WO2021093697A1 - 血管紧张素ii受体拮抗剂与nep抑制剂的复合物及其制备方法 - Google Patents

血管紧张素ii受体拮抗剂与nep抑制剂的复合物及其制备方法 Download PDF

Info

Publication number
WO2021093697A1
WO2021093697A1 PCT/CN2020/127415 CN2020127415W WO2021093697A1 WO 2021093697 A1 WO2021093697 A1 WO 2021093697A1 CN 2020127415 W CN2020127415 W CN 2020127415W WO 2021093697 A1 WO2021093697 A1 WO 2021093697A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
ahu377
allisartan isoproxil
angiotensin
allisartan
Prior art date
Application number
PCT/CN2020/127415
Other languages
English (en)
French (fr)
Inventor
李松
许文杰
程冲
孙晶超
华怀杰
Original Assignee
深圳信立泰药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信立泰药业股份有限公司 filed Critical 深圳信立泰药业股份有限公司
Priority to CN202080076793.9A priority Critical patent/CN114728944B/zh
Publication of WO2021093697A1 publication Critical patent/WO2021093697A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the invention belongs to the field of medicinal chemistry, and particularly relates to a complex of an angiotensin II receptor antagonist and a NEP inhibitor and a preparation method thereof.
  • Allisartan medoxomil (CAS: 947331-05-7), chemical name: 2-butyl-4-chloro-1-[2'-(1H-tetrazol-5-yl)-1,1'-biphenyl -Methyl]-imidazole-5-carboxylic acid, 1-[(isopropoxy)-carbonyloxy]-methyl ester, trade name: Xin Litan, is a new type of angiotensin II receptor (AT1 ) Antagonist, its structural formula is disclosed for the first time in Chinese Patent CN200610023991.0, and its application in the preparation of hypertension drugs is disclosed. Compared with other antihypertensive products of the same type (such as Losartan), Allisartan medoxomil has the characteristics of low toxicity and superior antihypertensive effect.
  • Enkephalinase is a neutral endopeptidase that can degrade a variety of endogenous vasoactive peptides including natriuretic peptide and bradykinin, and can also reduce the level of adrenomedullin and enkephalin Enzyme inhibitors (NEPi) can increase the levels of these substances to combat vasoconstriction, sodium retention and excessive activation of the neuroendocrine system.
  • Hypertension is a clinical syndrome characterized by increased systemic arterial pressure, and is the most common cardiovascular disease. It can be divided into two categories: primary and secondary, among which primary hypertension accounts for more than 95% of the total hypertension patients. With the development of social economy and the improvement of people's living standards, the incidence of hypertension is on the rise. If hypertension is not effectively controlled and treated, it can cause coronary atherosclerosis, coronary heart disease, angina pectoris, and serious complications such as hypertensive heart disease and heart failure. In addition, long-term high blood pressure can cause damage to the kidneys, brain, cardiovascular and other organs.
  • Heart failure (abbreviated as heart failure) is one of the most important cardiovascular diseases today. It is a group of complex clinical syndromes in which the ventricular filling or ejection ability is impaired due to abnormal structure or function of the heart. Its clinical manifestations are mainly breathing Difficulty and fatigue (limited activity tolerance), and fluid retention (pulmonary congestion and peripheral edema). Heart failure is the severe and terminal stage of various heart diseases, with a high incidence ("Chinese Heart Failure Diagnosis and Treatment Guidelines 2014").
  • angiotensin-converting enzyme inhibitors are still the first class of drugs that have been proven to reduce the mortality of patients, and they are also the drugs with the largest accumulation of evidence-based medicine, and they are recognized as the first-choice drugs for the treatment of heart failure.
  • Patent WO2007056546 discloses a sodium salt complex (LCZ696) of valsartan-sacubitril (Sacubitril) and a preparation method thereof.
  • LCZ696 is a supramolecular complex (complex) trisodium salt containing 2.5 crystal water, which is formed by non-covalent bonding of valsartan and AHU377.
  • AT1, NEPi, cations, etc. due to the comprehensive influence of the components of the complex (AT1, NEPi, cations, etc.) involved in the construction and other unknown factors, LCZ696 is easy to absorb moisture and is not stable enough under humid and hot conditions. In addition, it is in the preparation process Electrostatic effects are also prone to affect product fluidity.
  • Prior art CN106146472A discloses a double-acting complex or a salt thereof.
  • the complex contains allisartan and Sacubitril in a molar amount of 1:1, wherein the salt is a pharmaceutically acceptable cation, preferably Na + , K + or NH 4 + , there is no report of complexes of calcium salt ions.
  • Prior art CN105982891A discloses allisartan lipid ⁇ [(2R,4S)-5-biphenyl-4-yl-5-(3-carboxy-propionylamino)-2-methyl-pentanoic acid ethyl ester] Na 2 ⁇ XH 2 O precipitates, and there is no report of complexes of calcium salt ions.
  • the present invention provides a series of supramolecular complexes (complexes) composed of compounds with angiotensin II receptor (AT1) blocking effect and enkephalinase inhibitors (NEPi), which have vascular tension It has dual effects of blocking the receptor II and inhibition of neutral endopeptidase, and its physical and chemical properties are relatively more conducive to production.
  • AT1 angiotensin II receptor
  • NEPi enkephalinase inhibitors
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a series of supramolecular complexes (complexes) with dual functions.
  • the supramolecular complexes (complexes) consist of the following:
  • AT1 angiotensin II receptor
  • a pharmaceutically acceptable cation which is selected from Ca 2+ .
  • the compound with angiotensin II receptor (AT1) blocking effect is allisartan medoxomil, the English name Allisartan Isoproxil, and its structure is as follows:
  • the enkephalinase inhibitor is AHU377 (Sacubitril, CAS: 149709-62-6), the chemical formula is: C 24 H 29 NO 5 , and its structure is as follows:
  • the AHU377 is a specific enkephalinase inhibitor, which was first disclosed in US Patent No. 5,217,996.
  • the pharmaceutically acceptable cation is calcium ion (Ca 2+ ), which has obvious advantages in physical properties and the like compared to complexes of other ions.
  • non-covalent bonds are well known to those of ordinary skill in the art, including but not limited to hydrogen bonds, coordination bonds, ionic bonds, etc., among which allisartan medoxomil contains an acidic group: tetrazolium, and AHU377 contains one An acidic group: carboxylic acid.
  • the supramolecular complex (complex) may further include a solvent.
  • the solvent is filled and trapped in the complex unit as a part of the molecule, which can contribute to the intramolecular structure, such as supramolecular interaction.
  • the solvent is a common solvent in the field, such as water, methanol, ethanol, 2-propanol, acetone, ethyl acetate, methyl-tert-butyl ether, acetonitrile, toluene, dichloromethane, etc., preferably water.
  • the supramolecular complex (complex) can also be regarded as a calcium salt solvate.
  • the structural units of the supramolecular complex are as follows:
  • the structural unit of the supramolecular is:
  • the molar ratio x of calcium ions is further a value between 0.5 and 2, such as 0.5, 1, 1.5, 2, etc.;
  • the molar ratio n of the solvent is further a value between 0 and 3, such as 0, 0.5, 1, 1.5, 2, 2.5, 3, etc.
  • the supramolecular complex is obtained by non-covalent bonding of 1 mole ratio of allisartan medoxomil, 1 mole ratio of AHU377 and 1 to 2 mole ratio of calcium ion (Ca 2+ ), and Contains water molecules with a molar ratio of 1 to 3, wherein the molar ratio of calcium ions (Ca 2+ ) can be 1 or 2, and the molar ratio of water can be 1, 1.5, 2, 2.5, 3, preferably 2-3 molar ratio Water molecules, in which the molar ratio of calcium ions (Ca 2+ ) can be 1 or 2, and the molar ratio of water can be 2, 2.5, or 3.
  • the supramolecular complex The structural units of (composite) are as follows:
  • the supramolecular complex (complex) of the present invention is different from a mixture obtained by simple physical mixing of two active ingredients.
  • the XRD spectrum of the obtained supramolecular complex (complex) is obviously different from the XRD spectrum of Allisartan Isoproxil amorphous and AHU377 calcium salt amorphous, indicating that the complex of the present invention is a single substance.
  • a specific supramolecular complex (complex) of the present invention is co-amorphous.
  • the X-ray powder diffraction (XRD) spectrum of the composite exhibits non-sharp absorption between 2 ⁇ shift values of 9-29, which conforms to the definition of amorphous in the art, so the supramolecular The dominant form of the complex (complex) is amorphous.
  • the X-ray powder diffraction (XRD) spectrum of the supramolecular complex (complex) is shown in FIG. 1.
  • the content analysis method can directly/indirectly know the molar ratio of Allisartan Isoproxil to AHU377 in the supramolecular complex (complex).
  • the high performance liquid method HPLC
  • HPLC high performance liquid method
  • the mass/content of Allisartan Isoproxil and AHU377 (free acid) can be further converted into a molar ratio of 1:1.
  • the differential scanning calorimetry (DSC) of the supramolecular complex (complex) has an endothermic peak at 80.1 ⁇ 5°C. Since the supramolecular complex (complex) contains water, the field The technical personnel of can understand that under different detection conditions, such as heating rate, etc., and different sample properties, such as sample particle size state, etc., certain peaks in the DSC spectrum (such as the endothermic peak of water loss) may have large fluctuations For example, there is a relatively large displacement difference in the position of the water loss endothermic peak of the spectrum obtained at different heating rates, and there is an endothermic peak at 210.4 ⁇ 5°C in the spectrum. More specifically, the differential scanning calorimetry (DSC) chart of the supramolecular complex (complex) is shown in FIG. 2.
  • thermogravimetric spectrum (TG) of the supramolecular complex (complex) shows that the water content of the supramolecular complex (complex) is 4.10%, and the supramolecular is measured by Karl Fischer method The water content of the complex (composite) is 4.2%.
  • the atomic absorption spectrum of the supramolecular complex (complex) shows that the calcium content of the supramolecular complex (complex) is 3.91%.
  • the measured values of the elemental analysis of the supramolecular complex are: C: 58.89%; H: 6.04%; N: 9.50%.
  • the structural unit of the supramolecular complex is: (Allisartan Isoproxil ⁇ AHU377) 2- ⁇ 1Ca 2+ ⁇ 2H 2 O.
  • Another object of the present invention is to provide a method for preparing the series of supramolecular complexes (complexes) of the present invention, which comprises the following steps:
  • AT1 angiotensin II receptor
  • NEPi enkephalinase inhibitor
  • step 2) The mixture obtained in step 2) is slowly added to the solution obtained in step 1), or the calcium ion salt and/or calcium ion hydroxide are directly put into the reaction system in solid form and water respectively, and stirred and reacted fully;
  • the reaction can be carried out at a reaction temperature known to those skilled in the art, such as low temperature, room temperature, and heated reaction conditions, preferably at a temperature between room temperature and 45°C, and the room temperature refers to 20 ⁇ 10°C.
  • the series of supramolecular complexes are affected by factors such as feed ratio, reaction solvent, etc. during the preparation process.
  • the compound that blocks the angiotensin II receptor (AT1) and the enkephalinase inhibitor (NEPi) in step 1) are free substances, and the free substances can be used directly or obtained by freeing the corresponding salt;
  • the choice of reaction solvent has an impact on the acquisition of the series of supramolecular complexes (complexes), which is manifested in that supramolecular complexes (complexes) cannot be obtained as expected under partial solvent systems.
  • the reaction The solvent is methanol and/or ethanol system, and the anti-solvent system is isopropyl ether.
  • the amount of the angiotensin II receptor (AT1) blocking compound and the enkephalinase inhibitor (NEPi) is basically the same as that of the supramolecular complex.
  • the molar ratio of the two molecules in the compound (complex) structure is the same;
  • the calcium ion salt in step 2) can be common calcium ion salts in the art, such as CaCl 2 , CaSO 4, etc., calcium ion hydroxide refers to Ca(OH) 2 , preferably Ca(OH) 2 ; the calcium ion the amount of calcium salt (Ca 2+) ratio of the basic structure of calcium ions (Ca 2+) is adapted to the supramolecular complex (complexes).
  • the method for preparing a specific supramolecular complex includes the following preparation steps:
  • step 2) Dissolve the AHU377 free acid and Allisartan Isoproxil obtained in step 1) in an organic solvent;
  • step 3) The mixture obtained in step 3) is slowly added to the solution obtained in step 2), or the calcium ion salt and/or calcium ion hydroxide are directly put into the reaction system in a solid form and water respectively, and the reaction is stirred;
