WO2021093436A1 - 一种南极冰下湖取样探测用内嵌式仿生绞车 - Google Patents

一种南极冰下湖取样探测用内嵌式仿生绞车 Download PDF

Info

Publication number
WO2021093436A1
WO2021093436A1 PCT/CN2020/114375 CN2020114375W WO2021093436A1 WO 2021093436 A1 WO2021093436 A1 WO 2021093436A1 CN 2020114375 W CN2020114375 W CN 2020114375W WO 2021093436 A1 WO2021093436 A1 WO 2021093436A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
shaft
gear
sheave
power
Prior art date
Application number
PCT/CN2020/114375
Other languages
English (en)
French (fr)
Inventor
孙友宏
王建华
达拉拉伊帕维尔
王继新
雷天龙
王治刚
范晓鹏
张楠
李冰
宫达
王如生
陈艳吉
王婷
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2021093436A1 publication Critical patent/WO2021093436A1/zh
Priority to US17/331,515 priority Critical patent/US20210284508A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/60Rope, cable, or chain winding mechanisms; Capstans adapted for special purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/12Driving gear incorporating electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/14Power transmissions between power sources and drums or barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/36Guiding, or otherwise ensuring winding in an orderly manner, of ropes, cables, or chains
    • B66D1/38Guiding, or otherwise ensuring winding in an orderly manner, of ropes, cables, or chains by means of guides movable relative to drum or barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/485Control devices automatic electrical

