WO2021093165A1 - 一种气体放电灯hid的电子镇流器的控制方法及控制电路 - Google Patents

一种气体放电灯hid的电子镇流器的控制方法及控制电路 Download PDF

Info

Publication number
WO2021093165A1
WO2021093165A1 PCT/CN2020/072482 CN2020072482W WO2021093165A1 WO 2021093165 A1 WO2021093165 A1 WO 2021093165A1 CN 2020072482 W CN2020072482 W CN 2020072482W WO 2021093165 A1 WO2021093165 A1 WO 2021093165A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
arm switch
gas discharge
discharge lamp
hid
Prior art date
Application number
PCT/CN2020/072482
Other languages
English (en)
French (fr)
Inventor
陈洪川
赵胜求
何日展
李家钦
Original Assignee
深圳市朗文科技实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市朗文科技实业有限公司 filed Critical 深圳市朗文科技实业有限公司
Priority to US17/204,329 priority Critical patent/US11277891B2/en
Publication of WO2021093165A1 publication Critical patent/WO2021093165A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • H05B41/3928Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation for high-pressure lamps, e.g. high-intensity discharge lamps, high-pressure mercury or sodium lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2887Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
    • H05B41/2888Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage the bridge being commutated at low frequency, e.g. 1kHz
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to the field of ballasts, in particular to a control method and control circuit of an electronic ballast for a high-pressure gas discharge lamp HID.
  • the core of the electronic ballast is an inverter composed of a semiconductor full-bridge circuit FB composed of 4 semiconductor switches S1/S2/S3/S4, which connects the 4 semiconductor switches S1/S2/S3/S4 of the inverter.
  • the off control realizes the inversion of DC to AC on both sides of the high-pressure gas discharge lamp HID.
  • a PWM signal is generated by a controller to control the on of 4 semiconductor switches S1/S2/S3/S4 according to a certain sequence.
  • FIG. 1 it is a timing diagram of a PWM signal generated by a control device for controlling the on and off of 4 semiconductor switches S1/S2/S3/S4, as shown in Figure 1, the diagonal
  • the two switches S1 and S4 adopt the first synchronous PWM signal
  • the switches S2 and S3 adopt the second synchronous PWM signal
  • the difference between the first synchronous PWM signal and the second synchronous PWM signal is 180 degrees.
  • Such a control signal realizes the mutual conduction at both ends of the high-pressure gas discharge lamp HID, that is, in the first half of a cycle, the switches S1 and S4 are turned on. In the high-pressure gas discharge lamp HID lamp, conduction from one direction is realized.
  • the voltage amplitude should be equal to the lamp discharge voltage UD. If the combustion voltage U is higher than the discharge voltage UD, almost no UV power is generated; instead, energy is lost through heat.
  • the voltage increases in a short period of time until it drops to a predetermined level Ukmin within the remaining pulse length, generating a spike, and then reaching a plateau.
  • the given current Ikmin causes the operating voltage U to drop to Ukmin. This mode produces an ineffective current-voltage ratio, where an excessively high current is used for cathode heating.
  • the electronic ballast unit is preferably equipped with two control methods.
  • the control variable is UV power.
  • the current is reduced to Ikmin and maintained at this level.
  • the voltage amplitude is increased until the desired UV power is reached.
  • PWmin reduce the pulse width until it reaches PWmin. In this way, part of the energy is used to heat the cathode, which extends the life of the UV lamp without requiring an additional heat source.
  • control circuit for implementing such a control method is very complicated and is not suitable for the HID of the high-pressure gas discharge lamp.
  • the present invention aims at the disadvantage that the current electronic ballast control process is complicated and cannot meet the needs of users, and provides a control method and control circuit for the electronic ballast of a high-pressure gas discharge lamp HID.
  • a control method for the electronic ballast of a gas discharge lamp HID which generates a PWM signal to control the upper left arm switch K1, the upper right arm switch K2, and the lower left arm switch in the ballast K3, right lower arm switch K4; during the normal working process of the electronic ballast, the controller's work includes the following steps:
  • the controller in this step, the controller generates the PWM1 signal that controls the opening and closing of the left upper arm switch K1, the PWM2 signal that controls the opening and closing of the right upper arm switch K2, and the PWM3 signal that controls the opening and closing of the left lower arm switch K3.
  • the PWM4 signal for opening and closing of the right lower arm switch K4; the PWM1 signal and the PWM2 signal are low-frequency signals with the same frequency and reverse phase, and the PWM3 signal and the PWM4 signal are high-frequency signals;
  • the step of adjusting the duty cycle of the PWM5 signal and the PWM6 signal in this step, if it is detected that the current input to the gas discharge lamp HID is greater than the set normal value, reduce the duty cycle of the PWM3 signal and the PWM4 signal , And vice versa; if it is detected that the current input to the gas discharge lamp HID is greater than the set maximum value, the upper left arm switch K1, the upper right arm switch K2, the lower left arm switch K3, and the lower right arm switch K4 are all turned off.
  • the duty cycle of the PWM signal of the lower arm of the semiconductor full bridge circuit is changed according to the power consumption of the gas discharge lamp HID to control the power consumption of the gas discharge lamp HID.
  • the method further includes:
  • the controller starts step.
  • the controller generates a high-frequency PWM01 signal that controls the upper left arm switch K1 and the lower right arm switch K4 to open and close at the same time, and controls the upper right arm switch K2 and the lower left arm switch K3 to open and close at the same time
  • the high frequency PWM02 signal, PWM01 signal and PWM02 signal have the same frequency, and the phase difference is 180°.
  • the duty ratio of the PWM01 signal and the PWM02 signal is 50%.
  • control method of the electronic ballast of the gas discharge lamp HID described above the PWM01 signal and the PWM02 signal, and the PWM5 signal and the PWM6 signal are the same frequency signals.
