WO2021092731A1 - 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法 - Google Patents

天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法 Download PDF

Info

Publication number
WO2021092731A1
WO2021092731A1 PCT/CN2019/117232 CN2019117232W WO2021092731A1 WO 2021092731 A1 WO2021092731 A1 WO 2021092731A1 CN 2019117232 W CN2019117232 W CN 2019117232W WO 2021092731 A1 WO2021092731 A1 WO 2021092731A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
glass
grid
transparent
transparent antenna
Prior art date
Application number
PCT/CN2019/117232
Other languages
English (en)
French (fr)
Inventor
吴忠良
黄梅峰
袁宁
Original Assignee
欧菲光集团股份有限公司
南昌欧菲光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲光科技有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2019/117232 priority Critical patent/WO2021092731A1/zh
Publication of WO2021092731A1 publication Critical patent/WO2021092731A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • This application relates to the field of communication technology, in particular to an antenna glass, automobile glass, architectural glass, transparent antenna and a preparation method thereof.
  • 5G networks ie, the 5th generation mobile communication network
  • 5G The network uses a high frequency band of 20-30GHZ for communication.
  • a transparent antenna is also provided.
  • An antenna glass comprising a laminated glass layer and a transparent antenna; the transparent antenna is a grid structure, the grid structure is composed of grid lines, the grid structure is conductive, and the grid lines are The ratio of the thickness H to the line width W of the grid line satisfies 0.8 ⁇ H/W ⁇ 3.
  • the antenna glass of the present application has high light transmittance and can be densely erected.
  • the antenna glass further includes a transparent protective layer, and the transparent protective layer is provided on the surface of the transparent antenna.
  • the transparent protective layer can prevent the transparent antenna from being scratched or corroded.
  • the transparent protective layer is a transparent substrate, and the transparent antenna is embedded in the transparent substrate.
  • the transparent substrate can prevent the transparent antenna from being scratched or corroded.
  • the transparent antenna can be directly molded on the transparent substrate and then bonded to the glass layer, so the preparation process can be simplified.
  • the transparent antenna is embedded in the glass layer.
  • the transparent antenna can be directly prepared on the glass layer, which can further simplify the preparation process of the antenna glass.
  • the transparent protective layer is a coating.
  • the coating can prevent the transparent antenna from being scratched or corroded.
  • the coating is an anti-scratch coating or an anti-corrosion coating.
  • Anti-scratch coating or anti-corrosion coating can prevent the transparent antenna from being scratched or corroded.
  • the transparent antenna is covered with the glass layer. Covering the transparent antenna with the glass layer can increase the density of the antenna and meet the high-density erection requirements of the base station.
  • the line width W of the grid lines is 1 ⁇ m-10 ⁇ m.
  • the antenna glass has a better light transmittance.
  • the ratio of the line width W of the grid line to the side length L of a single grid satisfies 0.01 ⁇ W/L ⁇ 0.02. This makes the transparent antenna have better light transmittance.
  • the cross section of the grid line is trapezoidal or rectangular. This is conducive to better demoulding during the preparation process of the transparent antenna.
  • the grid structure is made of conductive metal powder, and the average particle size of the metal powder is 2nm-8nm.
  • the average particle size of the metal powder is 2nm-8nm, the line width of the grid lines can be better controlled, and a transparent antenna with higher light transmittance can be prepared.
  • the metal powder is silver or copper.
  • Silver or copper has lower impedance, better conductivity, and better signal receiving ability, making the transparent antenna signal better and more stable.
  • the grid shape of the grid structure is a rectangle.
  • the rectangular transparent antenna has a higher aperture ratio and light transmittance.
  • the application also provides an automobile glass, which is applied to an automobile window, the automobile glass includes an antenna glass, and the transparent antenna of the antenna glass faces the outer surface of the automobile.
  • the antenna When the antenna is used, it faces the outer surface of the car, which can avoid the loss of the glass to the antenna signal, making the signal of the antenna glass stronger and more stable.
  • the present application also provides a building glass applied to doors and windows of buildings, characterized in that the building glass includes the above-mentioned antenna glass, and the transparent antenna of the antenna glass faces the outer surface of the building.
  • the antenna When the antenna is used, it faces the outer surface of the building, which can avoid the loss of the glass to the antenna signal, making the signal of the antenna glass stronger and more stable.
  • the present application also provides a transparent antenna.
  • the transparent antenna has a grid structure, the grid structure is composed of grid lines, the grid structure has conductivity, and the thickness H of the grid line is equal to the thickness H of the grid line.
  • the line width W ratio of the ruled lines is 0.8 ⁇ H/W ⁇ 3.
  • the included angle between two adjacent sides of the single grid is 60°-120°.
  • the transparent antenna has better light transmittance.
  • the cross section of the grid line is trapezoidal or rectangular. This is conducive to better demoulding during the preparation process of the transparent antenna.
  • the line width W of the grid lines is 1 ⁇ m-10 ⁇ m; when the line width is in this range, the antenna glass has better light transmittance.
  • the ratio of the line width W of the grid lines to the side length L of a single grid is 0.01 ⁇ W/L ⁇ 0.02. This makes the transparent antenna have better light transmittance.
  • the grid structure is made of conductive metal material. Metal materials have better conductivity and can better receive signals.
  • the metal material is silver or copper.
  • Silver or copper has lower impedance, better conductivity, and better signal receiving ability, making the transparent antenna signal better and more stable.
  • the average particle size of the metal material is 2nm-8nm.
  • the line width of the grid line can be better controlled, and a transparent antenna with higher light transmittance can be prepared.
  • the grid shape of the grid structure is a polygon.
  • the polygonal grid structure makes the preparation process of the transparent antenna easier.
  • the grid shape of the grid structure is a rectangle.
  • the rectangular transparent antenna has a higher aperture ratio and light transmittance.
  • This application also provides a method for preparing the above-mentioned transparent antenna, which includes:
  • the nano metal material slurry is filled into the grid groove of the substrate, baked and solidified to form a grid structure of the transparent antenna, and the transparent antenna is produced by demolding.
  • the cross section of the grid groove is trapezoidal or rectangular. At this time, it is favorable for the transparent antenna to be demolded from the substrate.
  • the shorter bottom side of the trapezoid is located at the bottom of the grid groove. At this time, it is helpful for the transparent antenna to be demolded.
  • This application provides another method for preparing a transparent antenna, which includes:
  • the transparent antenna is prepared.
  • the cross-section of the grid-shaped groove is trapezoidal or rectangular; when the cross-section of the grid-shaped groove is a trapezoid, the shorter bottom side of the trapezoid is located at the bottom of the grid-shaped groove. At this time, it is favorable for the transparent antenna to be demolded from the substrate.
  • the antenna glass of the present application includes the antenna glass including a laminated glass layer and a transparent antenna; the transparent antenna is a grid structure, the grid structure is composed of grid lines, and the grid structure has conductivity, The ratio of the thickness H of the grid line to the line width W of the grid line is 0.8 ⁇ H/W ⁇ 3.
  • the antenna glass of the present application has high light transmittance, which can avoid the loss of the antenna signal by the glass, and make the signal of the antenna glass stronger and more stable.