Definitions

  • the invention relates to an embedded bionic winch, and more specifically to an embedded bionic winch for sampling and exploration of Antarctic subglacial lakes.
  • the winch applied to the detection of the Antarctic subglacial lake is set on the ground, and the detector is put into the subglacial lake through a drilled channel through a cable on the winch, and the detector is lifted to the surface after sampling is completed.
  • the purpose of the present invention is to provide an embedded bionic winch for sampling and detecting Antarctic subglacial lakes.
  • an embedded bionic winch for sampling and detection of Antarctic subglacial lakes applied to the detector, including: actuation cabin, power cabin, rope row cabin and cables;
  • the actuation cabin, the power cabin, and the rope arranging cabin are arranged inside the detector, and are arranged coaxially in sequence along the center line of the detector toward the drilling end of the detector;
  • the actuation cabin is equipped with a sheave assembly to reduce the climbing or descent load of the detector by the rope arranging cabin;
  • the rope cabin is equipped with a reel, and the reel is used to pre-wind the cable;
  • the power cabin is used to provide power for the sheave assembly of the actuation cabin and the reel of the rope arranging cabin, so as to retract the cable.
  • it further includes a sensor cabin, the sensor cabin is arranged between the power cabin and the rope arranging cabin, and a tension sensor is configured in the sensor cabin, and the tension sensor is used to obtain the cable entering the station.
  • the tension value during the rope-arranging cabin is used to control the retracting and retracting of the cables in the rope-arranging cabin.
  • the sensor compartment includes a sensor compartment housing, a first connecting plate, a third gear, a lead screw drive shaft, a lead screw, a fourth gear, a second drive shaft, a sensor bracket, a tension sensor, and a second connecting plate ;
  • the first connecting plate is fixed to the sensor compartment housing
  • the third gear is fixed on the screw drive shaft, and the third gear and the second gear are meshed and connected;
  • the upper part of the lead screw drive shaft is fixed on the first connecting plate, and the lower part of the lead screw drive shaft is connected with the lead screw;
  • the fourth gear is fixed on the second transmission shaft; the fourth gear is in meshing connection with the first gear;
  • the upper part of the second transmission shaft is fixed on the first connecting plate, and the lower part of the second transmission shaft is connected with the reel;
  • the sensor bracket is fixed on the first connecting plate
  • the tension sensor is fixed on the sensor bracket;
  • the second connecting plate is connected with the sensor compartment housing, and the second connecting plate is fixedly connected with the reel and the lead screw.
  • it further includes a transition cabin, the transition cabin being between the power cabin and the sensor cabin, so that the power cabin transmits power to the rope row cabin.
  • the transition cabin includes a first gear, a second gear, a transition cabin cover, a coupling, and a transition cabin housing;
  • One end of the transition cabin shell is coaxially connected with the end cover of the power cabin, and the other end of the transition cabin shell is fixed with the transition cabin cover plate;
  • the first gear and the second gear are respectively connected with the two couplings.
  • it further includes a slip ring cabin for connecting with the rope arranging cabin, and the slip ring cabin is equipped with a slip ring to realize power and communication transmission during the rotation of the reel.
  • the slip ring cabin includes a slip ring connecting shaft, a slip ring cabin shell, and a slip ring; the upper part of the slip ring connecting shaft is connected to the reel, and the lower part of the slip ring connecting shaft is fixedly connected to the slip ring; the slip ring Fixed on the slip ring compartment shell.
  • the actuation cabin, the power cabin, the transition cabin, the sensor cabin, the rope row cabin and the slip ring cabin are coaxially connected to each other in a detachable manner.
  • the actuation cabin includes an upper plate, a sheave seat, a driven sheave shaft, a first transmission shaft, an idler shaft, an idler, an actuating upper shell, a split pin, an actuating lower shell, and an adjustment nut ,
  • the actuating upper shell is a hollow tubular structure with two ends open, an upper plate is provided at one end opening of the actuating upper shell, and an actuating lower shell is provided at the opening at the other end of the actuating upper shell, A boss is provided on the lower inner wall of the upper actuator shell;
  • the driving sheave shaft and the driven sheave shaft are installed on the sheave seat;
  • the outer side wall of the sheave seat is matched with the inner side wall of the upper housing, one end of the sheave seat is detachably connected with the upper plate, and the other end of the sheave seat is detachable from the lower housing Connected and the end surface of the other end of the sheave seat is matched with the boss table surface of the upper housing;
  • the upper guide wheel pin is fixed in the shaft hole of the upper plate, and both ends of the upper guide wheel pin are provided with split pins; the upper guide wheel is installed on the upper guide wheel pin;
  • the upper part of the driving bevel gear passes through the lower driving housing and the upper driving housing in sequence, and the driving bevel gear is fixed with the driving upper housing, and the lower part of the driving bevel gear is threadedly connected with the adjusting nut;
  • the driven bevel gear is in meshing connection with the driving bevel gear, the driven bevel gear is in meshing connection with the idler, and the driven bevel gear is fixed on the sheave seat;
  • the idler gear is in meshing connection with the active sheave shaft, the idler gear is mounted on the idler shaft, and the idler shaft is fixed to the sheave seat;
  • the lower guide wheel pin is installed on the groove wheel seat
  • the first transmission shaft is arranged between the driving sheave shaft and the driven sheave shaft, one end of the first transmission shaft is connected with the driving sheave shaft, and the other end of the first transmission shaft is connected with the driven sheave shaft, so The first transmission shaft is installed on the groove wheel seat.
  • both the driving sheave shaft and the driven sheave shaft are composed of a sheave shaft, a sheave and a gear, and the sheave shaft, the sheave and the gear are an integrated structure, the driving sheave shaft and the driven sheave shaft The gears on the grooved wheel shaft are the same.
  • the power cabin includes a first motor, an upper part of the power cabin shell, a second motor, a lower part of the power cabin shell, an end cover of the power cabin, and a third motor;
  • the upper part of the power cabin shell and the lower part of the power cabin shell are coaxially arranged and connected and fixed;
  • the power cabin end cover is connected with the bottom end of the lower part of the power cabin shell
  • the first motor is fixed on the upper part of the power cabin housing, and the output shaft of the first motor passes through the upper part of the power cabin housing and is coaxially connected with the driving bevel gear;
  • the second motor and the third motor are fixed on the end cover of the power compartment, and the output shaft of the second motor passes through the end cover of the power compartment and is coaxially connected with the gear shaft of the first gear through a coupling;
  • the output shaft of the motor passes through the end cover of the power compartment and is coaxially connected with the gear shaft of the second gear through a coupling.
  • the rope arranging cabin further includes a guide rail, a pulley guide wheel, a block, a lead screw, a rope arranging cabin shell, a seventh bearing, a third connecting plate, and a proximity switch;
  • the guide rail is fixed on the rope platoon housing, the pulley guide wheel is threadedly matched with the lead screw, and the pulley guide wheel is driven by the lead screw to slide along the guide rail;
  • the third connecting plate is fixed on the rope row cabin shell
  • the reel is fixed on the third connecting plate through a seventh bearing
  • the proximity switch is fixed on the third connecting plate
  • the stopper is fixed at both ends of the reel.
  • the actuation cabin, the power cabin, the transition cabin, the sensor cabin, the rope row cabin and the slip ring cabin the actuation cabin, the power cabin,
  • the transition cabin, the sensor cabin, the rope row cabin, and the slip ring cabin are arranged in sequence, and they are coaxially connected in a detachable manner;
  • the actuation cabin includes an upper plate, a sheave seat, a driven sheave shaft, a first tapered roller bearing, a second tapered roller bearing, a first transmission shaft, an idler shaft, a needle bearing, an idler, and an actuating upper Shell, split pin, actuating lower shell, adjusting nut, driving bevel gear, driven bevel gear, lower guide wheel pin, driving sheave shaft, upper guide wheel pin and upper guide wheel, the actuating upper shell is The two ends are open and have a hollow tubular structure.
  • An upper plate is provided at the opening at one end of the urging upper housing, and the upper housing and the upper plate are fixedly connected by screws, and the opening at the other end of the urging upper housing is provided with
  • the lower casing is actuated, and the upper casing and the lower casing are fixedly connected by screws.
  • a boss is provided on the lower inner wall of the upper casing; the driving sheave shaft and the driven sheave shaft pass through each
  • the corresponding first tapered roller bearing is installed on the sheave wheel seat; the outer side wall of the sheave wheel seat is matched with the inner side wall of the upper casing to be actuated, one end of the sheave wheel seat is detachably connected with the upper plate, and the sheave wheel
  • the other end surface of the seat is matched with the boss table surface of the upper casing, and the end is detachably connected with the lower casing; the upper guide wheel pin is fixed in the shaft hole of the upper plate, and the upper guide wheel pin is fixed in the shaft hole of the upper plate.
  • Split pins are provided at both ends; the upper guide wheel is installed in the middle of the upper guide wheel pin through the first bearing; the upper part of the driving bevel gear passes through the lower housing and the upper housing in turn, and the driving bevel gear
  • the lower part of the driving bevel gear is threadedly connected with the adjusting nut; the driven bevel gear is meshed and connected with the driving bevel gear, while the driven bevel gear is meshed and connected with the idler gear.
  • the movable bevel gear is fixed on the sheave seat through a bearing; the idler is meshed and connected with the active sheave shaft, and the idler is mounted on the idler shaft through a needle bearing; the idler shaft is threadedly connected with the sheave seat; the lower guide The wheel pin is threadedly connected to the sheave seat; the first transmission shaft is arranged between the driving sheave shaft and the driven sheave shaft, one end of the first transmission shaft is connected with the driving sheave shaft, and the other end of the first transmission shaft is connected with The driven sheave shaft is connected, and the first drive shaft is mounted on the sheave seat through the second tapered roller bearing;
  • the power cabin includes a first motor, an upper part of the power cabin shell, a second motor, a lower part of the power cabin shell, a power cabin end cover, and a third motor, and the upper part of the power cabin shell and the lower part of the power cabin shell are coaxial Set and connected by threads, an O-ring is installed between the upper part of the power cabin shell and the lower part of the power cabin shell; the power cabin end cover is connected with the bottom end of the lower part of the power cabin shell by screws; the first motor adopts The screw is fixed on the upper part of the power cabin shell, and a combined washer is provided at the connection between the screw and the upper part of the power cabin shell.
  • the output shaft of the first motor passes through the upper part of the power cabin shell and is coaxially connected with the driving bevel gear.
  • the output shaft of the first motor and the upper part of the power cabin shell are connected with a Glyy ring; the second motor and the third motor are respectively fixed on the power cabin end cover by screws, and the screws are connected to the power cabin end cover.
  • a combined washer is provided at the position, the output shaft of the second motor passes through the end cover of the power compartment and is coaxially connected with the gear shaft of the first gear through a coupling, and the output shaft of the second motor is connected with the end cover of the power compartment.
  • the output shaft of the third motor passes through the end cover of the power compartment and is coaxially connected with the gear shaft of the second gear through a coupling, and is provided at the connection between the output shaft of the third motor and the end cover of the power compartment Grameen circle
  • the transition cabin includes a first gear, a second gear, a second bearing, a transition cabin cover plate, a coupling, and a transition cabin shell.
  • One end of the transition cabin shell is coaxially and sealedly connected with the power cabin end cover.
  • the other end of the cabin shell is welded to the transition cabin cover, the gear shafts of the first gear and the second gear are both stepped shafts, and the gear shaft shoulders of the first gear and the second gear act on their corresponding second bearings respectively
  • the second bearing is installed on the transition compartment cover, the first retaining ring and the second retaining ring are respectively provided on both sides of the second bearing; the number of the coupling is two, and the two couplings are respectively The shaft ends of the gear shafts connected to the first gear and the second gear;
  • the sensor compartment includes a sensor compartment housing, a third gear, a tension sensor, a first washer, a first key, a third retaining ring, a third bearing, a fourth gear, a fourth sleeve, a second washer, and a second key ,
  • the first bushing, the fourth retaining ring, the fourth bearing, the second bushing, the first connecting plate, the third bushing, the second transmission shaft, the first jack, the sensor bracket, the second connecting plate, the fifth The bearing, the sixth bearing, the second jack screw and the screw drive shaft, the first connecting plate and the sensor compartment housing are connected by screws;
  • the third gear is fixed on the screw drive shaft through the first washer and the first key, and the third The gear and the second gear are meshed and connected;
  • the upper part of the screw drive shaft is fixed on the first connecting plate through the third bearing and the third retaining ring, and the outer part of the screw drive shaft is coaxially sleeved with a fourth sleeve and a third s
  • the shaft sleeve, the fourth shaft sleeve is located above the third bearing, the third shaft sleeve is located below the third bearing, the lower part of the screw drive shaft is connected to the screw through the second jack screw; the fourth gear is fixed to the second through the second washer
  • a first sleeve is arranged between the fourth gear and the second transmission shaft, and the fourth gear is meshed and connected with the first gear
  • the upper part of the second transmission shaft passes through the second key, the fourth bearing, and the fourth retaining ring
  • the second shaft sleeve are fixed on the first connecting plate, the lower part of the second drive shaft is connected with the reel through the first top wire
  • the sensor bracket is fixed on the first connecting plate by screws
  • the tension sensor is fixed on the sensor bracket by screws
  • the second connecting plate is connected to the sensor compartment housing by screws, the fifth bearing and the sixth bearing are provided on the second connecting plate, the fifth bearing is used to fix the reel on the second connecting plate, and the sixth bearing is used for Fix the lead screw on
  • the rope cabin includes a reel, a guide rail, a pulley guide wheel, a block, a lead screw, a rope cabin shell, a seventh bearing, a third connecting plate and a proximity switch, and the guide rail is fixed on the rope cabin shell by screws ,
  • the pulley guide wheel and the lead screw are threaded, and the lead screw drives the pulley guide wheel to slide along the guide rail;
  • the third connecting plate is fixed on the rope cabin shell by screws;
  • the drum is fixed to the third connection through the seventh bearing On the board;
  • the proximity switch is fixed on the third connecting plate by threads;
  • the stopper is fixed on both ends of the reel with screws;
  • the slip ring cabin includes a third top wire, a slip ring connecting shaft, a slip ring cabin shell, and a slip ring.
  • the upper part of the slip ring connecting shaft is connected to the drum through the third top wire, and the lower part of the slip ring connecting shaft is connected to the slip ring through screws.
  • the ring is fixedly connected; the slip ring is fixed on the slip ring cabin shell.
  • the driving sheave shaft and the driven sheave shaft are composed of a sheave shaft, a sheave and a gear, and the sheave shaft, the sheave and the gear are an integrated structure, and the gears on the driving sheave shaft and the driven sheave shaft are the same .
  • a second tightening washer is provided between the first tapered roller bearing and the driving sheave shaft, the driven sheave shaft and the sheave seat, respectively.
  • the driving bevel gear is an integral structure, and the driving bevel gear includes a bevel gear and a stepped shaft, the bevel gear is located at the shoulder end of the stepped shaft, and the end of the stepped shaft away from the bevel gear has a thread.
  • a first adjusting washer is provided at the connection between the driven bevel gear and the sheave seat.
  • an adjusting shim is provided between the idler wheel and the idler shaft.
  • a gasket is provided between the lower end surface of the shaft shoulder of the driving bevel gear and the adjusting nut.
  • the present invention can bring the following beneficial effects:
  • the present invention draws on the principle of spider silking to achieve self-climbing and falling.
  • bionics invented a built-in bionic winch that can be used for polar glacier ice detection, which can reduce the detector's impact on the ice environment to the greatest possible extent. Pollution.
  • the present invention adopts modular design to modularize the function and structure of each part of the winch; multiple parts adopt an integrated design structure, which is simple to assemble, easy to replace and maintain, and has good interchangeability.
  • the present invention realizes the large power reduction ratio of the input and output ends of the cable by using the form of the grooved wheel group, realizes the performance requirements of small size and large load, and can work in the harsh underwater environment of the Antarctic subglacial lake .
  • the power cabin shell is integrated and multi-purpose, which can not only realize the underwater pressure-resistant sealing requirement in a limited space, but also realize the support of the motor part, and connect the entire winch; greatly improve the space utilization rate and simplify the structure .
  • the present invention optimizes the structural form and size, and optimizes the space utilization rate, so that the structure is reasonably arranged inside the shell with a small diameter (140 mm), and finally a slender winch is formed, which is small in size and weight, and is light and concise. .
  • Figure 1 is a structural schematic diagram 1 of an embedded bionic winch for sampling and exploration of Antarctic subglacial lakes proposed by the present invention
  • Fig. 2 is the second structural schematic diagram of a built-in bionic winch for sampling and exploration of Antarctic subglacial lake proposed by the present invention
  • Figure 3 is a schematic diagram of the structure of the actuation cabin of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is a schematic diagram of the structure of the power cabin of the present invention.
  • Figure 6 is a schematic diagram of the transitional cabin structure of the present invention.
  • Figure 7 is a schematic diagram of the structure of the sensor cabin in the present invention.
  • Figure 8 is a schematic diagram of the rope row cabin structure of the present invention.
  • Figure 9 is a schematic diagram of the slip ring cabin structure of the present invention.
  • Figure 10 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 11 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 12 is a cross-sectional view taken along line C-C in Figure 2;
  • Figure 13 is a cross-sectional view taken along line D-D of Figure 2;
  • Fig. 14 is a cross-sectional view taken along the line E-E in Fig. 2.
  • the invention draws on the principle of spider spinning to realize its own climbing and falling, and according to the bionics theory, provides a built-in bionic winch that can be placed inside a small-diameter detector, which meets the performance requirements of small volume and large load, and can be used for a long time. Work in an aquatic environment. Equipped with the built-in bionic winch, the detector can automatically shuttle inside the ice sheet, and then return to the surface automatically after reaching the subglacial lake for sampling, avoiding the impact of external pollution sources on the lake water as much as possible.
  • Fig. 1 is a schematic diagram of a built-in bionic winch for sampling and exploration of Antarctic subglacial lake proposed by the present invention
  • Fig. 2 is a schematic diagram of a built-in bionic winch for sampling and exploration of Antarctic subglacial lake proposed by the present invention Structural schematic diagram two
  • Figure 3 is a schematic structural diagram of the actuation cabin in the present invention
  • Figure 4 is a cross-sectional view along line AA in Figure 3
  • Figure 5 is a schematic structural diagram of the power cabin in the present invention
  • FIG. 8 is a schematic diagram of the rope row cabin in the present invention
  • FIG. 1 is a schematic diagram of a built-in bionic winch for sampling and exploration of Antarctic subglacial lake proposed by the present invention
  • Figure 3 is a schematic structural diagram of the actuation cabin in the present invention
  • Figure 4 is a cross-section
  • FIG. 9 is a schematic diagram of the slip ring cabin structure of the present invention.
  • FIG. 10 is a cross-sectional view taken along line AA in FIG. 2;
  • FIG. 11 is a diagram 2 is a cross-sectional view of line BB;
  • FIG. 12 is a cross-sectional view of line CC of FIG. 2;
  • FIG. 13 is a cross-sectional view of line DD of FIG. 2;
  • FIG. 14 is a cross-sectional view of line EE of FIG.
  • a built-in bionic winch for sampling and detection of Antarctic subglacial lakes is applied to the detector, including: actuation cabin 1, power cabin 2, rope row cabin 5 and cable 7; actuation cabin 1, power
  • the cabin 2 and the rope arranging cabin 5 are arranged inside the detector, and are arranged coaxially along the center line of the detector toward the direction of the drilling end of the detector;
  • the actuation cabin 1 is equipped with a sheave assembly to reduce the rope arranging
  • the cabin 5 bears the load of the climbing or descending of the detector;
  • the rope arranging cabin 5 is equipped with a reel 51, which is used for pre-wound cables 7;
