WO2021093381A1 - 一种gis内部触头接触不良的模拟装置及红外校准方法 - Google Patents

一种gis内部触头接触不良的模拟装置及红外校准方法 Download PDF

Info

Publication number
WO2021093381A1
WO2021093381A1 PCT/CN2020/106500 CN2020106500W WO2021093381A1 WO 2021093381 A1 WO2021093381 A1 WO 2021093381A1 CN 2020106500 W CN2020106500 W CN 2020106500W WO 2021093381 A1 WO2021093381 A1 WO 2021093381A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
conductor
insulator
gis
infrared
Prior art date
Application number
PCT/CN2020/106500
Other languages
English (en)
French (fr)
Inventor
高凯
陈洪岗
黄华
卢有龙
金立军
乔辛磊
马利
Original Assignee
国网上海市电力公司
华东电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网上海市电力公司, 华东电力试验研究院有限公司 filed Critical 国网上海市电力公司
Priority to AU2020244443A priority Critical patent/AU2020244443B2/en
Publication of WO2021093381A1 publication Critical patent/WO2021093381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0096Radiation pyrometry, e.g. infrared or optical thermometry for measuring wires, electrical contacts or electronic systems

Definitions

  • the invention belongs to the technical field of GIS thermal fault simulation detection, and in particular relates to a simulation device and an infrared calibration method for poor contact of the internal contacts of the GIS.
  • GIS equipment Gas Insulated Switchgear
  • GIS equipment Gas Insulated Switchgear
  • Heat-generating defects are the main defect type of GIS faults. They are especially common for contacts in GIS equipment. GIS equipment is mostly high-voltage and high-current. Once a fault occurs, the temperature of the contact will increase rapidly. In recent years, equipment failures caused by heat are commonplace, and many accidents such as equipment outages and even explosions have been caused. Therefore, it is of great significance to strengthen the detection and analysis of thermal failures of GIS equipment, especially internal contacts.
  • the thermal fault of the joint between the internal conductors of the GIS equipment is usually determined by measuring the internal loop resistance of the GIS equipment.
  • measuring the internal loop resistance of the GIS equipment requires power outage of the GIS equipment, which may cause the part of the power system connected with the GIS equipment to stop operating, which reduces the operating efficiency of the power system and is not conducive to the economic operation of the power system. Therefore, it is necessary to develop a fault simulation device to improve the efficiency of GIS equipment maintenance.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a simulating device and an infrared calibration method for poor contact contact in the GIS, which are used to simulate the poor contact failure in the GIS bus barrel, and use it on the outer shell of the GIS.
  • the thermocouple accurately measures the temperature and corrects the infrared image.
  • a simulating device for poor contact contact inside a GIS comprising a housing, a static conductor, a moving conductor, a non-standard plum blossom contact, a first insulator, a second insulator, and a contact insulation support arranged in the housing, the static conductor One end, the non-standard plum contact, and one end of the moving conductor are connected in sequence to form a conductive loop, and the static conductor is fixedly connected to the non-standard plum contact, and the moving conductor is detachably connected to the non-standard plum contact,
  • the other end of the static conductor is connected to the housing through a first insulator, and the other end of the moving conductor is connected to the housing through a second insulator,
  • the contact insulation bracket is sleeved on the non-standard plum blossom contact and connected with the housing,
  • the non-standard plum contact is a plum contact with a variable spring diameter.
  • the spring middle diameter d 2 of the non-standard plum contact is obtained by the following formula:
  • d arm is the diameter of the contact arm
  • d 20 is the spring median diameter of the national standard plum contact
  • D 0 is the diameter of the axis closed circle in the free state of the contact spring
  • Rao is the roughness of the national standard plum contact
  • Ra + To simulate the roughness of the contacts on site.
  • the spring center diameter d 2 of the non-standard plum contact is obtained by the following formula:
  • d arm is the diameter of the contact arm
  • d 20 is the spring median diameter of the national standard plum contact
  • D 0 is the diameter of the axis closing circle in the free state of the contact spring
  • s 0 is the arc contact stroke length of the national standard plum contact
  • S + is the stroke length of the arc contact at the simulated site.
  • the material of the non-standard plum contact is beryllium cobalt copper.
  • first insulator and the second insulator are inwardly clamped on the edge of the shell, and the static conductor and the moving conductor pass through the centers of the insulators at both ends, respectively.
  • the static conductor is provided with a protrusion for fixing the contact insulation bracket.
  • the insulator is a glass basin insulator.
  • the static conductor and the moving conductor are both hollow copper rods.
  • the contact insulation support is made of high-temperature vulcanized silicon rubber.
  • the present invention also provides a method for infrared temperature measurement calibration using the said simulating device with poor contact inside the GIS, which includes the following steps:
