WO2021095124A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021095124A1
WO2021095124A1 PCT/JP2019/044375 JP2019044375W WO2021095124A1 WO 2021095124 A1 WO2021095124 A1 WO 2021095124A1 JP 2019044375 W JP2019044375 W JP 2019044375W WO 2021095124 A1 WO2021095124 A1 WO 2021095124A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
source side
heat source
refrigerant
side heat
Prior art date
Application number
PCT/JP2019/044375
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 松田
周平 水谷
央貴 丸山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021555660A priority Critical patent/JP7183447B2/en
Priority to PCT/JP2019/044375 priority patent/WO2021095124A1/en
Priority to US17/641,551 priority patent/US20220299247A1/en
Publication of WO2021095124A1 publication Critical patent/WO2021095124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present invention relates to a refrigeration cycle device that harmonizes the air in the air-conditioned space.
  • the heat exchanger disclosed in Patent Document 1 has a main heat exchange unit and a sub heat exchange unit provided at different positions in the vertical direction from the main heat exchange unit and connected in series with the main heat exchange unit.
  • the main heat exchange section is provided with more flat tubes than the sub heat exchange section located on the downstream side of the main heat exchange section. Further, a flat tube at the bottom of the heat exchanger is provided in the main heat exchanger on the upstream side of the sub heat exchanger.
  • the refrigerant discharged from the compressor during the defrosting operation flows into the sub heat exchange section after passing through the main heat exchange section. That is, the refrigerant discharged from the compressor flows through the main heat exchange section even after the defrosting of the main heat exchange section is completed and before it flows into the sub heat exchange section. Therefore, the heat of the refrigerant is wasted because the refrigerant and the air are heat-exchanged in the main heat exchange section that does not require defrosting before reaching the sub heat exchange section. As a result, defrosting cannot be performed efficiently.
  • the present invention has been made to solve the above problems, and provides a refrigeration cycle apparatus capable of efficiently defrosting.
  • the refrigeration cycle apparatus includes a compressor that compresses and discharges a refrigerant, an expansion valve that depressurizes and expands the refrigerant, a load side heat exchanger connected to the expansion valve, the compressor, and the like.
  • a flow path switching device connected to the load side heat exchanger, and a first heat source side heat exchanger and a second heat source side heat exchanger connected in parallel between the flow path switching device and the expansion valve.
  • the heat source side heat exchanger including the refrigerant, the on-off valve provided on the downstream side of the second heat source side heat exchanger of the refrigerant flowing during the defrosting operation, and the on-off valve provided on the downstream side of the second heat source side heat exchanger are discharged from the compressor during the defrosting operation.
  • It has a control device that controls the flow path switching device so that the refrigerant flows into the heat source side heat exchanger, and the control device opens the on-off valve when the defrosting operation is started.
  • the on-off valve is changed from the closed state to the open state according to the first defrosting means for switching from the open state to the closed state, the determining means for determining the switching timing of the defrosting target, and the timing determined by the determining means.
  • It has a second defrosting means for switching.
  • the refrigerant discharged from the compressor is transferred to the first heat source side heat exchanger of the two heat source side heat exchangers. It flows intensively. After that, when the second defrosting means opens the on-off valve, most of the heat of the refrigerant is spent on defrosting the second heat source side heat exchanger. Therefore, wasteful consumption of the heat of the refrigerant is suppressed as compared with the case where two heat source side heat exchangers connected in series are defrosted at the same time. As a result, the two heat source side heat exchangers can be efficiently defrosted.
  • FIG. It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows one configuration example of the control device shown in FIG.
  • FIG. It is a hardware configuration diagram which shows one configuration example of the control device shown in FIG.
  • FIG. It is a hardware configuration diagram which shows another configuration example of the control device shown in FIG.
  • It is a flowchart which shows an example of the operation procedure of the refrigeration cycle apparatus shown in FIG.
  • FIG. It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of modification 1.
  • FIG. It is a functional block diagram which shows one configuration example of the control device in modification 1.
  • FIG. It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of the modification 2.
  • FIG. 2 It is a functional block diagram which shows one configuration example of the control device in the modification 2. It is a flowchart which shows an example of the operation procedure of the refrigeration cycle apparatus shown in FIG. It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of the modification 3. It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus which concerns on Embodiment 2.
  • FIG. It is a side view which shows one configuration example of the 1st heat source side heat exchanger shown in FIG. It is a side view which shows one configuration example of the 2nd heat source side heat exchanger shown in FIG. It is a refrigerant circuit diagram which shows the structural example of the refrigeration cycle apparatus of the comparative example.
  • FIG. 8 is an external perspective view of the heat source side unit shown in FIG. 18 when viewed from a direction different from that in the case of FIG.
  • FIG. 18 is a schematic diagram which shows the layout of the heat source side heat exchanger when the heat source side unit shown in FIG.
  • FIG. 20 is seen from the top. It is a side view which shows one configuration example of the 1st division heat exchanger shown in FIG. It is a side view which shows one configuration example of the 2nd heat source side heat exchanger shown in FIG. It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of the modification 4.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device according to the first embodiment.
  • the refrigeration cycle device 1 includes a heat source side unit 10, load side units 20a and 20b, and a control device 30 for controlling the heat source side unit 10 and the refrigerant equipment included in the load side units 20a and 20b.
  • FIG. 1 shows a case where the refrigeration cycle device 1 has two load-side units 20a and 20b, but the load-side unit may be one or three or more. Good.
  • the heat source side unit 10 includes a compressor 2 that compresses and discharges the refrigerant, a heat source side heat exchanger 15 that exchanges heat with the outside air, a flow path switching device 5, an accumulator 6, and an on-off valve 7. .
  • the heat source side heat exchanger 15 includes a first heat source side heat exchanger 3 and a second heat source side heat exchanger 4.
  • the load-side unit 20a includes a load-side heat exchanger 21a that exchanges heat with the air in the room where the load-side unit 20a is installed, and an expansion valve 22a that depressurizes and expands the refrigerant.
  • the load-side unit 20b includes a load-side heat exchanger 21b that exchanges heat with the air in the room where the load-side unit 20b is installed, and an expansion valve 22b that depressurizes and expands the refrigerant.
  • the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 are connected in parallel between the flow path switching device 5 and the expansion valves 22a and 22b.
  • one refrigerant inlet / outlet is connected to the first gas pipe 43a, and the other refrigerant inlet / outlet is connected to the first liquid pipe 44a.
  • one refrigerant inlet / outlet is connected to the second gas pipe 43b, and the other refrigerant inlet / outlet is connected to the second liquid pipe 44b.
  • the first gas pipe 43a and the second gas pipe 43b join the gas pipe 41 and are connected to the flow path switching device 5.
  • the first liquid pipe 44a and the second liquid pipe 44b join the liquid pipe 47 and are connected to the expansion valves 22a and 22b.
  • the on-off valve 7 is provided in the second liquid pipe 44b.
  • the flow path switching device 5 is connected to the load side heat exchangers 21a and 21b via the refrigerant pipe 42, and is connected to the accumulator 6 via the refrigerant pipe 48. Further, the flow path switching device 5 is connected to the compressor 2 and the accumulator 6 via the refrigerant pipe 49. The accumulator 6 is connected to the refrigerant suction port of the compressor 2.
  • the compressor 2, the first heat source side heat exchanger 3, the second heat source side heat exchanger 4, the expansion valve 22a, and the load side heat exchanger 21a are connected by a pipe such as a refrigerant pipe 42, and the refrigerant circuit 60a Is configured.
  • the compressor 2, the first heat source side heat exchanger 3, the second heat source side heat exchanger 4, the expansion valve 22b, and the load side heat exchanger 21b are connected by a pipe such as a refrigerant pipe 42, and the refrigerant is used.
  • the circuit 60b is configured.
  • the second heat source side heat exchanger 4 is provided with a heat exchanger temperature sensor 11 that detects the temperature Te of the refrigerant.
  • the second liquid pipe 44b is provided with a refrigerant temperature sensor 12 that detects the temperature Tn2 of the refrigerant flowing through the second liquid pipe 44b.
  • the load-side unit 20a is provided with a room temperature sensor 23a that detects the temperature of the air in the room in which the load-side unit 20a is installed.
  • the load-side unit 20b is provided with a room temperature sensor 23b that detects the temperature of the air in the room in which the load-side unit 20b is installed.
  • the heat exchanger temperature sensor 11, the refrigerant temperature sensor 12, and the room temperature sensors 23a and 23b are, for example, thermistors.
  • the heat exchanger temperature sensor 11 may be provided on the first heat source side heat exchanger 3 side instead of the second heat source side heat exchanger 4.
  • the compressor 2 is a compressor whose capacity can be changed, for example, an inverter compressor.
  • the accumulator 6 is a container that prevents the liquid refrigerant from being sucked into the compressor 2.
  • the expansion valves 22a and 22b are, for example, electronic expansion valves.
  • the flow path switching device 5 switches the flow direction of the refrigerant discharged from the compressor 2 to the gas pipe 41 or the refrigerant pipe 42.
  • the flow path switching device 5 is, for example, a four-way valve.
  • the on-off valve 7 is, for example, a shutoff valve capable of switching from one of the closed state and the open state to the other state.
  • the on-off valve 7 may be an electronic expansion valve that adjusts the flow rate of the flowing refrigerant.
  • the first heat source side heat exchanger 3, the second heat source side heat exchanger 4, and the load side heat exchangers 21a and 21b are, for example, fin-and-tube heat exchangers.
  • the control device 30 is connected to each device of the compressor 2, the flow path switching device 5, the expansion valves 22a and 22b, and the on-off valve 7 via a signal line (not shown in the figure). Further, the control device 30 is connected to each of the room temperature sensors 23a and 23b, the heat exchanger temperature sensor 11, and the refrigerant temperature sensor 12 via signal lines (not shown in the figure).
  • the communication connection between the control device 30 and each device of the compressor 2, the flow path switching device 5, the expansion valve 22a, the expansion valve 22b, and the on-off valve 7 is not limited to the wired connection, but may be wireless.
  • the communication connection between the control device 30 and each of the room temperature sensor 23a, the room temperature sensor 23b, the heat exchanger temperature sensor 11 and the refrigerant temperature sensor 12 is not limited to wired, but may be wireless.
  • the refrigerant flowing into the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 condenses by exchanging heat with air in these heat exchangers connected in parallel, and becomes a low-temperature and high-pressure liquid refrigerant. Then, it flows out from the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4.
  • the liquid refrigerant flows into the load side heat exchanger 21a.
  • the refrigerant that has flowed into the load-side heat exchanger 21a evaporates by exchanging heat with air in the load-side heat exchanger 21a, becomes a low-temperature low-pressure gas refrigerant, and flows out of the load-side heat exchanger 21a.
  • the air in the room is cooled by the refrigerant absorbing heat from the air in the room.
  • the refrigerant flowing out of the load-side heat exchanger 21a is sucked into the compressor 2 via the flow path switching device 5.
  • the cooling operation after the refrigerant discharged from the compressor 2 circulates in order through the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4, the expansion valve 22a, and the load side heat exchanger 21a. , The cycle until it is sucked into the compressor 2 is repeated.
  • the control device 30 switches the flow path of the flow path switching device 5 so that the refrigerant discharged from the compressor 2 flows into the load side heat exchanger 21a.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 2
  • the high-temperature and high-pressure gas refrigerant is discharged from the compressor 2.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the load-side heat exchanger 21a via the flow path switching device 5.
  • the refrigerant flowing into the load-side heat exchanger 21a is condensed by exchanging heat with air in the load-side heat exchanger 21a, becomes a high-temperature and high-pressure liquid refrigerant, and flows out from the load-side heat exchanger 21a.
  • the air in the room is warmed by the refrigerant dissipating heat to the air in the room.
  • the high temperature and high pressure liquid refrigerant flowing out from the load side heat exchanger 21a becomes a low temperature and low pressure liquid refrigerant by the expansion valve 22a.
  • the liquid refrigerant flows into the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4.
  • the refrigerant evaporates by exchanging heat with air to become a low-temperature low-pressure gas refrigerant, and becomes the first heat source side heat exchanger 3 and the first heat exchanger. 2 Outflow from the heat source side heat exchanger 4.
  • the refrigerant flowing out from the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 is sucked into the compressor 2 via the flow path switching device 5.
  • the refrigerant discharged from the compressor 2 is the load side heat exchanger 21a, the expansion valve 22a, the first heat source side heat exchanger 3, and the second heat source side heat. After circulating the exchanger 4 in order, the cycle until it is sucked into the compressor 2 is repeated.
  • FIG. 2 is a functional block diagram showing a configuration example of the control device shown in FIG.
  • the control device 30 includes a refrigerating cycle control means 51, a determination means 52, a timer 53, a first defrosting means 54, and a second defrosting means 55.
  • Various functions of the control device 30 are realized by executing software by an arithmetic unit such as a microcomputer. Further, the control device 30 may be composed of hardware such as a circuit device that realizes various functions.
  • the set temperature Ts1 is input to the control device 30 by the user who uses the load side unit 20a via a remote controller (not shown).
  • the set temperature Ts2 is input to the control device 30 by the user who uses the load side unit 20b via a remote controller (not shown).
  • the installation position of the control device 30 is not limited, and the control device 30 may be provided in the heat source side unit 10 or in the load side unit 20a or 20b. May be good.
  • the refrigeration cycle control means 51 controls the flow path switching device 5 according to the operation mode of the refrigeration cycle device 1.
  • the refrigeration cycle control means 51 controls the operating frequency of the compressor 2 and the opening degrees of the expansion valves 22a and 22b based on the detected values received from the room temperature sensors 23a and 23b and the set temperatures Ts1 and Ts2. Specifically, the refrigeration cycle control means 51 sets the operating frequency of the compressor 2 and the operating frequency of the compressor 2 so that the detected value of the room temperature sensor 23a approaches the set temperature Ts1 and the detected value of the room temperature sensor 23b approaches the set temperature Ts2.
  • the opening degrees of the expansion valves 22a and 22b are controlled.
  • the refrigeration cycle control means 51 monitors the temperature Te of the refrigerant received from the heat exchanger temperature sensor 11, and whether the temperature Te of the refrigerant is equal to or less than a predetermined temperature threshold T0. Judge whether or not.
  • the temperature threshold T0 is, for example, 0 ° C.
  • the refrigerating cycle control means 51 controls the flow path switching device 5 to switch the flow path and determines the defrosting start information indicating that the defrosting operation is started. Send to 52.
  • the refrigerating cycle control means 51 controls the flow path switching device 5 to switch the flow path, and switches the operation mode from the defrosting operation to the heating operation.
  • the timer 53 measures the time and provides the measurement time information to the determination means 52.
  • the determination means 52 determines the timing of switching the defrost target based on at least one of the time elapsed from the start of defrosting and the temperature Tn2 of the refrigerant detected by the refrigerant temperature sensor 12.
  • the determination means 52 receives the defrosting start information from the refrigeration cycle control means 51, the determination means 52 transfers the defrosting start information to the first defrosting means 54 and monitors the time t1 which is the elapsed time from the defrosting start.
  • the determination means 52 determines whether or not the time t1 is equal to or greater than a predetermined time threshold value tth1.
  • the time threshold value tth1 is set to the time before the defrosting of the first heat source side heat exchanger 3 is completely completed.
  • the determination means 52 transmits switching instruction information to instruct the switching of the state of the on-off valve 7 to the second defrosting means 55.
  • the determination means 52 monitors the refrigerant temperature Tn2 received from the refrigerant temperature sensor 12 after transmitting the switching instruction information to the second defrosting means 55, and the refrigerant temperature Tn2 is equal to or higher than a predetermined temperature threshold value Tb. It is determined whether or not it is.
  • the temperature threshold Tb is, for example, 7 ° C.
  • the determination means 52 transmits the defrosting end information indicating that the defrosting is completed to the refrigerating cycle control means 51.
  • the first defrosting means 54 When the first defrosting means 54 receives the defrosting start information from the determining means 52, the first defrosting means 54 switches the on-off valve 7 from the open state to the closed state.
  • the second defrosting means 55 receives the switching instruction information from the determining means 52, the second defrosting means 55 switches the on-off valve 7 from the closed state to the open state.
  • FIG. 3 is a hardware configuration diagram showing a configuration example of the control device shown in FIG.
  • the control device 30 shown in FIG. 2 is composed of a processing circuit 31 as shown in FIG.
  • Each function of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54, and the second defrosting means 55 shown in FIG. 2 is realized by the processing circuit 31.
  • the processing circuit 31 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). It corresponds to Array) or a combination of these.
  • Each of the functions of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54 and the second defrosting means 55 may be realized by the processing circuit 31, and the function of each means may be 1 It may be realized by one processing circuit 31.
  • FIG. 4 is a hardware configuration diagram showing another configuration example of the control device shown in FIG.
  • the control device 30 shown in FIG. 2 includes a processor 71 and a memory 72 as shown in FIG.
  • the functions of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54, and the second defrosting means 55 are realized by the processor 71 and the memory 72.
  • FIG. 4 shows that the processor 71 and the memory 72 are communicably connected to each other.
  • the functions of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54 and the second defrosting means 55 are software, firmware, or software and firmware. It is realized by the combination.
  • the software and firmware are written as a program and stored in the memory 72.
  • the processor 71 realizes the function of each means by reading and executing the program stored in the memory 72.
  • a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM) and an EPROM (Electrically Erasable and Programmable ROM) is used.
  • a volatile semiconductor memory of RAM Random Access Memory
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), or a DVD (Digital Versaille Disc) may be used.
  • FIG. 5 is a flowchart showing an example of the operation procedure of the refrigeration cycle apparatus shown in FIG.
  • FIG. 5 shows an example of an operation procedure when the refrigerating cycle device 1 performs a defrosting operation. It is assumed that the refrigerating cycle device 1 is in the heating operation before starting the operation procedure shown in FIG. 5, and the on-off valve 7 is in the open state.
  • the refrigeration cycle control means 51 determines whether or not the temperature Te of the refrigerant received from the heat exchanger temperature sensor 11 is equal to or lower than the temperature threshold value T0 (step S101). In step S101, the refrigeration cycle control means 51 determines that frost has adhered to the heat source side heat exchanger 15 when the temperature Te of the refrigerant becomes equal to or lower than the temperature threshold value T0, and controls the flow path switching device 5 to control the flow path. Switching (step S102). As a result, the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 15 via the flow path switching device 5. Further, the refrigeration cycle control means 51 transmits the defrosting start information to the determination means 52 in step S102.
  • the determination means 52 When the determination means 52 receives the defrosting start information from the refrigerating cycle control means 51, the determination means 52 transfers the defrosting start information to the first defrosting means 54 and monitors the time t1 measured by the timer 53. When the first defrosting means 54 receives the defrosting start information from the determining means 52, the first defrosting means 54 closes the on-off valve 7 (step S103). The determination means 52 determines whether or not the time t1 is equal to or greater than the time threshold value tth1 (step S104). In step S104, the determination means 52 transmits the switching instruction information to the second defrosting means 55 when the time t1 becomes the time threshold value tth1 or more.
  • the second defrosting means 55 receives the switching instruction information from the determining means 52, the on-off valve 7 is opened (step S105).
  • the determining means 52 determines whether or not the temperature Tn2 of the refrigerant received from the refrigerant temperature sensor 12 is equal to or higher than the temperature threshold value Tb (step S106).
  • the determination means 52 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and transmits the defrosting completion information to the refrigeration cycle control means 51.
  • the refrigeration cycle control means 51 When the refrigeration cycle control means 51 receives the defrosting end information from the determination means 52, the refrigeration cycle control means 51 controls the flow path switching device 5 to switch the flow path (step S107). As a result, the refrigerant discharged from the compressor 2 flows into the load-side units 20a and 20b via the flow path switching device 5. The operation mode of the refrigeration cycle device 1 returns from the defrosting operation to the heating operation.
  • the first heat source side heat exchanger 3 is intensively defrosted from the time when the refrigeration cycle device 1 starts defrosting until the time t1 reaches the time threshold value tth1.
  • the refrigeration cycle apparatus 1 starts defrosting the second heat source side heat exchanger 4 before the defrosting of the first heat source side heat exchanger 3 is completed, but the first heat source side heat exchanger 3 is defrosted.
  • the determination means 52 determines whether or not the defrosting of the second heat source side heat exchanger 4 is completed by the temperature Tn1 of the refrigerant on the downstream side of the second heat source side heat exchanger 4.
  • the defrosting of the first heat source side heat exchanger 3 is also completed. ..
  • the refrigerant temperature sensor 12 is provided in the second liquid pipe 44b, but the refrigerant temperature is in the liquid pipe 47 near the confluence of the first liquid pipe 44a and the second liquid pipe 44b.
  • the sensor 12 may be provided.
  • the determination means 52 determines whether or not the temperature Tn2 of the refrigerant is equal to or higher than a predetermined temperature threshold value Ta. Then, as a result of the determination in step S104, when the temperature Tn2 of the refrigerant is equal to or higher than the temperature threshold Ta, the determination means 52 may transmit the switching instruction information to the second defrosting means 55.
  • the temperature thresholds Ta and Tb have a relationship of, for example, Ta> Tb. Even if the refrigeration cycle device 1 proceeds to the process of step S105 before the defrosting of the first heat source side heat exchanger 3 is completely completed due to the relationship of Ta> Tb, the refrigerant also remains in the first heat source side heat exchanger 3. Defrosting is performed for distribution. Further, when the refrigerant temperature sensor 12 is provided in the liquid pipe 47, the timer 53 may not be provided in the control device 30.
  • the refrigeration cycle device 1 of the first embodiment includes a compressor 2, an expansion valve 22a, a load side heat exchanger 21a, a flow path switching device 5, a heat source side heat exchanger 15, an on-off valve 7, and the like. It has a control device 30 and.