  • the control method of the electronic ballast of the gas discharge lamp HID described above the PWM1 signal and the PWM2 signal are within 100Hz, and the frequency of the PWM5 signal and the PWM6 signal is 10KHz-100KHz.
  • the present invention also provides a control circuit according to the above-mentioned control method of the electronic ballast of the gas discharge lamp HID, comprising a semiconductor with a left upper arm switch K1, a right upper arm switch K2, a left lower arm switch K3, and a right lower arm switch K4 Full bridge circuit and controller; the gas discharge lamp HID is arranged between the connection point of the left upper arm and the left lower arm and the connection point of the right upper arm and the right lower arm; the controller includes:
  • the generator controller generates the PWM1 signal that controls the opening and closing of the left upper arm switch K1, the PWM2 signal that controls the opening and closing of the right upper arm switch K2, the PWM3 signal that controls the opening and closing of the left lower arm switch K3, and the opening and closing of the right lower arm switch K4 PWM signal generating device for PWM4 signal;
  • a collection device that collects and detects the output of the detection circuit of the current input to the gas discharge lamp HID;
  • a device for judging and setting the duty cycle of the PWM3 signal and the PWM4 signal is a device for judging and setting the duty cycle of the PWM3 signal and the PWM4 signal.
  • the controller generates different PWM signals according to the detection of the HID power consumption of the gas discharge lamp to stabilize the HID power consumption of the gas discharge lamp.
  • the controller also includes generating a high-frequency PWM01 signal that controls the left upper arm switch K1 and the right lower arm switch K4 to open and close at the same time, and control the right upper arm switch K2 and the left lower arm switch K3 to open simultaneously , High-frequency PWM signal generator with high-frequency PWM02 signal closed at the same time.
  • the duty ratio of the PWM01 signal and the PWM02 signal is 50%.
  • the PWM01 signal and the PWM02 signal, and the PWM5 signal and the PWM6 signal are signals of the same frequency.
  • the PWM1 signal and the PWM2 signal are within 100 Hz, and the frequency of the PWM5 signal and the PWM6 signal is 10KHz-100KHz.
  • Fig. 1 is a control sequence diagram of current general ballasts.
  • Fig. 2 is a control sequence diagram of the electronic dimming ballast for UV lamps disclosed in Chinese Patent Publication No. CN107820358 B.
  • FIG. 3 is a schematic circuit diagram of the HID electronic ballast for the gas discharge lamp used in the present invention.
  • Fig. 4 is a control sequence diagram of the electronic ballast of the gas discharge lamp HID of the present invention.
  • Embodiment 1 is a new type of electronic ballast with stable HID operation, suppressed harmonics, and higher power factor PFC.
  • the electronic ballast of this embodiment adopts an inverter control circuit to control the semiconductor full bridge circuit and complete the inverter.
  • 220VAC is rectified by the rectifier circuit, it is filtered in the PFC to form 400VDC, and then enters the semiconductor full bridge circuit composed of 4 semiconductor switches S1/S2/S3/S4 to form high frequency alternating current.
  • a controller is used to control the four semiconductor switches S1/S2/S3/S4, and the sequence shown in Figure 4 is used to control the four semiconductor switches to close or open. High-frequency alternating current is formed on both sides of the lamp LAMP to light up.
  • the controller generates the PWM1 signal that controls the opening and closing of the left upper arm switch K1, the PWM2 signal that controls the opening and closing of the right upper arm switch K2, the PWM3 signal that controls the opening and closing of the left lower arm switch K3, and the PWM4 that controls the opening and closing of the right lower arm switch K4.
  • Signal; PWM1 signal and PWM2 signal are low-frequency signals and the same frequency is reversed.
  • the frequency of PWM1 signal and PWM2 signal is generally within 100Hz.
  • the duty ratio of PWM1 signal and PWM2 signal is 50%. In fact, it can also be based on Needs adjustment.
  • the PWM3 signal and PWM4 signal are high-frequency signals, generally in the range of 10KHz to 100KHz, and can be adjusted as needed in practice.
  • the controller also monitors the power consumption of the lamp LAMP. As shown in Figure 3, there is a detection resistor R on the loop. The controller samples the voltage across the detection resistor R through the sampling circuit and calculates The power consumption of the lamp LAMP.
  • the lamp LAMP will work for a long time, it will generate heat, the gas will stimulate and discharge more, and the resistance will be relatively reduced.
  • the controller monitors that the power consumption of the lamp LAMP increases, it will control to reduce the duty cycle of the PWM3 signal and the PWM4 signal to reduce the power consumption.
  • the specific control process when the lamp LAMP is working normally is as follows:
  • the controller in this step, the controller generates the PWM1 signal that controls the opening and closing of the left upper arm switch K1, the PWM2 signal that controls the opening and closing of the right upper arm switch K2, and the PWM3 signal that controls the opening and closing of the left lower arm switch K3.
  • the PWM4 signal for opening and closing of the right lower arm switch K4; the PWM1 signal and the PWM2 signal are low-frequency signals with the same frequency and reverse phase, and the PWM3 signal and the PWM4 signal are high-frequency signals;
  • the step of adjusting the duty cycle of the PWM5 signal and the PWM6 signal in this step, if it is detected that the current input to the gas discharge lamp HID is greater than the set normal value, reduce the duty cycle of the PWM3 signal and the PWM4 signal , And vice versa; if it is detected that the current input to the gas discharge lamp HID is greater than the set maximum value, the upper left arm switch K1, the upper right arm switch K2, the lower left arm switch K3, and the lower right arm switch K4 are all turned off.
  • the control circuit of the electronic ballast of the gas discharge lamp HID of this embodiment is shown in Fig. 3.
  • the rectifier bridge D1 composed of 4 diodes, it passes through the inductor L2, the diode D2, and the electrolytic capacitor E1.