  • the simulation device is energized to obtain the relationship between the temperature measured by the infrared meter and the distance at an observation angle of 0° under the housing temperature measured by different thermocouples, so as to obtain the fitting equation of the temperature measurement and the distance and the infrared temperature measurement Best distance
  • the present invention has the following beneficial effects:
  • the present invention designs a simulating device for poor contact contact inside a GIS, which can accurately simulate poor contact contact, effectively improve the efficiency of the experiment, and has important theoretical and practical significance for inferring internal faults.
  • the simulation device of the present invention can replace the GIS bus barrel to perform fault simulation and test, and understand the current situation of the GIS in time, and improve the safety of GIS use.
  • the simulation device of the present invention can perform infrared calibration experiments, can improve the accuracy of infrared detection, achieve the purpose of conveniently detecting GIS faults, and provide assistance to relevant practitioners in the field of electric power maintenance.
  • Figure 1 is a schematic diagram of the overall appearance of the simulation device of the present invention.
  • FIG. 2 is a schematic diagram of the shell structure of the simulation device of the present invention.
  • Figure 3 is a schematic diagram of the structure of the simulation device of the present invention, in which part of the casing is removed to show the internal structure of the casing;
  • FIG. 4 is a schematic diagram of the structure of the non-standard plum blossom contact of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the spring of the non-standard plum contact shown in FIG. 4 of the present invention.
  • Fig. 6 is a partial schematic diagram of the spring of the non-standard plum contact shown in Fig. 4 of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the contact insulation support of the present invention.
  • Figure 8 is a schematic diagram of the structure of the static conductor of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the first insulator or the second insulator of the present invention.
  • FIG. 10 is a schematic diagram of the structure of the moving conductor of the present invention.
  • Figure 11 is a schematic diagram of the initial dynamic resistance-stroke curve of the present invention.
  • Figure 12 is a schematic diagram of an equivalent model of the rough contact surface of the present invention.
  • Figure 13 is a schematic diagram of the temperature measurement labeling position
  • Fig. 14 is a schematic diagram of a method for the simulation device to perform infrared temperature measurement calibration.
  • this embodiment provides a simulating device 20 for poor contact of the internal contacts of a GIS, which includes a housing 2 and a static conductor 1, a moving conductor 6, and a non-standard quincunx contact arranged in the housing 2.
  • the head 4, the first insulator 3, the second insulator 7 and the contact insulation support 5, one end of the static conductor 1, the non-standard plum blossom contact 4, and the moving conductor 6 are connected in sequence to form a conductive loop, and one end of the static conductor 1 is connected to the non-standard
  • the plum blossom contact 4 is fixedly connected, one end of the moving conductor 6 is detachably connected to the non-standard plum blossom contact 4, the other end of the static conductor 1 is connected to the housing 2 through the first insulator 3, and the other end of the moving conductor 6 is connected to the housing through the second insulator 7
  • the body 2 is connected, and the contact insulating support 5 is sleeved on the non-standard plum blossom contact 4 and connected to the housing 2.
  • the first insulator 3 and the second insulator 7 are inwardly clamped on the edge of the casing 2, and the static conductor 1 and the moving conductor 6 respectively pass through the centers of the first insulator 3 and the second insulator 7 at both ends.
  • the static conductor 1 is provided with a protrusion 17 for fixing the contact insulation bracket 5.
  • the non-standard plum blossom contact 4 is a plum blossom contact with a variable spring diameter.
  • the contact resistance between the moving conductor and the static conductor is changed by designing the spring pitch diameter of the non-standard plum blossom contact 4, thereby simulating the internal contact failure of the GIS, including Electrical contact phenomenon of rough or ablated contacts caused by mechanical wear.
  • the schematic diagram of the initial dynamic resistance-stroke curve is shown in Figure 11.
  • the effective number of turns refers to the number of turns of the metal wire forming the spring
  • the wire diameter refers to the diameter of the metal wire forming the spring
  • the outer diameter 10, the middle diameter 11, the inner diameter 12, and the wire diameter 13 of the spring are shown in FIG. 6.
  • FIG. 8 is a schematic diagram of the structure of a static conductor
  • FIG. 10 is a schematic diagram of the structure of a moving conductor.
  • a short section at the front end of the static conductor is a static contact arm
  • a short section at the front end of the moving conductor is a movable contact arm.
  • the static contact arm and the movable contact arm are inserted into the contact of the non-standard plum contact to make the static conductor and non-standard plum contact ,
