WO2021093565A1 - 一种光源装置 - Google Patents

一种光源装置 Download PDF

Info

Publication number
WO2021093565A1
WO2021093565A1 PCT/CN2020/123805 CN2020123805W WO2021093565A1 WO 2021093565 A1 WO2021093565 A1 WO 2021093565A1 CN 2020123805 W CN2020123805 W CN 2020123805W WO 2021093565 A1 WO2021093565 A1 WO 2021093565A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
core layer
wavelength conversion
conversion element
light source
Prior art date
Application number
PCT/CN2020/123805
Other languages
English (en)
French (fr)
Inventor
陈彬
陈兴加
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2021093565A1 publication Critical patent/WO2021093565A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of display and lighting technology, and in particular to a light source device.
  • the semiconductor laser light source Compared with the light emitting diode (LED) light source, the semiconductor laser light source has a higher brightness and a smaller light emitting angle, and a higher brightness illumination light source can be obtained by using a laser light source to excite the fluorescent device.
  • a laser light source to excite the fluorescent device.
  • the requirements for the illumination spot are different.
  • light shaping devices such as diaphragms are usually arranged on the exit light path of the illuminating light to shape the illuminating light, so as to obtain the required Illumination spot, but will reduce the light utilization rate to a certain extent.
  • the present invention provides a light source device to solve the above-mentioned problems.
  • the invention provides a light source device including an excitation light source, a wavelength conversion element and a light guide element.
  • the excitation light source is used to generate excitation light.
  • the wavelength conversion element is used to convert the received excitation light into at least part of the received laser light, and emit the received laser light or the mixed light of the received laser light and the unexcited excitation light.
  • the light guide element is arranged on the optical path of the laser or mixed light emitted by the wavelength conversion element, and includes a core layer and a cladding layer covering the core layer.
  • the core layer has a first predetermined shape
  • the cladding layer has a second predetermined shape.
  • the light guide element has a first end close to the wavelength conversion element, and the core layer is used to transmit and homogenize the laser light or mixed light emitted to the core layer of the first end through the wavelength conversion element
  • the cladding layer is used to transmit and homogenize the received laser light or mixed light emitted to the cladding layer of the first end through the wavelength conversion element.
  • an illumination spot of a predetermined shape can be formed, so that the light source device can meet different application fields.
  • the laser light emitted by the wavelength conversion element or the mixed light of the laser light and the unexcited excitation light is transmitted through the core layer and the cladding layer of the light guide element, that is, the core layer can be used for transmission and homogenization processing.
  • the received laser light or mixed light emitted to the core layer of the first end through the wavelength conversion element, and the cladding layer can be used to transmit and homogenize the light emitted to the first end through the wavelength conversion element
  • the laser or mixed light on the cladding Since both the core layer and the cladding layer of the light guide element can collect the received laser light and the mixed light emitted by the wavelength conversion element, the light utilization rate of the light source device is improved.
  • FIG. 1 is a schematic structural diagram of a light source device provided by an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the light guide element of the light source device provided by the first embodiment of the present invention.
  • FIG 3 is a cross-sectional view of the light guide element of the light source device provided by the second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the light guide element of the light source device provided by the third embodiment of the present invention.
  • Fig. 5 is a cross-sectional view of a light guide element of a light source device according to a fourth embodiment of the present invention.
  • 6A is a cross-sectional view of the light guide element of the light source device provided by the fifth embodiment of the present invention.
  • 6B is a left side view of the light guide element of the light source device provided by the fifth embodiment of the present invention.
  • FIG. 7A is a cross-sectional view of a light guide element of a light source device according to a sixth embodiment of the present invention.
  • FIG. 7B is a left side view of the light guide element of the light source device provided by the sixth embodiment of the present invention.
  • Fig. 8A is a cross-sectional view of a light guide element of a light source device according to a seventh embodiment of the present invention.
  • FIG 8B is a left side view of the light guide element of the light source device provided by the seventh embodiment of the present invention.
  • 9A is a cross-sectional view of a light guide element of a light source device provided by an eighth embodiment of the present invention.
  • 9B is a left side view of the light guide element of the light source device provided by the eighth embodiment of the present invention.
  • FIG. 10A is a cross-sectional view of a light guide element of a light source device according to a ninth embodiment of the present invention.
  • 10B is a left side view of the light guide element of the light source device provided by the ninth embodiment of the present invention.
  • FIG. 11A is a cross-sectional view of a light guide element of a light source device according to a tenth embodiment of the present invention.
  • FIG. 11B is a left side view of the light guide element of the light source device provided by the tenth embodiment of the present invention.
  • Fig. 12A is a cross-sectional view of a light guide element of a light source device according to an eleventh embodiment of the present invention.
  • 12B is a left side view of the light guide element of the light source device provided by the eleventh embodiment of the present invention.
  • FIG. 13A is a cross-sectional view of a light guide element of a light source device according to a twelfth embodiment of the present invention.
  • Fig. 13B is a left side view of the light guide element of the light source device according to the twelfth embodiment of the present invention.
  • Fig. 14A is a cross-sectional view of a light guide element of a light source device according to a thirteenth embodiment of the present invention.
  • Fig. 14B is a left side view of the light guide element of the light source device according to the thirteenth embodiment of the present invention.
  • 15A and 15B are light spot distribution diagrams of the light guide element near the end surface of the light splitting element obtained by modeling and simulation of the light guide element of FIG. 9.
  • 16A and 16B are light spot distribution diagrams of the light guide element near the end surface of the light splitting element obtained by modeling and simulation of the light guide element of FIG. 10.
  • 17A and 17B are light spot distribution diagrams of the light guide element near the end surface of the light splitting element obtained by modeling and simulation of the light guide element in FIG. 12.
  • FIG. 18 is a schematic structural diagram of a light source device provided by another embodiment of the present invention.
  • cross-section refers to the plane obtained by cutting perpendicular to the center line of the light guide element (that is, the center line of the core layer), and the longitudinal section is along the center line of the light guide element (that is, the core).
  • width of the longitudinal section is the distance between two pairs of sides of the longitudinal section in a direction perpendicular to the center line of the core layer.
  • the longitudinal section is the shortest distance between two end points on two pairs of sides in the direction along the center line of the core layer, wherein the two end points are the two pairs of sides of the longitudinal section that are perpendicular to each other. The point formed by the intersection of the straight lines of the center line of the core layer.
  • shape should be understood as the external shape of the object, that is, the external physical contour of the object.
  • FIG. 1 is a schematic structural diagram of a light source device 100 provided by an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a light guide element 30 provided by an embodiment of the present invention.
  • the light source device 100 includes an excitation light source 10, a light guide element 30, and a wavelength conversion element 40.
  • the excitation light source 10 is used to generate excitation light.
  • the wavelength conversion element 40 is used to at least partially convert the received excitation light into a received laser light, and emit the received laser light or a mixed light of the received laser light and the unexcited excitation light.
  • the light guide element 30 is disposed on the optical path of the laser or mixed light emitted from the wavelength conversion element 40 and includes a core layer 31 and a cladding layer 32 covering the core layer 31.
  • the core layer 31 has a first predetermined shape
  • the clad layer 32 has a second predetermined shape.
  • the light guide element 30 has a first end close to the wavelength conversion element 40, and the core layer 31 is used to transmit and homogenize the laser light or mixed light emitted to the core layer 31 of the first end through the wavelength conversion element 40, and the cladding layer 32 is used to transmit and homogenize the received laser light or mixed light emitted to the cladding layer 32 of the first end through the wavelength conversion element 40.
  • the cladding layer 32 includes an inner side wall 301 and an outer side wall 302 that are coaxially arranged.
  • the inner side wall 301 is the interface between the core layer 31 and the cladding layer 32, that is, the outer wall of the core layer 31 extending in the axial direction or the cladding layer 32 is close to a side wall of the core layer 31.
  • the outer side wall 302 is an exposed outer wall of the light guide element 30 or the cladding layer 32 extending in the axial direction, that is, the interface between the cladding layer 32 and the air.
  • the core layer 31 is specifically used to transmit and homogenize the light emitted by the wavelength conversion element 40 whose divergence angle is smaller than the first predetermined angle.
  • the cladding layer 32 is specifically used to transmit and homogenize the light emitted by the wavelength conversion element 40 whose divergence angle is greater than the first predetermined angle.
  • the cladding layer 32 is specifically used to transmit and homogenize the light emitted by the wavelength conversion element 40 whose divergence angle is larger than the first predetermined angle and smaller than the second predetermined angle.
  • the first predetermined angle and the second predetermined angle can be set according to conditions such as the size of the light guide element 30 and the distance between the light guide element 30 and the wavelength conversion element 40, so that the core layer 31 can be used for transmission and To homogenize the received laser light or mixed light emitted to the inner side wall 301 of the cladding layer 32 through the wavelength conversion element 40, the cladding layer 32 can be used to transmit and homogenize the light emitted to the outer side wall 302 of the cladding layer 32 through the wavelength conversion element 40 By laser or mixed light.
  • the excitation light source 10 includes, but is not limited to, a laser diode, and may also be a light emitting diode.
  • the excitation light source 10 is a blue laser diode
  • the wavelength conversion material is a yellow phosphor, so that the yellow phosphor absorbs the blue light emitted by the blue laser diode to generate a yellow receiving laser.
  • the converted blue light and yellow light are mixed by laser light to obtain white light.
  • the excitation light source 10 and the wavelength conversion material can be selected in other colors according to actual needs.
  • the wavelength conversion element 40 is a reflective wavelength conversion element, that is, the incident surface of the excitation light and the emission surface of the received laser light are located on the same side surface of the wavelength conversion element 40.
  • the wavelength conversion element 40 includes a wavelength conversion layer and a substrate layer that are sequentially stacked.
  • the wavelength conversion layer contains a wavelength conversion material, which can convert the excitation light into a received laser light of another wavelength.
  • the substrate layer may be a reflective layer for reflecting the wavelength conversion material to generate the laser light. At least part of the excitation light emitted by the excitation light source 10 is used to excite the wavelength conversion material in the wavelength conversion element 40 so that the wavelength conversion material generates the received laser light, and the wavelength conversion element 40 emits the received laser light as Lambertian light.
  • the wavelength conversion element 40 may further include a filter layer disposed on the light emitting surface of the wavelength conversion layer, and the filter layer is used to filter light and obtain light within a specified wavelength range. In this way, the received laser light or mixed light emitted through the wavelength conversion element 40 can enter the core layer 31 and the cladding layer 32 of the light guide element 30 at the same time, thereby improving the coupling efficiency of the received laser light.
  • the wavelength conversion material is prepared by including, but not limited to, phosphors, fluorescent dyes, quantum dots and adhesives. It is understandable that the wavelength conversion material can be a material with wavelength conversion properties commonly used in the art, which is not limited in the embodiment of the present invention.
  • the light source device 100 further includes a light splitting element 20.
  • the spectroscopic element 20 is arranged on the optical path between the excitation light source 10 and the wavelength conversion element 40.
  • the light guide element 30 is arranged on the optical path between the light splitting element 20 and the wavelength conversion element 40.
  • the light guide element 30 also has a second end close to the light splitting element 20 and away from the wavelength conversion element 40.
  • the light splitting element 20 is used to guide the excitation light to the core layer 31 at the second end, and to guide the light beam emitted from the second end of the light guide element 30 to the exit light path of the light source device 100.
  • the core layer 31 is also used to transmit and homogenize the excitation light.
  • the light splitting element 20 includes a first area 21 and a second area 22.
  • the first area 21 is provided in the central area of the light splitting element 20, and the second area 22 is provided in an area other than the central area.
  • the first region 21 is configured to transmit the excitation light
  • the second region 22 is configured to reflect the laser light or mixed light emitted by the wavelength conversion element 40.
  • the first area 21 may also be configured to reflect the excitation light
  • the second area 22 may also be configured to transmit the received laser light or mixed light emitted by the wavelength conversion element 40.
  • the first area 21 is configured as a through hole structure 211.
  • the through hole structure 211 faces the light guide element 30.
  • the first region 21 is provided with the through hole structure 211 corresponding to the transmission path of the excitation light, so as to improve the light utilization rate of the excitation light.
  • the first region 21 is configured to include a film layer that transmits the excitation light, and the first region 21 faces the light guide element 30. In this way, most of the excitation light emitted by the excitation light source 10 is transmitted through the first region 21 and enters the light guide element 30.