  • the PFC circuit composed of switch S5 is filtered to form a 400VDC output to the semiconductor full bridge circuit composed of 4 semiconductor switches S1/S2/S3/S4. Under the control of the controller, it opens and closes according to the specified timing.
  • the semiconductor full bridge circuit and the lamp LAMP are also connected in series with a resonant inductor L1, a high-frequency resonant capacitor C1 in series, a high-frequency filter capacitor C2 in parallel, and whether the high-frequency filter capacitor C2 is added to the controller to control the relay RY1.
  • the semiconductor full bridge circuit is provided with direct current by PFC, and the PFC circuit filters the output of the previous rectifier bridge D1 to form 400VDC.
  • the value of the voltage across the current detection R is input to the inverter controller and processed in the inverter controller to generate and control the 4 semiconductor switches S1/S2/S3/S4 in the semiconductor full bridge circuit FB.
  • the inverter controller is a smart chip that integrates a processor, a memory, an AD converter, etc. In practice, the one widely used in the applicant’s large number of plant supplement light products Dedicated microcontroller.
  • the four semiconductor switches S1/S2/S3/S4 can all use MOS transistors.
  • the D-S pole of the MOS tube forms an arm of the semiconductor full-bridge circuit FB, and the G pole is connected to the inverter control circuit chip U1.
  • the inverter control circuit chip U1 generates an alternating signal to control its closing.
  • the controller has PWM signals with different frequencies and different duty cycles. For example, when the controller is turned on, the controller generates a high-frequency PWM01 signal that controls the left upper arm switch K1 and the right lower arm switch K4 to open and close at the same time.
  • the high-frequency PWM02 signal of the upper right arm switch K2 and the lower left arm switch K3 are opened and closed at the same time.
  • the frequency of the PWM01 signal and the PWM02 signal are the same, and the phase difference is 180°.
  • the duty cycle of the PWM01 signal and the PWM02 signal is 50%, as shown in Figure 1. Show.
  • the two signals PWM01 signal and PWM02 signal can be realized by a PWM signal generator, and the two signals can be reversed before switching.
  • the low-frequency PWM1 signal and PWM2 signal are also a duty cycle of 50% PWM signal, the difference between the two is 180°, which is the opposite phase. Therefore, it is enough to add an inverter before the switch S1 or the switch S2.
  • the high frequency PWM3 signal and the PWM4 signal have different duty cycles.
  • the PWM generation circuit can be used. Generally, several duty ratios such as 30%, 20%, and 10% are commonly used.
  • the semiconductor switch S1 and the semiconductor switch S3, the semiconductor switch S2 and the semiconductor switch S4 are complementary conduction in one cycle, the semiconductor switch S1 and the semiconductor switch S4, the semiconductor switch S2 and the semiconductor switch S3 have a conduction Through phase angle, the inverter control circuit chip U1 controls the output power by adjusting the conduction phase angle to realize the APFC function with active power factor compensation.
  • High-frequency resonance triggering has the advantages of continuous high pressure and high energy density, and is suitable for triggering various sodium lamps, metal halide lamps, and ceramic metal halide lamps.
  • the ideal working waveform of various sodium lamps, metal halide lamps, ceramic metal halide lamps and other bulbs is a low-frequency square wave, which can eliminate acoustic resonance, so after the bulb is triggered, it switches to low-frequency square wave operation.
  • rectification and filtering are performed before the switches S1 to 4 to form a unified high voltage direct current, and a square wave can be formed through the switches S1 to 4.
  • the ballast is designed with a bulb selection switch, and the DSP module executes different trigger voltages, power benchmarks and open-short circuit protection benchmarks according to the bulbs selected by the switch.
  • the electronic ballast of the novel single-stage circuit structure of this embodiment is used in the plant light supplement lamp, and has achieved good results.
  • the electronic ballast of this embodiment can be used for both 50Hz and 60Hz mains, 277V, 240V, 220V, 208V, and 120V voltage.
  • the mains power supply is connected to the diode rectifier bridge D1.
  • the output of the rectifier bridge D1 is filtered by the PFC circuit to form 400VDC and directly sent to the semiconductor full bridge circuit composed of four semiconductor switches S1/S2/S3/S4.
  • the semiconductor full bridge circuit is divided into the left bridge arm and the right bridge arm.
  • the left bridge arm is composed of the upper left bridge arm semiconductor switch S1 and the lower left bridge arm semi-semiconductor switch S3, and the right bridge arm is composed of the right upper bridge arm semiconductor switch S2.
  • the semiconductor switch S1 of the upper left bridge arm and the semiconductor switch S3 of the lower left bridge arm are respectively connected to and controlled by the two ports of the full bridge control circuit, that is, the controller.
  • the upper right bridge arm semiconductor switch S2, the lower right bridge arm semiconductor switch S4 is respectively connected to and controlled by the two ports of the full bridge control circuit, that is, the controller.
  • the upper left side semiconductor switch S1 and the lower left side semiconductor switch S3, the upper right side semiconductor switch S2 and the lower right side semiconductor switch S4 are complementary conduction in one cycle, and the upper left side semiconductor switch S1 is connected to the lower right side.
  • the side-arm semiconductor switch S4, the upper-right-side semiconductor switch S2 and the lower-left-side semiconductor switch S3 have a conduction phase angle. By controlling the conduction phase angle, the current sent to the gas discharge lamp Lamp is controlled to be one Corresponding to the rated current of the rated power of the lamp, the current flowing into the lamp should not be too large or too small.
  • the current detection sampling circuit samples and outputs the response current signal, it is processed in the controller (microcontroller) and judged if it is greater than normal
  • the control selects the PWM signal with a smaller duty ratio to control these two switches. If it continues to detect that it increases more than the set maximum value, control the four switches to turn off to protect the lamp.

