WO2021095323A1 - Semiconductor device and power conversion device - Google Patents

Semiconductor device and power conversion device Download PDF

Info

Publication number
WO2021095323A1
WO2021095323A1 PCT/JP2020/032178 JP2020032178W WO2021095323A1 WO 2021095323 A1 WO2021095323 A1 WO 2021095323A1 JP 2020032178 W JP2020032178 W JP 2020032178W WO 2021095323 A1 WO2021095323 A1 WO 2021095323A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching elements
metal member
terminal
semiconductor device
diode
Prior art date
Application number
PCT/JP2020/032178
Other languages
French (fr)
Japanese (ja)
Inventor
貴夫 三井
新也 矢野
太郎 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021555908A priority Critical patent/JP7146113B2/en
Publication of WO2021095323A1 publication Critical patent/WO2021095323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present disclosure relates to a semiconductor device having a freewheeling diode connected in antiparallel to a plurality of switching elements.
  • MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor
  • switching element a semiconductor element
  • body diode For example, in the case of a SiC-MOSFET made of silicon carbide (SiC), which is one of the wideband gap semiconductors, when a current is passed through the body diode, the basal plane shift introduced during crystal growth of the SiC-MOSFET becomes a stacking defect. It is known that it causes conduction deterioration such as growth and increases the on-resistance of the SiC-MOSFET.
  • a method of suppressing the current flowing through the body diode by using a freewheeling diode is known.
  • a semiconductor device including a SiC-MOSFET having a built-in body diode and a freewheeling diode connected in antiparallel to the SiC-MOSFET the value of the forward voltage drop of the body diode is increased, or the freewheeling diode is used.
  • a method of preventing conduction deterioration is known by increasing the rated current so that the maximum value of the current flowing through the body diode is 1/10 or more and 1/3 or less of the rated current of the semiconductor device (for example).
  • Patent Document 1 Patent Document 1
  • Patent Document 1 describes specific mounting methods such as mounting positions of SiC-MOSFETs and freewheeling diodes on the upper and lower arms of semiconductor devices, and methods of connecting SiC-MOSFETs and freewheeling diodes to positive electrode terminals and negative electrode terminals. Not. Further, it is described that the freewheeling current exceeding the permissible current of the SiC Schottky barrier diode (SBD), which is a freewheeling diode, flows evenly to each of the body diodes of the four SiC-MOSFETs.
  • SBD SiC Schottky barrier diode
  • the mounting method does not take into consideration the diversion of the return current flowing through the body diodes of each of the plurality of SiC-MOSFETs, the return current will be biased to the body diodes of some SiC-MOSFETs and the amount of current will increase, resulting in energization. There is a problem that deterioration is caused and the on-resistance of the SiC-MOSFET is increased.
  • the present disclosure has focused on the above-mentioned problems, and in a semiconductor device, suppresses an increase in the amount of current due to a biased return current to the body diode of some switching elements, and switching due to deterioration of energization.
  • the purpose is to suppress an increase in the on-resistance of the device.
  • the semiconductor device is from a wide band gap semiconductor, which is connected to a first metal member, a first DC terminal connected to the first metal member, and a first metal member via a joining member.
  • a second plurality of switching elements connected to the second metal member via a joining member and formed from a wideband gap semiconductor, and a second plurality of switching elements connected to the second metal member via the joining member.
  • a second freewheeling diode connected in antiparallel to the switching element, and connected to the second plurality of switching elements and the second freewheeling diode via a bonding member, and a second metal in the second plurality of switching elements.
  • a second DC terminal having a protrusion protruding from the second metal member in a plan view viewed from a direction perpendicular to the surface to be joined to the member, and a conduction path from the first DC terminal to the first freewheeling diode.
  • the inductance is smaller than the inductance of the conduction path from the first DC terminal to the first plurality of switching elements, and the inductance of the conduction path from the protrusion to the second freewheeling diode is the inductance of the second plurality of switching from the protrusion. It has a feature smaller than the inductance of the conduction path to the element.
  • the inductance of the conduction path from the first DC terminal to the first freewheeling diode is smaller than the inductance of the conduction path from the first DC terminal to the first plurality of switching elements.
  • FIG. It is an equivalent circuit diagram of the semiconductor device 100 which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the semiconductor device 100 which concerns on Embodiment 1.
  • FIG. It is a top view which shows typically the mounting state of the switching element and the like of the semiconductor element 100 in Embodiment 1.
  • FIG. It is sectional drawing which shows typically the mounting state of the switching element and the like of the semiconductor element 100 in Embodiment 1.
  • FIG. It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element 100 in Embodiment 1.
  • FIG. It is a recirculation current simulation result of the semiconductor element 100 in Embodiment 1.
  • It is a top view which shows typically the mounting state of the semiconductor device 200 which is a comparative example.
  • FIG. 200 It is a recirculation current simulation result of the semiconductor element 200 which is a comparative example. It is a top view which shows typically the mounting state of the switching element and the like of the semiconductor element 300 in the modification of Embodiment 1. It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element 300 in the modification of Embodiment 1. It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element 400 in Embodiment 2. It is sectional drawing which shows typically the arrangement of the switching element and the like of the semiconductor element 400 in Embodiment 2. It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element in Embodiment 3. FIG. It is sectional drawing of the switching element in the line segment XIV-XIV of FIG. It is a block diagram which shows the structure of the power conversion system which concerns on Embodiment 4. FIG.
  • FIG. 1 is an equivalent circuit diagram showing a semiconductor device 100 according to the first embodiment.
  • the semiconductor device 100 is configured by connecting four switching elements 101a, which are the first plurality of switching elements connected in parallel, and two freewheeling diodes 102a, which are the first freewheeling diodes connected in parallel, in antiparallel.
  • the upper arm 100a, the four switching elements 101b which are the second plurality of switching elements connected in parallel, and the two freewheeling diodes 102b which are the second freewheeling diodes connected in parallel are connected in antiparallel.
  • the lower arm 100b is formed, and the upper arm 100a and the lower arm 100b are connected in series.
  • the switching element 101 (101a and 102b) is a MOSFET formed from a wide bandgap semiconductor
  • the freewheeling diode 102 (102a and 102b) is an SBD formed from a widebandgap semiconductor.
  • 103 indicates a positive electrode terminal
  • 104 indicates a negative electrode terminal
  • 105 indicates an AC terminal
  • 106a and 106b indicate a gate terminal of the switching element 101.
  • the number of switching elements 101 and the number of freewheeling diodes 2 are not limited to the above description.
  • the 2in1 structure in which the upper arm 100a and the lower arm 100b shown in FIG. 1 are one module is excellent not only from the viewpoint of electrical characteristics but also from the viewpoint of productivity in manufacturing devices such as inverters and converters.
  • an inverter it may be used as a 6in1 structure in which three 2in1 structures are used as one module.
  • it is effective to arrange a plurality of switching elements mounted on one arm. Further, it is effective to increase the area of the freewheeling diode as the amount of current of the semiconductor device 100 increases.
  • the semiconductor device 100 according to the first embodiment is not limited to the above-mentioned use and configuration.
  • SiC Silicon carbide
  • GaN gallium nitride
  • SBDs used in the semiconductor device 100.
  • SiC-MOSFET gallium nitride
  • the basal plane dislocations introduced during crystal growth grow into stacking defects, which may cause deterioration of characteristics such as an increase in the on-resistance of the SiC-MOSFET.
  • SiC tends to generate defects in the crystal growth process, and it is known that GaN also has a similar problem.
  • MOSFETs with body diodes made of GaN and it is expected that MOSFETs formed from GaN will face similar problems in the future.
  • FIG. 2 is a schematic cross-sectional view of the upper arm 100a in the semiconductor device 100 resin-sealed by the transfer molding method.
  • the four switching elements 101a which are the first plurality of switching elements, and the two freewheeling diodes 102a, which are the first freewheeling diodes, are joined to the metal member 108a, which is the first metal member, provided on the insulating member 107. It is connected using 109. Further, the intermediate terminal 110 is connected to the switching element 101a and the freewheeling diode 102a by using the bonding member 109.
  • the heat spreader 111 in which the four switching elements 101a and the two freewheeling diodes 102a are provided on the tip of the positive electrode terminal 103, which is the first DC terminal, and on the surface of the insulating member 107 opposite to the metal member 108a. It is coated with a mold resin 112 so as to partially expose it.
  • the insulating member 107 is, for example, an insulating substrate or an insulating sheet made of resin or ceramic.
  • the joining member 109 is, for example, solder, a sintered paste made of silver, or the like.
  • the semiconductor device 100 of the first embodiment is not limited to the above configuration.
  • FIG. 3 is a plan view schematically showing a mounting state of the switching element 101, the freewheeling diode 102, and the like in the semiconductor device 100.
  • FIG. 4 is a schematic cross-sectional view taken along the broken lines A1-A2 of FIG.
  • the upper arm 100a four switching elements 101a and two freewheeling diodes 102a are connected on the metal member 108a.
  • the lower arm 100b four switching elements 101b, which are the second plurality of switching elements, and two freewheeling diodes 102b, which are the second freewheeling diodes, are connected on the metal member 108b, which is the second metal member.
  • the metal member 108a and the metal member 108b are arranged close to each other as a pair. Further, each of the switching element 101 and the freewheeling diode 102 has an upper surface electrode and a lower surface electrode (not shown), and each lower surface electrode and the metal member 108 (108a and 108b) are connected by using the bonding member 9. Will be done.
  • the metal member 108 is a metal plate made of copper, aluminum, or the like, a metal wiring formed on an insulating substrate, or the like. When using the metal wiring formed on the insulating substrate, a structure that does not require the heat spreader 111 and the insulating member 107 can be considered.
  • the positive electrode terminal 103 is connected to the metal member 108a by using the joining member 109.
  • the negative electrode terminal 104 which is the second DC terminal, is connected to the four switching elements 102b and the two freewheeling diodes 102b by using the joining member 109.
  • the AC terminal 105 is connected to the metal member 108b by using the connecting member 109.
  • the intermediate terminal 110 is connected to the metal member 108b of the lower arm 100b by using the joining member 109, so that the upper arm 100a and the lower arm 100b are connected.
  • the positive electrode terminal 103, the negative electrode terminal 104, the AC terminal 105, and the intermediate terminal 110 are formed of a plate-shaped metal.
  • the gate terminals 106a and 106b connected to the gate electrode of the switching element 101 are not shown in FIG.
  • the positive electrode terminal 103 is viewed in a plan view (in four switching elements 101b, which are the second plurality of switching elements, viewed from a direction perpendicular to the surface to be joined to the metal member 108b, which is the second metal member, FIG.
  • the negative electrode terminal 104 has a protruding portion 113 projecting outward from the metal member 108b in a plan view. ing.
  • the protruding portion 113 is also a plate-shaped metal.
  • the positive electrode terminal 103 and the projecting portion 113 are arranged so as to project from the metal member 108a and the metal member 108b in the same direction of each of the upper arm 100a and the lower arm 100b in a plan view.
  • the positive electrode terminal 103 and the protruding portion 113 are arranged closer to each other and in parallel.
  • the AC terminal 105 is arranged so as to protrude from the metal member 108b in the direction opposite to the direction in which the protruding portion 113 protrudes from the lower arm 101b.
  • the four switching elements 101a and the two freewheeling diodes 102a are arranged together and separately, and the freewheeling diode 102a is further arranged. It is arranged closer to the positive electrode terminal 103 than the switching element 101a.
  • the distance of the conduction path from the positive electrode terminal 103 as the first DC terminal to the recirculation diode 102a as the first freewheeling diode is from the positive electrode terminal 103 to the switching element 101a as the first switching element. Shorter than the distance of the conduction path of.
  • the inductance of the conductive path from the positive electrode terminal 103 to the freewheeling diode 102a can be made smaller than the inductance of the conductive path from the positive electrode terminal 103 to the switching element 101a.
  • the inductance of the conduction path from the positive electrode terminal 103 as the first DC terminal to the recirculation diode 102a as the first freewheeling diode is all switching elements from the positive electrode terminal 103 as all the first plurality of switching elements. It is smaller than the inductance of the conduction path up to 101a.
  • the four switching elements 101b and the two freewheeling diodes 102b are arranged together and separately, and the freewheeling diodes 102b are further arranged on the protruding portion 113 side of the switching element 101b. doing.
  • the distance of the conduction path from the protrusion 113 to the recirculation diode 102b as the second freewheeling diode is shorter than the distance of the conduction path from the protrusion 113 to the switching element 101b as the second switching element. ..
  • the inductance of the conductive path from the protruding portion 113 to the freewheeling diode 102b can be made smaller than the inductance of the conductive path from the protruding portion 113 to the switching element 101b.
  • the inductance of the conduction path from the protrusion 113 to the recirculation diode 102b as the second freewheeling diode is the inductance of the conduction path from the protrusion 113 to all the switching elements 101b as all the second plurality of switching elements. Smaller than
  • the plurality of switching elements 101a provided in a row on the metal member 108a as the first metal member are provided in a row on the metal member 108b as the second metal member. It is in a position facing the element 101b.
  • the freewheeling diode 102a provided on the metal member 108a in the same row as the plurality of switching elements 101a is located at a position facing the freewheeling diode 102b provided on the metal member 108b in the same row as the plurality of switching elements 101b.
  • the length and width of the intermediate terminal 110 and the slits are provided in the intermediate terminal 110 so that the difference between the inductances from the positive electrode terminal 103 to each of the four switching elements 101a is small. Etc. are being adjusted.
  • the negative electrode terminal 104 also has slits in the length and width of the negative electrode terminal 104 and in the negative electrode terminal 104 so that the difference between the inductances from the protruding portion 113 of the negative electrode terminal 104 to each of the four switching elements 102b becomes small. Adjustments such as provision are being made.
  • the intermediate terminal 110 formed of the plate-shaped metal is arranged so as to extend in the arrangement direction of the four switching elements 101a in a plan view, and is connected to the upper surface electrode of each of the four switching elements 101a by using the joining member 109. It has a portion 114a, four extending portions 115a extending from the trunk portion 114a toward the metal member 108b side of the lower arm 100b, and a joining portion 116a connected to the metal member 108b by using the joining member 109.
  • the stretched portion 115a stretches from the vicinity of the connection region between the four switching elements 101a and the trunk portion 114a toward the metal member 108b side of the lower arm 100b, and the stretched portion 115a has a conduction path from the positive electrode terminal 103. As the length increases, the width d of the stretched portion 115a becomes thicker.
  • the negative electrode terminal 104 formed of the metal on the plate extends from the trunk portion 114b toward the four switching elements 101b and the trunk portion 114b formed so as to extend in the arrangement direction of the four switching elements 101b in a plan view. It has one extending portion 115b and a joining portion 116b connected to each of the four switching elements 101b by using a joining member 109.
  • the stretched portion 115b is formed so that the width d of the stretched portion 115b becomes thicker as the conduction path from the protruding portion 113 becomes longer.
  • the width d of each of the extending portions 115a of the intermediate terminal 110 is increased as the conduction path from the positive electrode terminal 103 to each of the four switching elements 101a becomes longer, so that the positive electrode terminal is made thicker.
  • the difference between the inductances of 103 and each of the four switching elements 101a can be reduced.
  • the width d of each of the stretched portions 115b of the negative electrode terminal 104 is increased in accordance with the lengthening of the conduction path from the protruding portion 113 to each of the four switching elements 101b, thereby forming the protruding portion 113.
  • the difference between the inductances up to each of the four switching elements 101b can be reduced.
  • the difference between the inductance from the positive electrode terminal 103 to the switching element 101a having the longest conduction path and the inductance from the positive electrode terminal 103 to the switching element 101a having the shortest conduction path is preferably within 10% of the inductance of the entire semiconductor device 100.
  • the difference between the inductance to the switching element 101b having the longest conduction path from the protruding portion 113 and the inductance to the switching element 101b having the shortest conduction path from the protruding portion 113 is , It is preferable that the inductance is within 10% of the total inductance of the semiconductor device 100.
  • the positive electrode of the DC power supply is connected to the positive electrode terminal 103 of the semiconductor device 100, and the negative electrode of the DC power supply is connected to the protruding portion 113 of the negative electrode terminal 104.
  • the DC power supply may be one in which the AC voltage of the AC power supply is rectified and converted into a DC voltage.
  • the positive electrode terminal 103 and the protruding portion 113 may be connected to a capacitive element connected in parallel to the DC power supply.
  • a transient return current flows through the semiconductor device 100 due to the inductance of the circuit or load connected to the semiconductor device 100 or the semiconductor device 100.
  • the return current flows through the return diode 102 and the body diode of the switching element 101 as a current path.
  • the freewheeling diode 102 has a rated current larger than that of the body diode of the switching element 101, and Vf is set so that the current starts to flow at a lower voltage than the body diode of the switching element 101.
  • the inductance from the protruding portion 113 of the positive electrode terminal 103 and the negative electrode terminal 104 to the freewheeling diode 102 is smaller than that of the switching element 101.
  • the freewheeling current can be passed through the freewheeling diode 102 preferentially over the body diode of the switching element 101. As a result, it is possible to prevent the return current from being biased toward the body diode of some switching elements 101 and increasing the amount of current.
  • each of the upper arm 100a and the lower arm 100b the difference between the inductances from the positive electrode terminal 103 to each of the four switching elements 101a is reduced, and the inductances from the protruding portion 113 of the negative electrode terminal 104 to each of the four switching elements 102b are reduced.
  • the difference between the two it is possible to further suppress the increase in the amount of current due to the recirculation current being biased toward the body diode of some switching elements 101.
  • the four switching elements 101a provided on the metal member 108a of the upper arm 100a are arranged at positions facing each other with respect to the four switching elements 101b provided on the metal member 108b of the lower arm 100b. .. Further, the two freewheeling diodes 102a provided on the metal member 108a of the upper arm 100a are arranged so as to face each other with respect to the two freewheeling diodes 102b provided on the metal member 108b of the lower arm 100b. As a result, the difference in inductance between the upper arm 100a and the lower arm 100b can be reduced, and it is possible to prevent the return current from being biased toward the body diode of some switching elements 101 and increasing the amount of current.
  • the four switching elements 101a and the two freewheeling diodes 102a of the upper arm 100a are arranged symmetrically with the four switching elements 101b and the two freewheeling diodes 102b of the lower arm 100b. Further, the four switching elements 101a of the upper arm 100a and the two freewheeling diodes 102a are arranged so as to be mirror-symmetrical with respect to the four switching elements 101b of the lower arm 100b, the two freewheeling diodes 102b, and the broken line S1-S2. Then it is even better.
  • FIG. 6 shows a simulation result of the reflux current flowing through the body diodes of the four switching elements 101b in the lower arm 100b of the semiconductor device 100 of the first embodiment.
  • the variation of the reflux current flowing through each body diode is about 10% or less in MAX-MIN.
  • FIG. 7 is a plan view schematically showing a semiconductor device 200 which is a comparative example of the semiconductor device 100 of the first embodiment.
  • the positive electrode terminal 203 is connected to the metal member 208a by using the joining member 209.
  • the negative electrode terminal 204 which is the second DC terminal, is connected to the four switching elements 202b, the two freewheeling diodes 202b, and the joining member 209.
  • the AC terminal 205 is connected to the metal member 208b with the joining member 209.
  • the intermediate terminal 210 to the metal member 208b of the lower arm 200b and the joining member 209, the upper arm 200a and the lower arm 200b are connected.
  • the positive electrode terminal 203, the negative electrode terminal 204, the AC terminal 205, and the intermediate terminal 210 are formed of a plate-shaped metal.
  • the positive electrode terminal 203 is provided so as to project from the metal member 208a in a plan view
  • the negative electrode terminal 204 has a projecting portion 213 projecting outward from the metal member 208b in a plan view.
  • the positive electrode terminal 203 and the projecting portion 213 are arranged so as to project from the metal member 208a and the metal member 208b in the same direction of each of the upper arm 200a and the lower arm 200b in a plan view.
  • the AC terminal 205 is arranged so as to protrude from the metal member 208b in the direction opposite to the direction in which the protruding portion 213 protrudes from the lower arm 200b.
  • the intermediate terminal 210 is arranged so as to extend in the arrangement direction of the four switching elements 201a and the two freewheeling diodes 202a in a plan view, and is connected to the top electrode of each of the four switching elements 201a and the two freewheeling diodes 202a.
  • the 214a, the four extension portions 215a extending from the vicinity of the region where the trunk portion 214a is connected to the four switching elements 201a toward the metal member 208b side of the lower arm 200b, and the joint portion 216a connected to the metal member 208b.
  • the negative electrode terminal 204 extends from the trunk portion 214b toward the four switching elements 201b and the trunk portion 214b formed so as to extend in the arrangement direction of each of the four switching elements 201b and the two freewheeling diodes 202b in a plan view. It has one stretched portion 215b and a junction 216b connected to the top electrode of each of the four switching elements 201b.