  • FIG. 1 is a schematic structural diagram of a transparent antenna according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a transparent antenna according to another embodiment of the present application.
  • Fig. 3 is a cross-section of a grid line of a transparent antenna according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of the antenna glass according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of antenna glass according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure of antenna glass according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of the antenna glass of the present application applied to automobile glass.
  • FIG. 8 is a schematic diagram of the structure of the antenna glass of the present application applied to architectural glass.
  • Fig. 9 is a schematic diagram of the structure of the antenna glass of the present application applied to the billboard glass.
  • the antenna is a kind of converter that transforms the guided wave propagating on the transmission line into an electromagnetic wave propagating in an unbounded medium (usually a free space), or vice versa.
  • Engineering systems such as radio communications, broadcasting, television, radar, navigation, electronic countermeasures, remote sensing, radio astronomy, etc., all use electromagnetic waves to transmit information and rely on antennas to work.
  • non-signal energy radiation also requires an antenna.
  • antennas are reversible, that is, the same antenna can be used as both a transmitting antenna and a receiving antenna.
  • Transparent antenna means that when it is loaded on other objects, the antenna is not easy to detect or invisible to the naked eye.
  • the transparent antenna 100 of the present application has a grid structure, which is composed of grid lines 10 and is conductive.
  • the line width W of the grid line 10 is 1 ⁇ m-10 ⁇ m.
  • the ratio of the line width W of the grid line 10 to the side L of a single grid is 0.01 ⁇ W/L ⁇ 0.02.
  • the line width of the grid line 10 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, or the like.
  • the line width of the grid line 10 is 1-10 ⁇ m, the light transmittance of the grid line 10 can be made higher, while the electrical conductivity is ensured, and the processing technology is relatively simplified.
  • the ratio of the line width W of the grid line 10 to the side L of a single grid may be 0.01, 0.012, 0.015, 0.018, 0.019, 0.02, and so on.
  • the longer the side length L of the single grid of the transparent antenna 100 the greater the aperture ratio, the higher the light transmittance, and the lower the visibility of the transparent antenna 100.
  • the narrower the line width W of the grid line 10 the larger the aperture ratio, the higher the light transmittance, and the lower the visibility of the transparent antenna 100.
  • the ratio of the line width W of the grid line 10 to the side L of a single grid is 0.01-0.02, the transparent antenna 100 can have a higher density, a smaller volume, and a higher light transmittance. Invisible.
  • transmittance in this application refers to the ability of light to pass through a medium, and is the percentage of the luminous flux passing through a transparent or translucent body to its incident luminous flux.
  • the transparent antenna 100 of the present application has excellent light transmittance, the aperture ratio is greater than 90%, and the light transmittance can reach more than 80%.
  • the transparent antenna 100 is applied to automobile glass, architectural glass or billboards, it is invisible to the naked eye and can be used as a true invisible antenna.
  • the transparent antenna 100 of the present application can be applied to the entire vehicle window glass without affecting the line of sight of the people on the vehicle. In addition, it can also be applied to 5G base station antennas. When it is applied to building glass and billboards for dense installation, it will not affect the beauty of the city.
  • aperture ratio refers to the ratio between the area of the light passing portion after removing the wiring portion and transistor portion (usually hidden by a black matrix) of each sub-pixel and the entire area of each sub-pixel. Generally, the higher the aperture ratio, the higher the efficiency of light passing.
  • the grid can be in the shape of any geometric figure, such as a regular triangle grid, a rectangular grid, a diamond grid, other polygonal grids, or a special-shaped structure.
  • the lens antenna 100 has a higher aperture ratio, that is, a better light transmittance.
  • the angle ⁇ between two adjacent sides of a single grid is 60°-120°.
  • the transparent antenna 100 has better light transmittance. More specifically, the included angle ⁇ between two adjacent sides of a single grid line is 60°, 70°, 80°, 90°, 100°, 110°, 120°, and so on.
  • the cross section of the grid line 10 is trapezoidal or rectangular. This facilitates better demolding of the transparent antenna 100 during the manufacturing process.
  • the line width W of the grid line 10 refers to the longer base of the trapezoid.
  • the ratio of the thickness H to the line width W of the grid line 10 satisfies 0.8 ⁇ H/W ⁇ 3. More specifically, H/W may be 0.8, 1, 1.2, 1.5, 1.8, 2, 2.1, 2.4, 2.7, 2.9, 3.0, etc.
  • the thickness H of the grid line 10 refers to the height of a trapezoidal or rectangular cross section of the grid line 10.
  • the transparent antenna 100 has a lower impedance while ensuring the transmittance, which can better meet the requirements of the transparent antenna 100. Low impedance requirements.
  • the transparent antenna 100 of the present application is made of conductive metal materials, such as silver, copper, and the like. More specifically, it is made of nano-scale conductive metal materials such as nano-silver paste through embossing. Further, the average particle size of the conductive metal material is 2nm-8nm, more specifically, the average average particle size of the conductive metal material is 2nm, 2.5nm, 3nm, 3.5nm, 4m, 5nm, 6nm, 6.5nm, 7nm, 8nm Wait.
  • the specific preparation method of the transparent antenna 100 of the present application is as follows:
  • the cross section of the grid groove is trapezoidal or rectangular.
  • the bottom of the grid groove is the shorter bottom side of the trapezoid. This facilitates demolding after the transparent antenna is manufactured.
  • the substrates used in this application include but are not limited to PET (polyethylene terephthalate, PolyetHyleneterepHtHalate) substrate, PVB (polyvinyl butyral, Polyvinyl Butyral) substrate or COP (Cyclo Olefin Polymer, cycloolefin) Polymer) substrate.
  • PET polyethylene terephthalate, PolyetHyleneterepHtHalate
  • PVB polyvinyl butyral, Polyvinyl Butyral
  • COP Cyclo Olefin Polymer, cycloolefin
  • the curing adhesive includes, but is not limited to, light curing adhesive, thermal curing adhesive, and the like.
  • the light-curing adhesive is UV adhesive (shadowless adhesive), also known as photosensitive adhesive or ultraviolet curing adhesive.
  • Shadowless adhesive is a type of adhesive that must be cured by ultraviolet light. It can be used as an adhesive. It can also be used as a glue for paints, coatings, inks, etc.
  • the curing principle of the shadowless adhesive is that the photoinitiator (or photosensitizer) in the UV curing material absorbs ultraviolet light and generates active free radicals or cations, which initiates monomer polymerization and cross-linking chemical reactions, so that the adhesive is Change from liquid to solid within a few seconds.
  • Thermosetting glue refers to glue that can be thermally cured by heating.
  • the thermal curing glue may be polyacrylate glue, such as polymethyl methacrylate glue (also called organic glass glue).
  • a mesh punch of a corresponding shape is prepared on the mesh punch mold according to the metal mesh shape of the transparent antenna 100 to be prepared.
  • UV glue ultraviolet radiation is used during curing to cure the UV glue.
  • the curing adhesive is a thermal curing adhesive
  • the initiator is decomposed by high temperature to generate active free radicals or cations, and the monomers are polymerized or cross-linked.
  • this application provides another method for preparing a transparent antenna, which includes:
  • a grid-shaped groove is etched on the glass; specifically, the etching may be performed by laser etching, or etching with an etchant such as hydrofluoric acid.
  • the transparent antenna is prepared.
  • the cross-section of the grid-shaped groove is trapezoidal or rectangular; when the cross-section of the grid-shaped groove is a trapezoid, the shorter bottom side of the trapezoid is located at the bottom of the grid-shaped groove. At this time, it is favorable for the transparent antenna to be demolded from the substrate.