  • the first area 21 is also configured to reflect the laser light or mixed light emitted by the wavelength conversion element 40.
  • the second region 22 is configured as a highly reflective layer 220 to further improve the light utilization rate of the received laser light or mixed light emitted by the wavelength conversion element 40.
  • the portion of the light splitting element 20 corresponding to the second region 22 is a film layer made of a highly reflective material.
  • the side of the second region 22 away from the excitation light source 10 is provided with a highly reflective layer 220 to save cost.
  • the highly reflective layer 220 contains reflective materials such as gold, silver, nickel, aluminum foil, metal-plated polyester, or polyimide film.
  • the excitation light emitted by the excitation light source 10 is a Lambertian beam, that is, the central light intensity is particularly large, and the edge light intensity is small. Therefore, when the excitation light emitted by the excitation light source 10 is emitted to the wavelength conversion element 40, the local heat of the wavelength conversion element 40 will be relatively high. Large, the light conversion efficiency of the wavelength conversion element 40 is reduced.
  • the refractive index of the core layer 31 is greater than the refractive index of the cladding layer 32, and the refractive index of the cladding layer 32 is maintained to be greater than the refractive index of air.
  • the excitation light emitted by the excitation light source 10 can be totally internally reflected on the inner side wall 301 of the light guide element 30, so that the excitation light is homogenized and shaped by the core layer 31 of the light guide element 30, so that the light irradiated on the wavelength conversion element 40
  • the excitation light spot is a uniform light spot to avoid high local heat of the wavelength conversion element 40 caused by excessively high illumination at the center of the excitation light spot, so that the wavelength conversion element 40 maintains a high light efficiency.
  • a gap is formed between the light guide element 30 and the wavelength conversion element 40, so that the received laser light enters the core layer 31 and the cladding layer 32 of the light guide element 30 as much as possible, and the received laser light or mixed light emitted by the wavelength conversion element 40 can be Total internal reflection occurs on the inner side wall 301 and the outer side wall 302 of the light guide element 30, that is, the laser light or mixed light emitted by the wavelength conversion element 40 after being excited is transmitted through the core layer 31 and the cladding layer 32 of the light guide element 30, that is, the light guide Both the core layer 31 and the cladding layer 32 of the element 30 can collect the received laser light or mixed light emitted by the wavelength conversion element 40, which improves the light utilization rate of the light source device 100.
  • the spacing of the gaps is such that the light spot of the excitation light transmitted to the light guide element 30 is smaller than the cross-sectional area of the light guide element 30.
  • the numerical aperture (NA) of the light guide element 30 is 0.22
  • the side length of the core layer 31 of the light guide element 30 is 0.4 mm
  • the diameter of the cladding layer 32 of the light guide element 30 is 0.6 mm
  • the gap is less than 0.07 mm, so that the light spot incident on the wavelength conversion element 40 is less than 0.6 mm.
  • the first predetermined shape is a square or a polygon
  • the second predetermined shape is a circle or a square, so that the light source device 100 can have an illumination spot of a predetermined shape, so that the light source device 100 can meet different application fields.
  • the first predetermined shape is a square, that is, the cross section of the core layer 31 is a square
  • the second predetermined shape is a circle, that is, the cladding 32
  • the shape of the cross section is circular, so that the light source device 100 can form a circular illumination spot.
  • the cross-sectional shape of the cladding layer 32a of the light guide element 30a may also be square or polygonal, so that the light source device can form a square or polygonal illumination spot. Therefore, by designing the cross-section of the cladding into different shapes, it can meet the application requirements of different occasions.
  • the light source device 100 further includes a lens 50.
  • the lens 50 is provided on the optical path between the light splitting element 20 and the light guide element 30.
  • the lens 50 is used for condensing the excitation light emitted by the light splitting element 20 and collimating the received laser light or mixed light emitted by the wavelength conversion element 40.
  • the excitation light emitted by the excitation light source 10 converges the excitation light with a small divergence angle into the core layer 31 through the lens 50, and the excitation light can be in the core layer 31 (that is, the inner side wall 301 of the light guide element 30)
  • the core layer 31 that is, the inner side wall 301 of the light guide element 30
  • the virtual light source image is reflected multiple times to form a two-dimensional virtual light source matrix, which makes the light output more uniform, so the core layer 31 can homogenize and shape the excitation light. Therefore, after the excitation light is transmitted to the end surface of the light guide element 30, a beam with a uniform optical power density distribution can be formed, and when the excitation light is irradiated to the wavelength conversion element 40, the local temperature of the wavelength conversion element 40 can be avoided due to the excessively high central optical power density. High, the light conversion efficiency is reduced.
  • the light guide element 30 includes at least one core layer 31, and the refractive index of the core layer 31 closer to the center line of the light guide element 30 is higher.
  • the light guide element 30b includes a first core layer 311b, a second core layer 312b, and a cladding layer 32b.
  • the first core layer 311b and the second core layer 312b and the cladding layer 32b are coaxially arranged, and the second core layer 312b is located between the first core layer 311b and the cladding layer 32b.
  • the refractive index of the second core layer 312b is smaller than the refractive index of the second core layer 311b, and is greater than the refractive index of the cladding layer 32b.
  • the light guide element 30 includes at least one cladding layer 32, and the refractive index of the cladding layer 32 closer to the center line of the light guide element 30 is higher.
  • the light guide element 30c includes a core layer 31c, a first cladding layer 321c, and a second cladding layer 322c.
  • the core layer 31c, the first cladding layer 321c, and the second cladding layer 322c are coaxially arranged, and the first cladding layer 321c is located between the core layer 31c and the second cladding layer 322c.
  • the refractive index of the first cladding layer 321c is greater than the refractive index of the second cladding layer 322c, and is smaller than the refractive index of the core layer 31c.
  • the core layer includes a first core layer and N second core layers (N>1, and N is a positive integer), The N second core layers are arranged between the first core layer and the cladding layer.
  • the refractive index of the N second core layers is smaller than the refractive index of the first core layer and larger than the refractive index of the cladding layer.
  • the cladding layer includes a first cladding layer and M second cladding layers (M>1, and M is a positive integer), and the first cladding layer is disposed between the M second cladding layers and the core layer. between.
  • the refractive index of the M second cladding layers is smaller than the refractive index of the first cladding layer and smaller than the refractive index of the core layer.
  • the width of the longitudinal section of the light guide element 30 is the same in the direction in which the center line of the core layer 31 extends, wherein the width of the longitudinal section of the light guide element 30 It is the distance between the two opposite sides of the longitudinal section of the light guide element 30 in the direction perpendicular to the center line of the core layer 31, that is, the longitudinal section of the light guide element 30 is roughly rectangular.
  • the light guide element 30 is configured in a columnar structure.
  • the width of the longitudinal section of the core layer 31 is the same in the direction in which the center line of the core layer 31 extends, and the width of each longitudinal section of the cladding layer 32 is along the core layer.
  • the direction in which the center line of 31 extends is also consistent.
  • the width of the longitudinal section of the core layer 31 is the distance between the two opposite sides of the longitudinal section of the core layer 31 in the direction perpendicular to the center line of the core layer 31, and the width of the longitudinal section of the cladding layer 32 is that of the cladding layer 32.
  • the core layer 31 is configured as a columnar structure
  • the clad layer 32 is configured as a hollow columnar structure.
  • the width of the longitudinal section of the core layer 31d is configured such that the width of the end close to the wavelength conversion element 40 is smaller than the width of the end away from the wavelength conversion element 40, and the cladding layer 32d of the light guide element 30d
  • the width of each longitudinal section is configured such that the width of the end close to the wavelength conversion element 40 is greater than the width of the end far away from the wavelength conversion element 40.
  • the core layer 31d is configured as a cone-shaped structure
  • the clad layer 32d is configured as a hollow columnar structure.
  • the width of the longitudinal section of the core layer 31d of the light guide element 30d is configured such that the width of the end close to the wavelength conversion element 40 increases toward the width of the end far away from the wavelength conversion element 40, and each of the cladding layers 32d of the light guide element 30d
  • the width of the longitudinal section is configured such that the width of the end close to the wavelength conversion element 40 decreases toward the width of the end away from the wavelength conversion element 40.
  • the core layer 31d of the light guide element 30d has a square cone shape
  • the cladding layer 32d has a cylindrical shape.
  • the end surface of the light guide element 30d close to the beam splitting element 20 is approximately circular.
  • the end surface of the core layer 31d close to the beam splitting element 20 is square
  • the end surface of the cladding layer 32d close to the beam splitting element 20 is circular
  • the end surface of the cladding layer 32d close to the beam splitting element 20 is located outside the end surface of the core layer 31d close to the beam splitting element 20.
  • the projection of the end surface of the core layer 31 d close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30 d falls within the end surface of the core layer 31 d close to the spectroscopic element 20.
  • the width of the longitudinal section of the light guide element can also be configured such that the width of the end close to the wavelength conversion element 40 is smaller than the width of the end far away from the wavelength conversion element, that is, the longitudinal section of the light guide element is roughly trapezoidal.
  • the core layer of the light guide element can not only homogenize and shape the received laser light, but also reduce the area of the excitation light irradiated on the wavelength conversion device, so that the area of the excitation spot on the wavelength conversion element is small, thereby Most of the received laser light emitted by the wavelength conversion element can be collected by the light guide element, thereby improving the light utilization rate of the received laser light.
  • the received laser light transmitted in the core layer can also be collimated by the light guide element.
  • the width of the longitudinal section of the core layer 31e is configured such that the width of the end close to the wavelength conversion element 40 is smaller than the width of the end far away from the wavelength conversion element 40, and each of the cladding layers 32e
  • the width of the longitudinal section is configured such that the width of the end close to the wavelength conversion element 40 is smaller than the width of the end far away from the wavelength conversion element 40.
  • the width of the longitudinal section of the core layer 31e is configured such that the width of the end close to the wavelength conversion element 40 increases toward the width of the end away from the wavelength conversion element 40, and the width of each longitudinal section of the cladding layer 32e is structured The width of the end closer to the wavelength conversion element 40 tends to increase toward the width of the end away from the wavelength conversion element 40.
  • the core layer 31e is configured as a cone-shaped structure
  • the cladding layer 32e is configured as a hollow cone-shaped structure.
  • the core layer 31e of the light guide element 30e is in the shape of a square cone, and the cladding layer 32e is in the shape of a truncated cone.
  • the end surface of the light guide element 30e close to the light splitting element 20 is approximately circular.
  • the end surface of the core layer 31e close to the beam splitting element 20 is square, the end surface of the cladding layer 32e close to the beam splitting element 20 is circular, and the end surface of the cladding layer 32e close to the beam splitting element 20 is located outside the end surface of the core layer 31e close to the beam splitting element 20.
  • the width of the longitudinal section of the core layer 31f is configured to be the same in the direction extending along the center line of the core layer 31, and the width of each longitudinal section of the cladding layer 32f is configured to be close to
  • the width of one end of the wavelength conversion element 40 tends to increase toward the width of the end away from the wavelength conversion element 40.
  • the core layer 31f is configured as a columnar structure
  • the clad layer 32f is configured as a hollow cone-shaped structure.
  • the core layer 31f of the light guide element 30e has a rectangular shape
  • the cladding layer 32f has a truncated cone shape.
  • the end surface of the light guide element 30f close to the beam splitting element 20 is substantially circular.
  • the end surface of the core layer 31f close to the beam splitting element 20 is square
  • the end surface of the cladding layer 32f close to the beam splitting element 20 is circular
  • the end surface of the cladding layer 32f close to the beam splitting element 20 is located outside the end surface of the core layer 31f close to the beam splitting element 20.
  • the projection of the end surface of the core layer 31f close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30f overlaps the end surface of the core layer 31f close to the spectroscopic element 20.
  • the core layer 31g is structured in a tapered structure
  • the clad layer 32g is structured in a hollow columnar structure.
  • the core layer 31g of the light guide element 30g has a square cone shape
  • the cladding layer 32g has a cylindrical shape.
  • One end surface of the light guide element 30g close to the light splitting element 20 is substantially square.
  • the end surface of the core layer 31g close to the spectroscopic element 20 has a square shape
  • the end surface of the cladding layer 32g close to the wavelength conversion element 40 has a circular shape.
  • the projection of the end surface of the core layer 31g close to the wavelength conversion element 40 and the end surface of the cladding layer 32g close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30g falls within the end surface of the core layer 31g close to the spectroscopic element 20.
  • the core layer 31h is configured as a cone-shaped structure
  • the clad layer 32h is configured as a hollow columnar structure.
  • the core layer 31h of the light guide element 30h has a square cone shape
