WO2021091360A1 - Method and apparatus for extracting entropy of electrochemical element using heat generation response according to electric signal input - Google Patents

Method and apparatus for extracting entropy of electrochemical element using heat generation response according to electric signal input Download PDF

Info

Publication number
WO2021091360A1
WO2021091360A1 PCT/KR2020/015657 KR2020015657W WO2021091360A1 WO 2021091360 A1 WO2021091360 A1 WO 2021091360A1 KR 2020015657 W KR2020015657 W KR 2020015657W WO 2021091360 A1 WO2021091360 A1 WO 2021091360A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy
temperature
current
heating
electrochemical device
Prior art date
Application number
PCT/KR2020/015657
Other languages
French (fr)
Korean (ko)
Inventor
이상국
조준호
테네시기욤
한석균
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority claimed from KR1020200148722A external-priority patent/KR102655328B1/en
Publication of WO2021091360A1 publication Critical patent/WO2021091360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Definitions

  • the present invention relates to a method and apparatus for extracting entropy of an electrochemical device using a heat response according to an electrical signal input, and more particularly, by measuring heat generated by a voltage or current input, the entropy of the electrochemical device can be extracted therefrom.
  • the present invention relates to an apparatus and an entropy extraction method and apparatus for extracting entropy through signal processing from measurement of temperature, voltage, and current of an electrochemical device.
  • Entropy extraction technology for electrochemical devices can be classified dynamically/statically according to the real-time nature of the extraction process, and conventional static entropy extraction technology includes ETM (Electro Thermodynamic Measurement), and dynamic entropy extraction technology such as Calorimetry, IRET, etc. Has been developed.
  • ETM Electro Thermodynamic Measurement
  • IRET IRET
  • TM technology is a method of calculating entropy according to the second law of thermodynamics by heating or cooling an element to be measured to give a temperature change, and measuring a change in open circuit voltage (OCV) accordingly.
  • OCV open circuit voltage
  • ETIS Electro-thermal Impedance Spectroscopy
  • ETIS technology has the hassle of requiring EIS (Electrochemical Impedance Spectroscopy) measurement in advance in order to remove heat generated by resistance components and induce only heat of entropy when applying current to the battery. Also, it is necessary to measure the amount of heat from temperature. The disadvantage is that additional experiments are required to measure the heat transfer function to be used in the calculation process.
  • EIS Electrochemical Impedance Spectroscopy
  • the present invention is a device capable of measuring the heat generation according to the current input, and extracting the entropy of the electrochemical element therefrom; And an entropy extraction method of an electrochemical device that extracts entropy through signal processing from measurement of the temperature (surface temperature or internal temperature), voltage, and current of the device to be measured.
  • the present invention is a method for extracting entropy of an electrochemical device, comprising: applying a current including a frequency component to the electrochemical device; Measuring heat or temperature change of the electrochemical device generated by the applied current; Separating a frequency component of the measured heat or temperature change, and specifying a frequency component that becomes one or two times the applied current; Dividing a heating component consisting of resistance heating and entropy heating from the specified frequency component and temperature change; And extracting the entropy of the electrochemical device through a combination of the ratio of the exothermic components and the absolute magnitude of the resistance heating.
  • the resistance heating of the heating component is calculated from the impedance and voltage or current of the electrochemical device.
  • the calculating of the entropy is performed in a manner of calculating an absolute value of entropy heating by using the calculated resistance heating value and ratio information of the derived heating components.
  • the present invention provides an apparatus for extracting entropy of an electrochemical device, comprising: a power supply unit for applying a current including a frequency component to the electrochemical device; A measurement unit for measuring voltage and current of the electrochemical device; A temperature measuring unit measuring the temperature of the electrochemical device; And a signal processing unit for extracting entropy from the voltage and current measured by the measuring unit and the temperature measured by the temperature measuring unit, wherein the signal processing unit includes resistance heating from voltage, current, and temperature information measured from the electrochemical device.
  • the exothermic component consisting of and entropy heating is classified, and entropy is measured according to the combination of the ratio of the heating components and the absolute total size of the resistance heating.
  • the current has a frequency component
  • the signal processing unit separates the resistance heating and entropy heating from a frequency component that becomes one or two times the applied current among the frequency components, and the resistance heating Is calculated from the impedance and voltage or current of the electrochemical device.
  • the temperature measuring unit includes a temperature measuring device that measures the temperature of the electrochemical element by attaching it to the surface of the electrochemical element, inserting it inside, or measuring the impedance.
  • the measurement time is faster than that of a system that extracts entropy from the existing battery, and in principle, it does not require external temperature change
  • it can be applied to all fields in which the battery is used, and entropy information extracted in real time or non-real time from the battery can be used for analyzing the internal state of the battery, predicting the amount of heat generated by the battery, and managing safety.
  • FIG. 1 is a step diagram of a method for extracting entropy of an electrochemical device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an extraction device for implementing an entropy extraction method according to the present invention.
  • FIG. 3 is a more detailed embodiment of the signal processing unit of FIG. 2, and schematically illustrates detailed steps of an operation in which an entropy value is derived from a corresponding part.
  • FIG. 4 is a schematic diagram of each of the technical steps in a process of extracting entropy by applying the measuring device and the measuring method of the present invention to a battery.
  • FIG. 5 is a measurement result obtained by extracting entropy for a lithium ion battery (pouch cell type) by the inventors of the present invention implementing an entropy extraction apparatus and method according to the present invention, and an ETM method widely recognized as a conventional standard measurement method. It is a figure compared with the measurement result by (this also carried out by the present inventors).
  • the present invention is a method of extracting entropy of an electrochemical device (battery, fuel cell, supercapacitor, etc.), and in more detail, by measuring heat generation according to voltage or current input, the entropy of the electrochemical device is extracted therefrom.
  • an electrochemical device battery, fuel cell, supercapacitor, etc.
  • the present invention provides a method of extracting entropy through signal processing from measurement of temperature, voltage, and current of an electrochemical device.
  • the present invention distinguishes the heating component consisting of resistance heating and entropy heating from the voltage, current, and temperature information measured from the electrochemical device, and calculates the entropy according to the ratio of the heating components and the combination of the absolute total size of the resistance heating. Extract.
  • FIG. 1 is a step diagram of a method for extracting entropy of an electrochemical device according to an embodiment of the present invention.
  • the method includes applying a current including a frequency component to an electrochemical device; Measuring heat or temperature change of the electrochemical device generated by the applied current in real time; Separating a frequency component of the measured heat or temperature change, and specifying a frequency component that becomes one or two times the applied current; Dividing a heating component consisting of resistance heating and entropy heating from the specified frequency component and temperature change; And extracting the entropy of the electrochemical device through a combination of the ratio of the exothermic components and the absolute magnitude of the resistance heating.
  • the present invention provides an extraction device for implementing the above-described entropy extraction method, which is shown in FIG. 2.
  • the entropy extraction apparatus includes a power supply for applying a current including a frequency component to the electrochemical device; A measurement unit for measuring voltage and current of the electrochemical device; A temperature measuring unit measuring the temperature of the electrochemical device; And a signal processing unit for extracting entropy from the voltage and current measured by the measurement unit and the temperature measured by the temperature measurement unit.
  • the signal processing unit for extracting entropy distinguishes a heating component consisting of resistance heating and entropy heating from the voltage, current, and temperature information measured from the electrochemical device, and the ratio of the heating components and the resistance heating Entropy is measured according to the combination of the absolute total size of, which will be described in more detail below according to a specific embodiment of the present invention.
  • the extraction method includes: i) mounting a measuring device including a measuring device and a temperature measuring device measuring device to a device to be measured; (ii) applying an electrical signal to the device; (iii) measuring the voltage, current and temperature of the electrochemical device using the measuring equipment; (iv) separating the temperature components; (v) deriving the ratio of the reversible heat amount (entropy heat) and the irreversible heat amount (resistance heat); Calculating impedance; (vii) calculating irreversible calories; And (viii) extracting entropy.
  • entropy means "change of entropy per unit mole ( ⁇ S, [J/(mol*K)])" as a chemical reaction occurs through charging/discharging. This is a value corresponding to "the amount of heat generated per unit mole * per temperature” of a reversible chemical reaction occurring inside an electrochemical device such as a battery.
  • rate of chemical reaction mol per hour, [mol/sec]
  • F current / ⁇ Faraday constant
  • Q ionic charge
  • irreversible heat Qi
  • resistance heat or resistance heating is Joule heat corresponding to I 2 R by DC resistance component (R) when current (I) flows through a battery or a general circuit. heat) is generated and this is called Qi.
  • Qi This means "Joule heat per unit mole [J/mol]” generated by internal resistance during charging/discharging of the battery.
  • a number of resistance heating values may exist for one battery according to electrical/chemical/thermal conditions (SoC, temperature, voltage, etc.).
  • Qr is also the same unit as Qi, and means "change of heat per unit mole [J/mol]".
  • the sign of the entropy heating value may be a positive sign (+) or a negative sign (-), and if the sign has a negative sign, it means endothermic heat (external heat is absorbed by the battery; usually a temperature drop).
  • a number of entropy heating values may exist for one battery according to electrical/chemical/thermal conditions (SoC, temperature, voltage, etc.).
  • a measuring device including a measuring device and a temperature measuring device on the battery
  • the present invention is a measurement method in which the response speed and precision of a temperature measuring device are important, and the temperature measuring device is attached to the surface of the battery, so that the heat of the battery can be transferred as quickly and without distortion as possible, and if necessary, a thermal compound, etc.
  • the heat transfer medium of is used.
  • the temperature measuring device may be inserted into the battery, and through this, it is possible to achieve a more direct measurement of heat generated from components such as electrodes and electrolytes in the battery.
  • a temperature measurement device is not implemented in the form of a separate element, and the temperature measurement is a method of measuring the temperature of the battery in real time (or semi-real time, sampling rate several to hundreds of times/second) by measuring the impedance value of the battery.
  • a temperature measuring device to which the technology is applied may also be used. In other words.
  • the temperature measuring device according to the invention is all within the scope of the invention, as long as it can at least measure the heat generated from the battery components.
  • a battery with a temperature measuring device can be placed in a temperature chamber maintained at a constant temperature and entropy can be extracted, and at room temperature without using a constant temperature chamber, or in use or not in use, charging/ Entropy can also be extracted when a battery is installed in an electric/electronic device that is being discharged.
  • a current of A sin (wt + k) flows through the battery.
  • the sine wave may be a pure sine wave, or a quasi-sine wave (Modified sine wave) may be used, and more generally, all current signals including frequency components are potentially used. And all of which are within the scope of the present invention.
  • the battery exhibits a specific voltage due to a combination of the characteristics of the electrochemical reaction itself or the internal resistance of the battery.
  • the voltage of the battery When the current changes over time in the form of a sine wave, in general, the voltage of the battery also has a property of changing over time (in a form similar to a sine wave).
  • the current of the battery may cause an endothermic or exothermic reaction inside the battery. As a result, heat enters and exits, leading to a change in the temperature of the battery surface.
  • the voltage, current, and temperature of the battery are measured almost simultaneously with the process of applying a sinusoidal current to the battery to obtain data.
  • Measure voltage, current, and temperature for a battery to which sinusoidal current is applied In this process, data is continuously acquired and information about the voltage, current, and temperature of the battery is obtained. In this process, the surface temperature or the internal temperature of the battery is measured and used as the temperature data value of the battery.
  • Qr reversible heat
  • Qi irreversible heat
  • T ⁇ S entropy change
  • the sinusoidal current has a characteristic that the direction changes with time, and the magnitudes of Qi and Qr also change with time (there is a frequency component). Assuming that the sinusoidal frequency is f, Qi has a frequency of f, and Qr has a frequency of 2*f. As a result, the frequency of the temperature component ⁇ Tr is 2f, and the frequency of ⁇ Ti is indicated as f.
  • DSP digital signal processing
  • Two components of heat generation (Qi, Qr) can also be differentiated over time (t) and expressed as Qi' and Qr'.
  • impedance is extracted from the measured voltage and current values.
  • batteries have a non-linear response characteristic.
  • sinusoidal current When a sinusoidal current is applied to the battery, the resulting voltage across the battery may not be a pure sinusoidal wave.
  • sine wave when a sine wave is applied while charging/discharging the battery itself, current and voltage include a DC bias component in addition to the sine wave component.
  • the voltage V(t) and current of the battery over time are I(t).
  • an AC component and a DC component are commonly mixed.
  • Excluding the DC component, when the AC components of voltage and current are v(t) and i(t), respectively, it is calculated as impedance z(t) v(t) / i(t).
  • the heating value per hour (i(t) ⁇ 2) * Real(z(t)) can be calculated using the fact that the heating value of the resistance is determined by the real component of the impedance. have.
  • step 5 the heat quantity ratio Qi'/Qr' can be derived from the temperature ratio ⁇ Ti / ⁇ Tr.
  • the specific process is as follows.
  • ⁇ S (-A*F/T) * ( ⁇ Ti / ⁇ Tr) * (Real(z(t))*cos(2wt+2k)/sin(wt+k)) can do.
  • FIG. 3 is a more detailed embodiment of the signal processing unit of FIG. 2, illustrating detailed steps of an operation for deriving an entropy value according to the above-described method, and in FIG. 4, a measuring apparatus and a measuring method of the present invention are applied to a battery.
  • FIG. 4 a measuring apparatus and a measuring method of the present invention are applied to a battery.
  • FIG. 5 is a measurement result obtained by extracting entropy for a lithium ion battery (pouch cell type) by the inventors of the present invention implementing an entropy extraction apparatus and method according to the present invention, and an ETM method widely recognized as a conventional standard measurement method. It is a diagram compared with the measurement result by (this is also carried out by the present inventors).
  • the present invention has the advantage that the measurement time is faster than that of a system that extracts entropy from an existing battery, does not require external temperature change in principle, and can be applied to a battery in which charging/discharging is in progress. Can be applied to