  • each of the two freewheeling diodes 202a is arranged between the four switching elements 201a in the upper arm 200a.
  • two freewheeling diodes 202b are arranged between the four switching elements 201b.
  • a negative electrode provided so that the width d of each of the four stretched portions 215b extending from the trunk portion 214b of the lower arm 200b toward the four switching elements 201b protrudes from the metal member 208b in a plan view. It is the same regardless of the length of the conduction path from the protrusion 213 of the terminal 204.
  • FIG. 8 shows the simulation results of the reflux current flowing through the body diodes of the four switching elements 201b in the lower arm 200b of the semiconductor device 200.
  • the variation of the recirculation current flowing through each body diode is 100% or more in MAX-MIN, and it can be seen that the amount of current increases due to the recirculation current being biased to some switching elements. From these results, it can be seen that the semiconductor device 100 of the first embodiment can suppress the recirculation current from being biased to a part of the switching elements 101.
  • the inductance of the conductive path from the positive electrode terminal 103 to the freewheeling diode 102a is smaller than the inductance of the conductive path from the positive electrode terminal 103 to the switching element 101a.
  • the inductance of the conductive path from the protruding portion 113 of the negative electrode terminal 104 to the freewheeling diode 102b is made smaller than the inductance of the conductive path from the protruding portion 113 to the switching element 102b, so that each of the switching elements 101 It is possible to suppress an increase in the amount of current due to the recirculation current flowing through the body diode of the above being biased toward a part of the switching elements 101.
  • the width d of each of the extending portions 115a of the intermediate terminal 110 is increased as the conduction path from the positive electrode terminal 103 to each of the four switching elements 101a becomes longer, thereby forming the positive electrode terminal 103.
  • the difference between the inductances up to each of the four switching elements 101a can be reduced.
  • the width d of each of the stretched portions 115b of the negative electrode terminal 104 is increased in accordance with the lengthening of the conduction path from the protruding portion 113 to each of the four switching elements 101b, thereby forming the protruding portion 113.
  • the difference between the inductances up to each of the switching elements 101b can be reduced. As a result, it is possible to suppress the bias of the return current to a part of the switching elements 101b.
  • the four switching elements 101a provided on the metal member 108a of the upper arm 100a are arranged at positions facing each other with respect to the four switching elements 101b provided on the metal member 108b of the lower arm 100b.
  • the two freewheeling diodes 102a provided on the metal member 108a of the upper arm 100a are arranged so as to face each other with respect to the two freewheeling diodes 102b provided on the metal member 108b of the lower arm 100b.
  • the positive electrode terminal 103, the negative electrode terminal 104, the AC terminal 105, and the intermediate terminal 110 are formed of a plate-shaped metal.
  • the negative electrode terminal 104 and the intermediate terminal 110 have been described as an example of connecting to a switching element 101a, a switching element 101b, a freewheeling diode 102a, a freewheeling diode 102b, etc. via, for example, a joining member 109. Other methods may be adopted.
  • the negative electrode terminal 104 and the intermediate terminal 110 may be connected to a switching element 101a, a switching element 101b, a freewheeling diode 102a, a freewheeling diode 102b, or the like by a wire bond using an aluminum wire.
  • the positive electrode terminal 103 and the AC terminal 105 may be connected to the metal member 108a and the metal member 108b by a wire bond using an aluminum wire.
  • FIG. 9 is a plan view schematically showing a mounting state of the switching elements 301 (301a and 301b) and the freewheeling diodes 302 (302a and 302b) of the semiconductor device 300 in the modified example of the first embodiment.
  • FIG. 10 is a plan view schematically showing the arrangement of the switching element 301 and the freewheeling diode 302 of the semiconductor device 300 in the modified example of the first embodiment.
  • the main difference between the modified example of the first embodiment and the first embodiment is the shape of the metal members 308 (308a and 308b). Further, the arrangement of the switching element 301, the freewheeling diode 302, the positive electrode terminal 303, and the AC terminal 305 and the shapes of the negative electrode terminal 304 and the intermediate terminal 310 are different accordingly.
  • the metal member 308a which is the first metal member of the upper arm 300a
  • the metal member 308b which is the second metal member of the lower arm 300b
  • the projecting portions 313 of the positive electrode terminal 303 and the negative electrode terminal 304 are arranged so as to project in the same direction from the metal member 308a and the metal member 308b in a plan view.
  • the two freewheeling diodes 302a which are the first freewheeling diodes of the upper arm 300a, are collectively arranged in the vicinity of the positive electrode terminal 303 in the metal member 308a.
  • the two freewheeling diodes 302b which are the second freewheeling diodes of the lower arm 300b, are collectively arranged in the vicinity of the protrusion 313 in the metal member 308b. Further, the two freewheeling diodes 302a are located opposite the two freewheeling diodes 302b.
  • the four switching elements 301a which are the first plurality of switching elements of the upper arm 300a, are metal members so as to surround the two freewheeling diodes 302a at a position farther than the two freewheeling diodes 302a with respect to the positive electrode terminal 303. It is arranged at 308a.
  • the four switching elements 301b which are the second plurality of switching elements of the lower arm 100b, surround the two freewheeling diodes 302b at a position farther than the two freewheeling diodes 302b with respect to the protrusion 313, so that the metal member 308b is surrounded by the two freewheeling diodes 302b. It is arranged in.
  • each of the upper arm 300a and the lower arm 300b four switching elements 301 are arranged around the freewheeling diode 302.
  • the difference between the distances from the positive electrode terminal 303 to each of the four switching elements 301a is small
  • the difference between the distances from the protrusion 313 to each of the four switching elements 301b is small. .. Therefore, in the upper arm 300a, the difference between the inductances of the conduction paths from the positive electrode terminal 303 to each of the four switching elements 301a is small, and in the lower arm 300b, between the inductances of the conduction paths from the protrusion 313 to each of the four switching elements 301b. The difference is small.
  • the four switching elements 301a and the two freewheeling diodes 302a of the upper arm 300a are arranged so as to be symmetrical with the four switching elements 301b and the two freewheeling diodes 302b of the lower arm 300b. It is good to do. Further, the four switching elements 301a and the two freewheeling diodes 302a of the upper arm 300a are arranged so as to be mirror-symmetrical with respect to the broken line S3-S4 with the four switching elements 301b and the two freewheeling diodes 302b of the lower arm 300b. It is even better to set it up.
  • the difference between the inductances of the conduction paths from the positive electrode terminal 303 to each of the four switching elements 301a is reduced in the upper arm 300a, and the four switching from the protruding portion 313 to the lower arm 300b.
  • the width and length of the negative electrode terminal 304 and the intermediate terminal 310 may be changed, or a slit may be provided.
  • the degree of freedom of shape of the aspect ratio of the semiconductor device 300 is higher than that of the first embodiment. Can be high.
  • FIG. 11 is a plan view schematically showing a mounting state of the switching elements 401 (401a and 401b) and the freewheeling diodes 402 (402a and 402b) in the semiconductor device 400 of the second embodiment.
  • FIG. 12 is a schematic cross-sectional view taken along the broken line A3-A4 of FIG.
  • the main difference between the second embodiment and the first embodiment is that the intermediate terminal 410 overlaps the negative electrode terminal 404 in a plan view at least in the arrangement region of the switching element 401a.
  • the negative electrode terminal 404 as the second DC terminal is a portion arranged on the switching element 401a as the first plurality of switching elements in the intermediate terminal 410 and the intermediate terminal in a plan view. It overlaps the portion disposed on the recirculation diode 402a as the first recirculation diode in 404.
  • the current flowing through the negative electrode terminal 404 and the intermediate terminal 410 flows in a direction in which the magnetic fields created by the currents flowing through the negative electrode terminal 404 and the intermediate terminal 410 cancel each other out. Therefore, the inductance can be reduced in the region where the intermediate terminal 410 and the negative electrode terminal 404 overlap. As a result, the inductance of the semiconductor device 400 can be reduced, and the return current can be reduced.
  • the inductance of the negative electrode terminal 404 and the intermediate terminal 410 in the arrangement region of the switching element 401 can be reduced, the inductance of the positive electrode terminal 403 and the four switching elements 401a which are the first switching elements can be reduced in the upper arm 400a. At the same time, the difference between the inductances from the positive electrode terminal 403 to each of the four switching elements 401a can be reduced.
  • the inductance of the protruding portion 413 of the negative electrode terminal 404 and the four switching elements 401b, which are the second switching elements, can be reduced, and the inductance from the protruding portion 413 to each of the four switching elements 401b can be reduced. The difference between them can be reduced.
  • the four switching elements from the positive electrode terminal 403 to the first four elements can be combined. It is possible to further reduce the difference between the inductances up to each, and further reduce the difference between the inductances from the protrusion 413 to each of the second four switching elements 401b.
  • the four switching elements 401a provided on the metal member 408a of the upper arm 400a are located at positions facing each other with respect to the four switching elements 401b provided on the metal member 408b of the lower arm 400b.
  • the two freewheeling diodes 402a provided on the metal member 408a of the upper arm 400a are arranged so as to face each other with respect to the two freewheeling diodes 402b provided on the metal member 408b of the lower arm 400b.
  • the four switching elements 401a and the two freewheeling diodes 402a of the upper arm 400a are arranged symmetrically with the four switching elements 401b and the four freewheeling diodes 402b of the lower arm 400b.
  • the four switching elements 401a and the two freewheeling diodes 402a of the upper arm 400a are arranged so as to be mirror-symmetrical with the four switching elements 401a and the two freewheeling diodes 402b of the lower arm 400b. It is even better to set it up.
  • the inductance can be reduced by overlapping the negative electrode terminal 404 with the intermediate terminal 410 in the arrangement region of at least four switching elements 401, and the surge voltage generated when the switching element 401 is turned on and off can be reduced.
  • a switching element 401 having a lower withstand voltage can be used.
  • FIG. 13 shows a plan view schematically showing the arrangement of the switching elements in the third embodiment.
  • the pattern of the switching element is not formed in a part of the region of the switching element described in the first and second embodiments, and the freewheeling diode is formed in the region where the pattern of the switching element is not formed. In this way, it is possible to incorporate a freewheeling diode in the switching element. However, if a freewheeling diode is built in the switching element, the plane size of the switching element becomes large.
  • the switching elements 501a and 501b with built-in diodes having a freewheeling diode built in some of the switching elements are used, and the remaining switching elements are the same as those used in the first and second embodiments. It is conceivable to use switching elements 401a, 401b (that is, switching elements having the same configuration as the switching elements 101a, 101b, 201a, 201b, 301a, 301b).
  • the switching element 401a and the diode built-in switching element 501a are fixed on the metal member 508a, which is the first metal member provided on the insulating member 507, by using a joining member.
  • the two switching elements 401a and the two diode-embedded switching elements 501a are arranged so as to be aligned with each other.
  • the switching element 401b and the diode built-in switching element 501b are fixed on the metal member 508b, which is the second metal member provided on the insulating member 507, by using a joining member.
  • the two switching elements 401b and the two diode-embedded switching elements 501b are arranged so as to be aligned with each other.
  • the recirculation diode portion 501ab is arranged in the central portion of the element, and the switching element portion 501aa is arranged so as to surround the recirculation diode 501ab in the outer peripheral portion of the element. ing.
  • the diode built-in switching 501b has the same configuration as the diode built-in switching element 501a.
  • the switching element 401b is arranged at a position facing the switching element 401a.
  • the diode built-in switching element 501b is arranged at a position facing the diode built-in switching element 501a.
  • Other configurations such as the negative electrode terminal 104, the protruding portion 113, and the AC terminal 105 (not shown in FIGS. 13 and 14) can be the same as the configurations in the semiconductor device 100 shown in FIGS. 1 to 3, for example. That is, in the upper arm including the metal member 508a, the intermediate terminal 110 (see FIG. 3) is connected to the two switching elements 402a and the two diode built-in switching elements 501a. In the lower arm, the negative electrode terminal 104 (see FIG.
  • the second DC terminal which is the second DC terminal, uses two switching elements 402b and two diode-embedded switching elements 501b and a joining member as in the semiconductor device 100 shown in FIG. Be connected.
  • the AC terminal 105 (see FIG. 3) is connected to the metal member 508b by using a connecting member in the same manner as the semiconductor device 100 shown in FIG.
  • the intermediate terminal 110 (see FIG. 3) is connected to the metal member 508b of the lower arm by using a joining member, so that the upper arm and the lower arm are connected.
  • the diode built-in switching element 501a is arranged so as to face the diode built-in switching element 501b, and the inductance of the conductive path from the positive electrode terminal 103 (see FIG. 3) connected to the metal member 508a to the diode built-in switching element 501a. Is arranged so as to be smaller than the inductance of the conduction path from the positive electrode terminal 103 (see FIG. 3) to the switching element 401a.
  • the inductance of the conductive path from the protruding portion 113 (see FIG. 3) to the diode built-in switching element 501b is calculated from the inductance of the conductive path from the protruding portion 113 to the switching element 401b. Arrange so that it is also small.
  • the inductance to the above is the same as or smaller than the inductance from the protruding portion 113 of the positive electrode terminal 103 and the negative electrode terminal 104 to the switching element portion 501aa or the switching element 401 of the diode built-in switching element 501.
  • the recirculation current can flow to the recirculation diode 501ab of the diode built-in switching elements 501a and 501b with priority over the switching element section 501aa of the diode built-in switching elements 501a and 501b and the body diode of the switching element 401.
  • the characteristics of the freewheeling diode section 501ab built into the switching elements 501a and 501b with built-in diodes are that the voltage when the freewheeling diode current starts to flow is Vfr and the voltage when the current starts to flow to the body diode of each switching element is Vd. , Vfr ⁇ Vd (voltage Vfr is smaller than voltage Vd).
  • the semiconductor device includes a metal member 508a as a first metal member and a positive electrode terminal 103 as a first DC terminal (see FIG. 3).
  • the positive electrode terminal 103 is connected to the metal member 508a.
  • the first plurality of switching elements 401a are connected to the metal member 508a via a bonding member, and are formed of a wide bandgap semiconductor.
  • the first diode built-in switching element 501a has a switching element unit 501aa as a second switching element and a recirculation diode unit 501ab as a first recirculation diode.
  • the switching element portion 501aa is formed of a wide bandgap semiconductor.
  • the recirculation diode section 501ab is connected to the switching element section 501aa in antiparallel.
  • the first diode-embedded switching element 501a is connected to the metal member 508a via a bonding member.
  • the intermediate terminal 110 is connected to the first plurality of switching elements 401a and the first diode built-in switching element 501a via a bonding member.
  • An intermediate terminal 110 is connected to the metal member 508b as the second metal member, and the metal member 508b is arranged adjacent to the metal member 508a.
  • the third plurality of switching elements 401b are connected to the metal member 508b via a joining member, and are formed of a wide bandgap semiconductor.
  • the second diode built-in switching element 501b has a switching element portion as a fourth switching element and a recirculation diode portion as a second recirculation diode.
  • the switching element in the second diode built-in switching element 501b is formed of a wide bandgap semiconductor.
  • the recirculation diode portion is connected to the switching element portion in antiparallel.
  • the second diode-embedded switching element 501b is connected to the metal member 508b via a bonding member.
  • the negative electrode terminal 104 is connected to a plurality of third switching elements 401b and a second diode built-in switching element 501b via a bonding member.
  • the negative electrode terminal 104 has a protruding portion 113 (see FIG. 3) protruding from the metal member 508b in a plan view viewed from a direction perpendicular to the surface of the third plurality of switching elements 401b to be joined to the metal member 508b.
  • the inductance of the conduction path from the positive electrode terminal 103 to the first diode built-in switching element 501a is smaller than the inductance of the conduction path from the positive electrode terminal 103 to all the first plurality of switching elements 401b.
  • the inductance of the conduction path from the protrusion 113 to the second diode built-in switching element 501b is smaller than the inductance of the conduction path from the protrusion 113 to all the third plurality of switching elements 401b.
  • the first plurality of switching elements 401a and the third switching element 401b are formed of silicon carbide, which is a wide bandgap semiconductor.
  • Embodiment 4 the semiconductor devices according to the first embodiment, the modified examples of the first embodiment, the second embodiment and the third embodiment described above are applied to the power conversion device.
  • the present disclosure is not limited to a specific power conversion device, the case where the present disclosure is applied to a three-phase inverter will be described below as a fourth embodiment.
  • FIG. 15 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the fourth embodiment is applied.
  • the power conversion system shown in FIG. 15 includes a power supply 500, a power conversion device 600, and a load 700.
  • the power supply 500 is a DC power supply, and supplies DC power to the power converter 600.
  • the power supply 500 can be configured with various things, for example, it can be configured with a DC system, a solar cell, a storage battery, or it can be configured with a rectifier circuit or an AC / DC converter connected to an AC system. May be good.
  • the power supply 500 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.
  • the power conversion device 600 is a three-phase inverter connected between the power supply 500 and the load 700, converts the DC power supplied from the power supply 500 into AC power, and supplies the AC power to the load 700. As shown in FIG. 15, the power conversion device 600 has a main conversion circuit 601 that converts DC power into AC power and outputs it, and a control circuit 603 that outputs a control signal for controlling the main conversion circuit 601 to the main conversion circuit 601. And have.
  • the load 700 is a three-phase electric motor driven by AC power supplied from the power converter 600.
  • the load 700 is not limited to a specific application, and is an electric motor mounted on various electric devices.
  • the load 700 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 601 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, the DC power supplied from the power supply 500 is converted into AC power and supplied to the load 700.
  • the main conversion circuit 601 according to the fourth embodiment is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes.
  • At least one of each switching element and each freewheeling diode of the main conversion circuit 601 is a semiconductor device 602 corresponding to any of the semiconductor devices of the above-described first embodiment, the modified example of the first embodiment and the second embodiment.
  • each switching element is connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 601 are connected to the load 700.
  • the main conversion circuit 601 includes a drive circuit (not shown) for driving each switching element
  • the drive circuit may be built in the semiconductor device 602, or a drive circuit may be provided separately from the semiconductor device 602. It may be provided.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 601 and supplies the drive signal to the control electrode of the switching element of the main conversion circuit 601. Specifically, according to the control signal from the control circuit 603 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element.
  • the drive signal When the switching element is kept on, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept off, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
  • the control circuit 603 controls the switching element of the main conversion circuit 601 so that the desired power is supplied to the load 700. Specifically, the time (on time) for each switching element of the main conversion circuit 601 to be in the on state is calculated based on the power to be supplied to the load 700.
  • the main conversion circuit 601 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output.
  • a control command is output to the drive circuit provided in the main conversion circuit 601 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. Is output.
  • the drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the semiconductor device according to the first embodiment, the modified example of the first embodiment, the second embodiment and the third embodiment is applied as the semiconductor device 602 constituting the main conversion circuit 601. Therefore, it is possible to improve the reliability.
  • the present disclosure is not limited to this, and can be applied to various power conversion devices.
  • the two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to the single-phase load, the present disclosure is provided to the single-phase inverter. You may apply it.
  • the present disclosure can be applied to a DC / DC converter or an AC / DC converter.
  • the power conversion device to which the present disclosure is applied is not limited to the case where the above-mentioned load is an electric motor, for example, a power supply device for a discharge machine, a laser machine, an induction heating cooker, or a non-contact power supply system. It can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inverter Devices (AREA)

Abstract

The purpose of the present invention is to provide a semiconductor device in which increase of electric current amount by biased flow-back current to body diodes of some of switching elements is suppressed and increase of on-resistance of the switching elements due to electric conduction degradation is suppressed. In an upper arm (100a) of a semiconductor device (100), inductance of a conductive path from a first DC terminal (103) to a flyback diode (102a) is less than inductance of a conductive path from the first DC terminal (103) to a plurality of switching elements (101b). Further, a lower arm (100b) of the semiconductor device (100) has a feature in that inductance of a conductive path from a projection part (113) of a second DC terminal (104) to a flyback diode (102b) is less than inductance of a conductive path from a projection part (113) to a plurality of switching elements (101b).