  • the heat source side heat exchanger 15 has a first heat source side heat exchanger 3 and a second heat source side heat exchanger 4 connected in parallel between the flow path switching device 5 and the expansion valve 22a.
  • the on-off valve 7 is provided on the downstream side of the second heat source side heat exchanger 4 of the refrigerant that circulates during the defrosting operation.
  • the control device 30 controls the flow path switching device 5 so that the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 15 during the defrosting operation.
  • the control device 30 includes a first defrosting means 54, a determining means 52, and a second defrosting means 55.
  • the first defrosting means 54 switches the on-off valve 7 from the open state to the closed state when the defrosting operation is started.
  • the determination means 52 determines the timing of switching the defrost target.
  • the second defrosting means switches the on-off valve 7 from the closed state to the open state according to the timing determined by the determination means 52.
  • the first defrosting means 54 closes the on-off valve 7 at the start of defrosting, so that the refrigerant discharged from the compressor 2 is the first of the two heat source side heat exchangers. It flows intensively to the heat exchanger 3 on the heat source side.
  • the second defrosting means 55 opens the on-off valve 7.
  • the refrigerant flows to the second heat source side heat exchanger 4, but also flows to the first heat source side heat exchanger 3.
  • most of the heat of the refrigerant is consumed in the second heat source side heat exchanger 4, and the frost remaining in the first heat source side heat exchanger 3 melts.
  • the first modification is the case where the refrigerating cycle device 1 shown in FIG. 1 is not provided with the refrigerant temperature sensor 12.
  • the same components as those described with reference to FIGS. 1 to 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 6 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the first modification.
  • FIG. 7 is a functional block diagram showing a configuration example of the control device in the first modification.
  • the heat source side unit 10a of the refrigeration cycle device 1a is not provided with the refrigerant temperature sensor 12 shown in FIG.
  • the determining means 52 determines whether or not the time t1 measured by the timer 53 is equal to or greater than the predetermined time threshold tth2.
  • the time thresholds tth1 and tth2 have a relationship of tth1 ⁇ tth2.
  • the determination means 52 transmits the defrosting end information to the refrigeration cycle control means 51.
  • step S106 the determination means 52 determines whether or not the time t1 measured by the timer 53 is equal to or greater than the time threshold value tth2. As a result of the determination in step S106, when the time t1 becomes the time threshold value tth2 or more, the determination means 52 transmits the defrosting end information to the refrigeration cycle control means 51.
  • the effect of the first embodiment can be obtained even if the refrigerant temperature sensor 12 is not provided.
  • Modification 2 The second modification is the case where the flow rate adjusting valve and the refrigerant temperature sensor are provided in the first liquid pipe 44a in the refrigerating cycle device 1 shown in FIG.
  • the same components as those described with reference to FIGS. 1 to 7 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 8 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the second modification.
  • FIG. 9 is a functional block diagram showing a configuration example of the control device in the second modification.
  • a refrigerant temperature sensor 12a and a flow rate adjusting valve 9 are provided in the first liquid pipe 44a of the heat source side unit 10b of the refrigeration cycle device 1b.
  • the refrigerant temperature sensor 12a detects the temperature Tn1 of the refrigerant flowing through the first liquid pipe 44a.
  • the flow rate adjusting valve 9 can switch from one of the closed state and the open state to the other state.
  • the flow rate adjusting valve 9 can adjust the flow rate of the flowing refrigerant by changing the opening degree.
  • the control device 30 of the second modification does not have the timer 53 shown in FIG.
  • the control device 30 stores in advance the temperature threshold value Ta as a value that serves as a determination standard for determining the timing of switching the defrosting target for the refrigerant temperature Tn1.
  • Ta and Tb may have the same value or different values.
  • FIG. 10 is a flowchart showing an example of the operation procedure of the refrigeration cycle apparatus shown in FIG. It is assumed that the refrigerating cycle device 1b is in the heating operation before starting the operation procedure shown in FIG. 10, and the flow rate adjusting valve 9 and the on-off valve 7 are in the open state. Since the processes of steps S201 and S202 shown in FIG. 10 are the same as the processes of steps S101 and S102 described with reference to FIG. 5, detailed description thereof will be omitted.
  • step S201 After the determination in step S201, when the determination means 52 receives the defrosting start information from the refrigeration cycle control means 51, the determination means 52 transfers the defrosting start information to the first defrosting means 54 and is detected by the refrigerant temperature sensor 12a. The temperature Tn1 of the refrigerant is monitored. When the first defrosting means 54 receives the defrosting start information from the determining means 52, the first defrosting means 54 closes the on-off valve 7 (step S203). The determination means 52 determines whether or not the temperature Tn1 of the refrigerant is equal to or higher than the temperature threshold value Ta (step S204). In step S204, when the temperature Tn1 of the refrigerant becomes equal to or higher than the temperature threshold value Ta, the determination means 52 transmits the switching instruction information to the second defrosting means 55.
  • the determining means 52 determines whether or not the temperature Tn2 of the refrigerant detected by the refrigerant temperature sensor 12b is equal to or higher than the temperature threshold value Tb (step S207). When the temperature Tn2 of the refrigerant becomes equal to or higher than the temperature threshold value Tb, the determination means 52 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and sends the defrosting end information to the second defrosting means 55 and the refrigeration cycle control means 51. Send to.
  • the second defrosting means 55 When the second defrosting means 55 receives the defrosting end information from the determination means 52, the second defrosting means 55 opens the flow rate adjusting valve 9 (step S208).
  • the refrigeration cycle control means 51 When the refrigeration cycle control means 51 receives the defrosting end information from the determination means 52, the refrigeration cycle control means 51 controls the flow path switching device 5 to switch the flow path (step S209). As a result, the refrigerant discharged from the compressor 2 flows into the load-side units 20a and 20b via the flow path switching device 5. The operation mode of the refrigeration cycle device 1 returns from the defrosting operation to the heating operation.
  • step S206 shown in FIG. 10 the second defrosting means 55 closes the flow rate adjusting valve 9, but does not completely close the flow rate adjusting valve 9 and reduces the opening degree of the flow rate adjusting valve 9.
  • the refrigerant may be circulated a little.
  • step S208 the second defrosting means 55 fully opens the flow rate adjusting valve 9.
  • a valve for shutting off the flow of the refrigerant is provided in each of the liquid pipes of the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 connected in parallel.
  • the refrigeration cycle device 1b of the second modification controls the opening and closing of each valve during the defrosting operation to first intensively defrost the first heat source side heat exchanger 3, and then the remaining second heat source side heat. By intensively defrosting the exchanger 4, defrosting can be performed reliably and efficiently.
  • the determination means 52 determines the timing at which the main defrost target is switched from the first heat source side heat exchanger 3 to the second heat source side heat exchanger 4 based on the temperature Tn1 of the refrigerant. Therefore, the determination means 52 can more accurately determine the state of whether or not frost remains in the first heat source side heat exchanger 3 than the time t1 measured by the timer 53. Further, according to the second modification, the timer 53 may not be provided in the control device 30.
  • Modification example 3 is a case where three or more heat source side heat exchangers are connected in parallel in the refrigeration cycle apparatus 1 shown in FIG.
  • the same components as those described with reference to FIGS. 1 to 10 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 11 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the modified example 3.
  • the third heat source side heat exchanger 8 connected in parallel with the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 It is provided.
  • the third heat source side heat exchanger 8 is connected to the gas pipe 41 via the third gas pipe 43c, and is connected to the liquid pipe 47 via the third liquid pipe 44c.
  • the third liquid pipe 44c is provided with a refrigerant temperature sensor 12c and a second flow rate adjusting valve 9b.
  • the refrigerant temperature sensor 12c detects the temperature Tn3 of the refrigerant flowing through the third liquid pipe 44c.
  • the determination means 52 compares the temperature Tn3 of the refrigerant with the predetermined temperature threshold Td, and when the temperature Tn3 of the refrigerant becomes equal to or higher than the temperature threshold Td, the defrosting target is switched.
  • the first flow rate adjusting valve 9a and the second flow rate adjusting valve 9b have the same configuration as the flow rate adjusting valve 9, and the refrigerant temperature sensor 12c has the same configuration as the refrigerant temperature sensor 12. Omit.
  • the operation of the refrigeration cycle device 1c of the second modification will be described with reference to FIG.
  • a process different from the process shown in FIG. 10 will be described, and detailed description of the process similar to the process described with reference to FIG. 10 will be omitted.
  • the on-off valve 7, the first flow rate adjusting valve 9a, and the second flow rate adjusting valve 9b are in the open state.
  • step S203 when the first defrosting means 54 receives the defrosting start information from the determining means 52, the first flow rate adjusting valve 9a is maintained in the open state, and the on-off valve 7 and the second flow rate adjusting valve 9b are closed.
  • step S206 the second defrosting means 55 closes the first flow rate adjusting valve 9a.
  • step S207 when the temperature Tn2 of the refrigerant becomes equal to or higher than the temperature threshold value Tb, the determination means 52 transmits the switching instruction information to the second defrosting means 55.
  • the second defrosting means 55 receives the switching instruction information from the determining means 52, the second defrosting means 55 closes the on-off valve 7 and opens the second flow rate adjusting valve 9b.
  • the determination means 52 determines whether or not the temperature Tn3 of the refrigerant detected by the refrigerant temperature sensor 12c is equal to or higher than the temperature threshold value Td after transmitting the switching instruction information to the second defrosting means 55 based on the determination result in step S207. To do. When the temperature Tn3 of the refrigerant becomes equal to or higher than the temperature threshold value Td, the determination means 52 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and sends the defrosting end information to the second defrosting means 55 and the refrigeration cycle control means 51. Send to. After that, the control device 30 performs the processes of steps S208 and S209.
  • FIG. 11 shows a case where three heat source side heat exchangers are connected in parallel
  • the number of heat source side heat exchangers connected in parallel may be four or more.
  • a flow rate adjusting device and a refrigerant temperature sensor are provided on the liquid piping side of each heat source side heat exchanger.
  • the determination means 52 may determine the timing of switching the defrosting target based on the time t1 measured by the timer 53 shown in FIG. In this case, the refrigerant temperature sensors 12a to 12c may not be provided.
  • Embodiment 2 The refrigeration cycle apparatus of the second embodiment is a case where a header for dividing and merging the flowing refrigerant is provided in the heat source side heat exchanger.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 12 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device according to the second embodiment.
  • the refrigeration cycle device 1d has a heat source side unit 10d.
  • the first gas header 61 is provided on the first gas pipe 43a side of the first heat source side heat exchanger 3, and the first liquid header 61 is provided on the first liquid pipe 44a side of the first heat source side heat exchanger 3.
  • 62 is provided.
  • the second gas header 63 is provided on the second gas pipe 43b side of the second heat source side heat exchanger 4, and the second gas header 63 is provided on the second liquid pipe 44b side of the second heat source side heat exchanger 4.
  • a liquid header 64 is provided.
  • FIG. 13 is a side view showing a configuration example of the first heat source side heat exchanger shown in FIG.
  • FIG. 14 is a side view showing a configuration example of the second heat source side heat exchanger shown in FIG.
  • the X-axis and the Z-axis are shown in the figure to define the direction.
  • the direction opposite to the Z-axis arrow shown in FIGS. 13 and 14 is the direction of gravity.
  • the solid arrows shown in FIGS. 13 and 14 indicate the flow direction of the refrigerant when the refrigerating cycle device 1 performs the cooling operation and the defrosting operation.
  • the broken line arrows shown in FIGS. 13 and 14 indicate the flow direction of the refrigerant when the refrigeration cycle device 1 performs the heating operation.
  • the first heat source side heat exchanger 3 has a plurality of heat transfer tubes 45a and a plurality of heat radiation fins 46a.
  • the first gas pipe 43a is connected to the first gas header 61.
  • the position where the first gas pipe 43a is connected to the first gas header 61 is the central portion of the height which is the length of the first gas header 61 in the direction perpendicular to the ground (Z-axis arrow direction).
  • the central portion includes not only the exact center position of the height of the first gas header 61 but also a height in a certain range with respect to the center position.
  • the first liquid pipe 44a is connected to the lower part of the first liquid header 62.
  • the first gas header 61 divides the refrigerant flowing from the first gas pipe 43a into the plurality of heat transfer pipes 45a when the refrigerating cycle device 1 performs the cooling operation and the defrosting operation.
  • the first gas header 61 merges the refrigerants flowing in from the plurality of heat transfer pipes 45a and flows out to the first gas pipe 43a.
  • the second heat source side heat exchanger 4 has a plurality of heat transfer tubes 45b and a plurality of heat radiation fins 46b.
  • the second gas pipe 43b is connected to the second gas header 63.
  • the position where the second gas pipe 43b is connected to the second gas header 63 is the central portion of the height which is the length of the second gas header 63 in the direction perpendicular to the ground (Z-axis arrow direction).
  • the central portion includes not only the exact center position of the height of the second gas header 63 but also a certain range of heights based on the center position.
  • the second liquid pipe 44b is connected to the lower part of the second liquid header 64.
  • the second gas header 63 divides the refrigerant flowing from the second gas pipe 43b into the plurality of heat transfer pipes 45b when the refrigerating cycle device 1 performs the cooling operation and the defrosting operation.
  • the second gas header 63 merges the refrigerants flowing in from the plurality of heat transfer pipes 45b and flows out to the second gas pipe 43b.
  • the height of the first heat source side heat exchanger 3 and the height of the second heat source side heat exchanger 4 are the same, and the number of heat transfer tubes 45a and the number of heat transfer tubes 45b are the same.
  • Is. 13 and 14 show the case where the number of heat transfer tubes 45a and the number of heat transfer tubes 45b is 13, but the number of heat transfer tubes 45a and 45b is not limited to 13.
  • FIG. 15 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle device of a comparative example.
  • the same components as those described with reference to FIGS. 1 and 12 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the refrigeration cycle device 100 of the comparative example has a heat source side unit 110, load side units 20a and 20b, and a control device 130.
  • a refrigerant temperature sensor 121 is provided in the liquid pipe 47 on the downstream side of the position where the first liquid pipe 44a and the second liquid pipe 44b meet, with reference to the direction in which the refrigerant flows during the defrosting operation.
  • the refrigerant temperature sensor 121 detects the temperature Tr of the refrigerant flowing through the liquid pipe 47, and transmits information on the temperature Tr of the refrigerant to the control device 130. Since the hardware configuration of the control device 130 is the same as the configuration described with reference to FIGS. 3 and 4, detailed description thereof will be omitted.
  • the control device 130 compares the temperature Tr of the refrigerant with the predetermined temperature threshold Tc. Then, the control device 130 determines that the defrosting is completed when the temperature Tr of the refrigerant becomes equal to or higher than the temperature threshold value Tc.
  • the temperature threshold Tc is, for example, 10 ° C.
  • the temperature thresholds Tb and Tc have a relationship of Tc> Tb. Further, when the temperature threshold value Tc is compared with the temperature threshold value Ta described in the second modification, the relationship is Ta ⁇ Tc.
  • FIG. 16 is a flowchart showing an example of the operation procedure of the refrigeration cycle device of the comparative example shown in FIG. It is assumed that the refrigeration cycle device 100 is in the heating operation before starting the operation procedure shown in FIG.
  • the control device 130 determines whether or not the temperature Te of the refrigerant is equal to or higher than the temperature threshold value T0 (step S1001). In step S1001, the control device 130 determines that frost has adhered to the heat source side heat exchanger 15 when the temperature Te of the refrigerant becomes equal to or lower than the temperature threshold value T0, and controls the flow path switching device 5 to switch the flow path ( Step S1002). As a result, the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 15 via the flow path switching device 5.
  • the control device 130 determines whether or not the temperature Tr of the refrigerant is equal to or higher than the temperature threshold value Tc (step S1003).
  • step S1003 when the temperature Tr of the refrigerant becomes equal to or higher than the temperature threshold value Tc, the control device 130 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and controls the flow path switching device 5 to switch the flow path. (Step S1004).
  • the operation mode of the refrigeration cycle device 100 returns from the defrosting operation to the heating operation.
  • the gas refrigerant flows into the central portion of the first gas header 61 from the first gas pipe 43a.
  • the gas refrigerant that has flowed into the first gas header 61 is diverted to the plurality of heat transfer tubes 45a, but due to the pressure loss, the refrigerant tends to stay in the heat transfer tubes 45a on the lower stage side of the first heat source side heat exchanger 3.
  • the second heat source side heat exchanger 4 shown in FIG. 14 also has a refrigerant in the heat transfer tube 45b on the lower stage side of the second heat source side heat exchanger 4 during the defrosting operation. Is likely to stay.
  • FIG. 17 is a graph showing an example of the relationship between the flow rate of the refrigerant and the position of the heat exchanger on the heat source side during the defrosting operation.
  • the horizontal axis of FIG. 17 shows the flow rate of the refrigerant
  • the vertical axis shows the height Hu of the heat transfer tube 45a in the vertical direction (Z-axis arrow direction) of the first heat source side heat exchanger 3 shown in FIG.
  • the height of the lowermost heat transfer tube 45a is Hu1
  • the height of the uppermost heat transfer tube 45a is Hun. ..
  • FIG. 17 shows an example of the relationship between the flow rate of the refrigerant and the position of the heat exchanger on the heat source side during the defrosting operation.
  • the horizontal axis of FIG. 17 shows the flow rate of the refrigerant
  • the vertical axis shows the height Hu of the heat transfer tube 45a in the vertical direction (Z-axis arrow direction) of the first heat source side heat exchanger 3 shown in FIG.
  • the solid line graph is the case of the refrigeration cycle device 1d of the second embodiment, and the broken line graph is the case of the refrigeration cycle device 100 of the comparative example shown in FIG. Further, since the second heat source side heat exchanger 4 has the same tendency as the graph shown in FIG. 17, the description of the second heat source side heat exchanger 4 will be omitted here.
  • the heat exchange on the heat source side is shown as shown in the graph of the broken line in FIG.
  • the flow rate of the refrigerant on the lower stage side is smaller than that on the upper stage side in the vessel 15. This is because, as described with reference to FIGS. 13 and 14, when the refrigerant flows from the central portion of the header to the plurality of heat transfer tubes, the flow of the refrigerant becomes stagnant due to the pressure loss, and the refrigerant flows on the lower side. This is because it tends to stay.
  • the refrigeration cycle device 100 of the comparative example it takes a long time to complete the defrosting of the heat source side heat exchanger 15 in consideration of the flow rate of the refrigerant flowing through the lower heat transfer tube of the heat source side heat exchanger 15. It is required and the temperature threshold Tc is set to a high value. As a result, as shown in the broken line graph of FIG. 17, the refrigerant flows wastefully on the upper side until the defrosting of the heat transfer tube on the lower side of the heat source side heat exchanger 15 is completed.
  • the refrigerant flow rate has an influence on the difference in the height of the heat transfer tube 45a in the first heat source side heat exchanger 3. Is smaller than that of the comparative example, and the refrigerant is evenly distributed by the plurality of heat transfer tubes 45a. Therefore, the temperature threshold value Tb can be set to a temperature lower than the temperature threshold value Tc, and defrosting can be performed more efficiently than in the comparative example.
  • the first gas header 61 that divides the refrigerant flowing into the first heat source side heat exchanger 3 into the plurality of heat transfer tubes 45a during the defrosting operation, and the second heat source side heat. It has a second gas header 63 that divides the refrigerant flowing into the exchanger 4 into the plurality of heat transfer tubes 45b.
  • the first gas pipe 43a is connected to the central portion of the first gas header 61 in the direction of gravity
  • the second gas pipe 43b is connected to the central portion of the second gas header 63 in the direction of gravity.
  • the first heat source side heat exchanger 3 and the second heat source side heat exchanger are adjusted by adjusting the opening degree of the on-off valve 7 as described in the first embodiment during the defrosting operation.
  • the flow rate of the refrigerant flowing in each of 4 increases.
  • the frost adhering to the lower side of the heat source side heat exchanger can be reliably and efficiently removed. Since the temperature thresholds Ta and Tb can be set to values smaller than the temperature threshold Tc of the comparative example, the defrosting time is shorter than that of the comparative example, and defrosting can be performed efficiently.
  • Embodiment 3 In the refrigeration cycle apparatus of the third embodiment, the number of heat transfer tubes of the first heat source side heat exchanger and the number of heat transfer tubes of the second heat source side heat exchanger are different.
  • the same components as those described in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 18 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device according to the third embodiment.
  • the refrigeration cycle device 1e has a heat source side unit 10e.
  • the first heat source side heat exchanger 3 provided in the heat source side unit 10e has a configuration in which the first divided heat exchanger 3-1 and the second divided heat exchanger 3-2 are connected in parallel.
  • the first gas pipe 43a is branched into gas branch pipes 43a-1 and 43-2.
  • the gas branch pipe 43a-1 is connected to the first split heat exchanger 3-1 and the gas branch pipe 43a-2 is connected to the second split heat exchanger 3-2.
  • the first liquid pipe 44a is branched into liquid branch pipes 44a-1 and 44a-2.
  • the liquid branch pipe 44a-1 is connected to the first split heat exchanger 3-1 and the liquid branch pipe 44a-2 is connected to the second split heat exchanger 3-2.
  • the first gas header 61 is provided on the gas branch pipe 43a-1 side, and the first liquid header 62 is provided on the liquid branch pipe 44a-1 side.
  • the first gas header 65 is provided on the gas branch pipe 43a-2 side, and the first liquid header 66 is provided on the liquid branch pipe 44a-2 side. Since the first gas header 65 has the same configuration as the first gas header 61 and the first liquid header 66 has the same configuration as the first liquid header 62, detailed description thereof will be omitted.
