WO2021090966A1 - 프레스 금형의 표면 강화 방법 - Google Patents

프레스 금형의 표면 강화 방법 Download PDF

Info

Publication number
WO2021090966A1
WO2021090966A1 PCT/KR2019/014886 KR2019014886W WO2021090966A1 WO 2021090966 A1 WO2021090966 A1 WO 2021090966A1 KR 2019014886 W KR2019014886 W KR 2019014886W WO 2021090966 A1 WO2021090966 A1 WO 2021090966A1
Authority
WO
WIPO (PCT)
Prior art keywords
press mold
cooling
harden
heat treatment
preheating
Prior art date
Application number
PCT/KR2019/014886
Other languages
English (en)
French (fr)
Inventor
심도식
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Priority to PCT/KR2019/014886 priority Critical patent/WO2021090966A1/ko
Publication of WO2021090966A1 publication Critical patent/WO2021090966A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Definitions

  • the present invention relates to a method for reinforcing the surface of a press mold, and more specifically, to a method for reinforcing the surface of a press mold for press molding made of a high-strength material such as a high-tensile steel sheet used in automobile, shipbuilding, and aviation industries.
  • ultra-high-strength steel sheets are being applied to automobile bodies, and the molds used for forming ultra-high-strength steel sheets having high strength are easily damaged, and the wear rate of the molds is also high, and the life of the molds is shortened.
  • shear molding such as piercing and trimming is not possible with press molds, and there is no optimal alternative for reinforcing or repairing high-load/high-impact press molds.
  • high speed tool steel is a material suitable for hard facing because of its high hardness and very high abrasion resistance, but its high carbon content prevents cracking when trying to form a hardened layer on the base material.
  • high-speed tool steel has a disadvantage of frequent mold cracking such as chipping due to its high hardness but relatively low toughness.
  • An object of the present invention is to provide a method for reinforcing the surface of a press mold capable of providing a press mold with improved toughness and hardness by forming a stable surface reinforcing layer on a press mold using high-speed tool steel.
  • a method for reinforcing the surface of a press mold for one object of the present invention includes a preheating process of preheating a press mold prepared as a base material structure; Lamination process of forming a surface reinforcement layer on the base material structure by providing high-speed coated steel powder while forming a molten pool using a laser on the preheated base material structure; And a post-heat treatment step of sequentially performing a quenching step and a tempering step while the surface reinforcing layer is formed on the base material structure.
  • the hardness of the laminated region in which the surface reinforcing layer is formed after the post-heat treatment process is at least 60 HRc or more, and the total shock absorption energy by the Charpy impact test is 2.0 J or more.
  • the post-heat treatment process is configured such that only one tempering step is performed after performing one quenching step after the lamination process is completed.
  • the quenching step of the post-heat treatment process includes raising the temperature to 1,000 to 1,100°C after lamination of the surface reinforcing layer; Maintaining an isothermal state at a temperature condition of 1,000 to 1,100°C; And cooling.
  • cooling in the quenching step may be performed by gas cooling at a cooling rate of 500 to 800°C/min using a cooling gas or air cooling in an atmospheric condition.
  • the rate of temperature increase may be 5° C./minute, and the time of maintaining the temperature at isothermal may be 1 hour.
  • the tempering step of the post-heat treatment process includes the steps of raising the temperature to 500 to 600°C after cooling of the quenching step; Maintaining an isothermal state in a temperature condition of 500 to 600°C; And cooling the furnace.
  • the base structure is formed of carbon steel for mechanical structure of AISI 1045 (JIS S45C) or AISI D2 (SKD11), and the high-speed tool steel powder may be AISI M2 or AISI M4.
  • the base material structure is AISI D2 (SKD11)
  • the high-speed coated steel powder is AISI M4
  • the temperature is raised to 1,050° C. in the quenching step and then maintained isothermal
  • the temperature is raised to 550° C. in the tempering step, and then isothermal.
  • the preheating process may be performed at 300°C to 500°C.
  • the preheating process may be performed at least 300°C or higher, but less than 500°C.
  • the preheating process when the preheating process is performed at less than 300°C, cracks occur in the surface reinforcement layer formed by the lamination process or cracks develop throughout the interface, and the preheating process is performed at more than 500°C. In some cases, pores are generated in the surface reinforcement layer formed by the lamination process due to excessive heat input, and when the preheating process is performed at 300°C to 500°C, the formation of cracks, crack propagation and pore formation in the surface reinforcement layer are prevented. do.
  • the press mold according to the present invention is characterized in that the surface is reinforced according to the method described above.
  • the method for reinforcing the surface of a press mold according to the present invention described above by forming a stable surface reinforcing layer on the press mold using high-speed tool steel, it is possible to provide a press mold having improved toughness without deteriorating hardness.
  • the toughness is improved by performing the post-heat treatment process through the quenching-tempering process, but the surface reinforcement of the press mold is performed without reducing the hardness.
  • FIG. 1 is a view for explaining a lamination process in a method for reinforcing a surface of a press mold according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a post-heat treatment process in the method for strengthening the surface of a press mold according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the results of analyzing the interface characteristics of Comparative Sample 1 and Samples 1 to 5, respectively.
  • 5 to 7 are diagrams showing results of evaluation of wear resistance characteristics of Sample 1 and Comparative Samples 2 to 4;
  • FIG. 10 is a comparison of a fracture surface after performing a lamination process without a preheating process and immediately after performing a tempering process for an ultra-strong cold press mold, and a fracture surface when performing a preheating process, a lamination process, and a post heat treatment process at 300°C. It is a diagram showing pictures for doing.
  • the surface reinforcing method for reinforcing the surface of a press mold according to the present invention includes a preheating process of preheating a prepared base material structure, a lamination process of forming a surface reinforcing layer on the preheated base material structure, and a base material structure in which the surface reinforcing layer is laminated. It includes a post-heat treatment process performed on the surface.
  • the base material structure used in the present invention is a press mold subject to surface reinforcement, and the material forming the base material structure is not particularly limited, but the base material structure in the present invention is formed of a conventional carbon steel for machine structure used as a base material for machine structure.
  • AISI 1045 JIS S45C
  • AISI D2 SKD11
  • AISI D2 may be used as a base material structure of a press mold capable of processing an ultra-high tensile steel sheet.
  • the base material structure may be processed to form a surface reinforcement layer in a portion requiring reinforcement in a press mold. For example, machining such as cutting may be performed on the edge portion of the base material structure.
  • a preheating process is performed as a pretreatment step for performing the lamination process on the prepared press mold, the base material structure.
  • the preheating process is performed at a temperature of at least 300°C, but is preferably performed under conditions not exceeding 500°C.
  • a process of applying energy locally using a laser directly to the base material structure is continuously or discontinuously performed several times.
  • the laser is applied to form a melting pool in the lamination area on the base structure, and the high speed tool steel powder is also melted to rapidly solidify together with a part of the base structure. It heats up rapidly and cools down immediately after the laser passes through it.
  • cracks are generated due to the difference in the coefficient of thermal expansion between the base structure and the dissimilar materials of high-speed tool steel and the generation of thermal stress due to rapid solidification. As it progresses from the to the entire interface, even delamination occurs, which lowers the mechanical strength and toughness.
  • the cooling rate of the cooling step is reduced as much as possible. It is possible to prevent the generation of defects by the source.
  • the preheating process is not performed, as described above, defects are formed in the stacked area as a whole, resulting in a dropout phenomenon, and when the preheating process is performed at less than 300°C, the occurrence of cracks is reduced compared to the case where the preheating process is not performed.
  • the preheating process should be performed at at least 300°C.
  • the preheated base material structure is directly irradiated with a laser and melted to perform a lamination process in which a surface reinforcement layer is formed using high-speed coated steel.