  • a transparent antenna 100 is prepared on a PET substrate with a light transmittance of 91%.
  • the grid structure of the transparent antenna 100 is a rhombus.
  • the grid structure is made of silver paste with an average particle size of 2nm-8nm.
  • the side length L of the rhombus is 200 ⁇ m, and the angles ⁇ between two adjacent sides of the rhombus are 60° and 120°, respectively.
  • the transparent antenna 100 of the present application can be applied to automobile glass, such as the front glass, rear glass, side glass, and sunroof glass of automobiles, as well as architectural glass, billboards, etc., for GPS/FM/AM/TV/WIFI/ Bluetooth/3G/4G/5G and other signal reception.
  • the present application also provides an antenna glass 200, which includes a glass layer 210, the transparent antenna 100 of the above-mentioned embodiment, and a transparent protective layer 220 stacked in sequence.
  • the transparent antenna 100 is embedded in the transparent protective layer 220.
  • the transparent antenna can be directly molded on the transparent substrate and then bonded to the glass layer, so the preparation process can be simplified.
  • the transparent antenna 100 is embedded in the glass layer 220. In this way, a transparent antenna can be directly prepared on the glass layer, which can further simplify the preparation process of the antenna glass 200.
  • the transparent antenna 100 may cover the entire glass layer 210.
  • the existing antennas are not truly invisible to the naked eye. Therefore, in order to avoid affecting the line of sight, only one corner of the glass layer 210 is provided during use.
  • the transparent antenna 100 of the present application is used for the entire glass layer 210, the light transmittance is It is high, invisible to the naked eye, and can realize a true invisible antenna. Covering the transparent antenna with the glass layer can increase the density of the antenna and meet the high-density erection requirements of the base station.
  • the transparent protective layer 220 refers to a coating or substrate that can isolate the transparent antenna 100 from the air and prevent the transparent antenna 100 from being corroded or scratched.
  • the transparent protective layer 220 is made of a transparent material, such as a PET material, a PVB material, a COP material, an acrylic resin, or a transparent scratch-resistant or anticorrosive paint with a light transmittance of more than 90%.
  • the transparent protective layer 200 can prevent the transparent antenna 100 from being corroded or scratched. In addition, it can also increase the service life of the transparent antenna 100 and improve the stability of signal reception.
  • the transparent protective layer 220 may be a hard coating such as a transparent substrate, an anti-scratch coating or an anti-corrosion coating.
  • the glass layer 210 faces the inner side
  • the transparent protective layer 220 faces the outer side.
  • the inside refers to the inside of the scene or object in use
  • the outside refers to the outside of the scene or object in use.
  • the inside of the car when used in a car, the inside of the car is the inside and the outside is the outside; when used in a billboard, the outside of the billboard is the outside, and the inside of the billboard is the inside; when used in architectural glass, the outside of the building is the outside, and the building facade For the inside.
  • the transparent antenna 100 can be formed on the transparent substrate first, and then the transparent antenna layer 100 is bonded or fixed facing the glass layer 210. More specifically, the transparent antenna 100 is first fabricated on a transparent substrate, and then the substrate with the transparent antenna 100 is bonded to the glass layer 210 through OCA glue (Optically Clear Adhesive) or the like.
  • OCA glue Optically Clear Adhesive
  • the transparent antenna 100 is first adhered to the surface of the glass layer 210, and then a scratch-resistant coating or an anti-corrosion coating is formed on the transparent antenna 100.
  • the transparent protective layer 220 faces the outside of the use scene or object, and the glass layer 210 faces the inside of the use scene or object. This can avoid the loss of the glass to the antenna signal, making the signal of the antenna glass 200 stronger and more pronounced. stable. Especially for 5G high-frequency signals, the glass has great loss to 5G high-frequency signals, which directly affects the signal reception quality of the antenna glass 200.
  • the antenna glass 200 further includes a feeding point 250 and a feeding line 270.
  • the transparent antenna 100 is electrically connected to the feeding point 250 through the feeding line 270.
  • the feeding point 250 is provided outside the glass layer 210 for electrical connection with an external circuit.
  • the feeding point 250 is conductive silver paste.
  • conductive silver glue refers to the bonding of conductive particles through the bonding effect of the matrix resin to form a conductive path to realize the conductive connection of the adhered material.
  • the antenna glass 200 of the present application is applied to an automobile glass 300, and the automobile glass 300 includes a transparent antenna 100, a glass layer 210, a glass ink area 230, a feeding point 250 and a feeding line 270.
  • the glass layer 210 is disposed in the glass ink area 230.
  • the glass ink area 230 refers to an opaque area around the glass.
  • the transparent antenna 100 may be provided on the outer surface of the glass layer 210 or sandwiched between two glass layers 210.
  • the transparent antenna 100 is electrically connected to the feeding point 250 through the feeding line 270.
  • the glass ink area 230 is provided at the feeding point 250.
  • the feeding point 250 is used for electrical connection with an external circuit.
  • the transparent antenna 100 faces the outer surface of the car.
  • the transparent antenna 100 is arranged on the outer surface of the glass layer 210, the loss of the antenna signal from the glass can be avoided, so that the signal of the antenna glass 200 is stronger and more stable.
  • the antenna glass 200 of the present application is applied to architectural glass 400 as a base station for 5G communication.
  • the architectural glass 400 includes a transparent antenna 100, a glass layer 210, a glass fixing frame 240, and a feeder. Electric point 250 and feeder 270.
  • the glass fixing frame 240 is arranged on the periphery of the glass layer 210 to fix the glass layer 210.
  • the glass fixing frame 240 refers to an opaque area around the glass.
  • the transparent antenna 100 may be provided on the outer surface of the glass layer 210 or sandwiched between two glass layers 210.
  • the transparent antenna 100 is electrically connected to the feeding point 250 through the feeding line 270.
  • the glass fixing frame 240 is provided at the feeding point 250.
  • the feeding point 250 is used for electrical connection with an external circuit.
  • the transparent antenna 100 faces the outer surface of the building.
  • the transparent antenna 100 is arranged on the outer surface of the glass layer 210, the loss of the antenna signal from the glass can be avoided, so that the signal of the antenna glass 200 is stronger and more stable.
  • the antenna glass 200 of the present application is applied to billboard glass 500.
  • the billboard glass 500 includes a transparent antenna 100, a glass layer 210, a billboard frame 260, a feeding point 250, and Feeder 270.
  • the billboard frame 260 is arranged on the periphery of the glass layer 210 to fix the glass layer 210.
  • the billboard frame 260 refers to an opaque area around the glass.
  • the transparent antenna 100 may be provided on the outer surface of the glass layer 210 or sandwiched between two glass layers 210.
  • the transparent antenna 100 is electrically connected to the feeding point 250 through the feeding line 270.
  • the billboard frame 260 is set at the feeding point 250.
  • the feeding point 250 is used for electrical connection with an external circuit.
  • the transparent antenna 100 When the transparent antenna 100 is disposed on the outer surface of the glass layer 210, the loss of the antenna signal from the glass can be avoided, so that the signal of the antenna glass 200 is stronger and more stable. In addition, the transparent antenna 100 has a high light transmittance, which will not affect the effect of the billboard.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本申请提供一种天线玻璃,其包括层叠设置的玻璃层和透明天线;所述透明天线为网格结构,所述网格结构由网格线组成,所述网格结构具有导电性,所述网格线的厚度H与所述网格线的线宽W比满足0.8≤H/W≤3。本申请的天线玻璃透光率高,可以避免玻璃对天线信号的损耗,使得天线玻璃的信号更强、更稳定。本申请还提供一种汽车玻璃、建筑玻璃、透明天线及其制备方法。