  • the cladding layer 32h has a rectangular shape.
  • One end surface of the light guide element 30h close to the light splitting element 20 is substantially square.
  • the end surface of the core layer 31h close to the spectroscopic element 20 has a square shape
  • the end surface of the cladding layer 32h close to the wavelength conversion element 40 has a square shape.
  • the projection of the end surface of the core layer 31h close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30h falls within the end surface of the core layer 31h close to the spectroscopic element 20, and the end surface of the cladding layer 32h close to the wavelength conversion element 40 is parallel to
  • the projection of the direction of the center line of the light guide element 30 h overlaps with the end surface of the core layer 31 h close to the light splitting element 20.
  • the length of the core layers 31i, 31j, and 31k is greater than the length of the cladding layers 32i, 32j, 32k, and the core layers 31i, 31j, 31k and the cladding
  • the layers 32i, 32j, 32k are flush at the end close to the wavelength conversion element 40.
  • the core layers 31i, 31j, 31k are exposed on the side of the cladding layers 32i, 32j, 32k away from the wavelength conversion element 40.
  • the light guide elements 30i, 30j, and 30k have improved collection efficiency for the excitation light and received laser light, and the light source device has a higher light utilization rate.
  • the core layers 31i, 31j, and 31k can enhance the The excitation light is homogenized and shaped, so that the light source device 100 emits an illumination spot with a more uniform color and brightness.
  • the exposed part of the core layer 31i, 31j, 31k is smoothly transitioned to the encapsulation part of the core layer 31i, 31j, 31k, so that the excitation light can be in the core layer 31i, 31j, 31k of the light guide element 30i, 30j, 30k. Homogenizing and shaping are performed inside.
  • the size of the cross section of the core layers 31i, 31j, and 31k gradually increases from the side close to the wavelength conversion element 40 to the side that is exposed to the cladding layers 32i, 32j, and 32k away from the wavelength conversion element 40.
  • the core layer 31i is configured as a cone-shaped structure
  • the clad layer 32i is configured as a hollow columnar structure.
  • the core layer 31i of the light guide element 30i has a square cone shape
  • the cladding layer 32i has a cylindrical shape.
  • the end surface of the light guide element 30i close to the light splitting element 20 is approximately square.
  • the end surface of the core layer 31i close to the spectroscopic element 20 has a square shape
  • the end surface of the cladding layer 32i close to the wavelength conversion element 40 has a circular shape.
  • Both the end surface of the core layer 31i close to the wavelength conversion element 40 and the end surface of the cladding layer 32i close to the wavelength conversion element 40 in the direction parallel to the center line of the light guide element 30i are projected in the end surface of the core layer 31i close to the beam splitting element 20.
  • the end of the core layer 31j close to the wavelength conversion element 40 is configured as a cone structure
  • the end of the core layer 31j away from the wavelength conversion element 40 is configured as a cone structure
  • the cladding layer 32j is configured as a hollow columnar structure.
  • the clad layer 32j covers the tapered structure portion of the core layer 31j.
  • the core layer 31j covered by the cladding layer 32j has a square cone shape
  • the core layer 31j exposed on the cladding layer 32j has a cylindrical shape.
  • 32j has a rectangular shape.
  • One end surface of the light guide element 30j close to the light splitting element 20 is substantially circular.
  • the end surface of the core layer 31j close to the spectroscopic element 20 has a circular shape
  • the end surface of the cladding layer 32j close to the wavelength conversion element 40 has a circular shape.
  • the projection of the end surface of the core layer 31j close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30j falls within the end surface of the core layer 31j close to the spectroscopic element 20.
  • the projection of the end surface of the cladding layer 32j close to the wavelength conversion element 40 in the direction parallel to the center line of the light guide element 30j overlaps the end surface of the core layer 31j close to the spectroscopic element 20.
  • the core layer 31k is structured in a tapered structure
  • the cladding layer 32k is structured in a hollow columnar structure.
  • the core layer 31k of the light guide element 30k has a square cone shape
  • the cladding layer 32k has a rectangular shape.
  • One end surface of the light guide element 30k close to the light splitting element 20 is substantially square.
  • the end surface of the core layer 31k close to the spectroscopic element 20 has a square shape
  • the end surface of the cladding layer 32k close to the wavelength conversion element 40 has a square shape.
  • the projection of the end surface of the core layer 31k close to the wavelength conversion element 40 and the end surface of the cladding layer 32k close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30k falls within the end surface of the core layer 31k close to the spectroscopic element 20.
  • the end of the core layer 31n close to the wavelength conversion element 40 is configured as a cone structure
  • the end of the core layer 31n far away from the wavelength conversion element 40 is configured as a cone structure
  • the cladding layer 32n is configured as a hollow columnar structure.
  • the clad layer 32n covers the tapered structure portion of the core layer 31n.
  • the core layer 31n covered by the cladding layer 32n has a square cone shape
  • the core layer 31n exposed on the cladding layer 32n has a cylindrical shape.
  • 32k is a rectangular shape.
  • One end surface of the light guide element 30n close to the light splitting element 20 is substantially circular.
  • the end surface of the core layer 31n close to the spectroscopic element 20 has a circular shape, and the end surface of the cladding layer 32n close to the wavelength conversion element 40 has a square shape.
  • the projection of the end surface of the core layer 31 n close to the wavelength conversion element 40 in a direction parallel to the center line of the light guide element 30 k falls within the end surface of the core layer 31 n close to the spectroscopic element 20.
  • the cladding layer may also have a square cone shape, and the taper of the cladding layer is smaller than the taper of the core layer.
  • the light guide element provided by the embodiment of the present invention is obtained by modeling and simulation of the light spot distribution diagram at the end face of the light guide element close to the light splitting element. It can be seen that the color and brightness of the light spot are uniform. Therefore, the brightness distribution of the illumination spot generated by the light source device 100 of the present invention is uniform.
  • FIGS. 15A and 15B are the light spot distribution diagrams of the light guide element 30g near the end surface of the light splitting element 20 obtained through modeling and simulation.
  • the core layer 31g of the light guide element 30g is in the shape of a square cone
  • the cladding layer 32g is a hollow cylindrical shape.
  • 16A and 16B are the light spot distribution diagrams of the light guide element 30h near the end surface of the light splitting element 20 obtained through modeling and simulation.
  • the core layer 31h of the light guide element 30h is in the shape of a square cone
  • the cladding layer 32h is hollow.
  • 17A and 17B are the light spot distribution diagrams of the light guide element 30j near the end surface of the light splitting element 20 obtained through modeling and simulation.
  • the core layer 31j covered by the cladding layer 32j is in the shape of a square cone and is exposed to the
  • the core layer 31j of the cladding layer 32j has a cylindrical shape
  • the cladding layer 32j has a hollow rectangular columnar structure.
  • the end of the core layer 31j close to the wavelength conversion element 40 is structured in a tapered structure
  • the end of the core layer 31j away from the wavelength conversion element 40 is structured in a cylindrical structure
  • the cladding layer 32j is structured as a hollow rectangular columnar structure
  • the cladding layer 32j includes Cover the tapered structure part of the core layer 31j.
  • the light source device provided by the embodiment of the present invention is based on that the core layer has a first predetermined shape and the cladding layer has a second predetermined shape, so that an illumination spot of a predetermined shape can be formed, so that the light source device can meet different application fields.
  • the laser light emitted by the wavelength conversion element or the mixed light of the laser light and the unexcited excitation light is transmitted through the core layer and the cladding layer of the light guide element, that is, the core layer can be used for transmission and homogenization processing.
  • the received laser light or mixed light emitted to the core layer of the first end through the wavelength conversion element, and the cladding layer can be used to transmit and homogenize the light emitted to the first end through the wavelength conversion element
  • the laser or mixed light on the cladding Since both the core layer and the cladding layer of the light guide element can collect the received laser light and the mixed light emitted by the wavelength conversion element, the light utilization rate of the light source device is improved.
  • the excitation light emitted by the excitation light source is homogenized through the core layer of the light guide element, so that the excitation light spot irradiated on the wavelength conversion element is a uniform spot, and the local heat of the wavelength conversion element caused by the excessively high illumination at the center of the excitation spot is avoided. High, so that the wavelength conversion element maintains high light efficiency.
  • FIG. 18 is a schematic structural diagram of a light source device 200 according to another embodiment of the present invention.
  • the light source device 200 includes an excitation light source 10, a light guide element 30, and a wavelength conversion device 40.
  • the structure of the lighting device 200 is similar to the structure of the lighting device 100. The difference is that the light source device 200 further includes a reflector cup 20 a, and does not include the light splitting element 20 and the lens 50.
  • the reflector cup 20a is arranged on the optical path between the excitation light source 10 and the wavelength conversion element 40.
  • the reflector cup 20a is used to guide the excitation light to the wavelength conversion element 40, and to guide the light beam emitted by the wavelength conversion element 40 to the core layer 31 and the cladding layer 32 at the first end.
  • the core layer 31 and the cladding layer 32 are also used to transmit and homogenize the excitation light.
  • the shape of the reflector cup 20 a is different from the shape of the beam splitter 20.
  • the reflector cup 20a is approximately bowl-shaped.
  • the opening direction of the reflector cup 20 a faces the light guide element 30 and the wavelength conversion element 40.
  • the inner surface 220a of the reflector cup 20a is an arc-shaped arch surface curved inward relative to the reflector cup 20a to form a concave surface, and forms a curved reflective surface of the reflector cup 20a (for example, a spherical reflective surface or an ellipsoidal reflective surface). ).
  • the received laser light or mixed light emitted through the wavelength conversion device 40 can be more concentratedly irradiated to the core layer 31 and the cladding layer 32 of the light guide element 30, thereby improving the light utilization efficiency of the light source device 200.
  • the curved reflective surface of the reflector 20a is ellipsoidal, the curved reflective surface can reflect light from near one focal point to near another focal point.
  • the excitation light generated by the excitation light source 10 needs to be at the wavelength
  • the incident position on the conversion element 40 is set near one of the aforementioned focal points, and the light entrance port of the light guide element 30 is set near the aforementioned other focal point.
  • the curved reflecting surface of the reflector 20a is spherical, two symmetrical points about the center of the sphere are set close to the center of the sphere, and the curved reflecting surface can reflect light from one of the symmetrical points to the other symmetrical point, At this time, it is necessary to set the incident position of the excitation light generated by the excitation light source 10 on the wavelength conversion element 40 near the aforementioned one symmetrical point, and set the light entrance of the light guide element 30 near the aforementioned other symmetrical point.
  • the light guide element 30 and the wavelength conversion device 40 are both arranged on the side of the reflector cup 20 a away from the excitation light source 10.
  • the wavelength conversion device 40 is a reflective wavelength conversion element, and the light guide element 30 and the wavelength conversion device 40 are arranged staggered, for example, the light guide element 30 and the wavelength conversion device 40 are arranged in parallel.
  • the wavelength conversion device 40 on the side close to the excitation light source 10 can convert all or part of the received excitation light into the received laser light, and emit the received laser light on the side close to the excitation light source 10.
  • the wavelength conversion device 40 is a transmissive wavelength conversion element, and the light guide element 30 faces the wavelength conversion device 40, that is, the wavelength conversion device 40 is disposed on the optical path between the reflector cup 20 a and the light guide element 30.
  • the side of the wavelength conversion device 40 close to the excitation light source 10 can at least partially convert the received excitation light into a received laser light, and at the side far from the excitation light source 10, simultaneously emits the received laser light and the unexcited excitation light. Mixed light of light.
  • the reflector cup 20a is arranged on the optical path between the excitation light source 10 and the wavelength conversion element 40.
  • the reflector cup 20a includes a third area 21a and a fourth area 22a.
  • the third area 21a is arranged in the central area of the reflector cup 20a, and the fourth area 22a is arranged in an area outside the central area.
  • the third area 21 a is configured to transmit the excitation light
  • the fourth area 22 a is configured to reflect the received laser light or mixed light emitted by the wavelength conversion element 40 to the light guide element 30.
  • the excitation light at least partially penetrates the third region 21 a of the reflector 20 a and irradiates the wavelength conversion device 40, and then excites the received laser light through the wavelength conversion device 40.
  • the received laser light is received through the third area 21a and/or the fourth area 22a of the reflector cup 20a and condensed to the light guide element 30.
  • the light guide element 30 receives the received laser light and the remaining excitation light.
  • the aforementioned light source device 100 may be applied to a projection system.
  • the light source device 100 has the structure and function in each of the above-mentioned embodiments.
  • the projection system can adopt various projection technologies, such as liquid crystal display projection technology and digital light path processor projection technology.
  • the above-mentioned light source device 100 may be applied to a lighting system, such as a stage lighting system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光源装置(100),包括激发光源(10)、波长转换元件(40)及光导元件(30)。激发光源(10)用于产生激发光。波长转换元件(40)用于将接收到的激发光至少部分转换为受激光,且出射受激光或者受激光和未被激发的激发光的混合光。光导元件(30)设置于波长转换元件(40)出射的受激光或混合光的光路上,包括芯层(31)和包覆在芯层(31)外的包层(32)。芯层(31)具有第一预定外形,包层(32)具有第二预定外形。光导元件(30)具有靠近波长转换元件(40)的第一端,芯层(31)用于传递和均匀化处理经由波长转换元件(40)出射至第一端的芯层(31)上的受激光或混合光,包层(32)用于传递和均匀化处理经由波长转换元件(40)出射至第一端的包层(32)上的受激光或混合光,从而可得到预定形状的照明光斑,并且提高光利用率。