Abstract

Provided is a method of extracting the entropy of an electrochemical device, the method comprising the steps of: applying a current including a frequency component to the electrochemical element; measuring a change in heat or temperature of the electrochemical element generated by the applied current; separating the frequency component of the measured change in heat or temperature, and specifying a frequency component that is one or two times the applied current; separating heat generation components including resistance heat generation and entropy heat generation from the specified frequency component and the change in temperature; and extracting the entropy of the electrochemical element through a combination of the ratio of the heat generation components and the absolute magnitude of the resistance heat generation.

Description

전기적 신호 입력에 따른 발열 응답을 이용한 전기화학 소자의 엔트로피 추출 방법 및 장치Method and apparatus for extracting entropy of electrochemical device using heat response according to electrical signal input
본 발명은 전기적 신호 입력에 따른 발열 응답을 이용한 전기화학 소자의 엔트로피 추출 방법 및 장치에 관한 것으로, 보다 상세하게는 전압이나 전류 입력에 따른 발열을 측정하여, 그로부터 전기화학 소자의 엔트로피를 추출할 수 있는 장치, 및 전기화학 소자 온도, 전압, 전류의 측정으로부터 신호처리를 통해 엔트로피를 추출하는 엔트로피 추출방법과 장치에 관한 것이다.The present invention relates to a method and apparatus for extracting entropy of an electrochemical device using a heat response according to an electrical signal input, and more particularly, by measuring heat generated by a voltage or current input, the entropy of the electrochemical device can be extracted therefrom. The present invention relates to an apparatus and an entropy extraction method and apparatus for extracting entropy through signal processing from measurement of temperature, voltage, and current of an electrochemical device.
전기화학 소자에 대한 엔트로피 추출 기술은 추출과정의 실시간성에 따라 동적/정적으로 구분할 수 있으며, 종래의 정적 엔트로피 추출 기술로는, ETM(Electro Thermodynamic Measurement) 이 있으며, 동적 엔트로피 추출 기술로서 Calorimetry, IRET 등이 개발되어 왔다.Entropy extraction technology for electrochemical devices can be classified dynamically/statically according to the real-time nature of the extraction process, and conventional static entropy extraction technology includes ETM (Electro Thermodynamic Measurement), and dynamic entropy extraction technology such as Calorimetry, IRET, etc. Has been developed.
TM 기술은, 측정 대상 소자를 가열 또는 냉각하여 온도변화를 주고, 그에 따른 개방회로전압 (OCV) 변화를 측정하여, 열역학 제2법칙에 따라 엔트로피를 계산하는 방식이다. 그러나 이것은 전기화학 소자의 외부온도 변경 장치가 필요하며, 열평형 및 개방회로 전압의 완화(Relaxation)에 걸리는 수~수십 시간이 요구되는 번거로움이 있다. ETIS (Electro-thermal Impedance Spectroscopy) 기술은, 배 터리에 가해지는 전류를 변경하고, 그에 따른 표면온도를 측정, 열량 계산으로 엔 트로피를 추출한다.TM technology is a method of calculating entropy according to the second law of thermodynamics by heating or cooling an element to be measured to give a temperature change, and measuring a change in open circuit voltage (OCV) accordingly. However, this requires a device for changing the external temperature of the electrochemical device, and requires several to tens of hours for thermal equilibrium and relaxation of the open circuit voltage. ETIS (Electro-thermal Impedance Spectroscopy) technology changes the current applied to the battery, measures the surface temperature accordingly, and extracts the entropy by calculating the amount of heat.
또한 ETIS기술은 배터리에 전류를 가할 때, 저항성분에 의한 발열을 제하고 엔트로피의 발열만을 유도하기 위하여, 사전에 EIS(Electrochemical Impedance Spectroscopy)측정이 요구되는 번거로움이 있으며, 또한 온도로부터 열 량을 계산하는 과정에서 사용할 열 전달함수를 측정하는 추가 실험들이 필요하다는 단점이 있다.In addition, ETIS technology has the hassle of requiring EIS (Electrochemical Impedance Spectroscopy) measurement in advance in order to remove heat generated by resistance components and induce only heat of entropy when applying current to the battery. Also, it is necessary to measure the amount of heat from temperature. The disadvantage is that additional experiments are required to measure the heat transfer function to be used in the calculation process.
전술한 문제를 해결하기 위하여, 본 발명은 전류 입력에 따른 발열 을 측정하여, 그로부터 전기화학 소자의 엔트로피를 추출할 수 있는 장치; 및 측정대상 소자의 온도(표면온도 또는 내부온도), 전압, 전류의 측정으로부터 신호처리를 통해 엔트로피를 추출하는 전기화학 소자의 엔트로피 추출법을 제공하고자 한다.In order to solve the above-described problem, the present invention is a device capable of measuring the heat generation according to the current input, and extracting the entropy of the electrochemical element therefrom; And an entropy extraction method of an electrochemical device that extracts entropy through signal processing from measurement of the temperature (surface temperature or internal temperature), voltage, and current of the device to be measured.
상기 과제를 해결하기 위하여, 본 발명은 전기화학 소자의 엔트로피 추출 방법으로, 상기 전기화학 소자에 주파수 성분을 포함하는 전류를 인가하는 단계; 상기 인가된 전류에 의하여 발생하는 전기화학 소자의 열 또는 온도 변화를 측정하는 단계; 상기 측정된 열 또는 온도 변화의 주파수 성분을 분리하고, 인가된 전류의 1배 또는 2배가 되는 주파수 성분을 특정하는 단계; 상기 특정된 주파수 성분 및 온도 변화로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하는 단계; 및 상기 발열 성분들의 비율과 상기 저항발열의 절대적인 크기의 조합을 통하여, 상기 전기화학 소자의 엔트로피를 추출하는 단계를 포함하는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 방법을 제공한다. In order to solve the above problems, the present invention is a method for extracting entropy of an electrochemical device, comprising: applying a current including a frequency component to the electrochemical device; Measuring heat or temperature change of the electrochemical device generated by the applied current; Separating a frequency component of the measured heat or temperature change, and specifying a frequency component that becomes one or two times the applied current; Dividing a heating component consisting of resistance heating and entropy heating from the specified frequency component and temperature change; And extracting the entropy of the electrochemical device through a combination of the ratio of the exothermic components and the absolute magnitude of the resistance heating.
본 발명의 일 실시예에서, 상기 발열성분 중 상기 저항발열은 상기 전기화학 소자의 임피던스와 전압 또는 전류로부터 계산된다.In one embodiment of the present invention, the resistance heating of the heating component is calculated from the impedance and voltage or current of the electrochemical device.
본 발명의 일 실시예에서, 상기 엔트로피를 계산하는 단계는, 계산된 저항발열값과, 도출된 발열 성분들의 비율 정보를 활용하여, 엔트로피발열의 절대적인 값을 계산하는 방식으로 수행된다.In an embodiment of the present invention, the calculating of the entropy is performed in a manner of calculating an absolute value of entropy heating by using the calculated resistance heating value and ratio information of the derived heating components.
본 발명은 전기화학 소자의 엔트로피 추출 장치로서, 상기 전기화학 소자에 주파수 성분을 포함하는 전류를 인가하는 전원부; 상기 전기화학 소자의 전압, 전류를 측정하는 게측부; 상기 전기화학 소자의 온도를 측정하는 온도측정부; 및 상기 계측부로부터 측정된 전압, 전류 및 상기 온도측정부로부터 측정된 온도로부터 엔트로피를 추출하는 신호처리부를 포함하며, 상기 신호처리부는, 상기 전기화학 소자로부터 측정된 전압, 전류 및 온도 정보로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하고, 상기 발열 성분들의 비율과 상기 저항발열의 절대전 크기 조합에 따라 엔트로피를 측정한다. The present invention provides an apparatus for extracting entropy of an electrochemical device, comprising: a power supply unit for applying a current including a frequency component to the electrochemical device; A measurement unit for measuring voltage and current of the electrochemical device; A temperature measuring unit measuring the temperature of the electrochemical device; And a signal processing unit for extracting entropy from the voltage and current measured by the measuring unit and the temperature measured by the temperature measuring unit, wherein the signal processing unit includes resistance heating from voltage, current, and temperature information measured from the electrochemical device. The exothermic component consisting of and entropy heating is classified, and entropy is measured according to the combination of the ratio of the heating components and the absolute total size of the resistance heating.