Abstract

本发明公开一种气体放电灯HID的电子镇流器的控制方法用控制系统,产生PWM信号控制镇流器中左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4;电子镇流器正常工作过程中,产生PWM信号;该步骤中,控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号;PWM1信号与PWM2信号为低频信号且同频反相,PWM3信号与PWM4信号为高频信号。该控制电路包括产生这些PWM信号的电路。本发明电子镇流器的控制方法中,根据气体放电灯HID的功耗改控制变半导体全桥电路下臂的PWM信号的占空比,以控制气体放电灯HID的功耗。

Description

一种气体放电灯HID的电子镇流器的控制方法及控制电路 技术领域
本发明涉及镇流器领域,特别涉及一种高压气体放电灯HID的电子镇流器的控制方法及控制电路。
背景技术
目前照明领域中电子镇流器,包括高压气体放电灯HID电子镇流器应用越来越多。电子镇流器的核心是由4个半导体开关S1/S2/S3/S4构成的半导体全桥电路FB组成的逆变器,对逆变器的4个半导体开关S1/S2/S3/S4的通断控制实现将直流逆变成交流在入到高压气体放电灯HID两侧,实践中,是通过一个控制器产生PWM信号按照一定的时序分别控制4个半导体开关S1/S2/S3/S4的通断,如图1所示,为一种由控制装置产生的用于控制4个半导体开关S1/S2/S3/S4的通断的PWM信号的时序图,如图1所示,对角上的两个开关S1和S4采用第一同步PWM信号,开关S2和S3采用第二同步PWM信号,而第一同步PWM信号和第二同步PWM信号相差为180度。这样的控制信号实现了在高压气体放电灯HID两端交互导通,就是说在一个周期的前半周期是开关S1和S4导通,在高压气体放电灯HID灯中实现从一个方向导通,在后半周时,开关S2和S3导通,在高压气体放电灯HID灯中实现从一个相反的方向导通。也就是在任何时候,高压气体放电灯HID灯中都是导通的,这样的控制方法不能实现节能控制。为了降低高压气体放电灯HID的功耗,业内设计出了很多节能的镇流器控制方法,中国专利公告号CN 107820358 B就公开了用于UV灯的电子调光镇流器的控制方法,该方法中,如图2所示:电压和电流随时间的变化。输出电流I和电压U基本为矩形,具有约为65kHz的频率。因为不存在常用的扼流圈,电流信号I和电压信号U具有几乎相同的形状,功率、更确切地说是有效电流I由脉冲宽度调制(PWM)控制。
在额定工作期间,电压振幅应等于灯的放电电压UD。如果燃烧电压U高于放电电压UD,则几乎不产生UV功率;而是通过发热而损耗能量。
如图2所示,在脉冲开始时,电压在短时间内增加,直到其在剩余的脉冲长度内下降到预定水平Ukmin为止,产生了一个尖峰,随后达到平稳。给定的电流Ikmin导致工作电压U下降到Ukmin。该模式产生无效的电流-电压比,其中过高的电流用于阴极加热。
电子镇流器单元优选地配备有两个控制方法。控制变量是UV功率。为了降低UV功率,电流降至Ikmin并保持在此水平。之后,电压振幅增加直到达到期望的UV功率。随着 电压振幅的增加,减小脉冲宽度,直到达到PWmin。以这种方式,部分能量用于加热阴极,这延长了UV灯的寿命,而不需要额外的热源。
但是实现这样的控制方式的控制电路非常复杂,不适合于高压气体放电灯HID。
发明内容
本发明是针对目前电子镇流器控制过程复杂,不能满足用户需要的不足,提供一种高压气体放电灯HID的电子镇流器的控制方法及控制电路。
本发明为实现其技术目的所采用的技术方案是:一种气体放电灯HID的电子镇流器的控制方法,产生PWM信号控制镇流器中左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4;电子镇流器正常工作过程中,控制器的工作包括以下步骤:
S1、产生PWM信号;该步骤中,控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号;PWM1信号与PWM2信号为低频信号且同频反相,PWM3信号与PWM4信号为高频信号;
S2、控制输入到气体放电灯HID的电信号进行滤波的步骤;
S3、对输入到气体放电灯HID的电流进行检测的步骤;
S4、对PWM5信号与PWM6信号的占空比进行调节的步骤;该步骤中,若检测到输入到气体放电灯HID的电流大于设定正常值时,减小PWM3信号与PWM4信号的占空比,反之亦然;若检测到输入到气体放电灯HID的电流大于设定最大值时,控制左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4全断开。
本发明电子镇流器的控制方法中,根据气体放电灯HID的功耗改控制变半导体全桥电路下臂的PWM信号的占空比,以控制气体放电灯HID的功耗。
