WO2021093708A1 - 无线充电装置、待充电设备、充电系统及方法、存储介质 - Google Patents

无线充电装置、待充电设备、充电系统及方法、存储介质 Download PDF

Info

Publication number
WO2021093708A1
WO2021093708A1 PCT/CN2020/127553 CN2020127553W WO2021093708A1 WO 2021093708 A1 WO2021093708 A1 WO 2021093708A1 CN 2020127553 W CN2020127553 W CN 2020127553W WO 2021093708 A1 WO2021093708 A1 WO 2021093708A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
current
branch
receiving
Prior art date
Application number
PCT/CN2020/127553
Other languages
English (en)
French (fr)
Inventor
杨军
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20888146.6A priority Critical patent/EP4024663A4/en
Priority to US16/953,772 priority patent/US11686896B2/en
Publication of WO2021093708A1 publication Critical patent/WO2021093708A1/zh
Priority to US17/701,227 priority patent/US20220216738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage

Definitions

  • the embodiments of the application relate to wireless charging technology, and in particular to a wireless charging device, a device to be charged, a charging system and method, and a storage medium.
  • wireless charging technology is slowly being applied to terminals, such as: mobile phones, tablets, or remote control devices that contain batteries; wireless charging is achieved through a single-channel wireless charging device to the battery of the terminal, and single-channel wireless charging
  • the device uses a single coil to transmit power. Due to the limited current on the single coil, a larger charging power cannot be achieved.
  • the voltage of the rectifier bridge in a single-channel wireless charging device is to be raised above a certain voltage value, the integrated circuit The process and cost requirements are very high. Therefore, it is also very difficult to increase the charging power by increasing the voltage of the rectifier bridge.
  • the charging power of the existing single-channel wireless charging equipment is limited.
  • the present application provides a wireless charging device, a device to be charged, a charging system and method, and a storage medium, which can increase the charging power.
  • An embodiment of the present application provides a device to be charged, and the device to be charged includes:
  • Each of the at least two receiving branches is respectively connected to the charging control module and the battery;
  • Each of the receiving branches is used to respectively couple with a transmitting branch in the wireless charging device to receive an electromagnetic signal emitted by a coupled transmitting branch and convert the received electromagnetic signal into the device to be charged The charging voltage and charging current of the battery charging;
  • the charging control module is configured to generate feedback information and feed it back to the wireless charging device according to at least one of the following charging parameters: the charging voltage of the battery, the charging current of the battery, and the voltage of each receiving branch And the current of each receiving branch; the feedback information is used to instruct the wireless charging device to adjust the transmission power of the electromagnetic signal of each transmitting branch respectively.
  • An embodiment of the present application provides a wireless charging device, the wireless charging device includes: a transmission control module and at least two transmission branches; each of the at least two transmission branches is electrically connected to a power supply Connection, each of the at least two transmission branches is connected to the transmission control module; the transmission control module is electrically connected to the power supply;
  • the emission control module is configured to control the input current and the input voltage that the power supply provides to the at least two emission branches;
  • Each of the transmitting branches is configured to generate an electromagnetic signal based on the input current and the input voltage, and transmit the electromagnetic signal to a receiving branch of a device to be charged;
  • the transmission control module is further configured to receive feedback information sent by the device to be charged, and adjust the transmission power of the electromagnetic signal of each transmission branch based on the feedback information.
  • the charging system includes a wireless charging device and a device to be charged.
  • the wireless charging device includes a transmission control module and at least two transmission branches.
  • the device to be charged includes at least two receivers.
  • Each receiving branch is coupled to one transmitting branch of the at least two transmitting branches through electromagnetic coupling;
  • the emission control module is configured to control the input current and the input voltage that the power supply provides to the at least two emission branches;
  • Each of the transmitting branches is configured to generate an electromagnetic signal based on the input current and the input voltage, and transmit the electromagnetic signal to a corresponding one of the at least two receiving branches;
  • Each of the receiving branches is configured to receive an electromagnetic signal emitted by a coupled transmitting branch, and convert the received electromagnetic signal into a charging voltage and a charging current for charging the battery of the device to be charged;
  • the charging control module is configured to generate feedback information and feed it back to the wireless charging device according to at least one of the following charging parameters: the charging voltage of the battery, the charging current of the battery, and the voltage of each receiving branch And the current of each receiving branch; the feedback information is used to instruct the wireless charging device to adjust the transmission power of the electromagnetic signal of each transmitting branch respectively.
  • the embodiment of the present application provides a charging method, which is applied to the device to be charged as described above, and the method includes:
  • an electromagnetic signal transmitted by a correspondingly coupled transmitting branch in the wireless charging device is received, and the received electromagnetic signal is converted into the battery of the device to be charged Charging voltage and charging current;
  • feedback information is generated and fed back to the wireless charging device according to at least one of the following charging parameters: the charging voltage of the battery, the charging current of the battery, the voltage of each receiving branch, and The current of each receiving branch; the feedback information is used to instruct the wireless charging device to adjust the transmission power of the electromagnetic signal of each transmitting branch respectively.
  • An embodiment of the present application provides a charging method, which is applied to the above-mentioned wireless charging device, and the method includes:
  • an electromagnetic signal is generated based on the input current and the input voltage, and the electromagnetic signal is transmitted to a corresponding receiving branch in the device to be charged. road;
  • the transmission control module Through the transmission control module, the feedback information sent by the device to be charged is received, and the transmission power of the electromagnetic signal of each transmission branch is adjusted based on the feedback information.
  • An embodiment of the present application provides a charging method, which is applied to the above-mentioned charging system, and the method includes:
  • each of the at least two receiving branches in the device to be charged receiving an electromagnetic signal emitted by a correspondingly coupled one of the at least two transmitting branches
  • feedback information is generated according to at least one of the following charging parameters and fed back to the wireless charging device: the charging voltage of the battery, the charging current of the battery, and each receiving The voltage of the branch and the current of each receiving branch;
  • the transmission control module in the wireless charging device Through the transmission control module in the wireless charging device, the feedback information sent by the device to be charged is received, and the transmission power of the electromagnetic signal of each transmission branch is adjusted based on the feedback information.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more first processors to realize the following The above charging method applied to the device to be charged.
  • the embodiments of the present application provide a computer-readable storage medium, and the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more second processors to implement such as The charging method described above is applied to a wireless charging device.
  • the embodiments of the present application provide a wireless charging device, a device to be charged, a charging system and method, and a storage medium.
  • the device to be charged includes: at least two receiving branches, a charging control module, and a battery; Each receiving branch is respectively connected to the charging control module and the battery; each receiving branch is used to couple with a transmitting branch in the wireless charging device to receive electromagnetic signals emitted by a coupled transmitting branch, and The received electromagnetic signal is converted into the charging voltage and charging current for charging the battery of the device to be charged; the charging control module is used to generate feedback information according to at least one of the following charging parameters and feed it back to the wireless charging device: battery charging voltage, The charging current of the battery, the voltage of each receiving branch and the current of each receiving branch; the feedback information is used to instruct the wireless charging device to adjust the transmission power of the electromagnetic signal of each transmitting branch respectively.
  • multiple receiving branches obtain multiple electromagnetic signals, and then multiple charging currents and charging voltages are generated based on the multiple electromagnetic signals, and the multiple charging currents and charging voltages are used to charge the battery at the same time.
  • the charging current and charging voltage have doubled the charging power of the battery, greatly increasing the charging power.
  • FIG. 1 is a first schematic diagram of a charging system provided by an embodiment of this application.
  • FIG. 2 is a first structural diagram of a wireless charging device provided by an embodiment of this application.
  • FIG. 3 is a second structural diagram of a wireless charging device provided by an embodiment of this application.
  • FIG. 4 is a third structural diagram of a wireless charging device provided by an embodiment of this application.
  • FIG. 5 is a fourth structural diagram of a wireless charging device provided by an embodiment of the application.
  • FIG. 6 is a fifth structural diagram of a wireless charging device provided by an embodiment of this application.
  • FIG. 7 is a first structural diagram of a device to be charged according to an embodiment of this application.
  • FIG. 8 is a second structural diagram of a device to be charged according to an embodiment of the application.
  • FIG. 9(a) is a third structural diagram of a device to be charged according to an embodiment of this application.
  • FIG. 9(b) is a fourth structural diagram of a device to be charged according to an embodiment of this application.
  • FIG. 10 is a structural schematic diagram 1 of a charging system provided by an embodiment of this application.
  • FIG. 11 is a second structural diagram of a charging system provided by an embodiment of this application.
  • FIG. 12 is a flowchart of a charging method applied to a wireless charging device according to an embodiment of the application.
  • FIG. 13 is a flowchart of a charging method applied to a device to be charged according to an embodiment of the application
  • FIG. 14 is a flowchart of a charging method applied to a charging system according to an embodiment of the application.
  • module means, “component” or “unit” used to indicate elements is only for the description of the present application, and has no specific meaning in itself. Therefore, “module”, “part” or “unit” can be used in a mixed manner.
  • Wireless charging technology originates from wireless power transmission technology.
  • wireless charging methods are mainly divided into three methods: electromagnetic induction (or magnetic coupling), radio wave and electromagnetic resonance.
  • mainstream wireless charging protocols include Qi protocol, Power Matters Alliance (PMA) protocol and Wireless Power Alliance (Alliance for Wireless Power, A4WP) protocol, etc.; among them, both Qi protocol and PMA protocol adopt electromagnetic induction.
  • Wireless charging the A4WP protocol uses electromagnetic resonance for wireless charging.
  • the wireless charging technology for the device to be charged uses electromagnetic induction, and the wireless charging device (such as a wireless charging base) and the device to be charged use a magnetic field to transmit energy, and there is no need for a charging cable connection between the two. , It can be realized to charge the battery in the device to be charged, making the charging more convenient.
  • the device to be charged may refer to a terminal.
  • the terminal here includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a personal digital assistant (PDA), and a portable media player (Portable Media Player).
  • PMP portable media player
  • navigation devices and other mobile terminal equipment can also include fixed terminal equipment such as digital TV, desktop computer.
  • PMP portable media player
  • the device to be charged used in the embodiments of the present application may also include a mobile power source, which can store the received charging energy to provide energy to other electronic devices. In the embodiments of the present application, this is not limited.
  • the wireless charging device includes a transmitter coil (single transmitter coil), and the device to be charged includes a receiver coil (single transmitter coil).
  • Receiving coil a rectifier bridge and a battery; the power supply is connected to the power supply to provide input current and input voltage to the wireless charging device.
  • the single transmitting coil in the wireless charging device generates an electromagnetic signal based on the input current and input voltage, and transmits the electromagnetic signal to the single
  • the receiving coil is then rectified by the rectifier bridge based on the electromagnetic signal received by the single receiving coil, and outputs one current and one voltage, and transmits one current and one voltage output by the rectifier bridge to the battery to utilize one current and one output from the rectifier bridge
  • the voltage charges the battery.
  • the charging system in the related technical solution 1 adopts single-channel wireless charging, as the charging power requirements continue to increase, due to the limitation of the single receiving coil, the current on the coil cannot be large. At this time The charging power can be increased by increasing the voltage on the rectifier bridge; however, according to the requirements of the existing integrated circuit technology, when the voltage exceeds 30 volts (V), the integrated circuit process and cost will be very high, thereby limiting the charging power The improvement.
  • the wireless charging device in the charging system includes a single transmitting coil.
  • the equipment to be charged includes dual receiving coils, a rectifier bridge and a battery.
  • the dual receiving coils are connected to the battery through the same rectifier bridge. Since the double receiving coils share a rectifier bridge, in order to avoid the rectifier bridge working disorder, the double receiving coils use time-sharing work, so the charging power still cannot be increased.
  • the charging system 1 includes a power supply 10, a wireless charging device 11, and a device to be charged 12.
  • the wireless charging device 11 includes a transmission control module 111 and at least two transmission branches.
  • the device to be charged includes at least two receiving branches 121 and a battery 122; among them, at least two transmitting branches 112 and at least two receiving branches 121 are in a one-to-one correspondence; each of the at least two transmitting branches 112 One transmitting branch is electrically connected to the only corresponding one of the at least two receiving branches 121 through electromagnetic coupling; the transmitting control module 111 obtains the input current and input voltage provided by the power supply 10, and then combines the input current and The input voltage is transmitted to at least two transmitting branches 112.
  • the at least two transmitting branches 112 generate at least two electromagnetic signals according to the input current and the input voltage. Each transmitting branch transmits one electromagnetic signal to the corresponding receiving branch, at least Each of the two receiving branches 121 generates a current and a voltage based on the electromagnetic signal received by itself, and transmits the current and voltage to the battery 122, so that at least two electromagnetic signals can be used to charge the battery 122 at the same time;
  • at least two transmitting branches 112 and at least two receiving branches 121 form multiple charging paths, and multiple charging paths can charge the battery 122 at the same time, so that the charging power is doubled, and the charging power is greatly improved; Due to the existence of multiple charging paths, the charging power on each charging path can also be reduced, so that the heating points can be dispersed, the charging heat is reduced, and the charging efficiency is further improved.
  • the structure of the charging system shown in FIG. 1 does not constitute a limitation on the charging system.
  • the charging system may include more or fewer components than shown in the figure, or a combination of certain components, or different component arrangements.
  • the embodiments of this application can be implemented based on the charging system shown in FIG. 1, and the specific embodiments are described below based on the system shown in FIG. 1.
  • the wireless charging device 2 includes: a transmission control module 21 and at least two transmission branches 22 (for example, including a transmission branch 22a, a transmission branch 22b, etc. ); Each of the at least two transmitting branches 22 is electrically connected to the power supply 20, and each of the at least two transmitting branches 22 is respectively connected to the transmitting control module 21;
  • the module 21 is electrically connected to the power supply 20; the transmission control module 21 is used to control the input current and input voltage provided by the power supply 20 to at least two transmission branches 22; each transmission branch is used to control the input current and input voltage based on the input current and the input voltage.
  • the transmission control module 21 Generates an electromagnetic signal, and transmits an electromagnetic signal to a receiving branch of the device to be charged 23; the transmission control module 21 is also used to receive feedback information sent by the device to be charged 23, and adjust the output of each transmission branch based on the feedback information.
  • the transmit power of electromagnetic signals is also used to generate an electromagnetic signal, and transmits an electromagnetic signal to a receiving branch of the device to be charged 23; the transmission control module 21 is also used to receive feedback information sent by the device to be charged 23, and adjust the output of each transmission branch based on the feedback information.
  • the transmit power of electromagnetic signals is also used to receive feedback information sent by the device to be charged 23, and adjust the output of each transmission branch based on the feedback information.
  • the wireless charging device 2 is externally connected to the power supply 20, the wireless charging device 2 is electrically connected to the equipment to be charged 23 through electromagnetic coupling, and the wireless charging device 2 starts to charge the equipment to be charged 23 when it is connected to the power supply through the power supply 20, And receive the feedback information sent by the device to be charged 23, which is used to adjust the transmission power of the electromagnetic signal of each transmission branch.
  • the wireless charging device and the device to be charged both support the same wireless charging protocol.
  • the wireless charging protocol is divided into a standard wireless charging protocol and a non-standard wireless charging protocol.
  • the standard wireless charging protocol includes the Qi protocol and the like.
  • Wireless charging protocols include PMA protocol and A4WP protocol.
  • the wireless charging device performs handshake communication with the device to be charged, and when the handshake communication with the device to be charged is established, charging of the device to be charged is started.
  • each of the at least two transmitting branches supports any available wireless charging protocol.
  • at least one of the at least two transmitting branches can be set to support a standard wireless charging protocol.
  • the transmission branch of the at least two transmission branches except for the above-mentioned at least one transmission branch supports a non-standard wireless charging protocol. It is also possible that all transmitting branches can support standard wireless charging protocols.
  • At least two transmitting branches can support the same wireless charging protocol or different wireless charging protocols; each of the at least two transmitting branches and the corresponding receiving branch in the device to be charged
  • the road supports the same wireless charging protocol.
  • one of the at least two transmission branches supports a standard wireless charging protocol (for example, the Qi protocol), and the other transmission branches of the at least two transmission branches support non-standard wireless charging protocols (for example, Qi protocol). Standard wireless charging protocol.
  • the remaining transmission branches are not subject to the power limitation of the standard wireless charging protocol, and larger charging power can be used for charging, which improves the charging efficiency.
  • each of the at least two transmitting branches and the corresponding receiving branch in the device to be charged support the same wireless charging protocol.
  • the at least two transmitting branches include a transmitting branch t1 supporting a standard wireless charging protocol, a transmitting branch t2 supporting a non-standard wireless charging protocol, and a receiving branch corresponding to the transmitting branch t1 in the device to be charged.
  • r1 also supports standard wireless charging protocols
  • a receiving branch r2 corresponding to the transmitting branch t2 in the device to be charged also supports non-standard wireless charging protocols.
  • the transmission control module is also used to receive the charging parameters of the device to be charged, and adjust the transmission power of the electromagnetic signal of each transmission branch according to the charging parameters.
  • the transmission control module obtains the charging parameters from the feedback information sent by the device to be charged; compares the charging parameters with a preset charging parameter threshold to determine whether to adjust the transmission power of the electromagnetic signal of each transmission branch.
  • the charging parameter includes at least one of the following: charging voltage of the battery, charging current of the battery, voltage of each receiving branch, and current of each receiving branch.
  • the voltage of each receiving branch includes the output voltage of the AC-DC conversion module in each receiving branch
  • the current of each receiving branch includes the output of the AC-DC conversion module in each receiving branch.
  • the output voltage of the AC-DC conversion module in each receiving branch can be the voltage at any point on the charging path in the same receiving branch, as long as the voltage can reflect the voltage of the receiving coil in the same receiving branch.
  • the output current of the AC-DC conversion module in each receiving branch can be the current at any point on the charging path in the same receiving branch, as long as the current can reflect the current of the receiving coil in the same receiving branch That's it.
  • the preset charging parameter threshold includes a charging power threshold, a current threshold, and a voltage threshold; wherein, the charging power threshold may be the total charging power threshold corresponding to the battery; the current threshold may be a total current threshold or It is the current threshold corresponding to each of the at least two receiving branches; the voltage threshold can be a total voltage threshold, or it can be the voltage threshold corresponding to each of the at least two receiving branches.
  • the current threshold corresponding to each receiving branch may be the maximum current threshold of the receiving coil specified by the wireless charging protocol supported by the receiving branch; the voltage threshold corresponding to each receiving branch may be the maximum current threshold of the receiving branch. The maximum voltage threshold of the receiving coil specified by the supported wireless charging protocol.
  • the current thresholds corresponding to all the receiving branches in the preset charging parameter thresholds can be thresholds specified in the standard wireless charging protocol; or, the current thresholds corresponding to some of the receiving branches in the preset charging parameter thresholds are all thresholds specified in the standard wireless charging protocol , The current thresholds corresponding to the other part of the receiving branch in the preset charging parameter thresholds are all charging parameter thresholds specified by the non-standard wireless charging protocol.