Description

半導体装置および電力変換装置Semiconductor devices and power converters
 本開示は、複数のスイッチング素子に逆並列に接続された還流ダイオードを有する半導体装置に関する。 The present disclosure relates to a semiconductor device having a freewheeling diode connected in antiparallel to a plurality of switching elements.
 スイッチング動作をする半導体素子(スイッチング素子)として用いられるMetal-Oxide-Semiconductor Field-Effect Transistor(MOSFET)は、素子の構造上、寄生ダイオードを内蔵しており、ボディダイオードと呼ばれている。例えば、ワイドバンドギャップ半導体の一つである炭化珪素(SiC)からなるSiC-MOSFETの場合、そのボディダイオードに電流を流すと、SiC-MOSFETの結晶成長時に導入された基底面転位が積層欠陥に成長するなどの通電劣化を引き起こし、SiC-MOSFETのオン抵抗を増大させることが知られている。 Metal-Oxide-Semiconductor Field-Effective Transistor (MOSFET) used as a semiconductor element (switching element) that performs switching operation has a built-in parasitic diode due to the structure of the element, and is called a body diode. For example, in the case of a SiC-MOSFET made of silicon carbide (SiC), which is one of the wideband gap semiconductors, when a current is passed through the body diode, the basal plane shift introduced during crystal growth of the SiC-MOSFET becomes a stacking defect. It is known that it causes conduction deterioration such as growth and increases the on-resistance of the SiC-MOSFET.
 この対策として、還流ダイオードを用いてボディダイオードに流れる電流を抑制する方法が知られている。具体的には、ボディダイオードを内蔵するSiC-MOSFETと、SiC-MOSFETに逆並列に接続される還流ダイオードを備える半導体装置において、ボディダイオードの順電圧降下の値を高くすること、または還流ダイオードの定格電流を高くすることで、ボディダイオードに流れる電流の最大値を半導体装置の定格電流の1/10以上かつ1/3以下とする構成により、通電劣化を防止する方法が知られている(例えば、特許文献1参照)。 As a countermeasure, a method of suppressing the current flowing through the body diode by using a freewheeling diode is known. Specifically, in a semiconductor device including a SiC-MOSFET having a built-in body diode and a freewheeling diode connected in antiparallel to the SiC-MOSFET, the value of the forward voltage drop of the body diode is increased, or the freewheeling diode is used. A method of preventing conduction deterioration is known by increasing the rated current so that the maximum value of the current flowing through the body diode is 1/10 or more and 1/3 or less of the rated current of the semiconductor device (for example). , Patent Document 1).
特開2015-198228号公報Japanese Unexamined Patent Publication No. 2015-198228
 特許文献1には、半導体装置の上下アームにおけるSiC-MOSFETや還流ダイオードの実装位置や、SiC-MOSFETおよび還流ダイオードが正極端子や負極端子との接続方法など、具体的な実装方法については記載されていない。さらに、還流ダイオードであるSiCショットキーバリアダイオード(SBD)の許容電流を超える還流電流については、4個のSiC-MOSFETのボディダイオードのそれぞれに均等に流れることが記載されている。しかし、複数のSiC-MOSFET各々のボディダイオードに流れる還流電流の分流を考慮した実装方法にしない場合、一部のSiC-MOSFETのボディダイオードへ還流電流が偏よって電流量が増大することで、通電劣化を引き起こし、SiC-MOSFETのオン抵抗が増大してしまう課題があった。 Patent Document 1 describes specific mounting methods such as mounting positions of SiC-MOSFETs and freewheeling diodes on the upper and lower arms of semiconductor devices, and methods of connecting SiC-MOSFETs and freewheeling diodes to positive electrode terminals and negative electrode terminals. Not. Further, it is described that the freewheeling current exceeding the permissible current of the SiC Schottky barrier diode (SBD), which is a freewheeling diode, flows evenly to each of the body diodes of the four SiC-MOSFETs. However, if the mounting method does not take into consideration the diversion of the return current flowing through the body diodes of each of the plurality of SiC-MOSFETs, the return current will be biased to the body diodes of some SiC-MOSFETs and the amount of current will increase, resulting in energization. There is a problem that deterioration is caused and the on-resistance of the SiC-MOSFET is increased.
 本開示は、上記した問題点に着目してなされたものであり、半導体装置において、一部のスイッチング素子のボディダイオードへ還流電流が偏よって電流量が増大することを抑制し、通電劣化によるスイッチング素子のオン抵抗増大を抑制することを目的とする。 The present disclosure has focused on the above-mentioned problems, and in a semiconductor device, suppresses an increase in the amount of current due to a biased return current to the body diode of some switching elements, and switching due to deterioration of energization. The purpose is to suppress an increase in the on-resistance of the device.
 本開示に係る半導体装置は、第1の金属部材と、第1の金属部材に接続される第1の直流端子と、第1の金属部材に接合部材を介して接続され、ワイドバンドギャップ半導体から形成される第1の複数のスイッチング素子と、第1の金属部材に接合部材を介して接続され、第1の複数のスイッチング素子に逆並列に接続される第1の還流ダイオードと、第1の複数のスイッチング素子および第1の還流ダイオードに接合部材を介して接続される中間端子と、中間端子が接続され、第1の金属部材と互いに隣接して配設される第2の金属部材と、第2の金属部材に接合部材を介して接続され、ワイドバンドギャップ半導体から形成される第2の複数のスイッチング素子と、第2の金属部材に接合部材を介して接続され、第2の複数のスイッチング素子と逆並列に接続される第2の還流ダイオードと、第2の複数のスイッチング素子および第2の還流ダイオードに接合部材を介して接続され、第2の複数のスイッチング素子において第2の金属部材と接合する面に垂直な方向から見た平面視において第2の金属部材から突出した突出部を有する第2の直流端子と、第1の直流端子から第1の還流ダイオードまでの導通経路のインダクタンスは、第1の直流端子から第1の複数のスイッチング素子までの導通経路のインダクタンスより小さく、突出部から第2の還流ダイオードまでの導通経路のインダクタンスは、突出部から第2の複数のスイッチング素子までの導通経路のインダクタンスよりも小さい特徴を備えるものである。 The semiconductor device according to the present disclosure is from a wide band gap semiconductor, which is connected to a first metal member, a first DC terminal connected to the first metal member, and a first metal member via a joining member. A first plurality of switching elements to be formed, a first freewheeling diode connected to a first metal member via a bonding member, and connected in antiparallel to the first plurality of switching elements, and a first An intermediate terminal connected to a plurality of switching elements and a first freewheeling diode via a bonding member, a second metal member to which the intermediate terminal is connected and arranged adjacent to the first metal member, and a second metal member. A second plurality of switching elements connected to the second metal member via a joining member and formed from a wideband gap semiconductor, and a second plurality of switching elements connected to the second metal member via the joining member. A second freewheeling diode connected in antiparallel to the switching element, and connected to the second plurality of switching elements and the second freewheeling diode via a bonding member, and a second metal in the second plurality of switching elements. A second DC terminal having a protrusion protruding from the second metal member in a plan view viewed from a direction perpendicular to the surface to be joined to the member, and a conduction path from the first DC terminal to the first freewheeling diode. The inductance is smaller than the inductance of the conduction path from the first DC terminal to the first plurality of switching elements, and the inductance of the conduction path from the protrusion to the second freewheeling diode is the inductance of the second plurality of switching from the protrusion. It has a feature smaller than the inductance of the conduction path to the element.
 本開示に係る半導体装置は、第1の直流端子から第1の還流ダイオードまでの導電経路のインダクタンスが、第1の直流端子から第1の複数のスイッチング素子までの導通経路のインダクタンスよりも小さく、第2の直流端子の突出部から第2の還流ダイオードまでの導電経路のインダクタンスが、第2の直流端子の突出部から第2の複数のスイッチング素子までの導通経路のインダクタンスよりも小さくすることにより、一部のスイッチング素子に還流電流が偏よって電流量が増大することを抑制し、通電劣化の進行によるスイッチング素子のオン抵抗増大を抑制することができる。 In the semiconductor device according to the present disclosure, the inductance of the conduction path from the first DC terminal to the first freewheeling diode is smaller than the inductance of the conduction path from the first DC terminal to the first plurality of switching elements. By making the inductance of the conduction path from the protrusion of the second DC terminal to the second freewheeling diode smaller than the inductance of the conduction path from the protrusion of the second DC terminal to the second plurality of switching elements. It is possible to suppress an increase in the amount of current due to a biased return current to some switching elements, and to suppress an increase in on-resistance of the switching element due to the progress of current conduction deterioration.
実施の形態1に係る半導体装置100の等価回路図である。It is an equivalent circuit diagram of the semiconductor device 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置100の断面模式図である。It is sectional drawing of the semiconductor device 100 which concerns on Embodiment 1. FIG. 実施の形態1における、半導体素子100のスイッチング素子などの実装状態を模式的に示す平面図である。It is a top view which shows typically the mounting state of the switching element and the like of the semiconductor element 100 in Embodiment 1. FIG. 実施の形態1における、半導体素子100のスイッチング素子などの実装状態を模式的に示す断面図である。It is sectional drawing which shows typically the mounting state of the switching element and the like of the semiconductor element 100 in Embodiment 1. FIG. 実施の形態1における、半導体素子100のスイッチング素子などの配置を模式的に示す平面図である。It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element 100 in Embodiment 1. FIG. 実施の形態1における、半導体素子100の還流電流シミュレーション結果である。It is a recirculation current simulation result of the semiconductor element 100 in Embodiment 1. 比較例である半導体装置200の実装状態を模式的に示す平面図である。It is a top view which shows typically the mounting state of the semiconductor device 200 which is a comparative example. 比較例である半導体素子200の還流電流シミュレーション結果である。It is a recirculation current simulation result of the semiconductor element 200 which is a comparative example. 実施の形態1の変形例における、半導体素子300のスイッチング素子などの実装状態を模式的に示す平面図である。It is a top view which shows typically the mounting state of the switching element and the like of the semiconductor element 300 in the modification of Embodiment 1. 実施の形態1の変形例における、半導体素子300のスイッチング素子などの配置を模式的に示す平面図である。It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element 300 in the modification of Embodiment 1. 実施の形態2における、半導体素子400のスイッチング素子などの配置を模式的に示す平面図である。It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element 400 in Embodiment 2. 実施の形態2における、半導体素子400のスイッチング素子などの配置を模式的に示す断面図である。It is sectional drawing which shows typically the arrangement of the switching element and the like of the semiconductor element 400 in Embodiment 2. 実施の形態3における、半導体素子のスイッチング素子などの配置を模式的に示す平面図である。It is a top view which shows typically the arrangement of the switching element and the like of the semiconductor element in Embodiment 3. FIG. 図13の線分XIV-XIVにおけるスイッチング素子の断面模式図である。It is sectional drawing of the switching element in the line segment XIV-XIV of FIG. 実施の形態4に係る電力変換システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion system which concerns on Embodiment 4. FIG.
 実施の形態1.
 実施の形態1における半導体装置について、図1から図8を用いて説明する。図1は、実施の形態1に係る半導体装置100を示す等価回路図である。半導体装置100は、並列接続された第1の複数のスイッチング素子である4つのスイッチング素子101aと、並列接続された第1の還流ダイオードである2つの還流ダイオード102aが逆並列に接続されて構成される上アーム100aと、並列接続された第2の複数のスイッチング素子である4つのスイッチング素子101bと、並列接続された第2の還流ダイオードである2つの還流ダイオード102bが逆並列に接続されて構成される下アーム100bからなり、上アーム100aと下アーム100bが直列に接続される。ここで、スイッチング素子101(101aおよび102b)はワイドバンドギャップ半導体から形成されたMOSFETであり、還流ダイオード102(102aおよび102b)はワイドバンドギャップ半導体から形成されたSBDである。また、図1の符号で、103は正極端子、104は負極端子、105は交流端子、106aおよび106bはスイッチング素子101のゲート端子を示している。ここで、スイッチング素子101の数および還流ダイオード2の数は、上記記載に限定するものではない。
Embodiment 1.
The semiconductor device according to the first embodiment will be described with reference to FIGS. 1 to 8. FIG. 1 is an equivalent circuit diagram showing a semiconductor device 100 according to the first embodiment. The semiconductor device 100 is configured by connecting four switching elements 101a, which are the first plurality of switching elements connected in parallel, and two freewheeling diodes 102a, which are the first freewheeling diodes connected in parallel, in antiparallel. The upper arm 100a, the four switching elements 101b which are the second plurality of switching elements connected in parallel, and the two freewheeling diodes 102b which are the second freewheeling diodes connected in parallel are connected in antiparallel. The lower arm 100b is formed, and the upper arm 100a and the lower arm 100b are connected in series. Here, the switching element 101 (101a and 102b) is a MOSFET formed from a wide bandgap semiconductor, and the freewheeling diode 102 (102a and 102b) is an SBD formed from a widebandgap semiconductor. Further, in reference numerals of FIG. 1, 103 indicates a positive electrode terminal, 104 indicates a negative electrode terminal, 105 indicates an AC terminal, and 106a and 106b indicate a gate terminal of the switching element 101. Here, the number of switching elements 101 and the number of freewheeling diodes 2 are not limited to the above description.
 図1に示す上アーム100aと下アーム100bを一つのモジュールとする2in1構造は、インバータやコンバータなどの装置を製造するにあたり、電気特性の観点に加え生産性の観点からも優れている。インバータを構成する場合、2in1構造3つを1つのモジュールとして用いる6in1構造として用いてもよい。さらに、大電力、大電流を必要とする自動車電装品や産業用モーターなどを駆動するためには、一つのアームに搭載するスイッチング素子を複数配置することが有効である。また、半導体装置100の電流量が増えることに応じて、還流ダイオードの面積を増やすことが有効である。ただし、実施の形態1に係る半導体装置100は、上記用途や構成に限定するものではない。 The 2in1 structure in which the upper arm 100a and the lower arm 100b shown in FIG. 1 are one module is excellent not only from the viewpoint of electrical characteristics but also from the viewpoint of productivity in manufacturing devices such as inverters and converters. When configuring an inverter, it may be used as a 6in1 structure in which three 2in1 structures are used as one module. Further, in order to drive automobile electrical components and industrial motors that require a large amount of electric power and a large amount of current, it is effective to arrange a plurality of switching elements mounted on one arm. Further, it is effective to increase the area of the freewheeling diode as the amount of current of the semiconductor device 100 increases. However, the semiconductor device 100 according to the first embodiment is not limited to the above-mentioned use and configuration.
 半導体装置100に用いられるMOSFETおよびSBDの材料であるワイドバンドギャップ半導体として、炭化珪素(SiC)や窒化ガリウム(GaN)などが知られている。SiCからなるSiC-MOSFETは、内蔵するボディダイオードに電流が流れると結晶成長時に導入された基底面転位が積層欠陥に成長し、SiC-MOSFETのオン抵抗を増大させるなどの特性悪化を引き起こすことが知られている。これは、SiCが結晶成長過程において欠陥を発生し易いことが原因であり、GaNにおいても同様の課題を有することが知られている。また、GaNを材料としたボディダイオードを有するMOSFETも研究が進められており、GaNから形成されるMOSFETにおいても、将来的に同様の課題に直面することが予想される。 Silicon carbide (SiC), gallium nitride (GaN), and the like are known as wide bandgap semiconductors that are materials for MOSFETs and SBDs used in the semiconductor device 100. When a current flows through the built-in body diode of a SiC-MOSFET made of SiC, the basal plane dislocations introduced during crystal growth grow into stacking defects, which may cause deterioration of characteristics such as an increase in the on-resistance of the SiC-MOSFET. Are known. This is because SiC tends to generate defects in the crystal growth process, and it is known that GaN also has a similar problem. Research is also underway on MOSFETs with body diodes made of GaN, and it is expected that MOSFETs formed from GaN will face similar problems in the future.
 図2は、トランスファーモールド法により樹脂封止された半導体装置100における上アーム100aの断面模式図である。第1の複数のスイッチング素子である4つのスイッチング素子101aと第1の還流ダイオードである2つの還流ダイオード102aが、絶縁部材107上に設けられた第1の金属部材である金属部材108aに接合部材109を用いて接続される。また、中間端子110が、スイッチング素子101aや還流ダイオード102aに接合部材109を用いて接続される。さらに、4つのスイッチング素子101aおよび2つの還流ダイオード102aが、第1の直流端子である正極端子103の先端部や、絶縁部材107の金属部材108aとは反対側の面に設けられるヒートスプレッダー111の一部を露出するように、モールド樹脂112により被覆されている。ここで、絶縁部材107は、例えば、樹脂、セラミックからなる絶縁基板や絶縁シートなどである。接合部材109は、例えば、はんだや、銀などからなるシンタリングペーストなどである。ただし、実施の形態1の半導体装置100は、上記構成に限定するものではない。 FIG. 2 is a schematic cross-sectional view of the upper arm 100a in the semiconductor device 100 resin-sealed by the transfer molding method. The four switching elements 101a, which are the first plurality of switching elements, and the two freewheeling diodes 102a, which are the first freewheeling diodes, are joined to the metal member 108a, which is the first metal member, provided on the insulating member 107. It is connected using 109. Further, the intermediate terminal 110 is connected to the switching element 101a and the freewheeling diode 102a by using the bonding member 109. Further, the heat spreader 111 in which the four switching elements 101a and the two freewheeling diodes 102a are provided on the tip of the positive electrode terminal 103, which is the first DC terminal, and on the surface of the insulating member 107 opposite to the metal member 108a. It is coated with a mold resin 112 so as to partially expose it. Here, the insulating member 107 is, for example, an insulating substrate or an insulating sheet made of resin or ceramic. The joining member 109 is, for example, solder, a sintered paste made of silver, or the like. However, the semiconductor device 100 of the first embodiment is not limited to the above configuration.
 図3は、半導体装置100におけるスイッチング素子101や還流ダイオード102などの実装状態を模式的に示す平面図である。また、図4は、図3の破線A1-A2における断面模式図である。ここで、上アーム100aは、金属部材108a上に、4つのスイッチング素子101aおよび2つの還流ダイオード102aが接続される。また、下アーム100bは、第2の金属部材である金属部材108b上に、第2の複数のスイッチング素子である4つのスイッチング素子101bおよび第2の還流ダイオードである2つの還流ダイオード102bが接続される。ここで、金属部材108aと金属部材108bは、1対として近接して配設される。また、スイッチング素子101および還流ダイオード102の各々は、図示は省略するが上面電極および下面電極を有しており、各々の下面電極と金属部材108(108aおよび108b)が接合部材9を用いて接続される。ここで、金属部材108は銅やアルミニウムなどからなる、金属板や、絶縁基板上に形成された金属配線などである。なお、絶縁基板上に形成された金属配線を用いる場合、ヒートスプレッダー111、絶縁部材107が不要な構造も考えられる。 FIG. 3 is a plan view schematically showing a mounting state of the switching element 101, the freewheeling diode 102, and the like in the semiconductor device 100. Further, FIG. 4 is a schematic cross-sectional view taken along the broken lines A1-A2 of FIG. Here, in the upper arm 100a, four switching elements 101a and two freewheeling diodes 102a are connected on the metal member 108a. Further, in the lower arm 100b, four switching elements 101b, which are the second plurality of switching elements, and two freewheeling diodes 102b, which are the second freewheeling diodes, are connected on the metal member 108b, which is the second metal member. To. Here, the metal member 108a and the metal member 108b are arranged close to each other as a pair. Further, each of the switching element 101 and the freewheeling diode 102 has an upper surface electrode and a lower surface electrode (not shown), and each lower surface electrode and the metal member 108 (108a and 108b) are connected by using the bonding member 9. Will be done. Here, the metal member 108 is a metal plate made of copper, aluminum, or the like, a metal wiring formed on an insulating substrate, or the like. When using the metal wiring formed on the insulating substrate, a structure that does not require the heat spreader 111 and the insulating member 107 can be considered.
 上アーム100aでは、正極端子103が、接合部材109を用いて金属部材108aと接続される。下アーム100bでは、第2の直流端子である負極端子104が、4つのスイッチング素子102bおよび2つの還流ダイオード102bと接合部材109を用いて接続される。また、交流端子105が、金属部材108bに接続部材109を用いて接続される。さらに、中間端子110が下アーム100bの金属部材108bと接合部材109を用いて接続されることで、上アーム100aと下アーム100bが接続される。ここで、正極端子103、負極端子104、交流端子105および中間端子110は、板状の金属により形成されている。なお、スイッチング素子101のゲート電極に接続されるゲート端子106aおよび106bについては、図3では図示を省略する。 In the upper arm 100a, the positive electrode terminal 103 is connected to the metal member 108a by using the joining member 109. In the lower arm 100b, the negative electrode terminal 104, which is the second DC terminal, is connected to the four switching elements 102b and the two freewheeling diodes 102b by using the joining member 109. Further, the AC terminal 105 is connected to the metal member 108b by using the connecting member 109. Further, the intermediate terminal 110 is connected to the metal member 108b of the lower arm 100b by using the joining member 109, so that the upper arm 100a and the lower arm 100b are connected. Here, the positive electrode terminal 103, the negative electrode terminal 104, the AC terminal 105, and the intermediate terminal 110 are formed of a plate-shaped metal. The gate terminals 106a and 106b connected to the gate electrode of the switching element 101 are not shown in FIG.
 正極端子103は平面視(第2の複数のスイッチング素子である4つのスイッチング素子101bにおいて、第2の金属部材である金属部材108bと接合する面に垂直な方向から見たものであり、図3の紙面に垂直な方向から見たものを平面視とする)において金属部材108aから突出するように設けられ、負極端子104は平面視において、金属部材108bから外側へ突出する突出部113を有している。突出部113も板状の金属である。これら正極端子103と突出部113は、平面視において上アーム100aと下アーム100b各々の同じ方向において金属部材108aおよび金属部材108bから突出するように配設される。なお、正極端子103と突出部113は、より近接して平行に配設するとなおよい。また、交流端子105は、下アーム101bにおいて突出部113が突出する方向とは反対の方向に、金属部材108bから突出するように配設される。これにより、上アーム100aにおいて交流端子105から正極端子103へ流れる電流と、下アーム100bにおいて、負極端子104から交流端子105へ流れる電流が作る磁界が互いに打ち消し合うような方向に流れ、半導体装置100のインダクタンスを低減することができる。 The positive electrode terminal 103 is viewed in a plan view (in four switching elements 101b, which are the second plurality of switching elements, viewed from a direction perpendicular to the surface to be joined to the metal member 108b, which is the second metal member, FIG. The negative electrode terminal 104 has a protruding portion 113 projecting outward from the metal member 108b in a plan view. ing. The protruding portion 113 is also a plate-shaped metal. The positive electrode terminal 103 and the projecting portion 113 are arranged so as to project from the metal member 108a and the metal member 108b in the same direction of each of the upper arm 100a and the lower arm 100b in a plan view. It is more preferable that the positive electrode terminal 103 and the protruding portion 113 are arranged closer to each other and in parallel. Further, the AC terminal 105 is arranged so as to protrude from the metal member 108b in the direction opposite to the direction in which the protruding portion 113 protrudes from the lower arm 101b. As a result, the magnetic fields generated by the current flowing from the AC terminal 105 to the positive electrode terminal 103 in the upper arm 100a and the current flowing from the negative electrode terminal 104 to the AC terminal 105 in the lower arm 100b flow in directions that cancel each other out, and the semiconductor device 100 Inductance can be reduced.