  • the moving conductor forms a current path.
  • the diameter of the spring is different, and the pressing force of the spring on the non-standard plum contact is different, so the contact state between the non-standard plum contact and the contact arm is changed.
  • the spring middle diameter d 2 of the non-standard plum contact 4 is obtained by the following formula:
  • d arm is the diameter of the contact arm
  • d 20 is the spring median diameter of the national standard plum contact
  • D 0 is the diameter of the axis closed circle in the free state of the contact spring
  • Rao is the roughness of the national standard plum contact
  • Ra + To simulate the roughness of the contacts on site.
  • the spring 8 of the non-standard plum contact 4 is the spring 8 shown in Fig. 5
  • the axis closing circle diameter D 0 of the non-standard plum contact in the free state of the spring is shown as the diameter of the axis closing circle 9 in Fig. 5
  • the moving conductor is detachably connected to the non-standard plum blossom contact
  • the diameter d arm of the contact arm is the contact arm diameter 14 of the moving conductor in FIG. 10.
  • the spring middle diameter d 2 of the non-standard plum contact 4 is obtained by the following formula:
  • d arm is the diameter of the contact arm
  • d 20 is the spring median diameter of the national standard plum contact
  • D 0 is the diameter of the axis closing circle in the free state of the contact spring
  • s 0 is the arc contact stroke length of the national standard plum contact
  • S + is the stroke length of the arc contact at the simulated site.
  • the spring 8 of the non-standard plum contact 4 is the spring 8 shown in Fig. 5
  • the axis closing circle diameter D 0 of the non-standard plum contact in the free state of the spring is shown as the diameter of the axis closing circle 9 in Fig. 5
  • the moving conductor is detachably connected to the non-standard plum blossom contact
  • the diameter d arm of the contact arm is the contact arm diameter 14 of the moving conductor in FIG. 10.
  • the simulation of high current ablation can be realized by adjusting the middle diameter of the spring to a corresponding value.
  • the insulators 3 and 7 are glass basin insulators, the static conductor 1 and the moving conductor 6 are both hollow copper rods, and the contact insulation bracket 5 is high temperature vulcanized silicon rubber.
  • This embodiment provides a method for infrared temperature measurement calibration using the simulating device with poor contact inside the GIS as described in embodiment 1, which includes the following steps:
  • thermocouple pasting method is: cut the high temperature resistant insulating tape into a block of 1cm*1cm, and stick the end of the thermocouple evenly on the surface of the casing of the simulation device.
  • the simulation device is energized to obtain the relationship between the temperature measured by the infrared meter 16 and the distance at an observation angle of 0° under the housing temperature measured by different thermocouples, thereby obtaining the fitting equation of the temperature measurement and the distance and the infrared temperature measurement The best distance.
  • thermocouple thermometer When energizing the analog device, use a thermocouple thermometer to measure the case to reach a stable temperature rise.
  • the device is powered off and cooled, and the infrared meter is fixed at the best distance and 0° observation angle position, the device is re-energized and heated, and the data of the infrared meter temperature measurement and the temperature measurement of the corresponding point thermocouple during the entire process of powering up and heating of the simulation device are recorded. And get the corresponding fitting equation.
  • the center circle in the figure is the cross section of the simulation device 20, the upper square represents the temperature measurement label 15, the best distance is R, the arc is the best distance arc, in different observation angles of the arc Place the infrared meter 16.
  • the temperature measurement label 15 in Figures 13 and 14 is a high temperature resistant insulating tape with a thermocouple attached.
  • the optimal distance refers to the distance at which the difference between the temperature measurement by the thermocouple and the temperature measurement by the infrared meter is the smallest.
  • the temperature measured by the thermocouple is the real temperature of the housing, and the temperature measured by the infrared meter needs to be corrected to get the real temperature.
  • the influencing factors of the correction formula are distance, observation angle, and so on.
  • it is substituted into the fitting equation to obtain the actual temperature considered to be equivalent to the temperature measured by the thermocouple. This process is called correction.
  • the thermocouple temperature measurement is accurate, and the infrared temperature measurement can be as accurate as possible after correction.
  • Infrared temperature measurement can obtain the temperature of different points on an area, and the thermocouple is only the temperature of the measurement point.
  • infrared temperature measurement has the advantage of non-contact, which can easily find and visually display the hot spot of the shell, and the accurate temperature of the hot spot of the shell can be obtained after correction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Radiation Pyrometers (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