본 발명의 일 실시예에서, 상기 전류는 주파수 성분을 가지며, 상기 신호처리부는 상기 주파수 성분 중 인가된 전류의 1배 또는 2배가 되는 주파수 성분으로부터 상기 저항발열과 엔트로피 발열을 구분하고, 상기 저항발열은 상기 전기화학 소자의 임피던스와 전압 또는 전류로부터 계산한다. In one embodiment of the present invention, the current has a frequency component, and the signal processing unit separates the resistance heating and entropy heating from a frequency component that becomes one or two times the applied current among the frequency components, and the resistance heating Is calculated from the impedance and voltage or current of the electrochemical device.
본 발명의 일 실시예에서, 상기 온도측정부는, 상기 전기화학 소자의 표면에 부착되거나 내부에 삽입되거나 임피던스를 측정하는 방식으로 전기화학 소자의 온도를 측정하는 온도측정장치를 포함한다.In one embodiment of the present invention, the temperature measuring unit includes a temperature measuring device that measures the temperature of the electrochemical element by attaching it to the surface of the electrochemical element, inserting it inside, or measuring the impedance.
본 발명에 의한 전류 입력에 따른 발열 응답을 이용하여 리튬이온 배터리 등의 엔트로피를 추출할 경우, 기존의 배터리에서 엔트로피를 추출하는 시스템에 비해서 측정시간이 빠르고, 원리적으로 외부 온도변화를 요구하지 않으며, 충/방전이 진행중인 배터리에도 적용할 수 있다는 장점이 있다. 또한 이를 바탕으로, 배터리가 사용되는 모든 분야에 적용될 수 있으며, 배터리에서 실시간, 또는 비-실시간적으로 추출된 엔트로피 정보는 배터리의 내부상태 분석, 배터리 발열량 예측, 안전성 관리 등에 사용될 수 있다.When extracting the entropy of a lithium-ion battery, etc. using the heat-generating response according to the current input according to the present invention, the measurement time is faster than that of a system that extracts entropy from the existing battery, and in principle, it does not require external temperature change In addition, there is an advantage that it can be applied to batteries in which charging/discharging is ongoing. In addition, based on this, it can be applied to all fields in which the battery is used, and entropy information extracted in real time or non-real time from the battery can be used for analyzing the internal state of the battery, predicting the amount of heat generated by the battery, and managing safety.
도 1은 본 발명의 일 실시예에 따른 전기화학 소자의 엔트로피 추출 방법의 단계도이다. 1 is a step diagram of a method for extracting entropy of an electrochemical device according to an embodiment of the present invention.
도 2는 본 발명에 따른 엔트로피 추출 방법을 구현하기 위한 추출 장치의 블록도이다. 2 is a block diagram of an extraction device for implementing an entropy extraction method according to the present invention.
도 3은 도 2의 신호 처리부에 대한 보다 자세한 실시예로서, 해당 부분에서 엔트로피 값이 도출되는 연산의 세부 단계들에 대하여 도식한 것이다. FIG. 3 is a more detailed embodiment of the signal processing unit of FIG. 2, and schematically illustrates detailed steps of an operation in which an entropy value is derived from a corresponding part.
도 4는 배터리에 대하여 본 발명의 측정장치 및 측정방법을 적용하여 엔트로피를 추출하는 과정의 각각의 기술적인 단계들에 대하여 도식한 것이다. 4 is a schematic diagram of each of the technical steps in a process of extracting entropy by applying the measuring device and the measuring method of the present invention to a battery.
도 5는 본 발명의 발명자들이 본 발명의 내용에 따른 엔트로피 추출 장치 및 방법을 구현하여 리튬이온 배터리(pouch cell type)에 대한 엔트로피를 추출한 측정 결과로서, 기존의 표준 측정법으로서 널리 인정되어지는 ETM 방식에 의한 측정 결과(이 또한 본 발명자들이 수행)와 비교한 도면이다.5 is a measurement result obtained by extracting entropy for a lithium ion battery (pouch cell type) by the inventors of the present invention implementing an entropy extraction apparatus and method according to the present invention, and an ETM method widely recognized as a conventional standard measurement method. It is a figure compared with the measurement result by (this also carried out by the present inventors).
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발 명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전 체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함 할 수 있음을 의미한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러 나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention is intended to illustrate specific embodiments and to be described in detail in the detailed description, since various transformations may be applied and various embodiments may be provided. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용 된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가 지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또 는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특 징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are used only to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as include or have are intended to designate the existence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features or It is to be understood that the presence or addition of numbers, steps, actions, components, parts, or combinations thereof does not preclude the possibility of preliminary exclusion.
본 발명은 상술한 문제를 해결하기 위하여 전기화학 소자(배터리, 연료전지, 슈퍼커패시터 등)의 엔트로피 추출법으로 보다상세하게는 전압이나 전류 입력에 따른 발열을 측정하여, 그로부터 전기화학 소자의 엔트로피를 추출할 수 있는 방법을제공하며. 보다 구체적으로는 전기화학 소자 온도, 전압, 전류의 측정으로부터 신호처리를 통해 엔트로피를 추출하는 방법을 제공한다. In order to solve the above-described problem, the present invention is a method of extracting entropy of an electrochemical device (battery, fuel cell, supercapacitor, etc.), and in more detail, by measuring heat generation according to voltage or current input, the entropy of the electrochemical device is extracted therefrom. Provides a way to do it. More specifically, it provides a method of extracting entropy through signal processing from measurement of temperature, voltage, and current of an electrochemical device.
이를 위하여 본 발명은 상기 전기화학 소자로부터 측정된 전압, 전류 및 온도 정보로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하고, 상기 발열 성분들의 비율과 상기 저항발열의 절대전 크기 조합에 따라 엔트로피를 추출한다.To this end, the present invention distinguishes the heating component consisting of resistance heating and entropy heating from the voltage, current, and temperature information measured from the electrochemical device, and calculates the entropy according to the ratio of the heating components and the combination of the absolute total size of the resistance heating. Extract.
도 1은 본 발명의 일 실시예에 따른 전기화학 소자의 엔트로피 추출 방법의 단계도이다. 1 is a step diagram of a method for extracting entropy of an electrochemical device according to an embodiment of the present invention.
도 1을 참조하면, 상기 방법은 전기화학 소자에 주파수 성분을 포함하는 전류를 인가하는 단계; 상기 인가된 전류에 의하여 발생하는 전기화학 소자의 열 또는 온도 변화를 실시간으로 측정하는 단계; 상기 측정된 열 또는 온도 변화의 주파수 성분을 분리하고, 인가된 전류의 1배 또는 2배가 되는 주파수 성분을 특정하는 단계; 상기 특정된 주파수 성분 및 온도 변화로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하는 단계; 상기 발열 성분들의 비율과 상기 저항발열의 절대적인 크기의 조합을 통하여, 상기 전기화학 소자의 엔트로피를 추출하는 단계를 포함한다.Referring to FIG. 1, the method includes applying a current including a frequency component to an electrochemical device; Measuring heat or temperature change of the electrochemical device generated by the applied current in real time; Separating a frequency component of the measured heat or temperature change, and specifying a frequency component that becomes one or two times the applied current; Dividing a heating component consisting of resistance heating and entropy heating from the specified frequency component and temperature change; And extracting the entropy of the electrochemical device through a combination of the ratio of the exothermic components and the absolute magnitude of the resistance heating.
또한 본 발명은 상술한 엔트로피 추출 방법을 구현하기 위한 추출 장치를 제공하는데, 이는 도 2에 도시된다. In addition, the present invention provides an extraction device for implementing the above-described entropy extraction method, which is shown in FIG. 2.