 実施の形態1の半導体装置100では、図3に示すように、上アーム100aにおいて、4つのスイッチング素子101aと2つの還流ダイオード102a各々をまとめて、かつ分けて配設し、さらに還流ダイオード102aをスイッチング素子101aよりも正極端子103側に配設している。上記半導体装置100では、第1の直流端子としての正極端子103から第1の還流ダイオードとしての環流ダイオード102aまでの導通経路の距離は、正極端子103から第1のスイッチング素子としてのスイッチング素子101aまでの導通経路の距離より短い。これにより、正極端子103から還流ダイオード102aまでの導電経路のインダクタンスを、正極端子103からスイッチング素子101aまでの導通経路のインダクタンスよりも小さくすることができる。また、第1の直流端子としての正極端子103から第1の還流ダイオードとしての環流ダイオード102aまでの導通経路のインダクタンスは、正極端子103からすべての第1の複数のスイッチング素子としてのすべてのスイッチング素子101aまでの導通経路のインダクタンスより小さい。 In the semiconductor device 100 of the first embodiment, as shown in FIG. 3, in the upper arm 100a, the four switching elements 101a and the two freewheeling diodes 102a are arranged together and separately, and the freewheeling diode 102a is further arranged. It is arranged closer to the positive electrode terminal 103 than the switching element 101a. In the semiconductor device 100, the distance of the conduction path from the positive electrode terminal 103 as the first DC terminal to the recirculation diode 102a as the first freewheeling diode is from the positive electrode terminal 103 to the switching element 101a as the first switching element. Shorter than the distance of the conduction path of. As a result, the inductance of the conductive path from the positive electrode terminal 103 to the freewheeling diode 102a can be made smaller than the inductance of the conductive path from the positive electrode terminal 103 to the switching element 101a. Further, the inductance of the conduction path from the positive electrode terminal 103 as the first DC terminal to the recirculation diode 102a as the first freewheeling diode is all switching elements from the positive electrode terminal 103 as all the first plurality of switching elements. It is smaller than the inductance of the conduction path up to 101a.
 また、下アーム100bにおいても同様に、4つのスイッチング素子101bと2つの還流ダイオード102b各々をまとめて、かつ分けて配設し、さらに還流ダイオード102bをスイッチング素子101bよりも突出部113側に配設している。上記半導体装置100では、突出部113から第2の還流ダイオードとしての環流ダイオード102bまでの導通経路の距離が、突出部113から第2のスイッチング素子としてのスイッチング素子101bまでの導通経路の距離より短い。これにより、突出部113から還流ダイオード102bまでの導電経路のインダクタンスを、突出部113からスイッチング素子101bまでの導通経路のインダクタンスよりも小さくすることができる。また、突出部113から第2の還流ダイオードとしての環流ダイオード102bまでの導通経路のインダクタンスは、突出部113からすべての第2の複数のスイッチング素子としてのすべてのスイッチング素子101bまでの導通経路のインダクタンスよりも小さい。 Similarly, in the lower arm 100b, the four switching elements 101b and the two freewheeling diodes 102b are arranged together and separately, and the freewheeling diodes 102b are further arranged on the protruding portion 113 side of the switching element 101b. doing. In the semiconductor device 100, the distance of the conduction path from the protrusion 113 to the recirculation diode 102b as the second freewheeling diode is shorter than the distance of the conduction path from the protrusion 113 to the switching element 101b as the second switching element. .. As a result, the inductance of the conductive path from the protruding portion 113 to the freewheeling diode 102b can be made smaller than the inductance of the conductive path from the protruding portion 113 to the switching element 101b. Further, the inductance of the conduction path from the protrusion 113 to the recirculation diode 102b as the second freewheeling diode is the inductance of the conduction path from the protrusion 113 to all the switching elements 101b as all the second plurality of switching elements. Smaller than
 また、上記半導体装置100では、第1の金属部材としての金属部材108aに1列に設けられる複数のスイッチング素子101aは、第2の金属部材としての金属部材108bに1列に設けられる複数のスイッチング素子101bに対して対向する位置にある。さらに、金属部材108aに複数のスイッチング素子101aと同列に設けられる還流ダイオード102aは、金属部材108bに複数のスイッチング素子101bと同列に設けられる還流ダイオード102bに対して対向する位置にある。 Further, in the semiconductor device 100, the plurality of switching elements 101a provided in a row on the metal member 108a as the first metal member are provided in a row on the metal member 108b as the second metal member. It is in a position facing the element 101b. Further, the freewheeling diode 102a provided on the metal member 108a in the same row as the plurality of switching elements 101a is located at a position facing the freewheeling diode 102b provided on the metal member 108b in the same row as the plurality of switching elements 101b.
 さらに、実施の形態1の半導体装置100では、正極端子103から4つのスイッチング素子101a各々までのインダクタンス間の差が小さくなるように、中間端子110の長さや幅、さらに中間端子110にスリットを設けるなどの調整を行っている。また、負極端子104も同様に、負極端子104の突出部113から4つのスイッチング素子102b各々までのインダクタンス間の差が小さくなるように、負極端子104の長さや幅、さらに負極端子104にスリットを設けるなどの調整を行っている。 Further, in the semiconductor device 100 of the first embodiment, the length and width of the intermediate terminal 110 and the slits are provided in the intermediate terminal 110 so that the difference between the inductances from the positive electrode terminal 103 to each of the four switching elements 101a is small. Etc. are being adjusted. Similarly, the negative electrode terminal 104 also has slits in the length and width of the negative electrode terminal 104 and in the negative electrode terminal 104 so that the difference between the inductances from the protruding portion 113 of the negative electrode terminal 104 to each of the four switching elements 102b becomes small. Adjustments such as provision are being made.
 次に、正極端子103から、4つのスイッチング素子101a各々までのインダクタンス間の差を小さくするための具体的な方法について説明する。板状金属から形成された中間端子110は、平面視において4つのスイッチング素子101aの配置方向に伸びるように配置され、4つのスイッチング素子101a各々の上面電極と接合部材109を用いて接続された基幹部114aと、基幹部114aから下アーム100bの金属部材108b側へ向けて延伸する4つの延伸部115aと、金属部材108bと接合部材109を用いて接続される接合部116aを有する。ここで、延伸部115aは4つのスイッチング素子101aと基幹部114aの接続領域の近傍から下アーム100bの金属部材108b側へ向けて延伸し、それら延伸部115aは、正極端子103からの導通経路が長くなるに従い、延伸部115aの幅dが太くなるように形成される。 Next, a specific method for reducing the difference between the inductances from the positive electrode terminal 103 to each of the four switching elements 101a will be described. The intermediate terminal 110 formed of the plate-shaped metal is arranged so as to extend in the arrangement direction of the four switching elements 101a in a plan view, and is connected to the upper surface electrode of each of the four switching elements 101a by using the joining member 109. It has a portion 114a, four extending portions 115a extending from the trunk portion 114a toward the metal member 108b side of the lower arm 100b, and a joining portion 116a connected to the metal member 108b by using the joining member 109. Here, the stretched portion 115a stretches from the vicinity of the connection region between the four switching elements 101a and the trunk portion 114a toward the metal member 108b side of the lower arm 100b, and the stretched portion 115a has a conduction path from the positive electrode terminal 103. As the length increases, the width d of the stretched portion 115a becomes thicker.
 負極端子104の突出部113から、4つのスイッチング素子101b各々までのインダクタンス間の差を小さくするための具体的な方法について説明する。板上金属から形成された負極端子104は、平面視において4つのスイッチング素子101bの配置方向に伸びるように形成された基幹部114bと、基幹部114bから4つのスイッチング素子101bへ向けて延伸する4つの延伸部115bと、4つのスイッチング素子101bの各々と接合部材109を用いて接続される接合部116bを有する。ここで延伸部115bは、突出部113からの導通経路が長くなるに従い、延伸部115bの幅dが太くなるように形成される。 A specific method for reducing the difference between the inductances from the protruding portion 113 of the negative electrode terminal 104 to each of the four switching elements 101b will be described. The negative electrode terminal 104 formed of the metal on the plate extends from the trunk portion 114b toward the four switching elements 101b and the trunk portion 114b formed so as to extend in the arrangement direction of the four switching elements 101b in a plan view. It has one extending portion 115b and a joining portion 116b connected to each of the four switching elements 101b by using a joining member 109. Here, the stretched portion 115b is formed so that the width d of the stretched portion 115b becomes thicker as the conduction path from the protruding portion 113 becomes longer.
 このように、上アーム100aにおいて、中間端子110の延伸部115a各々の幅dを、正極端子103から4つのスイッチング素子101a各々までの導通経路が長くなるのに応じて太くすることで、正極端子103と4つのスイッチング素子101a各々までのインダクタンス間の差を小さくすることができる。また、下アーム100bにおいて、負極端子104の延伸部115b各々の幅dを、突出部113から4つのスイッチング素子101b各々までの導通経路が長くなるのに応じて太くすることで、突出部113と4つのスイッチング素子101b各々までのインダクタンス間の差を小さくすることができる。 In this way, in the upper arm 100a, the width d of each of the extending portions 115a of the intermediate terminal 110 is increased as the conduction path from the positive electrode terminal 103 to each of the four switching elements 101a becomes longer, so that the positive electrode terminal is made thicker. The difference between the inductances of 103 and each of the four switching elements 101a can be reduced. Further, in the lower arm 100b, the width d of each of the stretched portions 115b of the negative electrode terminal 104 is increased in accordance with the lengthening of the conduction path from the protruding portion 113 to each of the four switching elements 101b, thereby forming the protruding portion 113. The difference between the inductances up to each of the four switching elements 101b can be reduced.
 ここで、上アーム100aの4つのスイッチング素子101aにおいて、正極端子103からの導通経路が最も長いスイッチング素子101aまでのインダクタンスと、正極端子103からの導通経路が最も短いスイッチング素子101aまでのインダクタンスの差が、半導体装置100全体のインダクタンスの10%以内とすることが好ましい。さらに、下アーム100bの4つのスイッチング素子101bにおいて、突出部113からの導通経路が最も長いスイッチング素子101bまでのインダクタンスと、突出部113からの導通経路が最も短いスイッチング素子101bまでのインダクタンスの差が、半導体装置100全体のインダクタンスの10%以内とすることが好ましい。 Here, in the four switching elements 101a of the upper arm 100a, the difference between the inductance from the positive electrode terminal 103 to the switching element 101a having the longest conduction path and the inductance from the positive electrode terminal 103 to the switching element 101a having the shortest conduction path. However, it is preferably within 10% of the inductance of the entire semiconductor device 100. Further, in the four switching elements 101b of the lower arm 100b, the difference between the inductance to the switching element 101b having the longest conduction path from the protruding portion 113 and the inductance to the switching element 101b having the shortest conduction path from the protruding portion 113 is , It is preferable that the inductance is within 10% of the total inductance of the semiconductor device 100.
 次に、実施の形態1の半導体装置100の動作について説明する。半導体装置100の正極端子103に直流電源の正極、負極端子104の突出部113に直流電源の負極が接続される。ここで、直流電源は交流電源の交流電圧を整流して直流電圧に変換したものであってもよい。また、正極端子103と突出部113は、直流電源に並列接続される容量素子と接続されてもよい。図1に示すスイッチング素子101のゲート端子106aおよび106bに、制御用電圧を印可することで上アーム100aの4つのスイッチング素子101aと下アーム100bの4つのスイッチング素子101bを制御し、交流端子105から電流を出力する。 Next, the operation of the semiconductor device 100 of the first embodiment will be described. The positive electrode of the DC power supply is connected to the positive electrode terminal 103 of the semiconductor device 100, and the negative electrode of the DC power supply is connected to the protruding portion 113 of the negative electrode terminal 104. Here, the DC power supply may be one in which the AC voltage of the AC power supply is rectified and converted into a DC voltage. Further, the positive electrode terminal 103 and the protruding portion 113 may be connected to a capacitive element connected in parallel to the DC power supply. By applying a control voltage to the gate terminals 106a and 106b of the switching element 101 shown in FIG. 1, the four switching elements 101a of the upper arm 100a and the four switching elements 101b of the lower arm 100b are controlled from the AC terminal 105. Output current.
 上アーム100aや下アーム100bがスイッチングした際に、半導体装置100や半導体装置100に接続された回路や負荷が有するインダクタンスなどにより、半導体装置100に過渡的な還流電流が流れる。還流電流は還流ダイオード102やスイッチング素子101のボディダイオードを電流経路として流れる。還流ダイオード102は、スイッチング素子101のボディダイオードよりも大きな定格電流で、スイッチング素子101のボディダイオードよりも低電圧で電流が流れ始めるようにVfを設定される。 When the upper arm 100a and the lower arm 100b are switched, a transient return current flows through the semiconductor device 100 due to the inductance of the circuit or load connected to the semiconductor device 100 or the semiconductor device 100. The return current flows through the return diode 102 and the body diode of the switching element 101 as a current path. The freewheeling diode 102 has a rated current larger than that of the body diode of the switching element 101, and Vf is set so that the current starts to flow at a lower voltage than the body diode of the switching element 101.
 図3に示すように、上アーム100aと下アーム100bのそれぞれにおいて、正極端子103や負極端子104の突出部113から還流ダイオード102までのインダクタンスが、スイッチング素子101より小さくなるように実装することにより、スイッチング素子101のボディダイオードよりも優先的に還流ダイオード102へ還流電流を流すことができる。これにより、一部のスイッチング素子101のボディダイオードに還流電流が偏って電流量が増大することを抑制することができる。 As shown in FIG. 3, in each of the upper arm 100a and the lower arm 100b, the inductance from the protruding portion 113 of the positive electrode terminal 103 and the negative electrode terminal 104 to the freewheeling diode 102 is smaller than that of the switching element 101. , The freewheeling current can be passed through the freewheeling diode 102 preferentially over the body diode of the switching element 101. As a result, it is possible to prevent the return current from being biased toward the body diode of some switching elements 101 and increasing the amount of current.
 また、上アーム100aと下アーム100bのそれぞれにおいて、正極端子103から4つのスイッチング素子101a各々までのインダクタンス間の差を小さくし、負極端子104の突出部113から4つのスイッチング素子102b各々までのインダクタンス間の差を小さくすることで、一部のスイッチング素子101のボディダイオードに還流電流が偏って電流量が増大することをさらに抑制することができる。 Further, in each of the upper arm 100a and the lower arm 100b, the difference between the inductances from the positive electrode terminal 103 to each of the four switching elements 101a is reduced, and the inductances from the protruding portion 113 of the negative electrode terminal 104 to each of the four switching elements 102b are reduced. By reducing the difference between the two, it is possible to further suppress the increase in the amount of current due to the recirculation current being biased toward the body diode of some switching elements 101.
 図5に示すように、上アーム100aの金属部材108aに設けられる4つのスイッチング素子101aは、下アーム100bの金属部材108bに設けられる4つのスイッチング素子101bに対して互いに対向する位置に配設する。また、上アーム100aの金属部材108aに設けられる2つの還流ダイオード102aは、下アーム100bの金属部材108bに設けられる2つの還流ダイオード102bに対して互いに対向するように配設する。これにより、上アーム100aと下アーム100bのインダクタンスの差を小さくすることができ、一部のスイッチング素子101のボディダイオードに還流電流が偏って電流量が増大することを抑制することができる。 As shown in FIG. 5, the four switching elements 101a provided on the metal member 108a of the upper arm 100a are arranged at positions facing each other with respect to the four switching elements 101b provided on the metal member 108b of the lower arm 100b. .. Further, the two freewheeling diodes 102a provided on the metal member 108a of the upper arm 100a are arranged so as to face each other with respect to the two freewheeling diodes 102b provided on the metal member 108b of the lower arm 100b. As a result, the difference in inductance between the upper arm 100a and the lower arm 100b can be reduced, and it is possible to prevent the return current from being biased toward the body diode of some switching elements 101 and increasing the amount of current.
 さらに、上アーム100aの4つのスイッチング素子101aと2つの還流ダイオード102aが、下アーム100bの4つのスイッチング素子101bと2つの還流ダイオード102bと対称となるように配設するとよい。また、上アーム100aの4つのスイッチング素子101aと2つの還流ダイオード102aが、下アーム100bの4つのスイッチング素子101bと2つの還流ダイオード102bと破線S1-S2に対して鏡面対称となるように配設するとなおよい。 Further, it is preferable that the four switching elements 101a and the two freewheeling diodes 102a of the upper arm 100a are arranged symmetrically with the four switching elements 101b and the two freewheeling diodes 102b of the lower arm 100b. Further, the four switching elements 101a of the upper arm 100a and the two freewheeling diodes 102a are arranged so as to be mirror-symmetrical with respect to the four switching elements 101b of the lower arm 100b, the two freewheeling diodes 102b, and the broken line S1-S2. Then it is even better.
 図6に、実施の形態1の半導体装置100の下アーム100bにおいて、4つのスイッチング素子101bのボディダイオードに流れる還流電流のシミュレーション結果を示す。ここで、各ボディダイオードに流れる還流電流のバラツキは、MAX-MINで約10%以下である。 FIG. 6 shows a simulation result of the reflux current flowing through the body diodes of the four switching elements 101b in the lower arm 100b of the semiconductor device 100 of the first embodiment. Here, the variation of the reflux current flowing through each body diode is about 10% or less in MAX-MIN.
 図7は、実施の形態1の半導体装置100の比較例である半導体装置200を模式的に示す平面図である。上アーム200aでは、正極端子203が金属部材208aと接合部材209を用いて接続される。下アーム200bでは、第2直流端子である負極端子204が、4つのスイッチング素子202bおよび2つの還流ダイオード202bと接合部材209と接続される。また、交流端子205が、金属部材208bに接合部材209と接続される。さらに、中間端子210が下アーム200bの金属部材208bと接合部材209と接続されることで、上アーム200aと下アーム200bが接続される。ここで、正極端子203、負極端子204、交流端子205および中間端子210は、板状の金属により形成される。 FIG. 7 is a plan view schematically showing a semiconductor device 200 which is a comparative example of the semiconductor device 100 of the first embodiment. In the upper arm 200a, the positive electrode terminal 203 is connected to the metal member 208a by using the joining member 209. In the lower arm 200b, the negative electrode terminal 204, which is the second DC terminal, is connected to the four switching elements 202b, the two freewheeling diodes 202b, and the joining member 209. Further, the AC terminal 205 is connected to the metal member 208b with the joining member 209. Further, by connecting the intermediate terminal 210 to the metal member 208b of the lower arm 200b and the joining member 209, the upper arm 200a and the lower arm 200b are connected. Here, the positive electrode terminal 203, the negative electrode terminal 204, the AC terminal 205, and the intermediate terminal 210 are formed of a plate-shaped metal.
 正極端子203は平面視において金属部材208aから突出するように設けられ、負極端子204は平面視において金属部材208bから外側へ突出する突出部213を有している。これら正極端子203と突出部213は、平面視において上アーム200aと下アーム200b各々の同じ方向において金属部材208aおよび金属部材208bから突出するように配設される。また、交流端子205は、下アーム200bにおいて突出部213が突出する方向とは反対の方向に、金属部材208bから突出するように配設される。 The positive electrode terminal 203 is provided so as to project from the metal member 208a in a plan view, and the negative electrode terminal 204 has a projecting portion 213 projecting outward from the metal member 208b in a plan view. The positive electrode terminal 203 and the projecting portion 213 are arranged so as to project from the metal member 208a and the metal member 208b in the same direction of each of the upper arm 200a and the lower arm 200b in a plan view. Further, the AC terminal 205 is arranged so as to protrude from the metal member 208b in the direction opposite to the direction in which the protruding portion 213 protrudes from the lower arm 200b.
 中間端子210は、平面視において4つのスイッチング素子201aおよび2つの還流ダイオード202aの配置方向に伸びるように配置され、4つのスイッチング素子201aおよび2つの還流ダイオード202a各々の上面電極と接続された基幹部214aと、基幹部214aが4つのスイッチング素子201aと接続される領域の近傍から下アーム200bの金属部材208b側へ向けて延伸する4つの延伸部215aと、金属部材208bと接続される接合部216aを有する。負極端子204は、平面視において4つのスイッチング素子201bおよび2つの還流ダイオード202b各々の配置方向に伸びるように形成された基幹部214bと、基幹部214bから4つのスイッチング素子201bへ向けて延伸する4つの延伸部215bと、4つのスイッチング素子201bの各々の上面電極と接続される接合部216bを有する。 The intermediate terminal 210 is arranged so as to extend in the arrangement direction of the four switching elements 201a and the two freewheeling diodes 202a in a plan view, and is connected to the top electrode of each of the four switching elements 201a and the two freewheeling diodes 202a. The 214a, the four extension portions 215a extending from the vicinity of the region where the trunk portion 214a is connected to the four switching elements 201a toward the metal member 208b side of the lower arm 200b, and the joint portion 216a connected to the metal member 208b. Has. The negative electrode terminal 204 extends from the trunk portion 214b toward the four switching elements 201b and the trunk portion 214b formed so as to extend in the arrangement direction of each of the four switching elements 201b and the two freewheeling diodes 202b in a plan view. It has one stretched portion 215b and a junction 216b connected to the top electrode of each of the four switching elements 201b.
 ここで、比較例である半導体装置200と実施の形態1の半導体装置100の主な差異は、上アーム200aにおいて2つの還流ダイオード202aの各々が4つのスイッチング素子201aの間に配設されること、下アーム200bにおいて2つの還流ダイオード202bが4つのスイッチング素子201bの間に配設されることである。 Here, the main difference between the semiconductor device 200 as a comparative example and the semiconductor device 100 of the first embodiment is that each of the two freewheeling diodes 202a is arranged between the four switching elements 201a in the upper arm 200a. In the lower arm 200b, two freewheeling diodes 202b are arranged between the four switching elements 201b.
 さらに、平面視において、上アーム200aの基幹部214aと4つのスイッチング素子201aが接続される領域の近傍から、下アーム200bの金属部材208b側へ向けて延伸する4つの延伸部215a各々の幅dが、上アーム200aの金属部材208aから平面視において突出するように設けられる正極端子203からの導通経路の長さに関係なく同じである。また、平面視において、下アーム200bの基幹部214bから4つのスイッチング素子201bへ向けて延伸する4つの延伸部215bの各々の幅dが、金属部材208bから平面視において突出するように設けられる負極端子204の突出部213からの導通経路の長さに関係なく同じである。 Further, in a plan view, the width d of each of the four extending portions 215a extending from the vicinity of the region where the trunk portion 214a of the upper arm 200a and the four switching elements 201a are connected toward the metal member 208b side of the lower arm 200b. However, it is the same regardless of the length of the conduction path from the positive electrode terminal 203 provided so as to project from the metal member 208a of the upper arm 200a in a plan view. Further, in a plan view, a negative electrode provided so that the width d of each of the four stretched portions 215b extending from the trunk portion 214b of the lower arm 200b toward the four switching elements 201b protrudes from the metal member 208b in a plan view. It is the same regardless of the length of the conduction path from the protrusion 213 of the terminal 204.
 次に、半導体装置200の下アーム200bにおける、4つのスイッチング素子201bのボディダイオードに流れる還流電流のシミュレーション結果を図8に示す。各ボディダイオードに流れる還流電流のバラツキは、MAX-MINで100%以上と、一部のスイッチング素子に還流電流が偏ることで電流量増大が発生していることがわかる。これらの結果から、実施の形態1の半導体装置100は、一部のスイッチング素子101に還流電流が偏ることを抑制できていることがわかる。 Next, FIG. 8 shows the simulation results of the reflux current flowing through the body diodes of the four switching elements 201b in the lower arm 200b of the semiconductor device 200. The variation of the recirculation current flowing through each body diode is 100% or more in MAX-MIN, and it can be seen that the amount of current increases due to the recirculation current being biased to some switching elements. From these results, it can be seen that the semiconductor device 100 of the first embodiment can suppress the recirculation current from being biased to a part of the switching elements 101.