进一步的,上述的气体放电灯HID的电子镇流器的控制方法:在步骤S1之前,还包括:
S0、启动的步骤,该步骤中,控制器产生控制左上臂开关K1和右下臂开关K4同时开、同时闭的高频PWM01信号,控制右上臂开关K2和左下臂开关K3同时开、同时闭的高频PWM02信号,PWM01信号和PWM02信号频率相同,相差为180°。
进一步的,上述的气体放电灯HID的电子镇流器的控制方法:PWM01信号和PWM02信号的占空比为50%。
进一步的,上述的气体放电灯HID的电子镇流器的控制方法:所述的PWM01信号与PWM02信号和PWM5信号与PWM6信号为同频信号。
进一步的,上述的气体放电灯HID的电子镇流器的控制方法:所述的PWM1信号与PWM2信号在100Hz以内,PWM5信号和PWM6信号的频率在10KHz~100KHz。
本发明还提供了一种根据上述的气体放电灯HID的电子镇流器的控制方法的控制电路,包括具左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4的半导体全桥电路和控制器;气体放电灯HID设置在左上臂和左下臂连接点与右上臂和右下臂的连接点之间;所述的控制器包括:
产生控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号的PWM信号产生装置;
产生控制高频滤波电容C2是否加入到气体放电灯HID两端的控制信号的装置;
采集检测输入到气体放电灯HID的电流的检测电路的输出的采集装置;
判断并设定PWM3信号与PWM4信号的占空比的装置。
本发明中,控制器根据检测气体放电灯HID功耗的情况产生不同的PWM信号,以稳定气体放电灯HID功耗。
进一步的,上述的控制电路中:在控制器中还包括产生控制左上臂开关K1和右下臂开关K4同时开、同时闭的高频PWM01信号,控制右上臂开关K2和左下臂开关K3同时开、同时闭的高频PWM02信号的高频PWM信号产生器。
进一步的,上述的控制电路中:PWM01信号和PWM02信号的占空比为50%。
进一步的,上述的控制电路中:所述的PWM01信号与PWM02信号和PWM5信号与PWM6信号为同频信号。
进一步的,上述的控制电路中:所述的PWM1信号与PWM2信号在100Hz以内,PWM5信号和PWM6信号的频率在10KHz~100KHz。
下面结合附图和具体实施方式对本发明进行进一步的说明。
附图说明
附图1是目前一般镇流器的控制时序图。
附图2是中国专利公告号CN 107820358 B公开的UV灯的电子调光镇流器的控制时序图。
附图3是本发明所使用的气体放电灯HID电子镇流器的电路原理图。
附图4是本发明气体放电灯HID的电子镇流器的控制时序图。
具体实施方式
实施例1,如图3所示,是一种HID工作稳定,谐波被抑制,功率因数PFC较高的新型电子镇流器。本实施例的电子镇流器采用一个逆变控制电路实现对半导体全桥电路的控制,完成逆变。
本实施例中,220VAC市电经由整流电路整流以后,再在PFC中进行滤波形成400VDC,再进入由4个半导体开关S1/S2/S3/S4构成的半导体全桥电路逆变形成高频交流电加入到气体放电灯HID,本实施例中采用一个控制器对4个半导体开关S1/S2/S3/S4进行控制,采用如图4所示的时序,控制这四个半导体开关闭合或者断开,在灯LAMP两侧形成高频交流电而点亮。
本实施例中,控制器对S1/S2/S3/S4控制的时序如图4所示:
控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号;PWM1信号与PWM2信号为低频信号且同频反相,PWM1信号与PWM2信号的频率一般在100Hz以内,一般情况下PWM1信号和PWM2信号的占空比为50%,实际上,也可以根据需要调整。PWM3信号与PWM4信号为高频信号,一般在10KHz~100KHz的范围内,实践中根据需要可以调整。
在灯LAMP正常工作过程中,控制器还对灯LAMP的功耗进行监测,如图3所示,在回路上有一个检测电阻R,控制器通过采样电路采样检测电阻R两端的电压,计算出灯LAMP的功耗,在实践中,灯LAMP工作时间长了,会发热,气体激发放电的更加多,电阻相对减小,在电压不变的情况下电流将会增加,功耗增加了,变会发热,导致不能正常工作,因此,控制器监视到灯LAMP功耗增加时,会控制减小PWM3信号与PWM4信号的占空比,以降低功耗。具体在灯LAMP正常工作时的控制过程如下:
S1、产生PWM信号;该步骤中,控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号;PWM1信号与PWM2信号为低频信号且同频反相,PWM3信号与PWM4信号为高频信号;
S2、控制输入到气体放电灯HID的电信号进行滤波的步骤;
S3、对输入到气体放电灯HID的电流进行检测的步骤;