  • FIG. 19 is an external perspective view showing a configuration example of the heat source side unit shown in FIG.
  • FIG. 20 is an external perspective view of the heat source side unit shown in FIG. 18 when viewed from a direction different from that in the case of FIG.
  • the first split heat exchanger 3-1 and the second split heat exchanger 3-2 have the same height, which is the length in the direction perpendicular to the ground (Z-axis arrow direction), and the height is L1. And.
  • the height of the second heat source side heat exchanger 4 is L2
  • the heights L1 and L2 have a relationship of L2 ⁇ L1.
  • FIG. 21 is a schematic view showing the layout of the heat source side heat exchanger when the heat source side unit shown in FIG. 20 is viewed from above.
  • the shapes of the first split heat exchanger 3-1 and the second split heat exchanger 3-2 when viewed from above are L-shaped.
  • the shape of the second heat source side heat exchanger 4 when viewed from above is linear.
  • the first split heat exchanger 3-1 is L-shaped, but when the first split heat exchanger 3-1 is extended in a straight line, the first split heat exchanger 3-1
  • the linear length of the second heat source side heat exchanger 4 is equal to the linear length of the second heat source side heat exchanger 4.
  • FIG. 22 is a side view showing a configuration example of the first split heat exchanger shown in FIG. Since the second split heat exchanger 3-2 has the same configuration as the first split heat exchanger 3-1, the description shown in FIG. 22 is omitted. Further, FIG. 22 shows a state in which the L-shaped first split heat exchanger 3-1 shown in FIG. 21 is linearly extended.
  • FIG. 23 is a side view showing a configuration example of the second heat source side heat exchanger shown in FIG. In FIGS. 22 and 23, the X-axis and the Z-axis are shown in the drawings for convenience of explanation, but the X-axis arrows correspond to the X-axis arrows shown in FIGS. 19 and 20. It does not have to be.
  • the number of heat transfer tubes 45a of the first split heat exchanger 3-1 shown in FIG. 22 is 13.
  • the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 shown in FIG. 23 is nine.
  • the number of heat transfer tubes 45a of the first split heat exchanger 3-1 is larger than the number of heat transfer tubes 45b of the second heat source side heat exchanger 4.
  • the ratio of the number of heat transfer tubes 45a of the first split heat exchanger 3-1 to the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 is the height L1 of the first heat source side heat exchanger 3 and the second.
  • the ratio (L1: L2) of the heat source side heat exchanger 4 to the height L2 is close to 3: 2.
  • the first heat source side heat exchanger 3 and the second heat source side heat exchanger 3 For 4 compare the number of heat transfer tubes to be defrosted.
  • the number of heat transfer tubes 45a of the first split heat exchanger 3-1 is (3/2) times the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 from the ratio of L1 / L2. Since the first split heat exchanger 3-1 and the second split heat exchanger 3-2 have the same number of heat transfer tubes 45a, the number of heat transfer tubes 45a of the first heat source side heat exchanger 3 is the second heat source side heat exchange.
  • FIGS. 22 and 22 This is three times the number of heat transfer tubes 45b of the vessel 4.
  • the number of heat transfer tubes 45a of the first split heat exchanger 3-1 and the second split heat exchanger 3-2 and the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 are shown in FIGS. 22 and 22. It is not limited to the case shown in 23.
  • the on-off valve 7 since the on-off valve 7 is closed from the start of the defrosting operation by the process of step S102 until the time t1 reaches the time threshold value tth1, the defrosting of the first heat source side heat exchanger 3 is concentrated. Is done. After that, the on-off valve 7 opens, and defrosting of the second heat source side heat exchanger 4 is disclosed, but the refrigerant also flows to the first heat source side heat exchanger 3. The amount of the refrigerant flowing through the first heat source side heat exchanger 3 is larger than the amount of the refrigerant flowing through the second heat source side heat exchanger 4.
  • the refrigeration cycle device 1e is the second heat source side heat exchanger.
  • the defrosting of the first heat source side heat exchanger 3 can be completed at the timing of the completion of defrosting of 4.
  • the number of heat transfer tubes 45a of the first heat source side heat exchanger 3 is larger than the number of heat transfer tubes of the second heat source side heat exchanger 4. According to the third embodiment, since the amount of the refrigerant flowing in the first heat source side heat exchanger 3 is larger than the amount of the refrigerant flowing in the second heat source side heat exchanger 4, the second heat source side heat exchanger 4 The defrosting of the first heat source side heat exchanger 3 can be completed at the timing of the end of defrosting.
  • Modification example 4 The refrigeration cycle device of the modified example 4 is a case where the flow rate adjusting valve 9 is provided in the first liquid pipe 44a in the refrigerant circuits 60a and 60b shown in FIG.
  • the same components as those described with reference to FIGS. 18 to 23 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 24 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the modified example 4.
  • the flow rate adjusting valve 9 is provided in the first liquid pipe 44a.
  • the operation of the refrigeration cycle device 1f is shown in FIG. 10 except that the timing of switching the defrost target is determined based on the time t1 measured by the timer 53 in step S207 shown in FIG. Since the procedure is the same, the detailed description thereof will be omitted.
  • the refrigerant temperature sensor 12 may be provided in the liquid pipe 47 near the confluence of the first liquid pipe 44a and the second liquid pipe 44b instead of the second liquid pipe 44b.
  • a valve for shutting off the flow of the refrigerant is provided in each of the liquid pipes of the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4.
  • the refrigeration cycle device 1f of the modified example 4 controls the opening and closing of each valve during the defrosting operation to first defrost the first heat source side heat exchanger 3, and then the remaining second heat source side heat exchanger 4 By defrosting, defrosting can be performed reliably and efficiently.
  • the third embodiment may be applied to the refrigeration cycle device 1 described in the first embodiment. .. Further, in each of the second and third embodiments, any of the modified examples 1 to 3 may be combined.

Abstract

This refrigeration cycle device includes: a compressor; an expansion valve; a load-side heat exchanger; a flow path switching device; a heat source-side heat exchanger including a first heat source-side heat exchanger and a second heat source-side heat exchanger connected in parallel between the flow path switching device and the expansion valve; an open/close valve that is for the refrigerant flowing during a defrosting operation, and that is provided on the downstream side of the second heat source-side heat exchanger; and a control device that, on the occasion of performing the defrosting operation, controls the flow path switching device such that the refrigerant discharged from the compressor flows into the heat source-side heat exchanger. The control device includes: a first defrosting means for switching the open/close valve from an opened state to a closed state when the defrosting operation is started; a determination means for determining the timing for switching the object to be defrosted; and a second defrosting means for switching the open/close valve from a closed state to an opened state in accordance with the timing determined by the determination means.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、空調対象空間の空気を調和する冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device that harmonizes the air in the air-conditioned space.
 従来の空気調和装置において、上下に配列され、内部に冷媒の通路が形成された複数の扁平管と、隣り合う扁平管の間を空気が流れる複数の通風路に区画する複数のフィンと、を有する熱交換器が知られている(例えば、特許文献1参照)。 In a conventional air conditioner, a plurality of flat pipes arranged one above the other and having a refrigerant passage formed therein, and a plurality of fins for partitioning into a plurality of ventilation passages through which air flows between adjacent flat pipes. A heat exchanger having a heat exchanger is known (see, for example, Patent Document 1).
 特許文献1に開示された熱交換器は、メイン熱交換部と、メイン熱交換部と上下方向の異なる位置に設けられ、メイン熱交換部と直列に接続されるサブ熱交換部とを有する。そして、メイン熱交換部には、メイン熱交換部の下流側に位置するサブ熱交換部よりも扁平管が多く設けられている。また、熱交換器の最下段の扁平管がサブ熱交換部よりも上流側のメイン熱交換器に設けられている。この構成により、除霜運転時に最下段の熱交換部に付着した霜を融かすのに必要な時間の短縮を図っている。 The heat exchanger disclosed in Patent Document 1 has a main heat exchange unit and a sub heat exchange unit provided at different positions in the vertical direction from the main heat exchange unit and connected in series with the main heat exchange unit. The main heat exchange section is provided with more flat tubes than the sub heat exchange section located on the downstream side of the main heat exchange section. Further, a flat tube at the bottom of the heat exchanger is provided in the main heat exchanger on the upstream side of the sub heat exchanger. With this configuration, the time required to melt the frost adhering to the heat exchange section at the bottom during the defrosting operation is shortened.
特開2019-11941号公報JP-A-2019-11941
 特許文献1に開示された空気調和装置においては、除霜運転の際、圧縮機から吐出される冷媒は、メイン熱交換部を通過した後にサブ熱交換部に流入する。つまり、圧縮機から吐出される冷媒は、メイン熱交換部の除霜が終了した後も、サブ熱交換部に流入する前に、メイン熱交換部を流通する。そのため、冷媒の熱は、サブ熱交換部に到達する前に、除霜を必要としないメイン熱交換部において冷媒と空気とが熱交換され、無駄に放出されてしまうことになる。その結果、除霜を効率的に行うことができない。 In the air conditioner disclosed in Patent Document 1, the refrigerant discharged from the compressor during the defrosting operation flows into the sub heat exchange section after passing through the main heat exchange section. That is, the refrigerant discharged from the compressor flows through the main heat exchange section even after the defrosting of the main heat exchange section is completed and before it flows into the sub heat exchange section. Therefore, the heat of the refrigerant is wasted because the refrigerant and the air are heat-exchanged in the main heat exchange section that does not require defrosting before reaching the sub heat exchange section. As a result, defrosting cannot be performed efficiently.
 本発明は、上記のような課題を解決するためになされたもので、除霜を効率的に行うことができる冷凍サイクル装置を提供するものである。 The present invention has been made to solve the above problems, and provides a refrigeration cycle apparatus capable of efficiently defrosting.
 本発明に係る冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機と、前記冷媒を減圧して膨張させる膨張弁と、前記膨張弁と接続される負荷側熱交換器と、前記圧縮機および前記負荷側熱交換器と接続される流路切替装置と、前記流路切替装置と前記膨張弁との間において並列に接続される第1熱源側熱交換器および第2熱源側熱交換器を含む熱源側熱交換器と、除霜運転時に流通する前記冷媒の前記第2熱源側熱交換器の下流側に設けられた開閉弁と、前記除霜運転を行う際、前記圧縮機から吐出される前記冷媒が前記熱源側熱交換器に流入するように前記流路切替装置を制御する制御装置と、を有し、前記制御装置は、前記除霜運転が開始されるとき、前記開閉弁を開状態から閉状態に切り替える第1除霜手段と、除霜対象の切り替えのタイミングを決定する判定手段と、前記判定手段によって決定された前記タイミングにしたがって、前記開閉弁を閉状態から開状態に切り替える第2除霜手段と、を有するものである。 The refrigeration cycle apparatus according to the present invention includes a compressor that compresses and discharges a refrigerant, an expansion valve that depressurizes and expands the refrigerant, a load side heat exchanger connected to the expansion valve, the compressor, and the like. A flow path switching device connected to the load side heat exchanger, and a first heat source side heat exchanger and a second heat source side heat exchanger connected in parallel between the flow path switching device and the expansion valve. The heat source side heat exchanger including the refrigerant, the on-off valve provided on the downstream side of the second heat source side heat exchanger of the refrigerant flowing during the defrosting operation, and the on-off valve provided on the downstream side of the second heat source side heat exchanger are discharged from the compressor during the defrosting operation. It has a control device that controls the flow path switching device so that the refrigerant flows into the heat source side heat exchanger, and the control device opens the on-off valve when the defrosting operation is started. The on-off valve is changed from the closed state to the open state according to the first defrosting means for switching from the open state to the closed state, the determining means for determining the switching timing of the defrosting target, and the timing determined by the determining means. It has a second defrosting means for switching.
 本発明によれば、第1除霜手段は、除霜開始時に開閉弁を閉じるので、圧縮機から吐出された冷媒は、2つの熱源側熱交換器のうち、第1熱源側熱交換器に集中的に流れる。その後、第2除霜手段が開閉弁を開くと、冷媒の熱の多くが第2熱源側熱交換器の除霜に費やされる。そのため、直列に接続される2つの熱源側熱交換器を同時に除霜する場合よりも、冷媒の熱が無駄に消費されることが抑制される。その結果、2つの熱源側熱交換器を効率的に除霜することができる。 According to the present invention, since the first defrosting means closes the on-off valve at the start of defrosting, the refrigerant discharged from the compressor is transferred to the first heat source side heat exchanger of the two heat source side heat exchangers. It flows intensively. After that, when the second defrosting means opens the on-off valve, most of the heat of the refrigerant is spent on defrosting the second heat source side heat exchanger. Therefore, wasteful consumption of the heat of the refrigerant is suppressed as compared with the case where two heat source side heat exchangers connected in series are defrosted at the same time. As a result, the two heat source side heat exchangers can be efficiently defrosted.
実施の形態1に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 図1に示した制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device shown in FIG. 図2に示した制御装置の一構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows one configuration example of the control device shown in FIG. 図2に示した制御装置の別の構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows another configuration example of the control device shown in FIG. 図1に示した冷凍サイクル装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the refrigeration cycle apparatus shown in FIG. 変形例1の冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of modification 1. FIG. 変形例1における制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device in modification 1. FIG. 変形例2の冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of the modification 2. 変形例2における制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device in the modification 2. 図8に示した冷凍サイクル装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the refrigeration cycle apparatus shown in FIG. 変形例3の冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of the modification 3. 実施の形態2に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus which concerns on Embodiment 2. FIG. 図12に示した第1熱源側熱交換器の一構成例を示す側面図である。It is a side view which shows one configuration example of the 1st heat source side heat exchanger shown in FIG. 図12に示した第2熱源側熱交換器の一構成例を示す側面図である。It is a side view which shows one configuration example of the 2nd heat source side heat exchanger shown in FIG. 比較例の冷凍サイクル装置の構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structural example of the refrigeration cycle apparatus of the comparative example. 図15に示した比較例の冷凍サイクル装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the refrigeration cycle apparatus of the comparative example shown in FIG. 除霜運転時において、冷媒流量と熱源側熱交換器の位置との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the refrigerant flow rate and the position of a heat exchanger on a heat source side at the time of defrosting operation. 実施の形態3に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus which concerns on Embodiment 3. FIG. 図18に示した熱源側ユニットの一構成例を示す外観斜視図である。It is an external perspective view which shows one configuration example of the heat source side unit shown in FIG. 図18に示した熱源側ユニットについて、図19の場合と異なる方向から見たときの外観斜視図である。FIG. 8 is an external perspective view of the heat source side unit shown in FIG. 18 when viewed from a direction different from that in the case of FIG. 図20に示した熱源側ユニットを上から見たときの熱源側熱交換器のレイアウトを示す模式図である。It is a schematic diagram which shows the layout of the heat source side heat exchanger when the heat source side unit shown in FIG. 20 is seen from the top. 図19に示した第1分割熱交換器の一構成例を示す側面図である。It is a side view which shows one configuration example of the 1st division heat exchanger shown in FIG. 図20に示した第2熱源側熱交換器の一構成例を示す側面図である。It is a side view which shows one configuration example of the 2nd heat source side heat exchanger shown in FIG. 変形例4の冷凍サイクル装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the refrigeration cycle apparatus of the modification 4.
実施の形態1.
 本実施の形態1の冷凍サイクル装置の構成を説明する。図1は、実施の形態1に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。図1に示すように、冷凍サイクル装置1は、熱源側ユニット10と、負荷側ユニット20aおよび20bと、熱源側ユニット10、負荷側ユニット20aおよび20bに含まれる冷媒機器を制御する制御装置30とを有する。図1は、冷凍サイクル装置1が負荷側ユニット20aおよび20bの2台の負荷側ユニットを有する場合を示しているが、負荷側ユニットは1台であってもよく、3台以上であってもよい。
Embodiment 1.
The configuration of the refrigeration cycle apparatus of the first embodiment will be described. FIG. 1 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device according to the first embodiment. As shown in FIG. 1, the refrigeration cycle device 1 includes a heat source side unit 10, load side units 20a and 20b, and a control device 30 for controlling the heat source side unit 10 and the refrigerant equipment included in the load side units 20a and 20b. Has. FIG. 1 shows a case where the refrigeration cycle device 1 has two load- side units 20a and 20b, but the load-side unit may be one or three or more. Good.
 熱源側ユニット10は、冷媒を圧縮して吐出する圧縮機2と、冷媒を外気と熱交換させる熱源側熱交換器15と、流路切替装置5と、アキュムレータ6と、開閉弁7とを有する。熱源側熱交換器15は、第1熱源側熱交換器3および第2熱源側熱交換器4を有する。負荷側ユニット20aは、冷媒を負荷側ユニット20aが設置される室内の空気と熱交換させる負荷側熱交換器21aと、冷媒を減圧して膨張させる膨張弁22aとを有する。負荷側ユニット20bは、冷媒を負荷側ユニット20bが設置される室内の空気と熱交換させる負荷側熱交換器21bと、冷媒を減圧して膨張させる膨張弁22bとを有する。 The heat source side unit 10 includes a compressor 2 that compresses and discharges the refrigerant, a heat source side heat exchanger 15 that exchanges heat with the outside air, a flow path switching device 5, an accumulator 6, and an on-off valve 7. .. The heat source side heat exchanger 15 includes a first heat source side heat exchanger 3 and a second heat source side heat exchanger 4. The load-side unit 20a includes a load-side heat exchanger 21a that exchanges heat with the air in the room where the load-side unit 20a is installed, and an expansion valve 22a that depressurizes and expands the refrigerant. The load-side unit 20b includes a load-side heat exchanger 21b that exchanges heat with the air in the room where the load-side unit 20b is installed, and an expansion valve 22b that depressurizes and expands the refrigerant.
 第1熱源側熱交換器3および第2熱源側熱交換器4は、流路切替装置5と膨張弁22aおよび22bとの間に並列に接続されている。第1熱源側熱交換器3の2つの冷媒出入口のうち、一方の冷媒出入口は第1ガス配管43aと接続され、他方の冷媒出入口は第1液配管44aと接続されている。第2熱源側熱交換器4の2つの冷媒出入口のうち、一方の冷媒出入口は第2ガス配管43bと接続され、他方の冷媒出入口は第2液配管44bと接続されている。第1ガス配管43aおよび第2ガス配管43bは、ガス配管41に合流して流路切替装置5と接続されている。第1液配管44aおよび第2液配管44bは、液配管47に合流して膨張弁22aおよび22bと接続されている。開閉弁7は第2液配管44bに設けられている。 The first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 are connected in parallel between the flow path switching device 5 and the expansion valves 22a and 22b. Of the two refrigerant inlets / outlets of the first heat source side heat exchanger 3, one refrigerant inlet / outlet is connected to the first gas pipe 43a, and the other refrigerant inlet / outlet is connected to the first liquid pipe 44a. Of the two refrigerant inlets / outlets of the second heat source side heat exchanger 4, one refrigerant inlet / outlet is connected to the second gas pipe 43b, and the other refrigerant inlet / outlet is connected to the second liquid pipe 44b. The first gas pipe 43a and the second gas pipe 43b join the gas pipe 41 and are connected to the flow path switching device 5. The first liquid pipe 44a and the second liquid pipe 44b join the liquid pipe 47 and are connected to the expansion valves 22a and 22b. The on-off valve 7 is provided in the second liquid pipe 44b.
 流路切替装置5は、冷媒配管42を介して負荷側熱交換器21aおよび21bと接続され、冷媒配管48を介してアキュムレータ6と接続されている。また、流路切替装置5は、冷媒配管49を介して、圧縮機2およびアキュムレータ6と接続されている。アキュムレータ6は圧縮機2の冷媒吸込口と接続されている。圧縮機2と、第1熱源側熱交換器3および第2熱源側熱交換器4と、膨張弁22aと、負荷側熱交換器21aとが冷媒配管42等の配管で接続され、冷媒回路60aが構成される。また、圧縮機2と、第1熱源側熱交換器3および第2熱源側熱交換器4と、膨張弁22bと、負荷側熱交換器21bとが冷媒配管42等の配管で接続され、冷媒回路60bが構成される。 The flow path switching device 5 is connected to the load side heat exchangers 21a and 21b via the refrigerant pipe 42, and is connected to the accumulator 6 via the refrigerant pipe 48. Further, the flow path switching device 5 is connected to the compressor 2 and the accumulator 6 via the refrigerant pipe 49. The accumulator 6 is connected to the refrigerant suction port of the compressor 2. The compressor 2, the first heat source side heat exchanger 3, the second heat source side heat exchanger 4, the expansion valve 22a, and the load side heat exchanger 21a are connected by a pipe such as a refrigerant pipe 42, and the refrigerant circuit 60a Is configured. Further, the compressor 2, the first heat source side heat exchanger 3, the second heat source side heat exchanger 4, the expansion valve 22b, and the load side heat exchanger 21b are connected by a pipe such as a refrigerant pipe 42, and the refrigerant is used. The circuit 60b is configured.