Description

一种光源装置 技术领域
本发明涉及显示及照明技术领域,尤其涉及一种光源装置。
背景技术
半导体激光光源相对于发光二极管(LED)光源具有更高的亮度,更小的发光角度,采用激光光源激发荧光装置可以获得更高亮度的照明光源。然而,当该激光荧光光源应用于不同领域时,对照明光斑的要求不同,现有技术中,通常在照明光的出射光路上设置光阑等光整形器件对照明光进行整形,从而获得所需照明光斑,但会在一定程度上降低光利用率。
发明内容
有鉴于此,本发明提供了一种光源装置,以解决上述问题。
本发明提供一种光源装置,包括激发光源、波长转换元件以及光导元件。所述激发光源用于产生激发光。所述波长转换元件用于将接收到的激发光至少部分转换为受激光,并且出射所述受激光或者所述受激光和未被激发的激发光的混合光。所述光导元件设置于该波长转换元件出射的受激光或混合光的光路上,且包括芯层和包覆在所述芯层外的包层。所述芯层具有第一预定外形,所述包层具有第二预定外形。所述光导元件具有靠近所述波长转换元件的第一端,所述芯层用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的芯层上的受激光或混合光,所述包层用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的包层上的受激光或混合光。
通过以上设置,基于所述芯层具有第一预定外形,所述包层具有第二预定外形,从而可以形成预定形状的照明光斑,使得光源装置可以满足不同的应用领域。此外,波长转换元件出射的受激光或者所述受激光和未被激发的激发光的混合光经光导元件的芯层和包层进行传递,也即所述芯层可以用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的芯层上的受激光或混合 光,所述包层可以用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的包层上的受激光或混合光。由于光导元件的芯层和包层均能对波长转换元件出射的受激光和混合光进行收集,因此提高了光源装置的光利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施方式提供的光源装置的结构示意图。
图2是本发明第一实施方式提供的光源装置的光导元件的剖视图。
图3是本发明第二实施方式提供的光源装置的光导元件的剖视图。
图4是本发明第三实施方式提供的光源装置的光导元件的剖视图。
图5是本发明第四实施方式提供的光源装置的光导元件的剖视图。
图6A是本发明第五实施方式提供的光源装置的光导元件的剖视图。
图6B是本发明第五实施方式提供的光源装置的光导元件的左视图。
图7A是本发明第六实施方式提供的光源装置的光导元件的剖视图。
图7B是本发明第六实施方式提供的光源装置的光导元件的左视图。
图8A是本发明第七实施方式提供的光源装置的光导元件的剖视图。
图8B是本发明第七实施方式提供的光源装置的光导元件的左视图。
图9A是本发明第八实施方式提供的光源装置的光导元件的剖视图。
图9B是本发明第八实施方式提供的光源装置的光导元件的左视图。
图10A是本发明第九实施方式提供的光源装置的光导元件的剖视图。
图10B是本发明第九实施方式提供的光源装置的光导元件的左视图。
图11A是本发明第十实施方式提供的光源装置的光导元件的剖视图。
图11B是本发明第十实施方式提供的光源装置的光导元件的左视图。
图12A是本发明第十一实施方式提供的光源装置的光导元件的剖视图。
图12B是本发明第十一实施方式提供的光源装置的光导元件的左视图。
图13A是本发明第十二实施方式提供的光源装置的光导元件的剖视图。
图13B是本发明第十二实施方式提供的光源装置的光导元件的左视图。
图14A是本发明第十三实施方式提供的光源装置的光导元件的剖视图。
图14B是本发明第十三实施方式提供的光源装置的光导元件的左视图。
图15A和图15B是图9的光导元件通过建模仿真得到的光导元件靠近分光元件的端面处的光斑分布图。
图16A和图16B是图10的光导元件通过建模仿真得到的光导元件靠近分光元件的端面处的光斑分布图。
图17A和图17B是图12的光导元件通过建模仿真得到的光导元件靠近分光元件的端面处的光斑分布图。
图18是本发明另一实施方式提供的光源装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
可以理解,本发明的说明书和权利要求书及上述附图中的术语仅是为了描述特定实施例,并非要限制本发明。本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而非用于描述特定顺序。除非上下文另有明确表述,否则单数形式“一”和“所述”也旨在包括复数形式。术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。此外,本发明可以以多种不同的形式来实现,并不限于本实施例所描述的实施例。
在本发明的上下文术语中,术语“横截面”为垂直于光导元件的中心线(也即芯层的中心线)截断而获得的面,纵截面为沿着光导元件的中心线(也即芯层的中心线)方向切断而获得的面。术语“纵截面的宽度”为所述纵截面在垂直于所述芯层的中心线的方向上两对边之间的距离。具体的,所述纵截面沿所述芯层的中心线的方向上两对边上的两端点之间的最短距离,其中,所述两端点为所述纵截面的两对边分别与垂直于芯层的中心线的直线相交而形成的点。术语“外形”应当被理解为物体的外在形状,也即物体的外在物理轮廓。
说明书后续描述为实施本发明的较佳实施例,然上述描述乃以说明本发明的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附 权利要求所界定者为准。
请一并参阅图1和图2,图1所示为本发明一实施方式提供的光源装置100的结构示意图,图2所示为本发明一实施方式提供的光导元件30的剖面图。光源装置100包括激发光源10、光导元件30、及波长转换元件40。激发光源10用于产生激发光。波长转换元件40用于将接收到的激发光至少部分转换为受激光,并且出射所述受激光或者所述受激光和未被激发的激发光的混合光。光导元件30设置于波长转换元件40出射的受激光或混合光的光路上,且包括芯层31和包覆在芯层31外的包层32。芯层31具有第一预定外形,包层32具有第二预定外形。光导元件30具有靠近波长转换元件40的第一端,芯层31用于传递和均匀化处理经由波长转换元件40出射至所述第一端的芯层31上的受激光或混合光,包层32用于传递和均匀化处理经由波长转换元件40出射至所述第一端的包层32上的受激光或混合光。
其中,包层32包括同轴设置的内侧壁301和外侧壁302。在本实施例中,内侧壁301是芯层31和包层32的交界面,也即芯层31沿轴向延伸的外壁或包层32靠近芯层31的一侧壁。外侧壁302是光导元件30或包层32沿轴向延伸的裸露外壁,也即包层32与空气的交界面。
在本实施例中,芯层31具体用于传递和均匀化处理发散角度小于第一预定角度的波长转换元件40出射的光。包层32具体用于传递和均匀化处理发散角度大于所述第一预定角度的波长转换元件40出射的光。可选的,包层32具体用于传递和均匀化处理发散角度大于所述第一预定角度且小于第二预定角度的波长转换元件40出射的光。所述第一预定角度和所述第二预定角度可以根据光导元件30的尺寸,以及光导元件30与波长转换元件40之间的间距等条件来设定,以实现芯层31可以用于传递和均匀化处理经由波长转换元件40出射至包层32的内侧壁301的受激光或混合光,包层32可以用于传递和均匀化处理经由波长转换元件40出射至包层32的外侧壁302的受激光或混合光。
在本实施例中,激发光源10包括,但不局限于激光二极管,也可以是发光二级管。具体的,在一实施方式中,激发光源10为蓝光激光二极管,所述波长转换材料为黄光荧光粉,从而黄光荧光粉吸收蓝光激光二极管出射的蓝光后而产生黄色受激光,其中,未被转换的蓝光和黄色受激光混合得到白光。在其他实施例中,激发光源10和所述波长转换材料可以根据实际需要选择其他颜色。
波长转换元件40为反射式波长转换元件,也即所述激发光的入射面和所述受激光的出射面位于波长转换元件40的同一侧面。波长转换元件40包括依次层叠设置的波长转换层及基板层。所述波长转换层中包含有波长转换材料,可以将激发光转换成另一波长的受激光。所述基板层可以为反射层,用于反射所述波长转换材料产生所述受激光。激发光源10出射的至少部分激发光用于激发波长转换元件40中的波长转换材料以使得所述波长转换材料产生所述受激光,且波长转换元件40出射所述受激光时为朗伯光。波长转换元件40还可以包括设置在波长转换层出光面的滤光层,所述滤光层用于对光进行过滤并得到指定波长范围内的光。如此,经由波长转换元件40出射的受激光或混合光可以同时进入光导元件30的芯层31及包层32内,从而提高所述受激光的耦合效率。其中,所述波长转换材料由包括,但不局限于荧光粉、荧光染料、量子点和粘接剂制备而成。可以理解的是,所述波长转换材料可以采用本领域惯用的具有波长转换性能的材料,本发明实施方式不作限定。
在一些实施方式中,光源装置100还包括分光元件20。分光元件20设置在激发光源10和波长转换元件40之间的光路上。在本实施例中,光导元件30设置在分光元件20和波长转换元件40之间的光路上。光导元件30还具有靠近分光元件20且远离波长转换元件40的第二端。分光元件20用于将所述激发光引导至所述第二端的芯层31,以及将光导元件30的第二端出射的光束引导至光源装置100的出射光路。芯层31还用于传递和均匀化处理所述激发光。
分光元件20包括第一区域21和第二区域22。第一区域21设置在分光元件20的中心区域,第二区域22设置在所述中心区域以外的区域。在一些实施例中,第一区域21构造为透射所述激发光,第二区域22构造为反射波长转换元件40出射的受激光或混合光。在其他一些实施例中,第一区域21还可以构造为反射所述激发光,第二区域22还可以构造为透射波长转换元件40出射的受激光或混合光。
在本实施例中,第一区域21构造成一通孔结构211。通孔结构211正对光导元件30。具体的,第一区域21对应所述激发光的传输路径处开设有该通孔结构211,以提高所述激发光的光利用率。