  • the preset charging parameter threshold includes the current threshold c1 corresponding to the receiving branch r1 in the device to be charged, and the current threshold c2 corresponding to the receiving branch r2 in the device to be charged; when the receiving branch r1 supports the standard wireless charging protocol
  • the current threshold c1 is the current threshold specified by the standard wireless charging protocol
  • the current threshold c2 is the current threshold specified by the non-standard wireless charging protocol.
  • the charging power threshold includes the charging power threshold of each charging stage; the current threshold corresponding to each receiving branch includes the current threshold of each charging stage, and the voltage threshold corresponding to each receiving branch includes the voltage threshold of each charging stage.
  • each receiving branch can be preset based on the charging current and/or charging voltage required by the battery in each charging stage
  • the charging power threshold; the charging power threshold can be a constant value or a range of values; in addition, each current threshold can also be a constant value or a range of values, and each voltage threshold can also be a constant value or a range of values .
  • the transmission control module is also used to determine the required charging power according to the charging voltage and/or charging current of the battery; and to adjust the transmission power of the electromagnetic signal of each transmission branch based on the required charging power.
  • the transmission control module multiplies the charging voltage and charging current of the battery to obtain the charging power of the battery; obtains the preset charging power threshold from the preset charging parameter threshold, and calculates the required charging power threshold according to the preset charging power threshold and the charging power of the battery Charging power; adjust the transmission power of the electromagnetic signal of each transmission branch based on the required charging power; among them, the transmission control module can adjust the transmission power of the electromagnetic signal of all the transmission branches based on the required charging power, or at least The transmit power of the electromagnetic signal of a transmitting branch.
  • the transmission control module uses the preset charging power threshold to subtract the charging power of the battery to obtain the required charging power; when the required charging power is a positive number, increase the transmission power of the electromagnetic signals of at least two transmitting branches, When the required charging power is a negative number, the transmission power of the electromagnetic signals of at least two transmission branches is reduced.
  • the transmission control module is further configured to determine the demand current according to the at least two output currents and/or the at least two output voltages corresponding to the at least two receiving branches; and adjust each transmitter separately based on the demand current.
  • the transmitting control module determines a demand current from all output currents and/or output voltages corresponding to all receiving branches; compares the demand current with the current threshold, and when the demand current is greater than the current threshold, it means that at least two receiving branches have serious heating According to the demand current, the transmission power of the electromagnetic signal of all the transmission branches or the transmission power of the electromagnetic signal of at least one transmission branch is adjusted according to the demand current.
  • the at least two receiving branches include a first receiving branch, a second receiving branch, ..., an n-th receiving branch, where n is the total number of receiving branches in the transmission control module; transmission control The module determines the first demand current according to the output current and/or output voltage of the first receiving branch; determines the second demand current according to the output current and/or output voltage of the second receiving branch; The output current and/or the output voltage determine the nth demand current; the demand current is determined according to the first demand current, the second demand current,..., the nth demand current.
  • the demand currents of all the receiving branches are the same, that is, the first demand current, the second demand current, ..., the nth demand current are the same, then one of them can be selected as the demand to be determined Current; if the demand currents of all receiving branches are different, that is, the first demand current, the second demand current,..., the nth demand current are not exactly the same, then the main receiving branch can be determined from all the receiving branches Then use the demand current on the main receiving branch as the demand current to be determined; you can also select the maximum value from the first demand current, the second demand current, ..., the nth demand current, and use the maximum value as the demand current to be determined.
  • the demand current is the demand current on the receiving branch with severe heating as the demand current to be determined, which is not specifically limited in the implementation of this application.
  • the main receiving branch may be a receiving branch supporting a standard wireless charging protocol.
  • the transmission control module is further configured to determine the required charging power according to the charging voltage and/or the charging current of the battery; and to determine the required current according to the at least two output currents corresponding to the at least two receiving branches; And according to the required charging power and required current, the required voltage is determined, and the transmitting power of the electromagnetic signal of each transmitting branch is adjusted based on the required voltage.
  • the transmission control module multiplies the charging voltage and charging current of the battery to obtain the charging power of the battery; obtains the charging power threshold from the preset charging parameter threshold, and calculates the required charging power according to the charging power threshold and the charging power of the battery; All output currents and/or output voltages corresponding to all receiving branches determine a demand current; compare the demanded charging power and the charging power threshold, and compare the demanded current and the current threshold to ensure that the demanded charging power does not exceed the charging power When the required current does not exceed the current threshold, the required voltage is determined, so as to adjust the required voltage to adjust the transmission power of the electromagnetic signal of at least one transmission branch.
  • the transmission control module adjusts the transmission power of the electromagnetic signal of the transmitting branch based on the charging power threshold and the current threshold, so that after adjusting the transmission power, the charging power of the correspondingly coupled receiving branch reaches the charging power threshold and reduces the transmission power.
  • the transmitting control module is also used to compare the demand voltage and the output voltage of each receiving branch respectively to obtain a voltage difference; and adjust the transmitting branch coupled to each receiving branch based on the voltage difference.
  • the transmit power of the electromagnetic signal of the circuit is also used to compare the demand voltage and the output voltage of each receiving branch respectively to obtain a voltage difference; and adjust the transmitting branch coupled to each receiving branch based on the voltage difference. The transmit power of the electromagnetic signal of the circuit.
  • the transmitting control module After determining the required voltage, compares the required voltage with the output voltage of the AC/DC conversion module in at least one receiving branch (for example, makes a difference) to obtain a voltage difference, and adjusts at least one voltage difference based on the voltage difference.
  • the transmitting power of the electromagnetic signal of the transmitting branch coupled to the receiving branch; among them, the demand voltage can be compared with the output voltage of the AC-DC conversion module in some receiving branches, or the demand voltage can be compared with the output voltage of all receiving branches.
  • the output voltage of the AC-DC conversion module is compared to obtain the voltage difference.
  • the emission control module is also used to receive feedback information sent by the device to be charged to increase or decrease the emission voltage. After the emission control module receives the feedback information of increasing the emission voltage or reducing the emission voltage, it adjusts the emission voltage in at least one emission branch according to a certain adjustment level; wherein, the emission branch that adjusts the emission voltage can be a feedback
  • the transmitting branch coupled to the receiving branch specified in the information may also be all transmitting branches; the transmitting control module receives the feedback information in real time to adjust the transmitting voltage of at least one transmitting branch in real time.
  • the wireless charging device further includes a voltage conversion circuit 32; the voltage conversion circuit (DC/DC) 32 is respectively connected to at least two transmitting branches 22; the voltage conversion circuit 32 is used to obtain The initial input current and the initial input voltage provided by the power supply 20; the initial input current and the initial input voltage are adjusted to obtain the input current and the input voltage, and the input current and the input voltage are transmitted to at least two transmitting branches 22;
  • the power supply 20 includes an adapter 31.
  • the power supply connected to the wireless charging device may use an adapter to convert the power of the power supply from DC to AC to generate the initial input current and the initial input voltage.
  • the wireless charging device further includes a voltage conversion circuit for calculating the initial input current. It is boosted with the initial input voltage to obtain the input current and the input voltage; the input current and the input voltage are transmitted to at least two transmitting branches connected in parallel.
  • the power supply connected to the wireless charging device can also convert DC to AC and boost the power of the power source to generate input current and input power, and directly transmit the input current and input power to at least two transmitting branches.
  • the wireless charging device does not include a voltage conversion circuit.
  • the voltage conversion circuit includes a direct current chopper (DC/DC, Direct Current), and the DC/DC includes a buck circuit, a boost circuit, and a buck-boost (Boost/ Buck circuit, charge pump circuit.
  • the DCDC is a Boost circuit; the initial input current and the initial input voltage are boosted through the Boost circuit.
  • each of the at least two transmitting branches 22 includes an inverse rectifier bridge (for example, an inverse rectifier bridge 411 or an inverse rectifier bridge 421) and a transmitting coil (for example, Tx Coil 412 or Tx coil 422);
  • the transmission control module 21 and the voltage conversion circuit 32 are respectively connected to one end of the inverse rectifier bridge of each transmission branch, and the other end of the inverse rectifier bridge of each transmission branch is connected to its corresponding transmission coil;
  • the voltage conversion circuit 32 is also used to transmit the input current and the input voltage to the inverse rectifier bridge of each transmitting branch respectively;
  • the inverse rectifier bridge is used to adjust the input current and the input voltage from DC to AC to obtain a transmission Current and one transmission voltage, transmit one transmission current and one transmission voltage to the transmission coil of the same transmission branch;
  • the transmission coil generates one electromagnetic signal according to one transmission current and one transmission voltage, and transmits one electromagnetic signal to the device to be charged 23
  • a receiving branch for example, receiving branch 23a or receiving branch 23b
  • the wireless charging device transmits the input current and the input voltage to the inverse rectifier bridge of each of the at least two transmitting branches; the inverse rectifier bridge of each transmitting branch adjusts the voltage from DC to AC to obtain One transmission current and one transmission voltage; the Tx coil in the same transmission branch generates an electromagnetic signal (power signal) based on one transmission current and one transmission voltage, and transmits the electromagnetic signal to a correspondingly coupled receiving branch in the device to be charged .
  • the inverse rectifier bridge includes a switching circuit composed of at least one field effect transistor (MOS tube), and the operation of the inverse rectifier bridge is controlled by controlling the switching circuit, for example, setting the switching duty cycle of the switching circuit and/or The switching frequency determines the voltage regulation parameters of the reverse rectifier bridge.
  • the transmission control module 21 includes a first micro-control unit (MCU, Microcontroller Unit) 51 and a wireless transmission control module 52; the first micro-control unit 51 is respectively connected to the voltage conversion circuit 32 and the wireless The transmission control module 52 and the wireless transmission control module 52 are respectively connected to at least two transmission branches 22; the first MCU 51 is used to control the operation of the voltage conversion circuit 32 and the wireless transmission control module 52, and respectively perform the operation of the voltage conversion circuit 32 and the wireless transmission control module 52.
  • MCU Microcontroller Unit
  • the wireless transmission control module 52 performs abnormal protection; the wireless transmission control module 52 is used to control the operation of each inverse rectifier bridge when the charging device 23 to be charged is in a constant current charging stage; when the charging device 23 is in a non-constant current charging stage During the charging phase, at least one of the at least two transmitting branches 22 is controlled to work, and the remaining reverse rectifier bridges are controlled to stop working; wherein, the remaining reverse rectifier bridges are at least one of the at least two transmitting branches 22 except for at least one reverse rectifier. Inverse rectifier bridge outside the bridge.
  • the wireless transmission control module 52 wirelessly receives the constant current charging instruction from the device to be charged, it determines that the charging of the device to be charged is in the constant current charging stage, and controls the operation of the inverse rectifier bridge of each of the at least two transmission branches to achieve All transmission branches transmit multiple transmission currents and multiple transmission voltages to charge the device to be charged; when a non-constant current charging command is wirelessly received from the device to be charged, it is determined that the charging of the device to be charged is in the non-constant current charging stage, and the control At least one inverse rectifier bridge in at least one of the at least two transmitting branches is operated, and the remaining inverse rectifier bridges in the remaining transmitting branches are controlled to stop working; wherein, the remaining transmitting branches are in at least two transmitting branches A launching branch other than at least one launching branch.
  • the non-constant current charging phase includes a trickle charging phase and a constant voltage charging phase.
  • the transmission branch supporting the standard wireless charging protocol among the at least two transmission branches may be used as the at least one transmission branch, and the transmission branch supporting the non-standard wireless charging protocol among the at least two transmission branches may be used as the transmission branch.
  • the branch is used as the remaining transmitting branch; among them, the inverse rectifier bridge in at least one transmitting branch is the at least one inverse rectifier bridge mentioned above.
  • all the transmitting branches can also be used as at least one transmitting branch mentioned above.
  • the charging power required by the battery in the device to be charged changes; for example, in the constant current charging stage, as the battery voltage rises, the charging power required by the battery will follow Increase; when entering the constant voltage charging phase, the charging power required by the battery will gradually decrease.
  • the charging current and charging voltage required by the battery are different, that is, the charging power required by the battery is different, it is possible to control all the emission branches to emit electromagnetic signals or part of the emission during different charging stages.
  • the branches emit electromagnetic signals; it is also possible to control all the transmitting branches to emit electromagnetic signals during the entire charging phase.
  • the wireless transmission control module 52 controls the disconnection and conduction of the switch circuit in the reverse rectifier bridge by controlling the input voltage of the reverse rectifier bridge.
  • the wireless transmission control module 52 also controls the voltage regulation parameters of the inverse rectifier bridge by controlling the input voltage of the inverse rectifier bridge and the switching duty cycle and/or switching frequency of the switching circuit.
  • the wireless transmission control module 52 adjusts the transmission power of the electromagnetic signal of at least one transmission branch according to the charging parameters, the required charging power, the required current, or the required voltage, which may include: according to the charging parameters and preset charging parameters Threshold, adjusting the initial voltage regulation parameter corresponding to the voltage conversion circuit of each transmission branch in at least one transmission branch; the voltage conversion circuit is also used to adjust the initial input current and the initial input voltage according to the adjusted initial voltage regulation parameter The adjustment is performed to obtain the adjusted input current and the adjusted input voltage, and the adjusted input current and the adjusted input voltage are transmitted to at least one transmitting branch.
  • the process of generating electromagnetic signals for each of the at least one transmitting branch based on the adjusted input current and the adjusted input voltage is the same as the process of generating at least two electromagnetic signals based on the input current and the input voltage.
  • Reason, I won’t repeat it here. It should be noted that by adjusting the initial voltage regulation parameters of the voltage conversion circuit, the input current and input voltage transmitted to the transmitting branch are changed, and the transmitting power of the electromagnetic signal transmitted by each transmitting branch is changed to change the corresponding The output current, output voltage and charging power of a coupled receiving branch.
  • the wireless transmission control module 52 adjusts the transmission power of the electromagnetic signal of at least one transmission branch according to the charging parameters, the required charging power, the required current, or the required voltage, which may also include: according to the charging parameters and preset charging
  • the parameter threshold is used to adjust the switching duty cycle and/or switching frequency of the inverse rectifier bridge of each transmission branch in at least one transmission branch; the inverse rectifier bridge is also used to adjust the switching duty cycle and/or adjustment according to the adjusted switching duty cycle
  • the input current and the input voltage are adjusted from DC to AC to obtain the adjusted first emission current and the adjusted first emission voltage, and transmit the adjusted first emission current and the adjusted first emission current.
  • the transmitting voltage is given to the transmitting coils of the same transmitting branch; the transmitting coils of the same transmitting branch are used to generate the first electromagnetic signal according to the adjusted first transmitting current and the adjusted first transmitting voltage, and transmit the first electromagnetic signal To a correspondingly coupled receiving branch in the device to be charged.
  • each transmitting branch transmitting the first electromagnetic signal to a correspondingly coupled receiving branch of the device to be charged
  • the specific process of transmitting the electromagnetic signal to a corresponding receiving branch of the device to be charged For the same reason, I won't repeat it here. It should be noted that by adjusting the switching duty cycle and/or switching frequency of the inverse rectifier bridge, the emission current and emission voltage transmitted by each emission branch are changed, thereby changing the emission of electromagnetic signals emitted by each emission branch. Power to change the output current, output voltage and charging power of a receiving branch corresponding to the coupling.
  • the transmission control module includes a wireless transmission control module 52; the wireless transmission control module 52 is respectively connected to at least two transmission branches 22 (for example, the transmission branch 22a and the transmission branch 22b). ; A capacitor (for example, a capacitor 413, a capacitor 423) is also provided between the inverse rectifier bridge of each transmission branch of the at least two transmission branches 22 and the transmission coil, and the transmission coil and the capacitor of each transmission branch form a resonant circuit
  • the wireless transmission control module 52 is also used to adjust the transmission power of the electromagnetic signal of at least one transmission branch according to the charging parameters, the required charging power, the required current or the required voltage; the wireless transmission control module 52 is charged according to the charging parameters and presets Parameter threshold, adjust the resonant frequency of the resonant circuit of each transmitting branch in at least one transmitting branch, and adjust the input current and input voltage from DC to AC according to the adjusted resonance frequency of each transmitting branch to obtain The adjusted second transmitting current and the adjusted second transmitting voltage are transmitted to the transmit
  • a second electromagnetic signal is generated based on the adjusted second transmitting current and the adjusted second transmitting voltage, and the second electromagnetic signal is transmitted to a receiving branch (for example, receiving branch 23a) of the device to be charged 23 that is correspondingly coupled. , Receiving branch 23b).
  • each transmitting branch transmitting the second electromagnetic signal to a correspondingly coupled receiving branch of the device to be charged
  • the specific process of transmitting the electromagnetic signal to a corresponding receiving branch of the device to be charged For the same reason, I won't repeat it here. It should be noted that by adjusting the resonant frequency of the resonant circuit in the transmitting branch, the transmitting current and the transmitting voltage transmitted by each transmitting branch are changed, and then the transmitting power of the electromagnetic signal transmitted by each transmitting branch is changed. Change the output current, output voltage and charging power of a receiving branch corresponding to the coupling.
  • the wireless transmission control module 52 can adjust the transmission power of the electromagnetic signal of the transmitting branch through at least one of the following: adjusting the initial voltage regulation parameters corresponding to the voltage conversion circuit of the transmitting branch, and adjusting the inverse rectifier bridge of the transmitting branch The switching duty cycle and/or the switching frequency are adjusted to adjust the resonant frequency of the resonant circuit in the transmitting branch.
  • the wireless transmission control module 52 is also configured to establish a handshake communication with the device 23 to be charged based on a preset wireless communication protocol to control the reception of real-time charging parameters.
  • the wireless charging device presets the wireless communication protocol to perform handshake communication with the device to be charged.
  • the preset wireless communication protocol is wireless charging The wireless communication protocol supported by the device itself. It is understandable that multiple transmission branches generate multiple transmission currents and transmission voltages, and transmit multiple electromagnetic signals to the device to be charged at the same time. Through the multiple electromagnetic signals, the charging power of the device to be charged is doubled, which greatly improves The charging power.