 第2熱源側熱交換器4には、冷媒の温度Teを検出する熱交換器温度センサ11が設けられている。第2液配管44bには、第2液配管44bを流通する冷媒の温度Tn2を検出する冷媒温度センサ12が設けられている。負荷側ユニット20aには、負荷側ユニット20aが設置された室内の空気の温度を検出する室温センサ23aが設けられている。負荷側ユニット20bには、負荷側ユニット20bが設置された室内の空気の温度を検出する室温センサ23bが設けられている。熱交換器温度センサ11と、冷媒温度センサ12と、室温センサ23aおよび23bとは、例えば、サーミスタである。熱交換器温度センサ11は、第2熱源側熱交換器4の代わりに、第1熱源側熱交換器3側に設けられていてもよい。 The second heat source side heat exchanger 4 is provided with a heat exchanger temperature sensor 11 that detects the temperature Te of the refrigerant. The second liquid pipe 44b is provided with a refrigerant temperature sensor 12 that detects the temperature Tn2 of the refrigerant flowing through the second liquid pipe 44b. The load-side unit 20a is provided with a room temperature sensor 23a that detects the temperature of the air in the room in which the load-side unit 20a is installed. The load-side unit 20b is provided with a room temperature sensor 23b that detects the temperature of the air in the room in which the load-side unit 20b is installed. The heat exchanger temperature sensor 11, the refrigerant temperature sensor 12, and the room temperature sensors 23a and 23b are, for example, thermistors. The heat exchanger temperature sensor 11 may be provided on the first heat source side heat exchanger 3 side instead of the second heat source side heat exchanger 4.
 圧縮機2は、容量を変えることができる圧縮機であり、例えば、インバータ圧縮機である。アキュムレータ6は圧縮機2に液冷媒が吸い込まれるのを防ぐ容器である。膨張弁22aおよび22bは、例えば、電子膨張弁である。流路切替装置5は、圧縮機2から吐出される冷媒の流通方向を、ガス配管41または冷媒配管42に切り替える。流路切替装置5は、例えば、四方弁である。開閉弁7は、例えば、閉状態および開状態のうち、一方の状態から他方の状態に切り替えることができる遮断弁である。開閉弁7は、流通する冷媒の流量を調整する電子膨張弁であってもよい。第1熱源側熱交換器3および第2熱源側熱交換器4と、負荷側熱交換器21aおよび21bとは、例えば、フィンアンドチューブ型熱交換器である。 The compressor 2 is a compressor whose capacity can be changed, for example, an inverter compressor. The accumulator 6 is a container that prevents the liquid refrigerant from being sucked into the compressor 2. The expansion valves 22a and 22b are, for example, electronic expansion valves. The flow path switching device 5 switches the flow direction of the refrigerant discharged from the compressor 2 to the gas pipe 41 or the refrigerant pipe 42. The flow path switching device 5 is, for example, a four-way valve. The on-off valve 7 is, for example, a shutoff valve capable of switching from one of the closed state and the open state to the other state. The on-off valve 7 may be an electronic expansion valve that adjusts the flow rate of the flowing refrigerant. The first heat source side heat exchanger 3, the second heat source side heat exchanger 4, and the load side heat exchangers 21a and 21b are, for example, fin-and-tube heat exchangers.
 制御装置30は、図に示さない信号線を介して、圧縮機2と、流路切替装置5と、膨張弁22aおよび22bと、開閉弁7との各機器と接続される。また、制御装置30は、図に示さない信号線を介して、室温センサ23aおよび23bと、熱交換器温度センサ11と、冷媒温度センサ12との各センサと接続される。制御装置30と、圧縮機2、流路切替装置5、膨張弁22a、膨張弁22bおよび開閉弁7の各機器との通信接続は、有線に限らず、無線であってもよい。センサに関しても、制御装置30と、室温センサ23a、室温センサ23b、熱交換器温度センサ11および冷媒温度センサ12の各センサとの通信接続は、有線に限らず、無線であってもよい。 The control device 30 is connected to each device of the compressor 2, the flow path switching device 5, the expansion valves 22a and 22b, and the on-off valve 7 via a signal line (not shown in the figure). Further, the control device 30 is connected to each of the room temperature sensors 23a and 23b, the heat exchanger temperature sensor 11, and the refrigerant temperature sensor 12 via signal lines (not shown in the figure). The communication connection between the control device 30 and each device of the compressor 2, the flow path switching device 5, the expansion valve 22a, the expansion valve 22b, and the on-off valve 7 is not limited to the wired connection, but may be wireless. Regarding the sensors, the communication connection between the control device 30 and each of the room temperature sensor 23a, the room temperature sensor 23b, the heat exchanger temperature sensor 11 and the refrigerant temperature sensor 12 is not limited to wired, but may be wireless.
 図1に示す制御装置30の構成について説明する前に、冷凍サイクル装置1の各運転モードにおける冷媒の流れを簡単に説明する。ここでは、冷媒回路60aの場合について説明する。また、開閉弁7は開状態であるものとする。 Before explaining the configuration of the control device 30 shown in FIG. 1, the flow of the refrigerant in each operation mode of the refrigeration cycle device 1 will be briefly described. Here, the case of the refrigerant circuit 60a will be described. Further, it is assumed that the on-off valve 7 is in the open state.
 [冷房運転]
 はじめに、図1を参照して、冷凍サイクル装置1が冷房運転を行う場合の冷媒の流れを説明する。冷凍サイクル装置1が冷房運転を行う場合、制御装置30は、圧縮機2から吐出される冷媒が第1熱源側熱交換器3および第2熱源側熱交換器4に流入するように、流路切替装置5の流路を切り替える。低温低圧の冷媒が圧縮機2によって圧縮されることで、高温高圧のガス冷媒が圧縮機2から吐出される。圧縮機2から吐出されたガス冷媒は、流路切替装置5を経由して、第1熱源側熱交換器3および第2熱源側熱交換器4に流入する。第1熱源側熱交換器3および第2熱源側熱交換器4に流入した冷媒は、これら並列に接続された熱交換器において、空気と熱交換することで凝縮し、低温高圧の液冷媒となって、第1熱源側熱交換器3および第2熱源側熱交換器4から流出する。
[Cooling operation]
First, with reference to FIG. 1, the flow of the refrigerant when the refrigeration cycle device 1 performs the cooling operation will be described. When the refrigeration cycle device 1 performs the cooling operation, the control device 30 flows through the flow path so that the refrigerant discharged from the compressor 2 flows into the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4. The flow path of the switching device 5 is switched. When the low-temperature and low-pressure refrigerant is compressed by the compressor 2, the high-temperature and high-pressure gas refrigerant is discharged from the compressor 2. The gas refrigerant discharged from the compressor 2 flows into the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 via the flow path switching device 5. The refrigerant flowing into the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 condenses by exchanging heat with air in these heat exchangers connected in parallel, and becomes a low-temperature and high-pressure liquid refrigerant. Then, it flows out from the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4.
 第1熱源側熱交換器3および第2熱源側熱交換器4から流出した液冷媒は、膨張弁22aによって低温低圧の液冷媒になる。液冷媒は、負荷側熱交換器21aに流入する。負荷側熱交換器21aに流入した冷媒は、負荷側熱交換器21aにおいて、空気と熱交換することで蒸発し、低温低圧のガス冷媒となって負荷側熱交換器21aから流出する。負荷側熱交換器21aにおいて、冷媒が室内の空気から吸熱することで、室内の空気が冷却される。負荷側熱交換器21aから流出した冷媒は、流路切替装置5を介して圧縮機2に吸入される。冷房運転の間、圧縮機2から吐出される冷媒が第1熱源側熱交換器3および第2熱源側熱交換器4と、膨張弁22aと、負荷側熱交換器21aとを順に流通した後、圧縮機2に吸引されるまでのサイクルが繰り返される。 The liquid refrigerant flowing out from the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 becomes a low-temperature low-pressure liquid refrigerant by the expansion valve 22a. The liquid refrigerant flows into the load side heat exchanger 21a. The refrigerant that has flowed into the load-side heat exchanger 21a evaporates by exchanging heat with air in the load-side heat exchanger 21a, becomes a low-temperature low-pressure gas refrigerant, and flows out of the load-side heat exchanger 21a. In the load side heat exchanger 21a, the air in the room is cooled by the refrigerant absorbing heat from the air in the room. The refrigerant flowing out of the load-side heat exchanger 21a is sucked into the compressor 2 via the flow path switching device 5. During the cooling operation, after the refrigerant discharged from the compressor 2 circulates in order through the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4, the expansion valve 22a, and the load side heat exchanger 21a. , The cycle until it is sucked into the compressor 2 is repeated.
 [暖房運転]
 次に、図1を参照して、冷凍サイクル装置1が暖房運転を行う場合の冷媒の流れを説明する。冷凍サイクル装置1が暖房運転を行う場合、制御装置30は、圧縮機2から吐出される冷媒が負荷側熱交換器21aに流入するように、流路切替装置5の流路を切り替える。低温低圧の冷媒が圧縮機2によって圧縮されることで、高温高圧のガス冷媒が圧縮機2から吐出される。圧縮機2から吐出された高温高圧のガス冷媒は、流路切替装置5を経由して、負荷側熱交換器21aに流入する。負荷側熱交換器21aに流入した冷媒は、負荷側熱交換器21aにおいて、空気と熱交換することで凝縮され、高温高圧の液冷媒となって負荷側熱交換器21aから流出する。負荷側熱交換器21aにおいて、冷媒が室内の空気に放熱することで、室内の空気が暖められる。
[Heating operation]
Next, with reference to FIG. 1, the flow of the refrigerant when the refrigeration cycle device 1 performs the heating operation will be described. When the refrigeration cycle device 1 performs the heating operation, the control device 30 switches the flow path of the flow path switching device 5 so that the refrigerant discharged from the compressor 2 flows into the load side heat exchanger 21a. When the low-temperature and low-pressure refrigerant is compressed by the compressor 2, the high-temperature and high-pressure gas refrigerant is discharged from the compressor 2. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the load-side heat exchanger 21a via the flow path switching device 5. The refrigerant flowing into the load-side heat exchanger 21a is condensed by exchanging heat with air in the load-side heat exchanger 21a, becomes a high-temperature and high-pressure liquid refrigerant, and flows out from the load-side heat exchanger 21a. In the load side heat exchanger 21a, the air in the room is warmed by the refrigerant dissipating heat to the air in the room.
 負荷側熱交換器21aから流出した高温高圧の液冷媒は、膨張弁22aによって低温低圧の液冷媒になる。液冷媒は、第1熱源側熱交換器3および第2熱源側熱交換器4に流入する。第1熱源側熱交換器3および第2熱源側熱交換器4において、冷媒は空気と熱交換することで蒸発し、低温低圧のガス冷媒となって、第1熱源側熱交換器3および第2熱源側熱交換器4から流出する。第1熱源側熱交換器3および第2熱源側熱交換器4から流出した冷媒は、流路切替装置5を介して圧縮機2に吸入される。冷凍サイクル装置1が暖房運転を行っている間、圧縮機2から吐出される冷媒が、負荷側熱交換器21aと、膨張弁22aと、第1熱源側熱交換器3および第2熱源側熱交換器4とを順に流通した後、圧縮機2に吸引されるまでのサイクルが繰り返される。 The high temperature and high pressure liquid refrigerant flowing out from the load side heat exchanger 21a becomes a low temperature and low pressure liquid refrigerant by the expansion valve 22a. The liquid refrigerant flows into the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4. In the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4, the refrigerant evaporates by exchanging heat with air to become a low-temperature low-pressure gas refrigerant, and becomes the first heat source side heat exchanger 3 and the first heat exchanger. 2 Outflow from the heat source side heat exchanger 4. The refrigerant flowing out from the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 is sucked into the compressor 2 via the flow path switching device 5. While the refrigeration cycle device 1 is performing the heating operation, the refrigerant discharged from the compressor 2 is the load side heat exchanger 21a, the expansion valve 22a, the first heat source side heat exchanger 3, and the second heat source side heat. After circulating the exchanger 4 in order, the cycle until it is sucked into the compressor 2 is repeated.
[除霜運転]
 図1を参照して、冷凍サイクル装置1が除霜運転を行う場合の冷媒の流れを説明する。冷凍サイクル装置1が運転モードを暖房運転から除霜運転に切り替える場合、制御装置30は、圧縮機2から吐出される冷媒が第1熱源側熱交換器3および第2熱源側熱交換器4に流入するように、流路切替装置5の流路を切り替える。また、制御装置30は、膨張弁22aを全開状態に制御する。除霜運転の場合、冷媒回路60aにおける冷媒の流通方向は冷房運転の場合と同じになるため、冷媒の流れについての詳細な説明を省略する。
[Defrosting operation]
With reference to FIG. 1, the flow of the refrigerant when the refrigeration cycle device 1 performs the defrosting operation will be described. When the refrigeration cycle device 1 switches the operation mode from the heating operation to the defrosting operation, the control device 30 sends the refrigerant discharged from the compressor 2 to the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4. The flow path of the flow path switching device 5 is switched so as to flow in. Further, the control device 30 controls the expansion valve 22a to the fully open state. In the case of the defrosting operation, the flow direction of the refrigerant in the refrigerant circuit 60a is the same as in the case of the cooling operation, and therefore detailed description of the flow of the refrigerant will be omitted.
 次に、図1に示した制御装置30の構成を説明する。図2は、図1に示した制御装置の一構成例を示す機能ブロック図である。 Next, the configuration of the control device 30 shown in FIG. 1 will be described. FIG. 2 is a functional block diagram showing a configuration example of the control device shown in FIG.
 制御装置30は、冷凍サイクル制御手段51と、判定手段52と、タイマ53と、第1除霜手段54と、第2除霜手段55とを有する。制御装置30は、マイクロコンピュータなどの演算装置がソフトウェアを実行することにより各種機能が実現される。また、制御装置30は、各種機能を実現する回路デバイスなどのハードウェアで構成されてもよい。設定温度Ts1が、負荷側ユニット20aを利用するユーザによって、図に示さないリモートコントローラを介して制御装置30に入力される。設定温度Ts2が、負荷側ユニット20bを利用するユーザによって、図に示さないリモートコントローラを介して制御装置30に入力される。なお、図1に示した冷凍サイクル装置1において、制御装置30の設置位置は限定されず、制御装置30は、熱源側ユニット10に設けられてもよく、負荷側ユニット20aまたは20bに設けられてもよい。 The control device 30 includes a refrigerating cycle control means 51, a determination means 52, a timer 53, a first defrosting means 54, and a second defrosting means 55. Various functions of the control device 30 are realized by executing software by an arithmetic unit such as a microcomputer. Further, the control device 30 may be composed of hardware such as a circuit device that realizes various functions. The set temperature Ts1 is input to the control device 30 by the user who uses the load side unit 20a via a remote controller (not shown). The set temperature Ts2 is input to the control device 30 by the user who uses the load side unit 20b via a remote controller (not shown). In the refrigeration cycle device 1 shown in FIG. 1, the installation position of the control device 30 is not limited, and the control device 30 may be provided in the heat source side unit 10 or in the load side unit 20a or 20b. May be good.
 冷凍サイクル制御手段51は、冷凍サイクル装置1の運転モードに対応して流路切替装置5を制御する。冷凍サイクル制御手段51は、室温センサ23aおよび23bから受け取る検出値と設定温度Ts1およびTs2とに基づいて、圧縮機2の運転周波数と、膨張弁22aおよび22bの開度とを制御する。具体的には、冷凍サイクル制御手段51は、室温センサ23aの検出値が設定温度Ts1に近づくように、室温センサ23bの検出値が設定温度Ts2に近づくように、圧縮機2の運転周波数と、膨張弁22aおよび22bの開度とを制御する。 The refrigeration cycle control means 51 controls the flow path switching device 5 according to the operation mode of the refrigeration cycle device 1. The refrigeration cycle control means 51 controls the operating frequency of the compressor 2 and the opening degrees of the expansion valves 22a and 22b based on the detected values received from the room temperature sensors 23a and 23b and the set temperatures Ts1 and Ts2. Specifically, the refrigeration cycle control means 51 sets the operating frequency of the compressor 2 and the operating frequency of the compressor 2 so that the detected value of the room temperature sensor 23a approaches the set temperature Ts1 and the detected value of the room temperature sensor 23b approaches the set temperature Ts2. The opening degrees of the expansion valves 22a and 22b are controlled.
 冷凍サイクル装置1の暖房運転中に、冷凍サイクル制御手段51は、熱交換器温度センサ11から受信する冷媒の温度Teを監視し、冷媒の温度Teが予め決められた温度閾値T0以下であるか否かを判定する。温度閾値T0は、例えば、0℃である。冷凍サイクル制御手段51は、冷媒の温度Teが温度閾値T0以下になると、流路切替装置5を制御して流路を切り替えるとともに、除霜運転を開始したことを示す除霜開始情報を判定手段52に送信する。冷凍サイクル制御手段51は、除霜終了情報を判定手段52から受信すると、流路切替装置5を制御して流路を切り替え、運転モードを除霜運転から暖房運転に切り替える。 During the heating operation of the refrigeration cycle device 1, the refrigeration cycle control means 51 monitors the temperature Te of the refrigerant received from the heat exchanger temperature sensor 11, and whether the temperature Te of the refrigerant is equal to or less than a predetermined temperature threshold T0. Judge whether or not. The temperature threshold T0 is, for example, 0 ° C. When the temperature Te of the refrigerant becomes equal to or lower than the temperature threshold value T0, the refrigerating cycle control means 51 controls the flow path switching device 5 to switch the flow path and determines the defrosting start information indicating that the defrosting operation is started. Send to 52. When the refrigerating cycle control means 51 receives the defrosting end information from the determining means 52, the refrigerating cycle control means 51 controls the flow path switching device 5 to switch the flow path, and switches the operation mode from the defrosting operation to the heating operation.
 タイマ53は、時間を計測し、計測時間の情報を判定手段52に提供する。判定手段52は、除霜開始から経過する時間と冷媒温度センサ12が検出する冷媒の温度Tn2とのうち、少なくともいずれかの値に基づいて、除霜対象の切り替えのタイミングを決定する。判定手段52は、冷凍サイクル制御手段51から除霜開始情報を受信すると、除霜開始情報を第1除霜手段54に転送するとともに、除霜開始からの経過時間である時間t1を監視する。判定手段52は、時間t1が予め決められた時間閾値tth1以上であるか否かを判定する。時間閾値tth1は、第1熱源側熱交換器3の除霜が完全に終了する前の時間に設定されている。判定手段52は、時間t1が時間閾値tth1以上になると、開閉弁7の状態の切り替えを指示する旨の切替指示情報を第2除霜手段55に送信する。 The timer 53 measures the time and provides the measurement time information to the determination means 52. The determination means 52 determines the timing of switching the defrost target based on at least one of the time elapsed from the start of defrosting and the temperature Tn2 of the refrigerant detected by the refrigerant temperature sensor 12. When the determination means 52 receives the defrosting start information from the refrigeration cycle control means 51, the determination means 52 transfers the defrosting start information to the first defrosting means 54 and monitors the time t1 which is the elapsed time from the defrosting start. The determination means 52 determines whether or not the time t1 is equal to or greater than a predetermined time threshold value tth1. The time threshold value tth1 is set to the time before the defrosting of the first heat source side heat exchanger 3 is completely completed. When the time t1 becomes equal to or higher than the time threshold value tth1, the determination means 52 transmits switching instruction information to instruct the switching of the state of the on-off valve 7 to the second defrosting means 55.
 また、判定手段52は、切替指示情報を第2除霜手段55に送信した後、冷媒温度センサ12から受信する冷媒の温度Tn2を監視し、冷媒の温度Tn2が予め決められた温度閾値Tb以上であるか否かを判定する。温度閾値Tbは、例えば、7℃である。判定手段52は、冷媒の温度Tn2が温度閾値Tb以上になると、除霜が終了したことを示す除霜終了情報を冷凍サイクル制御手段51に送信する。 Further, the determination means 52 monitors the refrigerant temperature Tn2 received from the refrigerant temperature sensor 12 after transmitting the switching instruction information to the second defrosting means 55, and the refrigerant temperature Tn2 is equal to or higher than a predetermined temperature threshold value Tb. It is determined whether or not it is. The temperature threshold Tb is, for example, 7 ° C. When the temperature Tn2 of the refrigerant becomes equal to or higher than the temperature threshold value Tb, the determination means 52 transmits the defrosting end information indicating that the defrosting is completed to the refrigerating cycle control means 51.
 第1除霜手段54は、除霜開始情報を判定手段52から受信すると、開閉弁7を開状態から閉状態に切り替える。第2除霜手段55は、切替指示情報を判定手段52から受信すると、開閉弁7を閉状態から開状態に切り替える。 When the first defrosting means 54 receives the defrosting start information from the determining means 52, the first defrosting means 54 switches the on-off valve 7 from the open state to the closed state. When the second defrosting means 55 receives the switching instruction information from the determining means 52, the second defrosting means 55 switches the on-off valve 7 from the closed state to the open state.
 ここで、図2に示した制御装置30のハードウェアの一例を説明する。図3は、図2に示した制御装置の一構成例を示すハードウェア構成図である。制御装置30の各種機能がハードウェアで実行される場合、図2に示した制御装置30は、図3に示すように、処理回路31で構成される。図2に示した、冷凍サイクル制御手段51、判定手段52、タイマ53、第1除霜手段54および第2除霜手段55の各機能は、処理回路31により実現される。 Here, an example of the hardware of the control device 30 shown in FIG. 2 will be described. FIG. 3 is a hardware configuration diagram showing a configuration example of the control device shown in FIG. When various functions of the control device 30 are executed by hardware, the control device 30 shown in FIG. 2 is composed of a processing circuit 31 as shown in FIG. Each function of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54, and the second defrosting means 55 shown in FIG. 2 is realized by the processing circuit 31.
 各機能がハードウェアで実行される場合、処理回路31は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。冷凍サイクル制御手段51、判定手段52、タイマ53、第1除霜手段54および第2除霜手段55の各手段の機能のそれぞれを処理回路31で実現してもよく、各手段の機能を1つの処理回路31で実現してもよい。 When each function is executed by hardware, the processing circuit 31 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). It corresponds to Array) or a combination of these. Each of the functions of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54 and the second defrosting means 55 may be realized by the processing circuit 31, and the function of each means may be 1 It may be realized by one processing circuit 31.