  • the salt of AHU377 in the step 1) is a common metal/non-metal salt in the art, such as calcium salt, magnesium salt, zinc salt, iron salt, sodium salt, amine salt, diethylamine salt, triethylamine, etc., Preferably calcium salt; the solution is preferably isopropyl acetate;
  • the molar ratio of Allisartan Isoproxil to AHU377 in the step 2) is preferably 0.7 ⁇ 1.2:1;
  • the calcium ion salt and/or calcium ion hydroxide in the step 3) is preferably calcium ion hydroxide, namely Ca(OH) 2 , specifically, when preparing a supramolecular complex containing 1 molecule of calcium ion (composite
  • the molar ratio of the amount of calcium ions in the calcium ion salt to AHU377 is 0.5 to 1.3:1; the appropriate solvent is preferably methanol and/or ethanol; in addition, an appropriate amount of water must be added to the system, preferably
  • the mass/volume ratio of AHU377 to water is 1-8:1g/ml, and the addition of different amounts of water can obtain supramolecular complexes (complexes) with different numbers of water; more specifically, as described in Example 2,
  • the structural unit of the supramolecular complex (complex) obtained by the reaction is: (Allisartan Isoproxil ⁇ AHU377) ⁇ 1Ca ⁇ 2H
  • the temperature in the step 4) can be a reaction temperature known to those skilled in the art, preferably at a temperature between room temperature and 45°C, and the room temperature refers to 20 ⁇ 10°C.
  • the supramolecular complex (complex) described in the first object of the present invention can be obtained by the aforementioned method.
  • the structural unit of the supramolecular complex (complex) obtained by the specific method of the above method is selected from the following Either:
  • the third object of the present invention is to provide a use of the supramolecular complex (complex) of the present invention for preparing drugs for treating a series of cardiovascular diseases including hypertension, heart failure and other complications.
  • the diseases/complications treated include but are not limited to hypertension, acute and chronic heart failure, congestive heart failure, arrhythmia, atrial fibrillation, myocardial infarction, arteriosclerosis, coronary heart disease, unstable or stable angina pectoris , Pulmonary hypertension, renal vascular hypertension, and other damages to the kidney, brain, cardiovascular and other organs caused by long-term hypertension.
  • the present invention further provides a pharmaceutical composition for the aforementioned pharmaceutical use, the pharmaceutical composition is composed of the supramolecular complex (complex) of the present invention and a drug carrier, wherein the supramolecular complex (complex) of the present invention
  • the mass percentage of the drug) in the pharmaceutical composition is 0.1-99.9%.
  • the supramolecular complex (complex) of the present invention has advantages in solubility, stability, etc., and further corresponds to better The clinical treatment effect and drug-making properties are more suitable for production and treatment applications.
  • the drug carrier includes, but is not limited to, one or two or more of fillers, disintegrants, binders, lubricants, surfactants, etc., mixed in any ratio to obtain a mixture.
  • the medicine includes, but is not limited to, capsules, powders, granules, tablets, injections and the like.
  • the supramolecular complex (complex) of the present invention has advantages in solubility, hygroscopicity, stability, etc., or select relevant experimental models to prove the present invention
  • the supramolecular complex (complex) is effective in treating a series of cardiovascular diseases such as hypertension, heart failure, and other complications.
  • the supramolecular complex (complex) obtained in Example 2 of the present invention is more hygroscopic than the physical mixture and the current Technically disclosed analogs have advantages.
  • the anti-heart failure activity (short-term, acute) of the supramolecular complex (complex) obtained in Example 2 on the animal model (rat) was tested, and the heart failure animal model was prepared by ligating the left anterior descending coronary artery.
  • the model animals were given the therapeutic drugs by gavage in advance, once a day for 7 consecutive days. After the model was successfully modeled, the drugs were administered for another three days. The experiment found that the obtained compound had a beneficial effect of lowering blood pressure significantly better than that of single administration, and the results were consistent. expected.
  • Example 2 To further test the anti-heart failure activity (long-term, chronic) of the supramolecular complex (complex) obtained in Example 2 on an animal model (rat), a heart failure animal model was prepared by ligating the left anterior descending coronary artery, and animal surgery After a week of recovery, the therapeutic drugs were given by gavage once a day for four consecutive weeks. The experiment found that the obtained compound has a beneficial effect of anti-heart failure that is significantly better than that of a single administration, and has a beneficial effect of anti-heart failure that is better than that of a physical mixture.
  • the experimental results show that the series of supramolecular complexes (complexes) of the present invention also show certain advantages over similar supramolecular complexes (complexes) in terms of physical and chemical properties; specifically, the one described in the present invention
  • the hygroscopicity of the series of supramolecular complexes (complexes) is better than that of LCZ696, which shows that LCZ696 is easier to absorb moisture than the supramolecular complexes (complexes) of the present invention under the same conditions; in addition, the series of the present invention
  • the fluidity of supramolecular complexes (complexes) is also better than that of LCZ696, which shows that LCZ696 almost does not flow under the detection conditions under the same powder conditions, while the series of supramolecular complexes (complexes) described in the present invention are almost non-flowing under the same powder conditions.
  • the fluidity of) is relatively more conducive to production, and the electrostatic effect of the supramol
  • the present invention has the following advantages and beneficial effects:
  • a series of supramolecular complexes (complexes) with dual effects of allisartan medoxomil and enkephalinase inhibitor are provided, which are disclosed in the prior art in terms of therapeutic effect, hygroscopicity, fluidity, etc. Compared with the products, it has advantages;
  • X-ray powder diffraction is detected by an Empyrean X-ray diffractometer.
  • the detection conditions Cu target K ⁇ rays, voltage 40KV, current 40mA, emission slit 1/32°, anti-scatter slit 1/16°, anti-scattering Scattering slit 7.5mm, 2 ⁇ range: 3°-60°, step length 0.02°, residence time per step 40s.
  • Differential scanning calorimetry spectra were tested with DSC204F1 differential scanning calorimeter equipment from NETZSCH, Germany. Test conditions: atmosphere: N 2 , 20 mL/min; scanning program: heating from room temperature at 10 °C/min to 250 °C, record Heating curve.
  • thermogravimetric analysis was detected by the TG209 thermogravimetric analyzer equipment from NETZSCH, Germany, and the detection conditions: atmosphere: N 2 , 20mL/min; scanning program: room temperature -550°C, heating rate: 10°C/min.
  • Allisartan Isoproxil used in the examples has a purity of 99.5%.
  • the AHU377 calcium salt used in the examples is self-made by the applicant, with a purity of 99.4%.
  • the X-ray powder diffraction (XRD) spectrum has a diffuse diffraction peak at 2 ⁇ of 9-29°, and the differential scanning calorimetry (DSC) has a water loss endothermic at 80.1 ⁇ 5°C. Peak, the spectrum also has a decomposition endothermic peak at 210.4 ⁇ 5°C.
  • the TG spectrum of the obtained product is shown in Figure 5, and the water content of the obtained product measured by thermogravimetric analysis (TG) is 4.10%.
  • the water content of the obtained product measured by Karl Fischer method was 4.2%.
  • the calcium content of the obtained product measured by atomic absorption method was 3.96%.
  • the X-ray powder diffraction spectrum, DSC and TG spectrum of the obtained product are basically the same as those of Example 2.
  • the solid product (0.2 g) was suspended in 5 ml of acetone, and then stirred at room temperature for 24 hours. The precipitate was filtered, collected, and dried to obtain the above precipitate.
  • the animal model of heart failure was prepared by ligating the left anterior descending coronary artery.
  • the model animals were given the therapeutic drugs by gavage in advance, once a day for 7 consecutive days. After the model was successfully modeled, the model was administered for another three days.
  • test animals were given therapeutic drugs in advance by gavage, once a day, for 7 consecutive days.
  • the animal was anesthetized, the trachea was connected to the ventilator, and the electrocardiograph was connected for real-time recording.
  • the chest was opened between the third and fourth ribs, and the left anterior descending coronary artery was ligated.
  • the ST segment elevation of the ECG represented successful ligation.
  • the chest cavity was closed and sutured. skin;
  • the animals continued to be given therapeutic drugs by intragastric administration once a day for 3 consecutive days. On the 11th day, the animals were anesthetized, the electrocardiogram was measured, and then the arterial pressure and left ventricular pressure were measured from the carotid artery.
  • mAP mean arterial pressure
  • mLVP mean left ventricular pressure
  • the animal model of heart failure was prepared by ligating the left anterior descending coronary artery. After the animal recovered for one week after surgery, the animals were given therapeutic drugs once a day for four consecutive weeks. The heart rate, myocardial fibrosis area, ejection fraction and heart of the test animals were recorded. The influence of main heart failure indicators such as wall thickness, the data obtained are as follows:
  • the compound group of the present invention exhibits anti-chronic heart failure curative effect; specifically, compared with the indicators of the untreated heart failure model rats, the animal indicators of the compound group of the present invention Significant improvement, close to animals in the sham operation group;
  • the compound group can significantly delay the heart failure process of rats and has significantly better anti-heart failure activity than the single drug;
  • Example 1 of WO2007056546 The method disclosed in Example 1 of WO2007056546 was used to prepare LCZ696 (purity 99.4%), and the samples obtained in the foregoing Example 2, Comparative Examples 1 and 2 were tested for hygroscopicity under the conditions of RH 75% and RH 85% (naked sample). ) And the results obtained are as follows:
  • the supramolecular complex (complex) of the present invention exhibits an unexpectedly good hygroscopicity (low) advantage under RH 75% and RH 85%, which is shown as the super-molecular complex (complex) obtained in Example 2
  • the mass increase is less than 1.30%, and when exposed to a RH85% storage environment, the mass increase for 5 days is less than 1.50%, and the sample mass increases during the experiment.
  • the amount is gentle, indicating that the sample has better hygroscopicity (low); in addition, in the content test carried out at the same time during the experiment, the purity of the test sample also showed no significant change;
  • test samples of LCZ696 and Comparative Examples 1 and 2 failed to maintain a solid state until the end of the experiment, and showed that they were completely deliquescent (in solution) at the end of the experiment. It can be seen that its hygroscopicity (low) is far less than the original.
  • the supramolecular complex (complex) of the invention is far less than the original.
  • the LCZ696 was prepared by the method disclosed in Example 1 of Patent WO2007056546, and the samples obtained in the foregoing Example 2, Comparative Examples 1 and 2 were pulverized to a particle size distribution range similar to that of LCZ696. The results obtained are as follows:
  • Example 2 The supramolecular complex (complex) obtained in Example 2 was stored at 40°C and 75% RH for 6 months to test its storage stability under accelerated conditions (with packaging). The results are as follows:
  • the supramolecular complex (complex) of the present invention has high stability and meets the requirements of clinical pharmacy.
  • the series of supramolecular complexes (complexes) of the present invention have been shown to have better anti-acute heart failure and chronic heart failure effects in animal activity tests, and the dosage is less, which is beneficial to reduce the dosage of drugs. ; Its moisture absorption performance (low) has greater advantages than similar products disclosed in the prior art, and the powder properties (fluidity, bulk density, etc.) also have advantages, and the physical and chemical properties are more convenient to produce; it can be seen that the series of the present invention is super Molecular complexes (complexes) have a good clinical prospects.