Description

天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法 技术领域
本申请涉及通信技术领域,具体涉及一种天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法。
背景技术
随着5G网络(即第5代移动通信网络)商用日益临近,这意味着手机用户将能体验到在不到1秒时间内即可完成一部高清电影的超快数据传输速度,但是由于5G网络使用的是20~30GHZ的高频段进行通信。电磁波当其频率越高则波长越短,就越趋近于直线传,且传播过程中的衰减也越大导致其传播距离较短,需要架设高密度的小微型基站天线来支撑5G网络的正常通信,而高密度架设小微型基站将影响城市美观且易被人为破坏。
申请内容
有鉴于此,有必要提供一种天线玻璃,其透光率高,可以避免玻璃对天线信号的损耗,使得天线玻璃的信号更强、更稳定。
此外,还提供一种透明天线。
此外,还提供一种透明天线的制备方法。
一种天线玻璃,包括层叠设置的玻璃层和透明天线;所述透明天线为网格结构,所述网格结构由网格线组成,所述网格结构具有导电性,所述网格线的厚度H与所述网格线的线宽W比满足0.8≤H/W≤3。本申请的天线玻璃透光率高,可密集架设。
其中,所述天线玻璃还包括透明保护层,所述透明保护层设在所述透明天线表面。所述透明保护层可以防止透明天线被刮到或被腐蚀。
其中,所述透明保护层为透明基材,所述透明天线嵌入所述透明基材。透明基材可以防止透明天线被刮到或被腐蚀,此外,透明天线可以直接在透明基材上成型,然后粘合至玻璃层,因此可以简化制备工艺。
其中,所述透明天线嵌入所述玻璃层中。这样可以在玻璃层上直接制备透 明天线,可以进一步简化天线玻璃的制备工艺。
其中,所述透明保护层为涂层。涂层可以防止透明天线被刮到或被腐蚀。
其中,所述涂层为防刮涂层或防腐蚀涂层。防刮涂层或防腐蚀涂层可以防止透明天线被刮到或被腐蚀。
其中,所述透明天线铺满所述玻璃层。将透明天线铺满玻璃层,可以增加天线的密集程度,更满足基站的高密度架设要求。
其中,所述网格线的线宽W为1μm-10μm。当线宽处于这个范围时,使天线玻璃具有更好的透光率。
其中,所述网格线的线宽W与单个网格的边长L比满足0.01≤W/L≤0.02。这样使得透明天线具有更好的透光率。
其中,所述网格线的横截面为梯形或矩形。这样有利于透明天线制备过程中更好的脱模。
其中,所述网格结构由导电金属粉末制得,所述金属粉末的平均粒径为2nm-8nm。金属粉末的平均粒径为2nm-8nm时,能更好的控制网格线的线宽,制备透光率更高的透明天线。
其中,所述金属粉末为银或铜。银或铜阻抗更低,导电性能更好,具有更好的信号接收能力,使得透明天线信号更好、更稳定。
其中,所述网格结构的网格形状为矩形。当其它条件固定的情况下,矩形形状的透明天线具有更高的开口率和透光率。
本申请还提供一种汽车玻璃,应用于汽车车窗,所述汽车玻璃包括上的天线玻璃,所述天线玻璃的透明天线朝向所述汽车的外表面。天线使用时朝向汽车的外表面,可以避免玻璃对天线信号的损耗,使得天线玻璃的信号更强、更稳定。
本申请还提供一种建筑玻璃,应用于建筑物的门窗,其特征在于,所述建筑玻璃包括上述的天线玻璃,所述天线玻璃的透明天线朝向所述建筑物的外表面。天线使用时朝向建筑物的外表面,可以避免玻璃对天线信号的损耗,使得天线玻璃的信号更强、更稳定。
本申请还提供一种透明天线,所述透明天线为网格结构,所述网格结构由网格线组成,所述网格结构具有导电性,所述网格线的厚度H与所述网格线 的线宽W比为0.8≤H/W≤3。
其中,所述单个网格相邻两边的夹角为60°-120°。当单个网格任意相邻边的夹角为60°-120°时,透明天线具有更好的透光率。
其中,所述网格线的横截面为梯形或矩形。这样有利于透明天线制备过程中更好的脱模。
其中,所述网格线的线宽W为1μm-10μm;当线宽处于这个范围时,使天线玻璃具有更好的透光率。
其中,所述网格线的线宽W与单个网格的边长L比0.01≤W/L≤0.02。这样使得透明天线具有更好的透光率。
其中,所述网格结构由导电金属材料制得。金属材料的导电性能更好,其可以更好的接受信号。
其中,所述金属材料为银或铜。银或铜阻抗更低,导电性能更好,具有更好的信号接收能力,使得透明天线信号更好、更稳定。
其中,所述金属材料的平均粒径为2nm-8nm。金属材料的平均粒径为2nm-8nm时,能更好的的控制网格线的线宽,制备透光率更高的透明天线。
其中,所述网格结构的网格形状为多边形。多边形的网格结构使得透明天线的制备工艺更加简便。
其中,所述网格结构的网格形状为矩形。当其它条件固定的情况下,矩形形状的透明天线具有更高的开口率和透光率。
本申请还提供一种上述的透明天线的制备方法,其包括:
在基材上涂布固化胶,用网格凸模模具在固化胶上压印出网格凹槽;
将固化胶固化,在基材上形成稳定的网格凹槽;
将纳米金属材料浆液填充至基材的网格凹槽中,烘烤固化形成透明天线的网格结构,脱模制得透明天线。
其中,所述网格凹槽的横截面为梯形或矩形。此时有利于透明天线从基材上进行脱模。
其中,当所述网格凹槽的横截面为梯形时,梯形较短的底边位于网格凹槽的底部。此时有利于透明天线进行脱模。
本申请提供另一种透明天线的制备方法,其包括:
在玻璃上蚀刻出网格状的凹槽;
在凹槽内填充纳米金属材料浆液,烘烤固化形成透明天线的网格结构;
制得透明天线。
其中,所述网格状凹槽的横截面为梯形或矩形;当所述网格状凹槽的横截面为梯形时,梯形较短的底边位于网格状凹槽的底部。此时有利于透明天线从基材上进行脱模。