 また、図2に示した制御装置30の別のハードウェアの一例を説明する。図4は、図2に示した制御装置の別の構成例を示すハードウェア構成図である。制御装置30の各種機能がソフトウェアで実行される場合、図2に示した制御装置30は、図4に示すように、プロセッサ71およびメモリ72で構成される。冷凍サイクル制御手段51、判定手段52、タイマ53、第1除霜手段54および第2除霜手段55の各機能は、プロセッサ71およびメモリ72により実現される。図4は、プロセッサ71およびメモリ72が互いに通信可能に接続されることを示している。 Further, an example of another hardware of the control device 30 shown in FIG. 2 will be described. FIG. 4 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. When various functions of the control device 30 are executed by software, the control device 30 shown in FIG. 2 includes a processor 71 and a memory 72 as shown in FIG. The functions of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54, and the second defrosting means 55 are realized by the processor 71 and the memory 72. FIG. 4 shows that the processor 71 and the memory 72 are communicably connected to each other.
 各機能がソフトウェアで実行される場合、冷凍サイクル制御手段51、判定手段52、タイマ53、第1除霜手段54および第2除霜手段55の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ72に格納される。プロセッサ71は、メモリ72に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。 When each function is executed by software, the functions of the refrigerating cycle control means 51, the determination means 52, the timer 53, the first defrosting means 54 and the second defrosting means 55 are software, firmware, or software and firmware. It is realized by the combination. The software and firmware are written as a program and stored in the memory 72. The processor 71 realizes the function of each means by reading and executing the program stored in the memory 72.
 メモリ72として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ72として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ72として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 72, for example, a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM) and an EPROM (Electrically Erasable and Programmable ROM) is used. Further, as the memory 72, a volatile semiconductor memory of RAM (Random Access Memory) may be used. Further, as the memory 72, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), or a DVD (Digital Versaille Disc) may be used.
 次に、本実施の形態1の冷凍サイクル装置1の動作を説明する。図5は、図1に示した冷凍サイクル装置の動作手順の一例を示すフローチャートである。図5は、冷凍サイクル装置1が除霜運転を行う場合の動作手順の一例を示す。冷凍サイクル装置1は図5に示す動作手順を開始する前、暖房運転を行っており、開閉弁7は開状態であるものとする。 Next, the operation of the refrigeration cycle device 1 of the first embodiment will be described. FIG. 5 is a flowchart showing an example of the operation procedure of the refrigeration cycle apparatus shown in FIG. FIG. 5 shows an example of an operation procedure when the refrigerating cycle device 1 performs a defrosting operation. It is assumed that the refrigerating cycle device 1 is in the heating operation before starting the operation procedure shown in FIG. 5, and the on-off valve 7 is in the open state.
 冷凍サイクル制御手段51は、熱交換器温度センサ11から受信する、冷媒の温度Teが温度閾値T0以下になったか否かを判定する(ステップS101)。冷凍サイクル制御手段51は、ステップS101において、冷媒の温度Teが温度閾値T0以下になると、熱源側熱交換器15に霜が付着したと判定し、流路切替装置5を制御して流路を切り替える(ステップS102)。これにより、圧縮機2から吐出される冷媒は、流路切替装置5を経由して熱源側熱交換器15に流入する。また、冷凍サイクル制御手段51は、ステップS102において、除霜開始情報を判定手段52に送信する。 The refrigeration cycle control means 51 determines whether or not the temperature Te of the refrigerant received from the heat exchanger temperature sensor 11 is equal to or lower than the temperature threshold value T0 (step S101). In step S101, the refrigeration cycle control means 51 determines that frost has adhered to the heat source side heat exchanger 15 when the temperature Te of the refrigerant becomes equal to or lower than the temperature threshold value T0, and controls the flow path switching device 5 to control the flow path. Switching (step S102). As a result, the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 15 via the flow path switching device 5. Further, the refrigeration cycle control means 51 transmits the defrosting start information to the determination means 52 in step S102.
 判定手段52は、冷凍サイクル制御手段51から除霜開始情報を受信すると、除霜開始情報を第1除霜手段54に転送するとともに、タイマ53によって計測される時間t1を監視する。第1除霜手段54は、除霜開始情報を判定手段52から受信すると、開閉弁7を閉じる(ステップS103)。判定手段52は、時間t1が時間閾値tth1以上になったか否かを判定する(ステップS104)。判定手段52は、ステップS104において、時間t1が時間閾値tth1以上になると、切替指示情報を第2除霜手段55に送信する。 When the determination means 52 receives the defrosting start information from the refrigerating cycle control means 51, the determination means 52 transfers the defrosting start information to the first defrosting means 54 and monitors the time t1 measured by the timer 53. When the first defrosting means 54 receives the defrosting start information from the determining means 52, the first defrosting means 54 closes the on-off valve 7 (step S103). The determination means 52 determines whether or not the time t1 is equal to or greater than the time threshold value tth1 (step S104). In step S104, the determination means 52 transmits the switching instruction information to the second defrosting means 55 when the time t1 becomes the time threshold value tth1 or more.
 第2除霜手段55は、切替指示情報を判定手段52から受信すると、開閉弁7を開く(ステップS105)。判定手段52は、切替指示情報を第2除霜手段55に送信した後、冷媒温度センサ12から受信する、冷媒の温度Tn2が温度閾値Tb以上になったか否かを判定する(ステップS106)。判定手段52は、冷媒の温度Tn2が温度閾値Tb以上になると、熱源側熱交換器15の除霜が終了したと判定し、除霜終了情報を冷凍サイクル制御手段51に送信する。 When the second defrosting means 55 receives the switching instruction information from the determining means 52, the on-off valve 7 is opened (step S105). After transmitting the switching instruction information to the second defrosting means 55, the determining means 52 determines whether or not the temperature Tn2 of the refrigerant received from the refrigerant temperature sensor 12 is equal to or higher than the temperature threshold value Tb (step S106). When the temperature Tn2 of the refrigerant becomes equal to or higher than the temperature threshold value Tb, the determination means 52 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and transmits the defrosting completion information to the refrigeration cycle control means 51.
 冷凍サイクル制御手段51は、除霜終了情報を判定手段52から受信すると、流路切替装置5を制御して流路を切り替える(ステップS107)。これにより、圧縮機2から吐出される冷媒は、流路切替装置5を経由して負荷側ユニット20aおよび20bに流入する。冷凍サイクル装置1の運転モードが除霜運転から暖房運転に戻る。 When the refrigeration cycle control means 51 receives the defrosting end information from the determination means 52, the refrigeration cycle control means 51 controls the flow path switching device 5 to switch the flow path (step S107). As a result, the refrigerant discharged from the compressor 2 flows into the load- side units 20a and 20b via the flow path switching device 5. The operation mode of the refrigeration cycle device 1 returns from the defrosting operation to the heating operation.
 このようにして、冷凍サイクル装置1が除霜を開始してから時間t1が時間閾値tth1に到達するまで、第1熱源側熱交換器3が集中的に除霜される。その後、冷凍サイクル装置1は、第1熱源側熱交換器3の除霜が完了する前に第2熱源側熱交換器4の除霜を開始するが、第1熱源側熱交換器3への冷媒の流通が継続される。その後、判定手段52が第2熱源側熱交換器4の下流側の冷媒の温度Tn1によって第2熱源側熱交換器4の除霜が終了したか否かを判定する。第2熱源側熱交換器4の下流側の冷媒の温度によって第2熱源側熱交換器の除霜の完了が判定されたとき、第1熱源側熱交換器3の除霜も完了している。 In this way, the first heat source side heat exchanger 3 is intensively defrosted from the time when the refrigeration cycle device 1 starts defrosting until the time t1 reaches the time threshold value tth1. After that, the refrigeration cycle apparatus 1 starts defrosting the second heat source side heat exchanger 4 before the defrosting of the first heat source side heat exchanger 3 is completed, but the first heat source side heat exchanger 3 is defrosted. Refrigerant flow continues. After that, the determination means 52 determines whether or not the defrosting of the second heat source side heat exchanger 4 is completed by the temperature Tn1 of the refrigerant on the downstream side of the second heat source side heat exchanger 4. When the completion of defrosting of the second heat source side heat exchanger is determined by the temperature of the refrigerant on the downstream side of the second heat source side heat exchanger 4, the defrosting of the first heat source side heat exchanger 3 is also completed. ..
 なお、図1に示す構成例においては、冷媒温度センサ12が第2液配管44bに設けられているが、第1液配管44aおよび第2液配管44bの合流点近くの液配管47に冷媒温度センサ12が設けられていてもよい。この場合、図5に示したステップS104においては、判定手段52は、冷媒の温度Tn2が予め決められた温度閾値Ta以上か否かを判定する。そして、ステップS104の判定の結果、判定手段52は、冷媒の温度Tn2が温度閾値Ta以上である場合、切替指示情報を第2除霜手段55に送信すればよい。温度閾値TaおよびTbは、例えば、Ta>Tbの関係である。Ta>Tbの関係により第1熱源側熱交換器3の除霜が完全に終了する前に、冷凍サイクル装置1がステップS105の処理に進んでも、第1熱源側熱交換器3にも冷媒が流通するため、除霜が行われる。また、液配管47に冷媒温度センサ12が設けられている場合、制御装置30にタイマ53が設けられていなくてもよい。 In the configuration example shown in FIG. 1, the refrigerant temperature sensor 12 is provided in the second liquid pipe 44b, but the refrigerant temperature is in the liquid pipe 47 near the confluence of the first liquid pipe 44a and the second liquid pipe 44b. The sensor 12 may be provided. In this case, in step S104 shown in FIG. 5, the determination means 52 determines whether or not the temperature Tn2 of the refrigerant is equal to or higher than a predetermined temperature threshold value Ta. Then, as a result of the determination in step S104, when the temperature Tn2 of the refrigerant is equal to or higher than the temperature threshold Ta, the determination means 52 may transmit the switching instruction information to the second defrosting means 55. The temperature thresholds Ta and Tb have a relationship of, for example, Ta> Tb. Even if the refrigeration cycle device 1 proceeds to the process of step S105 before the defrosting of the first heat source side heat exchanger 3 is completely completed due to the relationship of Ta> Tb, the refrigerant also remains in the first heat source side heat exchanger 3. Defrosting is performed for distribution. Further, when the refrigerant temperature sensor 12 is provided in the liquid pipe 47, the timer 53 may not be provided in the control device 30.
 本実施の形態1の冷凍サイクル装置1は、圧縮機2と、膨張弁22aと、負荷側熱交換器21aと、流路切替装置5と、熱源側熱交換器15と、開閉弁7と、制御装置30とを有する。熱源側熱交換器15は、流路切替装置5と膨張弁22aとの間に並列に接続される第1熱源側熱交換器3および第2熱源側熱交換器4を有する。開閉弁7は、除霜運転時に流通する冷媒の第2熱源側熱交換器4の下流側に設けられている。制御装置30は、除霜運転を行う際、圧縮機2から吐出される冷媒が熱源側熱交換器15に流入するように流路切替装置5を制御する。制御装置30は、第1除霜手段54と、判定手段52と、第2除霜手段55とを有する。第1除霜手段54は、除霜運転が開始されるとき、開閉弁7を開状態から閉状態に切り替える。判定手段52は、除霜対象の切り替えのタイミングを決定する。第2除霜手段は、判定手段52によって決定されるタイミングにしたがって、開閉弁7を閉状態から開状態に切り替える。 The refrigeration cycle device 1 of the first embodiment includes a compressor 2, an expansion valve 22a, a load side heat exchanger 21a, a flow path switching device 5, a heat source side heat exchanger 15, an on-off valve 7, and the like. It has a control device 30 and. The heat source side heat exchanger 15 has a first heat source side heat exchanger 3 and a second heat source side heat exchanger 4 connected in parallel between the flow path switching device 5 and the expansion valve 22a. The on-off valve 7 is provided on the downstream side of the second heat source side heat exchanger 4 of the refrigerant that circulates during the defrosting operation. The control device 30 controls the flow path switching device 5 so that the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 15 during the defrosting operation. The control device 30 includes a first defrosting means 54, a determining means 52, and a second defrosting means 55. The first defrosting means 54 switches the on-off valve 7 from the open state to the closed state when the defrosting operation is started. The determination means 52 determines the timing of switching the defrost target. The second defrosting means switches the on-off valve 7 from the closed state to the open state according to the timing determined by the determination means 52.
 本実施の形態1によれば、第1除霜手段54は、除霜開始時に開閉弁7を閉じるので、圧縮機2から吐出された冷媒は、2つの熱源側熱交換器のうち、第1熱源側熱交換器3に集中的に流れる。その後、第2除霜手段55が開閉弁7を開く。これにより、冷媒は、第2熱源側熱交換器4に流れるようになるが、第1熱源側熱交換器3にも流れる。2つの熱源側熱交換器に冷媒が流れる際、冷媒の熱の多くが第2熱源側熱交換器4で費やされるとともに、第1熱源側熱交換器3に残った霜が溶ける。そのため、直列に接続される2つの熱源側熱交換器を同時に除霜する場合よりも、冷媒の熱が無駄に消費されることが抑制される。その結果、2つの熱源側熱交換器を効率的に除霜することができる。 According to the first embodiment, the first defrosting means 54 closes the on-off valve 7 at the start of defrosting, so that the refrigerant discharged from the compressor 2 is the first of the two heat source side heat exchangers. It flows intensively to the heat exchanger 3 on the heat source side. After that, the second defrosting means 55 opens the on-off valve 7. As a result, the refrigerant flows to the second heat source side heat exchanger 4, but also flows to the first heat source side heat exchanger 3. When the refrigerant flows through the two heat source side heat exchangers, most of the heat of the refrigerant is consumed in the second heat source side heat exchanger 4, and the frost remaining in the first heat source side heat exchanger 3 melts. Therefore, wasteful consumption of the heat of the refrigerant is suppressed as compared with the case where two heat source side heat exchangers connected in series are defrosted at the same time. As a result, the two heat source side heat exchangers can be efficiently defrosted.
(変形例1)
 変形例1は、図1に示した冷凍サイクル装置1において、冷媒温度センサ12が設けられていない場合である。変形例1においては、図1~図5を参照して説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
(Modification example 1)
The first modification is the case where the refrigerating cycle device 1 shown in FIG. 1 is not provided with the refrigerant temperature sensor 12. In the first modification, the same components as those described with reference to FIGS. 1 to 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
 変形例1の冷凍サイクル装置の構成を説明する。図6は、変形例1の冷凍サイクル装置の一構成例を示す冷媒回路図である。図7は、変形例1における制御装置の一構成例を示す機能ブロック図である。 The configuration of the refrigeration cycle device of the first modification will be described. FIG. 6 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the first modification. FIG. 7 is a functional block diagram showing a configuration example of the control device in the first modification.
 冷凍サイクル装置1aの熱源側ユニット10aには、図1に示した冷媒温度センサ12が設けられていない。判定手段52は、切替指示情報を第2除霜手段55に送信した後、タイマ53が計測する時間t1が予め決められた時間閾値tth2以上であるか否かを判定する。時間閾値tth1およびtth2は、tth1<tth2の関係である。判定手段52は時間t1が時間閾値tth2以上になると、除霜終了情報を冷凍サイクル制御手段51に送信する。 The heat source side unit 10a of the refrigeration cycle device 1a is not provided with the refrigerant temperature sensor 12 shown in FIG. After transmitting the switching instruction information to the second defrosting means 55, the determining means 52 determines whether or not the time t1 measured by the timer 53 is equal to or greater than the predetermined time threshold tth2. The time thresholds tth1 and tth2 have a relationship of tth1 <tth2. When the time t1 becomes equal to or higher than the time threshold value tth2, the determination means 52 transmits the defrosting end information to the refrigeration cycle control means 51.
 変形例1の冷凍サイクル装置1aの動作を、図5を参照して説明する。ここでは、図5に示した処理と異なる処理について説明し、図5を参照して説明した処理と同様な処理についての詳細な説明を省略する。 The operation of the refrigeration cycle device 1a of the first modification will be described with reference to FIG. Here, a process different from the process shown in FIG. 5 will be described, and detailed description of the process similar to the process described with reference to FIG. 5 will be omitted.
 ステップS106において、判定手段52は、タイマ53が計測する時間t1が時間閾値tth2以上になったか否かを判定する。ステップS106の判定の結果、判定手段52は、時間t1が時間閾値tth2以上になると、除霜終了情報を冷凍サイクル制御手段51に送信する。 In step S106, the determination means 52 determines whether or not the time t1 measured by the timer 53 is equal to or greater than the time threshold value tth2. As a result of the determination in step S106, when the time t1 becomes the time threshold value tth2 or more, the determination means 52 transmits the defrosting end information to the refrigeration cycle control means 51.
 変形例1によれば、冷媒温度センサ12が設けられていなくても、本実施の形態1の効果が得られる。 According to the first modification, the effect of the first embodiment can be obtained even if the refrigerant temperature sensor 12 is not provided.
(変形例2)
 変形例2は、図1に示した冷凍サイクル装置1において、流量調整弁および冷媒温度センサが第1液配管44aに設けられている場合である。変形例2においては、図1~図7を参照して説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
(Modification 2)
The second modification is the case where the flow rate adjusting valve and the refrigerant temperature sensor are provided in the first liquid pipe 44a in the refrigerating cycle device 1 shown in FIG. In the second modification, the same components as those described with reference to FIGS. 1 to 7 are designated by the same reference numerals, and detailed description thereof will be omitted.
 変形例2の冷凍サイクル装置の構成を説明する。図8は、変形例2の冷凍サイクル装置の一構成例を示す冷媒回路図である。図9は、変形例2における制御装置の一構成例を示す機能ブロック図である。図8に示すように、冷凍サイクル装置1bの熱源側ユニット10bの第1液配管44aには、冷媒温度センサ12aおよび流量調整弁9が設けられている。冷媒温度センサ12aは、第1液配管44aを流通する冷媒の温度Tn1を検出する。流量調整弁9は、閉状態および開状態のうち、一方の状態から他方の状態に切り替えることができる。また、流量調整弁9は、開度を変化させることで、流通する冷媒の流量を調整することができる。図9に示すように、変形例2の制御装置30は図2に示したタイマ53を有していない。制御装置30は、冷媒の温度Tn1について、除霜対象の切り替えのタイミングを決める判定基準になる値として温度閾値Taを予め記憶している。TaおよびTbは同じ値でもよく、異なる値でもよい。 The configuration of the refrigeration cycle device of the second modification will be described. FIG. 8 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the second modification. FIG. 9 is a functional block diagram showing a configuration example of the control device in the second modification. As shown in FIG. 8, a refrigerant temperature sensor 12a and a flow rate adjusting valve 9 are provided in the first liquid pipe 44a of the heat source side unit 10b of the refrigeration cycle device 1b. The refrigerant temperature sensor 12a detects the temperature Tn1 of the refrigerant flowing through the first liquid pipe 44a. The flow rate adjusting valve 9 can switch from one of the closed state and the open state to the other state. Further, the flow rate adjusting valve 9 can adjust the flow rate of the flowing refrigerant by changing the opening degree. As shown in FIG. 9, the control device 30 of the second modification does not have the timer 53 shown in FIG. The control device 30 stores in advance the temperature threshold value Ta as a value that serves as a determination standard for determining the timing of switching the defrosting target for the refrigerant temperature Tn1. Ta and Tb may have the same value or different values.
 次に、変形例2の冷凍サイクル装置1bの動作を説明する。図10は、図8に示した冷凍サイクル装置の動作手順の一例を示すフローチャートである。冷凍サイクル装置1bは図10に示す動作手順を開始する前、暖房運転を行っており、流量調整弁9および開閉弁7は開状態であるものとする。図10に示すステップS201およびS202の処理は、図5を参照して説明したステップS101およびS102の処理と同様なため、その詳細な説明を省略する。 Next, the operation of the refrigeration cycle device 1b of the modification 2 will be described. FIG. 10 is a flowchart showing an example of the operation procedure of the refrigeration cycle apparatus shown in FIG. It is assumed that the refrigerating cycle device 1b is in the heating operation before starting the operation procedure shown in FIG. 10, and the flow rate adjusting valve 9 and the on-off valve 7 are in the open state. Since the processes of steps S201 and S202 shown in FIG. 10 are the same as the processes of steps S101 and S102 described with reference to FIG. 5, detailed description thereof will be omitted.
 ステップS201の判定の後、判定手段52は、冷凍サイクル制御手段51から除霜開始情報を受信すると、除霜開始情報を第1除霜手段54に転送するとともに、冷媒温度センサ12aによって検出される冷媒の温度Tn1を監視する。第1除霜手段54は、除霜開始情報を判定手段52から受信すると、開閉弁7を閉じる(ステップS203)。判定手段52は、冷媒の温度Tn1が温度閾値Ta以上になったか否かを判定する(ステップS204)。判定手段52は、ステップS204において、冷媒の温度Tn1が温度閾値Ta以上になると、切替指示情報を第2除霜手段55に送信する。 After the determination in step S201, when the determination means 52 receives the defrosting start information from the refrigeration cycle control means 51, the determination means 52 transfers the defrosting start information to the first defrosting means 54 and is detected by the refrigerant temperature sensor 12a. The temperature Tn1 of the refrigerant is monitored. When the first defrosting means 54 receives the defrosting start information from the determining means 52, the first defrosting means 54 closes the on-off valve 7 (step S203). The determination means 52 determines whether or not the temperature Tn1 of the refrigerant is equal to or higher than the temperature threshold value Ta (step S204). In step S204, when the temperature Tn1 of the refrigerant becomes equal to or higher than the temperature threshold value Ta, the determination means 52 transmits the switching instruction information to the second defrosting means 55.