Abstract

提供了一系列具有双重作用的超分子络合物(复合物),该超分子络合物(复合物)包含具有血管紧张素II受体(AT1)阻断作用的化合物、脑啡肽酶抑制剂(NEPi)、药学上可接受的阳离子。

Description

血管紧张素II受体拮抗剂与NEP抑制剂的复合物及其制备方法 技术领域
本发明属于药物化学领域,特别涉及血管紧张素II受体拮抗剂与NEP抑制剂的复合物及其制备方法。
背景技术
阿利沙坦酯(CAS:947331-05-7),化学名:2-丁基-4-氯-1-[2’-(1H-四唑-5-基)-1,1’-联苯基-甲基]-咪唑-5-羧酸,1-[(异丙氧基)-羰氧基]-甲酯,商品名:信立坦,是一种新型的血管紧张素II受体(AT1)拮抗剂,中国专利CN200610023991.0中首次公开了其结构式,并披露了其在制备高血压药物中的应用。与同类型其他降压产品(如氯沙坦)相比,阿利沙坦酯具有毒性小、降压效果优等特点。
脑啡肽酶(NEP)是一种中性内肽酶,能够降解包括利钠肽、缓激肽在内的多种内源性血管活性肽,也能降低肾上腺髓质素水平,脑啡肽酶抑制剂(NEPi)则能够提高这些物质的水平,以对抗血管收缩、钠潴留及神经内分泌系统过度激活。
高血压是以体循环动脉压增高为主要表现的临床综合征,是最常见的心血管疾病。可分为原发性及继发性两大类,其中原发性高血压占总高血压患者的95%以上。随着社会经济的发展,人民生活水平的提高,高血压的发病率呈不断上升的趋势。高血压如果得不到有效的控制和治疗,可以引起冠状动脉硬化,出现冠心病、心绞痛,还可能造成高血压性心脏病、心力衰竭等严重并发症。另外,长期高血压可导致肾、脑、心血管等器官损伤。
由于高血压的病因及发病机制多样,血压的控制不力往往会影响到机体多个器官的结构和功能,高血压患者也会同时伴有其他器官的疾病或病变,如心脑血管疾病、高血脂症等等。在治疗方面,联合使用机制不同的降压药有利于更好的控制血压,更重要的是,不同降压机制药物的联合使用可能具有协同作用,有利于降低药物使用量,进而达到降低药物副反应的目的。
心力衰竭(简称心衰),是当今最重要的心血管疾病之一,其是由心脏结构或功能异常导致心室充盈或射血能力受损的一组复杂临床综合征,其临床主要 表现为呼吸困难和乏力(活动耐量受限),以及液体潴留(肺淤血和外周水肿)。心衰为各种心脏疾病的严重和终末阶段,发病率高,(《中国心力衰竭诊断和治疗指南2014》)。
临床治疗心衰的药物在过去的10多年中鲜有进展。时至如今,血管紧张素转化酶抑制剂(ACEI)仍是被证实能降低患者病死率的第一类药物,也是循证医学证据积累最多的药物,是公认的治疗心衰的首选药物。
自2005年以来,由于心血管病危险因素的流行,我国心血管病的发病人数呈持续增加的态势。据统计,我国心血管病患者约为2.9亿人,其中高血压患者2.7亿,心力衰竭病患约有450万人(《中国心血管病报告2013》)。
专利WO2007056546公开了一种缬沙坦-沙库匹曲(Sacubitril)的钠盐复合物(LCZ696)及其制备方法。具体的,LCZ696为含有2.5个结晶水的超分子络合物(复合物)三钠盐,由缬沙坦和AHU377通过非共价键结合而成。但是由于参与构建的复合物各成分(AT1、NEPi、阳离子等等)及其他未知因素的综合影响,使得LCZ696表现为易于吸潮,在湿、热条件下不够稳定,另外,其在制备过程中也易发生静电效应而影响产品流动性。
现有技术CN108473474A公开了一系列由血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于,所述复合物的结构单元如下:(aEXP3174·bAHU377)·xCa·nA其中a:b=1:0.25~4;x为0.5~3之间的数值;A指代水、甲醇、乙醇、2-丙醇、丙酮、乙酸乙酯、甲基-叔-丁基醚、乙腈、甲苯、二氯甲烷;n为0~3之间的数值。说明了复合物的制备会受投料比、反应溶剂等因素的影响,同时,由于物质的不同,其在部分溶剂体系下,以及钾盐等离子条件下无法如预期获得超分子络合物。
现有技术CN106146472A公开了一种具有双重作用的复合物或其盐,所述复合物包含阿利沙坦和Sacubitril,以摩尔量1:1存在,其中所述盐为药学上可接受的阳离子,优选为Na +、K +或NH 4 +,未有钙盐离子的复合物的报道。
现有技术CN105982891A公开了阿利沙坦脂·[(2R,4S)-5-联苯-4-基-5-(3-羧基-丙酰基氨基)-2-甲基-戊酸乙酯]Na 2·xH 2O沉淀物,也未有钙盐离子的复合物的报道。
可知,寻找一种治疗效果好且副作用小的用于治疗包括高血压、心力衰竭等一系列心血管疾病及其他并发症,且理化性质更便于生产的药物是现有技术 没有解决的技术问题,本发明提供了一系列由具有血管紧张素II受体(AT1)阻断作用的化合物和脑啡肽酶抑制剂(NEPi)组成的超分子络合物(复合物),该复合物具有血管紧张素II受体阻断和中性内肽酶抑制双重作用,且理化性质相对更利于生产。
发明内容
本发明的目的在于克服现有技术的缺点,提供了一系列具有双重作用的超分子络合物(复合物),该超分子络合物(复合物)由如下组成:
1)具有血管紧张素II受体(AT1)阻断作用的化合物;
2)脑啡肽酶抑制剂(NEPi);
3)药学上可接受的阳离子,所述阳离子选自Ca 2+
具体的,所述具有血管紧张素II受体(AT1)阻断作用的化合物为阿利沙坦酯,英文名Allisartan Isoproxil,其结构如下:
Figure PCTCN2020127415-appb-000001
具体的,所述脑啡肽酶抑制剂(NEPi)为AHU377(Sacubitril,CAS:149709-62-6),化学式为:C 24H 29NO 5,其结构如下:
Figure PCTCN2020127415-appb-000002
所述AHU377为一种特异的脑啡肽酶抑制剂,其在美国专利US5217996中首次公开。
具体的,所述为药学上可接受的阳离子为钙离子(Ca 2+),相对于其他离子的复合物在物理性能等方面有较为明显的优势。
上述具有血管紧张素II受体(AT1)阻断作用的化合物、脑啡肽酶抑制剂(NEPi)和药学上可接受的阳离子,通过非共价键结合得到超分子络合物(复合物),所述非共价键为本领域普通技术人员所熟知,包含但不限于氢键、配位键、离子键等等,其中阿利沙坦酯含有一种酸性基团:四氮唑,AHU377含有一种酸性基团:羧酸。
所述超分子络合物(复合物)还可以进一步包含有溶剂。所述溶剂作为分子的一部分被填充和截留在复合物单元中,可以有助于分子内结构,如超分子相互作用。所述的溶剂为本领域常见的溶剂,如水、甲醇、乙醇、2-丙醇、丙酮、乙酸乙酯、甲基-叔-丁基醚、乙腈、甲苯、二氯甲烷等,优选水。某种程度上,所述超分子络合物(复合物)也可以视其为一种钙盐溶剂合物。
具体的,所述超分子络合物(复合物)的结构单元如下:
(aAllisartan Isoproxil·bAHU377)·xCa·nA
其中阿利沙坦酯与AHU377的摩尔比a:b=1:0.25~4,进一步的,a:b的值可为1:0.25,1:0.5,1:1,1:1,1:2,1:2.5,1:3,1:3.5,1:4等;相对于阿利沙坦酯的摩尔比,钙离子(Ca 2+)的摩尔比x可为0.5~3之间的数值,如0.5、1、1.5、2、2.5、3等;所述超分子络合物(复合物)中A指代水、甲醇、乙醇、2-丙醇、丙酮、乙酸乙酯、甲基-叔-丁基醚、乙腈、甲苯、二氯甲烷等溶剂,相对于阿利沙坦酯的摩尔比,溶剂的摩尔比n为0~3之间的数值,如0、0.5、1、1.5、2、2.5、3等。
再进一步的,所述超分子络合物(复合物)的一种具体形式,阿利沙坦酯与AHU377的摩尔比a:b=1:1,所述溶剂为水;阿利沙坦酯含有一种酸性基团:四氮唑,AHU377含有一种酸性基团:羧酸,阿利沙坦酯和AHU377通过离子键和/或配位键等非共价键与钙离子结合,某种程度上也可以视其为一种钙盐水合物。具体的,所述超分子的结构单元为:
(Allisartan Isoproxil·AHU377)·xCa·nH 2O
具体分子结构式如下:
Figure PCTCN2020127415-appb-000003
其中钙离子(Ca 2+)的摩尔比x进一步为0.5~2之间的数值,如0.5、1、1.5、2等;溶剂的摩尔比n进一步为0~3之间的数值,如0、0.5、1、1.5、2、2.5、3等。
更具体的,所述超分子络合物(复合物)由1摩尔比阿利沙坦酯、1摩尔比AHU377与1~2摩尔比钙离子(Ca 2+)通过非共价键键合得到,且含有1~3摩尔比水分子,其中钙离子(Ca 2+)的摩尔比数可为1或2,水的摩尔比数可为1、1.5、2、2.5、3,优选2-3摩尔比水分子,其中钙离子(Ca 2+)的摩尔比数可为1或2,水的摩尔比数可为2、2.5、3,在几个较优的方案中,所述超分子络合物(复合物)的结构单元如下:
(Allisartan Isoproxil·AHU377)·1Ca·nH 2O(n为0~3之间的任意数值,优选2~3之间的任意数值)。
例如,可为:
(Allisartan Isoproxil·AHU377)·1Ca·0H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·0.5H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·1H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·2H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·2.5H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·3H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·0H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·0.5H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·1H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·2H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·2.5H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·3H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·0H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·0.5H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·1H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·2H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·2.5H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·3H 2O。
本领域的技术人员可以理解,在超分子络合物(复合物)的单元中,所述阿利沙坦酯、AHU377、钙离子(Ca 2+)和溶剂分子会以数个结构单元的形式填充于其中。
本发明所述超分子络合物(复合物)区别于两种活性成分通过简单的物理混合得到的混合物。所得超分子络合物(复合物)的XRD谱图明显区别于Allisartan Isoproxil无定型和AHU377钙盐无定型的XRD谱图,说明本发明复合物为单一物质。
本发明的一个具体的超分子络合物(复合物),该超分子络合物(复合物)为共无定型。
更为具体地,所述复合物的X-射线粉末衍射(XRD)谱图在2θ位移值为9~29之间出现非尖锐的吸收,符合本领域对于无定型的定义,因此所述超分子络合物(复合物)的优势形态为无定型。该超分子络合物(复合物)的X-射线粉末衍射(XRD)谱图如图1所示。
采用含量分析法可直接/间接得知超分子络合物(复合物)中Allisartan Isoproxil与AHU377的摩尔比,比如采用高效液相法(HPLC)可以测得超分子络合物(复合物)中Allisartan Isoproxil与AHU377(游离酸)的质量/含量进一步换算即可得知其摩尔比为1:1。
该超分子络合物(复合物)的差示扫描量热谱图(DSC)在80.1±5℃有1处吸热峰,由于该超分子络合物(复合物)含有水,因此本领域的技术人员可以理解在不同的检测条件,诸如升温速率等,以及不同的样品性状,诸如样品粒径状态等,DSC谱图中的某些峰(诸如失水吸热峰)可能出现较大波动,比如不同升温速率下所得谱图的失水吸热峰位置出现相对较大位移区别,该谱图另在210.4±5℃处存在吸热峰。更具体的,该超分子络合物(复合物)的差示 扫描量热谱图(DSC)如图2所示。
对于该超分子络合物(复合物)中含水量的检测可采用本领域常用的方法,如卡尔费休法和/或热重分析法。具体的,该超分子络合物(复合物)的热重分析谱图(TG)显示该超分子络合物(复合物)的含水量为4.10%,通过卡尔费休法测得该超分子络合物(复合物)的含水量为4.2%。
该超分子络合物(复合物)的原子吸收谱图显示该超分子络合物(复合物)的钙含量为3.91%。
该超分子络合物(复合物)的元素分析实测值为:C:58.89%;H:6.04%;N:9.50%。
综合以上信息判断,该超分子络合物(复合物)的结构单元为:(Allisartan Isoproxil·AHU377) 2-·1Ca 2+·2H 2O。
本发明的另一目的在于提供一种本发明所述系列超分子络合物(复合物)的制备方法,包含如下步骤:
1)将血管紧张素II受体(AT1)阻断作用的化合物、脑啡肽酶抑制剂(NEPi)溶于适当的溶剂;
2)将药学上可接受的钙离子盐和/或钙离子氢氧化物溶于或悬浮于适当的水中;
3)将步骤2)所得混合物缓慢加入到步骤1)所得溶液中,或者钙离子盐和/或钙离子氢氧化物直接以固体形态与水分别先后投入反应体系中,搅拌充分反应;
4)减压浓缩得油状物,然后滴加适当的反溶剂搅拌;
5)固体沉淀并干燥得到所述超分子络合物(复合物)。
反应可在本领域的技术人员公知的反应温度下进行,如低温、室温及加温的反应条件,优选在室温至45℃之间的温度下进行,所述室温指代20±10℃。
具体的,所述系列超分子络合物(复合物)在制备过程中会受投料比、反应溶剂等因素影响。其中,步骤1)中所述血管紧张素II受体(AT1)阻断作用的化合物、脑啡肽酶抑制剂(NEPi)为游离物,可直接使用游离物或者通过将对应盐游离后获得;反应溶剂的选择对于所述系列超分子络合物(复合物)的获得存在影响,表现为在部分溶剂体系下无法如预期获得超分子络合物(复合物),具体的,所述的反应溶剂为甲醇和/或乙醇体系,反溶剂体系为异丙醚,所述血管紧张素II受体(AT1)阻断作用的化合物与脑啡肽酶抑制剂(NEPi)的 用量基本与超分子络合物(复合物)结构中两种分子的摩尔比相同;
步骤2)中的钙离子盐可为本领域常见的钙离子盐,如CaCl 2、CaSO 4等,钙离子氢氧化物指代Ca(OH) 2,优选Ca(OH) 2;所述钙离子盐中钙离子(Ca 2+)的量基本与超分子络合物(复合物)结构中钙离子(Ca 2+)的比例相适应。
具体的,对于具体的超分子络合物(复合物)的制备方法,包含如下制备步骤:
1)将AHU377盐游离后制备得到含有AHU377游离酸的溶液,脱溶;
2)将步骤1)所得AHU377游离酸、Allisartan Isoproxil溶于有机溶剂中;
3)将药学上可接受的钙离子盐和/或钙离子氢氧化物溶于/悬浮于适当的水中;
4)将步骤3)所得混合物缓慢加入到步骤2)所得溶液中,或者钙离子盐和/或钙离子氢氧化物直接以固体形态与水分别先后投入反应体系中,搅拌反应;
5)减压浓缩得油状物后,滴加反溶剂析出固体;
6)搅拌析晶,过滤得到固体沉淀并干燥得到所述超分子络合物(复合物)。
所述步骤1)中AHU377的盐为本领域常见的金属/非金属盐,如钙盐、镁盐、锌盐、铁盐、钠盐、胺盐、二乙胺盐、三乙胺等等,优选钙盐;所述溶液优选醋酸异丙酯;
具体的,当制备含有1分子钙离子的超分子络合物(复合物),即(Allisartan Isoproxil·AHU377)·1Ca·nH 2O时,所述步骤2)中Allisartan Isoproxil与AHU377的摩尔比优选为0.7~1.2:1;
所述步骤3)中的钙离子盐和/或钙离子氢氧化物优选钙离子氢氧化物,即Ca(OH) 2,具体的,当制备含有1分子钙离子的超分子络合物(复合物)时,所述钙离子盐中钙离子的量与AHU377的摩尔比为0.5~1.3:1;所述适当的溶剂优选甲醇和/或乙醇;另外,体系中还需加入适量的水,优选AHU377与水的质量/体积比为1~8:1g/ml,不同量水的加入可以得到不同水个数的超分子络合物(复合物);更具体的,如实施例2所述,当AHU377与水的质量/体积比为2.0:1g/ml时,反应得到超分子络合物(复合物)的结构单元为:(Allisartan Isoproxil·AHU377)·1Ca·2H 2O。
所述步骤4)中的温度可为本领域的技术人员公知的反应温度,优选在室温至45℃之间的温度下进行,所述室温指代20±10℃。
