor or another type of motor. Further, the case where the motor 100 in the present embodiment is used for a so-called inner rotor type motor in which the stator 60 is arranged on the radial outer side of the rotor 50 has been described. However, it goes without saying that it can be applied to another type of motor, for example, a so-called outer rotor type motor in which rotors 50 are arranged at predetermined intervals on the radial outer side of the stator 60.
 また、エンドプレート30の貫通孔32側に配設された軸受41は軸受保持部34内に収容されて、エンドプレート30の外面に当接している。しかし、エンドプレート30の内面側に配設されて、フレーム20の内部に収容されていてもよい。 Further, the bearing 41 arranged on the through hole 32 side of the end plate 30 is housed in the bearing holding portion 34 and is in contact with the outer surface of the end plate 30. However, it may be disposed on the inner surface side of the end plate 30 and housed inside the frame 20.
 また、エンドプレート30と一体に設けられたブラシ保持部33にブラシ70を収容するようにした。しかし、ブラシ保持部33をエンドプレート30と別体にフレーム20の内部に設けてブラシ70を収容するようにしてもよい。 Further, the brush 70 is housed in the brush holding portion 33 provided integrally with the end plate 30. However, the brush holding portion 33 may be provided inside the frame 20 separately from the end plate 30 to accommodate the brush 70.
 また、本実施形態において、固定子60はフレーム20と複数の永久磁石61とで構成されている。しかし、他の構造、例えば、周方向に所定の間隔をあけて配設された複数の界磁磁極のそれぞれに界磁巻線が巻装されて固定子60を構成するようにしてもよい。 Further, in the present embodiment, the stator 60 is composed of a frame 20 and a plurality of permanent magnets 61. However, another structure, for example, a field winding may be wound around each of a plurality of field magnetic poles arranged at predetermined intervals in the circumferential direction to form the stator 60.
 本発明に係るモータは、外部からの水分や油等の進入を防止できる。したがって、油圧ポンプ等の流体ポンプを含む電気機器や高温の外部環境に配設される電気機器に適用する上で有用である。 The motor according to the present invention can prevent the ingress of moisture, oil, etc. from the outside. Therefore, it is useful for application to electric devices including fluid pumps such as hydraulic pumps and electric devices arranged in a high temperature external environment.
 20  フレーム
 21  開口
 22  軸受保持部
 23  内周面
 24  プレート支持部
 25  フランジ
 30  エンドプレート
 31  基部
 32  貫通孔
 33  ブラシ保持部
 34  軸受保持部
 36  段差
 37  段差の側面
 38  段差の底面
 38a 第1底面
 38b 第2底面
 40,41  軸受(ベアリング)
 50  回転子
 51  電機子コア
 52  突極
 53  電機子巻線
 54  回転軸
 55  整流子
 56  インシュレータ
 60  固定子
 61  永久磁石
 70  ブラシ
 80  シールリング
 80a~80d 第1~第4リップ
 81  シールリング
 81a~81d 第1~第4リップ
 82  シールリング
 82a~82d 第1~第4リップ
 100 モータ
 200 負荷
 210 被駆動部
 220 外郭
 221 負荷の表面(外郭の表面)
 300 電気機器
 C1~C4 第1~第4コーナー部
 A   シールリングの突出高さ
 B   第1底面の軸方向の高さ
 S   環状の開放空間
20 Frame 21 Opening 22 Bearing holding part 23 Inner peripheral surface 24 Plate supporting part 25 Flange 30 End plate 31 Base 32 Through hole 33 Brush holding part 34 Bearing holding part 36 Step 37 Step side 38 Step bottom 38a First bottom 38b 2 Bottom 40,41 Bearing (Bearing)
50 Rotor 51 Armature core 52 Slip pole 53 Armature winding 54 Rotor shaft 55 Commutator 56 Insulator 60 Stator 61 Permanent magnet 70 Brush 80 Seal ring 80a-80d 1st-4th lip 81 Seal ring 81a-81d 1st 1st to 4th lip 82 Seal ring 82a to 82d 1st to 4th lip 100 Motor 200 Load 210 Driven part 220 Outer 221 Load surface (outer surface)
300 Electrical equipment C1 to C4 1st to 4th corners A Overhang height of the seal ring B Axial height of the 1st bottom surface S An annular open space

Claims (13)