  • the power cabin 2 is used to actuate the sheave assembly of the cabin 1 and the rope arranging cabin 5
  • the reel 51 provides power.
  • the built-in bionic winch for sampling and exploration of Antarctic subglacial lakes provided by the present invention is reasonably arranged inside a shell with a small diameter (for example, 140 mm) to form a slender winch, thereby making the Antarctic winch provided by the present invention.
  • the built-in bionic winch for sampling and exploration of sub-glacial lakes is small in size and weight, light and simple.
  • it further includes a sensor cabin 4, which is arranged between the power cabin 2 and the rope arranging cabin 5, and a tension sensor 43 is configured in the sensor cabin 4, and the tension sensor 43 is used to obtain when the cable 7 enters the rope arranging cabin 5.
  • the tension value to control the rope cabin 5 retracts and releases the cable 7.
  • the tension sensor 43 measures the tension value when the cable 7 enters the rope cabin 5, so that the rope cabin 5 can control the retracting and unwinding of the cable 7 according to the tightness of the cable 7.
  • the cable 7 passes through the tension sensor 43, and the tension value of the cable 7 when it enters the rope arranging cabin 5 from the sensor cabin 4 can be measured, so that the rope arranging cabin 5 can be controlled to retract and retract the cable 7 through the measured tension value.
  • the tension sensor 43 detects that the tension value of the cable 7 is less than the set value
  • the rope cabin 5 receives the cable 7, and the tension sensor 43 detects that the tension value of the cable 7 is greater than or equal to the set value.
  • a transition cabin 3 is further included, and the transition cabin 3 is arranged between the power cabin 2 and the sensor cabin 4 so that the power cabin 2 transfers power to the rope cabin 5.
  • the transition cabin 3 is provided between the power cabin 2 and the rope arranging cabin 5 to transmit the power of the power cabin 2 to the reel 51 of the rope arranging cabin 5 so that the reel 51 can retract the cable 7.
  • the slip ring cabin 6 is further included, and the slip ring cabin 6 is used for connecting with the rope arranging cabin 5, and the slip ring cabin 6 is configured with a slip ring 64 to realize power and communication transmission during the rotation of the reel 51.
  • the slip ring 64 includes a rotating part and a stationary part.
  • the rotating part is connected to the reel 51 of the rope compartment 5, and the stationary part is connected to the detector, so as to ensure that the cable joint part is relatively static when the reel 51 rotates and winds the cable 7 to protect the cable joint, thereby enabling power and communication during the rotation of the reel 51 transmission.
  • a built-in bionic winch for sampling and detection of Antarctic subglacial lakes includes an actuation cabin 1, a power cabin 2, a transition cabin 3, a sensor cabin 4, a rope row cabin 5, and a slip ring cabin 6 And cable 7.
  • the overall function of the winch is divided: Since the weight of the entire detector acts on the rope cabin 5 through the cable 7, in order to ensure the rigidity of the drum 51 of the rope cabin 5, it is necessary to separate the actuation cabin 1 from the rope cabin 5, namely actuation Cabin 1 is to bear the load of the entire detector climbing and descending, and rope-arranging cabin 5 is to realize the accurate discharge function of cable 7.
  • the actuation cabin 1, the power cabin 2, the transition cabin 3, the sensor cabin 4, the rope row cabin 5 and the slip ring cabin 6 are arranged coaxially in sequence.
  • the location is not limited to the location of the stop, screw connection, but also other axial connections, such as flange connection, so that the winch can be disassembled, and it can be assembled, adjusted, and repaired section by section, which is convenient for replacement and maintenance. Good interchangeability.
  • the probe includes a drilling end.
  • An actuation cabin 1, a power cabin 2, a transition cabin 3, a sensor cabin 4, a rope row cabin 5 and a slip ring cabin 6 are arranged coaxially along the center line of the detector toward the drilling end of the detector.
  • the actuation cabin 1 is equipped with a sheave assembly to reduce the climbing or descent load of the rope arranging cabin 5 with the detector.
  • the sheave assembly includes a driven sheave shaft 14, a driven bevel gear 118, a driving sheave shaft 121 and a driving bevel gear 116.
  • the actuator module 1 uses the sheave assembly to achieve the large reduction ratio of the input and output ends of the cable 7, and the performance requirements of small size and large load, and can be used in the harsh subglacial lakes of Antarctica. Work in an underwater environment.
  • the actuation cabin 1 includes an upper plate 11, a sheave seat 13, a driven sheave shaft 14, a first tapered roller bearing 15, a second tapered roller bearing 16, and a first transmission shaft. 17.
  • the wheel pin 120, the active sheave shaft 121, the upper guide wheel pin 123 and the upper guide wheel 124 actuate the upper casing 112 to have a hollow tubular structure with both ends open, and the upper casing 112 is provided with an upper opening at one end of the opening.
  • the upper housing 112 and the upper plate 11 are fixedly connected by screws.
  • the lower end opening of the upper housing 112 is provided with a lower housing 114, and the upper housing 112 is driven and the lower
  • the housing 114 is fixedly connected by screws, and at the same time, a boss is provided on the lower inner wall of the upper housing 112;
  • the driving sheave shaft 121 and the driven sheave shaft 14 are mounted on the sheave seat through respective first tapered roller bearings 15 13 on;
  • the first tapered roller bearing 15 and the driving sheave shaft 121, the driven sheave shaft 14 and the sheave seat 13 are each provided with a second tightening washer 122, for the two sheave shafts and the sheave seat 13
  • the outer side wall of the grooved wheel seat 13 is matched with the inner side wall of the upper housing 112 for driving, and further, the side surface of the grooved wheel seat 13 forms a cylindrical surface with
  • the boss surface of the upper movable housing 112 is matched, and at the same time, this end is detachably connected with the lower actuator 114;
  • the upper guide wheel pin 123 is fixed in the shaft hole of the upper plate 11, and both ends of the upper guide wheel pin 123 are provided with
  • the cotter pin 113 restricts the position;
  • the upper guide wheel 124 is installed in the middle of the upper guide wheel pin 123 through the first bearing 12, and the upper guide wheel 124 can freely rotate relative to the upper guide wheel pin 123;
  • the driving bevel gear 116 is an integrated structure with a driving cone
  • the gear 116 includes a bevel gear and a stepped shaft.
  • the bevel gear is located at the shoulder end of the stepped shaft.
  • the end of the stepped shaft away from the bevel gear has threads.
  • the upper part of the driving bevel gear 116 passes through the lower casing 114 and the upper casing in turn.
  • the driving bevel gear 116 is fixed in the shaft hole at the bottom of the upper housing 112 through a bearing.
  • the lower part of the driving bevel gear 116 is threadedly connected with the adjusting nut 115, and the lower end of the shaft shoulder of the driving bevel gear 116 is connected to the adjusting nut.
  • a washer 117 is arranged between 115, and the bearing is pre-tightened and the gap between the bearing and the driving bevel gear 116 is adjusted by controlling the adjusting nut 115.
  • the double nut anti-loosening method is adopted; the driven bevel gear 118 and the driving bevel gear 116 are meshed and connected, At the same time, the driven bevel gear 118 is meshed and connected with the idler 110, and the driven bevel gear 118 is fixed on the sheave seat 13 through a bearing, and is connected between the driven bevel gear 118 and the sheave seat 13
  • the joint is provided with a first adjusting washer 119, and the position of the driven bevel gear 118 is adjusted by the first adjusting washer 119; the idler 110 is meshed and connected with the driving sheave shaft 121, and the idler 110 is mounted on the idler shaft 18 through a needle bearing 19,
  • An adjusting washer 111 is provided between the idler 110 and the idler shaft 18, and the position of the idler 110 is adjusted by the adjusting washer 111; the idler shaft 18 is threadedly connected to the sheave base 13; the lower guide wheel pin 120 is threadedly connected to the sheave Seat 13; the first transmission
  • the driving bevel gear 116 adopts an integrated structure, which makes assembly simple, convenient for replacement and maintenance, and has good interchangeability.
  • the power cabin 2 is used to provide power for the actuation cabin 1 and the rope cabin 5.
  • the power cabin 2 includes a first motor 21, a power cabin upper part 24, a second motor 25, a power cabin lower part 26, a power cabin end cover 27, and a third motor 28.
  • the upper part 24 of the cabin shell and the lower part 26 of the power cabin shell are arranged coaxially and connected by threads.
  • An O-ring 29 is installed between the upper part 24 of the power cabin shell and the lower part 26 of the power cabin shell to realize the power cabin shell.
  • the upper part 24 and the lower part of the power compartment housing 26 are sealed; the power compartment end cover 27 is connected to the bottom end of the lower part of the power compartment housing 26 by screws; the first motor 21 is fixed on the upper part 24 of the power compartment housing by screws, and A combined washer 22 is provided at the connection with the upper part 24 of the power cabin shell.
  • the combined washer 22 is used to seal the screw and the upper part 24 of the power cabin shell.
  • the output shaft of the first motor 21 penetrates the upper part 24 of the power cabin shell and the driving cone.
  • the gear 116 is coaxially connected, and a Glyy ring 23 is provided at the connection between the output shaft of the first motor 21 and the upper part 24 of the power compartment housing to achieve sealing; the second motor 25 and the third motor 28 are respectively fixed at the end of the power compartment by screws
  • a combined washer 22 is provided at the connection between the screw and the power compartment end cover 27.
  • the combined washer 22 is used to seal the screw and the power compartment end cover 27, and the output shaft of the second motor 25 passes through the power compartment end cover 27 is coaxially connected with the gear shaft of the first gear 31 through a coupling 37.
  • the second motor 25 is used to drive the first gear 31 to rotate synchronously with it, and is connected to the output shaft of the second motor 25 and the end cover 27 of the power compartment.
  • a Gly ring 23 is provided to achieve sealing; the output shaft of the third motor 28 passes through the power compartment end cover 27 and is coaxially connected with the gear shaft of the second gear 33 through a coupling 37, and the third motor 28 is used to drive the second gear 33 rotates synchronously with it, and a Glyy ring 23 is arranged at the connection between the output shaft of the third motor 28 and the end cover 27 of the power cabin to achieve sealing.
  • the upper part of the power cabin shell 24, the lower part of the power cabin shell 26 and the power cabin end cover 27 constitute the entire power cabin shell.
  • the entire power cabin shell is made of high-strength aluminum alloy, which can withstand the pressure of a certain depth of water. , It is sealed again, and it is also used as the support of the motor inside the whole power cabin shell to connect the whole winch; the whole power cabin shell is integrated and multi-purpose, which greatly improves the space utilization rate and simplifies the structure.
  • a certain amount of buoyancy can be generated, which offsets part of the weight of the detector and helps to improve the stress condition of the cable 7.
  • the transition cabin 3 and the sensor cabin 4 are used to connect the power cabin 2 and the rope cabin 5 so that the power cabin transmits power to the rope cabin 5.
  • the transition cabin 3 is provided between the power cabin 2 and the rope cabin 5 to transmit the power of the second motor 25 of the power cabin 2 to the screw 55, and to transmit the power of the third motor 28 of the power cabin 2 to the barrel. 51.
  • the transition compartment 3 includes a first gear 31, a second gear 33, a second bearing 34, a transition compartment cover plate 36, a coupling 37, and a transition compartment housing 38.
  • the transition compartment housing One end of 38 is coaxially and hermetically connected with the power compartment cover 27, and the other end of the transition compartment housing 38 is welded to the transition compartment cover plate 36.
  • the gear shafts of the first gear 31 and the second gear 33 are both stepped shafts, and the first gear
  • the gear shaft shoulders of 31 and the second gear 33 respectively act on the corresponding second bearings 34;
  • the second bearings 34 are installed on the transition compartment cover plate 36, and first retaining rings are respectively provided on both sides of the second bearings 34 32 and the second retaining ring 35 are locked by the first retaining ring 32 and the second retaining ring 35;
  • the number of couplings 37 is two, and the two couplings 37 are respectively connected to the first gear 31 and the second gear 33 of the gear shaft shaft end.
  • a tension sensor 43 is provided in the sensor cabin 4, and the tension sensor 43 is used to obtain the tension value when the cable 7 enters the rope cabin 5 to control the rope cabin 5 to retract the cable 7.
  • the sensor compartment 4 includes a sensor compartment housing 41, a third gear 42, a tension sensor 43, a first washer 44, a first key 45, a third retaining ring 46, a third bearing 47,
  • the sensor compartment housing 41 is connected with the transition compartment housing 38 through screws;
  • the first connecting plate 416 is connected with the sensor compartment housing 41 through screws;
  • the third gear 42 is fixed to the screw drive shaft through the first washer 44 and the first key 45 425, the third gear 42 and the second gear 33
  • the third gear 42 and the screw drive shaft 425 can rotate smoothly, and the outer part of the screw drive shaft 425 is sleeved with a fourth shaft sleeve 49 and a third shaft sleeve 417.
  • the fourth shaft The sleeve 49 is located above the third bearing 47, and the third shaft sleeve 417 is located below the third bearing 47.
  • the axial size is adjusted by the third shaft sleeve 417 to realize the limit.
  • the lower part of the screw drive shaft 425 passes through the second jack 424 Connected with the screw 55; the fourth gear 48 is fixed on the second transmission shaft 418 through the second washer 410, and the fourth gear 48 is meshed and connected with the first gear 31; the upper part of the second transmission shaft 418 is through the second key 411, the second The four bearings 414, the fourth retaining ring 413 and the second sleeve 415 are fixed on the first connecting plate 416, the second transmission shaft 418 is axially fastened by the fourth bearing 414, and the fourth retaining ring 413 is used for axial adjustment.
  • the second key 411 is used for axial torque transmission; the second transmission shaft 418 and the fourth gear 48 are limited by the first sleeve 412, and the lower part of the second transmission shaft 418 passes through the first jack 419 and the reel 51 connection; the sensor bracket 420 is fixed on the first connecting plate 416 by screws; the tension sensor 43 is fixed on the sensor bracket 420 by screws; the second connecting plate 421 is connected with the sensor compartment housing 41 by screws, on the second connecting plate 421 A fifth bearing 422 and a sixth bearing 423 are provided, the fifth bearing 422 is used to fix the drum 51 on the second connecting plate 421, and the sixth bearing 423 is used to fix the lead screw 55 on the second connecting plate 421.
  • the rope cabin 5 includes a reel 51, a guide rail 52, a pulley guide wheel 53, a block 54, a screw 55, a rope cabin shell 56, a seventh bearing 57, a third connecting plate 58 and a proximity switch 59, a rope cabin
  • the housing 56 is fixed with the sensor compartment housing 41 by screws;
  • the guide rail 52 is fixed on the rope compartment housing 56 by screws, the pulley guide wheel 53 and the lead screw 55 are threaded together, and can slide up and down along the guide rail 52;
  • third connection The plate 58 is fixed on the rope cabin shell 56 by screws;
  • the reel 51 is fixed on the third connecting plate 58 by the seventh bearing 57;
  • the proximity switch 59 is fixed on the third connecting plate 58 by threads, and the pulley guide wheel 53
  • the reel 51 rotates to take up or unwind the rope
  • the pulley 53 drives the cable 7 to move up and down to ensure the orderly arranging of the rope on the reel 51.
  • the pulley guide wheel 53 When the reel 51 is the first layer of cloth When the cable is full, the pulley guide wheel 53 will touch the proximity switch 59, so as to realize the reverse movement of the pulley guide wheel 53 through the control system, and start the second layer of cable; the stop 54 is fixed on both ends of the drum 51 with screws, and the coil The rope row range of the drum 51 is adjusted to ensure that when the drum 51 is full of cables, the pulley guide wheel 53 just touches the proximity switch 59, and the stop 54 also functions to fix the dead rope end of the drum cable.
  • the slip ring compartment 6 is equipped with a slip ring 64 to keep the cable joint part of the cable 7 relatively static.
  • a slip ring 64 is provided in the slip ring compartment 6, so as to ensure that the cable connector part is relatively stationary when the reel 51 rotates and winds the cable 7 to protect the cable connector , which in turn enables power and communication transmission to be realized during the rotation of the reel 51.
  • the slip ring cabin 6 includes a third top wire 61, a slip ring connecting shaft 62, a slip ring cabin housing 63 and a slip ring 64, and the upper part of the slip ring connecting shaft 62 passes through the third top wire 61 Connected to the reel 51, the lower part of the slip ring connecting shaft 62 is fixedly connected with the slip ring 64 by screws, and the slip ring 64 is fixed on the slip ring compartment housing 63.
  • the cable 7 enters the actuation cabin 1 through the upper guide wheel 124, passes through the active sheave shaft 121 and the driven sheave shaft 14 to form a sheave group for multiple windings, until it is connected to the active sheave shaft 121 and the driven sheave shaft. After the grooves on the sheave wheel of 14 are in contact, the driven sheave shaft 14 leaves the sheave group.
  • the cable 7 leaves the sheave group through the driven sheave shaft 14 to greatly reduce the force at the output end. Then, it is guided by the lower guide wheel pin 120, passes through the wire hole located on the boss of the upper housing 112, and enters the power cabin 2.
  • the upper guide wheel 124 is installed through the upper guide wheel pin 123, the first bearing 12 and the integrated upper plate 11, in order to prevent the cable 7 from detaching from the sheave, it passes through the wire hole located on the boss of the upper housing 112. In the process, it interferes with the gear, and a lower guide wheel pin 120 is added in the middle, and the lower guide wheel pin 120 is connected with the sheave seat 13 by thread.
  • the tension of the cable 7 controls the winch; the cable 7 passes through the rope cabin 5 and is wound on the drum 51 through the pulley guide wheel 53.
  • the opening at the bottom of the drum 51 connects the cable 7 with the slip ring cable; 7 through the reel 51 forward and reverse to realize the retracting and unwinding of the cable 7.
  • the whole winch is located inside the detector, which is the power source of the whole detector and the storage part of the cable 7. When the winch is in use, it is used vertically.
  • the first motor 21 transmits power to the driving bevel gear 116, through the secondary transmission of the bevel gear and the spur gear constituted by the driven bevel gear 118 and the idler 110 to achieve deceleration and boost, and then provide sufficient power for the driving sheave shaft 121
  • the driving sheave shaft 121 rotates, and then the power is transmitted to the driven sheave shaft 14 through the first transmission shaft 17.
  • the driving sheave shaft 121 and the driven sheave shaft 14 are composed of a sheave shaft, a sheave and a gear.
  • the wheels and gears are of an integrated structure.
  • the grooved wheel shaft, the grooved wheel and the gear are processed in one piece to save space and enhance the overall strength of the parts; the gears on the driving grooved wheel shaft 121 and the driven grooved wheel shaft 14 are the same, ensuring that the driving grooved wheel shaft 121 and the driven The grooved wheel shaft 14 has the same speed.
  • the second motor 25 and the third motor 28 are respectively connected with two identical couplings 37 to output power, and the power is transmitted through the first gear 31 and the second gear 33, and finally the power is input to the lead screw 55 through each transmission shaft.
  • the cable 7 is guided into the reel 51 through the pulley guide wheel 53; by adjusting the rotation speed of the second motor 25 and the third motor 28, the winding of the cable 7 can be realized by the cooperation of the lead screw 55 and the reel 51.
  • the slip ring 64 is connected to the reel 51 through the slip ring connecting shaft 62, and the other end of the slip ring 64 is fixed to the slip ring compartment housing 63 to ensure that the cable joint part is relatively stationary when the reel 51 rotates and winds the cable 7 to protect the cable joint.
  • the upper end of the reel 51 acts on the second connecting plate 421 through the fifth bearing 422, and the lower end acts on the third connecting plate 58 through the seventh bearing 57.
  • the reel 51 is driven by the power transmitted from the sensor compartment 4 to rotate, and The power is transmitted to the slip ring 64.
  • the guide rail 52 is fixed to the inside of the rope compartment housing 56 by screws, and the lead screw 55 acts on the second connecting plate 421 and the third connecting plate 58 through bearings. Its spatial position is in the middle of the two guide rails 52, and the guide rail 52 serves as an auxiliary support
  • the screw 55 plays the role of transmitting power and converting the rotary motion into linear motion.
  • the pulley guide wheel 53 is composed of two guide wheels, and the distance between the two guide wheels is greater than the diameter of the cable 7, to prevent the cable 7 from deflecting the guide wheel when it is loose during the movement.
  • the whole guide wheel frame can be rotated around the screw nut in a small range to It adapts to the change of the angle after the diameter of the cable 7 is wound around the reel 51, so that the winding is smoother.
  • the cable 7 passes through the various parts of the winch and is finally connected with the slip ring cable to ensure that when the reel 51 rotates and winds the cable 7, the cable joints are not damaged.
  • the built-in bionic winch for sampling and detecting Antarctic subglacial lakes provided by the present invention can be placed inside a small-diameter detector, has the performance requirements of a small volume and a large load, and can work in a water environment for a long time. Equipped with the built-in bionic winch, the detector can automatically shuttle inside the ice sheet, and then return to the surface automatically after reaching the subglacial lake for sampling, avoiding the impact of external pollution sources on the lake water as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Gear Transmission (AREA)