  • the device to be charged 7 includes: at least two receiving branches 71 (for example, receiving branch 71a and receiving branch 71b), a charging control module 72, and a battery 73; each of the at least two receiving branches 71 is connected to the charging control module 72 and the battery 73; each receiving branch is used to couple with a transmitting branch of the wireless charging device 74 to receive The electromagnetic signal of a transmitting branch is coupled, and the received electromagnetic signal is converted into a charging voltage and a charging current for charging the battery 73 of the device 7 to be charged; the charging control module 72 is used for according to at least one of the following charging parameters Generate feedback information and feed it back to the wireless charging device 74: the charging voltage of the battery 73, the charging current of the battery 73, the voltage of each receiving branch and the current of the first receiving branch; the feedback information is used to instruct the wireless charging device 74 to adjust separately
  • the transmission power of the electromagnetic signal of each transmission branch 741 for example, the
  • Each receiving branch in the device to be charged receives an electromagnetic signal transmitted by a coupled transmitting branch, and based on the received electromagnetic signal, generates a charging voltage and a charging current and transmits them to the battery, and then the device to be charged
  • the at least two receiving branches receive at least two electromagnetic signals transmitted by the at least two transmitting branches, and generate at least two charging voltages and at least two charging currents based on the at least two electromagnetic signals to realize multiple charging voltages and multiple charging
  • the current charges the battery; the battery stores at least two charging voltages and at least two charging currents transmitted by at least two receiving branches to provide electrical energy for the normal operation of the device to be charged.
  • the charging voltage of the battery 73 refers to the voltage input to the battery 73
  • the charging current of the battery 73 refers to the current input to the battery 73.
  • the voltage of each receiving branch can be the voltage at any point on the charging path of the receiving branch, as long as it can reflect the voltage of the receiving coil in the same receiving branch; similarly, each receiving branch The current of the branch can be the current at any point on the charging path of the receiving branch, as long as it can reflect the current of the receiving coil in the same receiving branch; the embodiment of the present application is not specifically limited.
  • the charging control module includes a second MCU and/or an application processor (AP, Application Processor).
  • the charging control module may be at least two charging control modules, each of the at least two receiving branches is controlled by an independent charging control module, and the at least two charging control modules include a main control module, The main control module communicates with the wireless charging device; among them, the main control module belongs to the main receiving branch, and the main receiving branch may be a receiving branch supporting a standard wireless charging protocol.
  • the device to be charged performs handshake communication with the wireless charging device based on a preset wireless charging protocol; when the handshake communication with the wireless charging device is established, it starts to receive multiple electromagnetic signals, and generates feedback information for feedback to the wireless charging Device.
  • the wireless charging device when the wireless charging device receives the feedback information, according to the feedback information and preset charging parameters, it adjusts the transmission voltage, the transmission current and/or the transmission power of the at least one transmission branch, so as to change the coupled at least one reception branch.
  • the voltage and/or current to change the charging current and/or charging voltage of the battery.
  • the battery in the device to be charged includes a single-cell battery, or may be a multi-cell battery.
  • the voltage and current of multiple receiving branches can be applied to both ends of the multiple battery cells for charging together, or each receiving branch can be charged for one battery cell. This application does not make any limitation on the form and circuit structure of how the multiple receiving branches charge the multiple battery cells.
  • each of the at least two receiving branches 71 includes a receiving coil (for example, Rx coil 811, Rx coil 812), an AC-DC conversion module (for example, AC-DC Conversion module 821, AC-DC conversion module 822) and voltage conversion circuits (for example, DC/DC831, DC/DC832);
  • AC-DC conversion modules are respectively connected to the receiving coil and voltage conversion circuit in the same receiving branch, the voltage conversion circuit and the battery 73 is electrically connected;
  • the voltage conversion circuit and the AC-DC conversion module are respectively connected to the charging control module 72;
  • the receiving coil is used to receive an electromagnetic signal transmitted by a transmitting branch corresponding to the receiving branch;
  • the AC-DC conversion module Is used to convert an electromagnetic signal received by the receiving coil in the same receiving branch into direct current;
  • a voltage conversion circuit is used to perform voltage and/or current conversion on the direct current to obtain the charging voltage and charging current for charging the battery 73.
  • the position of the charging control module 72 shown in FIG. 8 is in the
  • the receiving coil of each receiving branch receives one electromagnetic signal transmitted by the transmitting coil in the corresponding transmitting branch; the electromagnetic signal is converted into direct current by the AC-DC conversion module in the same receiving branch;
  • the voltage conversion circuit in the receiving branch performs voltage and/or current conversion on the direct current to generate a charging current and a charging voltage, and provide them to the battery.
  • the voltage of each receiving branch includes the output voltage of the AC-DC conversion module (for example, the AC-DC conversion module 821 or the AC-DC conversion module 822), and the output voltage of the AC-DC conversion module may be It is the output voltage of the receiving coil in the same receiving branch, or it can be the voltage on the charging path in the same receiving branch (for example, the voltage output by the AC-DC conversion module in the same receiving branch, or input into the same receiving branch In the DC/DC voltage); the output voltage of the AC-DC conversion module can reflect the voltage of the receiving coil.
  • the output voltage of the AC/DC conversion module 821 may be the output voltage of the Rx coil 811, the output voltage of the AC/DC conversion module 821, or the input voltage of DC/DC831.
  • the current of each receiving branch includes the output current of the AC-DC conversion module (for example, the AC-DC conversion module 821 or the AC-DC conversion module 822), and the output current of the AC-DC conversion module may be It is the output current of the receiving coil in the same receiving branch, or the current on the charging path in the same receiving branch (for example, the current output by the AC-DC conversion module in the same receiving branch, or input into the same receiving branch In the DC/DC current); the output current of the AC-DC conversion module can reflect the current of the receiving coil.
  • the output current of the AC/DC conversion module 821 may be the output current of the Rx coil 811, the output current of the AC/DC conversion module 821, or the input current of the DC/DC831.
  • the AC/DC conversion module in each receiving branch includes an AC/DC converter (for example, AC/DC converter 8211, AC/DC converter 8221),
  • the AC/DC converter is connected to the receiving coil and the voltage conversion circuit in the same receiving branch; the AC/DC converter is used to adjust the voltage of an electromagnetic signal received by the receiving coil in the same receiving branch from AC to DC.
  • the AC-DC conversion module is used to rectify and filter the electromagnetic signal to obtain DC power; in addition, the AC-DC conversion module is also used to control the voltage and current of the DC power, or the AC-DC conversion module is controlled by the charging control module.
  • Two MCU or AP, MCU or AP controls the voltage and current of the direct current.
  • the charging control module is also used to determine the required charging power according to the charging voltage and/or charging current of the battery; and to feed the required charging power as feedback information to the wireless charging device, so that the wireless charging device Based on the feedback information, the transmission power of each transmission branch of the electromagnetic signal is adjusted.
  • the charging control module obtains the total charging voltage and/or total charging current provided by all receiving branches for the battery, uses the total charging voltage and/or total charging current to obtain the required charging power, and uses the required charging power as The feedback information is fed back to the wireless charging device, so that the wireless charging device adjusts the transmission power of the electromagnetic signal transmitted by each of the at least one transmission branch based on the required charging power.
  • the voltage of each receiving branch includes an output voltage of the AC-DC conversion module
  • the current of each receiving branch includes an output current of the AC-DC conversion module
  • At least two output currents and/or at least two output voltages corresponding to each receiving branch are determined to determine the demand current
  • the demand current is fed back to the wireless charging device as feedback information, so that the wireless charging device adjusts the electromagnetic signal based on the feedback information. Transmit power.
  • the charging control module uses the output current and/or output voltage of the AC-DC conversion module in each receiving branch to determine a demand current corresponding to each receiving branch, and obtain at least two corresponding to at least two receiving branches.
  • Demand current determine the demand current as feedback information from at least two demand currents; wherein, the demand current as feedback information can be the maximum value of the at least two demand currents, or it can be in at least two receiving branches
  • the demand current corresponding to the main receiving branch uses the output current and/or output voltage of the AC-DC conversion module in each receiving branch to determine a demand current corresponding to each receiving branch, and obtain at least two corresponding to at least two receiving branches.
  • Demand current determine the demand current as feedback information from at least two demand currents; wherein, the demand current as feedback information can be the maximum value of the at least two demand currents, or it can be in at least two receiving branches.
  • the current of each receiving branch includes an output current of the AC-DC conversion module; the charging control module is also used to determine the required charging power according to the charging voltage and/or charging current of the battery; and according to at least At least two output currents corresponding to the two receiving branches are used to determine the required current; and the required voltage is determined according to the required charging power and required current, and the required voltage is fed back to the wireless charging device as feedback information, so that the wireless charging device is based on The feedback information adjusts the transmission power of the electromagnetic signal.
  • the charging control module multiplies the charging voltage and charging current of the battery to obtain the charging power of the battery; obtains the charging power threshold and current threshold from the preset charging parameters, and calculates the required charging power according to the charging power threshold and the charging power of the battery ; Determine a demand current from all output currents and/or output voltages corresponding to all receiving branches; compare the demanded charging power and the charging power threshold, and compare the demand current and the current threshold to ensure that the demanded charging power does not exceed When the charging power threshold value and the demand current does not exceed the current threshold value, the demand voltage is determined, and the demand voltage is fed back to the wireless charging device.
  • the voltage of each receiving branch includes the output voltage of the AC-DC conversion module; the charging control module is also used to compare the demand voltage and the output voltage to obtain a voltage difference; and use the voltage difference as feedback The information is fed back to the wireless charging device, so that the wireless charging device adjusts the transmission power of the electromagnetic signal based on the feedback information.
  • the charging control module compares the required voltage with the output voltage of the AC-DC conversion module in the at least one receiving branch (for example, makes a difference), and obtains the voltage difference and feeds it back to the wireless charging device.
  • the charging control module is also used to send feedback information of increasing or decreasing the transmission voltage to the wireless charging device.
  • the charging control module determines the required voltage according to the charging voltage of the battery, the charging current of the battery, the output voltage and/or the output current of the AC/DC conversion module in each receiving branch, and then obtains the voltage threshold value from the preset charging parameters, The difference between the voltage threshold and the required voltage is compared to generate feedback information that increases or decreases the emission voltage.
  • the charging control module is further configured to establish a handshake communication with the wireless charging device based on a preset wireless communication protocol to transmit feedback information.
  • the device to be charged further includes: a charging control module for controlling at least one of the at least two receiving branches to work according to the charging mode or the charging stage of the battery to charge the battery;
  • the modes include a first charging mode and a second charging mode.
  • the charging speed of the first charging mode is greater than the charging speed of the second charging mode.
  • the charging phase of the battery includes at least one of the following charging phases: trickle charging phase, constant current charging Phase and constant voltage charging phase.
  • the first charging mode may correspond to a constant current charging stage
  • the second charging mode may correspond to a trickle charging stage and/or a constant voltage charging stage.
  • the charging mode may not correspond to the charging stage, that is, the charging mode corresponds to the charging speed; for example, in the fast charging mode with a faster charging speed, when the required charging power is higher than the set value At this time, it is the first charging mode, which can be at least two receiving branches working at the same time; otherwise, in the normal charging mode with a slower charging speed, this time is the second charging mode, which can be at least two receiving branches Only one of the receiving branches works. In this case, in the first charging mode, which receiving branch works can be consistent with the constant current charging phase; in the second charging mode, which receiving branch works, it can be combined with the trickle charging phase and/or constant voltage The charging phase remains the same.
  • the charging control module is also used to control at least two receiving branches to work at the same time when the battery is in the constant current charging phase; when the battery is in the non-constant current charging phase, to control at least At least one of the two receiving branches works.
  • the charging control module When the charging control module is charging the battery in the constant current charging stage, it sends a constant current charging instruction to the wireless charging device, so that the wireless charging device controls at least two transmitting branches to work normally, and to the correspondingly coupled at least two receiving branches Transmit electromagnetic signals to ensure that at least two receiving branches work; when charging the battery in a non-constant current charging stage, send a non-constant current charging command to the wireless charging device so that the wireless charging device control corresponds to at least one receiving branch
  • the coupled at least one transmitting branch works normally, and at least one transmitting branch transmits electromagnetic signals to at least one receiving branch to ensure that at least one receiving branch works.
  • the wireless charging device controls the remaining transmitting branches that are correspondingly coupled to the remaining receiving branches. Stop working, the other transmitting branches do not transmit electromagnetic signals to the remaining receiving branches, and the remaining receiving branches stop working; among them, the remaining receiving branches are the receiving branches except at least one of the at least two receiving branches. .
  • At least two receiving branches 1001 include a first receiving branch 1001a and a second receiving branch. 1001b, the first receiving branch 1001a includes a first AC-DC conversion circuit 1021 and a first voltage conversion circuit 1031, and the second receiving branch 1001b includes a second AC-DC conversion circuit 1022 and a second voltage conversion circuit 1032; a first voltage
  • the conversion circuit 1031 is connected to the first AC-DC conversion circuit 1021 and the second AC-DC conversion circuit 1022;
  • the second voltage conversion circuit 1032 is connected to the first AC-DC conversion circuit 1021 and/or the second AC-DC conversion circuit 1022; charging
  • the control module 72 is also used to control the first voltage conversion circuit 1031 to work in the constant current charging phase, and to control the second voltage conversion circuit 1032 to work in the trickle charging phase and/or the constant voltage charging phase.
  • the first voltage conversion circuit 1031 is a charge pump circuit
  • the second voltage conversion circuit 1032 is a buck circuit, a buck-boost circuit, or an integrated circuit, IC).
  • the first voltage conversion circuit 1031 is connected to the first AC-DC conversion circuit 1021 and the second AC-DC conversion circuit 1022 at the same time.
  • the second voltage conversion circuit 1032 is combined with the first AC-DC conversion circuit 1021 and the second AC-DC conversion circuit 1022 Simultaneous connection.
  • the trickle charging phase and/or the constant voltage charging phase there may also be two charging paths through the second voltage conversion circuit 1032 to charge the battery 73 at the same time.
  • the second voltage conversion circuit 1032 can also be connected to only one of the AC-DC conversion circuits (the first AC-DC conversion circuit 1021 or the second AC-DC conversion circuit 1022), at this time, in the trickle charging stage and/or In the constant voltage charging phase, there may be a charging path to charge the battery 73 through the second voltage conversion circuit 1032; that is, when the second voltage conversion circuit 1032 is only connected to the first AC-DC conversion circuit 1022, in the trickle charging phase and/or In the constant voltage charging stage, at this time, the battery 73 can be charged by the first charging path through the first AC-DC conversion circuit 1021 and the second voltage conversion circuit 1031; when the second voltage conversion circuit 1032 is only connected to the second AC-DC conversion circuit 1022 When connected, during the trickle charging phase and/or the constant voltage charging phase, the second charging path may charge the battery 73 through the second AC-DC conversion circuit 1022 and the second voltage conversion circuit 1032 at this time.
  • the charging control module can also control each receiving branch to work or suspend work by controlling the working switch in each receiving branch.
  • the charging control module is also used to detect the charging state of the device to be charged; and, when the charging state matches the abnormal charging state, send a charging stop instruction to the wireless charging device; the charging stop instruction is used to instruct the wireless charging device Stop transmitting electromagnetic signals to stop the wireless charging device from providing transmission power to the device to be charged; wherein, the abnormal charging state includes: the power information of the battery is greater than the preset power value, and/or the battery temperature of the battery is greater than the preset temperature value, and /Or, the charging voltage of the battery is greater than the preset voltage value, and/or, the charging current of the battery is greater than the preset current value.
  • the charging control module is also used to detect at least one of the following: battery power information, battery temperature, battery charging voltage and battery charging current; based on the detected information to determine the charging status of the device to be charged; when the charging status is abnormal In the charging state, the wireless charging device is controlled to stop transmitting electromagnetic information through the charging stop command.
  • the charging control module is also used to obtain power information of the battery; when the power is greater than the preset power value, a charging stop command is generated and sent to the wireless charging device, and the charging stop command is used to instruct the wireless charging device to stop transmitting Electromagnetic signal.
  • the charging control module is used to determine whether the power information of the battery is greater than the preset power value. When the circuit is greater than the preset power value, the battery is determined to be fully charged, and the charging stop command is generated and sent to the transmission control module in the wireless charging device.
  • the charging control module is also used to generate a charging stop instruction and send it to the wireless charging device when the charging voltage of the battery and the charging current of the battery meet the preset charging value, and the charging stop instruction is used to instruct the wireless charging device Stop emitting electromagnetic signals.
  • the charging control module is also used to determine whether the charging voltage of the battery and the charging current of the battery meet the preset charging value. When the preset charging value is met, it is determined that the battery is fully charged and a charging stop command is generated; wherein the preset charging value may include a preset charging value. The current value and the preset voltage value. When the charging voltage of the battery is less than the preset voltage value and/or the charging current of the battery is less than the preset current value, it is determined that the charging voltage of the battery and the charging current of the battery meet the preset charging value.
  • the AC-DC conversion module further includes a switch control module; the switch control module is used to control the receiving branch where it is located to be disconnected when the current or voltage transmitted in the receiving branch where it is located exceeds a preset abnormal threshold. Turn on to stop charging.
  • the switch control module performs overcurrent protection and overvoltage protection on the battery according to the preset abnormal threshold; when the current or voltage transmitted in the receiving branch where it is located exceeds the preset abnormal threshold, by disconnecting the receiving branch where it is located, Stop charging the receiving branch where it is located; wherein, the preset abnormal threshold includes an abnormal current threshold and an abnormal voltage threshold.
  • the voltage conversion circuit in at least one of the at least two receiving branches is a buck circuit, a buck-boost circuit, or a charging integrated circuit (also called a Charge IC or a charging IC);
  • the voltage conversion circuits in at least two receiving branches are charge pump circuits.
  • the voltage conversion circuits in the remaining receiving branches are charge pump circuits; the remaining receiving branches are the receiving branches of the at least two receiving branches except for the above-mentioned at least one receiving branch.
  • the ratio of the input voltage to the output voltage of the charge pump circuit can be 1:1, 2:1, 3:1,..., N:1, etc.; in addition, the charging IC can be an identification circuit, an LDO circuit, etc. (Stabilization circuit), step-down/boost circuit, path management circuit, temperature detection circuit and other circuits are integrated, but the embodiments of the present application are not specifically limited.
  • the at least two receiving branches include a first receiving branch and a second receiving branch
  • the voltage conversion circuit in the first receiving branch is a Buck circuit, a Boost-Buck circuit or a charging IC
  • the second receiving branch The voltage conversion circuit in the branch is a charge pump circuit; the charging control module is used to control the first receiving branch and the second receiving branch to work at the same time when the battery is in the constant current charging stage; when charging the battery When in the non-constant current charging stage, the first receiving branch is controlled to work.
  • the voltage conversion circuit in the first receiving branch can be a Buck circuit, a Boost-Buck circuit or a charging IC
  • the second receiving branch is a Charge pump circuit
  • the first receiving branch and the second receiving branch can be controlled to work at the same time during the constant current charging stage, so that the battery can be charged with a larger charging power