  • the laser is directly irradiated to the preheated base structure to form a molten pool, and in the process of laser irradiation, the high-speed tool steel powder is supplied together and provided as a molten pool.
  • the portion is rapidly solidified, thereby forming a surface reinforcing layer having a dense structure.
  • FIG. 1 is a view for explaining a lamination process in a method for reinforcing a surface of a press mold according to an embodiment of the present invention.
  • the apparatus used in the lamination process directly irradiates a laser beam onto the surface of the base structure to form a molten pool on the base structure, and supplies high-speed tool steel powder to form a melt pool. It is provided so that it can be supplied to.
  • powder gas, coaxial gas, and shielding gas may be supplied together in order to transport and prevent oxidation of the high-speed tool steel powder.
  • argon (Ar) may be used, respectively.
  • the laser power may be 700 to 900 W.
  • a laser is a point energy source that supplies energy locally
  • a laser beam is scanned to supply energy as a whole to one surface having a predetermined area.
  • the scanning direction of the laser beam may be a first direction, and when one scan is completed in the first direction, the laser beam is moved in a second direction perpendicular to the first direction, and is again in the first direction or in a direction opposite to the first direction.
  • a second scanning can be performed. Such scanning may be repeated several times for a region in which the surface reinforcement layer is to be formed in the base structure, and then scanning may be performed so as to overlap with the previous scanning trajectory.
  • the layer scans in the second direction and then moves the laser beam in the first direction after the previous scanning to perform scanning in the second direction or in the opposite direction to the second direction.
  • -A surface reinforcement layer is formed on the surface of the base structure through a layer by layer lamination process. Accordingly, the thickness of the press mold after the surface reinforcement layer is formed in the laminated region is thicker than the thickness of the base material structure in which the surface reinforcement layer is not formed. As an example, seven layers may constitute a surface reinforcement layer by layer-by-layer.
  • the high-speed tool steel powder used in the present invention AISI M4 powder or M2 powder, which is a molybdenum-based high-speed tool steel, can be used.
  • the average diameter of the particles constituting the high-speed tool steel powder may be 100 ⁇ m to 150 ⁇ m.
  • a surface reinforcement layer is formed on the surface of the base material structure through the lamination process as described above, and the thickness of the surface reinforcement layer may be 10% to 30% of the thickness of the base material structure.
  • the thickness of the surface reinforcement layer is less than 10% of the thickness of the base structure, there is little improvement in the mechanical properties of the base structure, and when the thickness of the surface reinforcement layer is more than 30%, the exposure time to the laser in the lamination process becomes longer and the use of expensive high-speed tool steel powder Due to the increase in the number of properties, there is a problem in that the economical efficiency is low and the adhesive strength with the base material structure is also decreased.
  • a post-heat treatment process is performed. Since the post-heat treatment process is a quenching-tempering process, it is possible to prevent a decrease in hardness, and finally, the surface of the press mold can be reinforced so that both hardness and toughness are secured.
  • the toughness can be improved through the heat treatment performed following the lamination process of the high-speed tool steel to the base substrate, but at the same time, the problem of lowering the overall hardness occurs due to changes in the components of the high-speed tool steel due to the heat treatment at the same time. It is inevitable.
  • the post-heat treatment process performed following the lamination process is composed of one quenching step and one tempering step to prevent a decrease in hardness, and ultimately, not only improving toughness, but also securing high hardness.
  • the hardness of the laminated region in which the surface reinforcing layer is formed may be at least 60 HRc or more, and the total shock absorption energy may be 2.0 J or more.
  • FIG. 2 is a view for explaining a post-heat treatment process in the method for strengthening the surface of a press mold according to an embodiment of the present invention.
  • the post-heat treatment process performed after the lamination process can be largely divided into a quenching step and a tempering step, and the first tempering step is performed after the first quenching step. Even if each quenching step and tempering step are performed two or more times, or two or more times in a quenching-tempering process cycle, a component change of the high-speed tool steel occurs due to a long heat treatment time, resulting in a decrease in hardness. Therefore, the post-heat treatment process performed after the lamination process is limited to one cycle process that occurs after one quenching step followed by one tempering step.
  • the temperature of the base material structure on which the high-speed coated steel is laminated is increased to 1,000° C. to 1,100° C., and allowed to stand at a high temperature for a certain period of time, and then cooling is performed.
  • the process of raising the temperature to 1,000°C to 1,100°C after the lamination process is gradually performed at a very slow temperature increase rate of 5°C/min.
  • the high temperature condition of 1,000 °C to 1,100 °C can be maintained in an isothermal state for about 1 hour. After maintaining the isothermal state, it can be cooled to end the quenching step.
  • Cooling in the quenching step may be performed by air cooling in which the temperature is lowered by being left in the atmosphere and gas cooling using a cooling gas.
  • the cooling rate may be 400° C./min, and may be performed for 60 minutes or more.
  • gas cooling using a cooling gas such as nitrogen the cooling rate may be 500°C/min to 800°C/min.
  • the temperature is raised to 500°C to 600°C, left to be isothermal for a certain period of time, and then cooled to finally end the post-heat treatment process according to the present invention.
  • Cooling in the tempering step is performed by furnace cooling so as to gradually cool in a furnace. Unlike cooling in the quenching step, the cooling in the tempering step is slowly cooled, so that the surface reinforcing layer can be stably formed.
  • the quenching step By performing the quenching step, it leads to the formation of martensite together with spherical carbide, and it is possible to generate retained austenite.
  • the tempering step the martensite generated in the quenching step becomes tempered martensite, and the toughness of the surface reinforcing layer may be imparted.
  • AISI D2 (purchased from Carpenter) having a thickness of 10 mm (100 mm ⁇ 50 mm) was used as the base substrate, and AISI M4 powder having an average particle diameter of 120 ⁇ m was used as a high-speed coated steel powder.
  • the component tables of each of the AISI D2 and AISI M4 powders are shown in Table 1 below. In Table 1, the unit of each component is% by weight.
  • the area layer As shown in (a) of FIG. 1, for the area layer, 0.5 mm, which is 50% of the width of a single track (1.0 mm), is overlapped and zigzag in a line-by-line method. An area layer was formed in the direction, and the height of the single layer was about 0.25 mm, and seven layers were stacked in a layer-by-layer manner while intersecting in an orthogonal direction. It was confirmed that the finally obtained laminated structure had a three-dimensional size of 10 mm ⁇ 20 mm ⁇ 1.5 mm on the base substrate.
  • the process conditions for irradiating the laser beam were performed as shown in Table 2 below, and the laser power was fixed at 800 W, and argon gas was used as a powder gas and a coaxial gas, respectively.
  • the preheating temperature of the base substrate was set to 300°C, and after performing the lamination process using the laser as described above, a post-heat treatment process, a quenching-tempering step, was performed through the time and temperature conditions as shown in FIG. Prepared 1. That is, the temperature increase rate in the quenching step was 5°C/min to reach a temperature of 1,050°C, and the isothermal state was maintained at 1,050°C for 1 hour, and the cooling rate was 700°C/min. After the quenching step was finished, the temperature was raised again at 5°C/min for the tempering step to reach 550°C, and after maintaining the isothermal state at 550°C for 1 hour, the tempering step was terminated by performing cooling in the furnace. .
  • Samples 2 to 5 were prepared through substantially the same process as the preparation of Sample 1, except that the preheating temperature of the base substrate was performed at 100°C, 200°C, 400°C, and 500°C, respectively.
  • Comparative Sample 1 and Samples 1 to 5 prepared as described above were cut and etched for 5 to 10 seconds using Nital (1% nitric acid in ethanol) as an etching solution, and the structure was It was photographed using FE-SEM (7100F, JEOL, Japan). The results are shown in FIG. 3.
  • FIG. 3 is a diagram showing the results of analyzing the interface characteristics of Comparative Sample 1 and Samples 1 to 5, respectively.