Abstract

一种南极冰下湖取样探测用内嵌式仿生绞车,包括促动舱(1)、动力舱(2)、过渡舱(3)、传感器舱(4)、排绳舱(5)及滑环舱(6),促动舱(1)、动力舱(2)、过渡舱(3)、传感器舱(4)、排绳舱(5)及滑环舱(6)顺次布置,相互之间采用可拆卸方式同轴连接;动力舱(2)为整个绞车提供动力且能在一定深度水下实现位于其内部的电机的密封;过渡舱(3)和传感器舱(4)为整个绞车的过渡以及安装张力传感器(43)的部分;排绳舱(5)将减力之后的电缆(7)通过卷筒(51)以及丝杠(55)的精密配合实现电缆(7)的收放,滑环舱(6)内包含滑环(64),保证卷筒(51)旋转缠绕电缆(7)时电缆(7)接头部分相对静止以保护电缆接头;该内嵌式仿生绞车为能够应用于南极冰下环境的无污染、小体积、大负载的细长型内嵌式仿生绞车。

Description

一种南极冰下湖取样探测用内嵌式仿生绞车 技术领域
本发明涉及一种内嵌式仿生绞车,更具体地说涉及一种南极冰下湖取样探测用内嵌式仿生绞车。
背景技术
迄今为止,通过航空遥感以及无线电回波探测手段,科学家已经在南北极探测出数百个冰下湖泊,其中包括:在南极冰盖下探测到的400多个、在北极格陵兰岛冰盖下探测出50多个冰下湖泊以及冰下水系。科学界普遍认为,南北极陆基冰下水系形成于冰下地源热流、顶部冰层高压与冰川-陆地间相对滑移的共同作用,但由于探测手段的限制,对于冰下湖的形成演变过程、冰下湖对冰盖物质平衡的影响等科学问题仍留在基于间接探测数据的猜想阶段。获取无污染的冰下湖湖水样品可为科学家认识冰下湖、冰下水系提供关键的样品,使人类更为直接的了解南极冰下水系的形成过程。
现有技术中,应用于南极冰下湖探测的绞车设置在地面,通过绞车上的电缆经由钻孔通道将探测器放入冰下湖体内,并在取样完成后将探测器提拉至地表。
然而,由于钻孔通道的存在,使冰下湖环境与地表连通,容易造成冰下湖水污染,无法获取原状湖水样品。
发明内容
针对现有应用于南极恶劣环境的绞车存在的弊端,本发明的目的是提供一种南极冰下湖取样探测用内嵌式仿生绞车。
本发明为实现上述目的采用的技术方案是:一种南极冰下湖取样探测用内嵌式仿生绞车,应用于探测器,包括:促动舱、动力舱、排绳舱及电缆;
所述促动舱、所述动力舱及所述排绳舱设置在所述探测器的内部,且沿着所述探测器的中心线往所述探测器的钻进端方向依次同轴布置;
所述促动舱配置有槽轮组件,以减小所述排绳舱承受所述探测器爬升或下降的负载;
所述排绳舱配置有卷筒,所述卷筒用于预缠绕所述电缆;
所述动力舱用于为所述促动舱的槽轮组件和所述排绳舱的卷筒提供动力,以收放所述电缆。
可选地,还包括传感器舱,所述传感器舱设置在所述动力舱和所述排绳舱之间,所述传感器舱中配置有张力传感器,所述张力传感器用于获取所述电缆进入所述排绳舱时的张力值,以控制所述排绳舱收放所述电缆。
可选地,所述传感器舱包括传感器舱壳体、第一连接板、第三齿轮、丝杠传动轴、丝杠、第四齿轮、第二传动轴、传感器支架、张力传感器及第二连接板;
所述第一连接板与传感器舱壳体固定;
所述第三齿轮固定在丝杠传动轴上,所述第三齿轮和第二齿轮啮合连接;
所述丝杠传动轴的上部固定在第一连接板上,丝杠传动轴的下部与丝杠连接;
所述第四齿轮固定在第二传动轴上;第四齿轮与第一齿轮啮合连接;
所述第二传动轴的上部固定在第一连接板上,第二传动轴的下部与卷筒连接;
所述传感器支架固定在第一连接板上;
所述张力传感器固定在传感器支架上;
所述第二连接板与传感器舱壳体连接,第二连接板与卷筒和丝杠固定连接。
可选地,还包括过渡舱,所述过渡舱在所述动力舱和所述传感器舱之间,以使所述动力舱将动力传递给所述排绳舱。
可选地,所述过渡舱包括第一齿轮、第二齿轮、过渡舱盖板、联轴器及过渡舱壳体;
所述过渡舱壳体的一端与动力舱端盖同轴连接,过渡舱壳体的另一端与过渡舱盖板固定;
所述第一齿轮和第二齿轮分别与两个所述联轴器连接。
可选地,还包括滑环舱,所述滑环舱用于与所述排绳舱连接,所述滑环舱配置有滑环,以在所述卷筒旋转过程中实现电力和通讯传输。
可选地,所述滑环舱包括滑环连接轴、滑环舱壳体及滑环;所述滑环连接轴上部与卷筒连接,滑环连接轴的下部与滑环固定连接;滑环固定在滑环舱壳体上。
可选地,包括:所述促动舱、所述动力舱、所述过渡舱、所述传感器舱、所述排绳舱及所述滑环舱相互之间采用可拆卸方式同轴连接。
可选地,所述促动舱包括上板、槽轮座、从动槽轮轴、第一传动轴、惰轮轴、惰轮、促动上壳体、开口销、促动下壳体、调节螺母、主动锥齿轮、从动锥齿轮、下导轮销、主动槽轮轴、上导轮销及上导轮;
所述促动上壳体为两端开口并呈中空的管状结构,促动上壳体的一端开口处设置有上板,促动上壳体的另一端开口处设置有促动下壳体,所述促动上壳体的下部内壁上设置有凸台;
所述主动槽轮轴和从动槽轮轴安装在槽轮座上;
所述槽轮座的外侧壁与促动上壳体的内侧壁配合,所述槽轮座的一端与上板可拆卸式连接,所述槽轮座的另一端与促动下壳体可拆卸连接并且所述槽轮座的另一端的端面与促动上壳体的凸台台面配合;
所述上导轮销固定在上板的轴孔内,上导轮销的两端设置有开口销;所述上导轮安装在上导轮销上;
所述主动锥齿轮的上部依次穿过促动下壳体和促动上壳体,且所述主动锥齿轮与促动上壳体固定,所述主动锥齿轮下部与调节螺母螺纹连接;
所述从动锥齿轮与主动锥齿轮啮合连接,所述从动锥齿轮与惰轮啮合连接,所述从动锥齿轮固定在槽轮座上;
所述惰轮与主动槽轮轴啮合连接,所述惰轮安装在惰轮轴上,所述惰轮轴与槽轮座固定;
所述下导轮销安装在槽轮座上;
所述第一传动轴设置在主动槽轮轴和从动槽轮轴之间,所述第一传动轴的一端与主动槽轮轴连接,所述第一传动轴的另一端与从动槽轮轴连接,所述第一传动轴安装在槽轮座上。
可选地,所述主动槽轮轴和所述从动槽轮轴均由槽轮轴、槽轮和齿轮 构成,且槽轮轴、槽轮和齿轮为一体式结构,所述主动槽轮轴和所述从动槽轮轴上的齿轮相同。
可选地,所述动力舱包括第一电机、动力舱壳体上部、第二电机、动力舱壳体下部、动力舱端盖及第三电机;
所述动力舱壳体上部和动力舱壳体下部呈同轴设置且连接固定;
所述动力舱端盖与动力舱壳体下部的底端连接;
所述第一电机固定在动力舱壳体上部,所述第一电机的输出轴穿出动力舱壳体上部与主动锥齿轮同轴连接;
所述第二电机和第三电机固定在动力舱端盖上,所述第二电机的输出轴穿出动力舱端盖通过联轴器与第一齿轮的齿轮轴同轴连接;所述第三电机的输出轴穿出动力舱端盖通过联轴器与第二齿轮的齿轮轴同轴连接。
可选地,所述排绳舱还包括导轨、滑车导轮、挡块、丝杠、排绳舱壳体、第七轴承、第三连接板及接近开关;
所述导轨固定在排绳舱壳体上,所述滑车导轮与丝杠螺纹配合,在所述丝杠的带动下滑车导轮沿导轨滑动;
所述第三连接板固定在排绳舱壳体上;
所述卷筒通过第七轴承固定在第三连接板上;
所述接近开关固定在第三连接板上;
所述挡块固定在卷筒两端。
可选地,包括:所述促动舱、所述动力舱、所述过渡舱、所述传感器舱、所述排绳舱及所述滑环舱,所述促动舱、所述动力舱、所述过渡舱、所述传感器舱、所述排绳舱及所述滑环舱顺次布置,相互之间采用可拆卸方式同轴连接;
所述促动舱包括上板、槽轮座、从动槽轮轴、第一圆锥滚子轴承、第二圆锥滚子轴承、第一传动轴、惰轮轴、滚针轴承、惰轮、促动上壳体、开口销、促动下壳体、调节螺母、主动锥齿轮、从动锥齿轮、下导轮销、主动槽轮轴、上导轮销及上导轮,所述促动上壳体为两端开口并呈中空的管状结构,促动上壳体的一端开口处设置有上板,且促动上壳体和上板通过螺钉固定连接,促动上壳体的另一端开口处设置有促动下壳体,且促动上壳体与促动下壳体通过螺钉固定连接,同时促动上壳体的下部内壁上设置有凸台;所述主动槽轮轴和从动槽轮轴通过各自对应的第一圆锥滚子轴 承安装在槽轮座上;所述槽轮座的外侧壁与促动上壳体的内侧壁进行配合,槽轮座的一端与上板可拆卸式连接,槽轮座的另一端端面与促动上壳体的凸台台面配合,同时该端与促动下壳体可拆卸连接;所述上导轮销固定在上板的轴孔内,上导轮销的两端设置有开口销;所述上导轮通过第一轴承安装在上导轮销中部;所述主动锥齿轮的上部依次穿过促动下壳体和促动上壳体,且主动锥齿轮通过轴承固定在促动上壳体底部的轴孔内,主动锥齿轮下部与调节螺母螺纹连接;所述从动锥齿轮与主动锥齿轮啮合连接,同时从动锥齿轮与惰轮啮合连接,从动锥齿轮通过轴承固定在槽轮座上;所述惰轮与主动槽轮轴啮合连接,惰轮通过滚针轴承安装在惰轮轴上;所述惰轮轴与槽轮座螺纹连接;所述下导轮销采用螺纹连接到槽轮座上;所述第一传动轴设置在主动槽轮轴和从动槽轮轴之间,第一传动轴的一端与主动槽轮轴连接,第一传动轴的另一端与从动槽轮轴连接,第一传动轴通过第二圆锥滚子轴承安装在槽轮座上;
所述动力舱包括第一电机、动力舱壳体上部、第二电机、动力舱壳体下部、动力舱端盖及第三电机,所述动力舱壳体上部和动力舱壳体下部呈同轴设置且通过螺纹连接,动力舱壳体上部和动力舱壳体下部之间安装有O型圈;所述动力舱端盖通过螺钉与动力舱壳体下部的底端连接;所述第一电机采用螺钉固定在动力舱壳体上部上,并在螺钉与动力舱壳体上部的连接处设置有组合垫圈,第一电机的输出轴穿出动力舱壳体上部与主动锥齿轮同轴连接,并在第一电机的输出轴与动力舱壳体上部连接处设置有格莱圈;所述第二电机和第三电机分别通过螺钉固定在动力舱端盖上,并在螺钉与动力舱端盖的连接处设置有组合垫圈,第二电机的输出轴穿出动力舱端盖通过联轴器与第一齿轮的齿轮轴同轴连接,并在第二电机的输出轴与动力舱端盖连接处设置有格莱圈;所述第三电机的输出轴穿出动力舱端盖通过联轴器与第二齿轮的齿轮轴同轴连接,并在第三电机的输出轴与动力舱端盖连接处设置有格莱圈;
所述过渡舱包括第一齿轮、第二齿轮、第二轴承、过渡舱盖板、联轴器及过渡舱壳体,所述过渡舱壳体的一端与动力舱端盖同轴密封连接,过渡舱壳体的另一端与过渡舱盖板焊接,第一齿轮和第二齿轮的齿轮轴均为阶梯轴,第一齿轮和第二齿轮的齿轮轴轴肩分别作用于各自对应的第二轴承上;所述第二轴承安装在过渡舱盖板上,第二轴承的两侧分别设置有第 一挡圈和第二挡圈;所述联轴器的数量为两个,两个联轴器分别连接在第一齿轮和第二齿轮的齿轮轴轴端;
所述传感器舱包括传感器舱壳体、第三齿轮、张力传感器、第一垫圈、第一键、第三挡圈、第三轴承、第四齿轮、第四轴套、第二垫圈、第二键、第一轴套、第四挡圈、第四轴承、第二轴套、第一连接板、第三轴套、第二传动轴、第一顶丝、传感器支架、第二连接板、第五轴承、第六轴承、第二顶丝及丝杠传动轴,第一连接板与传感器舱壳体通过螺钉连接;第三齿轮通过第一垫圈和第一键固定在丝杠传动轴上,第三齿轮和第二齿轮啮合连接;丝杠传动轴的上部通过第三轴承和第三挡圈固定在第一连接板上,且丝杠传动轴外部与其同轴套设有第四轴套和第三轴套,第四轴套位于第三轴承上方,第三轴套位于第三轴承下方,丝杠传动轴的下部通过第二顶丝与丝杠连接;第四齿轮通过第二垫圈固定在第二传动轴上,第四齿轮和第二传动轴之间设置有第一轴套,第四齿轮与第一齿轮啮合连接;第二传动轴的上部通过第二键、第四轴承、第四挡圈及第二轴套固定在第一连接板上,第二传动轴的下部通过第一顶丝与卷筒连接;传感器支架通过螺钉固定在第一连接板上;张力传感器通过螺钉固定在传感器支架上;第二连接板通过螺钉与传感器舱壳体连接,第二连接板上设置有第五轴承和第六轴承,第五轴承用于将卷筒固定在第二连接板上,第六轴承用于将丝杠固定在第二连接板上;
所述排绳舱包括卷筒、导轨、滑车导轮、挡块、丝杠、排绳舱壳体、第七轴承、第三连接板及接近开关,导轨通过螺钉固定在排绳舱壳体上,滑车导轮与丝杠采用螺纹配合,在丝杠的带动下滑车导轮沿导轨滑动;第三连接板通过螺钉固定在排绳舱壳体上;卷筒通过第七轴承固定在第三连接板上;接近开关通过螺纹固定在第三连接板上;挡块采用螺钉固定在卷筒两端;
所述滑环舱包括第三顶丝、滑环连接轴、滑环舱壳体及滑环,滑环连接轴上部通过第三顶丝与卷筒连接,滑环连接轴的下部通过螺钉与滑环固定连接;滑环固定在滑环舱壳体上。
可选地,所述主动槽轮轴和从动槽轮轴均由槽轮轴、槽轮和齿轮构成,且槽轮轴、槽轮和齿轮为一体式结构,主动槽轮轴和从动槽轮轴上的齿轮相同。
可选地,所述第一圆锥滚子轴承分别与主动槽轮轴、从动槽轮轴及槽轮座之间设置有第二调紧垫圈。
可选地,所述主动锥齿轮为一体式结构,主动锥齿轮包括锥齿轮和阶梯轴,锥齿轮位于阶梯轴的轴肩端,阶梯轴远离锥齿轮的一端上具有螺纹。
可选地,在从动锥齿轮和槽轮座连接处设置有第一调整垫圈。
可选地,所述惰轮和惰轮轴之间设置有调整垫片。
可选地,所述主动锥齿轮的轴肩下端面与调节螺母之间设置有垫片。
通过上述设计方案,本发明可以带来如下有益效果:
1、本发明借鉴蜘蛛吐丝实现自身爬升和下落的原理,根据仿生学理论,发明了一种可用于极地冰川冰内探测的内嵌式仿生绞车,最大可能的降低探测器对冰内环境的污染。
2、本发明采用模块化设计,将绞车各部分功能及结构模块化;多个零件采用一体化设计结构,装配简单,便于更换和维修,具有较好的互换性。
3、本发明根据欧拉原理,利用槽轮组形式实现了电缆输入输出端大减力比,实现小体积、大负载的性能需求,并能够在南极冰下湖恶劣的水下环境中进行工作。
4、动力舱壳体一体多用,在有限的空间内既能实现水下抗压密封需求,又能实现电机部分的支撑,并且连接了整个绞车;极大提高了空间利用率并使结构得以简化。
5、通过优化结构强度刚度以及空间自由度,实现排绳舱的微型化;通过优化辅助支撑以及增加滑车导轮的自由度;使得电缆缠绕更具柔顺性。