  • the first receiving branch can be controlled to work in the non-constant current charging stage ,
  • the second receiving branch does not work, so that the battery is charged with a smaller charging power.
  • the charging control module is further configured to control one of the at least two receiving branches to operate when it is detected that the wireless charging device includes a single transmitting branch, and the at least two receiving branches The rest of the receiving branch in the circuit does not work; among them, the voltage conversion circuit in a receiving branch that is controlled to work is a Buck circuit, a Boost-Buck circuit or a charging IC;
  • the maximum transmission power of the wireless charging device obtains the maximum transmission power of the wireless charging device; when the obtained maximum transmission power is less than the preset power threshold, control one of the at least two receiving branches to work, and the remaining ones of the at least two receiving branches
  • the branch does not work; among them, the voltage conversion circuit in a receiving branch controlled to work is a Buck circuit, a Boost-Buck circuit or a charging IC.
  • the charging control module may also control the operation of a receiving branch corresponding to the only one transmitting branch; wherein, a receiving branch corresponding to the only one transmitting branch may be A branch that supports the same wireless charging protocol as the only one transmitting branch, or a branch that establishes handshake communication with the only one transmitting branch.
  • the charging system includes: an adapter 90, a wireless charging device 91, and a device to be charged 92, where the wireless charging device 91 includes a DC/DC 911, a first MCU 912, a dual A wireless transmission control module 913, a transmission branch 914, and a transmission branch 915.
  • the transmission branch 914 includes an inverse rectifier bridge 9141, a transmission capacitor 9142 and a transmission coil (Tx coil) 9143, and the transmission branch 915 includes an inverse rectifier bridge 9151.
  • the transmitting branch 914 and the corresponding receiving branch 921 form a charging path A
  • the transmitting branch 915 and the corresponding receiving branch 922 form a charging path B.
  • the adapter 90 is connected to the first MCU 912 and the DC/DC 911.
  • the DC/DC 911 is respectively connected to the first MCU 912, the inverse rectifier bridge 9141 and the inverse rectifier bridge 9151.
  • the first MCU 912 is connected to one end of the dual wireless transmission control module 913, dual The other end of the wireless transmission control module 913 is respectively connected to the reverse rectifier bridge 9141 and the reverse rectifier bridge 9151, the reverse rectifier bridge 9141, the transmission capacitor 9142 and the Tx coil 9143 are connected in series, and the reverse rectifier bridge 9151, the transmission capacitor 9152 and the Tx coil 9153 are connected in series;
  • the Tx coil 9143 and the Rx coil 9211 are electrically connected through electromagnetic coupling, and the Tx coil 9153 and the Rx coil 9221 are electrically connected through electromagnetic coupling.
  • the Rx coil 9211, the receiving capacitor 9212, and the AC/DC conversion module 9213 are connected in series, the AC/DC conversion module 9213 is connected to the AC/DC conversion module 9223 and DC/DC 9214, and the charging control module 923 is connected to the AC/DC conversion module 9213, DC/DC 9214, The AC/DC conversion module 9223 and the DC/DC 9224, and the DC/DC 9214 and DC/DC 9224 are respectively connected to the battery 924.
  • the position of the charging control module 923 shown in FIG. 10 is in the receiving branch 921, which does not mean that the charging control module 923 belongs to the receiving branch 921.
  • the adapter 90 When the adapter 90 is connected to the power source, it transmits the initial input current and initial input voltage to the DC/DC 911.
  • the DC/DC 911 boosts the initial input current and the initial input voltage to obtain the input current and the input voltage, and the input current and the input voltage Simultaneously transmit to the transmitting branch 914 and the transmitting branch 915;
  • the inverse rectifier bridge 9141 of the transmitting branch 914 adjusts the input voltage and input current from DC to AC, and generates a transmission current and a transmission voltage corresponding to the transmission branch 914;
  • the inverse rectifier bridge 9151 of the transmitting branch 915 adjusts the input voltage and input current from DC to AC, and generates a transmission current and a transmission voltage corresponding to the transmission branch 915.
  • the Tx coil 9143 generates an electromagnetic signal corresponding to the transmitting branch 914 based on a transmitting current and a transmitting voltage corresponding to the transmitting branch 914, and transmits an electromagnetic signal corresponding to the transmitting branch 914 to the Rx coil 9211;
  • the conversion module 9213 performs AC to DC voltage regulation on the electromagnetic signal received by the Rx coil 9211 to obtain a receiving current and a receiving voltage;
  • DC/DC 9214 adjusts the voltage of a receiving current and a receiving voltage to generate a charging current And one charging voltage is provided to the battery to charge the battery.
  • the Tx coil 9153 generates an electromagnetic signal corresponding to the transmitting branch 915 based on the transmitting current and the transmitting voltage corresponding to the transmitting branch 915, and transmits the electromagnetic signal corresponding to the transmitting branch 915 to the Rx coil 9221;
  • AC-DC conversion The module 9223 adjusts the voltage of the electromagnetic signal received by the Rx coil 9221 from AC to DC to obtain a receiving current and a receiving voltage;
  • DC/DC 9224 adjusts the voltage of a receiving current and a receiving voltage to generate a charging current and a voltage.
  • a charging voltage is provided to the battery to charge the battery.
  • the dual-channel wireless transmission control module 913 sets the DC/DC 911 voltage regulation parameters, sets the resonant frequency of the transmission capacitor 9142 in the transmission branch 914, and the switching duty cycle and/or switching frequency of the inverse rectifier bridge 9141. Adjust the size of the transmission current and the voltage of the transmission branch 914 to change the charging power corresponding to the transmission branch 914; in addition, the adjustment process of the charging power corresponding to the transmission branch 915 is the same as that of the transmission branch 914. The adjustment process of the corresponding charging power is the same, and will not be repeated here.
  • Charging path A supports the first wireless charging protocol
  • charging path B supports the second wireless charging protocol
  • the first wireless charging protocol can be a standard wireless charging protocol (for example, Qi protocol) or a non-standard wireless charging protocol
  • the second wireless charging protocol and the first wireless charging protocol may be the same or different.
  • charging path A supports the Qi protocol
  • charging path B supports non-standard wireless charging protocols.
  • charging path B is not subject to the charging power limitation of the standard wireless charging protocol, a larger charging power can be used for charging, which further improves Improved charging efficiency.
  • the dual wireless transmission control module 913 controls the reverse rectifier bridge 9141 and the reverse rectifier bridge 9151 to work when the battery is in the constant current charging stage, that is, the battery is charged through the charging path A and the charging path B;
  • the inverse rectifier bridge 9141 is controlled to work and the inverse rectifier bridge 9151 stops working, that is, the charging path B stops working, so that the battery can be charged through the charging path A.
  • the DC/DC 9224 in charging path B is a charge pump circuit.
  • the charging power of the charge pump circuit is higher than that of the Buck circuit and the Boost-Buck circuit. Greatly improve the charging power of the constant current charging stage.
  • the positions of the two charging channels can be evenly distributed in space (for example, up and down, left and right, etc.), so that the heat dissipation of the charging system is more uniform and the charging is effectively controlled.
  • the temperature rise of the system is more uniform and the charging is effectively controlled.
  • the charging system includes a power supply 20, a wireless charging device 2 and a device to be charged 7.
  • the wireless charging device 2 includes a transmission control module 21 and at least two transmission branches 22 (for example, transmission Branch 22a, transmitting branch 22b), the device 7 to be charged includes at least two receiving branches 71 (for example, receiving branch 71a, receiving branch 71b), charging control module 72 and battery 73; at least two transmitting branches Each of the transmitting branches in 22 is electrically connected to the power supply 20, and each of the at least two transmitting branches 22 is respectively connected to the transmitting control module 21; the transmitting control module 21 is electrically connected to the power supply 20 Each of the at least two receiving branches 71 are respectively connected to the charging control module 72 and the battery 73; each receiving branch is coupled to one of the at least two transmitting branches 22 through electromagnetic coupling
  • the emission control module 21 is used to control the input current and input voltage provided by the power supply 20 to the at least two emission branches 22; each emission branch is used to generate an electromagnetic signal based on
  • the electromagnetic signal is transmitted to a correspondingly coupled one of the at least two receiving branches 71; the transmitting control module 21 is also used to receive feedback information sent by the device to be charged 7, and adjust the electromagnetic signal of each transmitting branch based on the feedback information.
  • Signal transmission power; each receiving branch is used to receive the electromagnetic signal emitted by a coupled transmitting branch, and convert the received electromagnetic signal into the charging voltage and charging current of the battery 73 of the device 7 to be charged;
  • the control module 72 is configured to generate feedback information and feed it back to the wireless charging device 2 according to at least one of the following charging parameters: the charging voltage of the battery 73, the charging current of the battery 73, the voltage of each receiving branch, and each receiving branch
  • the feedback information is used to instruct the wireless charging device 2 to adjust the transmission power of the electromagnetic signal of each transmission branch respectively.
  • the charging control module in the device to be charged is also used to determine the required charging power according to the charging voltage and/or charging current of the battery; and to feed the required charging power as feedback information to the wireless charging device;
  • the transmission control module in the wireless charging device is also used to separately adjust the transmission power of the electromagnetic signal of each transmission branch based on the required charging power.
  • the charging control module in the device to be charged is further configured to determine the required current according to at least two output currents and/or at least two output voltages corresponding to the at least two receiving branches; and As feedback information, it is fed back to the wireless charging device; the transmission control module in the wireless charging device is also used to adjust the transmission power of the electromagnetic signal of each transmission branch based on the required current.
  • the charging control module in the device to be charged is further used to determine the required charging power according to the charging voltage and/or charging current of the battery; and according to the at least two output currents corresponding to the at least two receiving branches. , Determine the demand current; and determine the demand voltage according to the demanded charging power and demand current, and feed the demand voltage as feedback information to the wireless charging device; the transmission control module in the wireless charging device is also used to adjust each device separately based on the demand voltage The transmitting power of the electromagnetic signal of the transmitting branch.
  • the charging control module in the device to be charged is also used to compare the required voltage and the output voltage to obtain a voltage difference; and feedback the voltage difference to the wireless charging device as feedback information; in the wireless charging device
  • the transmitting control module is also used to adjust the transmitting power of the electromagnetic signal of the transmitting branch coupled with each receiving branch based on the voltage difference.
  • the charging control module in the equipment to be charged is also used to send feedback information to the wireless charging device to increase or decrease the transmission voltage; the transmission control module in the wireless charging device is also used to receive The feedback information sent by the device to increase or decrease the emission voltage.
  • multiple channels of electromagnetic signals are acquired by multiple receiving branches, and then multiple channels of charging current and charging voltage are generated based on the multiple channels of electromagnetic signals, and the multiple channels of charging current and charging voltage are used to charge the battery at the same time.
  • the current and charging voltage have doubled the charging power of the battery, greatly increasing the charging power.
  • the embodiment of the present application provides a charging method, which is applied to the above-mentioned wireless charging device. As shown in FIG. 12, the charging method includes:
  • the transmission control module in the wireless charging device After the transmission control module in the wireless charging device establishes handshake communication with the device to be charged, it starts to receive input current and input voltage for charging the device to be charged.
  • S102 Generate an electromagnetic signal based on the input current and the input voltage through each of the at least two transmitting branches, and transmit one electromagnetic signal to a correspondingly coupled receiving branch in the device to be charged;
  • S103 Through the transmission control module, receive feedback information sent by the device to be charged, and adjust the transmission power of the electromagnetic signal of each transmission branch based on the feedback information.
  • the feedback information includes charging parameters; the charging parameters are received through the transmission control module; the transmission power of the electromagnetic signal of each transmission branch is adjusted according to the charging parameters.
  • the charging parameter includes at least one of the following: charging voltage of the battery, charging current of the battery, voltage of each receiving branch, and current of each receiving branch.
  • the transmission control module determines the required charging power according to the charging voltage and/or charging current of the battery; and adjusts the transmission power of the electromagnetic signal of each transmission branch based on the required charging power.
  • the transmission control module determines the demand current according to the at least two output currents and/or the at least two output voltages corresponding to the at least two receiving branches; and adjusts the demand current of each transmission branch separately based on the demand current.
  • the transmit power of electromagnetic signals The transmit power of electromagnetic signals.
  • the transmission control module determines the required charging power according to the charging voltage and/or the charging current of the battery; determines the required current according to the at least two output currents corresponding to the at least two receiving branches; The charging power and the demand current are used to determine the demand voltage; the transmission power of the electromagnetic signal of each transmission branch is adjusted separately based on the demand voltage.
  • the required voltage is compared with the output voltage of each receiving branch through the transmitting control module to obtain the voltage difference; based on the voltage difference, the electromagnetic of the transmitting branch coupled with each receiving branch is adjusted.
  • the transmit power of the signal is compared with the output voltage of each receiving branch through the transmitting control module to obtain the voltage difference; based on the voltage difference, the electromagnetic of the transmitting branch coupled with each receiving branch is adjusted. The transmit power of the signal.
  • multiple electromagnetic signals are generated by multiple transmitting branches, and the multiple electromagnetic signals are simultaneously transmitted to the device to be charged. Through the multiple electromagnetic signals, the charging power of the device to be charged is doubled, and the charging power is greatly improved. .
  • the embodiment of the present application provides a charging method, which is applied to the above-mentioned device to be charged. As shown in FIG. 13, the charging method includes:
  • each of the at least two receiving branches receive an electromagnetic signal emitted by a correspondingly coupled transmitting branch in the wireless charging device, and convert the received electromagnetic signal into a battery of the device to be charged. Charging voltage and charging current;
  • each receiving branch in the device to be charged receives an electromagnetic signal transmitted by a correspondingly coupled transmitting branch, and converts the electromagnetic signal to generate a charging voltage and a charging current.
  • S202 Through the charging control module, generate feedback information according to at least one of the following charging parameters and feed it back to the wireless charging device: the charging voltage of the battery, the charging current of the battery, the voltage of each receiving branch, and the voltage of each receiving branch. Current; feedback information is used to instruct the wireless charging device to adjust the transmission power of the electromagnetic signal of each transmission branch respectively.
  • the AC/DC conversion module in each receiving branch converts an electromagnetic signal received by the receiving coil in the same receiving branch into direct current; through the voltage conversion circuit in each receiving branch, The DC power is converted into voltage and/or current to obtain the charging voltage and charging current for charging the battery.
  • the charging control module determines the required charging power according to the charging voltage and/or charging current of the battery; and the required charging power is fed back to the wireless charging device as feedback information, so that the wireless charging device is based on the feedback
  • the information adjusts the transmission power of the electromagnetic signal emitted by each transmission branch.
  • the voltage of each receiving branch includes an output voltage of the AC-DC conversion module
  • the current of each receiving branch includes an output current of the AC-DC conversion module
  • through the charging control module according to at least two received At least two output currents and/or at least two output voltages corresponding to the branch are determined to determine the required current; and the required current is fed back to the wireless charging device as feedback information, so that the wireless charging device adjusts the transmission power of the electromagnetic signal based on the feedback information .
  • the current of each receiving branch includes an output current of the AC-DC conversion module; the charging control module determines the required charging power according to the charging voltage and/or charging current of the battery; and according to at least two At least two output currents corresponding to the branch are received to determine the required current; and the required voltage is determined according to the required charging power and required current, and the required voltage is fed back to the wireless charging device as feedback information, so that the wireless charging device is based on the feedback information Adjust the transmission power of electromagnetic signals.
  • the charging method further includes: detecting the charging state of the device to be charged through the charging control module; and, when the charging state meets the abnormal charging state, sending a charging stop instruction to the wireless charging device;
  • the charging stop instruction is used to instruct the wireless charging device to stop transmitting electromagnetic signals to stop the wireless charging device from providing transmission power to the equipment to be charged;
  • the abnormal charging state includes: the battery power information is greater than the preset power value, and/or the battery The battery temperature is greater than the preset temperature value, and/or, the charging voltage of the battery is greater than the preset voltage value, and/or, the charging current of the battery is greater than the preset current value.
  • an electromagnetic signal emitted by a correspondingly coupled transmitting branch in the wireless charging device is received, and the received electromagnetic signal is converted into a to-be-charged electromagnetic signal.
  • the method further includes: obtaining battery power information through the charging control module; when the power is greater than the preset power value, generating a charging stop instruction and sending it to the wireless charging device, and the charging stop instruction Used to instruct the wireless charging device to stop emitting electromagnetic signals.
  • the embodiment of the present application provides a charging method, which is applied to the charging system according to the first embodiment. As shown in FIG. 14, the charging method includes:
  • S301 Control the input current and input voltage provided by the power supply to at least two transmission branches in the wireless charging device through the transmission control module in the wireless charging device;
  • S302 Generate an electromagnetic signal based on the input current and the input voltage through each of the at least two transmission branches, and transmit the electromagnetic signal to a correspondingly coupled receiving branch in the device to be charged;
  • multiple channels of electromagnetic signals are acquired by multiple receiving branches, and then multiple channels of charging current and charging voltage are generated based on the multiple channels of electromagnetic signals, and the multiple channels of charging current and charging voltage are used to charge the battery at the same time.
  • the current and charging voltage have doubled the charging power of the battery, greatly increasing the charging power.
  • the embodiments of the present application provide a computer-readable storage medium, and the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more first processors to realize applications such as Charging method of charging equipment.
  • the embodiments of the present application provide a computer-readable storage medium, and the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more second processors to realize applications such as wireless The charging method of the charging device.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of hardware embodiment, software embodiment, or a combination of software and hardware embodiments. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the embodiment of the application discloses a wireless charging device, a device to be charged, a charging system and method, and a storage medium.
  • the device to be charged includes: at least two receiving branches, a charging control module, and a battery; the at least two receiving branches Each receiving branch in the wireless charging device is respectively connected to the charging control module and the battery; each receiving branch is used to couple with a transmitting branch in the wireless charging device to receive electromagnetic signals emitted by a coupled transmitting branch, And convert the received electromagnetic signal into the charging voltage and charging current for charging the battery of the device to be charged; the charging control module is used to generate feedback information according to at least one of the following charging parameters and feed it back to the wireless charging device: battery charging The voltage, the charging current of the battery, the voltage of each receiving branch and the current of each receiving branch; the feedback information is used to instruct the wireless charging device to adjust the transmission power of the electromagnetic signal of each transmitting branch.
  • multiple receiving branches obtain multiple electromagnetic signals, and then multiple charging currents and charging voltages are generated based on the multiple electromagnetic signals, and the multiple charging currents and charging voltages are used to charge the battery at the same time.
  • the charging current and charging voltage have doubled the charging power of the battery, greatly increasing the charging power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例公开无线充电装置、待充电设备、充电系统及方法、存储介质,待充电设备包括:至少两个接收支路、充电控制模块和电池;每一接收支路分别连接充电控制模块和电池;每一接收支路分别与无线充电装置中一发射支路耦合,接收耦合的一发射支路发射的电磁信号,并将接收的电磁信号转换为待充电设备电池的充电电压和充电电流;充电控制模块根据电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流中的至少一者生成指示无线充电装置调整发射支路的发射功率的反馈信息,并反馈给无线充电装置。