  • Comparative Sample 1 which is a sample not preheated, and Sample 2 prepared after preheating at 100°C.
  • Comparative Sample 1 which is a sample not preheated
  • Sample 2 prepared after preheating at 100°C.
  • the contraction motion in the cooling process generated in the stacked region is constrained by the base substrate, and in particular, induces cracking at the interface of the stacked end.
  • Comparative Sample 1 without preheating it can be confirmed that almost all areas were corroded. That is, it was not stably stacked, and as a result, the etchant penetrated through the cracks, and it could be considered that the base substrate was severely damaged.
  • Comparative Sample 2 (q-t D2) was prepared by performing substantially the same process as the post heat treatment process in the manufacturing process of Sample 1 without lamination of M4 on the base substrate.
  • Comparative Sample 3 was prepared by cooling to room temperature immediately after the lamination process without performing the post-heat treatment process.
  • Comparative Sample 4 (t M4) was prepared by omitting the quenching step after the preheating process and the lamination process, and performing only the tempering step by cooling in the furnace immediately.
  • qt M4 represents Sample 1, and when comparing and reviewing the hardness (unit HRc) of Sample 1 and Comparative Samples 2 to 4, when M4 was deposited regardless of whether or not post-heat treatment was performed, a comparative sample without M4 It can be seen that the hardness value is higher than that of 2 (qt D2).
  • the high hardness is mainly due to the property of the presence of martensite, and secondary hardening is reported to be caused by the carbide precipitated inside the martensite structure. It can be expected to be due to the fast cooling rate and martensite formed by the precipitated carbide.
  • Carbide of high-speed tool steel M4 mainly exists in the form of hard and stable MC (e.g., vanadium carbide (VC)), M 6 C and M 2 C (e.g., molybdenum carbide (Mo 2 C)).
  • MC vanadium carbide
  • M 6 C and M 2 C e.g., molybdenum carbide (Mo 2 C)
  • carbides are vanadium-rich MC carbides, molybdenum-rich M 6 C/M 2 C carbides and chromium-rich M 7 C 3 /M 23 C 6 carbides.
  • Carbide precipitated at low temperature becomes a fine precipitate. As a result, it can be seen that the decrease in hardness is prevented by reducing the softening of martensite by secondary hardening by quenching and tempering.
  • a decrease in hardness is caused by the presence of tempered martensite and retained austenite, and even when most of the formed martensite is transformed into tempered martensite, the hardness decreases.
  • carbon of martensite is captured and may be precipitated as cementite or carbide.
  • carbides are precipitated, but the presence of such carbides is also difficult to compensate for the decrease in hardness due to a decrease in the content of martensite due to the loss of carbon atoms.
  • it may be considered to perform a long tempering process at a high temperature, but such a long heat treatment process considerably reduces the residual stress generated during deposition, thereby reducing the hardness.
  • Sample 1 according to the present invention exhibits a higher hardness than Comparative Sample 2 (qt D2) and maintains a similar level of hardness to Comparative Sample 4 (t M4) and Comparative Sample 3 (M4). have. That is, Sample 1 obtained by performing the process according to the present invention has the advantage of improving toughness and securing hardness by preventing a decrease in hardness that is bound to be in a trade-off relationship with an increase in toughness. can confirm.
  • a ball-on-disk wear tester (Balll-on-disk wear tester, R&B, Korea) was used. The ball was set to rotate on the upper surface of the sample for 10 minutes under conditions of a 147.1 N (15 kgf) load and a rotation speed of 10.49 rad/s (100 rpm). The width and depth of the wear track were measured using an Alpha Step Stylus Profiling System (Dektak XT Series; Bruker, USA) as an atomic force microscope (AFM). The results are shown in FIGS. 6 to 9.
  • 5 to 7 are diagrams showing results of evaluation of wear resistance characteristics of Sample 1 and Comparative Samples 2 to 4;
  • Comparative Sample 2 (qt D2) exhibits the largest volume loss, and Sample 1 (qt M4) has less wear than Comparative Sample 2 (qt D2). have.
  • FIG. 8 shows the shape of the fracture surface
  • FIG. 9 shows the total absorbed energy as a result of the Charpy impact test.
  • the total shock absorbed energy in the case of quenching-tempering is 2.8 J, which is the highest.
  • the maximum toughness is 1.79 J, which is significantly increased compared to that which does not exceed 2.0 J.
  • it shows an increase in toughness of 70% compared to the case without post-heat treatment.
  • Comparative Sample 5 obtained by performing substantially the same process as the preparation of Sample 1, except that the tempering process was omitted.
  • HRc hardness
  • Comparative Sample 1 the hardness of Comparative Samples 2 to 4 and Sample 1 according to the present invention, and in particular, it showed a significantly higher value than Comparative Sample 4, and Charpy impact, an index for evaluating toughness properties. It can be seen that the total shock absorbed energy by the test has a lower value than that of Comparative Sample 4.
  • Comparative Sample 5 obtained only through the preheating process, lamination process, and quenching process, very high hardness is secured, but toughness is very low, and it is confirmed that it is easily destroyed even in small impacts, so that both hardness and toughness are secured to a high level. It can be seen that the preheating process, the lamination process, and the post-heat treatment process are all performed, but both the quenching step and the tempering step must be accompanied in the post-heat treatment process to achieve the object to be achieved in the present invention.
  • FIG. 10 is a comparison of a fracture surface after performing a lamination process without a preheating process and immediately after performing a tempering process for an ultra-strong cold press mold, and a fracture surface when performing a preheating process, a lamination process, and a post heat treatment process at 300°C. It is a diagram showing pictures for doing.
  • FIG. 10 shows a case where tempering is performed immediately after performing the lamination process without a preheating process, and (b) shows a case where a preheating process, a lamination process, and a post heat treatment process at 300°C are performed. .
  • Sample 6 according to the present invention was obtained through substantially the same process as the preparation of Sample 1, except that cooling in the quenching step was performed by air cooling for 60 minutes.
  • Comparative Sample 6 was obtained through substantially the same process as the preparation of Sample 6, except that only the quenching step was performed without the tempering step in the post-heat treatment step after the preheating step lamination step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명의 프레스 금형의 표면 강화 방법은 모재 구조물로서 준비된 프레스 금형을 예열시키는 예열 공정; 예열된 모재 구조물에 레이저를 이용하여 용융 풀을 형성하면서 고속도공구강 분말을 제공하여 모재 구조물에 표면 강화층을 형성하는 적층 공정; 및 상기 모재 구조물에 표면 강화층이 형성된 상태에서 퀜칭 단계 및 템퍼링 단계를 순차적으로 수행하는 후열처리 공정을 포함한다.

Description

프레스 금형의 표면 강화 방법
본 발명은 프레스 금형의 표면 강화 방법에 관한 것으로, 보다 구체적으로는 자동차, 조선, 항공 산업 분야 등에서 이용되는 고장력강판과 같은 고강도 소재의 프레스 성형용 프레스 금형의 표면 강화 방법에 관한 것이다.
자동차, 조선, 항공 산업 분야에서 이용하는 부품이나 이를 제조하기 위한 프레스 금형(press die)은 기계적으로 내마모성, 강도 등의 특성이 높을 것이 요구된다. 이러한 고강도 부품을 가공하기 위해 기존 소재에 고경도를 위한 합금 원소들을 첨가하여 고성능의 금형을 개발하고 있지만, 몰리브덴(Mo), 텅스텐(W), 바나듐(V) 등과 같은 아주 고가의 합금원소를 이용하고 있으므로 금형 소재의 제작에도 많은 비용이 든다.
비용을 절감하기 위해서 금형이나 공구 표면에 질화, 침탄 등의 개질을 통해서 기계적 특성을 향상시키고자 하고 있으나, 이러한 공정은 대부분 고진공 상태에서 긴 시간동안 수행되므로 생산성이 저하되는 문제가 있다. 뿐만 아니라, 표면개질 방법은 긴 시간이 소요됨에도 불구하고, 표면의 경화층의 두께가 얇고, 경화층과 모재 사이의 결합력이 낮아 박리됨으로써 수명이 짧다.