도 2를 참조하면, 본 발명의 일 실시에에 따른 엔트로피 추출 장치는 상기 전기화학 소자에 주파수 성분을 포함하는 전류를 인가하는 전원부; 상기 전기화학 소자의 전압, 전류를 측정하는 게측부; 상기 전기화학 소자의 온도를 측정하는 온도측정부; 상기 계측부로부터 측정된 전압, 전류 및 상기 온도측정부로부터 측정된 온도로부터 엔트로피를 추출하는 신호처리부를 포함한다. 특히 본 발명에 따라 엔트로피를 추출하기 위한 신호처리부는, 상기 전기화학 소자로부터 측정된 전압, 전류 및 온도 정보로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하고, 상기 발열 성분들의 비율과 상기 저항발열의 절대전 크기 조합에 따라 엔트로피를 측정하는데, 이하 본 발명의 구체적인 실시예에 따라 이를 보다 상세히 설명한다. Referring to Figure 2, the entropy extraction apparatus according to an embodiment of the present invention includes a power supply for applying a current including a frequency component to the electrochemical device; A measurement unit for measuring voltage and current of the electrochemical device; A temperature measuring unit measuring the temperature of the electrochemical device; And a signal processing unit for extracting entropy from the voltage and current measured by the measurement unit and the temperature measured by the temperature measurement unit. In particular, the signal processing unit for extracting entropy according to the present invention distinguishes a heating component consisting of resistance heating and entropy heating from the voltage, current, and temperature information measured from the electrochemical device, and the ratio of the heating components and the resistance heating Entropy is measured according to the combination of the absolute total size of, which will be described in more detail below according to a specific embodiment of the present invention.
본 발명의 일 실시에에 따른 추출방법은, i) 측정 대상 소자에 계측장치 및 온도측정 장치측정장치를 포함하는 측정장비를 장착하는 단계; (ii) 소자에 전기적 신호를 인가하는 단계; (iii) 상기 측정장비를 이용하여 전기화학 소자의 전압, 전류 및 온도를 측정하는 단계; (iv) 온도의 성분 분리하는 단계; (v) 가역적 열량(엔트로피 발열) 과 비가역적 열량(저항발열) 의 비율 도출하는 단계; 임피던스를 계산하는 단계; (vii) 비가역적 열량을 계산하는 단계; 및 (viii) 엔트로피를 추출하는 단계를 포함한다. The extraction method according to an embodiment of the present invention includes: i) mounting a measuring device including a measuring device and a temperature measuring device measuring device to a device to be measured; (ii) applying an electrical signal to the device; (iii) measuring the voltage, current and temperature of the electrochemical device using the measuring equipment; (iv) separating the temperature components; (v) deriving the ratio of the reversible heat amount (entropy heat) and the irreversible heat amount (resistance heat); Calculating impedance; (vii) calculating irreversible calories; And (viii) extracting entropy.
본 발명에 있어서 엔트로피는 충/방전으로 화학 반응이 일어남에 따른 "단위 몰 당 엔트로피의 변화 (ΔS, [J/(mol*K)] )" 를 의미한다. 이는 배터리 등의 전기화학 소자 내부에서 일어나는 가역적 화학반응의 "단위 몰 당 * 온도 당 발열량"에 해당하는 값이다. 그런데 전기화학 소자에서 화학반응의 속도 (시간당 몰, [mol/sec])가 "전류 /{패러데이상수(F) * 이온전하량(Q)}"에 해당한다는 점을 고려하면, 본 발명에서의 "엔트로피"는 "단위 전류 당 * 온도 당 가역적 발열률 [W/(A*K)]"에 해당하는 물리량으로도 해석될 수 있다.In the present invention, entropy means "change of entropy per unit mole (ΔS, [J/(mol*K)])" as a chemical reaction occurs through charging/discharging. This is a value corresponding to "the amount of heat generated per unit mole * per temperature" of a reversible chemical reaction occurring inside an electrochemical device such as a battery. However, considering that the rate of chemical reaction (mol per hour, [mol/sec]) corresponds to "current /{Faraday constant (F) * ionic charge (Q)}" in the electrochemical device, " “Entropy” can also be interpreted as a physical quantity corresponding to “per unit current * reversible heating rate per temperature [W/(A*K)]”.
본 발명에 있어서 비가역적 열 (Irreversible Heat, Qi), 저항 열 또는 저항발열은 배터리 또는 일반적인 회로에 전류(I)를 흘리면, 직류 저항성분 (R)에 의해 I2R에 해당하는 줄 열(Joule heat)이 발생하여 이것을 Qi라 한다. 이는 배터리의 충/ 방전시 내부저항에 의해 발생하는 "단위 몰당 줄 열 [J/mol]"을 의미한다. 또한, 하나의 배터리에 대하여 전기적/화학적/열적 조건 (SoC, 온도, 전압 등) 에 따라 다수의 저항발열 값들이 존재할 수 있다. In the present invention, irreversible heat (Qi), resistance heat, or resistance heating is Joule heat corresponding to I 2 R by DC resistance component (R) when current (I) flows through a battery or a general circuit. heat) is generated and this is called Qi. This means "Joule heat per unit mole [J/mol]" generated by internal resistance during charging/discharging of the battery. In addition, a number of resistance heating values may exist for one battery according to electrical/chemical/thermal conditions (SoC, temperature, voltage, etc.).
본 발명에 있어서 가역적 열 (Reversible Heat, Qr), 엔트로피 열 또는 엔트로피 발열은 임의의 화학 반응에서 엔탈피 변화 (Enthalpy, ΔH) 가 발생 할 때, 열역학의 깁스 자유 에너지(Gibbs energy, ΔG) 정의로부터 ΔG = ΔH - T ΔS 가 성립하며, 이때 TΔS에 해당하는 열량을 Qr로서 정의한다. Qr 또한 Qi와 같은 단위로서, "단위 몰 당 열량변화 [J/mol] " 를 의미한다.In the present invention, reversible heat (Qr), entropy heat, or entropy heat is ΔG from the definition of Gibbs energy (ΔG) in thermodynamics when an enthalpy change (Enthalpy, ΔH) occurs in an arbitrary chemical reaction. = ΔH-T ΔS is established, and at this time, the amount of heat corresponding to TΔS is defined as Qr. Qr is also the same unit as Qi, and means "change of heat per unit mole [J/mol]".
엔트로피 발열 값의 부호는 양의 부호(+) 이거나 음의 부호(-) 일 수 있으며, 음의 부호를 갖는 경우 흡열(외부의 열이 배터리로 흡수됨; 대체로 온도 하락)을 의미한다. 또한, 하나의 배터리에 대하여 전기적/화학적/열적 조건 (SoC, 온도, 전압 등) 에 따라 다수의 엔트로피 발열 값들이 존재할 수 있다. The sign of the entropy heating value may be a positive sign (+) or a negative sign (-), and if the sign has a negative sign, it means endothermic heat (external heat is absorbed by the battery; usually a temperature drop). In addition, a number of entropy heating values may exist for one battery according to electrical/chemical/thermal conditions (SoC, temperature, voltage, etc.).
본 발명에서 실시간으로 엔트로피를 추출하는 개략적인 실험과정은 하기 실시예와 도 2 및 3에 나타난 바와 같다.In the present invention, a schematic experimental process for extracting entropy in real time is as shown in the following examples and FIGS. 2 and 3.
이하 본 발명을 배터리에 대한 엔트로피 추출에 적용하는 경우의 실시 예를 방법에 따라 상세하게 설명한다.Hereinafter, an embodiment in which the present invention is applied to extracting entropy for a battery will be described in detail according to a method.
i) 배터리에 계측장치 및 온도측정장치를 포함하는 측정장비를 장착하는 단계i) Mounting a measuring device including a measuring device and a temperature measuring device on the battery
전압, 전류, 온도를 실시간 (또는 준-실시간, 초당 수 회에서 ~수십회 이상 의 샘플링 속도를 요구) 측정할 수 있고, 전압 및 전류에 대한, 적정 범위 (18650 단일 셀의 경우, 약 5볼트, 5암페어) 내에서의 자유로운 조절이 가능한 장비를 준비하고 이를 배터리에 장착한다.It can measure voltage, current, and temperature in real time (or near-real time, requiring a sampling rate of several to tens of times per second or more), and for voltage and current, the appropriate range (approximately 5 volts for 18650 single cells). , 5 amps), and install it on the battery.
본 발명은 온도 측정장치의 응답속도와 정밀도가 중요한 측정법으로서, 온도 측정장치는 배터리 표면에 부착되어, 가능한 배터리의 열을 빠르고 왜곡 없이 전 달할 수 있도록 하며, 필요에 따라 써멀 컴파운드 (Thermal compound) 등의 열 전 달 매개체를 사용한다. The present invention is a measurement method in which the response speed and precision of a temperature measuring device are important, and the temperature measuring device is attached to the surface of the battery, so that the heat of the battery can be transferred as quickly and without distortion as possible, and if necessary, a thermal compound, etc. The heat transfer medium of is used.
또는 온도 측정장치는 배터리 내부에 삽입될 수 있으며, 이를 통해 배터리 내의 전극, 전해질 등 구성 요소에서 발생하는 열에 대한 보다 직접적인 측정을 도모할 수 있다. 또는, 온도 측정장치가 별도의 소자 형태로 구현되지 않고, 배터리의 임피던스 값을 측정하여 그로부터 실시간 (또는 준-실시간, 샘플링 속도 수~수백 회/ 초)으로 배터리의 온도를 측정하는 방식의 온도측정 기술이 적용된 온도 측정장치를 사용할 수도 있다. 즉. 본 발명에 따른 온도 측정장치는 적어도 배터리 구성요소로부터 발생한 열을 측정할 수 있는 한, 이는 모두 본 발명의 범위에 속한다. Alternatively, the temperature measuring device may be inserted into the battery, and through this, it is possible to achieve a more direct measurement of heat generated from components such as electrodes and electrolytes in the battery. Alternatively, a temperature measurement device is not implemented in the form of a separate element, and the temperature measurement is a method of measuring the temperature of the battery in real time (or semi-real time, sampling rate several to hundreds of times/second) by measuring the impedance value of the battery. A temperature measuring device to which the technology is applied may also be used. In other words. The temperature measuring device according to the invention is all within the scope of the invention, as long as it can at least measure the heat generated from the battery components.