Description

无线充电装置、待充电设备、充电系统及方法、存储介质
相关申请的交叉引用
本申请基于申请号为201911115135.1、申请日为2019年11月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及无线充电技术,尤其涉及一种无线充电装置、待充电设备、充电系统及方法、存储介质。
背景技术
随着电子技术的发展,无线充电技术开始慢慢应用于终端,例如:手机、平板电脑或者遥控设备等包含电池的终端;通过单路无线充电设备对终端的电池实现无线充电,单路无线充电设备采用单线圈传输功率,由于单线圈上的电流大小有限,无法实现较大的充电功率,而且,单路无线充电设备中的整流桥的电压要被提升到一定电压值以上时,对集成电路工艺和成本的要求非常高,因此,通过提高整流桥的电压来提高充电功率的难度也非常大,综上可知,现有的单路无线充电设备的充电功率有限。
发明内容
本申请提供一种无线充电装置、待充电设备、充电系统及方法、存储介质,能够提高充电功率。
本申请的技术方案是这样实现的:
本申请实施例提供一种待充电设备,所述待充电设备包括:
至少两个接收支路、充电控制模块和电池;
所述至少两个接收支路中的每一接收支路均分别连接所述充电控制模块和所述电池;
所述每一接收支路,用于分别与无线充电装置中的一发射支路耦合,以接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
所述充电控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;所述反馈信息用于指示所述无线充电装置分别调整每一发射支路的电磁信号的发射功率。
本申请实施例提供一种无线充电装置,所述无线充电装置包括:发射控制模块和至少两个发射支路;所述至少两个发射支路中的每一发射支路均分别与供电器电连接,所述至少两个发射支路中的每一发射支路均分别与所述发射控制模块连接;所述发射控制模块与所述供电器电连接;
所述发射控制模块,用于控制所述供电器提供给所述至少两个发射支路的输入电流和输入电压;
所述每一发射支路,用于基于所述输入电流和所述输入电压生成一路电磁信号,并传输所述一路电磁信号给待充电设备的一接收支路;
所述发射控制模块,还用于接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率。
本申请实施例提供一种充电系统,所述充电系统包括无线充电装置和待充电设备,所述无线充电装置包括发射控制模块和至少两个发射支路,所述待充电设备包括至少两个接收支路、充电控制模块和电池;所述至少两个发射支路中的每一发射支路均分别与供电器电连接,所述至少两个发射支路中的每一发射支路均分别与所述发射控制模块连接;所述发射控制模块与所述供电器电连接;所述至少两个接收支路中的每一接收支路均分别连接所述充电控制模块和所述电池;所述每一接收支路通过电磁耦合分别与所述至少两个发射支路中的一个发射支路耦合;
所述发射控制模块,用于控制所述供电器提供给所述至少两个发射支路的输入电流和输入电压;
所述每一发射支路,用于基于所述输入电流和所述输入电压生成一路电磁信号,并传输所述一路电磁信号给所述至少两个接收支路中对应的一个接收支路;
所述每一接收支路,用于接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
所述充电控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;所述反馈信息用于指示所述无线充电装置分别调整每一发射支路的电磁信号的发射功率。
本申请实施例提供一种充电方法,应用于如上述的待充电设备,所述方法包括:
通过所述至少两个接收支路中的每一接收支路,接收无线充电装置中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
通过所述充电控制模块,根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;所述反馈信息用于指示所述无线充电装置分别调整每一发射支路的电磁信号的发射功率。
本申请实施例提供一种充电方法,应用于如上述的无线充电装置,所述方法包括:
通过所述发射控制模块,控制所述供电器提供给所述至少两个发射支路的输入电流和输入电压;
通过所述至少两个发射支路中的每一发射支路,基于所述输入电流和所述输入电压生成一路电磁信号,并传输所述一路电磁信号给待充电设备中对应耦合的一接收支路;
通过所述发射控制模块,接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率。
本申请实施例提供一种充电方法,应用于如上所述的充电系统,所述方法包括:
通过所述无线充电装置中的发射控制模块,控制所述供电器提供给所述无线充电装置中的至少两个发射支路的输入电流和输入电压;
通过所述至少两个发射支路中的每一发射支路,基于所述输入电流和所述输入电压生成电磁信号并发射给待充电设备中对应耦合的一接收支路;
通过所述待充电设备中的至少两个接收支路中的每一接收支路,接收所述至少两个发射支路中对应耦合的一发射支路发射的电磁信号,并
将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
通过所述待充电设备中的充电控制模块,根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;
通过所述无线充电装置中的发射控制模块,接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整所述每一发射支路的电磁信号的发射功率。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个第一处理器执行,以实现如上述应用于待充电设备的充电方法。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个第二处理器执行,以实现如上述应用于无线充电装置的充电方法。
本申请实施例提供了一种无线充电装置、待充电设备、充电系统及方法、存储介质,待充电设备包括:至少两个接收支路、充电控制模块和电池;至少两个接收支路中的每一接收支路均分别连接充电控制模块和电池;每一接收支路,用于分别与无线充电装置中的一发射支路耦合,以接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备的电池充电的充电电压和充电电流;充电控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给无线充电装置:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流;反馈信息用于指示无线充电装置分别调整每一发射支路的电磁信号的发射功率。采用上述技术实现方案,由多个接收支路获取多路电磁信号,进而基于多路电磁信号生成多路充电电流和充电电压,利用多路充电电流和充电电压同时对电池进行充电,通过多路充电电流和充电电压实现了对电池的充电功率翻倍,大大提高了充电功率。
附图说明
图1为本申请实施例提供的一种充电系统的示意图一;
图2为本申请实施例提供的一种无线充电装置的结构示意图一;
图3为本申请实施例提供的一种无线充电装置的结构示意图二;
图4为本申请实施例提供的一种无线充电装置的结构示意图三;
图5为本申请实施例提供的一种无线充电装置的结构示意图四;
图6为本申请实施例提供的一种无线充电装置的结构示意图五;
图7为本申请实施例提供的一种待充电设备的结构示意图一;
图8为本申请实施例提供的一种待充电设备的结构示意图二;
图9(a)为本申请实施例提供的一种待充电设备的结构示意图三;
图9(b)为本申请实施例提供的一种待充电设备的结构示意图四;
图10为本申请实施例提供的一种充电系统的结构示意图一;
图11为本申请实施例提供的一种充电系统的结构示意图二
图12为本申请实施例提供的一种应用于无线充电装置的充电方法流程图;
图13为本申请实施例提供的一种应用于待充电设备的充电方法流程图;
图14为本申请实施例提供的一种应用于充电系统的充电方法流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
无线充电技术源于无线电能传输技术,按照无线充电原理的不同,无线充电方式主要分为电磁感应式(或者磁耦合式)、无线电波式和电磁共振式三种方式。目前,主流的无线充电协议包括Qi协议、电源事物联盟(Power Matters Alliance,PMA)协议和无线电源联盟(Alliance for Wireless Power,A4WP)协议等;其中,Qi协议和PMA协议均采用电磁感应式进行无线充电,A4WP协议采用电磁共振式进行无线充电。而在本申请实施例中,针对待充电设备的无线充电技术采用电磁感应式,无线充电装置(比如无线充电底座)和待充电设备之间以磁场传送能量,两者之间无需充电线缆连接,就可以实现为待充电设备中的电池充电,使得充电更加便捷。
可以理解地,待充电设备可以是指终端,这里的终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置等移动式终端设备,还可以包括诸如数字TV、台式计算机等固定式终端设备。另外,本申请实施例中所使用到的待充电设备还可以包括移动电源,该移动电源能够将所接收的充电能量进行存储,以向其他电子设备提供能量。在本申请实施例中,对此不作限定。
相关技术方案一提出了一种充电系统,该充电系统包括供电器、无线充电装置和待充电设备,其中,无线充电装置包括一个发射线圈(单发射线圈),待充电设备包括一个接收线圈(单接收线圈)、一个整流桥和电池;供电器连接电源后向无线充电装置提供输入电流和输入电压,无线充电装置中的单发射线圈基于输入电流和输入电压产生电磁信号,将电磁信号发射至单接收线圈,再由整流桥基于单接收线圈接收到的电磁信号进行整流,输出一路电流和一路电压,将整流桥输出的一路电流和一路电压传输至电池,以利用整流桥输出的一路电流和一路电压对电池进行充电。
需要说明的是,由于相关技术方案一中的充电系统采用单路无线充电,随着充电功率要求的不断增大,由于受到单接收线圈的限制,导致线圈上电流不能做到很大,这时候可以通过提升整流桥上的电压来增大充电功率;然而根据现有的集成电路工艺的要求,当电压超过30伏(V)时,集成电路工艺和成本将会非常高,从而限制了充电功率的提高。
进一步地,相关技术方案二提出了一种充电系统,该充电系统中的无线充电装置包括单发射线圈,待充电设备包括双接收线圈、整流桥和电池,双接收线圈通过同一个整流桥连接电池,由于双接收线圈共用一个整流桥,为了避免整流桥工作紊乱,双接收线圈采用分时工作,如此,仍然无法提高充电功率。
本申请实施例提供一种充电系统,如图1所示,该充电系统1包括供电器10、无线充电装置11和待充电设备12,无线充电装置11包括发射控制模块111和至少两个发射支路112,待充电设备包括至少两个接收支路121和电池122;其中,至少两个发射支路112和至少两个接收支路121为一一对应;至少两个发射支路112中的每一发射支路与至少两个接收支路121中唯一对应的一接收支路,通过电磁耦合实现电性连接;发射控制模块111获取供电器10提供的输入电流和输入电压后,将输入电流和输入电压传输至至少两个发射支路112,至少两个发射支路112根据输入电流和输入电压生成至少两路电磁信号,每个发射支路将一路电磁信号传输给对应的接收支路,至少两个接收支路121中每个接收支路基于自身接收到的一路电磁信号生成一路电流和一路电压,并传输至电池122,以实现利用至少两路电磁信号同时对电池122进行充电;可以看出,由至少两个发射支路112和至少两个接收支路121组成了多个充电通路,多个充电通路能够同时对电池122进行充电,实现充电功率翻倍,大大提高了充电功率;另外,由于存在多个充电通路,还可以使得每一个充电通路上的充电功率有所降低,如此能够分散发热点,减小了充电发热,从而进一步提高了充电效率。
需要说明的是,图1中示出的充电系统的结构并不构成对充电系统的限定,充电系统可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置;本申请实施例可以基于图1所示的充电系统所实现,下面基于图1所示的系统进行具体实施例的说明。
本申请实施例提供一种无线充电装置,如图2所示,无线充电装置2包括:发射控制模块21和至少两个发射支路22(例如,包括发射支路22a、发射支路22b,等);至少两个发射支路22中的每一发射支路均分别与供电器20电连接,至少两个发射支路22中的每一发射支路均分别与发射控制模块21连接; 发射控制模块21与供电器20电连接;发射控制模块21,用于控制供电器20提供给至少两个发射支路22的输入电流和输入电压;每一发射支路,用于基于输入电流和输入电压生成一路电磁信号,并传输一路电磁信号给待充电设备23的一接收支路;发射控制模块21,还用于接收待充电设备23发送的反馈信息,基于反馈信息分别调整每一发射支路的电磁信号的发射功率。
无线充电装置2外接供电器20,无线充电装置2通过电磁耦合的方式与待充电设备23进行电连接,无线充电装置2在通过供电器20连接电源的情况下,开始对待充电设备23进行充电,并接收待充电设备23发送的反馈信息,用于调整每一发射支路的电磁信号的发射功率。
在一些实施例中,无线充电装置和待充电设备均支持相同的无线充电协议,其中,无线充电协议分为标准无线充电协议和非标准无线充电协议,标准无线充电协议包括Qi协议等,非标准无线充电协议包括PMA协议和A4WP协议等。在一些实施例中,无线充电装置与待充电设备进行握手通信,当建立与待充电设备的握手通信时,开始对待充电设备进行充电。
在一些实施例中,无线充电装置和待充电设备建立握手通信时,表示无线充电装置和待充电设备支持相同的无线充电协议,无线充电装置可以按照所支持的无线充电协议设定的充电功率,对待充电设备进行充电。在一些实施例中,至少两个发射支路中每个发射支路支持任意一种可用的无线充电协议,比如,可以设置至少两个发射支路中的至少一个发射支路支持标准无线充电协议,至少两个发射支路中的除了上述至少一个发射支路之外的发射支路支持非标准无线充电协议。还可以所有发射支路都可以支持标准无线充电协议。
在一些实施例中,至少两个发射支路可以支持相同的无线充电协议,也可以支持不同的无线充电协议;至少两个发射支路中每个发射支路和待充电设备中对应的接收支路支持相同的无线充电协议。示例性地,至少两条发射支路中的一发射支路支持标准无线充电协议(例如,Qi协议),至少两条发射支路中除了这一发射支路之外的其余发射支路支持非标准无线充电协议,如此,其余发射支路不受标准无线充电协议的功率限制,可以采用较大的充电功率进行充电,提高了充电效率。
需要说明的是,至少两个发射支路的每个发射支路与待充电设备中对应的接收支路,都支持相同的无线充电协议。示例性地,至少两个发射支路包括支持标准无线充电协议的发射支路t1、支持非标准无线充电协议的发射支路t2,待充电设备中与发射支路t1对应耦合的一接收支路r1也支持标准无线充电协议,待充电设备中与发射支路t2对应耦合的一接收支路r2也支持非标准无线充电协议。
在一些实施例中,发射控制模块,还用于接收到待充电设备的充电参数,根据充电参数,调整每一发射支路的电磁信号的发射功率。
发射控制模块从待充电设备发送的反馈信息中,获取充电参数;比较充电参数和预设充电参数阈值,来判断是否调整每一发射支路的电磁信号的发射功率。
在一些实施例中,充电参数包括以下至少一种:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流。在一些实施例中,每一个接收支路的电压包括每一接收支路中的交流直流转换模块的输出电压,每一接收支路的电流包括每一接收支路中的交流直流转换模块的输出电流;其中,每一接收支路中的交流直流转换模块的输出电压可以为同一接收支路中的充电通路上任意一点的电压,该电压只要能够反映同一接收支路中的接收线圈的电压即可;同理,每一接收支路中的交流直流转换模块的输出电流可以为同一接收支路中的充电通路上任意一点的电流,该电流只要能够反映同一接收支路中的接收线圈的电流即可。在一些实施例中,预设充电参数阈值包括充电功率阈值、电流阈值和电压阈值;其中,充电功率阈值可以为电池对应的总的充电功率阈值;电流阈值可以为一个总的电流阈值,也可以为至少两个接收支路中每一接收支路对应的电流阈值;电压阈值可以为一个总的电压阈值,也可以为至少两个接收支路中每一接收支路对应的电压阈值。
在一些实施例中,每一接收支路对应的电流阈值可以为接收支路所支持的无线充电协议规定的接收线圈的最大电流阈值;每一接收支路对应的电压阈值可以为接收支路所支持的无线充电协议规定的接收线圈的最大电压阈值。
预设充电参数阈值中所有接收支路对应的电流阈值可以都是标准无线充电协议规定的阈值;或者,预设充电参数阈值中一部分接收支路对应的电流阈值都是标准无线充电协议规定的阈值,预设充电参数阈值中的另一部分接收支路对应的电流阈值都是非标准无线充电协议规定的充电参数阈值。
需要说明的是,预设充电参数阈值中每一接收支路对应的电流阈值是不是标准无线充电协议规定的阈值,取决于接收支路自身是否支持标准无线充电协议。示例性地,预设充电参数阈值包括待充电设备中的接收支路r1对应的电流阈值c1、待充电设备中的接收支路r2对应的电流阈值c2;当接收支路r1支持标准无线充电协议时,电流阈值c1为标准无线充电协议规定的电流阈值;当接收支路r2支持非标准无线充电协议时,电流阈值c2为非标准无线充电协议规定的电流阈值。
进一步地,充电功率阈值包括各个充电阶段的充电功率阈值;每一接收支路对应的电流阈值包括各个 充电阶段的电流阈值,每一接收支路对应的电压阈值包括各个充电阶段的电压阈值。
需要说明的是,由于针对不同的充电阶段,电池所需求的充电电流和充电电压是不同的,可以基于各充电阶段电池所需求的充电电流和/或充电电压,预先设定每个接收支路的充电功率阈值;该充电功率阈值可以是恒定值,也可以是一个数值范围;另外,每个电流阈值也可以是恒定值或一个数值范围,每个电压阈值也可以是恒定值或一个数值范围。在一些实施例中,发射控制模块,还用于根据电池的充电电压和/或充电电流,确定需求的充电功率;基于需求的充电功率分别调整每一发射支路的电磁信号的发射功率。
发射控制模块对电池的充电电压和充电电流进行相乘,得到电池的充电功率;从预设充电参数阈值中获取预设充电功率阈值,根据预设充电功率阈值和电池的充电功率计算得到需求的充电功率;基于需求的充电功率分别调整每一发射支路的电磁信号的发射功率;其中,发射控制模块基于需求的充电功率,可以调整所有发射支路的电磁信号的发射功率,也可以调整至少一个发射支路的电磁信号的发射功率。
示例性地,发射控制模块用预设充电功率阈值减去电池的充电功率,得到需求的充电功率;当需求的充电功率为正数时,增加至少两个发射支路的电磁信号的发射功率,当需求的充电功率为负数时,减小至少两个发射支路的电磁信号的发射功率。
在一些实施例中,发射控制模块,还用于根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;以及基于需求电流分别调整每一发射支路的电磁信号的发射功率。
发射控制模块从所有接收支路对应的所有输出电流和/或输出电压,确定一个需求电流;比较该需求电流和电流阈值,当需求电流大于电流阈值时,表示至少两个接收支路存在发热严重的线圈,则根据该需求电流调整所有发射支路的电磁信号的发射功率、或者至少一个发射支路的电磁信号的发射功率。
示例性地,至少两个接收支路包括第一接收支路、第二接收支路、...、第n接收支路,n为发射控制模块中的接收支路的总个数;发射控制模块根据第一接收支路的输出电流和/或输出电压,确定第一需求电流;根据第二接收支路的输出电流和/或输出电压,确定第二需求电流;根据第n接收支路的输出电流和/或输出电压,确定第n需求电流;根据第一需求电流、第二需求电流、...、第n需求电流,确定出需求电流。
进一步地,如果所有接收支路的需求电流是相同的,即第一需求电流、第二需求电流、...、第n需求电流都相同,这时候可以从中任选其中一个作为待确定的需求电流;如果所有接收支路的需求电流是不同的,即第一需求电流、第二需求电流、...、第n需求电流不完全相同,这时候可以从所有接收支路中确定主接收支路,然后将主接收支路上的需求电流作为待确定的需求电流;也可以从第一需求电流、第二需求电流、...、第n需求电流中选取最大值,将最大值作为待确定的需求电流,即将发热严重的接收支路上的需求电流作为待确定的需求电流,本申请实施不作具体限定。
在一些实施例中,主接收支路可以为支持标准无线充电协议的接收支路。在一些实施例中,发射控制模块,还用于根据电池的充电电压和/或充电电流,确定需求的充电功率;及根据至少两个接收支路对应的至少两个输出电流,确定需求电流;以及根据需求的充电功率和需求电流,确定需求电压,基于需求电压分别调整每一发射支路的电磁信号的发射功率。
发射控制模块对电池的充电电压和充电电流进行相乘,得到电池的充电功率;从预设充电参数阈值中获取充电功率阈值,根据充电功率阈值和电池的充电功率计算得到需求的充电功率;从所有接收支路对应的所有输出电流和/或输出电压,确定一个需求电流;比较需求的充电功率和充电功率阈值、以及比较该需求电流和电流阈值,在保证该需求的充电功率不超过充电功率阈值,且需求电流不超过电流阈值的情况下,确定需求电压,以通过调整该需求电压,实现调整至少一个发射支路的电磁信号的发射功率。
需要说明的是,发射控制模块基于充电功率阈值和电流阈值,调整发射支路的电磁信号的发射功率,以使得调整发射功率后,对应耦合的接收支路的充电功率达到充电功率阈值、降低发射支路中的线圈的发热和对应耦合的接收支路各自中的线圈的发热。
在一些实施例中,发射控制模块,还用于对需求电压和每一接收支路的输出电压分别进行比较,得到电压差值;以及基于电压差值调整与每一接收支路耦合的发射支路的电磁信号的发射功率。
发射控制模块在确定需求电压后,将需求电压和至少一个接收支路中的交流直流转换模块的输出电压进行比较(例如,做差),得到电压差值,基于此电压差值,调整至少一个接收支路耦合的发射支路的电磁信号的发射功率;其中,可以将需求电压和部分接收支路中的交流直流转换模块的输出电压进行比较,也可以将需求电压和所有接收支路中的交流直流转换模块的输出电压进行比较,得到电压差值。
在一些实施例中,发射控制模块,还用于接收待充电设备发送的增加发射电压或减小发射电压的反馈信息。发射控制模块在接收到增加发射电压或减小发射电压的反馈信息后,按照一定的调整等级对至少一个发射支路中的发射电压进行调整;其中,调整发射电压的发射支路可以是与反馈信息中指定的接收支路耦合的发射支路,也可以是所有发射支路;发射控制模块实时接收该反馈信息,以对至少一个发射支路的发射电压进行实时调整。