在其他一些实施方式中,第一区域21构造为包含透射所述激发光的膜层,且第一区域21正对光导元件30。如此,激发光源10出射的激发光大部分经由 第一区域21透射而进入光导元件30内。可选的,第一区域21还构造为反射波长转换元件40出射的受激光或混合光。
在本实施例中,第二区域22构造为高反射层220,以进一步提高所述波长转换元件40出射的受激光或混合光的光利用率。在一些实施例中,分光元件20对应第二区域22的部分为由高反射材料制成的膜层。在一些实施例中,第二区域22背离激发光源10的一侧设置有高反射层220,以节约成本。其中,高反射层220中包含有金、银、镍、铝箔或镀金属的聚酯、聚酰亚胺薄膜等反射材料。
由于激发光源10出射的激发光为朗伯光束,即中心光强特别大,边缘光强较小,因此激发光源10出射的激发光出射至波长转换元件40时会使得波长转换元件40局部热量较大,降低波长转换元件40的光转换效率。可选的,为了提高波长转换元件40的光转换效率,芯层31的折射率大于包层32的折射率,且保持包层32的折射率大于空气的折射率。激发光源10出射的激发光可以在光导元件30的内侧壁301发生全内反射,从而通过光导元件30的芯层31对所述激发光进行匀光和整形,使得照射在波长转换元件40上的激发光光斑为均匀的光斑,避免激发光斑中心照度过高造成的波长转换元件40的局部热量较高,使波长转换元件40保持较高的光效。
光导元件30和波长转换元件40之间形成一空隙,以使所述受激光尽可能多的进入光导元件30的芯层31及包层32,且波长转换元件40出射的受激光或混合光能够在光导元件30的内侧壁301和外侧壁302发生全内反射,也即波长转换元件40受激发后出射的受激光或混合光经光导元件30的芯层31和包层32传递,也即光导元件30的芯层31和包层32均能对波长转换元件40出射的受激光或混合光进行收集,提高了光源装置100的光利用率。
可选的,所述空隙的间距为满足使得所述激发光传递至所述光导元件30的光斑小于所述光导元件30的横截面面积。举例来说,光导元件30的数值孔径(Numerical Aperture;NA)为0.22,光导元件30的芯层31的边长为0.4mm,光导元件30的包层32的直径为0.6mm,所述间隙小于0.07mm,以使得入射到波长转换元件40的光斑小于0.6mm。
其中,所述第一预定外形为方形或多边形,所述第二预定外形为圆形或方形,从而光源装置100可以预定形状的照明光斑,使得光源装置100可以满足不同的应用领域。具体的,如图2所示,在本实施方式中,所述第一预定外形为方 形,也即芯层31的横截面为方形,所述第二预定外形为圆形,也即包层32的横截面的外形呈圆形,从而光源装置100能够形成圆形的照明光斑。可以理解的是,在其他实施例中,如图3所示,光导元件30a的包层32a的横截面的外形还可以呈方形或多边形,从而光源装置能够形成方形或多边形的照明光斑。因此,通过将包层的横截面设计成不同的形状,以适应不同场合的应用需求。
在一些实施例中,光源装置100还包括透镜50。透镜50设置在分光元件20和光导元件30之间的光路上。透镜50用于聚集通过分光元件20出射的激发光,并准直波长转换元件40出射的受激光或混合光。具体的,激发光源10出射的激发光通过透镜50将发散角度较小的激发光汇聚至芯层31内,且所述激发光能够在芯层31(也即光导元件30的内侧壁301)内发生全内反射,光将在芯层31内部多次全内发射,每次反射都会形成虚拟光源像,多次反射虚拟光源像形成二维的虚拟光源矩阵,从而使得出光更加均匀,故芯层31可对所述激发光进行匀光和整形。因此,在所述激发光传递至光导元件30的末端面后可形成光功率密度分布均匀的光束,其照射至波长转换元件40可避免由于中心光功率密度过高造成波长转换元件40局部温度过高,光转换效率降低。
光导元件30包含至少一个芯层31,且越靠近光导元件30的中心线的芯层31的折射率越高。具体的,如图4所示,在本实施方式中,光导元件30b包括第一芯层311b和第二芯层312b及包层32b。第一芯层311b和第二芯层312b及包层32b同轴设置,且第二芯层312b位于第一芯层311b和包层32b之间。第二芯层312b的折射率小于第二芯层311b的折射率,且大于包层32b的折射率。
光导元件30包含至少一个包层32,且越靠近光导元件30的中心线的包层32的折射率越高。如图5所示,在一些实施方式中,光导元件30c包括芯层31c、第一包层321c及第二包层322c。芯层31c、第一包层321c及第二包层322c同轴设置,且第一包层321c位于芯层31c和第二包层322c之间。第一包层321c的折射率大于第二包层322c的折射率,且小于芯层31c的折射率。
可以理解的是,芯层和包层的层级数量可以根据实际情况来设计,例如,所述芯层包括第一芯层和N个第二芯层(N>1,且N为正整数),N个所述第二芯层设置在所述第一芯层和所述包层之间。N个所述第二芯层的折射率小于所述第一芯层的折射率,且大于所述包层的折射率。所述包层包括第一包层和M 个第二包层(M>1,且M为正整数),所述第一包层设置在M个所述第二包层和所述芯层之间。M个所述第二包层的折射率小于所述第一包层的折射率,且小于所述芯层的折射率。
请一并参阅图1、图6A和图6B,在本实施方式中,光导元件30的纵截面的宽度沿芯层31的中心线延伸的方向上一致,其中,光导元件30的纵截面的宽度为光导元件30的纵截面在垂直于芯层31的中心线的方向上两对边之间的距离,也即光导元件30的纵截面大致呈矩形。具体地,光导元件30构造成柱状结构。
具体的,在一实施例中,如图1所示,芯层31的纵截面的宽度沿芯层31的中心线延伸的方向上一致,且包层32的每一纵截面的宽度沿芯层31的中心线延伸的方向上也一致。其中,芯层31的纵截面的宽度为芯层31的纵截面在垂直于芯层31的中心线的方向上两对边之间的距离,包层32的纵截面的宽度为包层32的每一纵截面在垂直于芯层31的中心线的方向上两对边之间的距离。具体地,芯层31构造成柱状结构,包层32构造成中空的柱状结构。
在另一实施例中,如图6A所示,芯层31d的纵截面的宽度构造为靠近波长转换元件40一端的宽度小于远离波长转换元件40一端的宽度,且光导元件30d的包层32d的每一纵截面的宽度构造为靠近波长转换元件40一端的宽度大于远离波长转换元件40一端的宽度。其中,芯层31d构造成锥状结构,包层32d构造成中空的柱状结构。具体的,光导元件30d的芯层31d的纵截面的宽度构造为靠近波长转换元件40一端的宽度朝远离波长转换元件40一端的宽度呈增大趋势,且光导元件30d的包层32d的每一纵截面的宽度构造为靠近波长转换元件40一端的宽度朝远离波长转换元件40一端的宽度呈减小趋势。
进一步的,光导元件30d的芯层31d呈方锥型,包层32d呈圆柱型。如图6A和图6B所示,光导元件30d靠近分光元件20的端面大致呈圆形。芯层31d靠近分光元件20的端面呈方形,包层32d靠近分光元件20的端面呈圆形,且包层32d靠近分光元件20的端面位于芯层31d靠近分光元件20的端面的外侧。芯层31d靠近波长转换元件40的端面在平行于光导元件30d的中心线的方向的投影落在芯层31d靠近分光元件20的端面内。
可选的,在其他实施例中,光导元件的纵截面的宽度还可以构造为靠近波长转换元件40一端的宽度小于远离波长转换元件一端的宽度,也即光导元件的 纵截面大致呈梯形。如此,光导元件的芯层不仅能够对所述受激光进行匀光及整形,且减小所述激发光照射在波长装换装置的面积,使得波长转换元件上的激发光斑的面积较小,从而波长转换元件出射的受激光大部分可以被光导元件收集,进而提高了所述受激光的光利用率。此外,在芯层内传递的所述受激光还可以通过光导元件进行准直。
具体的,在一些实施例中,如图7A所示,芯层31e的纵截面的宽度构造为靠近波长转换元件40一端的宽度小于远离波长转换元件40一端的宽度,且包层32e的每一纵截面的宽度构造为靠近波长转换元件40一端的宽度小于远离波长转换元件40一端的宽度。在本实施例中,芯层31e的纵截面的宽度构造为靠近波长转换元件40一端的宽度朝远离波长转换元件40一端的宽度呈增大趋势,且包层32e的每一纵截面的宽度构造为靠近波长转换元件40一端的宽度朝远离波长转换元件40一端的宽度呈增大趋势。其中,芯层31e构造成锥状结构,包层32e构造成中空的锥状结构。
进一步的,如图7A所示,光导元件30e的芯层31e呈方锥型,包层32e呈圆台型。如图7A和图7B所示,光导元件30e靠近分光元件20的端面大致呈圆形。芯层31e靠近分光元件20的端面呈方形,包层32e靠近分光元件20的端面呈圆形,且包层32e靠近分光元件20的端面位于芯层31e靠近分光元件20的端面的外侧。芯层31e靠近波长转换元件40的端面及包层32e靠近波长转换元件40的端面在平行于光导元件30e的中心线的方向的投影均落在芯层31e靠近分光元件20的端面内。
在另一实施例中,如图8A所示,芯层31f的纵截面的宽度构造为沿芯层31的中心线延伸的方向上一致,且包层32f的每一纵截面的宽度构造为靠近波长转换元件40一端的宽度朝远离波长转换元件40一端的宽度呈增大趋势。其中,芯层31f构造成柱状结构,包层32f构造成中空的锥状结构。
进一步的,如图8A所示,光导元件30e的芯层31f呈直方型,包层32f呈圆台型。如图8A和图8B所示,光导元件30f靠近分光元件20的一端面大致呈圆形。芯层31f靠近分光元件20的端面呈方形,包层32f靠近分光元件20的端面呈圆形,且包层32f靠近分光元件20的端面位于芯层31f靠近分光元件20的端面的外侧。芯层31f靠近波长转换元件40的端面在平行于光导元件30f的中心线的方向的投影与芯层31f靠近分光元件20的端面相重叠。
其中,芯层31g构造成锥状结构,包层32g构造成中空的柱状结构。请一并参阅图9A和图9B,在一实施方式中,光导元件30g的芯层31g呈方锥型,包层32g呈圆柱型。光导元件30g靠近分光元件20的一端面大致呈方形。芯层31g靠近分光元件20的端面呈方形,包层32g靠近波长转换元件40的端面呈圆形。芯层31g靠近波长转换元件40的端面及包层32g靠近波长转换元件40的端面在平行于光导元件30g的中心线的方向的投影落在芯层31g靠近分光元件20的端面内。