상기와 같이 온도측정장치가 부착된 배터리를, 일정한 온도가 유지되는 항온 챔버(Temperature chamber)에 넣고 엔트로피를 추출할 수 있으며, 항온챔버를 사용하지 않고 상온에서, 또는 사용 중이거나 미사용 중, 충/방전 중인 전기/전자 기기에 배터리가 장착된 상태에서 엔트로피를 추출할 수도 있다.As described above, a battery with a temperature measuring device can be placed in a temperature chamber maintained at a constant temperature and entropy can be extracted, and at room temperature without using a constant temperature chamber, or in use or not in use, charging/ Entropy can also be extracted when a battery is installed in an electric/electronic device that is being discharged.
(ii) 배터리에 전류 인가하는 단계(ii) applying current to the battery
사용중이지 않은, 또는 충/방전 중인 배터리에 정현파(Sine wave) 전류를 인가한다. 충/방전 중인 배터리에 정현파 전류를 인가한다는 뜻은, 충/방 전량 만큼의 전류 bias가 존재하는 상황에서 추가적으로 AC성분에 해당하는 정현파 전류가 주어짐을 의미한다. Apply a sine wave current to a battery that is not in use or is being charged/discharged. When a sine wave current is applied to a battery during charging/discharging, it means that a sine wave current corresponding to the AC component is additionally given in a situation where a current bias equal to the amount of charging/discharging exists.
즉, 시간 t에 대한 함수로서, 충/방전 전류를 F(t) 로 가정하고, 정현파 전류를 A sin(wt + k) 와 같이 표현할 때, 충/방전 중인 배터리에 정현파 전류를 인가하면, F(t) + A sin(wt + k) 에 해당하는 전류가 인가된다는 뜻이다.That is, as a function of time t, assuming the charging/discharging current as F(t), and expressing the sinusoidal current as A sin(wt + k), if a sinusoidal current is applied to the battery under charging/discharging, F It means that the current corresponding to (t) + A sin(wt + k) is applied.
또한 사용중이지 않은 배터리에 정현파 전류를 인가하는 경우, 배터리에 A sin(wt + k)의 전류가 흐르게 된다. 정현파는 순수한 정현파(Pure sine wave)일 수 있고, 또는 유사 정현파(Quasi-sine wave; Modified sine wave) 등을 사용할 수 있으며, 보다 일반적으로는 주파수 성분을 포함하고 있는 모든 전류 신호가 잠재적으로 사용되어질 수 있으며, 이는 모두 본 발명의 범위에 속한다.Also, when a sinusoidal current is applied to a battery that is not in use, a current of A sin (wt + k) flows through the battery. The sine wave may be a pure sine wave, or a quasi-sine wave (Modified sine wave) may be used, and more generally, all current signals including frequency components are potentially used. And all of which are within the scope of the present invention.
상기와 같이 배터리에 전류가 흐르면 전기화학 반응이 발생한다. 전기화학 반응 자체의 특성과, 또는 배터리 내부저항과의 복합적인 영향에 의해 배터리는 특정한 전압을 나타낸다. As described above, when current flows through the battery, an electrochemical reaction occurs. The battery exhibits a specific voltage due to a combination of the characteristics of the electrochemical reaction itself or the internal resistance of the battery.
전류가 정현파의 형태로 시간에 따라 변화하는 경우, 일반적으로 배터리의 전압 또한 시간에 따라 (정현파와 유사한 형태로) 변화 하는 성질을 갖는다. 배터리의 전류는 배터리 내부에서 흡열 또는 발열반응을 일으킬 수 있다. 그에 따라 열의 출입이 발생하여, 배터리 표면의 온도 변화로 이어진다. When the current changes over time in the form of a sine wave, in general, the voltage of the battery also has a property of changing over time (in a form similar to a sine wave). The current of the battery may cause an endothermic or exothermic reaction inside the battery. As a result, heat enters and exits, leading to a change in the temperature of the battery surface.
배터리의 전압, 전류, 온도는, 배터리에 정현파 전류를 인가하는 과정과 거의 동시에 측정하여 데이터를 얻는다.The voltage, current, and temperature of the battery are measured almost simultaneously with the process of applying a sinusoidal current to the battery to obtain data.
(iii) 상기 측정장비를 이용하여 베터리의 전압, 전류 및 온도를 측 정하는 단계(iii) measuring the voltage, current and temperature of the battery using the measuring equipment
정현파 전류가 인가되는 배터리에 대해 전압, 전류, 온도를 측정한 다. 이 과정에서 연속적으로 데이터를 획득하여, 배터리의 전압, 전류, 온도에 대한 정보 를 얻는다. 이 과정에서 배터리의 표면온도 또는 내부온도를 측정하여 배터리의 온도 데이터 값으로서 삼는다. Measure voltage, current, and temperature for a battery to which sinusoidal current is applied. In this process, data is continuously acquired and information about the voltage, current, and temperature of the battery is obtained. In this process, the surface temperature or the internal temperature of the battery is measured and used as the temperature data value of the battery.
(iv) 온도의 성분 분리하는 단계(iv) separating the temperature components
정현파 전류가 인가되는 배터리의 내부에서는, 전류의 영향으로 Qr(가역열량) 과 Qi(비가역 열량) 두 종류의 열 출입이 발생한다. Qi는 배터리의 직류저항에 의한 열의 출입이며, Qr은 배터리 내부 화학반응의 엔트로피 변화 (TΔS)에 의한 열의 출입이다.Inside the battery to which the sinusoidal current is applied, two types of heat in and out occur due to the influence of the current, Qr (reversible heat) and Qi (irreversible heat). Qi is the entry and exit of heat by the DC resistance of the battery, and Qr is the entry and exit of heat by the entropy change (TΔS) of the internal chemical reaction of the battery.
두가지 열의 성분에서 기인하는, 각각의 온도변화 성분 ΔTr, ΔTi 로서 배터리 온도의 변화량이 결정된다. 온도의 변화 ΔT = ΔTr + ΔTi로 표현 되며, Qr에 의한 온도성분 ΔTr과, Qi에 의한 온도성분 ΔTi가 더해져서 온도변화 ΔT를 구성한다.The amount of change in the battery temperature is determined as each temperature change component ΔTr and ΔTi resulting from the components of the two columns. It is expressed as the change in temperature ΔT = ΔTr + ΔTi, and the temperature component ΔTr by Qr and the temperature component ΔTi by Qi are added to form the temperature change ΔT.
정현파 전류는 시간에 따라 방향이 바뀌는 특성을 갖고 있으며, Qi 및 Qr도 시간에 따라 크기가 달라진다(주파수 성분이 있다). 정현파 주파수를 f라 가정할 때, Qi는 f의 주파수로, Qr는 2*f의 주파수를 갖는다. 그 결과 온도성분 ΔTr의 주파수는 2f이며, ΔTi의 주파수는 f로서 나타난다.The sinusoidal current has a characteristic that the direction changes with time, and the magnitudes of Qi and Qr also change with time (there is a frequency component). Assuming that the sinusoidal frequency is f, Qi has a frequency of f, and Qr has a frequency of 2*f. As a result, the frequency of the temperature component ΔTr is 2f, and the frequency of ΔTi is indicated as f.
실제 온도측정장치에 측정될 때는, 두가지 온도성분이 합해진 ΔT = Δ Tr + ΔTi 로서 측정 되므로, 이것을 디지털 신호처리 (DSP) 를 통하여 분리하는 과정이 뒤따른다. 측정된 온도 데이터는 푸리에 변환 (FFT 또는 DFT) 또는 아날로그 필터, 디지털 필터 등을 통하여, 주파수 f 성분과 주파수 2f 성분으로 분리된다.When measured in an actual temperature measuring device, since the two temperature components are measured as ΔT = Δ Tr + ΔTi, the process of separating this through digital signal processing (DSP) follows. The measured temperature data is separated into a frequency f component and a frequency 2f component through a Fourier transform (FFT or DFT), an analog filter, or a digital filter.
(v) 가역적 열량(엔트로피 발열) 과 비가역적 열량(저항발열) 의 비율 도출하는 단계 ( v) Deriving the ratio of the reversible heat amount (entropy heat) and the irreversible heat amount (resistance heat)
배터리에서 발생하는 시간당 열량은 dQ/dt = Q'로 나타낼 수 있다. 발열의 성분 두 가지 (Qi, Qr) 또한 시간(t)에 대해 미분하여 Qi', Qr' 으로 나타낼 수 있다.The amount of heat per hour generated by the battery can be expressed as dQ/dt = Q'. Two components of heat generation (Qi, Qr) can also be differentiated over time (t) and expressed as Qi' and Qr'.
배터리와 같은 닫힌계에서 계 바깥으로의 열 전달함수를 G(f)라 하면, 표면온도 변화 ΔT = Q' / G(f) 의 관계가 있다. 배터리의 열 용량을 C, 외부로의 열저항을 R이라 가정함으로서 간단한 RC회로 근사가 가능하며, 이때 G(f)는 주파수에 대한 함수로서 2*G(f) = G(2f) 가 성립한다. 즉 ΔT = Q' / G(f) 으로부 터 ΔTr = Qr' / (2*G(f)) , ΔTi = Qi' / G(f) , 두 식을 나누어서 ΔTi / ΔTr= 2*Qi'/Qr' 이다. 따라서, 분리된 두 온도성분의 크기비율 ΔTi / ΔTr 을 계산하면, 그로부터 열량비율 Qi'/Qr' 을 추정할 수 있다.If the heat transfer function from a closed system such as a battery to the outside of the system is G(f), there is a relationship of the surface temperature change ΔT = Q'/ G(f). A simple RC circuit approximation is possible by assuming that the heat capacity of the battery is C and the heat resistance to the outside is R, where G(f) is a function of frequency and 2*G(f) = G(2f) is established. . In other words, from ΔT = Q'/ G(f) ΔTr = Qr' / (2*G(f)), ΔTi = Qi' / G(f), ΔTi / ΔTr= 2*Qi'/ by dividing the two equations Qr'. Therefore, if the size ratio ΔTi / ΔTr of the two separated temperature components is calculated, the heat quantity ratio Qi'/Qr' can be estimated therefrom.
(vi) 임피던스를 계산하는 단계(vi) calculating impedance
본 발명에서는, 배터리의 정현파 전류가 인가되는 상황의 배터리 임 피던스 추출이 필요하다. 이를 위해 측정된 전압, 전류 값으로부터 임피던스를 추출한다.In the present invention, it is necessary to extract the battery impedance in a situation in which the sinusoidal current of the battery is applied. For this, impedance is extracted from the measured voltage and current values.