 第2除霜手段55は、切替指示情報を判定手段52から受信すると、開閉弁7を開き(ステップS205)、流量調整弁9を閉じる(ステップS206)。判定手段52は、切替指示情報を第2除霜手段55に送信した後、冷媒温度センサ12bによって検出される冷媒の温度Tn2が温度閾値Tb以上になったか否かを判定する(ステップS207)。判定手段52は、冷媒の温度Tn2が温度閾値Tb以上になると、熱源側熱交換器15の除霜が終了したと判定し、除霜終了情報を第2除霜手段55および冷凍サイクル制御手段51に送信する。 When the second defrosting means 55 receives the switching instruction information from the determining means 52, the on-off valve 7 is opened (step S205) and the flow rate adjusting valve 9 is closed (step S206). After transmitting the switching instruction information to the second defrosting means 55, the determining means 52 determines whether or not the temperature Tn2 of the refrigerant detected by the refrigerant temperature sensor 12b is equal to or higher than the temperature threshold value Tb (step S207). When the temperature Tn2 of the refrigerant becomes equal to or higher than the temperature threshold value Tb, the determination means 52 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and sends the defrosting end information to the second defrosting means 55 and the refrigeration cycle control means 51. Send to.
 第2除霜手段55は、除霜終了情報を判定手段52から受信すると、流量調整弁9を開く(ステップS208)。冷凍サイクル制御手段51は、除霜終了情報を判定手段52から受信すると、流路切替装置5を制御して流路を切り替える(ステップS209)。これにより、圧縮機2から吐出される冷媒は、流路切替装置5を経由して負荷側ユニット20aおよび20bに流入する。冷凍サイクル装置1の運転モードが除霜運転から暖房運転に戻る。 When the second defrosting means 55 receives the defrosting end information from the determination means 52, the second defrosting means 55 opens the flow rate adjusting valve 9 (step S208). When the refrigeration cycle control means 51 receives the defrosting end information from the determination means 52, the refrigeration cycle control means 51 controls the flow path switching device 5 to switch the flow path (step S209). As a result, the refrigerant discharged from the compressor 2 flows into the load- side units 20a and 20b via the flow path switching device 5. The operation mode of the refrigeration cycle device 1 returns from the defrosting operation to the heating operation.
 なお、図10に示したステップS206において、第2除霜手段55は、流量調整弁9を閉じているが、流量調整弁9を完全に閉めないで、流量調整弁9の開度を小さくして冷媒を少し流通させてもよい。この場合、ステップS208において、第2除霜手段55は、流量調整弁9を全開にする。 In step S206 shown in FIG. 10, the second defrosting means 55 closes the flow rate adjusting valve 9, but does not completely close the flow rate adjusting valve 9 and reduces the opening degree of the flow rate adjusting valve 9. The refrigerant may be circulated a little. In this case, in step S208, the second defrosting means 55 fully opens the flow rate adjusting valve 9.
 変形例2によれば、並列に接続される第1熱源側熱交換器3および第2熱源側熱交換器4のそれぞれの液配管に冷媒の流通を遮断する弁が設けられている。変形例2の冷凍サイクル装置1bが、除霜運転の際、各弁の開閉を制御して、はじめに第1熱源側熱交換器3を集中的に除霜した後、残りの第2熱源側熱交換器4を集中的に除霜することで、確実、かつ効率よく除霜を行うことができる。 According to the second modification, a valve for shutting off the flow of the refrigerant is provided in each of the liquid pipes of the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 connected in parallel. The refrigeration cycle device 1b of the second modification controls the opening and closing of each valve during the defrosting operation to first intensively defrost the first heat source side heat exchanger 3, and then the remaining second heat source side heat. By intensively defrosting the exchanger 4, defrosting can be performed reliably and efficiently.
 また、判定手段52は、主な除霜対象が第1熱源側熱交換器3から第2熱源側熱交換器4に切り替えるタイミングを冷媒の温度Tn1によって判定している。そのため、判定手段52は、タイマ53によって計測される時間t1よりも、第1熱源側熱交換器3に霜が残っているか否かの状態をより正確に判定できる。また、変形例2によれば、制御装置30にタイマ53が設けられていなくてもよい。 Further, the determination means 52 determines the timing at which the main defrost target is switched from the first heat source side heat exchanger 3 to the second heat source side heat exchanger 4 based on the temperature Tn1 of the refrigerant. Therefore, the determination means 52 can more accurately determine the state of whether or not frost remains in the first heat source side heat exchanger 3 than the time t1 measured by the timer 53. Further, according to the second modification, the timer 53 may not be provided in the control device 30.
(変形例3)
 変形例3は、図1に示した冷凍サイクル装置1において、3つ以上の熱源側熱交換器が並列に接続される場合である。変形例3においては、図1~図10を参照して説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
(Modification example 3)
A modification 3 is a case where three or more heat source side heat exchangers are connected in parallel in the refrigeration cycle apparatus 1 shown in FIG. In the third modification, the same components as those described with reference to FIGS. 1 to 10 are designated by the same reference numerals, and detailed description thereof will be omitted.
 変形例2の冷凍サイクル装置の構成を説明する。図11は、変形例3の冷凍サイクル装置の一構成例を示す冷媒回路図である。図11に示すように、冷凍サイクル装置1cの熱源側ユニット10cにおいて、第1熱源側熱交換器3および第2熱源側熱交換器4と並列に接続される第3熱源側熱交換器8が設けられている。第3熱源側熱交換器8は、第3ガス配管43cを介してガス配管41と接続され、第3液配管44cを介して液配管47と接続されている。 The configuration of the refrigeration cycle device of the second modification will be described. FIG. 11 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the modified example 3. As shown in FIG. 11, in the heat source side unit 10c of the refrigeration cycle apparatus 1c, the third heat source side heat exchanger 8 connected in parallel with the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4 It is provided. The third heat source side heat exchanger 8 is connected to the gas pipe 41 via the third gas pipe 43c, and is connected to the liquid pipe 47 via the third liquid pipe 44c.
 第3液配管44cには、冷媒温度センサ12cおよび第2流量調整弁9bが設けられている。冷媒温度センサ12cは、第3液配管44cを流通する冷媒の温度Tn3を検出する。判定手段52は、冷媒の温度Tn3と予め決められた温度閾値Tdと比較し、冷媒の温度Tn3が温度閾値Td以上になると、除霜対象を切り替える。なお、第1流量調整弁9aおよび第2流量調整弁9bは流量調整弁9と同様な構成であり、冷媒温度センサ12cは冷媒温度センサ12と同様な構成であるため、これらの詳細な説明を省略する。 The third liquid pipe 44c is provided with a refrigerant temperature sensor 12c and a second flow rate adjusting valve 9b. The refrigerant temperature sensor 12c detects the temperature Tn3 of the refrigerant flowing through the third liquid pipe 44c. The determination means 52 compares the temperature Tn3 of the refrigerant with the predetermined temperature threshold Td, and when the temperature Tn3 of the refrigerant becomes equal to or higher than the temperature threshold Td, the defrosting target is switched. The first flow rate adjusting valve 9a and the second flow rate adjusting valve 9b have the same configuration as the flow rate adjusting valve 9, and the refrigerant temperature sensor 12c has the same configuration as the refrigerant temperature sensor 12. Omit.
 変形例2の冷凍サイクル装置1cの動作を、図10を参照して説明する。ここでは、図10に示した処理と異なる処理について説明し、図10を参照して説明した処理と同様な処理についての詳細な説明を省略する。初期状態として、開閉弁7、第1流量調整弁9aおよび第2流量調整弁9bは開状態である。 The operation of the refrigeration cycle device 1c of the second modification will be described with reference to FIG. Here, a process different from the process shown in FIG. 10 will be described, and detailed description of the process similar to the process described with reference to FIG. 10 will be omitted. As an initial state, the on-off valve 7, the first flow rate adjusting valve 9a, and the second flow rate adjusting valve 9b are in the open state.
 ステップS203において、第1除霜手段54は、除霜開始情報を判定手段52から受信すると、第1流量調整弁9aの開状態を維持し、開閉弁7および第2流量調整弁9bを閉じる。ステップS206において、第2除霜手段55は、第1流量調整弁9aを閉じる。ステップS207において、判定手段52は、冷媒の温度Tn2が温度閾値Tb以上になると、切替指示情報を第2除霜手段55に送信する。第2除霜手段55は、ステップS206の後、切替指示情報を判定手段52から受信すると、開閉弁7を閉じ、第2流量調整弁9bを開く。 In step S203, when the first defrosting means 54 receives the defrosting start information from the determining means 52, the first flow rate adjusting valve 9a is maintained in the open state, and the on-off valve 7 and the second flow rate adjusting valve 9b are closed. In step S206, the second defrosting means 55 closes the first flow rate adjusting valve 9a. In step S207, when the temperature Tn2 of the refrigerant becomes equal to or higher than the temperature threshold value Tb, the determination means 52 transmits the switching instruction information to the second defrosting means 55. After step S206, when the second defrosting means 55 receives the switching instruction information from the determining means 52, the second defrosting means 55 closes the on-off valve 7 and opens the second flow rate adjusting valve 9b.
 判定手段52は、ステップS207の判定結果により切替指示情報を第2除霜手段55に送信した後、冷媒温度センサ12cによって検出される冷媒の温度Tn3が温度閾値Td以上になったか否かを判定する。判定手段52は、冷媒の温度Tn3が温度閾値Td以上になると、熱源側熱交換器15の除霜が終了したと判定し、除霜終了情報を第2除霜手段55および冷凍サイクル制御手段51に送信する。その後、制御装置30は、ステップS208およびS209の処理を行う。 The determination means 52 determines whether or not the temperature Tn3 of the refrigerant detected by the refrigerant temperature sensor 12c is equal to or higher than the temperature threshold value Td after transmitting the switching instruction information to the second defrosting means 55 based on the determination result in step S207. To do. When the temperature Tn3 of the refrigerant becomes equal to or higher than the temperature threshold value Td, the determination means 52 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and sends the defrosting end information to the second defrosting means 55 and the refrigeration cycle control means 51. Send to. After that, the control device 30 performs the processes of steps S208 and S209.
 なお、図11は、3つの熱源側熱交換器が並列に接続される場合を示しているが、並列接続される熱源側熱交換器は4つ以上であってもよい。この場合、各熱源側熱交換器の液配管側に、流量調整装置および冷媒温度センサが設けられている。また、図11に示す冷凍サイクル装置1cにおいて、判定手段52は、除霜対象の切り替えのタイミングを、図2に示したタイマ53によって計測される時間t1に基づいて判定してもよい。この場合、冷媒温度センサ12a~12cが設けられていなくてもよい。 Although FIG. 11 shows a case where three heat source side heat exchangers are connected in parallel, the number of heat source side heat exchangers connected in parallel may be four or more. In this case, a flow rate adjusting device and a refrigerant temperature sensor are provided on the liquid piping side of each heat source side heat exchanger. Further, in the refrigeration cycle device 1c shown in FIG. 11, the determination means 52 may determine the timing of switching the defrosting target based on the time t1 measured by the timer 53 shown in FIG. In this case, the refrigerant temperature sensors 12a to 12c may not be provided.
 変形例3によれば、並列に接続される熱源側熱交換器の数が3つ以上であっても、効率よく除霜することができる。 According to Modification 3, even if the number of heat source side heat exchangers connected in parallel is three or more, defrosting can be performed efficiently.
実施の形態2.
 本実施の形態2の冷凍サイクル装置は、流通する冷媒を分流および合流するヘッダが熱源側熱交換器に設けられた場合である。実施の形態2においては、実施の形態1において説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
The refrigeration cycle apparatus of the second embodiment is a case where a header for dividing and merging the flowing refrigerant is provided in the heat source side heat exchanger. In the second embodiment, the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態2の冷凍サイクル装置の構成を説明する。図12は、実施の形態2に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。冷凍サイクル装置1dは、熱源側ユニット10dを有する。熱源側ユニット10dにおいて、第1熱源側熱交換器3の第1ガス配管43a側に第1ガスヘッダ61が設けられ、第1熱源側熱交換器3の第1液配管44a側に第1液ヘッダ62が設けられている。また、熱源側ユニット10dにおいて、第2熱源側熱交換器4の第2ガス配管43b側に第2ガスヘッダ63が設けられ、第2熱源側熱交換器4の第2液配管44b側に第2液ヘッダ64が設けられている。 The configuration of the refrigeration cycle device of the second embodiment will be described. FIG. 12 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device according to the second embodiment. The refrigeration cycle device 1d has a heat source side unit 10d. In the heat source side unit 10d, the first gas header 61 is provided on the first gas pipe 43a side of the first heat source side heat exchanger 3, and the first liquid header 61 is provided on the first liquid pipe 44a side of the first heat source side heat exchanger 3. 62 is provided. Further, in the heat source side unit 10d, the second gas header 63 is provided on the second gas pipe 43b side of the second heat source side heat exchanger 4, and the second gas header 63 is provided on the second liquid pipe 44b side of the second heat source side heat exchanger 4. A liquid header 64 is provided.
 図13は、図12に示した第1熱源側熱交換器の一構成例を示す側面図である。図14は、図12に示した第2熱源側熱交換器の一構成例を示す側面図である。図13および図14において、説明の便宜上、方向を定義するためにX軸およびZ軸を図に示している。図13および図14に示すZ軸矢印の反対方向が重力方向である。図13および図14に示す実線矢印は、冷凍サイクル装置1が冷房運転および除霜運転を行うときの冷媒の流通方向を示す。図13および図14に示す破線矢印は、冷凍サイクル装置1が暖房運転を行うときの冷媒の流通方向を示す。 FIG. 13 is a side view showing a configuration example of the first heat source side heat exchanger shown in FIG. FIG. 14 is a side view showing a configuration example of the second heat source side heat exchanger shown in FIG. In FIGS. 13 and 14, for convenience of explanation, the X-axis and the Z-axis are shown in the figure to define the direction. The direction opposite to the Z-axis arrow shown in FIGS. 13 and 14 is the direction of gravity. The solid arrows shown in FIGS. 13 and 14 indicate the flow direction of the refrigerant when the refrigerating cycle device 1 performs the cooling operation and the defrosting operation. The broken line arrows shown in FIGS. 13 and 14 indicate the flow direction of the refrigerant when the refrigeration cycle device 1 performs the heating operation.
 図13に示すように、第1熱源側熱交換器3は、複数の伝熱管45aと、複数の放熱フィン46aとを有する。第1ガスヘッダ61に第1ガス配管43aが接続されている。第1ガス配管43aが第1ガスヘッダ61に接続される位置は、第1ガスヘッダ61の地面に対して垂直方向(Z軸矢印方向)の長さである高さの中央部である。中央部は、第1ガスヘッダ61の高さの正確な中心の位置に限らず、中心の位置を基準とした一定の範囲の高さを含む。第1液ヘッダ62の下部に第1液配管44aが接続されている。第1ガスヘッダ61は、冷凍サイクル装置1が冷房運転および除霜運転を行う際、第1ガス配管43aから流入する冷媒を複数の伝熱管45aに分流する。第1ガスヘッダ61は、冷凍サイクル装置1が暖房運転を行う際、複数の伝熱管45aから流入する冷媒を合流して第1ガス配管43aに流出する。 As shown in FIG. 13, the first heat source side heat exchanger 3 has a plurality of heat transfer tubes 45a and a plurality of heat radiation fins 46a. The first gas pipe 43a is connected to the first gas header 61. The position where the first gas pipe 43a is connected to the first gas header 61 is the central portion of the height which is the length of the first gas header 61 in the direction perpendicular to the ground (Z-axis arrow direction). The central portion includes not only the exact center position of the height of the first gas header 61 but also a height in a certain range with respect to the center position. The first liquid pipe 44a is connected to the lower part of the first liquid header 62. The first gas header 61 divides the refrigerant flowing from the first gas pipe 43a into the plurality of heat transfer pipes 45a when the refrigerating cycle device 1 performs the cooling operation and the defrosting operation. When the refrigeration cycle device 1 performs the heating operation, the first gas header 61 merges the refrigerants flowing in from the plurality of heat transfer pipes 45a and flows out to the first gas pipe 43a.
 図14に示すように、第2熱源側熱交換器4は、複数の伝熱管45bと、複数の放熱フィン46bとを有する。第2ガスヘッダ63に第2ガス配管43bが接続されている。第2ガス配管43bが第2ガスヘッダ63に接続される位置は、第2ガスヘッダ63の地面に対して垂直方向(Z軸矢印方向)の長さである高さの中央部である。中央部は、第2ガスヘッダ63の高さの正確な中心の位置に限らず、中心の位置を基準とした一定の範囲の高さを含む。第2液ヘッダ64の下部に第2液配管44bが接続されている。第2ガスヘッダ63は、冷凍サイクル装置1が冷房運転および除霜運転を行う際、第2ガス配管43bから流入する冷媒を複数の伝熱管45bに分流する。第2ガスヘッダ63は、冷凍サイクル装置1が暖房運転を行う際、複数の伝熱管45bから流入する冷媒を合流して第2ガス配管43bに流出する。 As shown in FIG. 14, the second heat source side heat exchanger 4 has a plurality of heat transfer tubes 45b and a plurality of heat radiation fins 46b. The second gas pipe 43b is connected to the second gas header 63. The position where the second gas pipe 43b is connected to the second gas header 63 is the central portion of the height which is the length of the second gas header 63 in the direction perpendicular to the ground (Z-axis arrow direction). The central portion includes not only the exact center position of the height of the second gas header 63 but also a certain range of heights based on the center position. The second liquid pipe 44b is connected to the lower part of the second liquid header 64. The second gas header 63 divides the refrigerant flowing from the second gas pipe 43b into the plurality of heat transfer pipes 45b when the refrigerating cycle device 1 performs the cooling operation and the defrosting operation. When the refrigeration cycle device 1 performs the heating operation, the second gas header 63 merges the refrigerants flowing in from the plurality of heat transfer pipes 45b and flows out to the second gas pipe 43b.
 本実施の形態2においては、第1熱源側熱交換器3の高さと第2熱源側熱交換器4の高さとが同等であり、伝熱管45aの本数と伝熱管45bの本数とが同じ場合である。図13および図14において、伝熱管45aの本数および伝熱管45bの本数が13本の場合を示しているが、伝熱管45aおよび45bの本数は13本の場合に限らない。 In the second embodiment, the height of the first heat source side heat exchanger 3 and the height of the second heat source side heat exchanger 4 are the same, and the number of heat transfer tubes 45a and the number of heat transfer tubes 45b are the same. Is. 13 and 14 show the case where the number of heat transfer tubes 45a and the number of heat transfer tubes 45b is 13, but the number of heat transfer tubes 45a and 45b is not limited to 13.
 なお、本実施の形態2の冷凍サイクル装置1dの動作は、図5を参照して説明した動作手順と同様になるため、その詳細な説明を省略する。 Since the operation of the refrigeration cycle device 1d according to the second embodiment is the same as the operation procedure described with reference to FIG. 5, detailed description thereof will be omitted.
 本実施の形態2の冷凍サイクル装置1dによる作用および効果をわかりやすく説明するために、比較例の冷凍サイクル装置の構成を説明する。図15は、比較例の冷凍サイクル装置の構成例を示す冷媒回路図である。図1および図12を参照して説明した構成と同一の構成については同一の符号を付し、その詳細な説明を省略する。 In order to explain the action and effect of the refrigeration cycle device 1d of the second embodiment in an easy-to-understand manner, the configuration of the refrigeration cycle device of the comparative example will be described. FIG. 15 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle device of a comparative example. The same components as those described with reference to FIGS. 1 and 12 are designated by the same reference numerals, and detailed description thereof will be omitted.
 図15に示すように、比較例の冷凍サイクル装置100は、熱源側ユニット110と、負荷側ユニット20aおよび20bと、制御装置130とを有する。除霜運転時に冷媒が流通する方向を基準として、第1液配管44aおよび第2液配管44bが合流する位置よりも下流側の液配管47に冷媒温度センサ121が設けられている。冷媒温度センサ121は、液配管47を流通する冷媒の温度Trを検出し、冷媒の温度Trの情報を制御装置130に送信する。制御装置130のハードウェア構成は図3および図4を参照して説明した構成と同様なため、その詳細な説明を省略する。 As shown in FIG. 15, the refrigeration cycle device 100 of the comparative example has a heat source side unit 110, load side units 20a and 20b, and a control device 130. A refrigerant temperature sensor 121 is provided in the liquid pipe 47 on the downstream side of the position where the first liquid pipe 44a and the second liquid pipe 44b meet, with reference to the direction in which the refrigerant flows during the defrosting operation. The refrigerant temperature sensor 121 detects the temperature Tr of the refrigerant flowing through the liquid pipe 47, and transmits information on the temperature Tr of the refrigerant to the control device 130. Since the hardware configuration of the control device 130 is the same as the configuration described with reference to FIGS. 3 and 4, detailed description thereof will be omitted.
 図12に示した構成と比較すると、図15に示す熱源側ユニット110の第2液配管44bには、図1に示した開閉弁7が設けられていない。冷凍サイクル装置100が除霜運転を行う場合、制御装置130は、冷媒の温度Trと予め決められた温度閾値Tcとを比較する。そして、制御装置130は、冷媒の温度Trが温度閾値Tc以上になると、除霜が終了したと判定する。温度閾値Tcは、例えば、10℃である。温度閾値TbおよびTcは、Tc>Tbの関係である。また、温度閾値をTcは、変形例2で述べた温度閾値Taと比較すると、Ta<Tcの関係である。 Compared with the configuration shown in FIG. 12, the second liquid pipe 44b of the heat source side unit 110 shown in FIG. 15 is not provided with the on-off valve 7 shown in FIG. When the refrigeration cycle device 100 performs the defrosting operation, the control device 130 compares the temperature Tr of the refrigerant with the predetermined temperature threshold Tc. Then, the control device 130 determines that the defrosting is completed when the temperature Tr of the refrigerant becomes equal to or higher than the temperature threshold value Tc. The temperature threshold Tc is, for example, 10 ° C. The temperature thresholds Tb and Tc have a relationship of Tc> Tb. Further, when the temperature threshold value Tc is compared with the temperature threshold value Ta described in the second modification, the relationship is Ta <Tc.