在一些实施例中,如图3所示,无线充电装置还包括电压转换电路32;电压转换电路(DC/DC)32分别与至少两个发射支路22连接;电压转换电路32,用于获取供电器20提供的初始输入电流和初始输入电压;对初始输入电流和初始输入电压进行调节,得到输入电流和输入电压,并将输入电流和输入电压传输至至少两个发射支路22;其中,供电器20包括适配器(adapter)31。
示例性的,无线充电装置相连的供电器可以采用适配器对电源的电能进行直流转交流,生成初始输入电流和初始输入电压的情况下,无线充电装置还包括电压转换电路,用于对初始输入电流和初始输入电压进行升压,得到输入电流和输入电压;将输入电流和输入电压传输至并联的至少两个发射支路。
在一些实施例中,无线充电装置相连的供电器也可以对电源的电能进行直流转交流和升压,生成输入电流和输入电源,直接将输入电流和输入电源传输至至少两个发射支路,此时,无线充电装置不包括电压转换电路。在一些实施例中,电压转换电路包括直流斩波器(DC/DC,Direct Current),DC/DC包括降压式(Buck)电路、升压式(Boost)电路、升降压式(Boost/Buck)电路、电荷泵(charge pump)电路。
示例性地,DCDC为Boost电路;通过Boost电路对初始输入电流和初始输入电压进行升压。
在一些实施例中,如图4所示,至少两个发射支路22中的每个发射支路包括逆整流桥(例如,逆整流桥411或逆整流桥421)和发射线圈(例如,Tx线圈412或Tx线圈422);发射控制模块21和电压转换电路32分别连接每个发射支路的逆整流桥的一端,每一发射支路的逆整流桥的另一端与其对应的发射线圈连接;电压转换电路32,还用于将输入电流和输入电压分别传输至每一发射支路的逆整流桥;逆整流桥,用于对输入电流和输入电压进行直流转交流的调压,得到一路发射电流和一路发射电压,传输一路发射电流和一路发射电压给同一发射支路的发射线圈;发射线圈,根据一路发射电流和一路发射电压生成一路电磁信号,并将一路电磁信号发射给待充电设备23中对应耦合的一接收支路(例如,接收支路23a或接收支路23b)。
无线充电装置将输入电流和输入电压,传输给至少两个发射支路中的每一发射支路的逆整流桥;每个发射支路的逆整流桥对其进行直流转交流的调压,得到一路发射电流和一路发射电压;再由同一发射支路中的Tx线圈基于一路发射电流和一路发射电压生成电磁信号(功率信号),将电磁信号传输至待充电设备中对应耦合的一接收支路。在一些实施例中,逆整流桥包括由至少一个场效应管(MOS管)组成的开关电路,通过控制开关电路来控制逆整流桥的工作,例如,设置开关电路的开关占空比和/或开关频率,确定逆整流桥的调压参数。在一些实施例中,如图5所示,发射控制模块21包括第一微控制单元(MCU,Microcontroller Unit)51和无线发射控制模块52;第一微控制单元51分别连接电压转换电路32和无线发射控制模块52,无线发射控制模块52分别与至少两个发射支路22连接;第一MCU 51,用于控制电压转换电路32和无线发射控制模块52进行工作,以及分别对电压转换电路32和无线发射控制模块52进行异常保护;无线发射控制模块52,用于当对待充电设备23的充电处于恒流充电阶段时,控制每个逆整流桥工作;当对待充电设备23的充电处于非恒流充电阶段时,控制至少两个发射支路22中的至少一个逆整流桥工作,以及控制其余逆整流桥停止工作;其中,其余逆整流桥为至少两个发射支路22中除了至少一个逆整流桥之外的逆整流桥。
无线发射控制模块52从待充电设备无线接收到恒流充电指令时,确定对待充电设备的充电处于恒流充电阶段,控制至少两个发射支路中每一发射支路的逆整流桥工作,实现所有发射支路传输多路发射电流和多路发射电压,以对待充电设备进行充电;从待充电设备无线接收到非恒流充电指令时,确定对待充电设备的充电处于非恒流充电阶段,控制至少两个发射支路中的至少一个发射支路中的至少一个逆整流桥工作,控制其余发射支路中的其余逆整流桥停止工作;其中,其余发射支路为至少两个发射支路中除了至少一个发射支路之外的发射支路。
在一些实施例中,非恒流充电阶段包括涓流充电阶段和恒压充电阶段。在一些实施例中,可以将至少两个发射支路中的支持标准无线充电协议的发射支路,作为至少一个发射支路,将至少两个发射支路中的支持非标准无线充电协议的发射支路作为其余发射支路;其中,至少一个发射支路中的逆整流桥,就是上述的至少一个逆整流桥。另外,还可以将所有发射支路作为上述的至少一个发射支路。需要说明的是,在待充电设备的充电过程中,待充电设备内电池需求的充电功率是变化的;例如,在恒流充电阶段,随着电池电压的上升,电池需求的充电功率会随之增大;当进入恒压充电阶段之后,电池需求的充电功率会逐渐下降。这样,针对不同的充电阶段,由于电池所需求的充电电流和充电电压是不同的,即电池所需求的充电功率不同,可以在不同的充电阶段,控制所有发射支路发射电磁信号,或者部分发射支路发射电磁信号;也可以在整个充电阶段,控制所有发射支路发射电磁信号。
在一些实施例中,无线发射控制模块52通过控制逆整流桥的输入电压,控制逆整流桥中的开关电路的断开和导通,当开关电路导通时逆整流桥工作,当开关电路断开时逆整流桥停止工作。进一步地,无线发射控制模块52还通过控制逆整流桥的输入电压、以及控制开关电路的开关占空比和/或开关频率,实现对逆整流桥的调压参数的控制。
在一些实施例中,无线发射控制模块52根据充电参数、需求的充电功率、需求电流或需求电压,调整至少一个发射支路的电磁信号的发射功率,可以包括:根据充电参数和预设充电参数阈值,调整至少一个发射支路中的每一发射支路的电压转换电路对应的初始调压参数;电压转换电路,还用于按照调整后的初始调压参数,对初始输入电流和初始输入电压进行调节,得到调压后的输入电流和调压后的输入电压,将调压后的输入电流和调压后的输入电压传输至至少一个发射支路中。进一步地,至少一个发射支路中每一发射支路基于调压后的输入电流和调压后的输入电压生成电磁信号的过程,与基于输入电流和输入电压生成至少两路电磁信号的过程同理,此处不再赘述。需要说明的是,通过调整电压转换电路的初始调压参数,改变了传输至发射支路中的输入电流和输入电压,进而改变了每一发射支路发射的电磁信号的发射功率,以改变对应耦合的一接收支路的输出电流、输出电压和充电功率。
在一些实施例中,无线发射控制模块52根据充电参数、需求的充电功率、需求电流或需求电压,调整至少一个发射支路的电磁信号的发射功率,还可以包括:根据充电参数和预设充电参数阈值,调整至少一个发射支路中的每一发射支路的逆整流桥的开关占空比和/或开关频率;逆整流桥,还用于按照调整后的开关占空比和/或调整后的开关频率,对输入电流和输入电压进行直流转交流的调压,得到调整后的第一发射电流和调整后的第一发射电压,传输调整后的第一发射电流和调整后的第一发射电压给同一发射支路的发射线圈;同一发射支路的发射线圈,用于根据调整后的第一发射电流和调整后的第一发射电压生成第一电磁信号,并将第一电磁信号发射至待充电设备中对应耦合的一接收支路。
进一步地,每一发射支路将第一电磁信号传输至待充电设备中对应耦合的一接收支路的具体过程,与将电磁信号传输至待充电设备中对应耦合的一接收支路的具体过程同理,此处不再赘述。需要说明的是,通过调整逆整流桥的开关占空比和/或开关频率,改变了每一发射支路传输的发射电流和发射电压,进而改变了每一发射支路发射的电磁信号的发射功率,以改变对应耦合的一接收支路的输出电流、输出电压和充电功率。
在一些实施例中,如图6所示,发射控制模块包括无线发射控制模块52;无线发射控制模块52分别与至少两个发射支路22(例如,发射支路22a、发射支路22b)连接;至少两个发射支路22的每个发射支路的逆整流桥和发射线圈之间还设置有电容(例如,电容413、电容423),每个发射支路的发射线圈和电容组成谐振电路;无线发射控制模块52,还用于根据充电参数、需求的充电功率、需求电流或需求电压,调整至少一个发射支路的电磁信号的发射功率;无线发射控制模块52根据充电参数和预设充电参数阈值,调整至少一个发射支路中的每一发射支路的谐振电路的谐振频率,每一发射支路按照调整后的谐振频率,对输入电流和输入电压进行直流转交流的调压,得到调整后的第二发射电流和调整后的第二发射电压,传输调整后的第二发射电流和调整后的第二发射电压给同一发射支路的发射线圈;同一发射支路的发射线圈,用于基于调整后的第二发射电流和调整后的第二发射电压生成第二电磁信号,并将第二电磁信号发射至待充电设备23中对应耦合的一接收支路(例如,接收支路23a、接收支路23b)。
进一步地,每一发射支路将第二电磁信号传输至待充电设备中对应耦合的一接收支路的具体过程,与将电磁信号传输至待充电设备中对应耦合的一接收支路的具体过程同理,此处不再赘述。需要说明的是,通过调整发射支路中的谐振电路的谐振频率,改变了每一发射支路传输的发射电流和发射电压,进而改变了每一发射支路发射的电磁信号的发射功率,以改变对应耦合的一接收支路的输出电流、输出电压和充电功率。进一步地,无线发射控制模块52,可以通过以下至少一项实现调整发射支路的电磁信号的发射功率:调整发射支路的电压转换电路对应的初始调压参数、调整发射支路的逆整流桥的开关占空比和/或开关频率、调整发射支路中的谐振电路的谐振频率。
在一些实施例中,无线发射控制模块52,还用于基于预设无线通信协议,建立与待充电设备23的握手通信,以控制接收实时充电参数。无线充电装置预设无线通信协议,与待充电设备进行握手通信,当建立与待充电设备的握手通信时,开始对待充电设备进行充电,进而接收反馈信息;其中,预设无线通信协议为无线充电装置自身支持的无线通信协议。可以理解的是,由多个发射支路生成多路发射电流和发射电压,将多路电磁信号同时发射至待充电设备,通过多路电磁信号实现了对待充电设备的充电功率翻倍,大大提高了充电功率。
本申请实施例提供一种待充电设备,如图7所示,待充电设备7包括:至少两个接收支路71(例如,接收支路71a、接收支路71b)、充电控制模块72和电池73;至少两个接收支路71中的每一接收支路分别连接充电控制模块72和电池73;每一接收支路,用于分别与无线充电装置74中的一发射支路耦合,以接收耦合的一发射支路的电磁信号,并将接收到的电磁信号转换为待充电设备7的电池73充电的充电电压和充电电流;充电控制模块72,用于根据以下充电参数中的至少一者生成反馈信息并反馈给无线充电装置74:电池73的充电电压、电池73的充电电流、每一接收支路的电压和第一接收支路的电流;反馈信息用于指示无线充电装置74分别调整每一发射支路741(例如,发射支路741a、发射支路741b)的电磁信号的发射功率。
待充电设备中的每个接收支路接收耦合的一发射支路传输的一路电磁信号,再基于接收到的一路电磁信号,生成一路充电电压和一路充电电流并传输给电池,进而待充电设备中的至少两个接收支路接收至少两个发射支路传输的至少两路电磁信号,基于至少两路电磁信号产生至少两路充电电压和至少两路充电电流,实现多路充电电压和多路充电电流对电池进行充电;电池存储至少两个接收支路传输的至少两路充电电压和至少两路充电电流,为待充电设备的正常工作提供电能。
在一些实施例中,电池73的充电电压是指输入电池73的电压,电池73的充电电流是指输入电池73的电流。在一些实施例中,每一接收支路的电压可以为接收支路的充电通路上任意一点的电压,其只要能够反映同一接收支路中的接收线圈的电压即可;同理,每一接收支路的电流可以为接收支路的充电通路上任意一点的电流,其只要能够反映同一接收支路中的接收线圈的电流即可;本申请实施例也不作具体限定。
在一些实施例中,充电控制模块包括第二MCU和/或应用处理器(AP,Application Processor)。在一些实施例中,充电控制模块可以为至少两个充电控制模块,至少两个接收支路中每一接收支路由独立的一个充电控制模块控制,至少两个充电控制模块包括一个主控制模块,由该主控制模块和无线充电装置进行通信等;其中,主控制模块属于主接收支路,主接收支路可以为支持标准无线充电协议的接收支路。在一些实施例中,待充电设备基于预设无线充电协议,与无线充电装置进行握手通信;当建立与无线充电装置的握手通信时,开始接收多路电磁信号,以及生成反馈信息反馈给无线充电装置。进一步地,无线充电装置接收到反馈信息时,根据反馈信息和预设充电参数,对至少一个发射支路的发射电压、发射电流和/或发射功率进行调节,进而改变耦合的至少一个接收支路的电压和/或电流,以改变电池的充电电流和/或充电电压。
在一些实施例中,待充电设备中的电池包括单节电芯,也可以是多节电芯。当电池包括多节电芯时,可将多个接收支路的电压和电流一起加载到多节电芯的两端进行充电,也可以每个接收支路对应给一节电芯充电。本申请对多个接收支路如何对多节电芯进行充电的形式和电路结构不作任何限定。
在一些实施例中,如图8所示,至少两个接收支路71中的每一接收支路包括接收线圈(例如,Rx线圈811、Rx线圈812)、交流直流转换模块(例如,交流直流转换模块821、交流直流转换模块822)和电压转换电路(例如,DC/DC831、DC/DC832);交流直流转换模块分别连接同一接收支路中的接收线圈和电压转换电路,电压转换电路与电池73电连接;电压转换电路和交流直流转换模块均分别与充电控制模块72连接;接收线圈,用于接收与所在的接收支路对应耦合的一发射支路传输的一路电磁信号;交流直流转换模块,用于将同一接收支路中的接收线圈接收到的一路电磁信号转换为直流电;电压转换电路,用于对直流电进行电压和/电流转换,得到为电池73充电的充电电压和充电电流。需要说明的是,图8中所示的充电控制模块72的位置在接收支路71a中,并不表示充电控制模块72属于接收支路71a。
每个接收支路的接收线圈接收对应耦合的一发射支路中的发射线圈传输的一路电磁信号;再由同一个接收支路中的交流直流转换模块对一路电磁信号转换为直流电;由同一个接收支路中的电压转换电路对直流电进行电压和/或电流转换,生成一路充电电流和一路充电电压,并提供给电池。
在一些实施例中,继续参见图8,每一接收支路的电压包括交流直流转换模块(例如,交流直流转换模块821或交流直流转换模块822)的输出电压,交流直流转换模块的输出电压可以是同一接收支路中的接收线圈的输出电压,也可以是同一接收支路中的充电通路上的电压(例如,同一接收支路中的交流直流转换模块输出的电压,或输入同一接收支路中的DC/DC的电压);交流直流转换模块的输出电压能够反映接收线圈的电压。示例性地,以交流直流转换模块821为例,交流直流转换模块821的输出电压可以为Rx线圈811的输出电压、交流直流转换模块821输出的电压或输入DC/DC831的电压。
在一些实施例中,继续参见图8,每一接收支路的电流包括交流直流转换模块(例如,交流直流转换模块821或交流直流转换模块822)的输出电流,交流直流转换模块的输出电流可以是同一接收支路中的接收线圈的输出电流,也可以是同一接收支路中的充电通路上的电流(例如,同一接收支路中的交流直流转换模块输出的电流,或输入同一接收支路中的DC/DC的电流);交流直流转换模块的输出电流能够反映接收线圈的电流。示例性地,以交流直流转换模块821为例,交流直流转换模块821的输出电流可以为Rx线圈811的输出电流、交流直流转换模块821输出的电流或输入DC/DC831的电流。
在一些实施例中,如图9(a)所示,每个接收支路中的交流直流转换模块包括AC/DC转换器(例如,AC/DC转换器8211、AC/DC转换器8221),AC/DC转换器连接同一接收支路中的接收线圈和电压转换电路;AC/DC转换器用于对同一接收支路中的接收线圈接收到的一路电磁信号进行交流转直流的调压。交流直流转换模块用于对电磁信号进行整流和滤波,得到直流电;另外,交流直流转换模块还用于控制直流电的电压大小和电流大小,或者,交流直流转换模块受控于充电控制模块中的第二MCU或AP,MCU或AP控制直流电的电压大小和电流大小。
在一些实施例中,充电控制模块,还用于根据电池的充电电压和/或充电电流,确定需求的充电功率;以及将需求的充电功率作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整每一个 发射支路发射电磁信号的发射功率。
充电控制模块获取所有接收支路为电池提供的总的充电电压和/或总的充电电流,利用总的充电电压和/或总的充电电流,得到需求的充电功率,并将需求的充电功率作为反馈信息反馈至无线充电装置,以使得无线充电装置基于需求的充电功率,对至少一个发射支路中的每一发射支路发射电磁信号的发射功率进行调节。
在一些实施例中,每一接收支路的电压包括交流直流转换模块的一个输出电压,每一接收支路的电流包括交流直流转换模块的一个输出电流;充电控制模块,还用于根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;以及将需求电流作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整电磁信号的发射功率。
充电控制模块利用每一接收支路中的交流直流转换模块的输出电流和/或输出电压,确定出每一接收支路对应的一个需求电流,进而得到至少两个接收支路对应的至少两个需求电流;从至少两个需求电流中确定出作为反馈信息的需求电流;其中,作为反馈信息的需求电流可以是至少两个需求电流中的最大值,也可以是至少两个接收支路中的主接收支路对应的需求电流。
在一些实施例中,每一接收支路的电流包括交流直流转换模块的一个输出电流;充电控制模块,还用于根据电池的充电电压和/或充电电流,确定需求的充电功率;及根据至少两个接收支路对应的至少两个输出电流,确定需求电流;以及根据需求的充电功率和需求电流,确定需求电压,并将需求电压作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整电磁信号的发射功率。
充电控制模块对电池的充电电压和充电电流进行相乘,得到电池的充电功率;从预设充电参数中获取充电功率阈值和电流阈值,根据充电功率阈值和电池的充电功率计算得到需求的充电功率;从所有接收支路对应的所有输出电流和/或输出电压,确定一个需求电流;比较需求的充电功率和充电功率阈值、以及比较该需求电流和电流阈值,在保证该需求的充电功率不超过充电功率阈值,且需求电流不超过电流阈值的情况下,确定需求电压,并将需求电压反馈给无线充电装置。
在一些实施例中,每一接收支路的电压包括交流直流转换模块的输出电压;充电控制模块,还用于对需求电压和输出电压进行比较,得到电压差值;以及将电压差值作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整电磁信号的发射功率。充电控制模块在确定需求电压后,将需求电压和至少一个接收支路中的交流直流转换模块的输出电压进行比较(例如,做差),得到电压差值反馈给无线充电装置。在一些实施例中,充电控制模块,还用于向无线充电装置发送增加发射电压或减小发射电压的反馈信息。充电控制模块根据电池的充电电压、电池的充电电流、每一接收支路中的交流直流转换模块的输出电压和/或输出电流,确定出需求电压后,从预设充电参数中获取电压阈值,比较电压阈值和需求电压的差值,以生成增加发射电压或减小发射电压的反馈信息。
在一些实施例中,充电控制模块还用于基于预设无线通信协议,建立与无线充电装置的握手通信,以传输反馈信息。
在一些实施例中,待充电设备还包括:充电控制模块,用于根据充电模式或电池的充电阶段,控制至少两个接收支路中的至少一个接收支路工作,以为电池充电;其中,充电模式包括第一充电模式和第二充电模式,第一充电模式的充电速度大于第二充电模式的充电速度,电池的充电阶段至少包括以下充电阶段中的一者:涓流充电阶段、恒流充电阶段和恒压充电阶段。
需要说明的是,在一种可能的实施方式中,第一充电模式可以对应恒流充电阶段,第二充电模式可以对应涓流充电阶段和/或恒压充电阶段。
在另一种可能的实施方式中,充电模式还可以不和充电阶段对应,即充电模式和充电速度对应;比如,在较快充电速度的快速充电模式下,当需求充电功率高于设定值时,这时候为第一充电模式,可以是至少两个接收支路同时工作;否则,在较慢充电速度的普通充电模式下,这时候为第二充电模式,可以是至少两个接收支路中仅一个接收支路工作。这种情况下,第一充电模式下,哪个接收支路工作,可以和恒流充电阶段保持一致;第二充电模式下,哪个接收支路工作,则可以和涓流充电阶段和/或恒压充电阶段保持一致。
在一些实施例中,充电控制模块,还用于当对电池的充电处于恒流充电阶段时,控制至少两个接收支路同时工作;当对电池的充电处于非恒流充电阶段时,控制至少两个接收支路中的至少一个接收支路工作。
充电控制模块在对电池的充电处于恒流充电阶段时,向无线充电装置发送恒流充电指令,以使得无线充电装置控制至少两个发射支路正常工作,向对应耦合的至少两个接收支路发射电磁信号,保证至少两个接收支路工作;当对电池的充电处于非恒流充电阶段时,向无线充电装置发送非恒流充电指令,以使得无线充电装置控制与至少一个接收支路对应耦合的至少一个发射支路正常工作,至少一个发射支路向至少一个接收支路发射电磁信号,保证至少一个接收支路工作,同时,无线充电装置控制与其余接收支路对应耦合的其余发射支路停止工作,其余发射支路不向其余接收支路发射电磁信号,其余接收支路停止工作;其 中,其余接收支路为至少两个接收支路中除了至少一个接收支路之外的接收支路。
在一些实施例中,在图9(a)所示的待充电设备的基础上,如图9(b)所示,至少两个接收支路1001包括第一接收支路1001a和第二接收支路1001b,第一接收支路1001a包括第一交流直流转换电路1021和第一电压转换电路1031,第二接收支路1001b包括第二交流直流转换电路1022和第二电压转换电路1032;第一电压转换电路1031,与第一交流直流转换电路1021和第二交流直流转换电路1022连接;第二电压转换电路1032,与第一交流直流转换电路1021和/或第二交流直流转换电路1022连接;充电控制模块72,还用于控制第一电压转换电路1031工作在恒流充电阶段,以及控制第二电压转换电路1032工作在涓流充电阶段和/或恒压充电阶段。
其中,第一电压转换电路1031为电荷泵(Charge pump)电路,第二电压转换电路1032为降压式(Buck)电路、升降压式(Buck-Boost)电路或充电集成电路(Integrated Circuit,IC)。
需要说明的是,在图9(b)中,第一电压转换电路1031与第一交流直流转换电路1021和第二交流直流转换电路1022同时连接,这时候在恒流充电阶段,可以有两个充电通路(接收支路)通过第一电压转换电路1031同时为电池73充电;在图9(b)中,第二电压转换电路1032与第一交流直流转换电路1021和第二交流直流转换电路1022同时连接,这时候在涓流充电阶段和/或恒压充电阶段,也可以有两个充电通路通过第二电压转换电路1032同时为电池73充电。