일반적으로 배터리는 비-선형적인 응답 특성을 갖는다. 배터리에 정 현파 전류를 인가하는 경우, 그에 따른 양단전압은 순수한 정현파가 아닐 수 있다. 또한 배터리 자체를 충/방전하면서 동시에 정현파를 인가할 때, 전류와 전압에는 정현파 성분 외에도 직류 bias 성분이 포함된다.In general, batteries have a non-linear response characteristic. When a sinusoidal current is applied to the battery, the resulting voltage across the battery may not be a pure sinusoidal wave. In addition, when a sine wave is applied while charging/discharging the battery itself, current and voltage include a DC bias component in addition to the sine wave component.
배터리의 시간에 따른 전압 V(t), 전류는 I(t) 이다. 전압 및 전류 에는, 공통적으로 교류성분과 직류성분이 섞여 있다. 직류성분을 제외하고, 전압, 전류의 교류 성분을 각각 v(t), i(t)라 할때, 임피던스 z(t) = v(t) / i(t) 으로 계산되어진다.The voltage V(t) and current of the battery over time are I(t). In voltage and current, an AC component and a DC component are commonly mixed. Excluding the DC component, when the AC components of voltage and current are v(t) and i(t), respectively, it is calculated as impedance z(t) = v(t) / i(t).
(vii) 비가역적 열량을 계산하는 단계(vii) calculating irreversible calories
상기와 같이 계산된 임피던스 z(t)로부터, 저항의 발열량은 임피던스의 실수 성분에 의해 결정된다는 사실을 이용하여 시간당 발열량 = (i(t)^2) * Real(z(t)) 으로 계산할 수 있다.From the impedance z(t) calculated as above, the heating value per hour = (i(t)^2) * Real(z(t)) can be calculated using the fact that the heating value of the resistance is determined by the real component of the impedance. have.
z(t)는 상대적으로 긴 시간 (정현파의 수십 주기) 동안 거의 일정 하다고 가정할 수 있다. 즉, z(t)는 꽤 넓은 범위의 t에 대해 일정하다. i(t)는 정 현파이므로, 일반적으로 i(t) = A * sin(w*t + k) 으로 표현된다.It can be assumed that z(t) is almost constant over a relatively long period of time (tens of periods of a sine wave). That is, z(t) is constant over a fairly wide range of t. Since i(t) is a sinusoidal wave, it is generally expressed as i(t) = A * sin(w*t + k).
시간당 발열량 = d Qi / dt = Qi'Calorific value per hour = d Qi / dt = Qi'
=A^2 * ( sin(w*t + k) )^2 * Real(z(t))=A^2 * (sin(w*t + k) )^2 * Real(z(t))
= Real(z(t)) * (1/2) * A^2 * (1 - cos( 2*w*t + 2*k ))= Real(z(t)) * (1/2) * A^2 * (1-cos( 2*w*t + 2*k ))
그 결과 2*f 주파수를 갖는다. 다만 "시간당 발열량" 에서 실제 온도측정장치에 측정되는 성분은 AC성분이므로, DC성분을 제외한 나머지 AC성분은 Qi' = Real(z(t)) * (-1/2) * A^2 * cos(2wt + 2k)이다.As a result, it has a 2*f frequency. However, since the component measured by the actual temperature measuring device in "Correction per Hour" is an AC component, the remaining AC components excluding the DC component are Qi' = Real(z(t)) * (-1/2) * A^2 * cos (2wt + 2k).
따라서 배터리에 인가되는 전류를 i(t) = A * sin(w*t + k) 으로 설 정할 때, 이론적으로 계산된 Qi' = Real(z(t)) * (-1/2) * A^2 * cos(2wt + 2k)으로 추정되어진다.Therefore, when setting the current applied to the battery as i(t) = A * sin(w*t + k), the theoretically calculated Qi' = Real(z(t)) * (-1/2) * A It is estimated as ^2 * cos(2wt + 2k).
(vii) 엔트로피를 추출하는 단계(vii) extracting entropy
상기와 같이, 배터리에 인가되는 전류를 i(t) = A * sin(w*t + k) 으로 설정할 때, Qi' = Real(z(t)) * (-1/2) * A^2 * cos(2wt + 2k) 으로 추정되었다.As above, when setting the current applied to the battery as i(t) = A * sin(w*t + k), Qi' = Real(z(t)) * (-1/2) * A^2 * It was estimated as cos(2wt + 2k).
또한 과정 5에서 온도비율 ΔTi / ΔTr 로부터 열량비율 Qi'/Qr' 을 도출할 수 있다. 그 구체적인 과정은 다음과 같다.In addition, in step 5, the heat quantity ratio Qi'/Qr' can be derived from the temperature ratio ΔTi / ΔTr. The specific process is as follows.
배터리 내부 화학반응의, 단위 몰 당 엔트로피 변화 = ΔS이며, 전자 1C의 엔트로피 변화 = ΔS / F(여기서 F는 패러데이 상수, ~ 96485 coulomb)Entropy change per unit mole of battery internal chemical reaction = ΔS, and entropy change of electron 1C = ΔS / F (where F is Faraday's constant, ~ 96485 coulomb)
열역학 제2법칙으로부터, 계를 빠져나가는 "가역적 열량" Qr = T* ΔS 으로 계산되므로, 특정 온도 T에서, 전자 1C에 의한 "가역적 열량" = T*Δ S/F, 이때 전류는 시간당 전하량을 의미한다.From the second law of thermodynamics, the "reversible heat amount" leaving the system is calculated as Qr = T* ΔS, so at a specific temperature T, the "reversible heat amount" by electron 1C = T*Δ S/F, where the current is the amount of charge per hour. it means.
따라서, 특정 온도 T에서의 시간당 가역적 열량 = I*T*ΔS/F = dQr/dt = Qr' . 이와 같이 Qr'과 엔트로피의 관계를 구할 수 있다.Thus, reversible heat per hour at a specific temperature T = I*T*ΔS/F = dQr/dt = Qr'. In this way, the relationship between Qr' and entropy can be obtained.
온도 T에서의 시간당 가역적 열량 = I*T*ΔS/F = dQr/dt = Qr' . 전류를 i(t) = A * sin(w*t + k) 으로 설정하면Reversible heat per hour at temperature T = I*T*ΔS/F = dQr/dt = Qr'. If you set the current as i(t) = A * sin(w*t + k)
Qr' = A*sin(w*t +k) *T *ΔS/FQr' = A*sin(w*t +k) *T *ΔS/F
Qi' = eal(z(t)) * (-1/2) * A^2 * cos(2wt + 2k)Qi' = eal(z(t)) * (-1/2) * A^2 * cos(2wt + 2k)
열량의 비율 Qi'/Qr' = ΔTi / ΔTr = 2*Qi'/Qr' 의 관계가 있으므로, 배터리에 i(t) = A * sin(w*t + k) 전류를 입력하는 상황에서, Δ Ti / ΔTr 을 측정하고 임피던스 z(t), 온도 T에 대한 값을 알고 있다면Since there is a relationship of the ratio of heat quantity Qi'/Qr' = ΔTi / ΔTr = 2*Qi'/Qr', in the situation where i(t) = A * sin(w*t + k) current is input to the battery, Δ If you measure Ti / ΔTr and know the value for impedance z(t), temperature T,
ΔTi / ΔTr = 2*Qi'/Qr' = 2*(Real(z(t)) * (-1/2) * A^2 * cos(2wt + 2k) ) / (A*sin(w*t +k) *T *ΔS/F) 이며ΔTi / ΔTr = 2*Qi'/Qr' = 2*(Real(z(t)) * (-1/2) * A^2 * cos(2wt + 2k)) / (A*sin(w*t +k) *T *ΔS/F) and
이로부터 역으로 ΔS = (-A*F/T) * (ΔTi / ΔTr) * (Real(z(t))*cos(2wt+2k)/sin(wt+k)) 으로 엔트로피 ΔS 값을 추출할 수 있다.From this, the entropy ΔS value is extracted as ΔS = (-A*F/T) * (ΔTi / ΔTr) * (Real(z(t))*cos(2wt+2k)/sin(wt+k)) can do.
도 3은 도 2의 신호 처리부에 대한 보다 자세한 실시예로서, 상술한 방법에 따라 엔트로피 값이 도출되는 연산의 세부 단계들을 도식화 하였으며, 도 4에서는 배터리에 대하여 본 발명의 측정장치 및 측정방법을 적용하여 엔트로피를 추출하는 과정의 각각의 기술적인 단계들에 대하여 도식화 하였다. FIG. 3 is a more detailed embodiment of the signal processing unit of FIG. 2, illustrating detailed steps of an operation for deriving an entropy value according to the above-described method, and in FIG. 4, a measuring apparatus and a measuring method of the present invention are applied to a battery. Thus, each of the technical steps in the process of extracting entropy is schematically illustrated.
도 5는 본 발명의 발명자들이 본 발명의 내용에 따른 엔트로피 추출 장치 및 방법을 구현하여 리튬이온 배터리(pouch cell type)에 대한 엔트로피를 추출한 측정 결과로서, 기존의 표준 측정법으로서 널리 인정되어지는 ETM 방식에 의한 측정 결과(이 또한 본 발명자들이 수행)와 비교한 도이다.5 is a measurement result obtained by extracting entropy for a lithium ion battery (pouch cell type) by the inventors of the present invention implementing an entropy extraction apparatus and method according to the present invention, and an ETM method widely recognized as a conventional standard measurement method. It is a diagram compared with the measurement result by (this is also carried out by the present inventors).
도 5를 참조하면, 도 1 내지 4에 따른 방법과 장치에 따라 엔트로피를 추출하는 경우 종래의 EIS 측정이 필요하였는 종래 기술과 비교하여 볼 때 별도의 열 전달 합수를 측정 없이도 동일한 엔트로피 추출값을 얻을 수 있는 것을 알 수 있다. Referring to FIG. 5, when entropy is extracted according to the method and apparatus according to FIGS. 1 to 4, the same entropy extraction value can be obtained without measuring a separate heat transfer function as compared to the prior art that required the conventional EIS measurement. You can see what you can do.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당 업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실 시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it is clear that these specific techniques are only preferred embodiments for those of ordinary skill in the art, and the scope of the present invention is not limited thereby. something to do. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.
본 발명은 기존의 배터리에서 엔트로피를 추출하는 시스템에 비해서 측정시간이 빠르고, 원리적으로 외부 온도변화를 요구하지 않으며, 충/방전이 진행중인 배터리에도 적용할 수 있다는 장점이 있어 배터리가 사용되는 모든 분야에 적용될 수 있다.The present invention has the advantage that the measurement time is faster than that of a system that extracts entropy from an existing battery, does not require external temperature change in principle, and can be applied to a battery in which charging/discharging is in progress. Can be applied to