 このように、実施の形態1の半導体100において、上アーム100aでは正極端子103から還流ダイオード102aまでの導電経路のインダクタンスが、正極端子103からスイッチング素子101aまでの導通経路のインダクタンスよりも小さい。さらに、下アーム100bでは、負極端子104の突出部113から還流ダイオード102bまでの導電経路のインダクタンスが、突出部113からスイッチング素子102bまでの導通経路のインダクタンスよりも小さくすることにより、スイッチング素子101各々のボディダイオードに流れる還流電流が一部のスイッチング素子101へ偏ることによる電流量の増大を抑制することができる。 As described above, in the semiconductor 100 of the first embodiment, in the upper arm 100a, the inductance of the conductive path from the positive electrode terminal 103 to the freewheeling diode 102a is smaller than the inductance of the conductive path from the positive electrode terminal 103 to the switching element 101a. Further, in the lower arm 100b, the inductance of the conductive path from the protruding portion 113 of the negative electrode terminal 104 to the freewheeling diode 102b is made smaller than the inductance of the conductive path from the protruding portion 113 to the switching element 102b, so that each of the switching elements 101 It is possible to suppress an increase in the amount of current due to the recirculation current flowing through the body diode of the above being biased toward a part of the switching elements 101.
 また、上アーム100aにおいて、中間端子110の延伸部115a各々の幅dを、正極端子103から4つのスイッチング素子101a各々までの導通経路が長くなるのに応じて太くすることで、正極端子103と4つのスイッチング素子101a各々までのインダクタンス間の差を小さくすることができる。さらに、下アーム100bにおいて、負極端子104の延伸部115b各々の幅dを、突出部113から4つのスイッチング素子101b各々までの導通経路が長くなるのに応じて太くすることで、突出部113とスイッチング素子101b各々までのインダクタンス間の差を小さくすることができる。これにより、一部のスイッチング素子101bへの還流電流の偏りを抑制することができる。 Further, in the upper arm 100a, the width d of each of the extending portions 115a of the intermediate terminal 110 is increased as the conduction path from the positive electrode terminal 103 to each of the four switching elements 101a becomes longer, thereby forming the positive electrode terminal 103. The difference between the inductances up to each of the four switching elements 101a can be reduced. Further, in the lower arm 100b, the width d of each of the stretched portions 115b of the negative electrode terminal 104 is increased in accordance with the lengthening of the conduction path from the protruding portion 113 to each of the four switching elements 101b, thereby forming the protruding portion 113. The difference between the inductances up to each of the switching elements 101b can be reduced. As a result, it is possible to suppress the bias of the return current to a part of the switching elements 101b.
 さらに、上アーム100aの金属部材108aに設けられる4つのスイッチング素子101aは、下アーム100bの金属部材108bに設けられる4つのスイッチング素子101bに対して互いに対向する位置に配設する。また、上アーム100aの金属部材108aに設けられる2つの還流ダイオード102aは、下アーム100bの金属部材108bに設けられる2つの還流ダイオード102bに対して互いに対向するように配設する。これにより、上アーム100aと下アーム100bのインダクタンスの差を小さくすることができ、一部のスイッチング素子101のボディダイオードに還流電流が偏って電流量が増大することを抑制することができる。 Further, the four switching elements 101a provided on the metal member 108a of the upper arm 100a are arranged at positions facing each other with respect to the four switching elements 101b provided on the metal member 108b of the lower arm 100b. Further, the two freewheeling diodes 102a provided on the metal member 108a of the upper arm 100a are arranged so as to face each other with respect to the two freewheeling diodes 102b provided on the metal member 108b of the lower arm 100b. As a result, the difference in inductance between the upper arm 100a and the lower arm 100b can be reduced, and it is possible to prevent the return current from being biased toward the body diode of some switching elements 101 and increasing the amount of current.
 これらにより、通電劣化の進行によるSiC-MOSFETのオン抵抗増大を抑制することができる。また、一部のスイッチング素子101への還流電流の偏りを抑制することで、多くの還流電流をスイッチング素子101のボディダイオードを用いて効率的に流すことが可能になるため、より小面積で、定格電流の小さい還流ダイオード102を用いることが可能となり、半導体装置100を小面積化することができる。 With these, it is possible to suppress an increase in the on-resistance of the SiC-MOSFET due to the progress of energization deterioration. Further, by suppressing the bias of the recirculation current to some of the switching elements 101, a large amount of recirculation current can be efficiently flowed by using the body diode of the switching element 101, so that the area can be smaller. The freewheeling diode 102 having a small rated current can be used, and the area of the semiconductor device 100 can be reduced.
 なお、正極端子103、負極端子104、交流端子105および中間端子110は、板状の金属により形成される。負極端子104および中間端子110は、スイッチング素子101a、スイッチング素子101b、還流ダイオード102a、還流ダイオード102bなどとたとえば接合部材109を介して接続することを例にして説明したが、これらの端子の接続方法として他の方法を採用してもよい。たとえば、負極端子104および中間端子110を、スイッチング素子101a、スイッチング素子101b、還流ダイオード102a、還流ダイオード102bなどとアルミニウム製ワイヤを用いたワイヤボンドによって接続してもよい。また、正極端子103および交流端子105を、金属部材108aおよび金属部材108bと、アルミニウム製ワイヤを用いたワイヤボンドによって接続してもよい。 The positive electrode terminal 103, the negative electrode terminal 104, the AC terminal 105, and the intermediate terminal 110 are formed of a plate-shaped metal. The negative electrode terminal 104 and the intermediate terminal 110 have been described as an example of connecting to a switching element 101a, a switching element 101b, a freewheeling diode 102a, a freewheeling diode 102b, etc. via, for example, a joining member 109. Other methods may be adopted. For example, the negative electrode terminal 104 and the intermediate terminal 110 may be connected to a switching element 101a, a switching element 101b, a freewheeling diode 102a, a freewheeling diode 102b, or the like by a wire bond using an aluminum wire. Further, the positive electrode terminal 103 and the AC terminal 105 may be connected to the metal member 108a and the metal member 108b by a wire bond using an aluminum wire.
 実施の形態1の変形例.
 図9および図10を用いて、実施の形態1の変形例における半導体装置300について説明する。図9は実施の形態1の変形例における半導体装置300のスイッチング素子301(301aおよび301b)と還流ダイオード302(302aおよび302b)などの実装状態を模式的に示す平面図である。また、図10は、実施の形態1の変形例における半導体装置300のスイッチング素子301と還流ダイオード302の配置を模式的に示す平面図である。実施の形態1の変形例と実施の形態1との主な差異は、金属部材308(308aおよび308b)の形状である。また、それに伴いスイッチング素子301、還流ダイオード302、正極端子303、交流端子305の配置や、負極端子304および中間端子310などの形状が異なる。
A modified example of the first embodiment.
The semiconductor device 300 in the modified example of the first embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a plan view schematically showing a mounting state of the switching elements 301 (301a and 301b) and the freewheeling diodes 302 (302a and 302b) of the semiconductor device 300 in the modified example of the first embodiment. Further, FIG. 10 is a plan view schematically showing the arrangement of the switching element 301 and the freewheeling diode 302 of the semiconductor device 300 in the modified example of the first embodiment. The main difference between the modified example of the first embodiment and the first embodiment is the shape of the metal members 308 (308a and 308b). Further, the arrangement of the switching element 301, the freewheeling diode 302, the positive electrode terminal 303, and the AC terminal 305 and the shapes of the negative electrode terminal 304 and the intermediate terminal 310 are different accordingly.
 具体的には、図9に示すように、上アーム300aの第1の金属部材である金属部材308aと下アーム300bの第2の金属部材である金属部材308bは1対として近接して配設される。正極端子303と負極端子304の突出部313は、平面視において、金属部材308aと金属部材308bから同じ方向に突出するように配設される。また、上アーム300aの第1の還流ダイオードである2つの還流ダイオード302aは、金属部材308aにおいて正極端子303の近傍にまとめて配設される。下アーム300bの第2の還流ダイオードである2つの還流ダイオード302bは、金属部材308bにおいて突出部313の近傍にまとめて配設される。さらに、2つの還流ダイオード302aは、2つの還流ダイオード302bと対向する位置にある。 Specifically, as shown in FIG. 9, the metal member 308a, which is the first metal member of the upper arm 300a, and the metal member 308b, which is the second metal member of the lower arm 300b, are arranged close to each other as a pair. Will be done. The projecting portions 313 of the positive electrode terminal 303 and the negative electrode terminal 304 are arranged so as to project in the same direction from the metal member 308a and the metal member 308b in a plan view. Further, the two freewheeling diodes 302a, which are the first freewheeling diodes of the upper arm 300a, are collectively arranged in the vicinity of the positive electrode terminal 303 in the metal member 308a. The two freewheeling diodes 302b, which are the second freewheeling diodes of the lower arm 300b, are collectively arranged in the vicinity of the protrusion 313 in the metal member 308b. Further, the two freewheeling diodes 302a are located opposite the two freewheeling diodes 302b.
 次に、上アーム300aの第1の複数のスイッチング素子である4つのスイッチング素子301aは、正極端子303に対して2つの還流ダイオード302aより遠い位置において、2つの還流ダイオード302aを囲むように金属部材308aに配設される。また、下アーム100bの第2の複数のスイッチング素子である4つのスイッチング素子301bは、突出部313に対して2つの還流ダイオード302bより遠い位置において、2つの還流ダイオード302bを囲むように金属部材308bに配設される。 Next, the four switching elements 301a, which are the first plurality of switching elements of the upper arm 300a, are metal members so as to surround the two freewheeling diodes 302a at a position farther than the two freewheeling diodes 302a with respect to the positive electrode terminal 303. It is arranged at 308a. Further, the four switching elements 301b, which are the second plurality of switching elements of the lower arm 100b, surround the two freewheeling diodes 302b at a position farther than the two freewheeling diodes 302b with respect to the protrusion 313, so that the metal member 308b is surrounded by the two freewheeling diodes 302b. It is arranged in.
 言い換えると、上アーム300aおよび下アーム300bの各々において、還流ダイオード302を中心に4つのスイッチング素子301がその周りに配設される。これにより、上アーム300aでは、正極端子303から4つのスイッチング素子301a各々までの距離間の差が小さく、下アーム300bでは、突出部313から4つのスイッチング素子301b各々までの距離間の差が小さい。そのため、上アーム300aでは正極端子303から4つのスイッチング素子301a各々までの導通経路のインダクタンス間の差が小さく、下アーム300bでは突出部313から4つのスイッチング素子301b各々までの導通経路のインダクタンス間の差が小さい。 In other words, in each of the upper arm 300a and the lower arm 300b, four switching elements 301 are arranged around the freewheeling diode 302. As a result, in the upper arm 300a, the difference between the distances from the positive electrode terminal 303 to each of the four switching elements 301a is small, and in the lower arm 300b, the difference between the distances from the protrusion 313 to each of the four switching elements 301b is small. .. Therefore, in the upper arm 300a, the difference between the inductances of the conduction paths from the positive electrode terminal 303 to each of the four switching elements 301a is small, and in the lower arm 300b, between the inductances of the conduction paths from the protrusion 313 to each of the four switching elements 301b. The difference is small.
 さらには、図10に示すように、上アーム300aの4つのスイッチング素子301aと2つの還流ダイオード302aが、下アーム300bの4つのスイッチング素子301bと2つの還流ダイオード302bと対称となるように配設するとよい。また、上アーム300aの4つのスイッチング素子301aと2つの還流ダイオード302aが、下アーム300bの4つのスイッチング素子301bと2つの還流ダイオード302bと、破線S3-S4に対して鏡面対称となるように配設するとなおよい。 Further, as shown in FIG. 10, the four switching elements 301a and the two freewheeling diodes 302a of the upper arm 300a are arranged so as to be symmetrical with the four switching elements 301b and the two freewheeling diodes 302b of the lower arm 300b. It is good to do. Further, the four switching elements 301a and the two freewheeling diodes 302a of the upper arm 300a are arranged so as to be mirror-symmetrical with respect to the broken line S3-S4 with the four switching elements 301b and the two freewheeling diodes 302b of the lower arm 300b. It is even better to set it up.
 さらに、実施の形態1の変形例においても、上アーム300aにおいて正極端子303から4つのスイッチング素子301a各々までの導通経路のインダクタンス間の差を小さくし、下アーム300bにおいて突出部313から4つのスイッチング素子301b各々までの導通経路のインダクタンス間の差を小さくするために、負極端子304や中間端子310の幅や長さを変えたり、スリットを設けたりしてもよい。 Further, also in the modified example of the first embodiment, the difference between the inductances of the conduction paths from the positive electrode terminal 303 to each of the four switching elements 301a is reduced in the upper arm 300a, and the four switching from the protruding portion 313 to the lower arm 300b. In order to reduce the difference between the inductances of the conduction path to each of the elements 301b, the width and length of the negative electrode terminal 304 and the intermediate terminal 310 may be changed, or a slit may be provided.
 これにより、一部のスイッチング素子301のボディダイオードに還流電流が偏って、電流量が増大することを抑制することができ、通電劣化の進行によるSiC-MOSFETのオン抵抗増大を抑制することができる。また、一部のスイッチング素子301への還流電流の偏りを抑制することで、多くの還流電流をスイッチング素子301のボディダイオードを用いて効率的に流すことが可能になるため、より小面積で、定格電流の小さい還流ダイオード302を用いることが可能となり、半導体装置300を小面積化することができる。 As a result, it is possible to suppress an increase in the amount of current due to the reflux current being biased toward the body diode of some switching elements 301, and it is possible to suppress an increase in the on-resistance of the SiC-MOSFET due to the progress of conduction deterioration. .. Further, by suppressing the bias of the recirculation current to some of the switching elements 301, a large amount of recirculation current can be efficiently flowed by using the body diode of the switching element 301, so that the area is smaller. The freewheeling diode 302 having a small rated current can be used, and the area of the semiconductor device 300 can be reduced.
 さらに、実施の形態1の変形例の半導体装置300では、使用するスイッチング素子301や還流ダイオード302の数が増えた場合においても、実施の形態1よりも半導体装置300の縦横比の形状自由度を高くすることができる。 Further, in the semiconductor device 300 of the modified example of the first embodiment, even when the number of switching elements 301 and freewheeling diodes 302 used increases, the degree of freedom of shape of the aspect ratio of the semiconductor device 300 is higher than that of the first embodiment. Can be high.
 実施の形態2.
 図11と図12を用いて、実施の形態2の半導体装置400について説明する。図11は、実施の形態2の半導体装置400におけるスイッチング素子401(401aおよび401b)や還流ダイオード402(402aおよび402b)などの実装状態を模式的に示す平面図である。また、図12は、図11の破線A3-A4における断面模式図である。また、実施の形態2と実施の形態1との主な差異は、中間端子410が少なくともスイッチング素子401aの配置領域において、平面視において、負極端子404と重なっていることである。すなわち、半導体装置400では、第2の直流端子としての負極端子404は、平面視において、中間端子410における第1の複数のスイッチング素子としてのスイッチング素子401a上に配設される部分、および中間端子404における第1の環流ダイオードとしての環流ダイオード402a上に配設される部分と重なっている。
Embodiment 2.
The semiconductor device 400 of the second embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 is a plan view schematically showing a mounting state of the switching elements 401 (401a and 401b) and the freewheeling diodes 402 (402a and 402b) in the semiconductor device 400 of the second embodiment. Further, FIG. 12 is a schematic cross-sectional view taken along the broken line A3-A4 of FIG. Further, the main difference between the second embodiment and the first embodiment is that the intermediate terminal 410 overlaps the negative electrode terminal 404 in a plan view at least in the arrangement region of the switching element 401a. That is, in the semiconductor device 400, the negative electrode terminal 404 as the second DC terminal is a portion arranged on the switching element 401a as the first plurality of switching elements in the intermediate terminal 410 and the intermediate terminal in a plan view. It overlaps the portion disposed on the recirculation diode 402a as the first recirculation diode in 404.
 負極端子404と中間端子410に流れる電流は、負極端子404と中間端子410各々に流れる電流が作る磁界が互いに打ち消し合うような方向に流れる。そのため、中間端子410と負極端子404が重なっている領域において、インダクタンスを低減することができる。これにより、半導体装置400のインダクタンスを低減でき、還流電流を低減することができる。 The current flowing through the negative electrode terminal 404 and the intermediate terminal 410 flows in a direction in which the magnetic fields created by the currents flowing through the negative electrode terminal 404 and the intermediate terminal 410 cancel each other out. Therefore, the inductance can be reduced in the region where the intermediate terminal 410 and the negative electrode terminal 404 overlap. As a result, the inductance of the semiconductor device 400 can be reduced, and the return current can be reduced.
 さらに、スイッチング素子401の配置領域における負極端子404と中間端子410のインダクタンスが低減できることにより、上アーム400aでは、正極端子403と第1のスイッチング素子である4つのスイッチング素子401aまでのインダクタンスを低減できるとともに、正極端子403から4つのスイッチング素子401a各々までのインダクタンス間の差を小さくすることができる。また、下アーム400bでも同様に、負極端子404の突出部413と第2のスイッチング素子である4つのスイッチング素子401bまでのインダクタンスを低減できるとともに、突出部413から4つのスイッチング素子401b各々までのインダクタンス間の差を小さくすることができる。 Further, since the inductance of the negative electrode terminal 404 and the intermediate terminal 410 in the arrangement region of the switching element 401 can be reduced, the inductance of the positive electrode terminal 403 and the four switching elements 401a which are the first switching elements can be reduced in the upper arm 400a. At the same time, the difference between the inductances from the positive electrode terminal 403 to each of the four switching elements 401a can be reduced. Similarly, in the lower arm 400b, the inductance of the protruding portion 413 of the negative electrode terminal 404 and the four switching elements 401b, which are the second switching elements, can be reduced, and the inductance from the protruding portion 413 to each of the four switching elements 401b can be reduced. The difference between them can be reduced.
 また、実施の形態1の半導体装置100に示すように、中間端子410および負極端子404の長さや幅、さらにスリットを設けるなどの構造と組み合わせることで、正極端子403から第1の4つのスイッチング素子各々までのインダクタンス間の差をさらに小さくし、突出部413から第2の4つのスイッチング素子401b各々までのインダクタンス間の差をさらに小さくすることが可能である。 Further, as shown in the semiconductor device 100 of the first embodiment, by combining the length and width of the intermediate terminal 410 and the negative electrode terminal 404 with a structure such as providing a slit, the four switching elements from the positive electrode terminal 403 to the first four elements can be combined. It is possible to further reduce the difference between the inductances up to each, and further reduce the difference between the inductances from the protrusion 413 to each of the second four switching elements 401b.
 さらに、実施の形態1と同様に、上アーム400aの金属部材408aに設けられる4つのスイッチング素子401aは、下アーム400bの金属部材408bに設けられる4つのスイッチング素子401bに対して互いに対向する位置に配設する。さらに、上アーム400aの金属部材408aに設けられる2つの還流ダイオード402aは、下アーム400bの金属部材408bに設けられる2つの還流ダイオード402bに対して互いに対向するように配設する。これにより、上アーム400aと下アーム400bのインダクタンス間の差を小さくすることができる。また、上アーム400aの4つのスイッチング素子401aと2つの還流ダイオード402aが、下アーム400bの4つのスイッチング素子401bと4つの還流ダイオード402bと対称となるように配設するとなおよい。また、実施の形態1と同様に、上アーム400aの4つのスイッチング素子401aと2つの還流ダイオード402aが、下アーム400bの4つのスイッチング素子401aと2つの還流ダイオード402bと鏡面対称となるように配設するとなおよい。 Further, as in the first embodiment, the four switching elements 401a provided on the metal member 408a of the upper arm 400a are located at positions facing each other with respect to the four switching elements 401b provided on the metal member 408b of the lower arm 400b. Arrange. Further, the two freewheeling diodes 402a provided on the metal member 408a of the upper arm 400a are arranged so as to face each other with respect to the two freewheeling diodes 402b provided on the metal member 408b of the lower arm 400b. Thereby, the difference between the inductances of the upper arm 400a and the lower arm 400b can be reduced. Further, it is more preferable that the four switching elements 401a and the two freewheeling diodes 402a of the upper arm 400a are arranged symmetrically with the four switching elements 401b and the four freewheeling diodes 402b of the lower arm 400b. Further, as in the first embodiment, the four switching elements 401a and the two freewheeling diodes 402a of the upper arm 400a are arranged so as to be mirror-symmetrical with the four switching elements 401a and the two freewheeling diodes 402b of the lower arm 400b. It is even better to set it up.
 これにより、一部のスイッチング素子401のボディダイオードに還流電流が偏って電流量が増大することを抑制することができ、通電劣化の進行によるSiC-MOSFETのオン抵抗増大を抑制することができる。また、一部のスイッチング素子401への還流電流の偏りを抑制することで、多くの還流電流をスイッチング素子401のボディダイオードを用いて効率的に流すことが可能になるため、より小面積で、定格電流の小さい還流ダイオード402を用いることが可能となり、半導体装置400を小面積化することができる。 As a result, it is possible to suppress an increase in the amount of current due to a biased return current to the body diode of some switching elements 401, and it is possible to suppress an increase in the on-resistance of the SiC-MOSFET due to the progress of conduction deterioration. Further, by suppressing the bias of the recirculation current to some of the switching elements 401, a large amount of recirculation current can be efficiently flowed by using the body diode of the switching element 401, so that the area is smaller. The freewheeling diode 402 having a small rated current can be used, and the area of the semiconductor device 400 can be reduced.
 さらに、平面視において、少なくとも4つのスイッチング素子401の配置領域において、負極端子404が中間端子410と重なることでインダクタンスを低減し、スイッチング素子401がオンオフする際に発生するサージ電圧を低減できることから、より低耐圧なスイッチング素子401を使用することができる。 Further, in a plan view, the inductance can be reduced by overlapping the negative electrode terminal 404 with the intermediate terminal 410 in the arrangement region of at least four switching elements 401, and the surge voltage generated when the switching element 401 is turned on and off can be reduced. A switching element 401 having a lower withstand voltage can be used.
 実施の形態3.
 図13に実施の形態3におけるスイッチング素子の配置を模式的に示した平面図を示す。実施の形態1、2で述べたスイッチング素子の一部の領域にスイッチング素子のパターンを形成せず、スイッチング素子のパターンを形成しなかった当該領域に還流ダイオードを形成する。このようにして、スイッチング素子に還流ダイオードを内蔵することが可能である。しかし、スイッチング素子に還流ダイオードを内蔵すると、スイッチング素子の平面サイズが大きくなる。
Embodiment 3.
FIG. 13 shows a plan view schematically showing the arrangement of the switching elements in the third embodiment. The pattern of the switching element is not formed in a part of the region of the switching element described in the first and second embodiments, and the freewheeling diode is formed in the region where the pattern of the switching element is not formed. In this way, it is possible to incorporate a freewheeling diode in the switching element. However, if a freewheeling diode is built in the switching element, the plane size of the switching element becomes large.