除此之外,第二电压转换电路1032还可以仅与其中一个交流直流转换电路(第一交流直流转换电路1021或第二交流直流转换电路1022)连接,这时候在涓流充电阶段和/或恒压充电阶段,可以有一个充电通路通过第二电压转换电路1032为电池73充电;即当第二电压转换电路1032仅与第一交流直流转换电路1022连接时,在涓流充电阶段和/或恒压充电阶段,此时可以是由第一充电通路通过第一交流直流转换电路1021和第二电压转换电路1031为电池73充电;当第二电压转换电路1032仅与第二交流直流转换电路1022连接时,在涓流充电阶段和/或恒压充电阶段,此时可以是由第二充电通路通过第二交流直流转换电路1022和第二电压转换电路1032为电池73充电。
在一些实施例中,充电控制模块还可以通过控制每一接收支路中的工作开关,控制每一接收支路工作或暂停工作。
在一些实施例中,充电控制模块,还用于检测待充电设备的充电状态;以及,当充电状态符合异常充电状态时,向无线充电装置发送充电停止指令;充电停止指令用于指示无线充电装置停止发射电磁信号,以停止无线充电装置向待充电设备提供发射功率;其中,异常充电状态包括:电池的电量信息大于预设电量值、和/或、电池的电池温度大于预设温度值、和/或、电池的充电电压大于预设电压值、和/或、电池的充电电流大于预设电流值。
充电控制模块还用于检测以下至少一项:电池的电量信息、电池的电池温度、电池的充电电压和电池的充电电流;基于检测到的信息判断待充电设备的充电状态;当充电状态符合异常充电状态时,通过充电停止指令控制无线充电装置停止发射电磁信息。
在一些实施例中,充电控制模块,还用于获取电池的电量信息;当电量大于预设电量值时,生成充电停止指令并发送至无线充电装置,充电停止指令用于指示无线充电装置停止发射电磁信号。
充电控制模块用于判断电池的电量信息是否大于预设电量值,当电路大于预设电量值时,确定电池充满电,生成充电停止指令发送至无线充电装置中的发射控制模块。
在一些实施例中,充电控制模块,还用于当电池的充电电压和电池的充电电流满足预设充电值时,生成充电停止指令并发送至无线充电装置,充电停止指令用于指示无线充电装置停止发射电磁信号。
充电控制模块还用于判断电池的充电电压和电池的充电电流是否满足预设充电值,当满足预设充电值时,确定电池充满,生成充电停止指令;其中,预设充电值可以包括预设电流值和预设电压值,当电池的充电电压小于预设电压值、和/或电池的充电电流小于预设电流值时,确定电池的充电电压和电池的充电电流满足预设充电值。
在一些实施例中,交流直流转换模块还包括开关控制模块;开关控制模块,用于当自身所在的接收支路中传输的电流或电压超过预设异常阈值时,控制自身所在的接收支路断开,实现停止充电。
开关控制模块根据预设异常阈值,对电池进行过流保护、过压保护等;当自身所在的接收支路中传输的电流或电压超过预设异常阈值,通过断开自身所在的接收支路,使自身所在的接收支路停止充电;其中,预设异常阈值包括异常电流阈值和异常电压阈值。
在一些实施例中,至少两个接收支路中的至少一个接收支路中的电压转换电路为降压式电路、升降压式电路或充电集成电路(又称为Charge IC或充电IC);或者,至少两个接收支路中的电压转换电路均为电荷泵电路。
在一些实施例中,其余接收支路中的电压转换电路为电荷泵电路;其余接收支路为至少两个接收支路中除了上述的至少一个接收支路之外的接收支路。
需要说明的是,Charge pump电路的输入电压和输出电压的比值可以取值为1:1、2:1、3:1、…、N:1等;另外,充电IC可以是识别电路、LDO电路(稳压电路)、降压/升压电路、路径管理电路和温度检测电路等电路的集成,但是本申请实施例均不作具体限定。
在一些实施例中,至少两个接收支路包括第一接收支路和第二接收支路,第一接收支路中的电压转换电路为Buck电路、Boost-Buck电路或充电IC,第二接收支路中的电压转换电路为电荷泵电路;充电控制模块,用于当对电池的充电处于恒流充电阶段时,控制第一接收支路和第二接收支路同时工作;当对电池的充电处于非恒流充电阶段时,控制第一接收支路工作。
待充电设备包括两个接收支路时,第一接收支路中的电压转换电路可以为Buck电路、Boost-Buck电路或充电IC,第二接收支路为Charge pump电路;由于Charge pump电路的充电速率更高,可以控制在恒流充电阶段时第一接收支路和第二接收支路同时工作,从而以较大充电功率对电池进行充电;控制在非恒流充电阶段第一接收支路工作,第二接收支路不工作,从而以较小的充电功率对电池进行充电。
在一些实施例中,充电控制模块,还用于当检测到无线充电装置包括唯一的一发射支路时,控制至少两个接收支路中的一接收支路工作,且至少两个接收支路中的其余接收支路不工作;其中,被控制工作的一接收支路中的电压转换电路为Buck电路、Boost-Buck电路或充电IC;
或者,获取无线充电装置的最大发射功率;当所获取的最大发射功率小于预设功率阈值时,控制至少两个接收支路中的一接收支路工作,且至少两个接收支路中的其余接收支路不工作;其中,被控制工作的一接收支路中的电压转换电路为Buck电路、Boost-Buck电路或充电IC。
充电控制模块确定无线充电装置可以包括一个发射支路时,也可以控制与唯一的一个发射支路对应的一个接收支路工作;其中,与唯一的一个发射支路对应的一个接收支路可以为与唯一的一个发射支路支持相同的无线充电协议的支路,或者,为与唯一的一个发射支路建立握手通信的支路。
示例性地,如图10所示的一种充电系统,充电系统包括:适配器90、无线充电装置91和待充电设备92,其中,无线充电装置91包括DC/DC 911、第一MCU 912、双路无线发射控制模块913、发射支路914和发射支路915,发射支路914包括逆整流桥9141、发射电容9142和发射线圈(Tx线圈)9143,发射支路915包括逆整流桥9151、发射电容9152和发射线圈(Tx线圈)9153;待充电设备92包括接收支路921、接收支路922、充电控制模块923和电池924,接收支路921包括接收线圈(Rx线圈)9211、接收电容9212、交流直流转换模块9213和DC/DC 9214,接收支路922包括接收线圈(Rx线圈)9221、接收电容9222、交流直流转换模块9223和DC/DC 9224,充电控制模块923为第二MCU或AP。
由发射支路914和对应的接收支路921组成一条充电通路A,由发射支路915和对应的接收支路922组成一条充电通路B。
适配器90连接第一MCU912和DC/DC 911,DC/DC 911分别连接第一MCU 912、逆整流桥9141和逆整流桥9151,第一MCU 912连接双路无线发射控制模块913的一端,双路无线发射控制模块913的另一端分别连接逆整流桥9141和逆整流桥9151,逆整流桥9141、发射电容9142和Tx线圈9143串联连接,逆整流桥9151、发射电容9152和Tx线圈9153串联连接;Tx线圈9143和Rx线圈9211通过电磁耦合实现电性连接,Tx线圈9153和Rx线圈9221通过电磁耦合实现电性连接。
Rx线圈9211、接收电容9212和交流直流转换模块9213串联,交流直流转换模块9213分别连接交流直流转换模块9223和DC/DC 9214,充电控制模块923分别连接交流直流转换模块9213、DC/DC 9214、交流直流转换模块9223和DC/DC 9224,DC/DC 9214和DC/DC 9224分别连接电池924。
需要说明的是,图10中所示的充电控制模块923的位置在接收支路921中,并不表示充电控制模块923属于接收支路921。
当适配器90连接电源,向DC/DC 911传输初始输入电流和初始输入电压,DC/DC 911对初始输入电流和初始输入电压进行升压,得到输入电流和输入电压,并将输入电流和输入电压同时传输至发射支路914和发射支路915;发射支路914的逆整流桥9141对输入电压和输入电流进行直流转交流的调节,生成发射支路914对应的一路发射电流和一路发射电压;发射支路915的逆整流桥9151对输入电压和输入电流进行直流转交流的调节,生成发射支路915对应的一路发射电流和一路发射电压。
进一步地,Tx线圈9143基于发射支路914对应的一路发射电流和一路发射电压,生成发射支路914对应的一路电磁信号,将发射支路914对应的一路电磁信号发射至Rx线圈9211;交流直流转换模块9213对Rx线圈9211接收到的一路电磁信号进行交流转直流的调压,得到一路接收电流和一路接收电压;DC/DC 9214对一路接收电流和一路接收电压进行调压,生成一路充电电流和一路充电电压并提供给电池,对电池进行充电。
同时,Tx线圈9153基于发射支路915对应的一路发射电流和一路发射电压,生成发射支路915对应的一路电磁信号,将发射支路915对应的一路电磁信号发射至Rx线圈9221;交流直流转换模块9223对Rx线圈9221接收到的一路电磁信号进行交流转直流的调压,得到一路接收电流和一路接收电压;DC/DC  9224对一路接收电流和一路接收电压进行调压,生成一路充电电流和一路充电电压并提供给电池,对电池进行充电。
进一步地,双路无线发射控制模块913通过设置DC/DC 911的调压参数、设置发射支路914中发射电容9142的谐振频率、以及逆整流桥9141的开关占空比和/或开关频率,调节发射支路914的一路发射电流的大小和一路发射电压的大小,进而实现改变发射支路914对应的充电功率大小;另外,发射支路915对应的充电功率的调整过程,与发射支路914对应的充电功率的调整过程同理,此处不再赘述。
充电通路A支持第一无线充电协议,充电通路B支持第二无线充电协议;其中,第一无线充电协议可以为标准无线充电协议(例如,Qi协议),也可以为非标准无线充电协议;第二无线充电协议和第一无线充电协议可以相同或不同。
示例性地,充电通路A支持Qi协议,充电通路B支持非标准无线充电协议,如此,由于充电通路B不受标准无线充电协议的充电功率限制,可以采用较大的充电功率进行充电,进一步提高了充电效率。
进一步地,双路无线发射控制模块913在对电池的充电处于恒流充电阶段时,控制逆整流桥9141和逆整流桥9151工作,即通过充电通路A和充电通路B向电池进行充电;在对电池的充电处于非恒流充电阶段时,控制逆整流桥9141工作、逆整流桥9151停止工作,即充电通路B停止工作,从而可以通过充电通路A向电池进行充电。
示例性地,充电通路B工作在恒流充电阶段时,充电通路B中的DC/DC 9224为Charge pump电路,Charge pump电路的充电功率相较于Buck电路和Boost-Buck电路更高,能够更大的提高恒流充电阶段的充电功率。
需要说明的是,充电系统采用两条充电通道进行充电时,可以按空间均匀分布两条充电通道的位置(例如,上下分布、左右分布等),从而使得充电系统的散热更均匀,有效控制充电系统的温升。
在一些实施例中,如图11所示,充电系统包括供电器20、无线充电装置2和待充电设备7,无线充电装置2包括发射控制模块21和至少两个发射支路22(例如,发射支路22a、发射支路22b),待充电设备7包括至少两个接收支路71(例如,接收支路71a、接收支路71b)、充电控制模块72和电池73;至少两个发射支路22中的每一发射支路均分别与供电器20电连接,至少两个发射支路22中的每一发射支路均分别与发射控制模块连接21;发射控制模块21与供电器20电连接;至少两个接收支路71中的每一接收支路均分别连接充电控制模块72和电池73;每一接收支路通过电磁耦合分别与至少两个发射支路22中的一个发射支路耦合;发射控制模块21,用于控制供电器20提供给至少两个发射支路22的输入电流和输入电压;每一发射支路,用于基于输入电流和输入电压生成一路电磁信号,并将一路电磁信号发射给至少两个接收支路71中对应耦合的一接收支路;发射控制模块21,还用于接收待充电设备7发送的反馈信息,基于反馈信息分别调整每一发射支路的电磁信号的发射功率;每一接收支路,用于接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备7的电池73充电的充电电压和充电电流;充电控制模块72,用于根据以下充电参数中的至少一者生成反馈信息并反馈给无线充电装置2:电池73的充电电压、电池73的充电电流、每一接收支路的电压和每一接收支路的电流;反馈信息用于指示无线充电装置2分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,待充电设备中的充电控制模块,还用于根据电池的充电电压和/或充电电流,确定需求的充电功率;以及将需求的充电功率作为反馈信息反馈给无线充电装置;无线充电装置中的发射控制模块,还用于基于需求的充电功率分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,待充电设备中的充电控制模块,还用于根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;以及将需求电流作为反馈信息反馈给无线充电装置;无线充电装置中的发射控制模块,还用于基于需求电流分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,待充电设备中的充电控制模块,还用于根据电池的充电电压和/或充电电流,确定需求的充电功率;及根据至少两个接收支路对应的至少两个输出电流,确定需求电流;以及根据需求的充电功率和需求电流,确定需求电压,并将需求电压作为反馈信息反馈给无线充电装置;无线充电装置中的发射控制模块,还用于基于需求电压分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,待充电设备中的充电控制模块,还用于对需求电压和输出电压进行比较,得到电压差值;以及将电压差值作为反馈信息反馈给无线充电装置;无线充电装置中的发射控制模块,还用于基于电压差值调整与每一接收支路耦合的发射支路的电磁信号的发射功率。
在一些实施例中,待充电设备中的充电控制模块,还用于向无线充电装置发送增加发射电压或减小发射电压的反馈信息;无线充电装置中的发射控制模块,还用于接收待充电设备发送的增加发射电压或减小发射电压的反馈信息。
可以理解的是,由多个接收支路获取多路电磁信号,进而基于多路电磁信号生成多路充电电流和充电电压,利用多路充电电流和充电电压同时对电池进行充电,通过多路充电电流和充电电压实现了对电池的 充电功率翻倍,大大提高了充电功率。
基于上述实施例的同一发明构思,进行进一步的说明。
本申请实施例提供一种充电方法,应用于如上述的无线充电装置,如图12所示,充电方法包括:
S101、通过发射控制模块,控制供电器提供给至少两个发射支路的输入电流和输入电压;
无线充电装置中的发射控制模块与待充电设备建立握手通信后,开始接收输入电流和输入电压,用于对待充电设备进行充电。
S102、通过至少两个发射支路中的每一发射支路,基于输入电流和输入电压生成一路电磁信号,并传输一路电磁信号给待充电设备中对应耦合的一接收支路;
S103、通过发射控制模块,接收待充电设备发送的反馈信息,基于反馈信息分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,反馈信息包括充电参数;通过发射控制模块,接收充电参数;根据充电参数,调整每一发射支路的电磁信号的发射功率。
在一些实施例中,充电参数包括以下至少一种:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流。
在一些实施例中,通过发射控制模块,根据电池的充电电压和/或充电电流,确定需求的充电功率;基于需求的充电功率分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,通过发射控制模块,根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;基于需求电流分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,通过发射控制模块,根据电池的充电电压和/或充电电流,确定需求的充电功率;根据至少两个接收支路对应的至少两个输出电流,确定需求电流;根据需求的充电功率和需求电流,确定需求电压;基于需求电压分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,通过发射控制模块,对需求电压和每一接收支路的输出电压分别进行比较,得到电压差值;基于电压差值调整与每一接收支路耦合的发射支路的电磁信号的发射功率。
可以理解的是,由多个发射支路生成多路电磁信号,将多路电磁信号同时传输至待充电设备,通过多路电磁信号实现了对待充电设备的充电功率翻倍,大大提高了充电功率。
本申请实施例提供一种充电方法,应用于如上述的待充电设备,如图13所示,充电方法包括:
S201、通过至少两个接收支路中的每一接收支路,接收无线充电装置中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备的电池充电的充电电压和充电电流;
在一些实施例中,待充电设备中的每一接收支路接收对应耦合的一发射支路传输的一路电磁信号,对电磁信号进行转换,生成一路充电电压和一路充电电流。
S202、通过充电控制模块,根据以下充电参数中的至少一者生成反馈信息并反馈给无线充电装置:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流;反馈信息用于指示无线充电装置分别调整每一发射支路的电磁信号的发射功率。
在一些实施例中,通过每一接收支路中的交流直流转换模块,将同一接收支路中的接收线圈接收到的一路电磁信号转换为直流电;通过每一接收支路中的电压转换电路,对直流电进行电压和/或电流转换,得到为电池充电的充电电压和充电电流。
在一些实施例中,通过充电控制模块,根据电池的充电电压和/或充电电流,确定需求的充电功率;以及将需求的充电功率作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整每个发射支路发射的电磁信号的发射功率。
在一些实施例中,每一接收支路的电压包括交流直流转换模块的一个输出电压,每一接收支路的电流包括交流直流转换模块的一个输出电流;通过充电控制模块,根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;以及将需求电流作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整电磁信号的发射功率。
在一些实施例中,每一接收支路的电流包括交流直流转换模块的一个输出电流;通过充电控制模块,根据电池的充电电压和/或充电电流,确定需求的充电功率;及根据至少两个接收支路对应的至少两个输出电流,确定需求电流;以及根据需求的充电功率和需求电流,确定需求电压,并将需求电压作为反馈信息反馈给无线充电装置,以使得无线充电装置基于反馈信息调整电磁信号的发射功率。
在一些实施例中,在通过至少两个接收支路中的每一接收支路,接收无线充电装置中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备的电池充电的充电电压和充电电流之后,充电方法还包括:通过充电控制模块,检测待充电设备的充电状态;以及,当充电状态符合异常充电状态时,向无线充电装置发送充电停止指令;充电停止指令用于指示无线充电装置停止发射电磁信号,以停止无线充电装置向待充电设备提供发射功率;其中,异常充电状态包括:电池的电量信息大于预设电量值、 和/或、电池的电池温度大于预设温度值、和/或、电池的充电电压大于预设电压值、和/或、电池的充电电流大于预设电流值。
在一些实施例中,在通过至少两个接收支路中的每一接收支路,接收无线充电装置中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备的电池充电的充电电压和充电电流之后,方法还包括:通过充电控制模块,获取电池的电量信息;当电量大于预设电量值时,生成充电停止指令并发送至无线充电装置,充电停止指令用于指示无线充电装置停止发射电磁信号。
本申请实施例提供一种充电方法,应用于如实施例一的充电系统,如图14所示,充电方法包括:
S301、通过无线充电装置中的发射控制模块,控制供电器提供给无线充电装置中的至少两个发射支路的输入电流和输入电压;
S302、通过至少两个发射支路中的每一发射支路,基于输入电流和输入电压生成电磁信号并发射给待充电设备中对应耦合的一接收支路;
S303、通过待充电设备中的至少两个接收支路中的每一接收支路,接收至少两个发射支路中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备的电池充电的充电电压和充电电流;
S304、通过待充电设备中的充电控制模块,根据以下充电参数中的至少一者生成反馈信息并反馈给无线充电装置:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流;
S305、通过无线充电装置中的发射控制模块,接收待充电设备发送的反馈信息,基于反馈信息分别调整每一发射支路的电磁信号的发射功率。
可以理解的是,由多个接收支路获取多路电磁信号,进而基于多路电磁信号生成多路充电电流和充电电压,利用多路充电电流和充电电压同时对电池进行充电,通过多路充电电流和充电电压实现了对电池的充电功率翻倍,大大提高了充电功率。
本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个第一处理器执行,以实现如应用于待充电设备的充电方法。
本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个第二处理器执行,以实现如应用于无线充电装置的充电方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例公开了一种无线充电装置、待充电设备、充电系统及方法、存储介质,待充电设备包括:至少两个接收支路、充电控制模块和电池;所述至少两个接收支路中的每一接收支路均分别连接充电控制模块和电池;每一接收支路,用于分别与无线充电装置中的一发射支路耦合,以接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为待充电设备的电池充电的充电电压和充电电流;充电控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给无线充电装置:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流;反馈信息用于指示无线充电装置调整每一发射支路的电磁信号的发射功率。采用上述技术实现方案,由多个接收支路获取多路电磁信号,进而基于多路电磁信号生成多路充电电流和充电电压,利用多路充电电流和充电电压同时对电池进行充电,通过多路充电电流和充电电压实现了对电池的充电功率翻倍,大大提高了充电功率。