6、本发明优化结构形式与尺寸,优化空间利用率,使得结构在直径很小(140毫米)的壳体内部进行合理布置,最终形成一种细长型绞车,体积与重量较小,轻便简洁。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明示意性实施例及其说明用于理解本发明,并不构成本发明的不当限定,在附图中:
图1是本发明所提出的一种南极冰下湖取样探测用内嵌式仿生绞车的 结构示意图一;
图2是本发明所提出的一种南极冰下湖取样探测用内嵌式仿生绞车的结构示意图二;
图3是本发明中促动舱的结构示意图;
图4是图3的A-A线剖视图;
图5是本发明中动力舱的结构示意图;
图6是本发明中过渡舱舱结构示意图;
图7是本发明中传感器舱结构示意图;
图8是本发明中排绳舱结构示意图;
图9是本发明中滑环舱结构示意图;
图10是图2的A-A线剖视图;
图11是图2的B-B线剖视图;
图12是图2的C-C线剖视图;
图13是图2的D-D线剖视图;
图14是图2的E-E线剖视图。
附图标记说明:
1-促动舱;2-动力舱;3-过渡舱;4-传感器舱;5-排绳舱;6-滑环舱;7-电缆;11-上板;12-第一轴承;13-槽轮座;14-从动槽轮轴;15-第一圆锥滚子轴承;16-第二圆锥滚子轴承;17-第一传动轴;18-惰轮轴;19-滚针轴承;110-惰轮;111-调整垫片;112-促动上壳体;113-开口销;114-促动下壳体;115-调节螺母;116-主动锥齿轮;117-垫片;118-从动锥齿轮;119-第一调整垫圈;120-下导轮销;121-主动槽轮轴;122-第二调紧垫圈;123-上导轮销;124-上导轮;21-第一电机;22-组合垫圈;23-格莱圈;24-动力舱壳体上部;25-第二电机;26-动力舱壳体下部;27-动力舱端盖;28-第三电机;29-O型圈;31-第一齿轮;32-第一挡圈;33-第二齿轮;34-第二轴承;35-第二挡圈;36-过渡舱盖板;37-联轴器;38-过渡舱壳体;41-传感器舱壳体;42-第三齿轮;43-张力传感器;44-第一垫圈;45-第一键;46-第三挡圈;47-第三轴承;48-第四齿轮;49-第四轴套;410-第二垫圈;411-第二键;412-第一轴套;413-第四挡圈;414-第四轴承;415-第二轴套;416-第一连接板;417-第三轴套;418-第二传动轴;419-第一顶丝;420-传感器支架;421-第二连接板;422-第五轴承;423-第六轴承;424-第二顶丝;425- 丝杠传动轴;51-卷筒;52-导轨;53-滑车导轮;54-挡块;55-丝杠;56-排绳舱壳体;57-第七轴承;58-第三连接板;59-接近开关;61-第三顶丝;62-滑环连接轴;63-滑环舱壳体;64-滑环。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。本领域技术人员应当理解。下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
在本发明的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”及“第七”仅用于描述目的,限定有“第一”、“第二”、“第三”、“第四”、“第五”、“第六”及“第七”的特征并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。
本发明借鉴蜘蛛吐丝实现自身爬升和下落的原理,根据仿生学理论,提供了一种可放置在小直径探测器内部的内嵌式仿生绞车,具备小体积大负载的性能要求,并可长期在水环境中工作。搭载该内嵌式仿生绞车,可使探测器自动穿梭于冰盖内部,到达冰下湖采样后再自动返回地表,尽可能避免了外界污染源对湖水的影响。
图1是本发明所提出的一种南极冰下湖取样探测用内嵌式仿生绞车的结构示意图一;图2是本发明所提出的一种南极冰下湖取样探测用内嵌式仿生绞车的结构示意图二;图3是本发明中促动舱的结构示意图;图4是图3的A-A线剖视图;图5是本发明中动力舱的结构示意图;图6是本发明中过渡舱舱结构示意图;图7是本发明中传感器舱结构示意图;图8是本发明中排绳舱结构示意图;图9是本发明中滑环舱结构示意图;图10是图2的A-A线剖视图;图11是图2的B-B线剖视图;图12是图2的C-C线剖视图;图13是图2的D-D线剖视图;图14是图2的E-E线剖视图。
如图所示,一种南极冰下湖取样探测用内嵌式仿生绞车,应用于探测器,包括:促动舱1、动力舱2、排绳舱5及电缆7;促动舱1、动力舱2及排绳舱5设置在探测器的内部,且沿着探测器的中心线往探测器的钻进 端方向依次同轴布置;促动舱1配置有槽轮组件,以减小排绳舱5承受探测器爬升或下降的负载;排绳舱5配置有卷筒51,卷筒51用于预缠绕电缆7;动力舱2用于为促动舱1的槽轮组件和排绳舱5的卷筒51提供动力。
其中,本发明提供的南极冰下湖取样探测用内嵌式仿生绞车在直径很小(例如140毫米)的壳体内部进行合理布置,形成一种细长型绞车,从而使得本发明提供的南极冰下湖取样探测用内嵌式仿生绞车体积与重量较小,轻便简洁。
可选地,还包括传感器舱4,传感器舱4设置在动力舱2和排绳舱5之间,传感器舱4中配置有张力传感器43,张力传感器43用于获取电缆7进入排绳舱5时的张力值,以控制排绳舱5收放电缆7。
其中,张力传感器43通过测得电缆7进入排绳舱5时的张力值,可以使得排绳舱5根据电缆7的松紧度控制收放电缆7。具体地,电缆7穿过张力传感器43,可测得电缆7从传感器舱4进入排绳舱5时的张力值,从而通过测得的张力值可控制排绳舱5收放电缆7。例如,当探测器爬升时,张力传感器43测得电缆7的张力值小于设定值,排绳舱5收电缆7,张力传感器43测得电缆7的张力值大于等于设定值,排绳舱5停止收电缆7;当探测器下降时,张力传感器43测得电缆7的张力值小于设定值,排绳舱5放电缆7,张力传感器43测得电缆7的张力值大于等于设定值,排绳舱5停止放电缆7。
可选地,还包括过渡舱3,过渡舱3设置在动力舱2和传感器舱4之间,以使动力舱2将动力传递给排绳舱5。
其中,在动力舱2和排绳舱5之间设置过渡舱3是为了将动力舱2的动力传递给排绳舱5的卷筒51,从而使得卷筒51收放电缆7。
可选地,还包括滑环舱6,滑环舱6用于与排绳舱5连接,滑环舱6配置有滑环64,以在卷筒51旋转过程中实现电力和通讯传输。
其中,滑环64包括旋转部分和静止部分。旋转部分连接排绳舱5的卷筒51,静止部分连接探测器,从而保证卷筒51旋转缠绕电缆7时电缆接头部分相对静止以保护电缆接头,进而使得卷筒51旋转过程中实现电力和通讯传输。
如图1至14所示,一种南极冰下湖取样探测用内嵌式仿生绞车,包括促动舱1、动力舱2、过渡舱3、传感器舱4、排绳舱5、滑环舱6及电缆7。 绞车总体功能划分:由于整个探测器的重量通过电缆7作用到排绳舱5,为保证排绳舱5的卷筒51刚度要求,需要将促动舱1与排绳舱5分开,即促动舱1来承受整个探测器爬升下降的负载,排绳舱5来实现电缆7的准确排放功能。
其中,促动舱1、动力舱2、过渡舱3、传感器舱4、排绳舱5及滑环舱6顺次同轴布置,相互之间采用止口进行定位,并通过螺钉进行连接,此处不仅限于止口定位,螺钉连接方式,还可以包含其它轴向连接,如法兰连接,这样可以将绞车进行拆分,可进行逐段装配、调整、维修等,便于更换和维修,具有较好的互换性。
示例性地,探测器包括钻进端。沿着探测器的中心线往探测器的钻进端方向上依次同轴布置有促动舱1、动力舱2、过渡舱3、传感器舱4、排绳舱5及滑环舱6。
促动舱1配置有槽轮组件,以减小排绳舱5承受探测器爬升或下降的负载。其中,槽轮组件包括从动槽轮轴14、从动锥齿轮118、主动槽轮轴121及主动锥齿轮116。
需要说明的是,根据欧拉原理,促动舱1利用槽轮组件实现了电缆7输入输出端大减力比,以及实现小体积、大负载的性能需求,并能够在南极冰下湖恶劣的水下环境中进行工作。
在一种可选的实施方式中,促动舱1包括上板11、槽轮座13、从动槽轮轴14、第一圆锥滚子轴承15、第二圆锥滚子轴承16、第一传动轴17、惰轮轴18、滚针轴承19、惰轮110、促动上壳体112、开口销113、促动下壳体114、调节螺母115、主动锥齿轮116、从动锥齿轮118、下导轮销120、主动槽轮轴121、上导轮销123及上导轮124,促动上壳体112为两端开口并呈中空的管状结构,促动上壳体112的一端开口处设置有上板11,且促动上壳体112和上板11通过螺钉固定连接,促动上壳体112的另一端开口处设置有促动下壳体114,且促动上壳体112与促动下壳体114通过螺钉固定连接,同时促动上壳体112的下部内壁上设置有凸台;主动槽轮轴121和从动槽轮轴14通过各自对应的第一圆锥滚子轴承15安装在槽轮座13上;第一圆锥滚子轴承15分别与主动槽轮轴121、从动槽轮轴14及槽轮座13之间均设置有第二调紧垫圈122,对于两个槽轮轴与槽轮座13间第一圆锥滚子轴承15的预紧和间隙的调节;槽轮座13的外侧壁与促动 上壳体112的内侧壁进行配合,进一步,槽轮座13侧面形成140毫米直径的圆柱面,与内外为圆柱面的促动上壳体112的进行配合,实现槽轮座13轴向定位,槽轮座13的一端与上板11可拆卸式连接,槽轮座13的另一端端面与促动上壳体112的凸台台面配合,同时该端与促动下壳体114可拆卸连接;上导轮销123固定在上板11的轴孔内,上导轮销123的两端设置有开口销113进行限位;上导轮124通过第一轴承12安装在上导轮销123中部,上导轮124可相对上导轮销123自由转动;主动锥齿轮116为一体式结构,主动锥齿轮116包括锥齿轮和阶梯轴,锥齿轮位于阶梯轴的轴肩端,阶梯轴远离锥齿轮的一端上具有螺纹,主动锥齿轮116的上部依次穿过促动下壳体114和促动上壳体112,且主动锥齿轮116通过轴承固定在促动上壳体112底部的轴孔内,主动锥齿轮116下部与调节螺母115螺纹连接,并在主动锥齿轮116的轴肩下端面与调节螺母115之间设置有垫片117,通过控制调节螺母115进行轴承的预紧以及轴承与主动锥齿轮116间隙的调整,采用双螺母防松方式;从动锥齿轮118与主动锥齿轮116啮合连接,同时从动锥齿轮118与惰轮110啮合连接,从动锥齿轮118通过轴承固定在槽轮座13上,并在从动锥齿轮118和槽轮座13连接处设置有第一调整垫圈119,通过第一调整垫圈119调节从动锥齿轮118位置;惰轮110与主动槽轮轴121啮合连接,惰轮110通过滚针轴承19安装在惰轮轴18上,惰轮110和惰轮轴18之间设置有调整垫片111,通过调整垫片111实现惰轮110位置调节;惰轮轴18与槽轮座13螺纹连接;下导轮销120采用螺纹连接到槽轮座13上;第一传动轴17设置在主动槽轮轴121和从动槽轮轴14之间,主动槽轮轴121、第一传动轴17和从动槽轮轴14联动,第一传动轴17通过第二圆锥滚子轴承16安装在槽轮座13上,主动槽轮轴121通过第一传动轴17可带动从动槽轮轴14旋转。
需要说明的是,主动锥齿轮116采用一体式结构,使得装配简单,便于更换和维修,具有较好的互换性。
动力舱2用于为促动舱1和排绳舱5提供动力。
在一种可选的实施方式中,动力舱2包括第一电机21、动力舱壳体上部24、第二电机25、动力舱壳体下部26、动力舱端盖27及第三电机28,动力舱壳体上部24和动力舱壳体下部26呈同轴设置且通过螺纹连接,动力舱壳体上部24和动力舱壳体下部26之间安装有O型圈29,用于实现动 力舱壳体上部24和动力舱壳体下部26密封连接;动力舱端盖27通过螺钉与动力舱壳体下部26的底端连接;第一电机21采用螺钉固定在动力舱壳体上部24上,并在螺钉与动力舱壳体上部24的连接处设置有组合垫圈22,利用组合垫圈22对螺钉和动力舱壳体上部24进行密封,第一电机21的输出轴穿出动力舱壳体上部24与主动锥齿轮116同轴连接,并在第一电机21的输出轴与动力舱壳体上部24连接处设置有格莱圈23实现密封;第二电机25和第三电机28分别通过螺钉固定在动力舱端盖27上,并在螺钉与动力舱端盖27的连接处设置有组合垫圈22,利用组合垫圈22对螺钉和动力舱端盖27进行密封,第二电机25的输出轴穿出动力舱端盖27通过联轴器37与第一齿轮31的齿轮轴同轴连接,第二电机25用于驱动第一齿轮31与其同步转动,并在第二电机25的输出轴与动力舱端盖27连接处设置有格莱圈23实现密封;第三电机28的输出轴穿出动力舱端盖27通过联轴器37与第二齿轮33的齿轮轴同轴连接,第三电机28用于驱动第二齿轮33与其同步转动,并在第三电机28的输出轴与动力舱端盖27连接处设置有格莱圈23实现密封。
需要说明的是,动力舱壳体上部24、动力舱壳体下部26及动力舱端盖27构成整个动力舱壳体,整个动力舱壳体采用高强度铝合金制造,既能承受一定水深的压力,又进行了密封,并且还作为整个动力舱壳体内部电机的支撑,连接了整个绞车;整个动力舱壳体一体多用,极大提高了空间利用率并使结构得以简化。同时动力舱壳体在浸没在水环境中后,可产生一定的浮力,从而抵消了部分探测器重量,有助于改善电缆7的受力状况。
过渡舱3和传感器舱4用于连接动力舱2和排绳舱5,以使动力舱将动力传递给排绳舱5。
其中,在动力舱2和排绳舱5之间设置过渡舱3是为了将动力舱2的第二电机25动力传递给丝杠55,以及将动力舱2的第三电机28的动力传递给筒51。
在一种可选的实施方式中,过渡舱3包括第一齿轮31、第二齿轮33、第二轴承34、过渡舱盖板36、联轴器37及过渡舱壳体38,过渡舱壳体38的一端与动力舱端盖27同轴密封连接,过渡舱壳体38的另一端与过渡舱盖板36焊接,第一齿轮31和第二齿轮33的齿轮轴均为阶梯轴,第一齿轮31和第二齿轮33的齿轮轴轴肩分别作用于各自对应的第二轴承34上;第 二轴承34安装在过渡舱盖板36上,第二轴承34的两侧分别设置有第一挡圈32和第二挡圈35,通过第一挡圈32和第二挡圈35进行锁紧;联轴器37数量为两个,两个联轴器37分别连接在第一齿轮31和第二齿轮33的齿轮轴轴端。