 スイッチング素子用の基板として化合物半導体基板を用いる場合、当該基板の欠陥によりスイッチング素子の歩留まりが悪化することが問題となる。そして、化合物半導体基板を用いたスイッチング素子のサイズが大きくなると、結果的に歩留まりが悪化する可能性が高くなる。そこで、本実施の形態における半導体装置では、一部のスイッチング素子に還流ダイオードを内蔵したダイオード内蔵スイッチング素子501a、501bを用い、残りのスイッチング素子に実施の形態1、2で用いたものと同様のスイッチング素子401a、401b(つまりスイッチング素子101a、101b、201a、201b、301a、301bと同じ構成のスイッチング素子)を用いることが考えられる。 When a compound semiconductor substrate is used as a substrate for a switching element, there is a problem that the yield of the switching element deteriorates due to a defect in the substrate. As the size of the switching element using the compound semiconductor substrate increases, the yield is likely to deteriorate as a result. Therefore, in the semiconductor device of the present embodiment, the switching elements 501a and 501b with built-in diodes having a freewheeling diode built in some of the switching elements are used, and the remaining switching elements are the same as those used in the first and second embodiments. It is conceivable to use switching elements 401a, 401b (that is, switching elements having the same configuration as the switching elements 101a, 101b, 201a, 201b, 301a, 301b).
 図13では、絶縁部材507上に設けられた第1の金属部材である金属部材508a上に、接合部材を用いてスイッチング素子401aとダイオード内蔵スイッチング素子501aとが固定されている。金属部材508a上において、2つのスイッチング素子401aと2つのダイオード内蔵スイッチング素子501aとは整列するように配置されている。また、絶縁部材507上に設けられた第2の金属部材である金属部材508b上に、接合部材を用いてスイッチング素子401bとダイオード内蔵スイッチング素子501bとが固定されている。金属部材508b上において、2つのスイッチング素子401bと2つのダイオード内蔵スイッチング素子501bとは整列するように配置されている。 In FIG. 13, the switching element 401a and the diode built-in switching element 501a are fixed on the metal member 508a, which is the first metal member provided on the insulating member 507, by using a joining member. On the metal member 508a, the two switching elements 401a and the two diode-embedded switching elements 501a are arranged so as to be aligned with each other. Further, the switching element 401b and the diode built-in switching element 501b are fixed on the metal member 508b, which is the second metal member provided on the insulating member 507, by using a joining member. On the metal member 508b, the two switching elements 401b and the two diode-embedded switching elements 501b are arranged so as to be aligned with each other.
 図13および図14に示すように、ダイオード内蔵スイッチング素子501aは、素子の中央部に環流ダイオード部501abが配置され、素子の外周部に当該環流ダイオード501abを囲むようにスイッチング素子部501aaが配置されている。ダイオード内蔵スイッチング501bは上記ダイオード内蔵スイッチング素子501aと同様の構成を備える。 As shown in FIGS. 13 and 14, in the switching element 501a with a built-in diode, the recirculation diode portion 501ab is arranged in the central portion of the element, and the switching element portion 501aa is arranged so as to surround the recirculation diode 501ab in the outer peripheral portion of the element. ing. The diode built-in switching 501b has the same configuration as the diode built-in switching element 501a.
 スイッチング素子401aに対向する位置にスイッチング素子401bが配置されている。ダイオード内蔵スイッチング素子501aに対向する位置に、ダイオード内蔵スイッチング素子501bが配置されている。図13および図14に図示していない負極端子104、突出部113および交流端子105などの他の構成は、たとえば図1~図3に示した半導体装置100における構成と同様とすることができる。つまり、金属部材508aを含む上アームでは、中間端子110(図3参照)が、2つのスイッチング素子402aおよび2つのダイオード内蔵スイッチング素子501aと接続されている。下アームでは、第2の直流端子である負極端子104(図3参照)が、図3に示す半導体装置100と同様に2つのスイッチング素子402bおよび2つのダイオード内蔵スイッチング素子501bと接合部材を用いて接続される。また、交流端子105(図3参照)が、図3に示す半導体装置100と同様に金属部材508bに接続部材を用いて接続される。さらに、中間端子110(図3参照)が下アームの金属部材508bと接合部材を用いて接続されることで、上アームと下アームが接続される。 The switching element 401b is arranged at a position facing the switching element 401a. The diode built-in switching element 501b is arranged at a position facing the diode built-in switching element 501a. Other configurations such as the negative electrode terminal 104, the protruding portion 113, and the AC terminal 105 (not shown in FIGS. 13 and 14) can be the same as the configurations in the semiconductor device 100 shown in FIGS. 1 to 3, for example. That is, in the upper arm including the metal member 508a, the intermediate terminal 110 (see FIG. 3) is connected to the two switching elements 402a and the two diode built-in switching elements 501a. In the lower arm, the negative electrode terminal 104 (see FIG. 3), which is the second DC terminal, uses two switching elements 402b and two diode-embedded switching elements 501b and a joining member as in the semiconductor device 100 shown in FIG. Be connected. Further, the AC terminal 105 (see FIG. 3) is connected to the metal member 508b by using a connecting member in the same manner as the semiconductor device 100 shown in FIG. Further, the intermediate terminal 110 (see FIG. 3) is connected to the metal member 508b of the lower arm by using a joining member, so that the upper arm and the lower arm are connected.
 この場合でも、ダイオード内蔵スイッチング素子501aはダイオード内蔵スイッチング素子501bと対向するように配し、金属部材508aに接続された正極端子103(図3参照)からダイオード内蔵スイッチング素子501aまでの導電経路のインダクタンスを、正極端子103(図3参照)からスイッチング素子401aまでの導通経路のインダクタンスよりも小さくなるように配置する。また、金属部材508bを含む下アームにおいても同様に、突出部113(図3参照)からダイオード内蔵スイッチング素子501bまでの導電経路のインダクタンスを、突出部113からスイッチング素子401bまでの導通経路のインダクタンスよりも小さくするように配置する。 Even in this case, the diode built-in switching element 501a is arranged so as to face the diode built-in switching element 501b, and the inductance of the conductive path from the positive electrode terminal 103 (see FIG. 3) connected to the metal member 508a to the diode built-in switching element 501a. Is arranged so as to be smaller than the inductance of the conduction path from the positive electrode terminal 103 (see FIG. 3) to the switching element 401a. Similarly, in the lower arm including the metal member 508b, the inductance of the conductive path from the protruding portion 113 (see FIG. 3) to the diode built-in switching element 501b is calculated from the inductance of the conductive path from the protruding portion 113 to the switching element 401b. Arrange so that it is also small.
 このように配置することで、実施の形態1、2同様に、上アームと下アームのそれぞれにおいて、正極端子103および負極端子104の突出部113からダイオード内蔵スイッチング素子501a、501bの環流ダイオード部501abまでのインダクタンスが、正極端子103および負極端子104の突出部113からダイオード内蔵スイッチング素子501のスイッチング素子部501aaまたはスイッチング素子401までのインダクタンスと同じかそれより小さくなるように実装する。この結果、ダイオード内蔵スイッチング素子501a、501bのスイッチング素子部501aaおよびスイッチング素子401のボディダイオードよりも優先的にダイオード内蔵スイッチング素子501a、501bの環流ダイオード501abへ還流電流を流すことができる。これにより、一部の、ダイオード内蔵スイッチング素子501a、501bのスイッチング素子部501aaまたはスイッチング素子401のボディダイオードに還流電流が偏って電流量が増大することを抑制することができる。 By arranging in this way, similarly to the first and second embodiments, in the upper arm and the lower arm, the recirculation diode portions 501ab of the diode built-in switching elements 501a and 501b from the protruding portions 113 of the positive electrode terminal 103 and the negative electrode terminal 104, respectively. The inductance to the above is the same as or smaller than the inductance from the protruding portion 113 of the positive electrode terminal 103 and the negative electrode terminal 104 to the switching element portion 501aa or the switching element 401 of the diode built-in switching element 501. As a result, the recirculation current can flow to the recirculation diode 501ab of the diode built-in switching elements 501a and 501b with priority over the switching element section 501aa of the diode built-in switching elements 501a and 501b and the body diode of the switching element 401. As a result, it is possible to prevent the return current from being biased toward the body diode of the switching element portion 501aa of the switching element 501a and 501b with built-in diode or the body diode of the switching element 401 and increasing the amount of current.
 但し、ダイオード内蔵スイッチング素子501a、501bに内蔵する還流ダイオード部501abの特性は、還流ダイオード電流が流れ始める時の電圧をVfr、各スイッチング素子のボディダイオードに電流が流れ始める時の電圧をVdとすると、Vfr<Vd(電圧Vfrは電圧Vdより小さい)という条件を満足することが好ましい。 However, the characteristics of the freewheeling diode section 501ab built into the switching elements 501a and 501b with built-in diodes are that the voltage when the freewheeling diode current starts to flow is Vfr and the voltage when the current starts to flow to the body diode of each switching element is Vd. , Vfr <Vd (voltage Vfr is smaller than voltage Vd).
 上述した実施の形態3における半導体装置の特徴的な構成を要約すれば、半導体装置は、第1の金属部材としての金属部材508aと、第1の直流端子としての正極端子103(図3参照)と、第1の複数のスイッチング素子401aと、第1のダイオード内蔵スイッチング素子501aと、中間端子110(図3参照)と、第2の金属部材としての金属部材508bと、第3の複数のスイッチング素子401bと、第2のダイオード内蔵スイッチング素子501bと、第2の直流端子としての負極端子104(図3参照)とを備える。正極端子103は、金属部材508aに接続される。第1の複数のスイッチング素子401aは、金属部材508aに接合部材を介して接続され、ワイドバンドギャップ半導体から形成される。第1のダイオード内蔵スイッチング素子501aは、第2のスイッチング素子としてのスイッチング素子部501aaと第1の環流ダイオードとしての環流ダイオード部501abとを有する。スイッチング素子部501aaは、ワイドバンドギャップ半導体から形成される。環流ダイオード部501abは、スイッチング素子部501aaに逆並列に接続される。第1のダイオード内蔵スイッチング素子501aは、金属部材508aに接合部材を介して接続される。中間端子110は、第1の複数のスイッチング素子401aおよび第1のダイオード内蔵スイッチング素子501aに接合部材を介して接続される。第2の金属部材としての金属部材508bは、中間端子110が接続され、金属部材508aと互いに隣接して配設される。第3の複数のスイッチング素子401bは、金属部材508bに接合部材を介して接続され、ワイドバンドギャップ半導体から形成される。第2のダイオード内蔵スイッチング素子501bは、第4のスイッチング素子としてのスイッチング素子部と、第2の環流ダイオードとしての環流ダイオード部とを有する。第2のダイオード内蔵スイッチング素子501bにおけるスイッチング素子は、ワイドバンドギャップ半導体から形成される。第2のダイオード内蔵スイッチング素子501bにおいて、環流ダイオード部は、スイッチング素子部に逆並列に接続される。第2のダイオード内蔵スイッチング素子501bは、金属部材508bに接合部材を介して接続される。 Summarizing the characteristic configurations of the semiconductor device according to the third embodiment described above, the semiconductor device includes a metal member 508a as a first metal member and a positive electrode terminal 103 as a first DC terminal (see FIG. 3). , The first plurality of switching elements 401a, the first diode built-in switching element 501a, the intermediate terminal 110 (see FIG. 3), the metal member 508b as the second metal member, and the third plurality of switching. It includes an element 401b, a second diode-embedded switching element 501b, and a negative electrode terminal 104 (see FIG. 3) as a second DC terminal. The positive electrode terminal 103 is connected to the metal member 508a. The first plurality of switching elements 401a are connected to the metal member 508a via a bonding member, and are formed of a wide bandgap semiconductor. The first diode built-in switching element 501a has a switching element unit 501aa as a second switching element and a recirculation diode unit 501ab as a first recirculation diode. The switching element portion 501aa is formed of a wide bandgap semiconductor. The recirculation diode section 501ab is connected to the switching element section 501aa in antiparallel. The first diode-embedded switching element 501a is connected to the metal member 508a via a bonding member. The intermediate terminal 110 is connected to the first plurality of switching elements 401a and the first diode built-in switching element 501a via a bonding member. An intermediate terminal 110 is connected to the metal member 508b as the second metal member, and the metal member 508b is arranged adjacent to the metal member 508a. The third plurality of switching elements 401b are connected to the metal member 508b via a joining member, and are formed of a wide bandgap semiconductor. The second diode built-in switching element 501b has a switching element portion as a fourth switching element and a recirculation diode portion as a second recirculation diode. The switching element in the second diode built-in switching element 501b is formed of a wide bandgap semiconductor. In the second diode built-in switching element 501b, the recirculation diode portion is connected to the switching element portion in antiparallel. The second diode-embedded switching element 501b is connected to the metal member 508b via a bonding member.
 負極端子104は、第3の複数のスイッチング素子401bおよび第2のダイオード内蔵スイッチング素子501bに接合部材を介して接続される。第3の複数のスイッチング素子401bにおいて金属部材508bと接合する面に垂直な方向から見た平面視において、負極端子104は金属部材508bから突出した突出部113(図3参照)を有する。正極端子103から第1のダイオード内蔵スイッチング素子501aまでの導通経路のインダクタンスは、正極端子103からすべての第1の複数のスイッチング素子401bまでの導通経路のインダクタンスよりも小さい。突出部113から第2のダイオード内蔵スイッチング素子501bまでの導通経路のインダクタンスは、突出部113からすべての第3の複数のスイッチング素子401bまでの導通経路のインダクタンスよりも小さい。第1の複数のスイッチング素子401aおよび第3のスイッチング素子401bは、ワイドバンドギャップ半導体である炭化珪素から形成される。 The negative electrode terminal 104 is connected to a plurality of third switching elements 401b and a second diode built-in switching element 501b via a bonding member. The negative electrode terminal 104 has a protruding portion 113 (see FIG. 3) protruding from the metal member 508b in a plan view viewed from a direction perpendicular to the surface of the third plurality of switching elements 401b to be joined to the metal member 508b. The inductance of the conduction path from the positive electrode terminal 103 to the first diode built-in switching element 501a is smaller than the inductance of the conduction path from the positive electrode terminal 103 to all the first plurality of switching elements 401b. The inductance of the conduction path from the protrusion 113 to the second diode built-in switching element 501b is smaller than the inductance of the conduction path from the protrusion 113 to all the third plurality of switching elements 401b. The first plurality of switching elements 401a and the third switching element 401b are formed of silicon carbide, which is a wide bandgap semiconductor.
 実施の形態4.
 実施の形態4は、上述した実施の形態1、実施の形態1の変形例、実施の形態2および実施の形態3に係る半導体装置を電力変換装置に適用したものである。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態4として、三相のインバータに本開示を適用した場合について説明する。
Embodiment 4.
In the fourth embodiment, the semiconductor devices according to the first embodiment, the modified examples of the first embodiment, the second embodiment and the third embodiment described above are applied to the power conversion device. Although the present disclosure is not limited to a specific power conversion device, the case where the present disclosure is applied to a three-phase inverter will be described below as a fourth embodiment.
 図15は、実施の形態4に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 15 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the fourth embodiment is applied.
 図15に示す電力変換システムは、電源500、電力変換装置600、負荷700から構成される。電源500は、直流電源であり、電力変換装置600に直流電力を供給する。電源500は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源500を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 15 includes a power supply 500, a power conversion device 600, and a load 700. The power supply 500 is a DC power supply, and supplies DC power to the power converter 600. The power supply 500 can be configured with various things, for example, it can be configured with a DC system, a solar cell, a storage battery, or it can be configured with a rectifier circuit or an AC / DC converter connected to an AC system. May be good. Further, the power supply 500 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.
 電力変換装置600は、電源500と負荷700の間に接続された三相のインバータであり、電源500から供給された直流電力を交流電力に変換し、負荷700に交流電力を供給する。電力変換装置600は、図15に示すように、直流電力を交流電力に変換して出力する主変換回路601と、主変換回路601を制御する制御信号を主変換回路601に出力する制御回路603とを備えている。 The power conversion device 600 is a three-phase inverter connected between the power supply 500 and the load 700, converts the DC power supplied from the power supply 500 into AC power, and supplies the AC power to the load 700. As shown in FIG. 15, the power conversion device 600 has a main conversion circuit 601 that converts DC power into AC power and outputs it, and a control circuit 603 that outputs a control signal for controlling the main conversion circuit 601 to the main conversion circuit 601. And have.
 負荷700は、電力変換装置600から供給された交流電力によって駆動される三相の電動機である。なお、負荷700は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 700 is a three-phase electric motor driven by AC power supplied from the power converter 600. The load 700 is not limited to a specific application, and is an electric motor mounted on various electric devices. For example, the load 700 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
 以下、電力変換装置600の詳細を説明する。主変換回路601は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源500から供給される直流電力を交流電力に変換し、負荷700に供給する。主変換回路601の具体的な回路構成は種々のものがあるが、実施の形態4に係る主変換回路601は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路601の各スイッチング素子と各還流ダイオードの少なくともいずれかは、上述した実施の形態1、実施の形態1の変形例および実施の形態2のいずれかの半導体装置に相当する半導体装置602が有するスイッチング素子又は還流ダイオードである。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路601の3つの出力端子は、負荷700に接続される。 The details of the power conversion device 600 will be described below. The main conversion circuit 601 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, the DC power supplied from the power supply 500 is converted into AC power and supplied to the load 700. Although there are various specific circuit configurations of the main conversion circuit 601, the main conversion circuit 601 according to the fourth embodiment is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes. At least one of each switching element and each freewheeling diode of the main conversion circuit 601 is a semiconductor device 602 corresponding to any of the semiconductor devices of the above-described first embodiment, the modified example of the first embodiment and the second embodiment. It is a switching element or a freewheeling diode. The six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 601 are connected to the load 700.
 また、主変換回路601は、各スイッチング素子を駆動する駆動回路(図示なし)を備えているが、駆動回路は半導体装置602に内蔵されていてもよいし、半導体装置602とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路601のスイッチング素子を駆動する駆動信号を生成し、主変換回路601のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路603からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 Further, although the main conversion circuit 601 includes a drive circuit (not shown) for driving each switching element, the drive circuit may be built in the semiconductor device 602, or a drive circuit may be provided separately from the semiconductor device 602. It may be provided. The drive circuit generates a drive signal for driving the switching element of the main conversion circuit 601 and supplies the drive signal to the control electrode of the switching element of the main conversion circuit 601. Specifically, according to the control signal from the control circuit 603 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element. When the switching element is kept on, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept off, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
 制御回路603は、負荷700に所望の電力が供給されるよう主変換回路601のスイッチング素子を制御する。具体的には、負荷700に供給すべき電力に基づいて主変換回路601の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路601を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路601が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。 The control circuit 603 controls the switching element of the main conversion circuit 601 so that the desired power is supplied to the load 700. Specifically, the time (on time) for each switching element of the main conversion circuit 601 to be in the on state is calculated based on the power to be supplied to the load 700. For example, the main conversion circuit 601 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit provided in the main conversion circuit 601 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. Is output. The drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
 実施の形態4に係る電力変換装置では、主変換回路601を構成する半導体装置602として実施の形態1、実施の形態1の変形例、実施の形態2および実施の形態3に係る半導体装置を適用するため、信頼性向上を実現することができる。 In the power conversion device according to the fourth embodiment, the semiconductor device according to the first embodiment, the modified example of the first embodiment, the second embodiment and the third embodiment is applied as the semiconductor device 602 constituting the main conversion circuit 601. Therefore, it is possible to improve the reliability.
 実施の形態4では、2レベルの三相インバータに本開示を適用する例を説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。実施の形態4では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本開示を適用することも可能である。 In the fourth embodiment, an example of applying the present disclosure to a two-level three-phase inverter has been described, but the present disclosure is not limited to this, and can be applied to various power conversion devices. In the fourth embodiment, the two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to the single-phase load, the present disclosure is provided to the single-phase inverter. You may apply it. Further, when supplying electric power to a DC load or the like, the present disclosure can be applied to a DC / DC converter or an AC / DC converter.
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Further, the power conversion device to which the present disclosure is applied is not limited to the case where the above-mentioned load is an electric motor, for example, a power supply device for a discharge machine, a laser machine, an induction heating cooker, or a non-contact power supply system. It can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.
 101a,101b,201a,201b,301a,301b,401a,401b スイッチング素子、102a,102b,202a,202b,302a,302b,402a,402b 還流ダイオード、103,203,303,403 正極端子、104,204,304,404 負極端子、105,205,305,405 交流端子、106a,106b ゲート端子、107,507 絶縁部材、108a,108b,208a,208b,308a,308b,408a,408b,508a,508b 金属部材、109,209,309,409 接合部材、110,210,310,410 中間端子、111,411 ヒートスプレッダー、112 モールド樹脂、113,213,313,413 突出部、114a,114b,214a,214b 基幹部、115a,115b,215a,215b 延伸部、116a,116b,216a,216b 接合部、100,200,300,400 半導体装置、100a,200a,300a,400a 上アーム、100b,200b,300b,400b 下アーム、500 電源、501a,501b ダイオード内蔵スイッチング素子、501aa スイッチング素子部、501ab 環流ダイオード部、600 電力変換装置、601 主変換回路、602 半導体装置、603 制御回路、700 負荷。 101a, 101b, 201a, 201b, 301a, 301b, 401a, 401b switching element, 102a, 102b, 202a, 202b, 302a, 302b, 402a, 402b freewheeling diode, 103, 203, 303, 403 positive terminal, 104, 204, 304,404 Negative terminal, 105,205,305,405 AC terminal, 106a, 106b Gate terminal, 107,507 Insulation member, 108a, 108b, 208a, 208b, 308a, 308b, 408a, 408b, 508a, 508b Metal member, 109,209,309,409 Joining member, 110,210,310,410 Intermediate terminal, 111,411 Heat spreader, 112 Mold resin, 113,213,313,413 Protruding part, 114a, 114b, 214a, 214b Core part, 115a, 115b, 215a, 215b Stretched part, 116a, 116b, 216a, 216b Joint part, 100, 200, 300, 400 Semiconductor device, 100a, 200a, 300a, 400a Upper arm, 100b, 200b, 300b, 400b Lower arm, 500 power supply, 501a, 501b diode built-in switching element, 501aa switching element part, 501ab recirculation diode part, 600 power conversion device, 601 main conversion circuit, 602 semiconductor device, 603 control circuit, 700 load.