其中,芯层31h构造成锥状结构,包层32h构造成中空的柱状结构。请一并参阅图10A和图10B,在一实施方式中,光导元件30h的芯层31h呈方锥型,包层32h呈直方型。光导元件30h靠近分光元件20的一端面大致呈方形。芯层31h靠近分光元件20的端面呈方形,包层32h靠近波长转换元件40的端面呈方形。芯层31h靠近波长转换元件40的端面在平行于光导元件30h的中心线的方向的投影落在芯层31h靠近分光元件20的端面内,且包层32h靠近波长转换元件40的端面在平行于光导元件30h的中心线的方向的投影与芯层31h靠近分光元件20的端面相重叠。
可选的,在一些实施方式中,请一并参看图11A至图13B,芯层31i,31j,31k的长度大于包层32i,32j,32k的长度,且芯层31i,31j,31k和包层32i,32j,32k在靠近波长转换元件40的一端相平齐。可选的,芯层31i,31j,31k外露于包层32i,32j,32k远离波长转换元件40的一侧。如此,一方面,光导元件30i,30j,30k对所述激发光及受激光的收集效率均提高,光源装置的光利用率较高,另一方面,芯层31i、31j、31k可加强对所述激发光进行匀光及整形,以使光源装置100发射出颜色和亮度更为均匀的照明光斑。
优选的,芯层31i,31j,31k的外露部分与芯层31i,31j,31k的封装部分平滑过渡连接,从而所述激发光可在光导元件30i,30j,30k的芯层31i,31j,31k内进行匀光及整形。
其中,芯层31i,31j,31k的横截面的尺寸从靠近波长转换元件40到外露于包层32i,32j,32k的远离波长转换元件40的一侧逐渐变大。
其中,芯层31i构造成锥状结构,包层32i构造成中空的柱状结构。具体的,请一并参阅图11A和图11B,在另一实施方式中,光导元件30i的芯层31i呈方锥型,包层32i呈圆柱型。光导元件30i靠近分光元件20的端面大致呈方形。 芯层31i靠近分光元件20的端面呈方形,包层32i靠近波长转换元件40的端面呈圆形。芯层31i靠近波长转换元件40的端面及包层32i靠近波长转换元件40的端面在平行于光导元件30i的中心线的方向的均投影落在芯层31i靠近分光元件20的端面内。
其中,芯层31j靠近波长转换元件40的一端构造成锥状结构,芯层31j远离波长转换元件40的一端构造成锥状结构,包层32j构造成中空的柱状结构。包层32j包覆芯层31j的锥状结构部分。具体的,请一并参阅图12A和图12B,在另一实施方式中,被包层32j包覆的芯层31j呈方锥型,外露于包层32j的芯层31j呈圆柱型,包层32j呈直方型。光导元件30j靠近分光元件20的一端面大致呈圆形。芯层31j靠近分光元件20的端面呈圆形,包层32j靠近波长转换元件40的端面呈圆形。芯层31j靠近波长转换元件40的端面在平行于光导元件30j的中心线的方向的投影落在芯层31j靠近分光元件20的端面内。包层32j靠近波长转换元件40的端面在平行于光导元件30j的中心线的方向的投影落与芯层31j靠近分光元件20的端面相重叠。
其中,芯层31k构造成锥状结构,包层32k构造成中空的柱状结构。具体的,请一并参阅图13A和图13B,在另一实施方式中,光导元件30k的芯层31k呈方锥型,包层32k呈直方型。光导元件30k靠近分光元件20的一端面大致呈方形。芯层31k靠近分光元件20的端面呈方形,包层32k靠近波长转换元件40的端面呈方形。芯层31k靠近波长转换元件40的端面及包层32k靠近波长转换元件40的端面在平行于光导元件30k的中心线的方向的投影落在芯层31k靠近分光元件20的端面内。
其中,芯层31n靠近波长转换元件40的一端构造成锥状结构,芯层31n远离波长转换元件40的一端构造成锥状结构,包层32n构造成中空的柱状结构。包层32n包覆芯层31n的锥状结构部分。具体的,请一并参阅图14A和图14B,在另一实施方式中,被包层32n包覆的芯层31n呈方锥型,外露于包层32n的芯层31n呈圆柱型,包层32k呈直方型。光导元件30n靠近分光元件20的一端面大致呈圆形。芯层31n靠近分光元件20的端面呈圆形,包层32n靠近波长转换元件40的端面呈方形。芯层31n靠近波长转换元件40的端面在平行于光导元件30k的中心线的方向的投影落在芯层31n靠近分光元件20的端面内。
可以理解的是,在图9A至图14B所描述的光导元件结构中,所述包层还可 以呈方锥型,且所述包层的锥度小于芯层的锥度。
如图15A至图17B所示,本发明实施方式提供的光导元件通过建模仿真得到的光导元件靠近分光元件的端面处的光斑分布图中可以看出,光斑的颜色和亮度都是均匀的,因此,本发明的光源装置100产生的照明光斑亮度分布均匀。
具体的,图15A和图15B是通过建模仿真得到的光导元件30g靠近分光元件20的端面处的光斑分布图,在本实施例中,光导元件30g的芯层31g呈方锥型,包层32g呈中空的圆柱型。图16A和图16B是通过建模仿真得到的光导元件30h靠近分光元件20的端面处的光斑分布图,在本实施例中,光导元件30h的芯层31h呈方锥型,包层32h呈中空的直方型柱状结构。图17A和图17B是通过建模仿真得到的光导元件30j靠近分光元件20的端面处的光斑分布图,在本实施例中,被包层32j包覆的芯层31j呈方锥型,外露于包层32j的芯层31j呈圆柱型,包层32j呈中空的直方型柱状结构。其中,芯层31j靠近波长转换元件40的一端构造成锥状结构,芯层31j远离波长转换元件40的一端构造成圆柱状结构,包层32j构造成中空的直方型柱状结构,包层32j包覆芯层31j的锥状结构部分。
本发明实施方式提供的光源装置,基于所述芯层具有第一预定外形,所述包层具有第二预定外形,从而可以形成预定形状的照明光斑,使得光源装置可以满足不同的应用领域。此外,波长转换元件出射的受激光或者所述受激光和未被激发的激发光的混合光经光导元件的芯层和包层进行传递,也即所述芯层可以用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的芯层上的受激光或混合光,所述包层可以用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的包层上的受激光或混合光。由于光导元件的芯层和包层均能对波长转换元件出射的受激光和混合光进行收集,因此提高了光源装置的光利用率。此外,激发光源出射的激发光经光导元件的芯层进行匀光,使得照射在波长转换元件上的激发光光斑为均匀的光斑,避免激发光斑中心照度过高造成的波长转换元件的局部热量较高,使波长转换元件保持较高的光效。
请参阅图18,图18所示为本发明另一实施方式提供的光源装置200的结构示意图。光源装置200包括激发光源10、光导元件30、及波长转换装置40。照明设备200结构与照明装置100的结构相似。不同的是,光源装置200还包括反光杯20a,且不包括分光元件20和透镜50。
其中,反光杯20a设置在激发光源10和波长转换元件40之间的光路上。反光杯20a用于将所述激发光引导至波长转换元件40,以及将波长转换元件40出射的光束引导至所述第一端的芯层31及包层32。芯层31及包层32还用于传递和均匀化处理所述激发光。
在本实施例中,反光杯20a的外形不同于分光元件20的外形。反光杯20a大致呈碗状。反光杯20a的开口方向朝向光导元件30和波长转换元件40。具体的,反光杯20a的内侧面220a为相对反光杯20a向内弯曲的圆弧形的拱面,以形成凹面,且形成反光杯20a的曲面反射面(例如,球形反射面或椭球形反射面)。如此,经由波长转换装置40出射的受激光或混合光能够更集中地照射至光导元件30的芯层31及包层32,从而提高了光源装置200的光利用率。
具体的,当反光杯20a的曲面反射面呈椭球形时,所述曲面反射面能够将来自一个焦点附近的光线反射到另一个焦点附近,此时需要将激发光光源10产生的激发光在波长转换元件40上的入射位置设置于上述的一个焦点附近,而将光导元件30的入光口设置于上述的另一个焦点附近。当反光杯20a的曲面反射面呈球形时,在临近球心的位置设置关于该球心对称的两对称点,所述曲面反射面可以将来自其中一对称点的光线反射到另一对称点,此时需要将激发光光源10产生的激发光在波长转换元件40上的入射位置设置于上述的一个对称点附近,而将光导元件30的入光口设置于上述的另一个对称点附近。
光导元件30和波长转换装置40均设置在反光杯20a背离激发光源10的一侧。在一实施例中,波长转换装置40为反射式波长转换元件,且光导元件30和波长转换装置40错开设置,例如光导元件30和波长转换装置40并行设置。此时,波长转换装置40靠近激发光源10的一侧可以将接收到的激发光全部或部分转换为受激光,并且在靠近激发光源10的一侧出射所述受激光。
在其他实施例中,波长转换装置40为透射式波长转换元件,且光导元件30正对波长转换装置40,也即波长转换装置40设置在反光杯20a和光导元件30之间的光路上。此时,波长转换装置40靠近激发光源10的一侧可以将接收到的激发光至少部分转换为受激光,并且在远离激发光源10的一侧同时出射包含所述受激光和未被激发的激发光的混合光。
其中,反光杯20a设置在激发光源10和波长转换元件40之间的光路上。反光杯20a包括第三区域21a和第四区域22a。第三区域21a设置在反光杯20a 的中心区域,第四区域22a设置在所述中心区域以外的区域。第三区域21a构造为透射所述激发光,第四区域22a构造为反射波长转换元件40出射的受激光或混合光至光导元件30。
在本实施例中,所述激发光至少部分透过反光杯20a的第三区域21a照射至波长转换装置40,并经由波长转换装置40激发出受激光。所述受激光再经由反光杯20a的第三区域21a和/或第四区域22a接收,并汇聚到光导元件30,最后光导元件30接收所述受激光和剩余所述激发光。
在一些实施例中,前述的光源装置100可应用于投影系统。光源装置100具有上述各实施方式中的结构与功能。所述投影系统可采用各种投影技术,例如液晶显示器投影技术、数字光路处理器投影技术。此外,上述光源装置100可以应用于照明系统,例如舞台灯照明系统。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (14)