本发明涉及一种GIS内部触头接触不良的模拟装置及红外校准方法,所述模拟装置包括壳体以及设置于壳体内的静导体、动导体、非标梅花触头、绝缘子和触头绝缘支架,所述静导体一端、非标梅花触头、动导体一端依次连接,构成导电回路,且所述静导体与非标梅花触头固定连接,动导体与非标梅花触头可拆卸连接,所述静导体另一端通过绝缘子与壳体连接,所述动导体另一端通过绝缘子与壳体连接,所述触头绝缘支架套在非标梅花触头上并与壳体连接,所述非标梅花触头为弹簧中径可变的梅花触头。与现有技术相比,本发明代替GIS母线筒来进行故障模拟与测试,并可进行红外校准实验,提高红外检测的准确度,达到便捷地检测GIS故障的目的。

Description

一种GIS内部触头接触不良的模拟装置及红外校准方法 技术领域
本发明属于GIS热故障模拟检测技术领域,尤其是涉及一种GIS内部触头接触不良的模拟装置及红外校准方法。
背景技术
目前,气体绝缘金属封闭开关设备(简称:GIS设备,Gas Insulated Switchgear)能否正常工作关系到电力系统的安全稳定运行,随着GIS设备数量不断增多以及运行年限日益增长,各类缺陷逐渐增多,发热性缺陷是GIS故障的主要缺陷类型,对于GIS设备中的触头来说尤为常见,GIS设备多为高压大电流,一旦出现故障,触头的温度会迅速增高。近几年由于发热引起的设备故障屡见不鲜,已造成多起设备停运甚至爆炸等事故,因此加强GIS设备尤其是内部触头热故障的检测与分析具有重要意义。
目前,通常通过测量GIS设备内部回路电阻,来对GIS设备内部导体之间的接头的热故障进行判别。但是,测量GIS设备内部回路电阻都需要对该GIS设备停电,这就导致电力系统中与该GIS设备相连的部分也可能停止运行,降低了电力系统的运行效率,不利于电力系统的经济运行。因此,有必要研发一种故障模拟装置以提高GIS设备的检修效率。
发明内容
本发明的目的在于克服上述现有技术存在的缺陷而提供一种GIS内部触头接触不良的模拟装置及红外校准方法,用于对GIS母线筒内接触不良的故障进行模拟,并在其外壳用热电偶准确测温并对红外图像做校正处理。
本发明的目的可以通过以下技术方案来实现:
一种GIS内部触头接触不良的模拟装置,包括壳体以及设置于壳体内的静导体、动导体、非标梅花触头、第一绝缘子、第二绝缘子和触头绝缘支架,所述静导 体一端、非标梅花触头、动导体一端依次连接,构成导电回路,且所述静导体与非标梅花触头固定连接,动导体与非标梅花触头可拆卸连接,
所述静导体另一端通过第一绝缘子与壳体连接,所述动导体另一端通过第二绝缘子与壳体连接,
所述触头绝缘支架套在非标梅花触头上并与壳体连接,
所述非标梅花触头为弹簧中径可变的梅花触头。
进一步地,该模拟装置用于模拟经过长时间运行后粗糙的触头表面时,所述非标梅花触头的弹簧中径d 2由以下公式获得:
Figure PCTCN2020106500-appb-000001
其中,d arm为触臂的直径,d 20为国标梅花触头的弹簧中径,D 0为触头弹簧自由状态下的轴线闭合圆直径,R ao为国标梅花触头的粗糙度,R a+为模拟现场的触头粗糙度。
进一步地,该模拟装置用于模拟经过长时间运行后由于被烧蚀而导致弧触头长度降低的状态时,所述非标梅花触头的弹簧中径d 2由以下公式获得:
Figure PCTCN2020106500-appb-000002
其中,d arm为触臂的直径,d 20为国标梅花触头的弹簧中径,D 0为触头弹簧自由状态下的轴线闭合圆直径,s 0为国标梅花触头的弧触头行程长度,s +为被模拟现场的弧触头行程长度。
进一步地,所述非标梅花触头的材料为铍钴铜。
进一步地,所述第一绝缘子、第二绝缘子向内凹卡在壳体边缘,所述静导体和动导体分别穿过两端绝缘子的中心。
进一步地,所述静导体上设置有用于固定所述触头绝缘支架的突起。
进一步地,所述绝缘子为玻璃盆式绝缘子。
进一步地,所述静导体和动导体均为空心铜杆。
进一步地,所述触头绝缘支架为高温硫化硅橡胶。
本发明还提供一种采用所述的GIS内部触头接触不良的模拟装置进行红外测温校准的方法,包括以下步骤:
1)在所述模拟装置上粘贴多个热电偶;
2)对所述模拟装置通电,获得在不同热电偶测得的外壳温度下在0°观测角度上红外仪测量温度与距离的关系,从而获得测温和距离的拟合方程以及红外测温的最佳距离;
3)获得在所述最佳距离的圆弧上红外仪测温和观测角度的关系,从而获得测温和角度的拟合方程;
4)将红外仪固定在最佳距离、0°观测角度的位置,记录模拟装置通电升温全过程内红外仪测温和相应点热电偶测温的数据,并获得相应拟合方程;
5)在红外仪使用时,对于红外仪拍摄到的红外图像,读取其温度数据,并根据空间几何关系及步骤2)-4)中的拟合方程,对温度数据进行校正。
与现有技术相比,本发明具有如下有益效果:
1、本发明设计一种GIS内部触头接触不良的模拟装置,能够对触头接触不良进行精确模拟,有效提高实验效率,对推断内部故障具有重要的理论和实际意义。
2、本发明模拟装置能够代替GIS母线筒来进行故障模拟与测试,以及时了解GIS现状,提高GIS使用安全性。
3、本发明模拟装置能够进行红外校准实验,可以提高红外检测的准确度,达到便捷地检测GIS故障的目的,为电力检修领域的相关从业人员提供帮助。
附图说明
图1为本发明模拟装置的整体外观示意图;
图2为本发明模拟装置的壳体结构示意图;
图3为本发明模拟装置的结构示意图,其中部分外壳被除去,用以展示外壳内部结构;
图4为本发明非标梅花触头的结构示意图;
图5为本发明图4所示的非标梅花触头的弹簧的结构示意图;
图6为本发明图4所示的非标梅花触头的弹簧的一部分示意图;
图7为本发明触头绝缘支架的结构示意图;
图8为本发明静导体的结构示意图;
图9为本发明第一绝缘子或第二绝缘子的结构示意图;
图10为本发明动导体的结构示意图;
图11为本发明初始动态电阻—行程曲线示意图;
图12为本发明粗糙接触面等效模型示意图;