S4、对PWM5信号与PWM6信号的占空比进行调节的步骤;该步骤中,若检测到输入到气体放电灯HID的电流大于设定正常值时,减小PWM3信号与PWM4信号的占空比,反之亦然;若检测到输入到气体放电灯HID的电流大于设定最大值时,控制左上臂开关K1、右上 臂开关K2、左下臂开关K3、右下臂开关K4全断开。
本实施例的气体放电灯HID的电子镇流器的控制电路如图3所示,220VAC交流输入电压经由4个二极管构成的整流桥D1整流以后,再通过由电感L2、二极管D2、电解电容E1和开关S5组成的PFC电路进行滤波,形成400VDC输出到由4个半导体开关S1/S2/S3/S4构成的半导体全桥电路在控制器的控制下,按照规定的时序开、闭,另外,在半导体全桥电路与灯LAMP之间还串联谐振电感L1,串联高频谐振电容C1,并联高频滤波电容C2,高频滤波电容C2是否加入由控制器控制继电器RY1。半导体全桥电路由PFC提供直流电,PFC电路是对前面的整流桥D1的输出进行滤波形成400VDC。
本实施例中,电流检测R两端的电压大小数值输入到逆变控制器中,在逆变控制器中进行处理,产生控制半导体全桥电路FB中的4个半导体开关S1/S2/S3/S4的时序信号。本实施例中,逆变控制器是一种智能芯片,内部集成了处理器、存储器、AD转换器等,实践中,在本申请人的大量的植物补光灯产品中广泛应用的是一种专用的单片机。本实施例中,4个半导体开关S1/S2/S3/S4可以都采用MOS管,MOS管的D-S极组成半导体全桥电路FB的一个臂,G极与逆变控制电路芯片U1相连,由逆变控制电路芯片U1产生有交的信号控制其闭合。实践中,在控制器中具有产生不同频率不同占空比的PWM信号,如在开机时,控制器产生控制左上臂开关K1和右下臂开关K4同时开、同时闭的高频PWM01信号,控制右上臂开关K2和左下臂开关K3同时开、同时闭的高频PWM02信号,PWM01信号和PWM02信号频率相同,相差为180°,PWM01信号和PWM02信号的占空比为50%,如图1所示。这两个信号PWM01信号和PWM02信号可以由一个PWM信号产生器实现,其中两个开关前进行反相即可,在正常工作时,低频的PWM1信号和PWM2信号也是一种占空比为50%的PWM信号,两者相差180°也就是反相,因此,在开关S1或者开关S2之前加一个反相器就可以了,另外,高频的PWM3信号和PWM4信号由几种产生不同占空比的PWM产生电路即可,一般30%、20%、10%等几种占空比是常用的。
半导体全桥电路控制器控制下,半导体开关S1与半导体开关S3,半导体开关S2与半导体开关S4在一个周期内互补导通,半导体开关S1与半导体开关S4,半导体开关S2与半导体开关S3存在一个导通相位角,逆变控制电路芯片U1通过调整这个导通相位角来控制输出功率,实现具备有源功率因数补偿APFC功能。
本实施例中:
高频谐振触发备有高压连续,能量密度高的优点,适用于触发各种钠灯,金卤灯,陶瓷金卤灯。
各种钠灯,金卤灯,陶瓷金卤灯等灯泡理想的工作波形就是低频方波,可以消除声共振,所以灯泡触发后切换到低频方波工作。本实施例中,在开关S1~4之前进行了整流滤波,形成了统一的高压直流,经过开关S1~4可以形成方波。
镇流器设计了一个灯泡选择开关,DSP模块根据开关选择的灯泡执行不同的触发电压,功率基准和开短路保护基准。
本实施例的新型单级电路结构的电子镇流器使用在植物补光灯上,取得了较好的效果。目前,对50Hz和60Hz两种市电、277V,240V,220V,208V,120V电压都可以使用本实施例的电子镇流器。市电电源连接到二极管整流桥D1。整流桥D1的输出由PFC电路滤波形成400VDC直接送至由四个半导体开关S1/S2/S3/S4组成的半导体全桥电路。
半导体全桥电路分左侧桥臂和右侧桥臂,左侧桥臂由左上侧桥臂半导体开关S1、左下侧桥臂半半导体开关S3组成,右侧桥臂由右上侧桥臂半导体开关S2、右下侧桥臂半导体开关S4组成。左上侧桥臂的半导体开关S1、左下侧桥臂半导体开关S3分别连接到全桥控制电路也就是控制器两个端口并由其控制,右上侧桥臂半导体开关S2、右下侧桥臂半导体开关S4分别连接到全桥控制电路也就是控制器两个端口并由其控制。左上侧桥臂半导体开关S1与左下侧桥臂半导体开关S3,右上侧桥臂半导体开关S2与右下侧桥臂半导体开关S4在一个周期内互补导通,左上侧桥臂半导体开关S1与右下侧桥臂半导体开关S4,右上侧桥臂半导体开关S2与左下侧桥臂半导体开关S3存在一个导通相位角,通过控制这个导通相位角的大小来控制送入气体放电灯Lamp的电流为一个对应该灯额定功率的额定电流,流入该灯的电流不至于过大或者过小,当电流检测采样电路采样输出的反应电流大小的信号在控制器(单片机)中进行处理,判断,如果大于正常的设定值,控制选择占空比较小的PWM信号控制这两个开关,如果继续检测其更加增大,大于设定的最大值时,控制四个开关都关闭以保护灯。