  1. 一种光源装置,其特征在于,包括:
    激发光源,用于产生激发光;
    波长转换元件,用于将接收到的激发光至少部分转换为受激光,并且出射所述受激光或者所述受激光和未被激发的激发光的混合光;以及
    光导元件,设置于所述波长转换元件出射的受激光或混合光的光路上,包括芯层和包覆在所述芯层外的包层,所述芯层具有第一预定外形,所述包层具有第二预定外形,所述光导元件具有靠近所述波长转换元件的第一端,所述芯层用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的芯层上的受激光或混合光,所述包层用于传递和均匀化处理经由所述波长转换元件出射至所述第一端的包层上的受激光或混合光。
  2. 如权利要求1所述的光源装置,其特征在于,还包括分光元件,所述分光元件设置在所述激发光源和所述光导元件之间的光路上,所述光导元件还具有靠近所述分光元件且远离所述波长转换元件的第二端,所述分光元件用于将所述激发光引导至所述第二端的芯层,以及将所述光导元件的第二端出射的光束引导至所述光源装置的出射光路,所述芯层还用于传递和均匀化处理所述激发光。
  3. 如权利要求2所述的光源装置,其特征在于,所述分光元件包括第一区域和第二区域,所述第一区域设置在所述分光元件的中心区域,所述第二区域设置在所述中心区域以外的区域,所述第一区域构造为透射所述激发光,所述第二区域构造为反射所述波长转换元件出射的受激光或混合光;或者,所述第一区域构造为反射所述激发光,所述第二区域构造为透射所述波长转换元件出射的受激光或混合光。
  4. 如权利要求2所述的光源装置,其特征在于:所述光源装置还包括透镜,所述透镜设置在所述分光元件和所述光导元件之间的光路上,所述透镜用于将所述激发光汇聚至所述第二端的芯层,以及将所述光导元件的第二端出射的光束准直并且引导至所述分光元件。
  5. 如权利要求1所述的光源装置,其特征在于,还包括反光杯,所述反光杯设置在所述激发光源和所述波长转换元件之间的光路上,所述反光杯用于将 所述激发光引导至所述波长转换元件,以及将所述波长转换元件出射的光束引导至所述第一端的芯层及包层,所述芯层及所述包层还用于传递和均匀化处理所述激发光。
  6. 如权利要求5所述的光源装置,其特征在于,所述反光杯包括第三区域和第四区域,所述第三区域设置在所述反光杯的中心区域,所述第四区域设置在所述中心区域以外的区域,所述第三区域构造为透射所述激发光,所述第四区域构造为反射所述波长转换元件出射的受激光或混合光至所述光导元件。
  7. 如权利要求1所述的光源装置,其特征在于,所述芯层的折射率大于所述包层的折射率,且所述包层的折射率大于所述空气的折射率。
  8. 如权利要求7所述的光源装置,其特征在于,所述光导元件包含至少一个所述芯层和至少一个所述包层,其中,越靠近所述光导元件的中心线的所述芯层的折射率越高,越靠近所述光导元件的中心线的所述包层的折射率越高。
  9. 如权利要求1所述的光源装置,其特征在于,所述光导元件的纵截面的宽度沿所述芯层的中心线延伸的方向上一致,其中,所述光导元件的纵截面的宽度为所述光导元件的纵截面在垂直于所述芯层的中心线的方向上两对边之间的距离。
  10. 如权利要求9所述的光源装置,其特征在于,所述芯层的纵截面的宽度构造为沿所述芯层的中心线延伸的方向上一致或靠近所述波长转换元件一端的宽度小于远离所述波长转换元件一端的宽度,其中,所述芯层的纵截面的宽度为所述芯层的纵截面在垂直于所述芯层的中心线的方向上两对边之间的距离。
  11. 如权利要求1所述的光源装置,其特征在于,所述光导元件的纵截面的宽度构造为靠近所述波长转换元件一端的宽度小于远离所述波长转换元件一端的宽度,其中,所述光导元件的纵截面的宽度为所述光导元件的纵截面在垂直于所述芯层的中心线的方向上两对边之间的距离。
  12. 如权利要求11所述的光源装置,其特征在于,所述芯层的纵截面的宽度构造为沿所述芯层的中心线延伸的方向上一致或靠近所述波长转换元件一端的宽度小于远离所述波长转换元件一端的宽度,其中,所述芯层的纵截面的宽度为所述芯层的纵截面在垂直于所述芯层的中心线的方向上两对边之间的距离。
  13. 如权利要求10或12任一项所述的光源装置,其特征在于,所述芯层的长度大于所述包层的长度,且所述芯层和所述包层在靠近所述波长转换元件的一端相平齐。
  14. 如权利要求1所述的光源装置,其特征在于,所述第一预定外形为方形或多边形,所述第二预定外形为圆形或方形。
PCT/CN2020/123805 2019-11-12 2020-10-27 一种光源装置 WO2021093565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911103556.2 2019-11-12
CN201911103556.2A CN112859353A (zh) 2019-11-12 2019-11-12 一种光源装置