Claims (7)

  1. 전기화학 소자의 엔트로피 추출 방법으로,As a method of extracting entropy of an electrochemical device,
    상기 전기화학 소자에 주파수 성분을 포함하는 전류를 인가하는 단계;Applying a current including a frequency component to the electrochemical device;
    상기 인가된 전류에 의하여 발생하는 전기화학 소자의 열 또는 온도 변화를 측정하는 단계;Measuring heat or temperature change of the electrochemical device generated by the applied current;
    상기 측정된 열 또는 온도 변화의 주파수 성분을 분리하고, 인가된 전류의 1배 또는 2배가 되는 주파수 성분을 특정하는 단계;Separating a frequency component of the measured heat or temperature change, and specifying a frequency component that becomes one or two times the applied current;
    상기 특정된 주파수 성분 및 온도 변화로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하는 단계;Dividing a heating component consisting of resistance heating and entropy heating from the specified frequency component and temperature change;
    상기 발열 성분들의 비율과 상기 저항발열의 절대적인 크기의 조합을 통하여, 상기 전기화학 소자의 엔트로피를 추출하는 단계를 포함하는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 방법.And extracting the entropy of the electrochemical device through a combination of the ratio of the exothermic components and the absolute magnitude of the resistance heating.
  2. 제 1항에 있어서,The method of claim 1,
    상기 발열성분 중 상기 저항발열은 상기 전기화학 소자의 임피던스와 전압 또는 전류로부터 계산되는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 방법.The resistive heating of the heating component is calculated from the impedance and voltage or current of the electrochemical device.
  3. 제 1항에 있어서, The method of claim 1,
    상기 엔트로피를 계산하는 단계는, 계산된 저항발열값과, 도출된 발열 성분들의 비율 정보를 활용하여, 엔트로피발열의 절대적인 값을 계산하는 방식으로 수행되는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 방법.The calculating of the entropy is performed in a manner of calculating an absolute value of entropy heating by using the calculated resistance heating value and the ratio information of the derived heating components.
  4. 전기화학 소자의 엔트로피 추출 장치로서,As an entropy extraction device of an electrochemical device,
    상기 전기화학 소자에 주파수 성분을 포함하는 전류를 인가하는 전원부;A power supply unit for applying a current including a frequency component to the electrochemical device;
    상기 전기화학 소자의 전압, 전류를 측정하는 게측부;A measurement unit for measuring voltage and current of the electrochemical device;
    상기 전기화학 소자의 온도를 측정하는 온도측정부;A temperature measuring unit measuring the temperature of the electrochemical device;
    상기 계측부로부터 측정된 전압, 전류 및 상기 온도측정부로부터 측정된 온도로부터 엔트로피를 추출하는 신호처리부를 포함하며, A signal processing unit for extracting entropy from the voltage and current measured by the measurement unit and the temperature measured by the temperature measurement unit,
    상기 신호처리부는, 상기 전기화학 소자로부터 측정된 전압, 전류 및 온도 정보로부터 저항발열과 엔트로피 발열로 이루어진 발열성분을 구분하고, 상기 발열 성분들의 비율과 상기 저항발열의 절대전 크기 조합에 따라 엔트로피를 측정하는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 장치.The signal processing unit classifies a heating component composed of resistance heating and entropy heating from the voltage, current, and temperature information measured from the electrochemical device, and calculates entropy according to a combination of the ratio of the heating components and the absolute total size of the resistance heating. An apparatus for extracting entropy of an electrochemical device, characterized in that to measure.
  5. 제 4항에 있어서, The method of claim 4,
    상기 전류는 주파수 성분을 갖는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 장치.Entropy extraction device of an electrochemical device, characterized in that the current has a frequency component.
  6. 제 5항에 있어서,The method of claim 5,
    상기 신호처리부는 상기 주파수 성분 중 인가된 전류의 1배 또는 2배가 되는 주파수 성분으로부터 상기 저항발열과 엔트로피 발열을 구분하고,The signal processing unit separates the resistance heating and entropy heating from a frequency component that becomes one or two times the applied current among the frequency components,
    상기 저항발열은 상기 전기화학 소자의 임피던스와 전압 또는 전류로부터 계산하는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출 장치.The resistive heating is an apparatus for extracting entropy of an electrochemical device, characterized in that calculated from impedance and voltage or current of the electrochemical device.
  7. 제 5항에 있어서,The method of claim 5,
    상기 온도측정부는 상기 전기화학 소자의 표면에 부착되거나 내부에 삽입되거나 임피던스를 측정하는 방식으로 전기화학 소자의 온도를 측정하는 온도측정장치를 포함하는 것을 특징으로 하는 전기화학 소자의 엔트로피 추출장치.The temperature measuring unit includes a temperature measuring device for measuring the temperature of the electrochemical element by attaching to the surface of the electrochemical element, inserting it inside, or measuring the impedance of the electrochemical element.
PCT/KR2020/015657 2019-11-08 2020-11-09 Method and apparatus for extracting entropy of electrochemical element using heat generation response according to electric signal input WO2021091360A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0142611 2019-11-08
KR20190142611 2019-11-08
KR1020200148722A KR102655328B1 (en) 2019-11-08 2020-11-09 Method and apparatus for extracting entropy of electrochemical device using heat generation in response to electrical input signal
KR10-2020-0148722 2020-11-09