특히, 최근에는 국내외 자동차 시장에서 자동차 차체에 초고장력 강판을 적용하고 있는데, 높은 강도를 갖는 초고장력 강판의 성형에 이용되는 금형이 쉽게 파손되고, 금형의 마모율 또한 높아 금형의 수명이 단축되고 있다. 뿐만 아니라, 1.5 GPa급 이상의 초고강도강은 프레스 금형으로 피어싱, 트리밍 등의 전단(shear)성형이 불가하고, 고하중/고충격 프레스 금형을 강화하거나 보수를 위한 최적의 대안도 없는 상황이다.
한편, 고속도 공구강(high speed tool steel)은 경도가 크고 내마모성이 매우 높기 때문에 표면 강화(hard facing)에 적합한 소재임에도 불구하고, 탄소 함유량이 높아서 모재에 경화층을 형성하고자 할 때 크랙(crack)이 발생하기 때문에 적층이 어렵다는 단점이 있다. 뿐만 아니라, 고속도 공구강은 고경도이지만 상대적으로 인성(toughness)이 낮아 치핑(chipping)과 같은 금형 깨짐이 빈번히 발생하는 단점도 갖고 있다.
본 발명의 일 목적은 고속도 공구강을 이용하여 프레스 금형에 안정적인 표면 강화층을 형성하여 인성과 경도가 모두 향상된 프레스 금형을 제공할 수 있는 프레스 금형의 표면 강화 방법을 제공하는 것이다.
본 발명의 일 목적을 위한 프레스 금형의 표면 강화 방법은 모재 구조물로서 준비된 프레스 금형을 예열시키는 예열 공정; 예열된 모재 구조물에 레이저를 이용하여 용융 풀을 형성하면서 고속도공구강 분말을 제공하여 모재 구조물에 표면 강화층을 형성하는 적층 공정; 및 상기 모재 구조물에 표면 강화층이 형성된 상태에서 퀜칭 단계 및 템퍼링 단계를 순차적으로 수행하는 후열처리 공정을 포함한다.
일 실시예에서, 상기 후열처리 공정을 거친 표면 강화층이 형성된 적층 영역의 경도는 적어도 60 HRc 이상이고, 샤르피 충격 테스트(Charpy impact test)에 의한 전체 충격 흡수 에너지가 2.0 J 이상이다.
일 실시예에서, 상기 후열처리 공정은 상기 적층 공정이 완료된 후에 1회의 퀜칭 단계를 수행한 후 1회의 템퍼링 단계만 수행되도록 구성된다.
일 실시예에서, 상기 후열처리 공정의 퀜칭 단계는 상기 표면 강화층의 적층 후에 1,000 내지 1,100℃까지 승온시키는 단계; 1,000 내지 1,100℃의 온도 조건에서 등온 상태로 유지하는 단계; 및 냉각시키는 단계를 포함한다. 이때, 상기 퀜칭 단계의 냉각은 냉각 가스를 이용하여 500 내지 800℃/분의 냉각 속도로 기체 냉각(gas cooling)시키거나 대기 조건에서 공랭(air cooling)시킬 수 있다. 또한, 상기 1,000 내지 1,100℃까지 승온시키는 단계에서 승온 속도는 5℃/분이고, 등온으로 유지시키는 시간은 1 시간일 수 있다.
일 실시예에서, 상기 후열처리 공정의 템퍼링 단계는 퀜칭 단계의 냉각 후에, 500 내지 600℃까지 승온시키는 단계; 500 내지 600℃의 온도 조건에서 등온 상태로 유지하는 단계; 및 노내 냉각(furnace cooling)시키는 단계를 포함한다.
일 실시예에서, 상기 모재 구조물은 AISI 1045(JIS S45C) 또는 AISI D2(SKD11)의 기계 구조용 탄소강으로 형성되고, 상기 고속도공구강 분말은 AISI M2 또는 AISI M4일 수 있다.
일 실시예에서, 상기 모재 구조물이 AISI D2(SKD11)이고, 상기 고속도공구강 분말은 AISI M4이며, 퀜칭 단계에서 1,050℃까지 승온된 후 등온 상태를 유지하며, 템퍼링 단계에서 550℃까지 승온된 후 등온 상태를 유지한 경우, 표면 강화층이 형성된 적층 영역의 경도가 적어도 60.3 HRc이고, 전체 충격 흡수 에너지가 2.8 J이다. 이때, 상기 예열 공정은 300℃ 내지 500℃에서 수행될 수 있다.
일 실시예에서, 상기 예열 공정은 적어도 300℃ 이상에서 수행되되 500℃ 미만에서 수행될 수 있다.
일 실시예에서, 상기 예열 공정을 300℃ 미만에서 수행하는 경우에 상기 적층 공정에 의해 형성되는 표면 강화층에 균열이 생기거나 계면 전체로 균열이 진전되고, 상기 예열 공정을 500℃ 초과에서 수행하는 경우에 과도한 입열로 인해 상기 적층 공정에 의해서 형성된 표면 강화층에 기공이 생기며, 상기 예열 공정을 300℃ 내지 500℃에서 수행하는 경우 표면 강화층에 균열의 생성, 균열의 진전 및 기공의 형성이 방지된다.
본 발명에 따른 프레스 금형은, 상기에서 설명한 방법에 따라 표면이 강화된 것을 특징으로 한다.
상기에서 설명한 본 발명의 프레스 금형의 표면 강화 방법에 따르면, 고속도 공구강을 이용하여 프레스 금형에 안정적인 표면 강화층을 형성하여 경도의 저하 없이 향상된 인성 특성을 갖는 프레스 금형을 제공할 수 있다. 특히, 열처리 공정에 의해서 압축 잔류 응력의 완화로 인해서 경도가 감소하는 것이 일반적이지만 본 발명에서는 퀜칭-템퍼링 공정을 통해 후열처리 공정을 수행함으로써 인성을 향상시키되 경도의 감소 없이 프레스 금형의 표면 강화를 수행할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 프레스 금형의 표면 강화 방법에서의 적층 공정을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 프레스 금형의 표면 강화 방법에서의 후열처리 공정을 설명하기 위한 도면이다.
도 3은 비교 샘플 1과 샘플 1 내지 5 각각의 계면 특성 분석 결과를 나타낸 도면이다.
도 4는 샘플 1과 비교 샘플 2 내지 4의 경도 특성평가 결과를 나타낸 도면이다.
도 5 내지 도 7은 샘플 1과 비교 샘플 2 내지 4의 내마모성 특성평가 결과를 나타낸 도면들이다.
도 8 및 도 9는 샘플 1과 비교 샘플 2 내지 4의 인성 특성평가 결과를 나타낸 도면들이다.
도 10은 초강도강 냉간 프레스 금형에 대해서 예열 공정 없이 적층 공정을 수행한 후 바로 템퍼링을 수행한 후의 파단면과, 300℃의 예열 공정, 적층 공정 및 후열처리 공정을 수행한 경우의 파단면을 비교하기 위한 사진들을 도시한 도면이다.
이하, 본 발명에 대해서 설명하기로 한다. 본 출원에서 본 발명의 설명을 위해서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명에 따른 프레스 금형의 표면 강화를 위한 표면 강화 방법은, 준비된 모재 구조물을 예열하는 예열 공정, 예열된 모재 구조물에 대해서 표면 강화층을 형성하는 적층 공정, 및 표면 강화층이 적층된 모재 구조물에 대해서 수행하는 후열처리 공정을 포함한다.