图13为测温贴标位置示意图;
图14为模拟装置进行红外测温校准的方法示意图。
其中,1、静导体,2、壳体,3、第一绝缘子,4、非标梅花触头,5、触头绝缘支架,6、动导体,7、第二绝缘子,8、弹簧,9、轴线闭合圆,10、外径,11、中径,12、内径,13、线径,14、触臂直径,15、测温贴标,16、红外仪,17、突起,20、模拟装置。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1-图10所示,本实施例提供一种GIS内部触头接触不良的模拟装置20,包括壳体2以及设置于壳体2内的静导体1、动导体6、非标梅花触头4、第一绝缘子3、第二绝缘子7和触头绝缘支架5,静导体1一端、非标梅花触头4、动导体6一端依次连接,构成导电回路,且静导体1一端与非标梅花触头4固定连接,动导体6一端与非标梅花触头4可拆卸连接,静导体1另一端通过第一绝缘子3与壳体2连接,动导体6另一端通过第二绝缘子7与壳体2连接,触头绝缘支架5套在非标梅花触头4上并与壳体2连接。第一绝缘子3、第二绝缘子7向内凹卡在壳体2边缘,静导体1和动导体6分别穿过两端处第一绝缘子3、第二绝缘子7的中心。静导体1上设置有用于固定触头绝缘支架5的突起17。
非标梅花触头4为弹簧中径可变的梅花触头,通过设计非标梅花触头4的弹簧中径来改变动导体至静导体间的接触电阻,从而模拟GIS内部接触故障,包括由机械磨损引起的粗糙或被大电流烧蚀过的触头的电接触现象。初始动态电阻—行程曲线示意图如图11所示。
由图4-6所示,设计非标梅花触头时,固定其弹簧线圈的线径、有效圈数、弹簧线圈的自由长度为定量,以及选定材料为铍钴铜,仅仅通过改变其弹簧中径来改变性能。其中,有效圈数指构成弹簧的金属线绕制的圈数;线径指构成弹簧的金属 线的直径;弹簧的外径10、中径11、内径12、线径13由图6所示。
图8为静导体的结构示意图,图10为动导体的结构示意图。静导体的前端一小段为静触臂,动导体的前端一小段为动触臂,静触臂和动触臂插入到非标梅花触头的触头中,使静导体、非标梅花触头、动导体形成电流通路。
弹簧中径不同,弹簧对非标梅花触头的压紧力不同,非标梅花触头与触臂之间的接触状态因而改变。
该模拟装置用于模拟经过长时间运行后粗糙的触头表面时,所述非标梅花触头4的弹簧中径d 2由以下公式获得:
Figure PCTCN2020106500-appb-000003
其中,d arm为触臂的直径,d 20为国标梅花触头的弹簧中径,D 0为触头弹簧自由状态下的轴线闭合圆直径,R ao为国标梅花触头的粗糙度,R a+为模拟现场的触头粗糙度。其中,非标梅花触头4的弹簧8即为图5所示的弹簧8;非标梅花触头的弹簧自由状态下的轴线闭合圆直径D 0被显示为图5中轴线闭合圆9的直径;动导体可拆卸地连接于非标梅花触头,触臂的直径d arm即为图10动导体的触臂直径14。
粗糙接触面等效模型示意图如图12所示。
同理,该模拟装置用于模拟经过长时间运行后由于被烧蚀而导致弧触头长度降低的状态时,非标梅花触头4的弹簧中径d 2由以下公式获得:
Figure PCTCN2020106500-appb-000004
其中,d arm为触臂的直径,d 20为国标梅花触头的弹簧中径,D 0为触头弹簧自由状态下的轴线闭合圆直径,s 0为国标梅花触头的弧触头行程长度,s +为被模拟现场的弧触头行程长度。其中,非标梅花触头4的弹簧8即为图5所示的弹簧8;非标梅花触头的弹簧自由状态下的轴线闭合圆直径D 0被显示为图5中轴线闭合圆9的直径;动导体可拆卸地连接于非标梅花触头,触臂的直径d arm即为图10动导体的触臂直径14。
本实施例中,通过调整弹簧中径至相应数值便可实现对大电流烧蚀的模拟。
本实施例中,绝缘子3、7为玻璃盆式绝缘子,静导体1和动导体6均为空心铜杆,触头绝缘支架5为高温硫化硅橡胶。
实施例2
本实施例提供一种采用如实施例1所述的GIS内部触头接触不良的模拟装置进行红外测温校准的方法,包括以下步骤:
1)在所述模拟装置上粘贴多个热电偶。
热电偶粘贴方式为:将耐高温绝缘胶带剪成1cm*1cm的块状,并粘好热电偶端头均匀贴在模拟装置的外壳表面。
2)对所述模拟装置通电,获得在不同热电偶测得的外壳温度下在0°观测角度上红外仪16测量温度与距离的关系,从而获得测温和距离的拟合方程以及红外测温的最佳距离。
对模拟装置通电时,使用热电偶温度计测得外壳到达稳定温升。
3)获得在所述最佳距离的圆弧上红外仪测温和观测角度的关系,从而获得测温和角度的拟合方程。
4)装置断电冷却,将红外仪固定在最佳距离、0°观测角度的位置,装置重新通电加热,记录模拟装置通电升温全过程内红外仪测温和相应点热电偶测温的数据,并获得相应拟合方程。
5)在红外仪使用时,对于红外仪拍摄到的红外图像,读取其温度数据,并根据空间几何关系及步骤2)-4)中的拟合方程,对红外仪读取的温度数据进行校正。
如图14所示,图中中心圆为模拟装置20横截面,上面的方块代表测温贴标15,最佳距离为R,圆弧为最佳距离的圆弧,在圆弧的不同观测角度放置红外仪16。图13和14中的测温贴标15为粘有热电偶的耐高温绝缘胶带。上述方法中,所述最佳距离指热电偶测温与红外仪测温的差值最小的距离。
热电偶测得的温度是外壳的真实温度,红外仪测得的温度需要修正才能得到真实的温度,修正公式的影响因素为距离、观测角度等等。具体地,根据红外测温,代入拟合方程,得到认为等同于热电偶测得的实际温度。这个过程即为校正。一般认为热电偶测温精确,红外测温经校正后,可尽量精确。红外测温可获得一个面积上不同点的温度,热电偶仅为测点温度。与热电偶测温相比,红外测温具有非接触的优点,能便捷发现和直观显示外壳的热点,经修正后能获得外壳热点的精确温度。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由本发明所确定的保护范围内。