Claims (10)

  1. 一种气体放电灯HID的电子镇流器的控制方法,产生PWM信号控制镇流器中左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4;其特征在于:电子镇流器正常工作过程中,控制器的工作包括以下步骤:
    S1、产生PWM信号;该步骤中,控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号;PWM1信号与PWM2信号为低频信号且同频反相,PWM3信号与PWM4信号为高频信号;
    S2、控制输入到气体放电灯HID的电信号进行滤波的步骤;
    S3、对输入到气体放电灯HID的电流进行检测的步骤;
    S4、对PWM5信号与PWM6信号的占空比进行调节的步骤;该步骤中,若检测到输入到气体放电灯HID的电流大于设定正常值时,减小PWM3信号与PWM4信号的占空比,反之亦然;若检测到输入到气体放电灯HID的电流大于设定最大值时,控制左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4全断开。
  2. 根据权利要求1所述的气体放电灯HID的电子镇流器的控制方法,其特征在于:在步骤S1之前,还包括:
    S0、启动的步骤,该步骤中,控制器产生控制左上臂开关K1和右下臂开关K4同时开、同时闭的高频PWM01信号,控制右上臂开关K2和左下臂开关K3同时开、同时闭的高频PWM02信号,PWM01信号和PWM02信号频率相同,相差为180°。
  3. 根据权利要求2所述的气体放电灯HID的电子镇流器的控制方法,其特征在于:PWM01信号和PWM02信号的占空比为50%。
  4. 根据权利要求2所述的气体放电灯HID的电子镇流器的控制方法,其特征在于:所述的PWM01信号与PWM02信号和PWM5信号与PWM6信号为同频信号。
  5. 根据权利要求1或2或3或4所述的气体放电灯HID的电子镇流器的控制方法,其特征在于:所述的PWM1信号与PWM2信号在100Hz以内,PWM5信号和PWM6信号的频率在10KHz~100KHz。
  6. 一种根据权利要求1所述的气体放电灯HID的电子镇流器的控制方法的控制电路,包括具左上臂开关K1、右上臂开关K2、左下臂开关K3、右下臂开关K4的半导体全桥电路和控制器;气体放电灯HID设置在左上臂和左下臂连接点与右上臂和右下臂的连接点之间;其特征在于:
    所述的控制器包括:
    产生控制器产生控制左上臂开关K1开、闭的PWM1信号,控制右上臂开关K2开、闭的PWM2信号、控制左下臂开关K3开、闭的PWM3信号,控制右下臂开关K4开、闭的PWM4信号的PWM信号产生装置;
    产生控制高频滤波电容C2是否加入到气体放电灯HID两端的控制信号的装置;
    采集检测输入到气体放电灯HID的电流的检测电路的输出的采集装置;
    判断并设定PWM3信号与PWM4信号的占空比的装置。
  7. 根据权利要求6所述的控制电路,其特征在于:在控制器中还包括产生控制左上臂开关K1和右下臂开关K4同时开、同时闭的高频PWM01信号,控制右上臂开关K2和左下臂开关K3同时开、同时闭的高频PWM02信号的高频PWM信号产生器。
  8. 根据权利要求7所述的控制电路,其特征在于:PWM01信号和PWM02信号的占空比为50%。
  9. 根据权利要求7所述的控制电路,其特征在于:所述的PWM01信号与PWM02信号和PWM5信号与PWM6信号为同频信号。
  10. 根据权利要求6或7或8或9所述的控制电路,其特征在于:所述的PWM1信号与PWM2信号在100Hz以内,PWM5信号和PWM6信号的频率在10KHz~100KHz。
PCT/CN2020/072482 2019-11-15 2020-01-16 一种气体放电灯hid的电子镇流器的控制方法及控制电路 WO2021093165A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/204,329 US11277891B2 (en) 2019-11-15 2021-03-17 Control method and control circuit of electronic ballast of gas discharge lamp (HID)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911117535.6A CN110972375A (zh) 2019-11-15 2019-11-15 一种气体放电灯hid的电子镇流器的控制方法及控制电路
CN201911117535.6 2019-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/204,329 Continuation US11277891B2 (en) 2019-11-15 2021-03-17 Control method and control circuit of electronic ballast of gas discharge lamp (HID)

Publications (1)

Publication Number Publication Date
WO2021093165A1 true WO2021093165A1 (zh) 2021-05-20