  1. 一端が開口された有底筒状のフレームと、
    前記フレーム内に収容された固定子と、
    前記フレーム内に収容され、前記固定子と所定の間隔をあけて配置された回転子と、
    前記フレームの開口に前記開口を覆うように配設され、回転軸が挿通される貫通孔が中心に設けられた板状部材であるエンドプレートと、
    環状の弾性体からなり、前記フレームの内部の気密を保つためのシールリングと、を少なくとも備え、
    前記エンドプレートの外面の外周部に形成された段差と前記フレームの内周面との間に環状の開放空間が区画形成され、前記シールリングが前記開放空間に収容されており、
    前記シールリングは断面がX字形状で第1~第4リップを有しており、
    前記第4リップは前記段差の角部に当接しており、
    前記第1~第3リップのうちの少なくとも1つは、前記第4リップよりも断面積が大きいモータ。
    A bottomed tubular frame with one end open,
    The stator housed in the frame and
    A rotor housed in the frame and arranged at a predetermined distance from the stator,
    An end plate, which is a plate-shaped member arranged in the opening of the frame so as to cover the opening and having a through hole through which a rotation shaft is inserted,
    It is made of an annular elastic body and is provided with at least a seal ring for keeping the inside of the frame airtight.
    An annular open space is formed between the step formed on the outer peripheral portion of the outer surface of the end plate and the inner peripheral surface of the frame, and the seal ring is housed in the open space.
    The seal ring has an X-shaped cross section and has first to fourth lips.
    The fourth lip is in contact with the corner of the step.
    At least one of the first to third lips is a motor having a larger cross-sectional area than the fourth lip.
  2. 前記第1及び第2リップは前記フレームの内周面に当接しており、
    前記第1及び第2リップは、それぞれ前記第4リップよりも断面積が大きい請求項1に記載のモータ。
    The first and second lips are in contact with the inner peripheral surface of the frame.
    The motor according to claim 1, wherein the first and second lips each have a larger cross-sectional area than the fourth lip.
  3. 前記フレームにおける前記開口の近傍には、前記モータの半径方向外側に屈曲したフランジが形成されており、
    前記第2リップは、断面視で前記第4リップの対角に位置しており、
    前記第2リップは、前記フランジの内周面に沿うように形状が規定されている請求項1または2に記載のモータ。
    A flange bent outward in the radial direction of the motor is formed in the vicinity of the opening in the frame.
    The second lip is located diagonally to the fourth lip in a cross-sectional view.
    The motor according to claim 1 or 2, wherein the second lip has a shape defined so as to be along the inner peripheral surface of the flange.
  4. 前記段差の側面は前記フレームの内周面と径方向に対向しており、
    前記段差の底面は、前記エンドプレートの外面の径方向外縁まで延びかつ径方向外側に向かってフレームの底部側に向かうように傾斜している部分を有する請求項1から3のいずれか1項にモータ。
    The side surface of the step faces the inner peripheral surface of the frame in the radial direction.
    According to any one of claims 1 to 3, the bottom surface of the step has a portion that extends to the radial outer edge of the outer surface of the end plate and is inclined toward the bottom side of the frame toward the radial outer side. motor.
  5. 前記段差の底面は、前記段差の側面から前記エンドプレートの外面の径方向外縁まで直線状に延びる傾斜面である請求項4に記載のモータ。 The motor according to claim 4, wherein the bottom surface of the step is an inclined surface that extends linearly from the side surface of the step to the radial outer edge of the outer surface of the end plate.
  6. 前記段差の底面は、径方向外側に位置する第1底面と、前記第1底面に連続して径方向内側に位置する第2底面とを含み、
    前記第1底面は、前記エンドプレートの外面の径方向外縁まで延びかつ径方向外側に向かってフレームの底部側に向かうように傾斜しており、
    前記第2底面は前記第1底面と軸方向に関して異なる方向に傾斜している請求項4に記載のモータ。
    The bottom surface of the step includes a first bottom surface located on the outer side in the radial direction and a second bottom surface located on the inner side in the radial direction continuously with the first bottom surface.
    The first bottom surface extends to the radial outer edge of the outer surface of the end plate and is inclined outward in the radial direction toward the bottom side of the frame.
    The motor according to claim 4, wherein the second bottom surface is inclined in a direction different from that of the first bottom surface in the axial direction.
  7. 前記第2底面は前記段差の側面に直交している請求項6に記載のモータ。 The motor according to claim 6, wherein the second bottom surface is orthogonal to the side surface of the step.
  8. モータにおいて、
    前記第2底面は、前記第1底面と反対側に傾斜した傾斜面である請求項6に記載のモータ。
    In the motor
    The motor according to claim 6, wherein the second bottom surface is an inclined surface inclined to the side opposite to the first bottom surface.
  9. 前記第1底面は、径方向外縁部から径方向内側部まで直線状に延びる傾斜面である請求項6から8のいずれか1項に記載のモータ。 The motor according to any one of claims 6 to 8, wherein the first bottom surface is an inclined surface that extends linearly from a radial outer edge portion to a radial inner portion.
  10. 前記第1底面の径方向外縁部は、径方向外側に向かってフレームの底部側に向かうように湾曲するフィレット形状である請求項6から8のいずれか1項に記載のモータ。 The motor according to any one of claims 6 to 8, wherein the radial outer edge portion of the first bottom surface has a fillet shape that curves toward the bottom side of the frame toward the outside in the radial direction.
  11. 前記エンドプレートの外面の径方向外縁部は、径方向外側に向かってフレームの底部側に向かうように湾曲するフィレット形状である請求項6から8のいずれか1項に記載のモータ。 The motor according to any one of claims 6 to 8, wherein the radial outer edge portion of the outer surface of the end plate has a fillet shape that is curved toward the bottom side of the frame toward the outer side in the radial direction.
  12. 前記第1底面は、径方向の幅が前記段差の底面の径方向の幅の半分以下である請求項6から11のいずれか1項に記載のモータ。 The motor according to any one of claims 6 to 11, wherein the first bottom surface has a radial width of half or less the radial width of the bottom surface of the step.
  13. 請求項1から12のいずれか1項に記載のモータと、
    前記モータに連結され、前記エンドプレートの外側に貫通孔から突出した前記回転軸に駆動連結されていて、前記モータの回転に応じて駆動される被駆動部を有する負荷と、を少なくとも備え、
    前記シールリングは、前記負荷の表面から前記フレームの底部側に押圧されることで、前記第1リップが前記段差の底面と前記フレームの内周面とで構成される第1コーナー部に、前記第2リップが前記負荷の表面と前記フレームの内周面とで構成される第2コーナー部に、前記第3リップが前記負荷の表面と前記段差の側面とで構成される第3コーナー部に、前記第4リップが前記段差の角部である第4コーナー部にそれぞれ当接している電気機器。
    The motor according to any one of claims 1 to 12, and the motor.
    At least a load having a driven portion connected to the motor, driven to the rotating shaft protruding from the through hole to the outside of the end plate, and driven in response to the rotation of the motor, is provided.
    When the seal ring is pressed from the surface of the load toward the bottom of the frame, the first lip is placed on the first corner portion formed by the bottom surface of the step and the inner peripheral surface of the frame. The second lip is at the second corner formed by the surface of the load and the inner peripheral surface of the frame, and the third lip is at the third corner formed by the surface of the load and the side surface of the step. , An electric device in which the fourth lip is in contact with the fourth corner portion, which is the corner portion of the step.
PCT/JP2020/034410 2019-11-11 2020-09-11 Motor and electrical equipment including same WO2021095344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203797 2019-11-11
JP2019203797A JP2022177344A (en) 2019-11-11 2019-11-11 Motor, and electrical machine including the same