Claims (10)

  1. 一种GIS内部触头接触不良的模拟装置,其特征在于,包括壳体(2)以及设置于壳体(2)内的静导体(1)、动导体(6)、非标梅花触头(4)、第一绝缘子(3)、第二绝缘子(7)和触头绝缘支架(5),所述静导体(1)一端、非标梅花触头(4)、动导体(6)一端依次连接,构成导电回路,且所述静导体(1)与非标梅花触头(4)固定连接,动导体(6)与非标梅花触头(4)可拆卸连接,
    所述静导体(1)另一端通过第一绝缘子(3)与壳体(2)连接,所述动导体(6)另一端通过第二绝缘子(7)与壳体(2)连接,
    所述触头绝缘支架(5)套在非标梅花触头(4)上并与壳体(2)连接,
    所述非标梅花触头(4)为弹簧中径可变的梅花触头。
  2. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,该模拟装置用于模拟经过长时间运行后粗糙的触头表面时,所述非标梅花触头(4)的弹簧中径d 2由以下公式获得:
    Figure PCTCN2020106500-appb-100001
    其中,d arm为触臂的直径,d 20为国标梅花触头的弹簧中径,D 0为触头弹簧自由状态下的轴线闭合圆直径,R ao为国标梅花触头的粗糙度,R a+为模拟现场的触头粗糙度。
  3. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,该模拟装置用于模拟经过长时间运行后由于被烧蚀而导致弧触头长度降低的状态时,所述非标梅花触头(4)的弹簧中径d 2由以下公式获得:
    Figure PCTCN2020106500-appb-100002
    其中,d arm为触臂的直径,d 20为国标梅花触头的弹簧中径,D 0为触头弹簧自由状态下的轴线闭合圆直径,s 0为国标梅花触头的弧触头行程长度,s +为被模拟现场的弧触头行程长度。
  4. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,所述非标梅花触头(4)的材料为铍钴铜。
  5. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,所述第一绝缘子(3)、第二绝缘子(7)向内凹卡在壳体(2)边缘,所述静导体 (1)和动导体(6)分别穿过两端第一绝缘子(3)、第二绝缘子(7)的中心。
  6. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,所述静导体(1)上设置有用于固定所述触头绝缘支架(5)的突起。
  7. 根据权利要求1或5所述的GIS内部触头接触不良的模拟装置,其特征在于,所述第一绝缘子(3)、第二绝缘子(7)为玻璃盆式绝缘子。
  8. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,所述静导体(1)和动导体(6)均为空心铜杆。
  9. 根据权利要求1所述的GIS内部触头接触不良的模拟装置,其特征在于,所述触头绝缘支架(5)为高温硫化硅橡胶。
  10. 一种采用如权利要求1-9任一所述的GIS内部触头接触不良的模拟装置进行红外测温校准的方法,其特征在于,包括以下步骤:
    1)在所述模拟装置上粘贴多个热电偶;
    2)对所述模拟装置通电,获得在不同热电偶测得的外壳温度下在0°观测角度上红外仪测量温度与距离的关系,从而获得测温和距离的拟合方程以及红外测温的最佳距离;
    3)获得在所述最佳距离的圆弧上红外仪测温和观测角度的关系,从而获得测温和角度的拟合方程;
    4)将红外仪固定在最佳距离、0°观测角度的位置,记录模拟装置通电升温全过程内红外仪测温和相应点热电偶测温的数据,并获得相应拟合方程;
    5)在红外仪使用时,对于红外仪拍摄到的红外图像,读取其温度数据,并根据空间几何关系及步骤2)-4)中的拟合方程,对温度数据进行校正。
PCT/CN2020/106500 2019-11-14 2020-08-03 一种gis内部触头接触不良的模拟装置及红外校准方法 WO2021093381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020244443A AU2020244443B2 (en) 2019-11-14 2020-08-03 Simulation device for poor contact of internal contact of gas insulated switchgear and calibration method for infrared temperature measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911114202.8A CN111024233B (zh) 2019-11-14 2019-11-14 一种gis内部触头接触不良的模拟装置及红外校准方法
CN201911114202.8 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021093381A1 true WO2021093381A1 (zh) 2021-05-20