Claims (17)

  1.  第1の金属部材と、
     前記第1の金属部材に接続される第1の直流端子と、
     前記第1の金属部材に接合部材を介して接続され、ワイドバンドギャップ半導体から形成される第1の複数のスイッチング素子と、
     前記第1の金属部材に接合部材を介して接続され、前記第1の複数のスイッチング素子に逆並列に接続される第1の還流ダイオードと、
     前記第1の複数のスイッチング素子および前記第1の還流ダイオードに接合部材を介して接続される中間端子と、
     前記中間端子が接続され、前記第1の金属部材と互いに隣接して配設される第2の金属部材と、
     前記第2の金属部材に接合部材を介して接続され、ワイドバンドギャップ半導体から形成される第2の複数のスイッチング素子と、
     前記第2の金属部材に接合部材を介して接続され、前記第2の複数のスイッチング素子と逆並列に接続される第2の還流ダイオードと、
     前記第2の複数のスイッチング素子および前記第2の還流ダイオードに接合部材を介して接続され、前記第2の複数のスイッチング素子において前記第2の金属部材と接合する面に垂直な方向から見た平面視において前記第2の金属部材から突出した突出部を有する第2の直流端子とを備え、
     前記第1の直流端子から前記第1の還流ダイオードまでの導通経路のインダクタンスは、前記第1の直流端子から前記第1の複数のスイッチング素子までの導通経路のインダクタンスより小さく、
     前記突出部から前記第2の還流ダイオードまでの導通経路のインダクタンスは、前記突出部から前記第2の複数のスイッチング素子までの導通経路のインダクタンスよりも小さい半導体装置。
    The first metal member and
    A first DC terminal connected to the first metal member and
    A first plurality of switching elements connected to the first metal member via a joining member and formed of a wide bandgap semiconductor, and a plurality of switching elements.
    A first freewheeling diode connected to the first metal member via a bonding member and connected in antiparallel to the first plurality of switching elements.
    An intermediate terminal connected to the first plurality of switching elements and the first freewheeling diode via a bonding member,
    A second metal member to which the intermediate terminal is connected and arranged adjacent to the first metal member,
    A second plurality of switching elements connected to the second metal member via a joining member and formed of a wide bandgap semiconductor, and a plurality of switching elements.
    A second freewheeling diode connected to the second metal member via a joining member and connected in antiparallel to the second plurality of switching elements.
    Seen from a direction perpendicular to the surface of the second plurality of switching elements connected to the second plurality of switching elements and the second freewheeling diode via a bonding member and bonded to the second metal member in the second plurality of switching elements. It is provided with a second DC terminal having a protruding portion protruding from the second metal member in a plan view.
    The inductance of the conduction path from the first DC terminal to the first freewheeling diode is smaller than the inductance of the conduction path from the first DC terminal to the first plurality of switching elements.
    A semiconductor device in which the inductance of the conduction path from the protrusion to the second freewheeling diode is smaller than the inductance of the conduction path from the protrusion to the second plurality of switching elements.
  2.  前記第1の直流端子から前記第1の還流ダイオードまでの導通経路のインダクタンスは、前記第1の直流端子からすべての前記第1の複数のスイッチング素子までの導通経路のインダクタンスより小さく、
     前記突出部から前記第2の還流ダイオードまでの導通経路のインダクタンスは、前記突出部からすべての前記第2の複数のスイッチング素子までの導通経路のインダクタンスよりも小さい請求項1に記載の半導体装置。
    The inductance of the conduction path from the first DC terminal to the first freewheeling diode is smaller than the inductance of the conduction path from the first DC terminal to all the first plurality of switching elements.
    The semiconductor device according to claim 1, wherein the inductance of the conduction path from the protrusion to the second freewheeling diode is smaller than the inductance of the conduction path from the protrusion to all the second plurality of switching elements.
  3.  前記第1の直流端子は、前記第1の金属部材の端部に配設され、前記平面視において第1の方向へ突出し、
     前記突出部は、前記平面視において、前記第2の金属部材から前記第1の方向へ突出しており、
     前記第2の金属部材の端部に設けられ、前記平面視において、前記第1の方向と反対の第2の方向に突出する交流端子をさらに備える請求項1または請求項2に記載の半導体装置。
    The first DC terminal is arranged at the end of the first metal member and projects in the first direction in the plan view.
    The protruding portion protrudes from the second metal member in the first direction in the plan view.
    The semiconductor device according to claim 1 or 2, further comprising an AC terminal provided at an end of the second metal member and projecting in a second direction opposite to the first direction in the plan view. ..
  4.  前記第1の直流端子から前記第1の還流ダイオードまでの導通経路の距離が、前記第1の直流端子から前記第1のスイッチング素子までの導通経路の距離より短く、かつ前記突出部から前記第2の還流ダイオードまでの導通経路の距離が、前記突出部から前記第2のスイッチング素子までの導通経路の距離より短い請求項1から請求項3のいずれか1項に記載の半導体装置。 The distance of the conduction path from the first DC terminal to the first freewheeling diode is shorter than the distance of the conduction path from the first DC terminal to the first switching element, and the distance from the protrusion to the first switching element is shorter. The semiconductor device according to any one of claims 1 to 3, wherein the distance of the conduction path to the freewheeling diode of 2 is shorter than the distance of the conduction path from the protruding portion to the second switching element.
  5.  前記第1の直流端子、前記突出部、前記第2の直流端子、および前記中間端子は板状の金属である請求項1から請求項4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the first DC terminal, the protruding portion, the second DC terminal, and the intermediate terminal are plate-shaped metals.
  6.  前記第1の金属部材に設けられる前記第1の複数のスイッチング素子は、前記第2の金属部材に設けられる前記第2の複数のスイッチング素子に対して対向する位置にあり、
     前記第1の金属部材に設けられる前記第1の還流ダイオードは、前記第2の金属部材に設けられる前記第2の還流ダイオードに対して対向する位置にある請求項1から請求項5のいずれか1項に記載の半導体装置。
    The first plurality of switching elements provided on the first metal member are located at positions facing the second plurality of switching elements provided on the second metal member.
    The first freewheeling diode provided in the first metal member is any one of claims 1 to 5 located at a position facing the second freewheeling diode provided in the second metal member. The semiconductor device according to item 1.
  7.  前記第1の金属部材に1列に設けられる前記第1の複数のスイッチング素子は、前記第2の金属部材に1列に設けられる前記第2の複数のスイッチング素子に対して対向する位置にあり、
     前記第1の金属部材に前記第1の複数のスイッチング素子と同列に設けられる前記第1の還流ダイオードは、前記第2の金属部材に前記第2の複数のスイッチング素子と同列に設けられる前記第2の還流ダイオードに対して対向する位置にある請求項1から請求項5のいずれか1項に記載の半導体装置。
    The first plurality of switching elements provided in a row on the first metal member are located at positions facing the second plurality of switching elements provided in a row on the second metal member. ,
    The first freewheeling diode provided on the first metal member in the same row as the first plurality of switching elements is provided on the second metal member in the same row as the second plurality of switching elements. The semiconductor device according to any one of claims 1 to 5, which is located at a position facing the freewheeling diode of 2.
  8.  前記第1の直流端子が正極であり、前記第2の直流端子が負極である請求項1から請求項7のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 7, wherein the first DC terminal is a positive electrode and the second DC terminal is a negative electrode.
  9.  前記中間端子は、板状の金属配線であり、
     前記第1の複数のスイッチング素子の配置方向に沿って伸びるように形成され、前記第1の複数のスイッチング素子と接合部材を介して接続される第1の基幹部と、
     前記第1の基幹部から前記第2の金属部材へ向けて伸びる第1の延伸部および第2の延伸部と、
     前記第2の金属部材と接合部材を介して接続される第1の接合部および第2の接合部を有し、
     前記第2の直流端子は、板状の金属配線から形成され、
     前記第2の複数のスイッチング素子の配置方向に沿って伸びるように形成される第2の基幹部と、
     前記第2の基幹部から前記第2の複数のスイッチング素子に向けて伸びる第3の延伸部および第4の延伸部と、
     前記第2の複数のスイッチング素子と接合部材を介して接続される第3の接合部および第4接合部を有し、
     前記第2の延伸部は前記第1の延伸部より前記第1の直流端子までの導通経路が長く、
     前記第2の延伸部の幅は前記第1の延伸部よりも太く、
     前記第4の延伸部は前記第3の延伸部より前記突出部までの導通経路が長く、前記第4の延伸部の幅は前記第3の延伸部よりも太い請求項1から請求項8のいずれか1項に記載の半導体装置。
    The intermediate terminal is a plate-shaped metal wiring.
    A first trunk portion formed so as to extend along the arrangement direction of the first plurality of switching elements and connected to the first plurality of switching elements via a joining member.
    A first stretched portion and a second stretched portion extending from the first trunk portion toward the second metal member,
    It has a first joint and a second joint that are connected to the second metal member via the joint member.
    The second DC terminal is formed of a plate-shaped metal wiring.
    A second backbone formed so as to extend along the arrangement direction of the second plurality of switching elements, and
    A third stretched portion and a fourth stretched portion extending from the second trunk portion toward the second plurality of switching elements,
    It has a third joint and a fourth joint that are connected to the second plurality of switching elements via a joint member.
    The second stretched portion has a long conduction path from the first stretched portion to the first DC terminal.
    The width of the second stretched portion is wider than that of the first stretched portion.
    The fourth stretched portion has a longer conduction path from the third stretched portion to the protruding portion, and the width of the fourth stretched portion is wider than that of the third stretched portion according to claims 1 to 8. The semiconductor device according to any one of the following items.
  10.  前記第2の直流端子は、前記平面視において、前記中間端子における前記第1の複数のスイッチング素子上に配設される部分、および前記中間端子における前記第1の環流ダイオード上に配設される部分と重なっている請求項1から請求項9のいずれか1項に記載の半導体装置。 The second DC terminal is arranged on a portion of the intermediate terminal arranged on the first plurality of switching elements and on the first recirculating diode in the intermediate terminal in the plan view. The semiconductor device according to any one of claims 1 to 9, which overlaps the portion.
  11.  前記第1の還流ダイオードおよび前記第2の還流ダイオードの面積の和は、前記第1の複数のスイッチング素子および前記第2の複数のスイッチング素子の面積の和より小さい請求項1から請求項10のいずれか1項に記載の半導体装置。 The sum of the areas of the first freewheeling diode and the second freewheeling diode is smaller than the sum of the areas of the first plurality of switching elements and the second plurality of switching elements, according to claims 1 to 10. The semiconductor device according to any one of the following items.
  12.  前記第1の還流ダイオードおよび前記第2の還流ダイオードは、ショットキーバリアダイオードである請求項1から請求項11のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 11, wherein the first freewheeling diode and the second freewheeling diode are Schottky barrier diodes.
  13.  前記第1の複数のスイッチング素子および前記第2の複数のスイッチング素子は、ワイドバンドギャップ半導体である炭化珪素から形成される請求項1から請求項12のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 12, wherein the first plurality of switching elements and the second plurality of switching elements are formed of silicon carbide which is a wide bandgap semiconductor.
  14.  前記第1の複数のスイッチング素子、前記第2の複数のスイッチング素子、前記第1の還流ダイオードおよび前記第2の還流ダイオードを被覆する樹脂を備える請求項1から請求項13のいずれか1項に記載の半導体装置。 The invention according to any one of claims 1 to 13, further comprising the first plurality of switching elements, the second plurality of switching elements, the first freewheeling diode, and a resin for coating the second freewheeling diode. The semiconductor device described.
  15.  第1の金属部材と、
     前記第1の金属部材に接続される第1の直流端子と、
     前記第1の金属部材に接合部材を介して接続され、ワイドバンドギャップ半導体から形成される第1の複数のスイッチング素子と、
     ワイドバンドギャップ半導体から形成される第2のスイッチング素子、および前記第2のスイッチング素子に逆並列に接続される第1の還流ダイオードを有し、前記第1の金属部材に接合部材を介して接続された第1のダイオード内蔵スイッチング素子と、
     前記第1の複数のスイッチング素子および前記第1のダイオード内蔵スイッチング素子に接合部材を介して接続される中間端子と、
     前記中間端子が接続され、前記第1の金属部材と互いに隣接して配設される第2の金属部材と、
     前記第2の金属部材に接合部材を介して接続され、ワイドバンドギャップ半導体から形成される第3の複数のスイッチング素子と、
     ワイドバンドギャップ半導体から形成される第4のスイッチング素子、および前記第4のスイッチング素子に逆並列に接続される第2の還流ダイオードを有し、前記第2の金属部材に接合部材を介して接続された第2のダイオード内蔵スイッチング素子と、
     前記第3の複数のスイッチング素子および前記第2のダイオード内蔵スイッチング素子に接合部材を介して接続され、前記第3の複数のスイッチング素子において前記第2の金属部材と接合する面に垂直な方向から見た平面視において前記第2の金属部材から突出した突出部を有する第2の直流端子とを備え、
     前記第1の直流端子から前記第1のダイオード内蔵スイッチング素子までの導通経路のインダクタンスが、前記第1の直流端子からすべての前記第1の複数のスイッチング素子までの導通経路のインダクタンスよりも小さく、前記突出部から前記第2のダイオード内蔵スイッチング素子までの導通経路のインダクタンスが、前記突出部からすべての前記第3の複数のスイッチング素子までの導通経路のインダクタンスよりも小さい半導体装置。
    The first metal member and
    A first DC terminal connected to the first metal member and
    A first plurality of switching elements connected to the first metal member via a joining member and formed of a wide bandgap semiconductor, and a plurality of switching elements.
    It has a second switching element formed of a wide bandgap semiconductor and a first freewheeling diode connected in antiparallel to the second switching element, and is connected to the first metal member via a bonding member. The first switching element with a built-in diode and
    An intermediate terminal connected to the first plurality of switching elements and the first diode built-in switching element via a bonding member, and
    A second metal member to which the intermediate terminal is connected and arranged adjacent to the first metal member,
    A third plurality of switching elements connected to the second metal member via a joining member and formed of a wide bandgap semiconductor, and a plurality of switching elements.
    It has a fourth switching element formed from a wide bandgap semiconductor and a second freewheeling diode connected in antiparallel to the fourth switching element, and is connected to the second metal member via a bonding member. 2nd diode built-in switching element
    Connected to the third plurality of switching elements and the second diode built-in switching element via a bonding member, from the direction perpendicular to the surface of the third plurality of switching elements to be bonded to the second metal member. It is provided with a second DC terminal having a protruding portion protruding from the second metal member in a viewed plan view.
    The inductance of the conduction path from the first DC terminal to the first diode built-in switching element is smaller than the inductance of the conduction path from the first DC terminal to all the first plurality of switching elements. A semiconductor device in which the inductance of the conduction path from the protrusion to the switching element with a built-in diode is smaller than the inductance of the conduction path from the protrusion to all the third plurality of switching elements.
  16.  前記第1の複数のスイッチング素子および前記第3の複数のスイッチング素子は、ワイドバンドギャップ半導体である炭化珪素から形成される請求項15に記載の半導体装置。 The semiconductor device according to claim 15, wherein the first plurality of switching elements and the third plurality of switching elements are formed of silicon carbide, which is a wide bandgap semiconductor.
  17.  請求項1から請求項16のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と、を備えた電力変換装置。 A main conversion circuit having the semiconductor device according to any one of claims 1 to 16 and converting and outputting input electric power, and a control signal for controlling the main conversion circuit. A power conversion device equipped with a control circuit that outputs to.
PCT/JP2020/032178 2019-11-15 2020-08-26 Semiconductor device and power conversion device WO2021095323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021555908A JP7146113B2 (en) 2019-11-15 2020-08-26 Semiconductor equipment and power conversion equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207016 2019-11-15
JP2019-207016 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095323A1 true WO2021095323A1 (en) 2021-05-20