Family

ID=70030629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072482 WO2021093165A1 (zh) 2019-11-15 2020-01-16 一种气体放电灯hid的电子镇流器的控制方法及控制电路

Country Status (3)

Country Link
US (1) US11277891B2 (zh)
CN (1) CN110972375A (zh)
WO (1) WO2021093165A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183463A1 (en) * 2003-03-05 2004-09-23 Matsushita Electric Works, Ltd. Method and circuit for driving a gas discharge lamp
KR20090124729A (ko) * 2008-05-30 2009-12-03 주식회사 에어텍시스템 면광원 구동용 안정기의 아크 방지 기동 장치
CN202738233U (zh) * 2012-04-17 2013-02-13 陈洪川 一种通用型电子镇流器
CN103152958A (zh) * 2013-03-07 2013-06-12 福建蓝蓝高科技发展有限公司 Hid灯高频驱动电路
CN108337795A (zh) * 2018-02-07 2018-07-27 深圳市朗文科技实业有限公司 一种两级低频方波电子镇流器
CN109982494A (zh) * 2019-04-19 2019-07-05 深圳市朗文科技实业有限公司 一种新型单级电路结构的电子镇流器
CN209914141U (zh) * 2019-04-19 2020-01-07 深圳市朗文科技实业有限公司 一种新型单级电路结构的电子镇流器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472373A (zh) * 2007-12-26 2009-07-01 林清华 混合桥式电子镇流器
JP2010198880A (ja) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd 放電灯点灯装置及び照明器具
CN201657471U (zh) * 2010-01-21 2010-11-24 中国电子为华实业发展有限公司 恒功率控制电路
CN103369806B (zh) * 2013-07-24 2016-02-24 深圳市朗文科技实业有限公司 单级电路结构的电子镇流器
DK3294043T3 (da) 2016-09-13 2019-05-06 Xylem Europe Gmbh Styrealgoritme til en elektronisk dæmpning-forkoblingsenhed af en UV-lampe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183463A1 (en) * 2003-03-05 2004-09-23 Matsushita Electric Works, Ltd. Method and circuit for driving a gas discharge lamp
KR20090124729A (ko) * 2008-05-30 2009-12-03 주식회사 에어텍시스템 면광원 구동용 안정기의 아크 방지 기동 장치
CN202738233U (zh) * 2012-04-17 2013-02-13 陈洪川 一种通用型电子镇流器
CN103152958A (zh) * 2013-03-07 2013-06-12 福建蓝蓝高科技发展有限公司 Hid灯高频驱动电路
CN108337795A (zh) * 2018-02-07 2018-07-27 深圳市朗文科技实业有限公司 一种两级低频方波电子镇流器
CN109982494A (zh) * 2019-04-19 2019-07-05 深圳市朗文科技实业有限公司 一种新型单级电路结构的电子镇流器
CN209914141U (zh) * 2019-04-19 2020-01-07 深圳市朗文科技实业有限公司 一种新型单级电路结构的电子镇流器

Also Published As

Publication number Publication date
CN110972375A (zh) 2020-04-07
US11277891B2 (en) 2022-03-15
US20210204372A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
AU2008203249A1 (en) Apparatus and method enabling fully dimmable operation of a compact fluorescent lamp
CN103220871B (zh) 软开关模式低频方波氙灯电子镇流器
US8319447B2 (en) Hid lamp ballast with multi-phase operation based on a detected lamp illumination state
CN104822216B (zh) 小功率hid灯驱动电路
JP5851083B2 (ja) キャパシタンスの使用量を低減する方法及びその装置
CN209914141U (zh) 一种新型单级电路结构的电子镇流器
WO2021093165A1 (zh) 一种气体放电灯hid的电子镇流器的控制方法及控制电路
Có et al. Single stage electronic ballast for HID lamps
WO2007124615A1 (fr) Circuit d'attaque électronique pour lampe fluorescente
CN211184379U (zh) 一种气体放电灯hid的电子镇流器的控制电路
CN201114945Y (zh) 高压放电灯电子镇流器
CN201267048Y (zh) 荧光灯用电子镇流器
JP2004527896A (ja) 高効率高力率電子安定器
CN203151854U (zh) 软开关模式低频方波氙灯电子镇流器
CN208285616U (zh) 一种提高电能利用效率的hid灯电子安定器
CN208402180U (zh) 一种无极灯电源驱动电路
CN101795520A (zh) 自适应可控硅调压方式的可调功率变换器
CN107360657B (zh) 一种大功率可远程控制可调光高压钠灯驱动器
TWM382691U (en) Novel self-oscillating dimmable electronic ballast with high power factor correction
KR100744795B1 (ko) 안정기
JPH10294191A (ja) 放電灯点灯装置
Liang et al. Design and analysis of dimming electronic ballast
CN111130336A (zh) 一种二级式hid电子镇流器的数字滞环电流跟踪控制方法
Lopes et al. Automatic lamp detection technique for fluorescent lamps electronic ballasts
TW201220925A (en) to realize dimming a white LED smoothly without flickering by detecting the conduction angle of the high voltage AC outputted by a TRIAC dimmer and convert said high voltage AC into a PWM low voltage DC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888691

Country of ref document: EP

Kind code of ref document: A1