Family

ID=70205707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106500 WO2021093381A1 (zh) 2019-11-14 2020-08-03 一种gis内部触头接触不良的模拟装置及红外校准方法

Country Status (3)

Country Link
CN (1) CN111024233B (zh)
AU (1) AU2020244443B2 (zh)
WO (1) WO2021093381A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739970A (zh) * 2021-08-05 2021-12-03 西安交通大学 一种多梅花触指接触压力分布式测量装置及测量方法
CN113985228A (zh) * 2021-10-28 2022-01-28 西安交通大学 一种超/特高压gis/gil绝缘子载流特性试验装置及方法
CN114758912A (zh) * 2022-05-10 2022-07-15 广东电网有限责任公司 一种梅花触头电动更换装置
CN116184141A (zh) * 2023-04-25 2023-05-30 南昌工程学院 一种气体绝缘设备故障诊断方法及系统
CN116632703A (zh) * 2023-06-06 2023-08-22 国网山东省电力公司临清市供电公司 一种手车式开关触头更换工具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024233B (zh) * 2019-11-14 2021-10-08 国网上海市电力公司 一种gis内部触头接触不良的模拟装置及红外校准方法
CN113465804B (zh) * 2021-06-24 2023-09-12 珠海市集森电器有限公司 梅花触指夹紧力检测方法及装置
CN114047414B (zh) * 2021-11-11 2024-04-02 国网上海市电力公司 一种用于gis气室内缺陷试验模拟用便捷更换结构
CN113933043B (zh) * 2021-11-24 2024-08-09 国网安徽省电力有限公司电力科学研究院 基于行程曲线形态的隔离开关机械状态监测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034531A (ja) * 2010-08-02 2012-02-16 Central Res Inst Of Electric Power Ind パッファーを備えないガス絶縁開閉器の異常検出方法
CN106226696A (zh) * 2016-10-11 2016-12-14 江苏省电力试验研究院有限公司 一种gis中隔离开关触头接触状态模拟试验系统及方法
CN206074764U (zh) * 2016-10-11 2017-04-05 江苏省电力试验研究院有限公司 一种gis中隔离开关触头接触状态模拟试验系统
CN109633430A (zh) * 2019-01-02 2019-04-16 国网吉林省电力有限公司电力科学研究院 一种真型gis异常温升故障监测实验装置
CN110160654A (zh) * 2019-06-18 2019-08-23 国网四川省电力公司乐山供电公司 一种gis内外温升监测试验装置
CN111024233A (zh) * 2019-11-14 2020-04-17 国网上海市电力公司 一种gis内部触头接触不良的模拟装置及红外校准方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028535C2 (de) * 1980-07-28 1982-06-24 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Messung des Übergangswiderstandes galvanischer Oberflächenschichten und Vorrichtung zur Durchführung des Verfahrens
JP2001194407A (ja) * 2000-01-17 2001-07-19 Nec Ibaraki Ltd パターン配線基板用電気検査方法及び装置
JP2003199220A (ja) * 2001-12-26 2003-07-11 Hitachi Ltd 母線容器及びそれを用いたガス絶縁開閉装置
JP5152148B2 (ja) * 2009-10-28 2013-02-27 三菱電機株式会社 ガス絶縁開閉装置およびその製造方法
CN102798757B (zh) * 2012-08-14 2014-09-17 广东电网公司佛山供电局 Gis母线接头的接触电阻检测方法和系统
FR3011138B1 (fr) * 2013-09-20 2015-10-30 Alstom Technology Ltd Appareil electrique moyenne ou haute tension a isolation gazeuse comprenant du dioxyde de carbone, de l'oxygene et de l'heptafluoroisobutyronitrile
KR20160121001A (ko) * 2015-04-09 2016-10-19 엘에스산전 주식회사 가스절연개폐장치의 도체 연결 구조
CN105092050B (zh) * 2015-08-13 2018-06-19 国家电网公司 一种gis内部导体过热故障的检测方法及装置
CN205049252U (zh) * 2015-08-13 2016-02-24 国家电网公司 一种gis内部导体过热故障的检测装置
CN206480518U (zh) * 2017-02-15 2017-09-08 江苏森源电气股份有限公司 一种断路器梅花触头接触行程智能检测装置
CN108181000A (zh) * 2018-01-02 2018-06-19 国网上海市电力公司 一种基于gis壳体测温的断路器触头温升检测方法
CN109669089A (zh) * 2019-02-20 2019-04-23 国网浙江省电力有限公司电力科学研究院 一种gis设备接触不良温升模拟试验平台
CN110426611A (zh) * 2019-08-15 2019-11-08 南方电网科学研究院有限责任公司 三相分箱gis内部导体过热故障模拟试验装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034531A (ja) * 2010-08-02 2012-02-16 Central Res Inst Of Electric Power Ind パッファーを備えないガス絶縁開閉器の異常検出方法
CN106226696A (zh) * 2016-10-11 2016-12-14 江苏省电力试验研究院有限公司 一种gis中隔离开关触头接触状态模拟试验系统及方法
CN206074764U (zh) * 2016-10-11 2017-04-05 江苏省电力试验研究院有限公司 一种gis中隔离开关触头接触状态模拟试验系统
CN109633430A (zh) * 2019-01-02 2019-04-16 国网吉林省电力有限公司电力科学研究院 一种真型gis异常温升故障监测实验装置
CN110160654A (zh) * 2019-06-18 2019-08-23 国网四川省电力公司乐山供电公司 一种gis内外温升监测试验装置
CN111024233A (zh) * 2019-11-14 2020-04-17 国网上海市电力公司 一种gis内部触头接触不良的模拟装置及红外校准方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739970A (zh) * 2021-08-05 2021-12-03 西安交通大学 一种多梅花触指接触压力分布式测量装置及测量方法
CN113985228A (zh) * 2021-10-28 2022-01-28 西安交通大学 一种超/特高压gis/gil绝缘子载流特性试验装置及方法
CN113985228B (zh) * 2021-10-28 2023-07-04 西安交通大学 一种超/特高压gis/gil绝缘子载流特性试验装置及方法
CN114758912A (zh) * 2022-05-10 2022-07-15 广东电网有限责任公司 一种梅花触头电动更换装置
CN116184141A (zh) * 2023-04-25 2023-05-30 南昌工程学院 一种气体绝缘设备故障诊断方法及系统
CN116184141B (zh) * 2023-04-25 2023-08-29 南昌工程学院 一种气体绝缘设备故障诊断方法及系统
CN116632703A (zh) * 2023-06-06 2023-08-22 国网山东省电力公司临清市供电公司 一种手车式开关触头更换工具
CN116632703B (zh) * 2023-06-06 2024-03-29 国网山东省电力公司临清市供电公司 一种手车式开关触头更换工具