Family

ID=75912622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032178 WO2021095323A1 (en) 2019-11-15 2020-08-26 Semiconductor device and power conversion device

Country Status (2)

Country Link
JP (1) JP7146113B2 (en)
WO (1) WO2021095323A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036016A (en) * 2009-07-31 2011-02-17 Daikin Industries Ltd Power converter
JP2014128066A (en) * 2012-12-25 2014-07-07 Mitsubishi Electric Corp Semiconductor module
JP2015106601A (en) * 2013-11-29 2015-06-08 本田技研工業株式会社 Semiconductor device
JP2017017812A (en) * 2015-06-29 2017-01-19 株式会社日立製作所 Power semiconductor module and inverter circuit
JP2018060928A (en) * 2016-10-06 2018-04-12 株式会社日立製作所 Power module and power conversion apparatus
WO2018084020A1 (en) * 2016-11-01 2018-05-11 三菱電機株式会社 Silicon carbide semiconductor device and power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036016A (en) * 2009-07-31 2011-02-17 Daikin Industries Ltd Power converter
JP2014128066A (en) * 2012-12-25 2014-07-07 Mitsubishi Electric Corp Semiconductor module
JP2015106601A (en) * 2013-11-29 2015-06-08 本田技研工業株式会社 Semiconductor device
JP2017017812A (en) * 2015-06-29 2017-01-19 株式会社日立製作所 Power semiconductor module and inverter circuit
JP2018060928A (en) * 2016-10-06 2018-04-12 株式会社日立製作所 Power module and power conversion apparatus
WO2018084020A1 (en) * 2016-11-01 2018-05-11 三菱電機株式会社 Silicon carbide semiconductor device and power conversion device

Also Published As

Publication number Publication date
JP7146113B2 (en) 2022-10-03
JPWO2021095323A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US11502063B2 (en) Semiconductor device comprising PN junction diode and Schottky barrier diode
US10756057B2 (en) Half-bridge power semiconductor module and method of manufacturing same
US11355477B2 (en) Power semiconductor module and power conversion device
JP7196815B2 (en) Semiconductor module and power converter
US11271043B2 (en) Semiconductor module and power conversion apparatus
US10229869B2 (en) Semiconductor device and power conversion device including a bent control side frame
JP2020022216A (en) Power conversion device
CN111052325B (en) Semiconductor module and power conversion device
WO2021095323A1 (en) Semiconductor device and power conversion device
JP2014195082A (en) Electronic circuit
US20100127690A1 (en) Semiconductor apparatus
US20230261585A1 (en) Semiconductor module and power converter
JP6541896B1 (en) Semiconductor module and power converter
JP7268760B2 (en) Semiconductor modules, power converters and moving bodies
JP5646034B2 (en) Semiconductor device, module, inverter, converter, and module driving method
US11735514B2 (en) Semiconductor device and power conversion device
US20230163052A1 (en) Semiconductor device and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888085

Country of ref document: EP

Kind code of ref document: A1