 次に、図15に示した比較例の冷凍サイクル装置100の動作を、図16を参照して説明する。図16は、図15に示した比較例の冷凍サイクル装置の動作手順の一例を示すフローチャートである。冷凍サイクル装置100は、図16に示す動作手順を開始する前、暖房運転を行っているものとする。 Next, the operation of the refrigeration cycle device 100 of the comparative example shown in FIG. 15 will be described with reference to FIG. FIG. 16 is a flowchart showing an example of the operation procedure of the refrigeration cycle device of the comparative example shown in FIG. It is assumed that the refrigeration cycle device 100 is in the heating operation before starting the operation procedure shown in FIG.
 制御装置130は、冷媒の温度Teが温度閾値T0以上になったか否かを判定する(ステップS1001)。制御装置130は、ステップS1001において、冷媒の温度Teが温度閾値T0以下になると、熱源側熱交換器15に霜が付着したと判定し、流路切替装置5を制御して流路を切り替える(ステップS1002)。これにより、圧縮機2から吐出される冷媒は、流路切替装置5を経由して熱源側熱交換器15に流入する。 The control device 130 determines whether or not the temperature Te of the refrigerant is equal to or higher than the temperature threshold value T0 (step S1001). In step S1001, the control device 130 determines that frost has adhered to the heat source side heat exchanger 15 when the temperature Te of the refrigerant becomes equal to or lower than the temperature threshold value T0, and controls the flow path switching device 5 to switch the flow path ( Step S1002). As a result, the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 15 via the flow path switching device 5.
 続いて、制御装置130は、冷媒の温度Trが温度閾値Tc以上であるか否かを判定する(ステップS1003)。制御装置130は、ステップS1003において、冷媒の温度Trが温度閾値Tc以上になると、熱源側熱交換器15の除霜が終了したと判定し、流路切替装置5を制御して流路を切り替える(ステップS1004)。冷凍サイクル装置100の運転モードが除霜運転から暖房運転に戻る。 Subsequently, the control device 130 determines whether or not the temperature Tr of the refrigerant is equal to or higher than the temperature threshold value Tc (step S1003). In step S1003, when the temperature Tr of the refrigerant becomes equal to or higher than the temperature threshold value Tc, the control device 130 determines that the defrosting of the heat source side heat exchanger 15 has been completed, and controls the flow path switching device 5 to switch the flow path. (Step S1004). The operation mode of the refrigeration cycle device 100 returns from the defrosting operation to the heating operation.
 冷凍サイクル装置100の除霜運転中、図13に示した第1熱源側熱交換器3において、第1ガスヘッダ61の中央部に第1ガス配管43aからガス冷媒が流入する。第1ガスヘッダ61に流入したガス冷媒は複数の伝熱管45aに分流するが、圧力損失によって、第1熱源側熱交換器3の下段側の伝熱管45aに冷媒が滞留しやすくなる。図14示した第2熱源側熱交換器4についても、第1熱源側熱交換器3と同様に、除霜運転の際、第2熱源側熱交換器4の下段側の伝熱管45bに冷媒が滞留しやすくなる。 During the defrosting operation of the refrigeration cycle device 100, in the first heat source side heat exchanger 3 shown in FIG. 13, the gas refrigerant flows into the central portion of the first gas header 61 from the first gas pipe 43a. The gas refrigerant that has flowed into the first gas header 61 is diverted to the plurality of heat transfer tubes 45a, but due to the pressure loss, the refrigerant tends to stay in the heat transfer tubes 45a on the lower stage side of the first heat source side heat exchanger 3. Similarly to the first heat source side heat exchanger 3, the second heat source side heat exchanger 4 shown in FIG. 14 also has a refrigerant in the heat transfer tube 45b on the lower stage side of the second heat source side heat exchanger 4 during the defrosting operation. Is likely to stay.
 図17は、除霜運転時において、冷媒流量と熱源側熱交換器の位置との関係の一例を示すグラフである。図17の横軸は冷媒の流量を示し、縦軸は図13に示した第1熱源側熱交換器3の垂直方向(Z軸矢印方向)における伝熱管45aの高さHuを示す。図17の縦軸において、第1熱源側熱交換器3の複数の伝熱管45aのうち、最下段の伝熱管45aの高さをHu1とし、最上段の伝熱管45aの高さをHunとしている。また、図17において、実線のグラフは本実施の形態2の冷凍サイクル装置1dの場合であり、破線のグラフは図15に示した比較例の冷凍サイクル装置100の場合である。さらに、第2熱源側熱交換器4についても、図17に示したグラフと同様な傾向になるため、ここでは、第2熱源側熱交換器4の場合の説明を省略する。 FIG. 17 is a graph showing an example of the relationship between the flow rate of the refrigerant and the position of the heat exchanger on the heat source side during the defrosting operation. The horizontal axis of FIG. 17 shows the flow rate of the refrigerant, and the vertical axis shows the height Hu of the heat transfer tube 45a in the vertical direction (Z-axis arrow direction) of the first heat source side heat exchanger 3 shown in FIG. In the vertical axis of FIG. 17, among the plurality of heat transfer tubes 45a of the first heat source side heat exchanger 3, the height of the lowermost heat transfer tube 45a is Hu1, and the height of the uppermost heat transfer tube 45a is Hun. .. Further, in FIG. 17, the solid line graph is the case of the refrigeration cycle device 1d of the second embodiment, and the broken line graph is the case of the refrigeration cycle device 100 of the comparative example shown in FIG. Further, since the second heat source side heat exchanger 4 has the same tendency as the graph shown in FIG. 17, the description of the second heat source side heat exchanger 4 will be omitted here.
 比較例の冷凍サイクル装置100の除霜運転の際、冷媒が第1熱源側熱交換器および第2熱源側熱交換器に分流すると、図17の破線のグラフに示すように、熱源側熱交換器15における上段側に比べて下段側の冷媒の流量が小さくなっている。これは、図13および図14を参照して説明したように、ヘッダの中央部から複数の伝熱管に冷媒が分流する場合、圧力損失が原因で冷媒の流れがわるくなり、下段側で冷媒が滞留しやすくなるためである。 When the refrigerant is diverted to the first heat source side heat exchanger and the second heat source side heat exchanger during the defrosting operation of the refrigeration cycle device 100 of the comparative example, the heat exchange on the heat source side is shown as shown in the graph of the broken line in FIG. The flow rate of the refrigerant on the lower stage side is smaller than that on the upper stage side in the vessel 15. This is because, as described with reference to FIGS. 13 and 14, when the refrigerant flows from the central portion of the header to the plurality of heat transfer tubes, the flow of the refrigerant becomes stagnant due to the pressure loss, and the refrigerant flows on the lower side. This is because it tends to stay.
 そのため、比較例の冷凍サイクル装置100においては、熱源側熱交換器15の下段側の伝熱管に流れる冷媒の流量を考慮して、熱源側熱交換器15の除霜を終了するまで長い時間を必要とし、温度閾値Tcが高い値に設定される。その結果、図17の破線のグラフに示すように、熱源側熱交換器15の下段側の伝熱管の除霜が終了するまで、上段側において冷媒が無駄に流れてしまうことになる。 Therefore, in the refrigeration cycle device 100 of the comparative example, it takes a long time to complete the defrosting of the heat source side heat exchanger 15 in consideration of the flow rate of the refrigerant flowing through the lower heat transfer tube of the heat source side heat exchanger 15. It is required and the temperature threshold Tc is set to a high value. As a result, as shown in the broken line graph of FIG. 17, the refrigerant flows wastefully on the upper side until the defrosting of the heat transfer tube on the lower side of the heat source side heat exchanger 15 is completed.
 これに対して、本実施の形態2の冷凍サイクル装置1dは、図17の実線のグラフに示すように、冷媒流量は第1熱源側熱交換器3における伝熱管45aの高さの違いに対する影響が比較例に比べて小さく、複数の伝熱管45aにより均等に冷媒が流通する。そのため、温度閾値Tbを温度閾値Tcよりも低い温度に設定することができ、比較例に比べて、効率よく除霜を行うことができる。 On the other hand, in the refrigeration cycle device 1d of the second embodiment, as shown in the solid line graph of FIG. 17, the refrigerant flow rate has an influence on the difference in the height of the heat transfer tube 45a in the first heat source side heat exchanger 3. Is smaller than that of the comparative example, and the refrigerant is evenly distributed by the plurality of heat transfer tubes 45a. Therefore, the temperature threshold value Tb can be set to a temperature lower than the temperature threshold value Tc, and defrosting can be performed more efficiently than in the comparative example.
 本実施の形態2の冷凍サイクル装置1dは、除霜運転の際、第1熱源側熱交換器3に流入する冷媒を複数の伝熱管45aに分流する第1ガスヘッダ61と、第2熱源側熱交換器4に流入する冷媒を複数の伝熱管45bに分流する第2ガスヘッダ63と有する。第1ガス配管43aは、重力方向に対して第1ガスヘッダ61の中央部と接続され、第2ガス配管43bは、重力方向に対して第2ガスヘッダ63の中央部と接続される。 In the refrigeration cycle device 1d of the second embodiment, the first gas header 61 that divides the refrigerant flowing into the first heat source side heat exchanger 3 into the plurality of heat transfer tubes 45a during the defrosting operation, and the second heat source side heat. It has a second gas header 63 that divides the refrigerant flowing into the exchanger 4 into the plurality of heat transfer tubes 45b. The first gas pipe 43a is connected to the central portion of the first gas header 61 in the direction of gravity, and the second gas pipe 43b is connected to the central portion of the second gas header 63 in the direction of gravity.
 本実施の形態2において、除霜運転の際、実施の形態1において説明したように開閉弁7の開度を調整することで、第1熱源側熱交換器3および第2熱源側熱交換器4のそれぞれに流れる冷媒の流量が増加する。本実施の形態2によれば、伝熱管の高さの違いに起因して熱源側熱交換器の下段側に冷媒が滞留することが抑制され、下段側の冷媒の流量が増加する。その結果、熱源側熱交換器の下段側に付着した霜を確実、かつ効率的に除霜することができる。温度閾値TaおよびTbを比較例の温度閾値Tcよりも小さい値に設定できるため、比較例に比べて除霜時間が短くなり、効率的に除霜できる。 In the second embodiment, the first heat source side heat exchanger 3 and the second heat source side heat exchanger are adjusted by adjusting the opening degree of the on-off valve 7 as described in the first embodiment during the defrosting operation. The flow rate of the refrigerant flowing in each of 4 increases. According to the second embodiment, it is suppressed that the refrigerant stays on the lower side of the heat source side heat exchanger due to the difference in the height of the heat transfer tube, and the flow rate of the refrigerant on the lower stage side increases. As a result, the frost adhering to the lower side of the heat source side heat exchanger can be reliably and efficiently removed. Since the temperature thresholds Ta and Tb can be set to values smaller than the temperature threshold Tc of the comparative example, the defrosting time is shorter than that of the comparative example, and defrosting can be performed efficiently.
実施の形態3.
 本実施の形態3の冷凍サイクル装置は、第1熱源側熱交換器の伝熱管の本数と第2熱源側熱交換器の伝熱管の本数とが異なる場合である。本実施の形態3においては、実施の形態1および2において説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
Embodiment 3.
In the refrigeration cycle apparatus of the third embodiment, the number of heat transfer tubes of the first heat source side heat exchanger and the number of heat transfer tubes of the second heat source side heat exchanger are different. In the third embodiment, the same components as those described in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態3の冷凍サイクル装置の構成を説明する。図18は、実施の形態3に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。冷凍サイクル装置1eは、熱源側ユニット10eを有する。熱源側ユニット10eに設けられた第1熱源側熱交換器3は、第1分割熱交換器3-1および第2分割熱交換器3-2が並列に接続された構成である。 The configuration of the refrigeration cycle apparatus according to the third embodiment will be described. FIG. 18 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device according to the third embodiment. The refrigeration cycle device 1e has a heat source side unit 10e. The first heat source side heat exchanger 3 provided in the heat source side unit 10e has a configuration in which the first divided heat exchanger 3-1 and the second divided heat exchanger 3-2 are connected in parallel.
 第1ガス配管43aはガス分岐配管43a-1および43-2に分岐している。ガス分岐配管43a-1は第1分割熱交換器3-1に接続され、ガス分岐配管43a-2は第2分割熱交換器3-2に接続されている。第1液配管44aは液分岐配管44a-1および44a-2に分岐している。液分岐配管44a-1は第1分割熱交換器3-1に接続され、液分岐配管44a-2は第2分割熱交換器3-2に接続されている。 The first gas pipe 43a is branched into gas branch pipes 43a-1 and 43-2. The gas branch pipe 43a-1 is connected to the first split heat exchanger 3-1 and the gas branch pipe 43a-2 is connected to the second split heat exchanger 3-2. The first liquid pipe 44a is branched into liquid branch pipes 44a-1 and 44a-2. The liquid branch pipe 44a-1 is connected to the first split heat exchanger 3-1 and the liquid branch pipe 44a-2 is connected to the second split heat exchanger 3-2.
 第1分割熱交換器3-1において、ガス分岐配管43a-1側に第1ガスヘッダ61が設けられ、液分岐配管44a-1側に第1液ヘッダ62が設けられている。第2分割熱交換器3-2において、ガス分岐配管43a-2側に第1ガスヘッダ65が設けられ、液分岐配管44a-2側に第1液ヘッダ66が設けられている。第1ガスヘッダ65は第1ガスヘッダ61と同様な構成であり、第1液ヘッダ66は第1液ヘッダ62と同様な構成であるため、これらの詳細な説明を省略する。 In the first split heat exchanger 3-1 the first gas header 61 is provided on the gas branch pipe 43a-1 side, and the first liquid header 62 is provided on the liquid branch pipe 44a-1 side. In the second split heat exchanger 3-2, the first gas header 65 is provided on the gas branch pipe 43a-2 side, and the first liquid header 66 is provided on the liquid branch pipe 44a-2 side. Since the first gas header 65 has the same configuration as the first gas header 61 and the first liquid header 66 has the same configuration as the first liquid header 62, detailed description thereof will be omitted.
 図19は、図18に示した熱源側ユニットの一構成例を示す外観斜視図である。図20は、図18に示した熱源側ユニットについて、図19の場合と異なる方向から見たときの外観斜視図である。第1分割熱交換器3-1および第2分割熱交換器3-2は、地面に対して垂直方向(Z軸矢印方向)の長さである高さは同じであり、その高さをL1とする。第2熱源側熱交換器4の高さをL2とすると、高さL1およびL2は、L2<L1の関係である。図19および図20に示す構成例は、例えば、L2=L1×(2/3)の関係である。 FIG. 19 is an external perspective view showing a configuration example of the heat source side unit shown in FIG. FIG. 20 is an external perspective view of the heat source side unit shown in FIG. 18 when viewed from a direction different from that in the case of FIG. The first split heat exchanger 3-1 and the second split heat exchanger 3-2 have the same height, which is the length in the direction perpendicular to the ground (Z-axis arrow direction), and the height is L1. And. Assuming that the height of the second heat source side heat exchanger 4 is L2, the heights L1 and L2 have a relationship of L2 <L1. The configuration examples shown in FIGS. 19 and 20 have a relationship of, for example, L2 = L1 × (2/3).
 図21は、図20に示した熱源側ユニットを上から見たときの熱源側熱交換器のレイアウトを示す模式図である。第1分割熱交換器3-1および第2分割熱交換器3-2を上から見たときの形状は、図21に示すように、L字状である。第2熱源側熱交換器4を上から見たときの形状は、図21に示すように、直線状である。図21に示す構成例において、第1分割熱交換器3-1はL字状であるが第1分割熱交換器3-1を直線状に伸ばした場合、第1分割熱交換器3-1の直線状の長さと第2熱源側熱交換器4の直線状の長さとは同等になる。 FIG. 21 is a schematic view showing the layout of the heat source side heat exchanger when the heat source side unit shown in FIG. 20 is viewed from above. As shown in FIG. 21, the shapes of the first split heat exchanger 3-1 and the second split heat exchanger 3-2 when viewed from above are L-shaped. As shown in FIG. 21, the shape of the second heat source side heat exchanger 4 when viewed from above is linear. In the configuration example shown in FIG. 21, the first split heat exchanger 3-1 is L-shaped, but when the first split heat exchanger 3-1 is extended in a straight line, the first split heat exchanger 3-1 The linear length of the second heat source side heat exchanger 4 is equal to the linear length of the second heat source side heat exchanger 4.
 図22は、図19に示した第1分割熱交換器の一構成例を示す側面図である。第2分割熱交換器3-2は第1分割熱交換器3-1と同じ構成であるため、図22に示すことを省略している。また、図22は、図21に示したL字状の第1分割熱交換器3-1を直線状に伸ばした場合の状態を示す。図23は、図20に示した第2熱源側熱交換器の一構成例を示す側面図である。図22および図23には、説明の便宜上、方向を定義するためにX軸およびZ軸を図に示しているが、X軸矢印は図19および図20に示したX軸矢印と対応していなくてもよい。 FIG. 22 is a side view showing a configuration example of the first split heat exchanger shown in FIG. Since the second split heat exchanger 3-2 has the same configuration as the first split heat exchanger 3-1, the description shown in FIG. 22 is omitted. Further, FIG. 22 shows a state in which the L-shaped first split heat exchanger 3-1 shown in FIG. 21 is linearly extended. FIG. 23 is a side view showing a configuration example of the second heat source side heat exchanger shown in FIG. In FIGS. 22 and 23, the X-axis and the Z-axis are shown in the drawings for convenience of explanation, but the X-axis arrows correspond to the X-axis arrows shown in FIGS. 19 and 20. It does not have to be.
 図22に示す第1分割熱交換器3-1の伝熱管45aの本数は13本である。図23に示す第2熱源側熱交換器4の伝熱管45bの本数は9本である。第1分割熱交換器3-1の伝熱管45aの本数の方が第2熱源側熱交換器4の伝熱管45bの本数よりも多い。第1分割熱交換器3-1の伝熱管45aの本数と第2熱源側熱交換器4の伝熱管45bの本数との比は、第1熱源側熱交換器3の高さL1と第2熱源側熱交換器4の高さL2との比(L1:L2)=3:2に近い値になっている。 The number of heat transfer tubes 45a of the first split heat exchanger 3-1 shown in FIG. 22 is 13. The number of heat transfer tubes 45b of the second heat source side heat exchanger 4 shown in FIG. 23 is nine. The number of heat transfer tubes 45a of the first split heat exchanger 3-1 is larger than the number of heat transfer tubes 45b of the second heat source side heat exchanger 4. The ratio of the number of heat transfer tubes 45a of the first split heat exchanger 3-1 to the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 is the height L1 of the first heat source side heat exchanger 3 and the second. The ratio (L1: L2) of the heat source side heat exchanger 4 to the height L2 is close to 3: 2.
 本実施の形態3において、図22に示す伝熱管45aの長さと図23に示す伝熱管45bの長さとが同じと仮定して、第1熱源側熱交換器3および第2熱源側熱交換器4について、除霜対象の伝熱管の本数を比べてみる。第1分割熱交換器3-1の伝熱管45aの本数は、L1/L2の比から、第2熱源側熱交換器4の伝熱管45bの本数の(3/2)倍である。第1分割熱交換器3-1および第2分割熱交換器3-2は伝熱管45aの本数が同じなので、第1熱源側熱交換器3の伝熱管45aの本数は第2熱源側熱交換器4の伝熱管45bの本数の3倍となる。なお、第1分割熱交換器3-1および第2分割熱交換器3-2の伝熱管45aの本数と、第2熱源側熱交換器4の伝熱管45bの本数とは、図22および図23に示した場合に限らない。 In the third embodiment, assuming that the length of the heat transfer tube 45a shown in FIG. 22 and the length of the heat transfer tube 45b shown in FIG. 23 are the same, the first heat source side heat exchanger 3 and the second heat source side heat exchanger 3 For 4, compare the number of heat transfer tubes to be defrosted. The number of heat transfer tubes 45a of the first split heat exchanger 3-1 is (3/2) times the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 from the ratio of L1 / L2. Since the first split heat exchanger 3-1 and the second split heat exchanger 3-2 have the same number of heat transfer tubes 45a, the number of heat transfer tubes 45a of the first heat source side heat exchanger 3 is the second heat source side heat exchange. This is three times the number of heat transfer tubes 45b of the vessel 4. The number of heat transfer tubes 45a of the first split heat exchanger 3-1 and the second split heat exchanger 3-2 and the number of heat transfer tubes 45b of the second heat source side heat exchanger 4 are shown in FIGS. 22 and 22. It is not limited to the case shown in 23.
 なお、本実施の形態3の冷凍サイクル装置1eの動作は、図5を参照して説明した動作手順と同様になるため、その詳細な説明を省略する。 Since the operation of the refrigeration cycle device 1e according to the third embodiment is the same as the operation procedure described with reference to FIG. 5, detailed description thereof will be omitted.