传感器舱4中设置有张力传感器43,张力传感器43用于获取电缆7进入排绳舱5时的张力值,以控制排绳舱5收放电缆7。
在一种可选的实施方式中,传感器舱4包括传感器舱壳体41、第三齿轮42、张力传感器43、第一垫圈44、第一键45、第三挡圈46、第三轴承47、第四齿轮48、第四轴套49、第二垫圈410、第二键411、第一轴套412、第四挡圈413、第四轴承414、第二轴套415、第一连接板416、第三轴套417、第二传动轴418、第一顶丝419、传感器支架420、第二连接板421、第五轴承422、第六轴承423、第二顶丝424及丝杠传动轴425,传感器舱壳体41通过螺钉与过渡舱壳体38连接;第一连接板416与传感器舱壳体41通过螺钉连接;第三齿轮42通过第一垫圈44和第一键45固定在丝杠传动轴425上,第三齿轮42和第二齿轮33啮合连接;丝杠传动轴425的上部通过第三轴承47和第三挡圈46固定在第一连接板416上,通过第三轴承47作用在第一连接板416上,保证第三齿轮42及丝杠传动轴425能够顺利旋转运动,且丝杠传动轴425外部与其同轴套设有第四轴套49和第三轴套417,第四轴套49位于第三轴承47上方,第三轴套417位于第三轴承47下方,通过第三轴套417进行轴向尺寸调节,实现限位,丝杠传动轴425的下部通过第二顶丝424与丝杠55连接;第四齿轮48通过第二垫圈410固定在第二传动轴418上,第四齿轮48与第一齿轮31啮合连接;第二传动轴418的上部通过第二键411、第四轴承414、第四挡圈413及第二轴套415固定在第一连接板416上,第二传动轴418通过第四轴承414进行轴向紧固,利用第四挡圈413进行轴向调节,利用第二键411进行轴向力矩传递;第二传动轴418和第四齿轮48之间通过第一轴套412进行限位,第二传动轴418的下部通过第一顶丝419与卷筒51连接;传感器支架420通过螺钉固定在第一连接板416上;张力传感器43通过螺钉固定在传感器支架420上;第二连接板421通过螺钉与传感器舱壳体41连接,第二连接板421上设置有第五轴承422和第六轴承423,第五轴承422用于将卷筒51固定在第二连接板421上,第六轴承423用于将丝杠55固定在第 二连接板421上。
排绳舱5包括卷筒51、导轨52、滑车导轮53、挡块54、丝杠55、排绳舱壳体56、第七轴承57、第三连接板58及接近开关59,排绳舱壳体56通过螺钉与传感器舱壳体41固定;导轨52通过螺钉固定在排绳舱壳体56上,滑车导轮53与丝杠55采用螺纹配合,并可沿导轨52上下滑动;第三连接板58通过螺钉固定在排绳舱壳体56上;卷筒51通过第七轴承57固定在第三连接板58上;接近开关59通过螺纹固定在第三连接板58上,对滑车导轮53进行限位,排绳过程中,卷筒51转动实现收绳或放绳,滑车导轮53则带动电缆7上下移动,保证卷筒51上排绳有序进行,当卷筒51第一层布满电缆时,滑车导轮53将碰触接近开关59,从而通过控制系统实现滑车导轮53反向运动,开始第二层排缆;挡块54采用螺钉固定在卷筒51两端,对卷筒51排绳范围进行调节,从而保证当卷筒51布满电缆时,滑车导轮53正好碰触接近开关59,同时挡块54还起到固定卷筒电缆死绳端的作用。
滑环舱6配置有滑环64,以使电缆7的电缆接头部分保持相对静止。
其中,为了电缆7通过排绳舱5后的电缆接头随着卷筒51旋转,在滑环舱6设置滑环64,从而保证卷筒51旋转缠绕电缆7时电缆接头部分相对静止以保护电缆接头,进而使得卷筒51旋转过程中实现电力和通讯传输。
在一种可选的实施方式中,滑环舱6包括第三顶丝61、滑环连接轴62、滑环舱壳体63及滑环64,滑环连接轴62上部通过第三顶丝61与卷筒51连接,滑环连接轴62的下部通过螺钉与滑环64固定连接,滑环64固定在滑环舱壳体63上。
示例性地,电缆7经过上导轮124进入促动舱1中,经过主动槽轮轴121与从动槽轮轴14组成槽轮组的多次缠绕后,直至与主动槽轮轴121和从动槽轮轴14的槽轮上的各个槽都进行接触后,由从动槽轮轴14脱离槽轮组,利用欧拉原理,电缆7经过从动槽轮轴14离开槽轮组后极大地减小输出端的力,再通过下导轮销120导向,穿过位于促动上壳体112凸台的过线孔,进入动力舱2。上导轮124通过上导轮销123,第一轴承12与一体加工的上板11进行安装,为防止电缆7从槽轮脱离,穿过位于促动上壳体112凸台上的过线孔过程中与齿轮干涉,在中间加了下导轮销120,利用螺纹对下导轮销120与槽轮座13进行连接。
电缆7离开促动舱1后通过各个舱的通孔进入动力舱2、过渡舱3后进入传感器舱4、通过张力传感器43后进入排绳舱5,通过张力传感器43可知电缆7进入排绳舱5时电缆7的松紧从而对绞车进行控制;电缆7通过排绳舱5后通过滑车导轮53缠绕于卷筒51上,在卷筒51底部开口将电缆7与滑环电缆进行连接;这样电缆7便通过卷筒51正反转实现电缆7的收放。整个绞车位于探测器内部,是整个探测器的动力源以及电缆7的存储部分,绞车使用时为竖直使用。
第一电机21将动力输送给主动锥齿轮116,经过从动锥齿轮118和惰轮110构成的锥齿轮和直齿轮的二级传动实现减速增力,进而为主动槽轮轴121提供足够的动力使主动槽轮轴121旋转运动,再经过第一传动轴17将动力传递至从动槽轮轴14,主动槽轮轴121和从动槽轮轴14均由槽轮轴、槽轮和齿轮构成,且槽轮轴、槽轮和齿轮为一体式结构,槽轮轴、槽轮和齿轮一体加工以节省空间并增强零件整体强度;主动槽轮轴121和从动槽轮轴14上的齿轮相同,保证了主动槽轮轴121和从动槽轮轴14同速。
第二电机25和第三电机28分别与两个相同的联轴器37连接将动力输出,通过第一齿轮31、第二齿轮33将动力传递,通过各传动轴最后将动力输入到丝杠55以及卷筒51上,电缆7通过滑车导轮53进行导向进入卷筒51;通过调试第二电机25和第三电机28的转速,通过丝杠55与卷筒51配合可实现电缆7的缠绕。通过滑环连接轴62将滑环64与卷筒51连接,滑环64另一端固定于滑环舱壳体63,保证卷筒51旋转缠绕电缆7时电缆接头部分相对静止以保护电缆接头。
卷筒51上端通过第五轴承422作用于第二连接板421上,下端通过第七轴承57作用于第三连接板58上,卷筒51在传感器舱4传递来的动力驱动下进行旋转,并将动力传递至滑环64。导轨52通过螺钉固定于排绳舱壳体56内部,丝杠55通过轴承作用于第二连接板421和第三连接板58上,其空间位置在两个导轨52中间,导轨52起着辅助支撑的作用,丝杠55起着传递动力、将旋转运动转为直线运动的作用。滑车导轮53由两个导轮构成,且两导轮边距离大于电缆7直径,防止电缆7运动过程中松的时候偏出导轮,整个导轮架子可绕着丝杠螺母进行小范围转动以适应电缆7绕卷筒51缠绕过程中直径变化后角度的变化,使得缠绕更加顺滑。
电缆7经过绞车各个部分,最后与滑环电缆相接,保证卷筒51部分旋 转运动缠绕电缆7时,电缆接头处不被破坏。
本发明提供的一种南极冰下湖取样探测用内嵌式仿生绞车可放置在小直径探测器的内部,具备小体积大负载的性能要求,并可长期在水环境中工作。搭载该内嵌式仿生绞车,可使探测器自动穿梭于冰盖内部,到达冰下湖采样后再自动返回地表,尽可能避免了外界污染源对湖水的影响。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种南极冰下湖取样探测用内嵌式仿生绞车,应用于探测器,其特征在于,包括:促动舱(1)、动力舱(2)、排绳舱(5)及电缆(7);
    所述促动舱(1)、所述动力舱(2)及所述排绳舱(5)设置在所述探测器的内部,且沿着所述探测器的中心线往所述探测器的钻进端方向依次同轴布置;
    所述促动舱(1)配置有槽轮组件,以减小所述排绳舱(5)承受所述探测器爬升或下降的负载;
    所述排绳舱(5)配置有卷筒(51),所述卷筒(51)用于预缠绕所述电缆(7);
    所述动力舱(2)用于为所述促动舱(1)的槽轮组件和所述排绳舱(5)的卷筒(51)提供动力,以收放所述电缆(7)。
  2. 根据权利要求1所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,还包括传感器舱(4),所述传感器舱(4)设置在所述动力舱(2)和所述排绳舱(5)之间,所述传感器舱(4)中配置有张力传感器(43),所述张力传感器(43)用于获取所述电缆(7)进入所述排绳舱(5)时的张力值,以控制所述排绳舱(5)收放所述电缆(7)。
  3. 根据权利要求2所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述传感器舱(4)包括传感器舱壳体(41)、第一连接板(416)、第三齿轮(42)、丝杠传动轴(425)、丝杠(55)、第四齿轮(48)、第二传动轴(418)、传感器支架(420)、张力传感器(43)及第二连接板;
    所述第一连接板(416)与传感器舱壳体(41)固定;
    所述第三齿轮(42)固定在丝杠传动轴(425)上,所述第三齿轮(42)和第二齿轮(33)啮合连接;
    所述丝杠传动轴(425)的上部固定在第一连接板(416)上,丝杠传动轴(425)的下部与丝杠(55)连接;
    所述第四齿轮(48)固定在第二传动轴(418)上;第四齿轮(48)与第一齿轮(31)啮合连接;
    所述第二传动轴(418)的上部固定在第一连接板(416)上,第二传动轴(418)的下部与卷筒(51)连接;
    所述传感器支架(420)固定在第一连接板(416)上;
    所述张力传感器(43)固定在传感器支架(420)上;
    所述第二连接板(421)与传感器舱壳体(41)连接,第二连接板(421)与卷筒(51)和丝杠(55)固定连接。
  4. 根据权利要求2或3所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,还包括过渡舱(3),所述过渡舱(3)在所述动力舱(2)和所述传感器舱(4)之间,以使所述动力舱(2)将动力传递给所述排绳舱(5)。
  5. 根据权利要求4所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述过渡舱(3)包括第一齿轮(31)、第二齿轮(33)、过渡舱盖板(36)、联轴器(37)及过渡舱壳体(38),
    所述过渡舱壳体(38)的一端与动力舱端盖(27)同轴连接,过渡舱壳体(38)的另一端与过渡舱盖板(36)固定;
    所述第一齿轮(31)和第二齿轮(33)分别与两个所述联轴器(37)连接。
  6. 根据权利要求4或5所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,还包括滑环舱(6),所述滑环舱(6)用于与所述排绳舱(5)连接,所述滑环舱(6)配置有滑环(64),以在卷筒(51)旋转过程中实现电力和通讯传输。
  7. 根据权利要求6所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述滑环舱(6)包括滑环连接轴(62)、滑环舱壳体(63)及滑环(64);所述滑环连接轴(62)上部与卷筒(51)连接,滑环连接轴(62)的下部与滑环(64)固定连接;滑环(64)固定在滑环舱壳体(63)上。
  8. 根据权利要求6或7所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,包括:所述促动舱(1)、所述动力舱(2)、所述过渡舱(3)、所述传感器舱(4)、所述排绳舱(5)及所述滑环舱(6)相互之间采用可拆卸方式同轴连接。
  9. 根据权利要求1-8任一项所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述促动舱(1)包括上板(11)、槽轮座(13)、从动槽轮轴(14)、第一传动轴(17)、惰轮轴(18)、惰轮(110)、促动 上壳体(112)、开口销(113)、促动下壳体(114)、调节螺母(115)、主动锥齿轮(116)、从动锥齿轮(118)、下导轮销(120)、主动槽轮轴(121)、上导轮销(123)及上导轮(124),
    所述促动上壳体(112)为两端开口并呈中空的管状结构,促动上壳体(112)的一端开口处设置有上板(11),促动上壳体(112)的另一端开口处设置有促动下壳体(114),所述促动上壳体(112)的下部内壁上设置有凸台;
    所述主动槽轮轴(121)和从动槽轮轴(14)安装在槽轮座(13)上;
    所述槽轮座(13)的外侧壁与促动上壳体(112)的内侧壁配合,所述槽轮座(13)的一端与上板(11)可拆卸式连接,所述槽轮座(13)的另一端与促动下壳体(114)可拆卸连接并且所述槽轮座(13)的另一端的端面与促动上壳体(112)的凸台台面配合;
    所述上导轮销(123)固定在上板(11)的轴孔内,上导轮销(123)的两端设置有开口销(113);所述上导轮(124)安装在上导轮销(123)上;
    所述主动锥齿轮(116)的上部依次穿过促动下壳体(114)和促动上壳体(112),且所述主动锥齿轮(116)与促动上壳体(112)固定,所述主动锥齿轮(116)下部与调节螺母(115)螺纹连接;