본 발명에서 이용하는 모재 구조물은 표면 강화의 대상이 되는 프레스 금형으로서, 모재 구조물을 형성하는 재료는 특별히 제한되지 않지만, 본 발명에서의 모재 구조물은 기계 구조용 모재로 이용되는 통상의 기계 구조용 탄소강으로 형성될 수 있다. 기계 구조용 탄소강으로서는, AISI 1045(JIS S45C), AISI D2(SKD11) 등을 이용할 수 있다. 일 실시예에서, 초고장력 강판을 처리할 수 있는 프레스 금형의 모재 구조물로서 AISI D2를 이용할 수 있다.
표면 강화를 위해서 모재 구조물을 준비하는 단계에서, 모재 구조물이 통상의 기계 구조용 탄소강으로 형성된 경우에 프레스 금형에서 강화가 필요한 부분에 표면 강화층을 형성할 수 있도록 모재 구조물을 가공할 수 있다. 예를 들어, 모재 구조물의 에지 부분에 절삭과 같은 기계 가공을 수행할 수 있다.
이하에서는, 준비된 프레스 금형의 표면 강화를 위한 표면 강화 방법에 대해서 단계별로 구체적으로 설명하기로 한다.
(1) 예열 공정
먼저, 준비된 프레스 금형인 모재 구조물에 대해서 적층 공정을 수행하기 위한 전처리 단계로서 예열 공정을 수행한다. 예열 공정은 적어도 300℃ 이상의 온도에서 수행되되, 500℃를 초과하지 않는 조건에서 수행되는 것이 바람직하다.
예열 공정의 이후에 수행되는 적층 공정에서는 모재 구조물에 대해서 국부적으로 직접 레이저를 이용하여 에너지를 가하는 공정을 연속 또는 불연속적으로 수회 수행한다. 이때, 레이저가 가해져서 모재 구조물에 적층 영역에 용융 풀(melting pool)이 형성되고, 고속도공구강(high speed tool steel) 분말 또한 용융되어 모재 구조물의 일부와 함께 급속 응고되는데, 레이저가 가해지는 동안은 급속히 가열되고 레이저가 통과한 직후에는 급속 냉각이 일어난다. 이러한 공정 중에서 모재 구조물과 고속도공구강의 이종소재간의 열팽창 계수의 차이 및 급속 응고에 따른 열응력 발생에 의해서 균열이 발생하게 되며, 특히, 적층 끝단부의 계면에서 더욱 큰 균열이 발생하게 되고, 아주 작은 균열로부터 계면 전체로 진전되면서 적층부 탈락(delamination)까지도 발생하게 되며, 이는 기계적 강도와 인성을 저하시키게 된다. 그러나, 본 발명에서와 같이 고속도공구강을 이용한 적층 공정 전에 이미 모재 구조물의 온도를 300℃ 내지 500℃ 정도로 예열시킴으로써 레이저가 통과한 후 냉각 단계에 진입하더라도 냉각 단계의 냉각 속도를 최대한 감소시켜, 열응력에 의한 결함 생성을 원천적으로 방지할 수 있다.
예열 공정을 수행하지 않는 경우, 앞서 설명한 것과 같이 적층 영역에 전체적으로 결함이 생겨 탈락 현상이 생기고, 예열 공정을 300℃ 미만에서 수행하는 경우에는 예열 공정을 수행하지 않는 경우에 비해서는 균열의 발생이 감소하기는 하지만 조금의 균열이라도 존재하는 경우에는 계면 전체로 균열이 진전되므로 문제가 되므로, 예열 공정은 적어도 300℃ 이상에서 수행되어야 한다. 반면, 500℃ 초과에서 예열 공정을 수행하는 경우에는 오히려 과도한 입열로 인해서 모재 구조물의 용융과 냉각이 과도하게 발생되는 동시에 이 과정에서 발생한 불활성 기체가 냉각시에 미처 빠져나가지 못하고 잔류하여 다수의 기공들을 생성하게 한다. 이러한 기공들 또한 균열 발생 및 진전을 유발하고, 적층 계면에서의 접합 강도 및 인성을 저하시켜 전체적인 기계적 물성을 오히려 떨어뜨리게 되므로 500℃ 이하에서 예열 공정을 수행하는 것이 바람직하다.
(2) 적층 공정
예열된 모재 구조물에 대해서, 레이저를 직접 조사하여 용융시켜 고속도공구강을 이용하여 표면 강화층을 형성하는 적층 공정을 수행한다. 예열된 모재 구조물에 레이저가 직접 조사되어 용융 풀이 형성되고, 레이저가 조사되는 과정에서 고속도공구강 분말이 함께 공급되어 용융 풀로 제공되므로 고속도공구강 용융물이 모재 구조물의 용융 풀과 용융 상태로 혼합되고 레이저가 다른 영역으로 지나가게 되면 해당 부분은 급속 응고됨에 따라서 치밀한 조직을 갖는 표면 강화층이 형성된다. 이러한 적층 공정에 대해서 도 1 및 도 2를 참조하여 보다 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 프레스 금형의 표면 강화 방법에서의 적층 공정을 설명하기 위한 도면이다.
도 1의 (a)를 참조하면, 적층 공정에 이용되는 장치는 레이저 빔을 모재 구조물의 표면에 직접 조사하여 모재 구조물에 용융 풀을 형성하면서 고속도공구강 분말을 공급하여 고속도공구강 용융물을 형성하여 용융 풀에 공급될 수 있도록 구비된다. 이때, 고속도공구강 분말의 이송 및 산화 방지를 위해서 파우더 가스(powder gas), 동축 가스(coaxial gas) 및 쉴딩 가스(shielding gas)가 함께 공급될 수 있다. 파우더 가스 및 동축 가스는 각각 아르곤(Ar)을 이용할 수 있다. 이때, 레이저 파워(laser power)는 700 내지 900 W일 수 있다.
도 1의 (b)를 참조하면, 레이저는 국부적으로 에너지를 공급하는 점(point) 에너지원이므로 소정의 면적을 갖는 일면에 전체적으로 에너지를 공급하기 위해서는 레이저 빔을 스캐닝한다. 레이저 빔의 스캐닝 방향은 제1 방향일 수 있고, 제1 방향으로 1회의 스캐닝이 종료되면 제1 방향과 수직한 제2 방향으로 레이저 빔을 이동시켜 다시 제1 방향 또는 제1 방향의 반대방향으로 두 번째 스캐닝이 수행될 수 있다. 이와 같은 스캐닝을 모재 구조물에서 표면 강화층을 형성해야하는 영역에 대해서 수회 반복하고, 이전 스캐닝 궤적과 중첩되도록 그 다음 스케닝이 수행될 수 있다. 뿐만 아니라, 제1 방향의 스캐닝이 종료된 후에, 제2 방향으로 스캐닝을 하고 이전 스캐닝 다음에는 제1 방향으로 레이저 빔을 이동시켜 다시 제2 방향 또는 제2 방향의 반대방향으로 스캐닝을 수행하는 레이어-바이-레이어(layer by layer) 적층 과정을 통해서 모재 구조물의 표면에 표면 강화층이 형성된다. 따라서, 적층 영역에 표면 강화층이 형성된 후의 프레스 금형의 두께는 표면 강화층이 형성되지 않은 모재 구조물의 두께보다 두껍게 된다. 일례로, 레이어 바이 레이어에 의해서 7개의 층이 표면 강화층을 구성할 수 있다.
본 발명에서 이용하는 고속도공구강 분말로서는 몰리브덴 기반의 고속도공구강인 AISI M4 분말이나 M2 분말을 이용할 수 있다. 이때, 고속도 공구강 분말을 구성하는 입자의 평균 직경은 100 ㎛ 내지 150 ㎛일 수 있다.