 図5を参照すると、ステップS102の処理による除霜運転の開始から時間t1が時間閾値tth1に到達するまで、開閉弁7が閉じているため、第1熱源側熱交換器3の除霜が集中的に行われる。その後、開閉弁7が開き、第2熱源側熱交換器4の除霜が開示されるが、第1熱源側熱交換器3にも冷媒が流れる。第1熱源側熱交換器3に流れる冷媒の量が第2熱源側熱交換器4に流れる冷媒の量よりも多くなる。そのため、第1熱源側熱交換器3の伝熱管45aの本数が第2熱源側熱交換器4の伝熱管45bの本数よりも多くても、冷凍サイクル装置1eは、第2熱源側熱交換器4の除霜終了のタイミングに合わせて、第1熱源側熱交換器3の除霜を終了させることができる。 Referring to FIG. 5, since the on-off valve 7 is closed from the start of the defrosting operation by the process of step S102 until the time t1 reaches the time threshold value tth1, the defrosting of the first heat source side heat exchanger 3 is concentrated. Is done. After that, the on-off valve 7 opens, and defrosting of the second heat source side heat exchanger 4 is disclosed, but the refrigerant also flows to the first heat source side heat exchanger 3. The amount of the refrigerant flowing through the first heat source side heat exchanger 3 is larger than the amount of the refrigerant flowing through the second heat source side heat exchanger 4. Therefore, even if the number of heat transfer tubes 45a of the first heat source side heat exchanger 3 is larger than the number of heat transfer tubes 45b of the second heat source side heat exchanger 4, the refrigeration cycle device 1e is the second heat source side heat exchanger. The defrosting of the first heat source side heat exchanger 3 can be completed at the timing of the completion of defrosting of 4.
 本実施の形態3の冷凍サイクル装置1eは、第1熱源側熱交換器3の伝熱管45aの本数が第2熱源側熱交換器4の伝熱管の本数よりも多い。本実施の形態3によれば、第1熱源側熱交換器3に流れる冷媒の量が第2熱源側熱交換器4に流れる冷媒の量よりも多いため、第2熱源側熱交換器4の除霜終了のタイミングに合わせて、第1熱源側熱交換器3の除霜を終了させることができる。 In the refrigeration cycle device 1e of the third embodiment, the number of heat transfer tubes 45a of the first heat source side heat exchanger 3 is larger than the number of heat transfer tubes of the second heat source side heat exchanger 4. According to the third embodiment, since the amount of the refrigerant flowing in the first heat source side heat exchanger 3 is larger than the amount of the refrigerant flowing in the second heat source side heat exchanger 4, the second heat source side heat exchanger 4 The defrosting of the first heat source side heat exchanger 3 can be completed at the timing of the end of defrosting.
(変形例4)
 変形例4の冷凍サイクル装置は、図18に示した冷媒回路60aおよび60bにおいて、第1液配管44aに流量調整弁9が設けられた場合である。変形例4においては、図18~図23を参照して説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
(Modification example 4)
The refrigeration cycle device of the modified example 4 is a case where the flow rate adjusting valve 9 is provided in the first liquid pipe 44a in the refrigerant circuits 60a and 60b shown in FIG. In the fourth modification, the same components as those described with reference to FIGS. 18 to 23 are designated by the same reference numerals, and detailed description thereof will be omitted.
 変形例4の冷凍サイクル装置の構成を説明する。図24は、変形例4の冷凍サイクル装置の一構成例を示す冷媒回路図である。冷凍サイクル装置1fの熱源側ユニット10fにおいて、第1液配管44aに流量調整弁9が設けられている。 The configuration of the refrigeration cycle device of the modified example 4 will be described. FIG. 24 is a refrigerant circuit diagram showing a configuration example of the refrigeration cycle device of the modified example 4. In the heat source side unit 10f of the refrigeration cycle device 1f, the flow rate adjusting valve 9 is provided in the first liquid pipe 44a.
 なお、冷凍サイクル装置1fの動作は、図10に示すステップS207において、タイマ53によって計測される時間t1に基づいて、除霜対象の切り替えのタイミングを決定することを除いて、図10に示した手順と同様になるため、その詳細な説明を省略する。冷媒温度センサ12は、第2液配管44bの代わりに、第1液配管44aおよび第2液配管44bの合流点に近い液配管47に設けられていてもよい。 The operation of the refrigeration cycle device 1f is shown in FIG. 10 except that the timing of switching the defrost target is determined based on the time t1 measured by the timer 53 in step S207 shown in FIG. Since the procedure is the same, the detailed description thereof will be omitted. The refrigerant temperature sensor 12 may be provided in the liquid pipe 47 near the confluence of the first liquid pipe 44a and the second liquid pipe 44b instead of the second liquid pipe 44b.
 変形例4によれば、第1熱源側熱交換器3および第2熱源側熱交換器4のそれぞれの液配管に冷媒の流通を遮断する弁が設けられている。変形例4の冷凍サイクル装置1fが、除霜運転の際、各弁の開閉を制御して、はじめに第1熱源側熱交換器3を除霜した後、残りの第2熱源側熱交換器4を除霜することで、確実、かつ効率よく除霜を行うことができる。 According to the modified example 4, a valve for shutting off the flow of the refrigerant is provided in each of the liquid pipes of the first heat source side heat exchanger 3 and the second heat source side heat exchanger 4. The refrigeration cycle device 1f of the modified example 4 controls the opening and closing of each valve during the defrosting operation to first defrost the first heat source side heat exchanger 3, and then the remaining second heat source side heat exchanger 4 By defrosting, defrosting can be performed reliably and efficiently.
 なお、本実施の形態3において、実施の形態2で説明した冷凍サイクル装置1dをベースに説明したが、本実施の形態3を実施の形態1で説明した冷凍サイクル装置1に適用してもよい。また、実施の形態2および3の各実施の形態において、変形例1~3のうち、いずれの変形例を組み合わせてもよい。 Although the description of the third embodiment is based on the refrigeration cycle device 1d described in the second embodiment, the third embodiment may be applied to the refrigeration cycle device 1 described in the first embodiment. .. Further, in each of the second and third embodiments, any of the modified examples 1 to 3 may be combined.
 1、1a~1f 冷凍サイクル装置、2 圧縮機、3 第1熱源側熱交換器、3-1 第1分割熱交換器、3-2 第2分割熱交換器、4 第2熱源側熱交換器、5 流路切替装置、6 アキュムレータ、7 開閉弁、8 第3熱源側熱交換器、9 流量調整弁、9a 第1流量調整弁、9b 第2流量調整弁、10a~10f 熱源側ユニット、11 熱交換器温度センサ、12、12a~12c 冷媒温度センサ、15 熱源側熱交換器、20a、20b 負荷側ユニット、21a、21b 負荷側熱交換器、22a、22b 膨張弁、23a、23b 室温センサ、30 制御装置、31 処理回路、41 ガス配管、42 冷媒配管、43a 第1ガス配管、43a-1、43a-2 ガス分岐配管、43b 第2ガス配管、43c 第3ガス配管、44a 第1液配管、44a-1、44a-2 液分岐配管、44b 第2液配管、44c 第3液配管、45a、45b 伝熱管、46a、46b 放熱フィン、47 液配管、48、49 冷媒配管、51 冷凍サイクル制御手段、52 判定手段、53 タイマ、54 第1除霜手段、55 第2除霜手段、60a、60b 冷媒回路、61 第1ガスヘッダ、62 第1液ヘッダ、63 第2ガスヘッダ、64 第2液ヘッダ、65 第1ガスヘッダ、66 第1液ヘッダ、71 プロセッサ、72 メモリ、100 冷凍サイクル装置、110 熱源側ユニット、121 冷媒温度センサ、130 制御装置。 1, 1a-1f Refrigeration cycle device, 2 Compressor, 3 1st heat source side heat exchanger, 3-1 1st split heat exchanger, 3-2 2nd split heat exchanger, 4 2nd heat source side heat exchanger 5, Flow path switching device, 6 Accumulator, 7 On-off valve, 8 Third heat source side heat exchanger, 9 Flow control valve, 9a 1st flow control valve, 9b 2nd flow control valve, 10a to 10f Heat source side unit, 11 Heat exchanger temperature sensor, 12, 12a-12c Refrigerant temperature sensor, 15 Heat source side heat exchanger, 20a, 20b Load side unit, 21a, 21b Load side heat exchanger, 22a, 22b Expansion valve, 23a, 23b Room temperature sensor, 30 Control device, 31 Processing circuit, 41 Gas pipe, 42 Refrigerant pipe, 43a 1st gas pipe, 43a-1, 43a-2 Gas branch pipe, 43b 2nd gas pipe, 43c 3rd gas pipe, 44a 1st liquid pipe , 44a-1, 44a-2 liquid branch pipe, 44b second liquid pipe, 44c third liquid pipe, 45a, 45b heat transfer pipe, 46a, 46b heat dissipation fin, 47 liquid pipe, 48, 49 refrigerant pipe, 51 refrigeration cycle control Means, 52 Judgment means, 53 Timer, 54 1st defrosting means, 55 2nd defrosting means, 60a, 60b Refrigerant circuit, 61 1st gas header, 62 1st liquid header, 63 2nd gas header, 64 2nd liquid header , 65 1st gas header, 66 1st liquid header, 71 processor, 72 memory, 100 refrigeration cycle device, 110 heat source side unit, 121 refrigerant temperature sensor, 130 control device.

Claims (8)

  1.  冷媒を圧縮して吐出する圧縮機と、
     前記冷媒を減圧して膨張させる膨張弁と、
     前記膨張弁と接続される負荷側熱交換器と、
     前記圧縮機および前記負荷側熱交換器と接続される流路切替装置と、
     前記流路切替装置と前記膨張弁との間において並列に接続される第1熱源側熱交換器および第2熱源側熱交換器を含む熱源側熱交換器と、
     除霜運転時に流通する前記冷媒の前記第2熱源側熱交換器の下流側に設けられた開閉弁と、
     前記除霜運転を行う際、前記圧縮機から吐出される前記冷媒が前記熱源側熱交換器に流入するように前記流路切替装置を制御する制御装置と、
    を有し、
     前記制御装置は、
     前記除霜運転が開始されるとき、前記開閉弁を開状態から閉状態に切り替える第1除霜手段と、
     除霜対象の切り替えのタイミングを決定する判定手段と、
     前記判定手段によって決定される前記タイミングにしたがって、前記開閉弁を閉状態から開状態に切り替える第2除霜手段と、を有する、
     冷凍サイクル装置。
    A compressor that compresses and discharges the refrigerant,
    An expansion valve that decompresses and expands the refrigerant,
    The load side heat exchanger connected to the expansion valve and
    A flow path switching device connected to the compressor and the load side heat exchanger,
    A heat source side heat exchanger including a first heat source side heat exchanger and a second heat source side heat exchanger connected in parallel between the flow path switching device and the expansion valve.
    An on-off valve provided on the downstream side of the second heat source side heat exchanger of the refrigerant distributed during the defrosting operation, and
    A control device that controls the flow path switching device so that the refrigerant discharged from the compressor flows into the heat source side heat exchanger during the defrosting operation.
    Have,
    The control device is
    When the defrosting operation is started, the first defrosting means for switching the on-off valve from the open state to the closed state, and
    Judgment means for determining the timing of switching the defrost target,
    It has a second defrosting means for switching the on-off valve from the closed state to the open state according to the timing determined by the determination means.
    Refrigeration cycle equipment.
  2.  前記第1熱源側熱交換器は、前記流路切替装置を介して前記圧縮機から前記冷媒が流入する複数の第1伝熱管を有し、
     前記第2熱源側熱交換器は、前記流路切替装置を介して前記圧縮機から前記冷媒が流入する複数の第2伝熱管を有し、
     前記複数の第1伝熱管の本数は、前記複数の第2伝熱管の本数よりも多い、
     請求項1に記載の冷凍サイクル装置。
    The first heat source side heat exchanger has a plurality of first heat transfer tubes into which the refrigerant flows from the compressor via the flow path switching device.
    The second heat source side heat exchanger has a plurality of second heat transfer tubes into which the refrigerant flows from the compressor via the flow path switching device.
    The number of the plurality of first heat transfer tubes is larger than the number of the plurality of second heat transfer tubes.
    The refrigeration cycle apparatus according to claim 1.
  3.  前記第1熱源側熱交換器と接続される第1ガス配管と、前記第2熱源側熱交換器と接続される第2ガス配管とを合流して前記流路切替装置に接続するガス配管と、
     前記圧縮機から前記第1熱源側熱交換器に流入する前記冷媒を前記複数の第1伝熱管に分流する第1ガスヘッダと、
     前記圧縮機から前記第2熱源側熱交換器に流入する前記冷媒を前記複数の第2伝熱管に分流する第2ガスヘッダと、をさらに有し、
     前記第1ガス配管は、重力方向に対して前記第1ガスヘッダの中央部と接続され、
     前記第2ガス配管は、前記重力方向に対して前記第2ガスヘッダの中央部と接続される、
     請求項2に記載の冷凍サイクル装置。
    A gas pipe that joins the first gas pipe connected to the first heat source side heat exchanger and the second gas pipe connected to the second heat source side heat exchanger and connects to the flow path switching device. ,
    A first gas header that divides the refrigerant flowing from the compressor into the first heat source side heat exchanger into the plurality of first heat transfer tubes, and
    Further, it has a second gas header that divides the refrigerant flowing from the compressor into the second heat source side heat exchanger into the plurality of second heat transfer tubes.
    The first gas pipe is connected to the central portion of the first gas header in the direction of gravity.
    The second gas pipe is connected to the central portion of the second gas header in the direction of gravity.
    The refrigeration cycle apparatus according to claim 2.
  4.  前記第2熱源側熱交換器の前記下流側に設けられ、前記冷媒の温度を検出する温度センサをさらに有し、
     前記判定手段は、
     前記温度センサの検出値が予め決められた温度閾値以上になるときを、前記タイミングに決定する、
     請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    Further, a temperature sensor provided on the downstream side of the second heat source side heat exchanger and detecting the temperature of the refrigerant is provided.
    The determination means
    When the detection value of the temperature sensor becomes equal to or higher than a predetermined temperature threshold value, the timing is determined.
    The refrigeration cycle apparatus according to any one of claims 1 to 3.
  5.  前記除霜運転時に流通する前記冷媒の前記第1熱源側熱交換器の下流側に設けられた流量調整弁をさらに有し、
     前記第1除霜手段は、前記除霜運転が開始されるとき、前記流量調整弁の開状態を維持し、前記開閉弁を開状態から閉状態に切り替え、
     前記第2除霜手段は、前記判定手段によって決定される前記タイミングにしたがって、前記流量調整弁を開状態から閉状態に切り替え、前記開閉弁を閉状態から開状態に切り替える、
     請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    Further having a flow rate adjusting valve provided on the downstream side of the first heat source side heat exchanger of the refrigerant flowing during the defrosting operation.
    When the defrosting operation is started, the first defrosting means maintains the open state of the flow rate adjusting valve and switches the on-off valve from the open state to the closed state.
    The second defrosting means switches the flow rate adjusting valve from the open state to the closed state and switches the on-off valve from the closed state to the open state according to the timing determined by the determination means.
    The refrigeration cycle apparatus according to any one of claims 1 to 3.
  6.  前記第1熱源側熱交換器の前記下流側に設けられ、前記冷媒の温度を検出する温度センサをさらに有し、
     前記判定手段は、
     前記温度センサの検出値が予め決められた温度閾値以上になるときを、前記タイミングに決定する、
     請求項5に記載の冷凍サイクル装置。
    Further, a temperature sensor provided on the downstream side of the first heat source side heat exchanger and detecting the temperature of the refrigerant is provided.
    The determination means
    When the detection value of the temperature sensor becomes equal to or higher than a predetermined temperature threshold value, the timing is determined.
    The refrigeration cycle apparatus according to claim 5.
  7.  前記制御装置は、時間を計測するタイマをさらに有し、
     前記判定手段は、
     前記除霜運転の開始から前記タイマによって計測される時間が予め決められた時間閾値以上になるときを、前記タイミングに決定する、
     請求項1~3および5のいずれか1項に記載の冷凍サイクル装置。
    The control device further includes a timer for measuring time.
    The determination means
    The timing is determined when the time measured by the timer from the start of the defrosting operation becomes equal to or greater than a predetermined time threshold value.
    The refrigeration cycle apparatus according to any one of claims 1 to 3 and 5.
  8.  前記流路切替装置と前記膨張弁との間において前記第1熱源側熱交換器および前記第2熱源側熱交換器と並列に接続される第3熱源側熱交換器と、
     前記除霜運転時に流通する前記冷媒の前記第1熱源側熱交換器の下流側に設けられた第1流量調整弁と、
     前記除霜運転時に流通する前記冷媒の前記第3熱源側熱交換器の下流側に設けられた第2流量調整弁と、をさらに有し、
     前記第1除霜手段は、
     前記除霜運転が開始されるとき、前記第1流量調整弁の開状態を維持し、前記開閉弁および前記第2流量調整弁を開状態から閉状態に切り替え、
     前記第2除霜手段は、
     前記判定手段によって決定される前記タイミングにしたがって、前記第1流量調整弁を開状態から閉状態に切り替え、前記開閉弁を閉状態から開状態に切り替え、
     前記第2除霜手段は、
     前記開閉弁を閉状態から開状態に切り替えた後、前記判定手段によって決定される前記タイミングにしたがって、前記開閉弁を開状態から閉状態に切り替え、前記第2流量調整弁を閉状態から開状態に切り替える、
     請求項1に記載の冷凍サイクル装置。
    A third heat source side heat exchanger connected in parallel with the first heat source side heat exchanger and the second heat source side heat exchanger between the flow path switching device and the expansion valve.
    A first flow rate adjusting valve provided on the downstream side of the first heat source side heat exchanger of the refrigerant flowing during the defrosting operation, and
    Further, it has a second flow rate adjusting valve provided on the downstream side of the third heat source side heat exchanger of the refrigerant flowing during the defrosting operation.
    The first defrosting means is
    When the defrosting operation is started, the open state of the first flow rate adjusting valve is maintained, and the on-off valve and the second flow rate adjusting valve are switched from the open state to the closed state.
    The second defrosting means
    According to the timing determined by the determination means, the first flow rate adjusting valve is switched from the open state to the closed state, and the on-off valve is switched from the closed state to the open state.
    The second defrosting means
    After switching the on-off valve from the closed state to the open state, the on-off valve is switched from the open state to the closed state according to the timing determined by the determination means, and the second flow rate adjusting valve is switched from the closed state to the open state. Switch to,
    The refrigeration cycle apparatus according to claim 1.
PCT/JP2019/044375 2019-11-12 2019-11-12 Refrigeration cycle device WO2021095124A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021555660A JP7183447B2 (en) 2019-11-12 2019-11-12 refrigeration cycle equipment
PCT/JP2019/044375 WO2021095124A1 (en) 2019-11-12 2019-11-12 Refrigeration cycle device
US17/641,551 US20220299247A1 (en) 2019-11-12 2019-11-12 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044375 WO2021095124A1 (en) 2019-11-12 2019-11-12 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021095124A1 true WO2021095124A1 (en) 2021-05-20

Family

ID=75911360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044375 WO2021095124A1 (en) 2019-11-12 2019-11-12 Refrigeration cycle device

Country Status (3)

Country Link
US (1) US20220299247A1 (en)
JP (1) JP7183447B2 (en)
WO (1) WO2021095124A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344085A (en) * 1991-05-17 1992-11-30 Daikin Ind Ltd Defrosting operation control device for refrigerating apparatus
JPH11304309A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Air conditioner
JP2002089980A (en) * 2000-09-20 2002-03-27 Fujitsu General Ltd Air conditioner
JP2008039298A (en) * 2006-08-07 2008-02-21 Denso Corp Heat pump cycle
JP2015224829A (en) * 2014-05-28 2015-12-14 ダイキン工業株式会社 Refrigeration device
WO2016001957A1 (en) * 2014-06-30 2016-01-07 日立アプライアンス株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69824969T2 (en) 1997-11-20 2005-08-04 Glasstech, Inc., Perrysburg MOLDING ARRANGEMENT FOR SHAPES FOR FORMING HEATED GLASS PANES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344085A (en) * 1991-05-17 1992-11-30 Daikin Ind Ltd Defrosting operation control device for refrigerating apparatus
JPH11304309A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Air conditioner
JP2002089980A (en) * 2000-09-20 2002-03-27 Fujitsu General Ltd Air conditioner
JP2008039298A (en) * 2006-08-07 2008-02-21 Denso Corp Heat pump cycle
JP2015224829A (en) * 2014-05-28 2015-12-14 ダイキン工業株式会社 Refrigeration device
WO2016001957A1 (en) * 2014-06-30 2016-01-07 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
US20220299247A1 (en) 2022-09-22
JP7183447B2 (en) 2022-12-05
JPWO2021095124A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP2010159926A (en) Air conditioner
JP2005077084A (en) Air-conditioner, and control method therefor
KR101737365B1 (en) Air conditioner
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP5734205B2 (en) Air conditioner
WO2016166801A1 (en) Air conditioning device
JP6771302B2 (en) Air conditioner
JP6448780B2 (en) Air conditioner
CN107726475B (en) Air conditioner
JP7142789B2 (en) air conditioner
JP5447438B2 (en) refrigerator
JP7034325B2 (en) Air conditioner
WO2016166873A1 (en) Heat pump system
WO2021095124A1 (en) Refrigeration cycle device
KR101899220B1 (en) Air Conditioner
KR920007812B1 (en) Air conditioner
JP2005337659A (en) Air conditioner
KR100885566B1 (en) Controlling method for air conditioner
JP6964803B2 (en) Air conditioner
JPWO2018055739A1 (en) Air conditioner
KR101640407B1 (en) Air conditioner and Defrosting driving method of the same
JP4774858B2 (en) Air conditioner
KR20090107310A (en) Air conditioner
KR100767857B1 (en) Air conditioner and controlling method therefor
JP6835116B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952173

Country of ref document: EP

Kind code of ref document: A1