采用前述方法即可得到本发明第一个目的所述的超分子络合物(复合物),优选的,采用上述方法的具体方式所得超分子络合物(复合物)的结构单元选自如下任一:
(Allisartan Isoproxil·AHU377)·1Ca·0H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·0.5H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·1H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·2H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·2.5H 2O;
(Allisartan Isoproxil·AHU377)·1Ca·3H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·0H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·0.5H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·1H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·2H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·2.5H 2O;
(Allisartan Isoproxil·AHU377)·1.5Ca·3H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·0H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·0.5H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·1H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·2H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·2.5H 2O;
(Allisartan Isoproxil·AHU377)·2Ca·3H 2O。
本发明的第三个目的在于提供一种本发明所述超分子络合物(复合物)用于制备治疗包括高血压、心力衰竭等一系列心血管疾病及其他并发症的药物的用途。
具体的,所述治疗的疾病/并发症包含但不限于高血压、急慢性心衰、充血性心衰、心律失常、房颤、心肌梗塞、动脉硬化症、冠心病、不稳定或稳定型心绞痛、肺高血压、肾血管高血压等以及长期高血压所导致的肾、脑、心血管等器官的其他损伤。
本发明进一步提供了用于前述药物用途的药物组合物,所述药物组合物由本发明所述超分子络合物(复合物)和药物载体组成,其中本发明所述超分子 络合物(复合物)在药物组合物中所占质量百分数为0.1~99.9%。
与单药、现有技术公开的类似物以及通过物理混合所得混合物及同类产品相比,本发明超分子络合物(复合物)在溶解性、稳定性等方面具有优势,进一步对应更优的临床治疗效果及成药性,更适用于生产和治疗的应用。
所述药物载体包含但不限于填充剂、崩解剂、粘合剂、润滑剂、表面活性剂等中的一种或两种以上以任意比例混合所得混合物。
所述药物包含但不限于胶囊剂、散剂、颗粒剂、片剂、注射剂等。
本领域技术人员完全能够通过溶解性等相关实验证明本发明所述超分子络合物(复合物)在溶解性、吸湿性、稳定性等方面具有优势,或选择有关的实验模型以证明本发明所述超分子络合物(复合物)在治疗所述包括高血压、心力衰竭等一系列心血管疾病及其他并发症的药物的功效。
具体的,以本发明实施例2所得超分子络合物(复合物)为例:与Allisartan Isoproxil相比,其溶解性能得到明显提高,例如在水、乙醇、乙醇-水等常规溶剂中表现为更好的溶解性;另外,与同比例物理混合所得混合物及现有技术公开的类似物的吸湿性相比,本发明所得超分子络合物(复合物)在吸湿性上较物理混合物及现有技术公开的类似物具有优势。
使用动物模型对所得复合物的短期、急性以及长期、慢性活性进行综合评测。
具体的,检测实施例2所得超分子络合物(复合物)对动物模型(大鼠)的抗心衰活性(短期、急性),采用结扎冠状动脉左前降支的方法制备心衰动物模型,造模动物预先灌胃给予治疗药物,每天一次,连续7天,造模成功后,再行给药三天,实验发现所得复合物具有明显优于单独给药的降低血压的有益效果,结果符合预期。
进一步检测实施例2所得超分子络合物(复合物)对动物模型(大鼠)的抗心衰活性(长期、慢性),采用结扎冠状动脉左前降支的方法制备心衰动物模型,动物术后恢复一周后灌胃给予治疗药物,每天一次,连续四周,实验发现所得复合物具有明显优于单独给药的抗心衰的有益效果,并具有优于物理混合物的抗心衰的有益效果。
本领域的技术人员可以理解的是,短时间给药(短期、急性心衰动物模型)对供试动物的治疗效果会体现为降低血压的作用,而长期给药(长期、慢性心 衰动物模型)则体现为抗心衰的效果。
综合实验结果表明,与未治疗的心衰造模组大鼠各项指标相比,复合物组动物各项指标明显改善;复合物组动物各项指标也接近于空白组健康动物;与同等剂量的单药组相比,复合物组可以明显更好地延缓大鼠的心衰进程,较单独用药具有明显更优的抗心衰活性。
实验结果还表明,本发明所述一系列超分子络合物(复合物)在理化性质方面亦表现出较同类超分子络合物(复合物)有一定优势;具体的,本发明所述一系列超分子络合物(复合物)的吸湿性优于LCZ696,表现为在相同条件下LCZ696较本发明所述超分子络合物(复合物)更易吸潮;另外,本发明所述一系列超分子络合物(复合物)的流动性也优于LCZ696,表现为相同粉体条件下LCZ696在检测条件下表现为几乎不流动,而本发明所述一系列超分子络合物(复合物)的流动性相对更有利于生产,且本发明超分子络合物(复合物)的静电效应明显优于LCZ696。
本发明相对于现有技术具有如下的优点及有益效果:
1、提供了一系列由阿利沙坦酯与脑啡肽酶抑制剂(AHU377)具有双重作用的超分子络合物(复合物),其在治疗效果吸湿性、流动性等方面与现有技术公开的产品相比具有优势;
2、提供了本发明所述超分子络合物(复合物)的制备方法;
3、提供本发明所述超分子络合物(复合物)用于制备治疗高血压、心力衰竭等一系列心血管疾病及其他并发症的药物的用途,及用于所述用途的药物组合物。
附图说明
图1实施例2所得复合物的XRD谱图
图2实施例2所得复合物的DSC谱图
图3实施例2所得复合物与Allisartan Isoproxil及AHU377钙的XRD谱图对比
图4实施例2所得复合物与Allisartan Isoproxil及AHU377钙的DSC谱图对比
图5实施例2所得复合物的TG谱图
图6实施例2所得复合物的性状图
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但发明的实施方式不限于此。
以下实施例中:
X-射线粉末衍射采用锐影(Empyrean)X射线衍射仪设备检测,检测条件:Cu靶Kα射线,电压40KV,电流40mA,发射狭缝1/32°,防散射狭缝1/16°,防散射狭缝7.5mm,2θ范围:3°-60°,步长0.02°,每步停留时间40s。
差示扫描量热法谱图采用德国NETZSCH公司DSC204F1差示扫描量热仪设备检测,检测条件:气氛:N 2,20mL/min;扫描程序:从室温以10℃/min升温至250℃,记录升温曲线。
热重分析采用德国NETZSCH公司TG209热重分析仪设备检测,检测条件:气氛:N 2,20mL/min;扫描程序:室温-550℃,升温速率:10℃/min。
实施例所使用Allisartan Isoproxil,纯度99.5%。
实施例所使用AHU377钙盐申请人自制,纯度99.4%。
实施例1
AHU377游离酸的制备:
将2.1g AHU377钙盐、40mL醋酸异丙酯加入250mL的单口瓶中,室温下加入2mol/L盐酸4.5mL搅拌溶清。分液,收集有机层,使用20mL水洗涤有机层两次;35℃下减压脱溶,得AHU377游离酸。
实施例2
复合物的制备:
Figure PCTCN2020127415-appb-000004
往实施例1所得的AHU377游离酸中加2.5g阿利沙坦酯,加甲醇/乙醇体积比1:1共50mL,336mg Ca(OH) 2,1mL水,室温搅拌10h。于40℃减压浓缩得油状物,边搅拌边滴加异丙醚,析出白色固体,共滴加10ml异丙醚,搅拌2h后,过滤,真空干燥8h,研磨,得固体3.5g,复合物的性状图如图6所示。测PXRD,为无定型。HPLC检测纯度为99%,通过含量测试计算可知所得产品中Allisartan Isoproxil与AHU377的摩尔比为1:1。