Publications (1)

Publication Number Publication Date
WO2021093565A1 true WO2021093565A1 (zh) 2021-05-20

Family

ID=75911945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123805 WO2021093565A1 (zh) 2019-11-12 2020-10-27 一种光源装置

Country Status (2)

Country Link
CN (1) CN112859353A (zh)
WO (1) WO2021093565A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829411B2 (en) * 2000-09-01 2004-12-07 Syntec, Inc. Wide angle light diffusing optical fiber tip
CN102375315A (zh) * 2010-08-16 2012-03-14 深圳市光峰光电技术有限公司 光源及其应用的投影系统
CN102722073A (zh) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 光源系统及投影装置
CN202886822U (zh) * 2012-08-31 2013-04-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置
CN107678086A (zh) * 2017-08-31 2018-02-09 北京航天控制仪器研究所 一种实现高斯光束整形为一维平顶光束的光纤
CN209486342U (zh) * 2019-04-12 2019-10-11 中山优盛光电科技有限公司 一种匀光光纤系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK285490D0 (da) * 1990-11-30 1990-11-30 Nordiske Kabel Traad Fremgangsmaade og apparat til forstaerkning af et optisk signal
JPH09227149A (ja) * 1996-02-28 1997-09-02 Mitsubishi Cable Ind Ltd テーパ型光ファイバの製造方法
WO2009043964A1 (en) * 2007-10-03 2009-04-09 Optoelectronics Research Centre, Tampere University Of Technology Active optical fiber and method for fabricating an active optical fiber
CN102563410B (zh) * 2011-12-04 2014-08-06 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
CN103777271A (zh) * 2013-11-27 2014-05-07 清华大学 光纤、光纤振荡器和光纤放大器
CN107208853B (zh) * 2015-01-27 2019-11-15 飞利浦照明控股有限公司 高强度白光源
EP3449176B1 (en) * 2016-04-27 2020-10-14 Lumileds Holding B.V. Laser-based light source
US10054849B2 (en) * 2016-05-17 2018-08-21 Seiko Epson Corporation Light source device and projector
CN107870386B (zh) * 2016-09-23 2019-09-17 海信集团有限公司 一种光导管及照明系统
CN206432553U (zh) * 2016-11-17 2017-08-22 大族激光科技产业集团股份有限公司 一种光纤激光器包层光剥除器
CN106681094B (zh) * 2016-12-23 2018-09-21 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN110275313A (zh) * 2019-07-24 2019-09-24 山西大学 一种静态的散斑抑制装置及激光投影显示系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829411B2 (en) * 2000-09-01 2004-12-07 Syntec, Inc. Wide angle light diffusing optical fiber tip
CN102375315A (zh) * 2010-08-16 2012-03-14 深圳市光峰光电技术有限公司 光源及其应用的投影系统
CN102722073A (zh) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 光源系统及投影装置
CN202886822U (zh) * 2012-08-31 2013-04-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置
CN107678086A (zh) * 2017-08-31 2018-02-09 北京航天控制仪器研究所 一种实现高斯光束整形为一维平顶光束的光纤
CN209486342U (zh) * 2019-04-12 2019-10-11 中山优盛光电科技有限公司 一种匀光光纤系统

Also Published As

Publication number Publication date
CN112859353A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
US10338461B2 (en) Light-emitting device and related light source system
JP5150039B2 (ja) 放射光の再循環により輝度を増大させる光学システムを有するled
US20120212931A1 (en) Light emitting device
EP2128660A1 (en) Luminaire and method of operation
JP2010129300A (ja) 半導体発光ランプおよび電球形半導体発光ランプ
US9528684B2 (en) Light converter emitting illumination light and light source apparatus using the light converter
WO2017056468A1 (ja) 光源装置および投光装置
WO2019165741A1 (zh) 光源系统及照明装置
WO2021093565A1 (zh) 一种光源装置
CN212060767U (zh) 一种具有均匀光斑的激光照明结构
JP7187683B2 (ja) 照明装置及び車両用ライト
JP2007335334A (ja) 導光板、および照明装置
US20230417395A1 (en) Light source
WO2021121073A1 (zh) 光束灯光源系统
WO2020151628A1 (zh) 光源系统及包括该光源系统的照明装置
CN109084189B (zh) 远距离激光照明光学系统
CN110094640B (zh) 光源系统及照明装置
CN215259326U (zh) 照明装置
JP7249550B2 (ja) 照明装置
CN110778926B (zh) 照明装置
CN217816547U (zh) 一种荧光光学模组
CN212229342U (zh) 一种反射式激光照明结构
JP2013118054A (ja) 線状照明装置および集合線状照明装置
US12001028B2 (en) Speckle-suppressing lighting system
CN217787501U (zh) 一种光源装置及内窥镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886800

Country of ref document: EP

Kind code of ref document: A1