상기에서 설명한 바와 같은 적층 공정을 통해서 모재 구조물의 표면에 표면 강화층이 형성되며, 표면 강화층의 두께는 모재 구조물의 두께 대비 10% 내지 30%일 수 있다. 표면 강화층의 두께가 모재 구조물의 두께 대비 10% 미만인 경우에는 모재 구조물의 기계적 특성 향상이 거의 없으며, 30% 초과의 경우에는 적층 공정에서 레이저에 노출되는 시간이 길어지고 고가의 고속도공구강 분말의 사용량이 많아지므로 경제성이 낮은 동시에 모재 구조물과의 접착 강도 또한 저하되는 문제가 있다.
(3) 후열처리 공정
상기와 같이 예열 공정 및 적층 공정을 거쳐 모재 구조물 상에 표면 강화층이 형성된 상태에서, 후열처리 공정을 수행한다. 후열처리 공정은 퀜칭-템퍼링(quenching-tempering) 공정으로서 경도의 저하를 방지할 수 있으므로, 최종적으로는 경도 및 인성이 모두 확보되도록 프레스 금형을 표면 강화시킬 수 있다. 통상적으로 모재 기판에 대한 고속도 공구강의 적층 공정에 이어서 수행하는 열처리를 통해서 인성(toughness)이 향상될 수 있지만, 이와 동시에 열처리에 의해서 고속도 공구강의 성분 변화가 일어나 오히려 전체적인 경도가 저하되는 문제가 발생하는 것이 필연적이다. 하지만, 본 발명에서는, 적층 공정에 이어서 수행되는 후열처리 공정을 1회의 퀜칭 단계와 1회의 템퍼링 단계로 구성하여 경도가 저하되는 것을 방지할 수 있어, 궁극적으로는 인성의 향상뿐만 아니라 높은 경도 또한 확보할 수 있는 장점이 있다. 1회의 퀜칭 단계와 1회의 템퍼링 단계를 거침으로써 표면 강화층이 형성된 적층 영역의 경도는 적어도 60 HRc 이상이고, 전체 충격 흡수 에너지가 2.0 J 이상이 될 수 있다. 이와 같은 후열처리 공정에 대해서는 도 2를 참조하여 후술한다.
도 2는 본 발명의 일 실시예에 따른 프레스 금형의 표면 강화 방법에서의 후열처리 공정을 설명하기 위한 도면이다.
도 2를 참조하면, 적층 공정 후에 수행되는 후열처리 공정은 크게 퀜칭 단계와 템퍼링 단계로 구분할 수 있는데, 1번의 퀜칭 단계 후에 1번의 템퍼링 단계를 수행한다. 각각의 퀜칭 단계 및 템퍼링 단계를 2회 이상 수행하거나, 퀜칭-템퍼링 공정 사이클로 2회 이상 수행하더라도 긴 열처리 시간에 의해서 고속도 공구강의 성분 변화가 일어나 경도는 저하된다. 따라서 적층 공정 후에 수행되는 후열처리 공정은 1회의 퀜칭 단계 후에 1회의 템퍼링 단계가 수반되어 일어나는 1번의 사이클 공정으로 한정한다.
구체적으로, 퀜칭 단계를 위해서 적층 공정 후에 고속도공구강이 적층된 모재 구조물 자체의 온도를 1,000℃ 내지 1,100℃까지 승온시키고, 고온에서 일정 시간 방치한 후 냉각을 수행한다. 이때, 적층 공정 후에 1,000℃ 내지 1,100℃까지 승온시키는 공정은 5℃/분의 아주 느린 승온 속도로 서서히 수행한다. 1,000℃ 내지 1,100℃의 고온 조건에서는 1시간 정도 등온 상태로 유지할 수 있다. 등온 상태 유지 후에, 냉각하여 퀜칭 단계를 종료할 수 있다. 퀜칭 단계의 냉각은 대기 중에서 방치되어 온도가 내려가도록 하는 공랭(air cooling)과 냉각 가스를 이용하는 기체 냉각(gas cooling)으로 수행될 수 있다. 공랭에서는 냉각 속도가 400℃/분일 수 있고, 60분 이상 수행될 수 있다. 질소 등의 냉각 가스를 이용하는 기체 냉각에서는 냉각 속도가 500℃/분 내지 800℃/분일 수 있다. 퀜칭 단계의 냉각은 공랭보다는 기체 냉각과 같은 급랭 조건에서 수행하는 경우에 잔류 오스테나이트의 존재를 최소화시킬 수 있으므로 경도 저하 없이 인성을 확보할 수 있는 바람직한 조건이 된다.
퀜칭 단계 후에 이어서 바로 템퍼링 단계로서 500℃ 내지 600℃까지 승온시키고, 일정 시간 등온 상태로 방치한 후 냉각을 수행하여 최종적으로 본 발명에 따른 후열처리 공정을 종료할 수 있다. 템퍼링 단계의 냉각은 가열로(furnace) 내에서 서서히 냉각하도록 노내 냉각(furnace cooling)으로 수행한다. 템퍼링 단계에서의 냉각은 퀜칭 단계에서의 냉각과 달리 천천히 냉각되도록 함으로써 안정적으로 표면 강화층이 형성될 수 있다.
퀜칭 단계를 수행함에 따라 구형의 카바이드와 함께 마르텐사이트(martensite)의 형성을 이끌며, 잔류 오스테나이트(retained austenite)를 생성할 수 있다. 템퍼링 단계를 통해서 퀜칭 단계에서 생성된 마르텐사이트가 템퍼링된 마르텐사이트(tempered martensite)가 되면서 표면 강화층의 인성이 부여될 수 있다.
적층 공정의 후속으로 템퍼링만이 수행된 경우, 템퍼링을 통해서 템퍼링된 마르텐사이트의 존재, 즉 마르텐사이트의 연화(softening)로 인해 인성은 높아지는 동시에 마르텐사이트로부터 탄소가 제거되어 마르텐사이트의 함량이 감소하기 때문에 필연적으로 경도가 감소하게 된다. 하지만, 본 발명에 따르면 1회의 퀜칭 단계와 1회의 템퍼링 단계를 순차적으로 1회 사이클만을 수행함에 따라, 퀜칭의 결과로 생성되는 마르텐사이트, 카바이드 및 잔류 오스테나이트가 템퍼링 단계를 거침으로써 잔류 오스테나이트는 부분적으로 마르테나이트가 되는 동시에 일부는 잔류 오스테나이트로 그대로 존재하여 템퍼링된 마르테나이트, 미세 카바이드 침전물 및 잔류 오스테나이트를 포함하는 구조를 만드는 2차 경화가 일어나게 된다. 이에 따라, 본 발명에서는, 인성은 확보되면서도 경도가 저하되지 않는 표면 경화층을 생성할 수 있게 된다.
이하에서는, 실제 샘플의 제조 및 제조된 샘플의 특성 평가를 통해서 본 발명에 따라 제조된 샘플의 경도 및 인성 확보 효과를 확인하기로 한다.
샘플 제조를 위한 조건
모재 기판으로서 두께가 10 mm(100 mm × 50 mm)인 AISI D2(Carpenter사에서 구입)를 이용하였고, 고속도공구강 분말로서 평균 입경이 120 ㎛인 AISI M4 분말을 이용하였다. AISI D2 및 AISI M4 분말 각각의 성분표는 하기 표 1과 같이 나타낸다. 표 1에서 각 성분의 단위는 중량%이다.
성분 C Mn Si Cr Ni Mo W V Cu P S
D2 1.56 0.25 0.24 11.31 0.18 0.83 - 0.25 - 0.03 0.001
M4 1.38 0.33 0.39 4.38 0.15 4.66 5.61 4.25 0.11 0.024 0.024
도 1의 (a)에서 보는 바와 같이 면적층을 위하여 단일 적층 트랙(single track) 너비 (1.0 mm)의 50%인 0.5 mm를 중첩하여 라인-바이-라인(line-by-line) 방식으로 지그재그 방향으로 면적층을 하였고, 단일 층의 높이는 약 0.25 mm로 7개의 층을 직교 방향으로 교차하면서 레이어-바이-레이어 방식으로 적층하였다. 최종적으로 얻은 적층 구조는 모재 기판 상에 10 mm×20 mm×1.5 mm의 3차원 크기를 갖는 것을 확인하였다. 레이저 빔을 조사하는 공정 조건은 하기 표 2와 같이 수행하였으며, 레이저 출력은 800 W로 고정하였고, 파우더 가스와 동축 가스로서 각각 아르곤 가스를 이용하였다.