所得产品的X-射线粉末衍射谱图如图1所示,DSC谱图如图2所示。
通过与Allisartan Isoproxil及AHU377钙的XRD、DSC谱图的比对发现(如图3和图4),所得产品的XRD谱图存在明显的区别,综合DSC谱图及HPLC检测分析,可判断所得产品为复合物。
具体的,X-射线粉末衍射(XRD)谱图在2θ为9-29°处具有弥散的衍射峰,差示扫描量热谱图(DSC),在80.1±5℃有1处失水吸热峰,该谱图另在210.4±5℃处存在分解吸热峰。
元素分析,实测值:C:58.89%;H:6.04%;N:9.50%。。理论值(按(Allisartan Isoproxil·AHU377) 2-·1Ca 2+·2H 2O):C:58.96%;H:5.78%;N:9.44%。
所得产品的TG谱图如图5所示,通过热重分析法(TG)测得所得产品的含水量为4.10%。
卡尔费休法测得所得产品的含水量为4.2%。
通过原子吸法测得所得产品的钙含量为3.96%。
综合判断所述复合物结构单元为:(Allisartan Isoproxil·AHU377) 2-·1Ca 2+·2H 2O。
实施例3
取10mL含有约2g的AHU377的醋酸异丙酯溶液于40℃旋蒸至干,加2.5g阿利沙坦酯,加乙醇共50mL,336mg Ca(OH) 2,1mL水,室温搅拌10h。于40℃减压浓缩得油状物,边搅拌边滴加异丙醚,析出白色固体,共滴加10ml异丙醚,搅拌2h后,过滤,真空干燥8h,研磨,得固体3.5g,测PXRD,为无定型。HPLC检测纯度为99%,通过含量测试计算可知所得产品中Allisartan Isoproxil与AHU377的摩尔比为1:1。
所得产品的X-射线粉末衍射谱图、DSC及TG谱图与实施例2基本一致。
综合判断所述复合物结构单元为:(Allisartan Isoproxil·AHU377) 2-·1Ca 2+·2H 2O。
对比实施例1
CN106146472A实施例
将阿利沙坦酯(0.67g),丙酮(6mL),33%的氢氧化钠溶液(150mg)加入反应瓶并搅拌0.5小时。将Sacubitril(0.5g)的丙酮溶液(6.25g,8%wt)和33%的氢氧化钠溶液(150mg)加入另一个反应瓶并搅拌0.5小时。将上述反应瓶中物料混合搅拌2小时,浓缩,干燥得到白色固体。
对比实施例2
CN105982891A实施例2
阿利沙坦酯·[(2R,4S)-5-联苯-4-基-5-(3-羧基-丙酰基氨基)-2-甲基-戊酸乙酯]Na 2·xH 2O沉淀物的制备
将0.55克阿利沙坦酯和0.42克(2R,4S)-5-联苯-4-基-5-(3-羧基-丙酰基氨基)-2-甲基-戊酸乙酯溶于40毫升丙酮中。另外,将0.08克NaOH溶于5毫升水中。将两溶液在零度下合并,在室温下搅拌1小时,然后将该溶液浓缩,低温冷冻干燥得到以上组合物。
将固体产物(0.2克)悬浮在5毫升丙酮中,然后在室温下搅拌24小时,沉淀物过滤,收集,干燥得到上述沉淀物。
实施例4
进一步检测实施例2所得复合物对动物模型(大鼠)抗心衰活性(短期、急性)。
采用结扎冠状动脉左前降支的方法制备心衰动物模型,造模动物预先灌胃给予治疗药物,每天一次,连续7天,造模成功后,再行给药三天。
具体如下:
1、实验动物
6周龄雄性SD大鼠;
2、实验方法
试验前准备:将所有动物按随机分组法分为5组,每组6只,试验处理前动物适应性饲养3天;
实验过程:将供试动物预先灌胃给予治疗药物,每天一次,连续7天。第八天手术,麻醉动物,气管接呼吸机,连接心电图仪实时记录,在第三和第四肋骨间开胸,结扎冠状动脉左前降支,心电图ST段抬高代表结扎成功,关闭胸腔,缝合皮肤;
动物术后继续灌胃给予治疗药物,每天一次,连续3天。第11天麻醉动物,测心电图,然后从颈动脉插管测动脉压和左心室压力。
3、数据记录
血压(blood pressure):平均动脉压(mAP)和平均左室压(mLVP),各组数据如下:
表3.动物模型(大鼠)抗心衰活性(短期、急性)数据
Figure PCTCN2020127415-appb-000005
Figure PCTCN2020127415-appb-000006
从结果可以看出,冠状动脉结扎造模后的动物由于部分心肌功能受损,从而出现代偿性的血压上升。本领域的技术人员可以理解的是,动物模型(大鼠)抗心衰活性(短期、急性)实验方案中,短时间给药对供试动物血压影响明显,其心衰治疗效果先体现为血压降低的效果,因此,实验结果符合预期;从所得数据可以看出,Allisartan Isoproxil和AHU377钙盐单独用药对受试动物平均动脉压(mAP)、平均左室压(mLVP)较未治疗动物组的改善作用不明显,而对于实施例2所得复合物组,改善作用明显,且优于LCZ696。
实施例5
进一步检测实施例2所得复合物对动物模型(大鼠)抗心衰活性(长期、慢性)。
采用结扎冠状动脉左前降支的方法制备心衰动物模型,动物术后恢复一周后灌胃给予治疗药物,每天一次,连续四周,并记录受试动物心率、心肌纤维化面积、射血分数及心脏壁厚度等主要心衰指标的影响,所得数据如下:
表4.动物模型(大鼠)抗心衰活性(长期、慢性)数据
Figure PCTCN2020127415-appb-000007
*开胸未予给药
**开胸结扎后未予给药
***质量比Allisartan Isoproxil:AHU377钙盐=1:1混合后所得物理混合物
通过综合上述实验结果表明,本发明复合物组表现出抗慢性心衰的疗效; 具体的,与未治疗的心衰造模组大鼠各项指标相比,本发明复合物组动物各项指标明显改善,接近于假手术组动物;
与同等剂量单药组各项指标相比,复合物组均可以明显更好地延缓大鼠的心衰进程,较单独用药具有明显更优的抗心衰活性;
最重要的是,在与物理混合物各项指标相比中,我们惊奇的发现,复合物组均体现出相对于其他实验组更好的治疗效果。
实施例6
吸湿性
采用专利WO2007056546实施例1公开的方法制备LCZ696(纯度99.4%),与前述实施例2、对比实施例1、2所得样品一起分别测试在RH 75%和RH 85%条件下的吸湿性(裸样)并对所得结果如下表:
表5.吸湿性对比数据
Figure PCTCN2020127415-appb-000008
*样品呈溶液状(潮解),无法检测含水量
**含水增量
从上表可看出本发明所述超分子络合物(复合物)在RH 75%和RH 85%下表现为超乎预料的好的吸湿性(低)优势,表现为实施例2所得超分子络合物(复合物)即便是暴露在RH 75%储存环境下5天质量增量<1.30%,暴露在RH85%储存环境下5天质量增量<1.50%,在实验过程中样品质量增量平缓,可知样品吸湿性(低)较好;另外,在实验过程同时进行的含量测试中,供试样品的纯度亦表现为无明显变化;
而反观LCZ696、对比实施例1、2的供试样品未能保持固体状态至实验结束,表现为在实验结束时均表现为完全潮解(呈溶液状),可知其吸湿性(低)远不及本发明所述超分子络合物(复合物)。
流动性
采用专利WO2007056546实施例1公开的方法制备LCZ696,将前述实施例2、对比实施例1、2所得样品粉碎至与LCZ696相近的粒径分布范围内,所得结果如下表:
表6.流动性对比数据
Figure PCTCN2020127415-appb-000009
从以上数据可以看出,本发明所述超分子络合物(复合物)的流动性适中,且无明显静电现象,粉体性质优于LCZ696、对比实施例1、2;而反观LCZ696,其在休止角检测过程中表现为因不流动而难以下料,经勉强下料后测定其休止角为57.35°,且粉体表现为存在静电现象,堆密度较小,粉体性质不及实施例2所得超分子络合物(复合物)。
实施例9
加速稳定性试验
将实施例2所得超分子络合物(复合物)在40℃,75%RH条件下保存6个月以检测其在加速条件下(带包装)的储存稳定性,结果如下表:
表7.加速稳定性数据
Figure PCTCN2020127415-appb-000010
可知,本发明所述超分子络合物(复合物)具有较高的稳定性,符合临床制药要求。
综上,本发明所述系列超分子络合物(复合物)在动物活性试验中体现为具有较好的抗急性心衰、慢性心衰效果,且给药量更少,有利于降低用药剂量;其吸湿性能(低)较现有技术公开的同类产品具有较大优势,且粉体性质(流动性、堆密度等)亦存在优势,理化性质更便于生产;可知,本发明所述系列超分子络合物(复合物)具有较好的临床用药前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (12)