    所述从动锥齿轮(118)与主动锥齿轮(116)啮合连接,所述从动锥齿轮(118)与惰轮(110)啮合连接,所述从动锥齿轮(118)固定在槽轮座(13)上;
    所述惰轮(110)与主动槽轮轴(121)啮合连接,所述惰轮(110)安装在惰轮轴(18)上,所述惰轮轴(18)与槽轮座(13)固定;
    所述下导轮销(120)安装在槽轮座(13)上;
    所述第一传动轴(17)设置在主动槽轮轴(121)和从动槽轮轴(14)之间,所述第一传动轴(17)的一端与主动槽轮轴(121)连接,所述第一传动轴(17)的另一端与从动槽轮轴(14)连接,所述第一传动轴(17)安装在槽轮座(13)上。
  10. 根据权利要求9所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述主动槽轮轴(121)和所述从动槽轮轴(14)均由槽轮轴、槽轮和齿轮构成,且槽轮轴、槽轮和齿轮为一体式结构,所述主动槽轮轴 (121)和所述从动槽轮轴(14)上的齿轮相同。
  11. 根据权利要求1-10任一项所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述动力舱(2)包括第一电机(21)、动力舱壳体上部(24)、第二电机(25)、动力舱壳体下部(26)、动力舱端盖(27)及第三电机(28),
    所述动力舱壳体上部(24)和动力舱壳体下部(26)呈同轴设置且连接固定;
    所述动力舱端盖(27)与动力舱壳体下部(26)的底端连接;
    所述第一电机(21)固定在动力舱壳体上部(24),所述第一电机(21)的输出轴穿出动力舱壳体上部(24)与主动锥齿轮(116)同轴连接;
    所述第二电机(25)和第三电机(28)固定在动力舱端盖(27)上,所述第二电机(25)的输出轴穿出动力舱端盖(27)通过联轴器(37)与第一齿轮(31)的齿轮轴同轴连接;所述第三电机(28)的输出轴穿出动力舱端盖(27)通过联轴器(37)与第二齿轮(33)的齿轮轴同轴连接。
  12. 根据权利要求1-11任一项所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,所述排绳舱(5)还包括导轨(52)、滑车导轮(53)、挡块(54)、丝杠(55)、排绳舱壳体(56)、第七轴承(57)、第三连接板(58)及接近开关(59),
    所述导轨(52)固定在排绳舱壳体(56)上,所述滑车导轮(53)与丝杠(55)螺纹配合,在所述丝杠(55)的带动下滑车导轮(53)沿导轨(52)滑动;
    所述第三连接板(58)固定在排绳舱壳体(56)上;
    所述卷筒(51)通过第七轴承(57)固定在第三连接板(58)上;
    所述接近开关(59)固定在第三连接板(58)上;
    所述挡块(54)固定在卷筒(51)两端。
  13. 一种南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,包括:促动舱(1)、动力舱(2)、过渡舱(3)、传感器舱(4)、排绳舱(5)及滑环舱(6),促动舱(1)、动力舱(2)、过渡舱(3)、传感器舱(4)、排绳舱(5)及滑环舱(6)顺次布置,相互之间采用可拆卸方式同轴连接,
    所述促动舱(1)包括上板(11)、槽轮座(13)、从动槽轮轴(14)、第一圆锥滚子轴承(15)、第二圆锥滚子轴承(16)、第一传动轴(17)、 惰轮轴(18)、滚针轴承(19)、惰轮(110)、促动上壳体(112)、开口销(113)、促动下壳体(114)、调节螺母(115)、主动锥齿轮(116)、从动锥齿轮(118)、下导轮销(120)、主动槽轮轴(121)、上导轮销(123)及上导轮(124),所述促动上壳体(112)为两端开口并呈中空的管状结构,促动上壳体(112)的一端开口处设置有上板(11),且促动上壳体(112)和上板(11)通过螺钉固定连接,促动上壳体(112)的另一端开口处设置有促动下壳体(114),且促动上壳体(112)与促动下壳体(114)通过螺钉固定连接,同时促动上壳体(112)的下部内壁上设置有凸台;所述主动槽轮轴(121)和从动槽轮轴(14)通过各自对应的第一圆锥滚子轴承(15)安装在槽轮座(13)上;所述槽轮座(13)的外侧壁与促动上壳体(112)的内侧壁进行配合,槽轮座(13)的一端与上板(11)可拆卸式连接,槽轮座(13)的另一端端面与促动上壳体(112)的凸台台面配合,同时该端与促动下壳体(114)可拆卸连接;所述上导轮销(123)固定在上板(11)的轴孔内,上导轮销(123)的两端设置有开口销(113);所述上导轮(124)通过第一轴承(12)安装在上导轮销(123)中部;所述主动锥齿轮(116)的上部依次穿过促动下壳体(114)和促动上壳体(112),且主动锥齿轮(116)通过轴承固定在促动上壳体(112)底部的轴孔内,主动锥齿轮(116)下部与调节螺母(115)螺纹连接;所述从动锥齿轮(118)与主动锥齿轮(116)啮合连接,同时从动锥齿轮(118)与惰轮(110)啮合连接,从动锥齿轮(118)通过轴承固定在槽轮座(13)上,所述惰轮(110)与主动槽轮轴(121)啮合连接,惰轮(110)通过滚针轴承(19)安装在惰轮轴(18)上,所述惰轮轴(18)与槽轮座(13)螺纹连接;所述下导轮销(120)采用螺纹连接到槽轮座(13)上;所述第一传动轴(17)设置在主动槽轮轴(121)和从动槽轮轴(14)之间,第一传动轴(17)的一端与主动槽轮轴(121)连接,第一传动轴(17)的另一端与从动槽轮轴(14)连接,第一传动轴(17)通过第二圆锥滚子轴承(16)安装在槽轮座(13)上;
    所述动力舱(2)包括第一电机(21)、动力舱壳体上部(24)、第二电机(25)、动力舱壳体下部(26)、动力舱端盖(27)及第三电机(28),所述动力舱壳体上部(24)和动力舱壳体下部(26)呈同轴设置且通过螺纹连接,动力舱壳体上部(24)和动力舱壳体下部(26)之间安装有O型圈(29);所述动力舱端盖(27)通过螺钉与动力舱壳体下部(26)的底 端连接;所述第一电机(21)采用螺钉固定在动力舱壳体上部(24)上,并在螺钉与动力舱壳体上部(24)的连接处设置有组合垫圈(22),第一电机(21)的输出轴穿出动力舱壳体上部(24)与主动锥齿轮(116)同轴连接,并在第一电机(21)的输出轴与动力舱壳体上部(24)连接处设置有格莱圈(23);所述第二电机(25)和第三电机(28)分别通过螺钉固定在动力舱端盖(27)上,并在螺钉与动力舱端盖(27)的连接处设置有组合垫圈(22),第二电机(25)的输出轴穿出动力舱端盖(27)通过联轴器(37)与第一齿轮(31)的齿轮轴同轴连接,并在第二电机(25)的输出轴与动力舱端盖(27)连接处设置有格莱圈(23);所述第三电机(28)的输出轴穿出动力舱端盖(27)通过联轴器(37)与第二齿轮(33)的齿轮轴同轴连接,并在第三电机(28)的输出轴与动力舱端盖(27)连接处设置有格莱圈(23);
    所述过渡舱(3)包括第一齿轮(31)、第二齿轮(33)、第二轴承(34)、过渡舱盖板(36)、联轴器(37)及过渡舱壳体(38),所述过渡舱壳体(38)的一端与动力舱端盖(27)同轴密封连接,过渡舱壳体(38)的另一端与过渡舱盖板(36)焊接,第一齿轮(31)和第二齿轮(33)的齿轮轴均为阶梯轴,第一齿轮(31)和第二齿轮(33)的齿轮轴轴肩分别作用于各自对应的第二轴承(34)上;所述第二轴承(34)安装在过渡舱盖板(36)上,第二轴承(34)的两侧分别设置有第一挡圈(32)和第二挡圈(35);所述联轴器(37)的数量为两个,两个联轴器(37)分别连接在第一齿轮(31)和第二齿轮(33)的齿轮轴轴端;
    所述传感器舱(4)包括传感器舱壳体(41)、第三齿轮(42)、张力传感器(43)、第一垫圈(44)、第一键(45)、第三挡圈(46)、第三轴承(47)、第四齿轮(48)、第四轴套(49)、第二垫圈(410)、第二键(411)、第一轴套(412)、第四挡圈(413)、第四轴承(414)、第二轴套(415)、第一连接板(416)、第三轴套(417)、第二传动轴(418)、第一顶丝(419)、传感器支架(420)、第二连接板(421)、第五轴承(422)、第六轴承(423)、第二顶丝(424)及丝杠传动轴(425),第一连接板(416)与传感器舱壳体(41)通过螺钉连接;第三齿轮(42)通过第一垫圈(44)和第一键(45)固定在丝杠传动轴(425)上,第三齿轮(42)和第二齿轮(33)啮合连接;丝杠传动轴(425)的上部通过第三轴承(47)和第三挡 圈(46)固定在第一连接板(416)上,且丝杠传动轴(425)外部与其同轴套设有第四轴套(49)和第三轴套(417),第四轴套(49)位于第三轴承(47)上方,第三轴套(417)位于第三轴承(47)下方,丝杠传动轴(425)的下部通过第二顶丝(424)与丝杠(55)连接;第四齿轮(48)通过第二垫圈(410)固定在第二传动轴(418)上,第四齿轮(48)和第二传动轴(418)之间设置有第一轴套(412),第四齿轮(48)与第一齿轮(31)啮合连接;第二传动轴(418)的上部通过第二键(411)、第四轴承(414)、第四挡圈(413)及第二轴套(415)固定在第一连接板(416)上,第二传动轴(418)的下部通过第一顶丝(419)与卷筒(51)连接;传感器支架(420)通过螺钉固定在第一连接板(416)上;张力传感器(43)通过螺钉固定在传感器支架(420)上;第二连接板(421)通过螺钉与传感器舱壳体(41)连接,第二连接板(421)上设置有第五轴承(422)和第六轴承(423),第五轴承(422)用于将卷筒(51)固定在第二连接板(421)上,第六轴承(423)用于将丝杠(55)固定在第二连接板(421)上;
    所述排绳舱(5)包括卷筒(51)、导轨(52)、滑车导轮(53)、挡块(54)、丝杠(55)、排绳舱壳体(56)、第七轴承(57)、第三连接板(58)及接近开关(59),导轨(52)通过螺钉固定在排绳舱壳体(56)上,滑车导轮(53)与丝杠(55)采用螺纹配合,在丝杠(55)的带动下滑车导轮(53)沿导轨(52)滑动;第三连接板(58)通过螺钉固定在排绳舱壳体(56)上;卷筒(51)通过第七轴承(57)固定在第三连接板(58)上;接近开关(59)通过螺纹固定在第三连接板(58)上;挡块(54)采用螺钉固定在卷筒(51)两端;
    所述滑环舱(6)包括第三顶丝(61)、滑环连接轴(62)、滑环舱壳体(63)及滑环(64),滑环连接轴(62)上部通过第三顶丝(61)与卷筒(51)连接,滑环连接轴(62)的下部通过螺钉与滑环(64)固定连接;滑环(64)固定在滑环舱壳体(63)上。
  14. [根据细则91更正 11.12.2020]
    根据权利要求13所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,
    所述主动槽轮轴(121)和从动槽轮轴(14)均由槽轮轴、槽轮和齿轮构成,且槽轮轴、槽轮和齿轮为一体式结构,主动槽轮轴(121)和从动槽轮轴(14)上的齿轮相同。
  15. [根据细则91更正 11.12.2020]
    根据权利要求13所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,
    所述第一圆锥滚子轴承(15)分别与主动槽轮轴(121)、从动槽轮轴(14)及槽轮座(13)之间设置有第二调紧垫圈(122)。
  16. [根据细则91更正 11.12.2020]
    根据权利要求13所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,
    所述主动锥齿轮(116)为一体式结构,主动锥齿轮(116)包括锥齿轮和阶梯轴,锥齿轮位于阶梯轴的轴肩端,阶梯轴远离锥齿轮的一端上具有螺纹。
  17. [根据细则91更正 11.12.2020]
    根据权利要求13所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,
    在从动锥齿轮(118)和槽轮座(13)连接处设置有第一调整垫圈(119)。
  18. [根据细则91更正 11.12.2020]
    根据权利要求13所述的一种南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,
    所述惰轮(110)和惰轮轴(18)之间设置有调整垫片(111)。
  19. [根据细则91更正 11.12.2020]
    根据权利要求13-18任一项所述的南极冰下湖取样探测用内嵌式仿生绞车,其特征在于,
    所述主动锥齿轮(116)的轴肩下端面与调节螺母(115)之间设置有垫片(117)。
PCT/CN2020/114375 2019-11-12 2020-09-10 一种南极冰下湖取样探测用内嵌式仿生绞车 WO2021093436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/331,515 US20210284508A1 (en) 2019-11-12 2021-05-26 Embedded bionic winch for sampling and exploration of polar sub-glacial lake