Claims (43)

  1. 一种待充电设备,所述待充电设备包括:
    至少两个接收支路、充电控制模块和电池;
    所述至少两个接收支路中的每一接收支路均分别连接所述充电控制模块和所述电池;
    所述每一接收支路,用于分别与无线充电装置中的一发射支路耦合,以接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
    所述充电控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;所述反馈信息用于指示所述无线充电装置分别调整每一发射支路的电磁信号的发射功率。
  2. 根据权利要求1所述的设备,其中,
    所述充电控制模块,还用于根据充电模式或所述电池的充电阶段,控制所述至少两个接收支路中的至少一个接收支路工作,以为所述电池充电;
    其中,所述充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度,所述电池的充电阶段至少包括以下充电阶段中的一者:涓流充电阶段、恒流充电阶段和恒压充电阶段。
  3. 根据权利要求1所述的设备,其中,所述至少两个接收支路中的每一接收支路包括接收线圈、交流直流转换模块和电压转换电路;
    所述交流直流转换模块分别连接同一接收支路中的所述接收线圈和所述电压转换电路,所述电压转换电路与所述电池电连接;所述电压转换电路和所述交流直流转换模块均分别与所述充电控制模块连接;
    所述接收线圈,用于接收与所在的接收支路对应耦合的一发射支路传输的一路电磁信号;
    所述交流直流转换模块,用于将同一接收支路中的接收线圈接收到的一路电磁信号转换为直流电;
    所述电压转换电路,用于对所述直流电进行电压和/或电流转换,得到为所述电池充电的所述充电电压和所述充电电流。
  4. 根据权利要求1所述的设备,其中,
    所述充电控制模块,还用于根据所述电池的充电电压和/或充电电流,确定需求的充电功率;以及将所述需求的充电功率作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整每个发射支路的电磁信号的发射功率。
  5. 根据权利要求3所述的设备,其中,所述每一接收支路的电压包括交流直流转换模块的一个输出电压,所述每一接收支路的电流包括交流直流转换模块的一个输出电流;
    所述充电控制模块,还用于根据所述至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;以及将所述需求电流作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整电磁信号的发射功率。
  6. 根据权利要求3所述的设备,其中,所述每一接收支路的电流包括交流直流转换模块的一个输出电流;
    所述充电控制模块,还用于根据所述电池的充电电压和/或充电电流,确定需求的充电功率;及根据所述至少两个接收支路对应的至少两个输出电流,确定需求电流;以及根据所述需求的充电功率和所述需求电流,确定需求电压,并将所述需求电压作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整电磁信号的发射功率。
  7. 根据权利要求6所述的设备,其中,所述每一接收支路的电压包括所述交流直流转换模块的输出电压;
    所述充电控制模块,还用于对所述需求电压和所述输出电压进行比较,得到电压差值;以及将所述电压差值作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整电磁信号的发射功率。
  8. 根据权利要求1所述的设备,其中,
    所述充电控制模块,还用于向所述无线充电装置发送增加发射电压或减小发射电压的反馈信息。
  9. 根据权利要求1至8任一项所述的设备,其中,
    所述充电控制模块,还用于基于预设无线通信协议,建立与所述无线充电装置的握手通信,以传输所述反馈信息。
  10. 根据权利要求1至8任一项所述的设备,其中,
    所述充电控制模块,还用于当对所述电池的充电处于恒流充电阶段时,控制所述至少两个接收支路 同时工作;当对所述电池的充电处于非恒流充电阶段时,控制所述至少两个接收支路中的至少一个接收支路工作。
  11. 根据权利要求3所述的设备,其中,所述至少两个接收支路中的至少一个接收支路中的电压转换电路为降压式电路、升降压式电路或充电集成电路;
    或者,所述至少两个接收支路中的电压转换电路均为电荷泵电路。
  12. 根据权利要求11所述的设备,其中,其余接收支路中的电压转换电路为电荷泵电路;所述其余接收支路为所述至少两个接收支路中除了所述至少一个接收支路之外的接收支路。
  13. 根据权利要求1所述的设备,其中,所述至少两个接收支路包括第一接收支路和第二接收支路,所述第一接收支路包括第一交流直流转换电路和第一电压转换电路,所述第二接收支路包括第二交流直流转换电路和第二电压转换电路;
    所述第一电压转换电路,与所述第一交流直流转换电路和所述第二交流直流转换电路连接;
    所述第二电压转换电路,与所述第一交流直流转换电路和/或所述第二交流直流转换电路连接;
    所述充电控制模块,还用于控制所述第一电压转换电路工作在恒流充电阶段,以及控制所述第二电压转换电路工作在涓流充电阶段和/或恒压充电阶段。
  14. 根据权利要求13所述的设备,其中,
    所述第一电压转换电路为电荷泵电路,所述第二电压转换电路为降压式电路、升降压式电路或充电集成电路。
  15. 根据权利要求3所述的设备,其中,所述至少两个接收支路包括第一接收支路和第二接收支路,所述第一接收支路中的电压转换电路为降压式电路、升降压式电路或充电集成电路,所述第二接收支路中的电压转换电路为电荷泵电路;
    所述充电控制模块,用于当对所述电池的充电处于恒流充电阶段时,控制所述第一接收支路和所述第二接收支路同时工作;当对所述电池的充电处于非恒流充电阶段时,控制所述第一接收支路工作。
  16. 根据权利要求3所述的设备,其中,
    所述充电控制模块,还用于当检测到所述无线充电装置包括唯一的一发射支路时,控制所述至少两个接收支路中的一接收支路工作,且所述至少两个接收支路中的其余接收支路不工作;其中,被控制工作的一接收支路中的电压转换电路为降压式电路、升降压式电路或充电集成电路;
    或者,获取所述无线充电装置的最大发射功率;当所获取的最大发射功率小于预设功率阈值时,控制所述至少两个接收支路中的一接收支路工作,且所述至少两个接收支路中的其余接收支路不工作;其中,被控制工作的一接收支路中的电压转换电路为降压式电路、升降压式电路或充电集成电路。
  17. 根据权利要求1至8任一项所述的设备,其中,
    所述充电控制模块,还用于检测所述待充电设备的充电状态;以及,
    当所述充电状态符合异常充电状态时,向所述无线充电装置发送充电停止指令;所述充电停止指令用于指示所述无线充电装置停止发射电磁信号,以停止所述无线充电装置向所述待充电设备提供发射功率;其中,所述异常充电状态包括:所述电池的电量信息大于预设电量值、和/或、所述电池的电池温度大于预设温度值、和/或、所述电池的充电电压大于预设电压值、和/或、所述电池的充电电流大于预设电流值。
  18. 根据权利要求3、5至7任一项所述的设备,其中,所述交流直流转换模块还包括开关控制模块;
    所述开关控制模块,用于当自身所在的接收支路中传输的电流或电压超过预设异常阈值时,控制所述自身所在的接收支路断开,实现停止充电。
  19. 一种无线充电装置,所述无线充电装置包括:发射控制模块和至少两个发射支路;所述至少两个发射支路中的每一发射支路均分别与供电器电连接,所述至少两个发射支路中的每一发射支路均分别与所述发射控制模块连接;所述发射控制模块与所述供电器电连接;
    所述发射控制模块,用于控制所述供电器提供给所述至少两个发射支路的输入电流和输入电压;
    所述每一发射支路,用于基于所述输入电流和所述输入电压生成一路电磁信号,并传输所述一路电磁信号给待充电设备的一接收支路;
    所述发射控制模块,还用于接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率。
  20. 根据权利要求19所述的装置,其中,
    所述发射控制模块,还用于接收到所述待充电设备的充电参数,根据所述充电参数,调整所述每一发射支路的电磁信号的发射功率。
  21. 根据权利要求20所述的装置,其中,所述充电参数包括以下至少一种:电池的充电电压、电 池的充电电流、每一接收支路的电压和每一接收支路的电流。
  22. 根据权利要求21所述的装置,其中,
    所述发射控制模块,还用于根据所述电池的充电电压和/或充电电流,确定需求的充电功率;基于所述需求的充电功率分别调整每一发射支路的电磁信号的发射功率。
  23. 根据权利要求21所述的装置,其中,
    所述发射控制模块,还用于根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;以及基于所述需求电流分别调整每一发射支路的电磁信号的发射功率。
  24. 根据权利要求21所述的装置,其中,
    所述发射控制模块,还用于根据所述电池的充电电压和/或充电电流,确定需求的充电功率;及根据所述至少两个接收支路对应的至少两个输出电流,确定需求电流;以及根据所述需求的充电功率和所述需求电流,确定需求电压,基于所述需求电压分别调整每一发射支路的电磁信号的发射功率。
  25. 根据权利要求24所述的装置,其中,
    所述发射控制模块,还用于对所述需求电压和每一接收支路的输出电压分别进行比较,得到电压差值;以及基于所述电压差值调整与所述每一接收支路耦合的发射支路的电磁信号的发射功率。
  26. 根据权利要求21所述的装置,其中,
    所述发射控制模块,还用于接收所述待充电设备发送的增加发射电压或减小发射电压的反馈信息。
  27. 一种充电系统,所述充电系统包括无线充电装置和待充电设备,所述无线充电装置包括发射控制模块和至少两个发射支路,所述待充电设备包括至少两个接收支路、充电控制模块和电池;所述至少两个发射支路中的每一发射支路均分别与供电器电连接,所述至少两个发射支路中的每一发射支路均分别与所述发射控制模块连接;所述发射控制模块与所述供电器电连接;所述至少两个接收支路中的每一接收支路均分别连接所述充电控制模块和所述电池;所述每一接收支路通过电磁耦合分别与所述至少两个发射支路中的一个发射支路耦合;
    所述发射控制模块,用于控制所述供电器提供给所述至少两个发射支路的输入电流和输入电压;
    所述每一发射支路,用于基于所述输入电流和所述输入电压生成一路电磁信号,并传输所述一路电磁信号给所述至少两个接收支路中对应耦合的一个接收支路;
    所述每一接收支路,用于接收耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
    所述充电控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;
    所述发射控制模块,还用于接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率。
  28. 一种充电方法,应用于如权利要求1至18任一项的待充电设备,所述方法包括:
    通过所述至少两个接收支路中的每一接收支路,接收无线充电装置中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
    通过所述充电控制模块,根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;所述反馈信息用于指示所述无线充电装置分别调整每一发射支路的电磁信号的发射功率。
  29. 根据权利要求28所述的方法,其中,所述将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流,包括:
    通过所述每一接收支路中的交流直流转换模块,将同一接收支路中的接收线圈接收到的一路电磁信号转换为直流电;
    通过所述每一接收支路中的电压转换电路,对所述直流电进行电压和/或电流转换,得到为所述电池充电的所述充电电压和所述充电电流。
  30. 根据权利要求28所述的方法,其中,所述根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置,包括:
    通过所述充电控制模块,根据所述电池的充电电压和/或充电电流,确定需求的充电功率;
    将所述需求的充电功率作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整每个发射支路的电磁信号的发射功率。
  31. 根据权利要求28所述的方法,其中,所述每一接收支路的电压包括交流直流转换模块的一个输出电压,所述每一接收支路的电流包括交流直流转换模块的一个输出电流;所述根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置,包括:
    通过所述充电控制模块,根据所述至少两个接收支路对应的至少两个输出电流和/或至少两个输出 电压,确定出需求电流;以及将所述需求电流作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整电磁信号的发射功率。
  32. 根据权利要求28所述的方法,其中,所述每一接收支路的电流包括交流直流转换模块的一个输出电流;所述根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置,包括:
    通过所述充电控制模块,根据所述电池的充电电压和/或充电电流,确定需求的充电功率;
    根据所述至少两个接收支路对应的至少两个输出电流,确定需求电流;
    根据所述需求的充电功率和所述需求电流,确定需求电压;
    将所述需求电压作为所述反馈信息反馈给所述无线充电装置,以使得所述无线充电装置基于所述反馈信息调整电磁信号的发射功率。
  33. 根据权利要求28至32任一项所述的方法,其中,在所述通过所述至少两个接收支路中的每一接收支路,接收无线充电装置中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流之后,所述方法还包括:
    通过所述充电控制模块,检测所述待充电设备的充电状态;以及,
    当所述充电状态符合异常充电状态时,向所述无线充电装置发送充电停止指令;所述充电停止指令用于指示所述无线充电装置停止发射电磁信号,以停止所述无线充电装置向所述待充电设备提供发射功率;其中,所述异常充电状态包括:所述电池的电量信息大于预设电量值、和/或、所述电池的电池温度大于预设温度值、和/或、所述电池的充电电压大于预设电压值、和/或、所述电池的充电电流大于预设电流值。
  34. 一种充电方法,应用于如权利要求19至26任一项的无线充电装置,所述方法包括:
    通过所述发射控制模块,控制所述供电器提供给所述至少两个发射支路的输入电流和输入电压;
    通过所述至少两个发射支路中的每一发射支路,基于所述输入电流和所述输入电压生成一路电磁信号;
    发射所述一路电磁信号给待充电设备中对应耦合的一接收支路;
    通过所述发射控制模块,接收所述待充电设备发送的反馈信息;
    基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率。
  35. 根据权利要求34所述的方法,其中,所述反馈信息包括充电参数;所述接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率,包括:
    根据所述充电参数,调整所述每一发射支路的电磁信号的发射功率。
  36. 根据权利要求35所述的方法,其中,所述充电参数包括以下至少一种:电池的充电电压、电池的充电电流、每一接收支路的电压和每一接收支路的电流。
  37. 根据权利要求36所述的方法,其中,所述基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率,包括:
    通过所述发射控制模块,根据所述电池的充电电压和/或充电电流,确定需求的充电功率;基于所述需求的充电功率分别调整每一发射支路的电磁信号的发射功率。
  38. 根据权利要求36所述的方法,其中,所述基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率,包括:
    通过所述发射控制模块,根据至少两个接收支路对应的至少两个输出电流和/或至少两个输出电压,确定出需求电流;基于所述需求电流分别调整每一发射支路的电磁信号的发射功率。
  39. 根据权利要求36所述的方法,其中,所述基于所述反馈信息分别调整每一发射支路的电磁信号的发射功率,包括:
    通过所述发射控制模块,根据所述电池的充电电压和/或充电电流,确定需求的充电功率;
    根据所述至少两个接收支路对应的至少两个输出电流,确定需求电流;
    根据所述需求的充电功率和所述需求电流,确定需求电压;
    基于所述需求电压分别调整每一发射支路的电磁信号的发射功率。
  40. 根据权利要求39所述的方法,其中,所述基于所述需求电压分别调整每一发射支路的电磁信号的发射功率,包括:
    通过所述发射控制模块,对所述需求电压和每一接收支路的输出电压分别进行比较,得到电压差值;基于所述电压差值调整与所述每一接收支路耦合的发射支路的电磁信号的发射功率。
  41. 一种充电方法,应用于如权利要求27所述的充电系统,所述方法包括:
    通过所述无线充电装置中的发射控制模块,控制所述供电器提供给所述无线充电装置中的至少两个发射支路的输入电流和输入电压;
    通过所述至少两个发射支路中的每一发射支路,基于所述输入电流和所述输入电压生成电磁信号并 发射给待充电设备中对应耦合的一接收支路;
    通过所述待充电设备中的至少两个接收支路中的每一接收支路,接收所述至少两个发射支路中对应耦合的一发射支路发射的电磁信号,并将接收到的电磁信号转换为所述待充电设备的电池充电的充电电压和充电电流;
    通过所述待充电设备中的充电控制模块,根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池的充电电压、所述电池的充电电流、每一接收支路的电压和每一接收支路的电流;
    通过所述无线充电装置中的发射控制模块,接收所述待充电设备发送的反馈信息,基于所述反馈信息分别调整所述每一发射支路的电磁信号的发射功率。
  42. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个第一处理器执行,以实现如权利要求28-33任一项所述的方法。
  43. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个第二处理器执行,以实现如权利要求34-40任一项所述的方法。
PCT/CN2020/127553 2017-10-27 2020-11-09 无线充电装置、待充电设备、充电系统及方法、存储介质 WO2021093708A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20888146.6A EP4024663A4 (en) 2019-11-14 2020-11-09 WIRELESS CHARGING APPARATUS, DEVICE TO BE CHARGED, CHARGING SYSTEM AND METHOD, AND STORAGE MEDIA
US16/953,772 US11686896B2 (en) 2017-10-27 2020-11-20 LED light source module
US17/701,227 US20220216738A1 (en) 2019-11-14 2022-03-22 Wireless charging device, to-be-charged device, and charging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911115135.1 2019-11-14
CN201911115135.1A CN112803560A (zh) 2019-11-14 2019-11-14 无线充电装置、待充电设备、充电系统及方法、存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/701,227 Continuation US20220216738A1 (en) 2019-11-14 2022-03-22 Wireless charging device, to-be-charged device, and charging

Publications (1)

Publication Number Publication Date
WO2021093708A1 true WO2021093708A1 (zh) 2021-05-20

Family

ID=75803831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127553 WO2021093708A1 (zh) 2017-10-27 2020-11-09 无线充电装置、待充电设备、充电系统及方法、存储介质

Country Status (2)

Country Link
CN (1) CN112803560A (zh)
WO (1) WO2021093708A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411844A (zh) * 2021-05-27 2022-11-29 华为技术有限公司 一种无线充电系统、方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999414B2 (en) * 2007-09-01 2011-08-16 Maquet Gmbh & Co. Kg Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
CN104143861A (zh) * 2013-05-09 2014-11-12 泰科电子(上海)有限公司 非接触式供电电路
US9979233B2 (en) * 2015-02-16 2018-05-22 Lg Innotek Co., Ltd. Apparatus and method for changing magnetic flux density and receiving wireless power
CN108448692A (zh) * 2018-02-09 2018-08-24 浙江大学 一种具有偏移自适应性的电动汽车无线充电拓扑结构
CN109760531A (zh) * 2019-01-22 2019-05-17 中惠创智无线供电技术有限公司 一种动态无线充电接收电路及动态无线充电系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882287B (zh) * 2012-09-28 2015-12-02 杭州电子科技大学 一种级联型非接触式供电系统和移动受电体
CN104659925A (zh) * 2013-11-20 2015-05-27 中兴通讯股份有限公司 无线电能收发方法和装置
CN105515223B (zh) * 2016-02-01 2018-05-22 施京京 一种大功率电能的无线传输方法和电路
CN106972582B (zh) * 2017-04-28 2024-03-29 中惠创智(阜阳)技术有限公司 一种大功率无线充电系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999414B2 (en) * 2007-09-01 2011-08-16 Maquet Gmbh & Co. Kg Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
CN104143861A (zh) * 2013-05-09 2014-11-12 泰科电子(上海)有限公司 非接触式供电电路
US9979233B2 (en) * 2015-02-16 2018-05-22 Lg Innotek Co., Ltd. Apparatus and method for changing magnetic flux density and receiving wireless power
CN108448692A (zh) * 2018-02-09 2018-08-24 浙江大学 一种具有偏移自适应性的电动汽车无线充电拓扑结构
CN109760531A (zh) * 2019-01-22 2019-05-17 中惠创智无线供电技术有限公司 一种动态无线充电接收电路及动态无线充电系统

Also Published As

Publication number Publication date
CN112803560A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
JP6842566B2 (ja) 被充電機器、無線充電装置及び無線充電方法
JP6942883B2 (ja) 充電対象機器、無線充電方法及びシステム
US20220216738A1 (en) Wireless charging device, to-be-charged device, and charging
US20190356154A1 (en) Wireless charging device, wireless charging method, and device to-be-charged
US11611237B2 (en) Wireless power reception apparatus and mobile terminal
WO2021129595A1 (en) Electronic device
US20220271571A1 (en) To-be-charged device, wireless charging device, and wireless charging method
US20210313822A1 (en) Wireless charging method and device to be charged
EP3780315A1 (en) Wireless charging receiving device and mobile terminal
US11979051B2 (en) Wireless charging methods and device to-be-charged
WO2019242020A1 (zh) 充电装置、移动终端和充电控制方法
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片系统
KR20200084011A (ko) 충전 방법 및 충전 장치
WO2021093708A1 (zh) 无线充电装置、待充电设备、充电系统及方法、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020888146

Country of ref document: EP

Effective date: 20220331

NENP Non-entry into the national phase

Ref country code: DE