  1. 血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于,所述复合物的结构单元如下:
    (aAllisartan Isoproxil·bAHU377)·xCa·nA
    其中a:b=1:0.25~4;x为0.5~3之间的数值;A指代水、甲醇、乙醇、2-丙醇、丙酮、乙酸乙酯、甲基-叔-丁基醚、乙腈、甲苯、二氯甲烷;n为0~3之间的数值。
  2. 根据权利要求1所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的结构单元如下:
    (Allisartan Isoproxil·AHU377)·xCa·nH 2O
    具体分子结构式如下:
    Figure PCTCN2020127415-appb-100001
    其中x为0.5~2之间的数值;n为0~3之间的数值。
  3. 根据权利要求2所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于x为1~2之间的数值,n为1~3之间的数值。
  4. 根据权利要求1-4任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的结构单元如下:
    (Allisartan Isoproxil·AHU377)·1Ca·nH 2O,
    其中n为1~3之间的任意数值。
  5. 根据权利要求1-8任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的结构单元为如下任一:
    (Allisartan Isoproxil·AHU377)·1Ca·0H 2O;
    (Allisartan Isoproxil·AHU377)·1Ca·0.5H 2O;
    (Allisartan Isoproxil·AHU377)·1Ca·1H 2O;
    (Allisartan Isoproxil·AHU377)·1Ca·2H 2O;
    (Allisartan Isoproxil·AHU377)·1Ca·2.5H 2O;
    (Allisartan Isoproxil·AHU377)·1Ca·3H 2O;
    (Allisartan Isoproxil·AHU377)·1.5Ca·0H 2O;
    (Allisartan Isoproxil·AHU377)·1.5Ca·0.5H 2O;
    (Allisartan Isoproxil·AHU377)·1.5Ca·1H 2O;
    (Allisartan Isoproxil·AHU377)·1.5Ca·2H 2O;
    (Allisartan Isoproxil·AHU377)·1.5Ca·2.5H 2O;
    (Allisartan Isoproxil·AHU377)·1.5Ca·3H 2O;
    (Allisartan Isoproxil·AHU377)·2Ca·0H 2O;
    (Allisartan Isoproxil·AHU377)·2Ca·0.5H 2O;
    (Allisartan Isoproxil·AHU377)·2Ca·1H 2O;
    (Allisartan Isoproxil·AHU377)·2Ca·2H 2O;
    (Allisartan Isoproxil·AHU377)·2Ca·2.5H 2O;
    (Allisartan Isoproxil·AHU377)·2Ca·3H 2O。
  6. 根据权利要求1-5任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物为共无定型。
  7. 根据权利要求6所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的XRD谱图在2θ位移值为9~29之间出现非尖锐的吸收。
  8. 根据权利要求6-7任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的XRD谱图如图1所示。
  9. 根据权利要求1-8任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的DSC谱图在80.1±5℃、210.4±5℃有两处吸热峰。
  10. 根据权利要求9所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,其特征在于所述复合物的DSC谱图如图2。
  11. 一种如权利要求1-10任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物用于制备治疗心力衰竭的药物的用途。
  12. 一种药物组合物,其特征在于,含有一种如权利要求1-10任意一项所述的血管紧张素II受体拮抗剂与NEP抑制剂的复合物,所述复合物在药物组合物中 的质量百分数为0.1~99.9%。
PCT/CN2020/127415 2019-11-11 2020-11-09 血管紧张素ii受体拮抗剂与nep抑制剂的复合物及其制备方法 WO2021093697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080076793.9A CN114728944B (zh) 2019-11-11 2020-11-09 血管紧张素ii受体拮抗剂与nep抑制剂的复合物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911092607 2019-11-11
CN201911092607.6 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021093697A1 true WO2021093697A1 (zh) 2021-05-20