由此,本申请的天线玻璃包括所述天线玻璃包括层叠设置的玻璃层和透明天线;透明天线为网格结构,所述网格结构由网格线组成,所述网格结构具有导电性,所述网格线的厚度H与所述网格线的线宽W比为0.8≤H/W≤3。本申请的天线玻璃透光率高,可以避免玻璃对天线信号的损耗,使得天线玻璃的信号更强、更稳定。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1是本申请一实施例的透明天线的结构示意图。
图2是本申请又一实施例的透明天线的结构示意图。
图3是本申请一实施例的透明天线的网格线的横截面。
图4是本申请一实施例的天线玻璃的结构示意图。
图5是本申请又一实施例的天线玻璃的结构示意图。
图6是本申请又一实施例的天线玻璃的结构示意图。
图7是本申请天线玻璃应用于汽车玻璃的结构示意图。
图8是本申请天线玻璃应用于建筑玻璃的结构示意图。
图9是本申请天线玻璃应用于广告牌玻璃的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳 动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。
透明天线指将其负载在其它物体上时,该天线通过肉眼不容易察觉或者肉眼看不到。
请参见图1和图2,本申请的透明天线100为网格结构,该网格结构由网格线10组成,具有导电性。该网格线10的线宽W为1μm-10μm。该网格线10的线宽W与单个网格的边L比0.01≤W/L≤0.02。
更具体地,网格线10的线宽可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm等。当网格线10的线宽处于1-10μm时,可以使该网格线10透光率更高的同时,保证导电性能,同时加工工艺也相对简化。
更具体地,网格线10的线宽W与单个网格的边L比可以为0.01、0.012、0.015、0.018、0.019、0.02等。在其它条件不变的情况下,透明天线100单个网格的边长L越长,开口率越大,透光率越高,透明天线100的可见度越低。网格线10的线宽W越窄,开口率越大,透光率越高,透明天线100的可见度越低。网格线10的线宽W与单个网格的边L比为0.01-0.02时,既可以使透明天线100具有更高的密度,体积更加小型化,同时又具有较高的透光率,肉眼不可见。
本申请的术语“透光率”指的是光线透过介质的能力,是透过透明或半透明体的光通量与其入射光通量的百分率。
本申请的透明天线100具有优异的透光率,其开口率大于90%,透光率可达到80%以上。该透明天线100应用于汽车玻璃、建筑玻璃或广告牌时,肉眼不可见,可作为真正的隐形天线。本申请的透明天线100可以应用整面车窗玻璃,且不影响车上人员的视线。此外,还可以应用于5G基站天线,应用于建 筑玻璃、广告牌进行密集架设时,不会影响城市美观。
本申请的术语“开口率”指除去每一个次像素的配线部、晶体管部(通常采用黑色矩阵隐藏)后的光线通过部分的面积和每一个次像素整体的面积之间的比例。通常开口率越高,光线通过的效率越高。
该网格可以是任意几何图形的形状,例如正三角形网格、矩形网格、菱形网格、其它多边形网格或异形结构。当网格为矩形时,透镜天线100具有更高的开口率,即透光率更好。
在一些实施例中,单个网格相邻两边的夹角α为60°-120°。当单个网格任意相邻边的夹角为60°-120°时,透明天线100具有更好的透光率。更具体地,单个网格线相邻两边的夹角α为60°、70°、80°、90°、100°、110°、120°等。
请参见图3,在一些实施例中,网格线10的横截面为梯形或矩形。这样有利于透明天线100制备过程中更好的脱模。当网格线10的横截面为梯形时,网格线10的线宽W指的是梯形较长的底边。
请参见图3,在一些实施例中,网格线10的厚度H和线宽W比满足0.8≤H/W≤3。更具体地,H/W可以为0.8、1、1.2、1.5、1.8、2、2.1、2.4、2.7、2.9、3.0等。网格线10的厚度H指的是网格线10横截面梯形或矩形的高度。当网格线10的厚度和线宽W比为0.8≤H/W≤3时,使透明天线100在保证透过率的情况下,具有更低的阻抗,能更好的满足透明天线100对低阻抗的要求。
在一些实施例中,本申请的透明天线100由导电金属材料制得,例如银、铜等。更具体地,由纳米级导电金属材料例如纳米银浆通过压印制得。进一步地,导电金属材料的平均粒径为2nm-8nm,更具体地,导电金属材料的平均平均粒径为2nm、2.5nm、3nm、3.5nm、4m、5nm、6nm、6.5nm、7nm、8nm等。本申请透明天线100的具体制备方法如下:
1)在基材上涂布固化胶,采用网格凸模模具在固化胶上压印出网格凹槽;
网格凹槽的横截面为梯形或矩形。当网格凹槽的横截面为梯形时,网格凹槽的底部为梯形的较短的底边。这样有利于透明天线制作完成后进行脱模。
本申请采用的基材包括但不限于PET(聚对苯二甲酸乙二醇酯, PolyetHyleneterepHtHalate)基材,PVB(聚乙烯醇缩丁醛,Polyvinyl Butyral)基材或COP(Cyclo Olefin Polymer,环烯烃聚合物)基材。
其中,固化胶包括但不限于光固化胶、热固化胶等。
在一具体实施例中,光固化胶为UV胶(无影胶)又称光敏胶、紫外光固化胶,无影胶是一种必须通过紫外线光照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。无影胶固化原理是UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联化学反应,使粘合剂在数秒钟内由液态转化为固态。
“热固化胶”指的是能够通过加热进行热固化的胶水。具体地,热固化胶可以为聚丙烯酸酯胶水,例如聚甲基丙烯酸甲酯胶水(又叫有机玻璃胶水)。
本申请的网格凸模模具根据所需要制备的透明天线100的金属网格形状,在网格凸模模具上制备相应形状的网格凸模。