Also Published As

Publication number Publication date
AU2020244443A1 (en) 2021-06-03
CN111024233B (zh) 2021-10-08
AU2020244443B2 (en) 2022-02-17
CN111024233A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021093381A1 (zh) 一种gis内部触头接触不良的模拟装置及红外校准方法
CN106226696B (zh) 一种gis中隔离开关触头接触状态模拟试验系统及方法
CN105092050A (zh) 一种gis内部导体过热故障的检测方法及装置
CN106771924A (zh) 一种利用光电场传感器检测绝缘子缺陷的检测系统及方法
CN109341887A (zh) 一种gis隔离开关外壳温度监测试验装置
CN104931810A (zh) 基于冷热循环系统复合绝缘子带电及紫外老化监测装置
Ma et al. Measurement and simulation of charge accumulation on a disc spacer with electro-thermal stress in SF 6 gas
CN111650536A (zh) 一种gis导体接触部件通流试验装置及方法
Utami et al. Evaluation condition of transformer based on infrared thermography results
CN110069804A (zh) 一种局部过热性故障物理缺陷检测装置
CN107764401B (zh) 一种对断路器内部接头发热识别的方法
CN205049252U (zh) 一种gis内部导体过热故障的检测装置
CN106771623B (zh) 一种高温环境下绝缘材料电阻及电阻率的测试装置
CN112505418A (zh) 断路器回路直流电阻辅助测试工具及方法
Li et al. On-line temperature monitoring of the GIS contacts based on infrared sensing technology
CN206431236U (zh) 一种利用光电场传感器检测绝缘子缺陷的检测系统
Cheng et al. Intelligent diagnosis method for heating defect of GIS disconnecting switch
CN201583598U (zh) 一种高压定子线圈绝缘介损测试箱
CN114460449A (zh) 电磁继电器低温测试装置及方法
Li et al. The Application of Infrared Thermal Imaging Technology in State Detection of Porcelain Insulators
CN212514951U (zh) 一种gis母线接触缺陷实验模拟装置
CN207502610U (zh) 一种开关柜梅花触指电阻检测装置
Kang et al. Detection and analysis of internal abnormal heating for high voltage switchgear based on infrared thermometric technology
Li et al. Test research on poor contact defect detection of GIS based on temperature and vibration
CN111665457A (zh) 一种gis母线接触缺陷实验模拟装置及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020244443

Country of ref document: AU

Date of ref document: 20200803

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886913

Country of ref document: EP

Kind code of ref document: A1