Laser power(W) Slicing Layer height(mm) Overlap spacing(mm) Powder feeding rate(g/mm) Substrate traverse speed(mm/min) Powder gas(ℓ/min) Coaxial gas(ℓ/min)
800 0.25 0.5 5 850 2.5 8.0
샘플 1의 제조
모재 기판의 예열 온도를 300℃로 하였고, 상기와 같은 레이저를 이용한 적층 공정을 수행한 후, 도 2에 도시된 것과 같은 시간 및 온도 조건을 통해서 후열처리 공정인 퀜칭-템퍼링 단계를 수행하여, 샘플 1을 제조하였다. 즉, 퀜칭 단계에서의 승온 속도를 5℃/분으로 하여 승온시켜 1,050℃의 온도에 도달하도록 하였으며, 1,050℃에서 등온 상태를 1시간동안 유지시켰으며, 냉각속도는 700℃/분으로 하였다. 퀜칭 단계 종료 후에, 템퍼링 단계를 위해서 다시 승온 속도를 5℃/분으로 하여 승온시켜 550℃에 도달하도록 하였으며, 550℃에서 등온 상태를 1시간동안 유지시킨 후 노내 냉각을 수행하여 템퍼링 단계를 종료하였다.
샘플 2 내지 5의 제조
모재 기판의 예열 온도를 100℃, 200℃, 400℃ 및 500℃로 각각 수행한 것을 제외하고는 샘플 1의 제조와 실질적으로 동일한 공정을 통해서 샘플 2 내지 5를 제조하였다.
비교 샘플 1의 제조
모재 기판의 예열 없이 바로 레이저를 이용한 적층 공정을 수행한 후 노내 냉각을 수행하여, 비교 샘플 1을 얻었다.
예열 온도에 따른 표면 강화층의 계면 특성 확인
상기와 같이 준비된 비교 샘플 1과 샘플 1 내지 5 각각의 계면 특성을 확인하기 위해서, 제조된 샘플들을 커팅하고 식각액으로 Nital(에탄올에 1% 질산)을 이용하여 5~10초간 식각하였고, 그 구조를 FE-SEM(7100F, JEOL 사, 일본)를 이용하여 촬영하였다. 그 결과를 도 3에 나타낸다.
도 3은 비교 샘플 1과 샘플 1 내지 5 각각의 계면 특성 분석 결과를 나타낸 도면이다.
도 3을 참조하면, 예열하지 않은 샘플인 비교 샘플 1과 100℃에서 예열한 후 제조한 샘플 2에서 결함이 발생한 것을 확인할 수 있다. 이는 모재 기판의 열팽창계수(11.6×10-6/℃)와 적층 소재의 열팽창계수(9.5×10-6/℃) 차이에 의해서 발생하는 열응력에 기인하여 나타나는 것으로 볼 수 있다. 즉, 적층 영역에서 발생되는 냉각 과정에서의 수축 운동이 모재 기판에 의해서 구속되면서 발생되는 것으로, 특히 적층 끝단부의 계면에서 균열 발생을 유도한 것으로 볼 수 있다. 특히, 예열하지 않은 비교 샘플 1의 경우에는 거의 모든 영역이 부식된 것을 확인할 수 있다. 즉, 안정적으로 적층되지 않았으며 이에 따라 균열 사이로 식각액이 침투하여 심하게 모재 기판을 손상시킨 것으로 볼 수 있다.
200℃에서 예열하여 제조한 샘플 3에서는 샘플 2에 비해서 현저하게 균열이 감소한 것을 확인할 수 있기는 하지만, 미미한 균열 또한 균열 진전에 의해서 큰 영향을 미칠 수 있으므로, 적어도 300℃ 이상에서 예열하여 제조하는 것이 바람직하다.
비교 샘플 2 내지 4의 제조
모재 기판에 대해서 M4의 적층 없이 샘플 1의 제조 공정에서의 후열처리 공정과 실질적으로 동일한 공정을 수행하여 비교 샘플 2(q-t D2)를 준비하였다.
후열처리 공정을 수행하지 않고, 적층 공정 후에 바로 상온으로 냉각시켜 비교 샘플 3(M4)을 준비하였다.
예열 공정 및 적층 공정 후에 퀜칭 단계를 생략하고 바로 노내 냉각에 의한 템퍼링 단계만을 수행하여 비교 샘플 4(t M4)를 준비하였다.
특성평가-1 및 결과: 경도(hardness)
경도 특성 평가를 위해서, 깊이-센싱 압입 테스트(Depth-sensing indentation test)를 HR-521 디지털 로크웰 경도 시험기(AKASHI사, 일본)를 이용하여 수행하였다. ASTM 표준 시험 방법 E18에 따라 147.1 N의 하중을 9초 동안 가하였다. 그 결과를 도 4에 나타낸다.
도 4는 샘플 1과 비교 샘플 2 내지 4의 경도 특성평가 결과를 나타낸 도면이다.
도 4에서 q-t M4가 샘플 1을 나타내는 것으로, 샘플 1 및 비교 샘플 2 내지 4의 경도(단위 HRc)를 비교 검토하면, 후열처리의 수행 여부와 무관하게 M4가 증착된 경우에는 M4가 없는 비교샘플 2(q-t D2)에 비해서 경도 값이 높은 것을 확인할 수 있다. 종래의 연구 논문에 의하면, 높은 경도는 주로 마르텐사이트의 존재에 의한 특성에 기인한 것으로, 2차 경화는 마르텐사이트 구조 내부에서 침전된 카바이드에 의해서 발생하는 것으로 보고되어 있어, 증착 영역에서보다 높은 경도를 갖는 것은, 빠른 냉각 속도와 침전된 카바이드에 의해서 형성된 마르텐사이트에 의한 것으로 예상할 수 있다.
즉, 퀜칭 및 템퍼링의 후열처리 공정에 의해서 반복적인 재가열이 일어나기 때문에 증착 영역에 카바이드와 템퍼링된 마르텐사이트가 형성되고, 마르텐사이트 구조 내의 침전된 카바이드의 2차 경화 메카니즘에 의해서 샘플 1의 경우에도 높은 경도를 갖는 것으로 볼 수 있다. 고속도공구강 M4의 카바이드는 주로 경질 및 안정한 MC(예를 들어, 탄화바나듐(VC)), M6C 및 M2C(예를 들어, 탄화몰리브덴(Mo2C))의 형태로 존재하는데, 고속도공구강에서 침전된 카바이드의 특성과 알려진 연구 결과를 토대로 할 때 카바이드는 바나듐이 풍부한 MC 탄화물, 몰리브덴이 풍부한 M6C/M2C 탄화물 및 크롬-풍부한 M7C3/M23C6 탄화물. 저온에서 침전된 탄화물은 미세한 침전물이 된다. 결과적으로, 퀜칭 및 템퍼링에 의한 2차 경화에 의해 마르텐사이트의 연화가 감소함으로써 경도가 저하되는 것이 방지된 것이라고 볼 수 있다.
도 4에서는 본 발명에 따른 샘플 1과 비교 샘플 4(t M4) 모두 비교 샘플 2(q-t D2)에 비해서 높은 경도를 나타내는 반면, 비교 샘플 3(M4)에 비해서는 낮게 나타난 것을 확인할 수 있다.