2)将固化胶固化,在基材上形成稳定的网格凹槽。
当固化胶为UV胶时,固化时采用紫外线照射,将UV胶固化。
在另一些实施例中,如果固化胶为热固化胶时,则通过高温使引发剂分解产生活性自由基或阳离子,引发单体发生聚合或交联反应等。
3)将纳米金属材料浆液填充至基材的网格凹槽中,烘烤固化形成透明天线的网格结构,脱模制得透明天线100。
在一些实施例中,本申请提供另一种透明天线的制备方法,其包括:
在玻璃上蚀刻出网格状的凹槽;具体地,蚀刻可以采用激光进行蚀刻,或者蚀刻剂,例如氢氟酸进行蚀刻。
在凹槽内填充纳米金属材料浆液,烘烤固化形成透明天线的网格结构;
制得透明天线。
其中,所述网格状凹槽的横截面为梯形或矩形;当所述网格状凹槽的横截面为梯形时,梯形较短的底边位于网格状凹槽的底部。此时有利于透明天线从基材上进行脱模。
请参见图1,在一具体实施例中,在透光率为91%的PET基材上制备透明天线100。透明天线100的网格结构为菱形,网格结构由平均粒径为2nm-8nm 的银浆制得,菱形边长L为200μm,菱形相邻两边的夹角α分别为60°和120°,网格线线宽W为3μm。经计算得该透明天线100的开口率为96%,透明天线的透光率=开口率×基材透光率=96%×91%=87.4%。
本申请的透明天线100可以应用于汽车玻璃,例如汽车的前玻璃、后玻璃、侧玻璃、天窗玻璃,还可应用于建筑玻璃、广告牌等,用于GPS/FM/AM/TV/WIFI/蓝牙/3G/4G/5G等信号接收。
请参见图4和图5,本申请还提供一种天线玻璃200,其包括依次层叠的玻璃层210、上述实施例的透明天线100及透明保护层220。
在一些实施例中,如图4所示,透明天线100嵌入透明保护层220。透明天线可以直接在透明基材上成型,然后粘合至玻璃层,因此可以简化制备工艺。
在另一些实施例中,如图5所示,透明天线100嵌入玻璃层220中。这样可以在玻璃层上直接制备透明天线,可以进一步简化天线玻璃200的制备工艺。
在一些实施例中,透明天线100可以铺满整个玻璃层210。现有的天线由于未实现真正的肉眼不可见,因此,为了避免影响视线,使用时,只在玻璃层210的一角设置天线,本申请的透明天线100用于整个玻璃层210时,透光率高,肉眼不可见,能够实现真正的隐形天线。将透明天线铺满玻璃层,可以增加天线的密集程度,更满足基站的高密度架设要求。
关于透明天线100的详细描述请参见上述实施例,在此不再赘述。
透明保护层220是指能够将透明天线100与空气隔离,防止透明天线100被腐蚀或刮坏的涂层或基材。透明保护层220由透明材料制得,例如PET材料、PVB材料、COP材料、丙烯酸酯树脂或者透光率90%以上的透明防刮或防腐涂料。
透明保护层200可以防止透明天线100被腐蚀或刮坏,此外,还可以提高透明天线100的寿命,提高信号接收的稳定性。具体地,透明保护层220可以为硬涂层例如透明基材,防刮涂层或防腐蚀涂层。使用时,玻璃层210向内侧,透明保护层220向外侧。内侧指的是使用情况下,使用场景或物体的内部,外侧指使用场景或物体的外部。例如,用于汽车时,汽车车内为内侧,车外为外侧;用于广告牌时,广告牌外面为外侧,广告牌内部为内侧;用于建筑玻璃时,建筑外面为外侧,建筑立面为内侧。
当透明保护层220为透明基材时,可以先在透明基材上形成透明天线100,然后将透明天线层100面向玻璃层210粘合或固定。更具体地,先将透明天线100做在透明基材上,再通过OCA胶(光学胶,Optically Clear Adhesive)等将带有透明天线100的基材与玻璃层210贴合。
当透明保护层220为防刮涂层或防腐蚀涂层时,先将透明天线100粘合在玻璃层210的表面,然后在透明天线100上形成一层防刮涂层或防腐蚀涂层。
本申请的天线玻璃200使用时,透明保护层220朝向使用场景或物体外侧,玻璃层210朝向使用场景或物体内侧,这样可以避免玻璃对天线信号的损耗,使得天线玻璃200的信号更强、更稳定。特别是5G高频信号,玻璃对5G高频段信号损耗很大,直接影响的天线玻璃200的信号接收质量。
请参见图6,在一些实施例中,天线玻璃200还包括馈电点250和馈线270。透明天线100通过馈线270与馈电点250电连接。馈电点250设在玻璃层210之外,用于与外部电路电连接。
在一些实施例中,馈电点250为导电银胶。采用导电银胶可以降低馈电点的电阻值及保证馈电点位置的导通性良好。术语“导电银胶”指通过基体树脂的粘接作用把导电粒子结合在一起,形成导电通路,实现被粘材料的导电连接。
请参见图7,在一具体实施例中,本申请的天线玻璃200应用于汽车玻璃300,该汽车玻璃300包括透明天线100、玻璃层210、玻璃油墨区230、馈电点250及馈线270。玻璃层210设置在玻璃油墨区230内。玻璃油墨区230指玻璃周边不透明的区域。透明天线100可以设置的玻璃层210外表面或者夹在两层玻璃层210之间。透明天线100通过馈线270与馈电点250电连接。馈电点250设置的玻璃油墨区230。馈电点250用于与外部电路电连接。使用时,透明天线100朝向汽车的外表面,当透明天线100设置在玻璃层210的外表面时,可以避免玻璃对天线信号的损耗,使得天线玻璃200的信号更强、更稳定。
请参见图8,在又一具体实施例中,本申请的天线玻璃200应用于建筑玻璃400,作为5G通信的基站,该建筑玻璃400包括透明天线100、玻璃层210、玻璃固定框240、馈电点250及馈线270。玻璃固定框240设置在玻璃层210外围,将玻璃层210固定。玻璃固定框240指玻璃周边不透明的区域。透明天线100可以设置的玻璃层210外表面或者夹在两层玻璃层210之间。透明天线 100通过馈线270与馈电点250电连接。馈电点250设置的玻璃固定框240。馈电点250用于与外部电路电连接。使用时,透明天线100朝向建筑物的外表面,当透明天线100设置在玻璃层210的外表面时,可以避免玻璃对天线信号的损耗,使得天线玻璃200的信号更强、更稳定。