Family

ID=75911785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127415 WO2021093697A1 (zh) 2019-11-11 2020-11-09 血管紧张素ii受体拮抗剂与nep抑制剂的复合物及其制备方法

Country Status (2)

Country Link
CN (1) CN114728944B (zh)
WO (1) WO2021093697A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443272A (zh) * 2020-08-17 2022-12-06 深圳信立泰药业股份有限公司 血管紧张素ii受体拮抗剂代谢产物与nep抑制剂的复合物的心衰应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963296A (zh) * 2015-03-12 2016-09-28 深圳信立泰药业股份有限公司 一种含有阿利沙坦酯或其盐或其水解产物或其水解产物盐的药物组合物及其用途
CN105982891A (zh) * 2015-01-30 2016-10-05 王召印 阿利沙坦脂和脑啡肽酶抑制剂或其前药的药物组合物
CN106146472A (zh) * 2015-04-15 2016-11-23 苏州朗科生物技术有限公司 一种双重作用的阿利沙坦复合物
WO2017125031A1 (zh) * 2016-01-20 2017-07-27 深圳信立泰药业股份有限公司 血管紧张素ii受体拮抗剂代谢产物与nep抑制剂的复合物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105982891A (zh) * 2015-01-30 2016-10-05 王召印 阿利沙坦脂和脑啡肽酶抑制剂或其前药的药物组合物
CN105963296A (zh) * 2015-03-12 2016-09-28 深圳信立泰药业股份有限公司 一种含有阿利沙坦酯或其盐或其水解产物或其水解产物盐的药物组合物及其用途
CN106146472A (zh) * 2015-04-15 2016-11-23 苏州朗科生物技术有限公司 一种双重作用的阿利沙坦复合物
WO2017125031A1 (zh) * 2016-01-20 2017-07-27 深圳信立泰药业股份有限公司 血管紧张素ii受体拮抗剂代谢产物与nep抑制剂的复合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMITY: "European Medicines Agency: Assessment report Entresto International non- proprietary", ASSESSMENT REPORT, 24 September 2015 (2015-09-24), pages 1 - 115, XP055609648 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443272A (zh) * 2020-08-17 2022-12-06 深圳信立泰药业股份有限公司 血管紧张素ii受体拮抗剂代谢产物与nep抑制剂的复合物的心衰应用
CN115443272B (zh) * 2020-08-17 2023-11-17 深圳信立泰药业股份有限公司 血管紧张素ii受体拮抗剂代谢产物与nep抑制剂的复合物的心衰应用

Also Published As

Publication number Publication date
CN114728944A (zh) 2022-07-08
CN114728944B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
TWI657826B (zh) Complex of angiotensin II receptor antagonist metabolite and NEP inhibitor and preparation method thereof
US10815183B2 (en) Substituted aromatic compounds and pharmaceutical uses thereof
US9957240B2 (en) Crystalline forms of trisodium supramolecular complex comprising valsartan and AHU-377 and methods thereof
JP5844251B2 (ja) 3−ペンチルフェニル酢酸の塩およびその薬学的使用
WO2021093697A1 (zh) 血管紧张素ii受体拮抗剂与nep抑制剂的复合物及其制备方法
CA2816084A1 (en) Phenylketone carboxylate compounds and pharmaceutical uses thereof
WO2021143898A1 (zh) Arb代谢产物与nep抑制剂的复合物新晶型及其制备方法
CN110066258A (zh) 噻唑-5-甲酸衍生物及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887348

Country of ref document: EP

Kind code of ref document: A1