Publications (1)

Publication Number Publication Date
WO2021091360A1 true WO2021091360A1 (en) 2021-05-14

Family

ID=75848107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015657 WO2021091360A1 (en) 2019-11-08 2020-11-09 Method and apparatus for extracting entropy of electrochemical element using heat generation response according to electric signal input

Country Status (1)

Country Link
WO (1) WO2021091360A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122817A (en) * 2010-12-07 2012-06-28 Gs Yuasa Corp Reversible capacity estimation method of nonaqueous electrolyte secondary battery, life prediction method, reversible capacity estimation method, life prediction device and power storage system
JP5794089B2 (en) * 2011-10-11 2015-10-14 日産自動車株式会社 Battery control device
KR20170059208A (en) * 2015-11-20 2017-05-30 한국과학기술원 Method of dynamically extracting entropy on battery
US20180292465A1 (en) * 2017-04-07 2018-10-11 Board Of Regents, The University Of Texas System Systems and methods for degradation analysis
KR101946784B1 (en) * 2017-09-29 2019-02-12 한국과학기술원 method for measuring battery entropy by dual kalman filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122817A (en) * 2010-12-07 2012-06-28 Gs Yuasa Corp Reversible capacity estimation method of nonaqueous electrolyte secondary battery, life prediction method, reversible capacity estimation method, life prediction device and power storage system
JP5794089B2 (en) * 2011-10-11 2015-10-14 日産自動車株式会社 Battery control device
KR20170059208A (en) * 2015-11-20 2017-05-30 한국과학기술원 Method of dynamically extracting entropy on battery
US20180292465A1 (en) * 2017-04-07 2018-10-11 Board Of Regents, The University Of Texas System Systems and methods for degradation analysis
KR101946784B1 (en) * 2017-09-29 2019-02-12 한국과학기술원 method for measuring battery entropy by dual kalman filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO, JUN-HO: "An electro-thermal method for the semi real-time entropy extraction of a lithium-ion cell", 36TH ANNUAL INTERNATIONAL BATTERY SEMINAR AND EXHIBIT 2019; FORT LAUDERDALE, FLORIDA; 25-28 MARCH 2019, 25 March 2019 (2019-03-25) - 28 March 2019 (2019-03-28), pages 1069, XP009528039, ISBN: 978-1-5108-8671-1 *

Similar Documents

Publication Publication Date Title
WO2014084628A1 (en) Apparatus for measuring current of battery and method therefor
WO2014163318A1 (en) Interference compensating single point detecting current sensor for a multiplex busbar
WO2020085722A1 (en) Explosion pressure prediction system for medium- and large-size cell module, and method for predicting explosion pressure of medium- and large-size cell module
WO2012060597A2 (en) Device and method for announcing the replacement time of a battery
WO2013051828A2 (en) Battery management system and battery management method
WO2019117337A1 (en) Device and method for classifying appliances by using electric power data analysis
WO2021125676A1 (en) Battery diagnosis device and method
WO2020111896A1 (en) Device and method for measuring battery cell resistance
KR20210056276A (en) Method and apparatus for extracting entropy of electrochemical device using heat generation in response to electrical input signal
WO2019066278A1 (en) Method for measuring entropy of battery using kalman filter
WO2017116088A1 (en) Method and device for estimating battery life
WO2019146928A1 (en) Device and method for analyzing soh
WO2015034144A1 (en) Device and method for calculating pre-charge resistance of battery pack
WO2019117487A1 (en) Voltage measurement device and method
WO2021091360A1 (en) Method and apparatus for extracting entropy of electrochemical element using heat generation response according to electric signal input
WO2022145830A1 (en) Battery diagnosis device, battery diagnosis method, battery pack, and electric vehicle
WO2022025725A1 (en) Battery management device, battery pack, battery system, and battery management method
WO2020054924A1 (en) Apparatus and method for diagnosing state of battery in cell unit
WO2017090980A1 (en) Fuse diagnosis device of high-voltage secondary battery
WO2022149890A1 (en) Battery diagnosis device, battery system, and battery diagnosis method
WO2018131874A1 (en) Charging control apparatus and method capable of energy saving and quick cell balancing
WO2021049753A1 (en) Battery diagnosis apparatus and method
WO2023287180A1 (en) Battery diagnosis device, battery pack, electric vehicle, and battery diagnosis method
WO2023224211A1 (en) Battery diagnosis method, and battery diagnosis device and battery system providing same method
WO2023022572A1 (en) Method and apparatus for measuring entropy of electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883749

Country of ref document: EP

Kind code of ref document: A1