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911097522.7 2019-11-12
CN201911097522.7A CN110697597A (zh) 2019-11-12 2019-11-12 一种南极冰下湖勘探用内嵌式绞车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/331,515 Continuation US20210284508A1 (en) 2019-11-12 2021-05-26 Embedded bionic winch for sampling and exploration of polar sub-glacial lake

Publications (1)

Publication Number Publication Date
WO2021093436A1 true WO2021093436A1 (zh) 2021-05-20

Family

ID=69205746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114375 WO2021093436A1 (zh) 2019-11-12 2020-09-10 一种南极冰下湖取样探测用内嵌式仿生绞车

Country Status (3)

Country Link
US (1) US20210284508A1 (zh)
CN (1) CN110697597A (zh)
WO (1) WO2021093436A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088671A (zh) * 2021-11-11 2022-02-25 河北地质大学 一种水域环境监测用荧光传感器
CN114136691A (zh) * 2021-11-30 2022-03-04 河南大学 一种灵便钻进式取土仪器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697597A (zh) * 2019-11-12 2020-01-17 吉林大学 一种南极冰下湖勘探用内嵌式绞车
CN114408682B (zh) * 2021-12-23 2023-06-06 宜昌测试技术研究所 一种水下电场探测用电缆布放绞车装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277094A (zh) * 2013-06-27 2013-09-04 吉林大学 可回收型全自动冰下环境探测器
CN107178365A (zh) * 2017-06-01 2017-09-19 吉林大学 一种基于伴热电缆的无污染冰下湖取样与探测方法及设备
RU2645539C1 (ru) * 2016-09-16 2018-02-21 Федеральное государственное бюджетное учреждение "Петербургский институт ядерной физики им. Б.П. Константинова" (ФГБУ "ПИЯФ") Устройство для отбора пробы воды из подледных водоемов
CN108002261A (zh) * 2017-12-31 2018-05-08 吉林大学 一种绞车减力机构
CN108151796A (zh) * 2017-11-17 2018-06-12 杭州电子科技大学 一种冰下湖无污染探测控制系统
CN110697597A (zh) * 2019-11-12 2020-01-17 吉林大学 一种南极冰下湖勘探用内嵌式绞车
CN210825208U (zh) * 2019-11-12 2020-06-23 吉林大学 一种南极冰下湖勘探用内嵌式绞车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157657A (en) * 1977-10-13 1979-06-12 General Dynamics Electronics Division Profiling water quality sensing system
WO2016033604A1 (en) * 2014-08-29 2016-03-03 Teledyne Rd Instruments, Inc. Shipboard winch with computer-controlled motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277094A (zh) * 2013-06-27 2013-09-04 吉林大学 可回收型全自动冰下环境探测器
RU2645539C1 (ru) * 2016-09-16 2018-02-21 Федеральное государственное бюджетное учреждение "Петербургский институт ядерной физики им. Б.П. Константинова" (ФГБУ "ПИЯФ") Устройство для отбора пробы воды из подледных водоемов
CN107178365A (zh) * 2017-06-01 2017-09-19 吉林大学 一种基于伴热电缆的无污染冰下湖取样与探测方法及设备
CN108151796A (zh) * 2017-11-17 2018-06-12 杭州电子科技大学 一种冰下湖无污染探测控制系统
CN108002261A (zh) * 2017-12-31 2018-05-08 吉林大学 一种绞车减力机构
CN110697597A (zh) * 2019-11-12 2020-01-17 吉林大学 一种南极冰下湖勘探用内嵌式绞车
CN210825208U (zh) * 2019-11-12 2020-06-23 吉林大学 一种南极冰下湖勘探用内嵌式绞车

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088671A (zh) * 2021-11-11 2022-02-25 河北地质大学 一种水域环境监测用荧光传感器
CN114088671B (zh) * 2021-11-11 2024-01-16 河北地质大学 一种水域环境监测用荧光传感器
CN114136691A (zh) * 2021-11-30 2022-03-04 河南大学 一种灵便钻进式取土仪器
CN114136691B (zh) * 2021-11-30 2023-08-15 河南大学 一种灵便钻进式取土仪器

Also Published As

Publication number Publication date
US20210284508A1 (en) 2021-09-16
CN110697597A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021093436A1 (zh) 一种南极冰下湖取样探测用内嵌式仿生绞车
CN103183111B (zh) 一种水下机器人回收用牵引装置
CN102491217B (zh) 滚珠丝杠与滑动丝杠相互嵌套式同步升降光电桅杆
CN205483673U (zh) 水质采样无人机的自动采样器
CN210825208U (zh) 一种南极冰下湖勘探用内嵌式绞车
CN106369117A (zh) 一种调速机构
CN109080807B (zh) 一种无人艇风帆
CN102486251B (zh) 无牵连运动的水下电动反馈云台
CN109795661A (zh) 一种水下勘测机器人推进装置
CN106363664A (zh) 一种机械臂的动力装置
CN107244392B (zh) 一种用于集体逃生舱的下舱口盖盖合装置
CN104355251B (zh) 一种采用插销控制的绞车离合器
CN111180854A (zh) 自旋转升降杆
CN104295230B (zh) 潜水钻机
CN114314396A (zh) 大深度小型自动排缆水下绞车
CN204999536U (zh) 一种行星轮系内置式建筑卷扬机设备
CN208916694U (zh) 一种行星齿轮传动绞车
CN112211980A (zh) 采用螺旋传动的链式桅杆
CN204281140U (zh) 一种采用插销控制的绞车离合器
CN102735498B (zh) 强制摆线式钻探取心加载机构
CN111924735A (zh) 起重机用离合式穿绳卷扬机构
CN219217413U (zh) 一种升降杆
CN110886815A (zh) 一种航空器起落架齿轮传动转向装置
CN206689485U (zh) 海洋管道开孔机
CN215334257U (zh) 采用螺旋传动的链式桅杆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888178

Country of ref document: EP

Kind code of ref document: A1