Publications (1)

Publication Number Publication Date
WO2021095344A1 true WO2021095344A1 (en) 2021-05-20

Family

ID=75911380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034410 WO2021095344A1 (en) 2019-11-11 2020-09-11 Motor and electrical equipment including same

Country Status (2)

Country Link
JP (1) JP2022177344A (en)
WO (1) WO2021095344A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128963U (en) * 1983-02-18 1984-08-30 株式会社ナブコ Seal mechanism
JPH0586072U (en) * 1992-04-24 1993-11-19 三菱電線工業株式会社 Sliding packing
JP2002295683A (en) * 2001-03-28 2002-10-09 Nok Corp Seal for dovetail groove
JP2009287659A (en) * 2008-05-29 2009-12-10 Mitsubishi Cable Ind Ltd Sliding seal
JP2012132476A (en) * 2010-12-20 2012-07-12 Nanahoshi Kagaku Kenkyusho:Kk Packing and electric connector
WO2019159649A1 (en) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 Motor and electric device with same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128963U (en) * 1983-02-18 1984-08-30 株式会社ナブコ Seal mechanism
JPH0586072U (en) * 1992-04-24 1993-11-19 三菱電線工業株式会社 Sliding packing
JP2002295683A (en) * 2001-03-28 2002-10-09 Nok Corp Seal for dovetail groove
JP2009287659A (en) * 2008-05-29 2009-12-10 Mitsubishi Cable Ind Ltd Sliding seal
JP2012132476A (en) * 2010-12-20 2012-07-12 Nanahoshi Kagaku Kenkyusho:Kk Packing and electric connector
WO2019159649A1 (en) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 Motor and electric device with same

Also Published As

Publication number Publication date
JP2022177344A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US10574120B2 (en) Inverter built-in brushless direct current motor
US9893586B2 (en) Driver apparatus provided with a motor and a control unit
JP2008175090A (en) Motor-driven pump
WO2017141877A1 (en) Electric device and electric supercharger
JP7291913B2 (en) Motors and electrical equipment equipped with them
US20170025916A1 (en) Motor
JP2016136829A (en) Motor unit
WO2018179831A1 (en) Motor
US9300174B2 (en) Stator-core fixing structure for rotating electric machine
JP2545819B2 (en) Brushless motor driven fuel pump
JP2007159191A (en) Motor
WO2021095344A1 (en) Motor and electrical equipment including same
WO2018179832A1 (en) Motor
CN1046062C (en) Miniature motor
EP0940906A2 (en) Housing structure of electric motor
JP6045267B2 (en) AC generator for vehicles
JP2021083207A (en) Motor and electrical apparatus having the same
JPWO2018235184A1 (en) Electric motor and method of assembling electric motor
CN213367507U (en) Electric motor
US20040140723A1 (en) Electric motor
US10103598B2 (en) Wet-operated armature
JP2023015875A (en) Electric motor
CN110545002B (en) Sealed motor vehicle starter with angularly wedged brush-holder gasket
JP5204718B2 (en) Fuel pump
JP4852405B2 (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20887796

Country of ref document: EP

Kind code of ref document: A1