请参见图9,在另一具体实施例中,本申请的天线玻璃200应用于广告牌玻璃500,该广告牌玻璃500包括透明天线100、玻璃层210、广告牌边框260、馈电点250及馈线270。广告牌边框260设置在玻璃层210外围,将玻璃层210固定。广告牌边框260指玻璃周边不透明的区域。透明天线100可以设置的玻璃层210外表面或者夹在两层玻璃层210之间。透明天线100通过馈线270与馈电点250电连接。馈电点250设置的广告牌边框260。馈电点250用于与外部电路电连接。当透明天线100设置在玻璃层210的外表面时,可以避免玻璃对天线信号的损耗,使得天线玻璃200的信号更强、更稳定。此外,透明天线100的透光率高,不会影响广告牌的效果。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种天线玻璃,其特征在于,所述天线玻璃包括层叠设置的玻璃层和透明天线;所述透明天线为网格结构,所述网格结构由网格线组成,所述网格结构具有导电性,所述网格线的厚度H与所述网格线的线宽W比满足0.8≤H/W≤3。
  2. 根据权利要求1所述的天线玻璃,其特征在于,所述天线玻璃还包括透明保护层,所述透明保护层设在所述透明天线表面。
  3. 根据权利要求2所述的天线玻璃,其特征在于,所述透明保护层为透明基材,所述透明天线嵌入所述透明保护层。
  4. 根据权利要求1或2所述的天线玻璃,其特征在于,所述透明天线嵌入所述玻璃层中。
  5. 根据权利要求4所述的天线玻璃,其特征在于,所述透明保护层为涂层。
  6. 根据权利要求5所述的天线玻璃,其特征在于,所述涂层为防刮涂层或防腐蚀涂层。
  7. 根据权利要求1所述的天线玻璃,其特征在于,所述透明天线铺满所述玻璃层。
  8. 根据权利要求1所述的天线玻璃,其特征在于,所述网格线的线宽W为1μm-10μm。
  9. 根据权利要求1所述的天线玻璃,其特征在于,所述网格线的线宽W与单个网格的边长L比满足0.01≤W/L≤0.02。
  10. 根据权利要求1所述的天线玻璃,其特征在于,所述网格线的横截面为梯形或矩形。
  11. 根据权利要求1所述的天线玻璃,其特征在于,所述网格结构由导电金属粉末制得,所述金属粉末的平均粒径为2nm-8nm。
  12. 根据权利要求10所述的天线玻璃,其特征在于,所述金属粉末为银或铜。
  13. 根据权利要求1所述的天线玻璃,其特征在于,所述网格结构的网格形状为矩形。
  14. 一种汽车玻璃,应用于汽车车窗,其特征在于,所述汽车玻璃包括权利要求1-13任一项所述的天线玻璃,所述天线玻璃的透明天线朝向所述汽车的外表面。
  15. 一种建筑玻璃,应用于建筑物的门窗,其特征在于,所述建筑玻璃包括权利要求1-13任一项所述的天线玻璃,所述天线玻璃的透明天线朝向所述建筑物的外表面。
  16. 一种透明天线,所述透明天线为网格结构,所述网格结构由网格线组成,所述网格结构具有导电性,其特征在于,所述网格线的厚度H与所述网格线的线宽W比满足0.8≤H/W≤3。
  17. 根据权利要求16所述的透明天线,其特征在于,所述网格线的横截面为梯形或矩形。
  18. 根据权利要求16所述的透明天线,其特征在于,所述网格线的线宽W为1μm-10μm。
  19. 根据权利要求16所述的透明天线,其特征在于,所述网格线的线宽W与单个网格的边长L比满足0.01≤W/L≤0.02。
  20. 根据权利要求16所述的透明天线,其特征在于,所述网格结构由导电金属粉末制得,所述金属粉末的平均粒径为2nm-8nm。
  21. 根据权利要求16所述的透明天线,其特征在于,所述网格结构的网格形状为矩形。
  22. 一种权利要求16-21任一项所述的透明天线的制备方法,其特征在于,包括:
    在基材上涂布固化胶,用网格凸模模具在固化胶上压印出网格凹槽;
    将固化胶固化,在基材上形成稳定的网格凹槽;
    将纳米金属材料浆液填充至基材的网格凹槽中,烘烤固化形成透明天线的网格结构,脱模制得透明天线。
  23. 根据权利要求22所述的透明天线的制备方法,其特征在于,所述网格凹槽的横截面为梯形或矩形。
  24. 根据权利要求23所述的透明天线的制备方法,其特征在于,当所述网格凹槽的横截面为梯形时,梯形较短的底边位于网格凹槽的底部。
  25. 一种权利要求16-21所述的透明天线的制备方法,其特征在于,包括:
    在玻璃上蚀刻出网格状凹槽;
    在凹槽内填充纳米金属材料浆液,烘烤固化形成透明天线的网格结构;
    制得透明天线。
  26. 根据权利要求25所述的透明天线的制备方法,其特征在于,所述网格状凹槽的横截面为梯形或矩形;当所述网格状凹槽的横截面为梯形时,梯形较短的底边位于网格凹槽的底部。
PCT/CN2019/117232 2019-11-11 2019-11-11 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法 WO2021092731A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117232 WO2021092731A1 (zh) 2019-11-11 2019-11-11 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117232 WO2021092731A1 (zh) 2019-11-11 2019-11-11 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法

Publications (1)

Publication Number Publication Date
WO2021092731A1 true WO2021092731A1 (zh) 2021-05-20

Family

ID=75911539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117232 WO2021092731A1 (zh) 2019-11-11 2019-11-11 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法

Country Status (1)

Country Link
WO (1) WO2021092731A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142018A1 (en) * 2002-01-29 2003-07-31 California Amplifier, Inc. High-efficiency transparent microwave antennas
CN101180764A (zh) * 2005-04-01 2008-05-14 日本写真印刷株式会社 车辆用透明天线以及带天线的车辆用玻璃
CN101599572A (zh) * 2008-04-14 2009-12-09 江国庆 薄膜式非金属天线与其手持装置
CN204029973U (zh) * 2013-12-23 2014-12-17 普尔思(苏州)无线通讯产品有限公司 一种透明的手机天线
CN107533534A (zh) * 2015-02-19 2018-01-02 欧希亚有限公司 用于集成的无线电力设施的嵌入式或沉积式表面天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142018A1 (en) * 2002-01-29 2003-07-31 California Amplifier, Inc. High-efficiency transparent microwave antennas
CN101180764A (zh) * 2005-04-01 2008-05-14 日本写真印刷株式会社 车辆用透明天线以及带天线的车辆用玻璃
CN101599572A (zh) * 2008-04-14 2009-12-09 江国庆 薄膜式非金属天线与其手持装置
CN204029973U (zh) * 2013-12-23 2014-12-17 普尔思(苏州)无线通讯产品有限公司 一种透明的手机天线
CN107533534A (zh) * 2015-02-19 2018-01-02 欧希亚有限公司 用于集成的无线电力设施的嵌入式或沉积式表面天线

Similar Documents

Publication Publication Date Title
JP5682464B2 (ja) 透明アンテナ、及び画像表示装置
US20110279335A1 (en) Transparent, flat antenna, suitable for transmitting and receiving electromagnetic waves, method for the production thereof, and use thereof
US9756722B2 (en) Transparent electroconductive film
CN210778944U (zh) 天线玻璃、汽车玻璃、建筑玻璃及透明天线
CN103345317B (zh) 触摸屏
KR20030007399A (ko) 전파 흡수체
US20200408973A1 (en) Utilizing a fresnel zone plate lens to amplify a microwave signal attenuated by a microwave-reflecting window
US11227514B2 (en) Cover, manufacturing method of cover, and display device
CN102541340A (zh) 触控显示结构及其制作方法
CN111047980B (zh) 柔性显示面板及终端设备
JP2007034644A (ja) 可視光透過型平面コイル素子
JP2021521577A (ja) 勾配誘電率フィルム
CN211150747U (zh) 天线玻璃、汽车玻璃、建筑玻璃和透明天线
WO2021092731A1 (zh) 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法
CN112787066A (zh) 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法
CN112787065A (zh) 天线玻璃、汽车玻璃、建筑玻璃、透明天线及其制备方法
CN208985123U (zh) 一种超薄的触控面板
CN207800162U (zh) 透明导电性薄膜及触控屏
CN114122738B (zh) 一种基于ito电阻膜的透明宽带电磁吸波器
TW201640739A (zh) 一種透明天線
CN213340724U (zh) 天线单元和收发器单元
JP2005085966A (ja) 透明電波吸収体
CN113774379A (zh) 电磁屏蔽构件的制备方法和电磁屏蔽构件
WO2024060252A1 (zh) 调光结构及其制备方法、调光装置
CN210666280U (zh) 一种电致变色镜片结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952823

Country of ref document: EP

Kind code of ref document: A1