통상의 열처리 공정에서는 템퍼링된 마르텐사이트 및 잔류 오스테나이트의 존재에 의해서 경도의 감소가 야기되고, 형성된 대부분의 마르텐사이트가 템퍼링된 마르텐사이트로 변형되는 경우에도 경도가 감소한다. 통상의 열처리 공정에서 템퍼링 공정을 거치는 동안 마르텐사이트의 탄소는 포획되어, 세멘타이트(cementite) 또는 카바이드로 침전 될 수 있다. 다양한 유형의 카바이드가 침전되지만, 이러한 카바이드의 존재가 탄소 원자가 손실되어 마르텐사이트의 함량이 감소된 것에 의한 경도 저하를 보상해주기도 어렵다. 이를 해결하기 위해서 고온에서의 긴 템퍼링 공정을 수행해보는 것을 고려해볼 수 있지만 이러한 긴 열처리 공정은 오히려 증착 동안 발생하는 잔류 응력을 상당히 감소시키므로 경도가 감소된다.
하지만, 본 발명에 따른 샘플 1의 경도는 비교 샘플 2(q-t D2)에 비해서 높은 경도를 나타내고 비교 샘플 4(t M4) 및 비교 샘플 3(M4)과 유사한 수준의 경도를 유지하고 있는 것을 확인할 수 있다. 즉, 본 발명에 따른 공정을 수행하여 얻은 샘플 1은 인성의 증가에 트레이드-오프(trade-off) 관계에 있을 수밖에 없는 경도의 감소가 방지되어 인성은 향상되고 경도 또한 확보할 수 있는 장점이 있음을 확인할 수 있다.
특성평가-2 및 결과: 내마모성
마모 특성을 평가하기 위해서 볼-온-디스크 마모 시험기(Balll-on-disk wear tester, R&B사, 한국)를 사용했다. 볼은 147.1 N (15 kgf) 하중과 10.49 rad/s (100 rpm) 회전 속도의 조건으로 10분 동안 샘플의 상부 표면에서 회전되도록 설정되었다. 원자힘 현미경(atomic force microscope, AFM)로서 Alpha Step Stylus Profiling System(Dektak XT Series; Bruker사, 미국)을 사용하여 마모 트랙의 폭과 깊이를 측정하였다. 그 결과를 도 6 내지 도 9에 나타낸다.
도 5 내지 도 7은 샘플 1과 비교 샘플 2 내지 4의 내마모성 특성평가 결과를 나타낸 도면들이다.
도 5에서, (a)는 비교 샘플 2(q-t D2), (b)는 비교 샘플 3(M4), (c)는 샘플 1, (d)는 비교 샘플 4(t M4)에 대해서 볼-온-디스크 마모 테스트 후의 마모 궤적을 나타낸 사진이고, 도 6은 마모 상처 프로파일을 나타낸 것이고, 도 7은 볼-온-디스크 마모 테스트 후의 마모 깊이를 나타낸 것이다.
도 5 내지 도 7을 참조하면, 비교 샘플 2(q-t D2)가 가장 큰 부피 손실을 나타냄을 확인할 수 있고, 샘플 1(q-t M4)은 비교 샘플 2(q-t D2)에 비해서 마모가 적은 것을 확인할 수 있다.
특성평가-3 및 결과: 인성(toughness)
파괴에 대한 저항성인 인성을 평가하기 위해, 샤르피 충격 시험(Charpy impact test)을 수행하였다. 고압 프레스 금형(die)에서 균열(crack)은 캐비티 표면에서 시작하여 금형 내부로 전파되므로, 고압 공구에서 균열의 시작과 전파의 특성을 고려할 때 V-노치는 샘플의 적층 영역에서 절단되었다. 충격 시험은 샤르피 충격기를 사용하여 상온에서 수행하였으며 충격 에너지, 충돌 속도 및 충돌 각은 각각 50J, 3.8 m/s 및 150ㅀ로 설정되었다. 충격 흡수 에너지는 충격 시험 후에 계산되었고, 파단면(fracture surface)의 형태는 FE-SEM을 사용하여 확인하였다. 그 결과를 도 8 및 도 9에 나타낸다.
도 8 및 도 9는 샘플 1과 비교 샘플 2 내지 4의 인성 특성평가 결과를 나타낸 도면들이다.
도 8은 파단면의 형태를 나타낸 것이고, 도 9는 샤르피 충격 테스트 결과 전체 흡수된 에너지를 나타낸 것으로서, 도 8 및 도 9를 참조하면, 증착 영역에서 큰 소성 변형이 없어 모든 샘플들이 쉽게 부서지지만, 퀜칭-템퍼링된 경우의 전체 충격 흡수 에너지가, 2.8 J로서 가장 높게 나타나는 것을 확인할 수 있다. 이는 다른 비교 샘플 1 내지 3의 경우에 최대 1.79 J로서 2.0 J을 넘지 못하는 것에 비해서 현저하게 증가된 인성 특성을 나타내는 것을 확인할 수 있다. 특히, 후열처리 되지 않은 경우에 비해서 70%의 인성 증가를 나타냄을 확인할 수 있다.
비교샘플 5의 제조 및 특성평가
도 5와 도 9의 결과에서 도시되지는 않았으나, 템퍼링 공정을 생략한 것을 제외하고는 샘플 1의 제조와 실질적으로 동일한 공정을 수행하여 얻은 비교샘플 5에 대해서 경도 및 인성 평가를 수행한 결과, 비교샘플 5에 대해서는 경도(HRc)가 비교샘플 2 내지 4와 본 발명에 따른 샘플 1의 값보다 높게 나타나고, 특히 비교샘플 4보다도 현저하게 높은 값을 나타내는 동시에, 인성 특성을 평가할 수 있는 지표인 샤르피 충격 시험에 의한 전체 충격 흡수 에너지는 비교샘플 4보다 낮은 값을 갖는 것을 확인할 수 있다. 즉, 예열 공정, 적층 공정 및 퀜칭 공정만을 통해서 얻은 비교샘플 5의 경우에는 매우 높은 경도는 확보되지만 인성 특성이 매우 낮아 작은 충격에도 쉽게 파괴되는 것을 확인함으로써, 경도와 인성을 모두 높은 수준으로 확보하기 위해서는 예열 공정, 적층 공정 및 후열처리 공정을 모두 거치되 후열처리 공정에서도 퀜칭 단계와 템퍼링 단계가 모두 필수적으로 수반되어야 본 발명에서 이루고자 하는 목적을 달성할 수 있는 효과를 나타냄을 알 수 있다.
파단면 확인
도 10은 초강도강 냉간 프레스 금형에 대해서 예열 공정 없이 적층 공정을 수행한 후 바로 템퍼링을 수행한 후의 파단면과, 300℃의 예열 공정, 적층 공정 및 후열처리 공정을 수행한 경우의 파단면을 비교하기 위한 사진들을 도시한 도면이다.
도 10에서, (a)가 예열 공정 없이 적층 공정을 수행한 후 바로 템퍼링을 수행한 경우를 나타낸 것이고, (b)가 300℃의 예열 공정, 적층 공정 및 후열처리 공정을 수행한 경우를 나타낸 것이다.
도 10을 참조하면, (a)의 경우에는 치핑과 스크래치가 발생하며 버(burr) 도한 존재하는 것을 확인할 수 있으나, 본 발명에 따른 (b)의 경우에는 예열 공정 및 후열처리 공정에 의해서 매끈하고 버 발생이 최소화된 안정적인 상태로 표면 강화가 수행된 것을 확인할 수 있다.
샘플 6 및 비교샘플 6의 제조
퀜칭 단계에서의 냉각을 공랭(air cooling)으로 60분간 수행한 것을 제외하고는 샘플 1의 제조와 실질적으로 동일한 공정을 통해서 본 발명에 따른 샘플 6을 얻었다.
또한, 예열 공정 적층 공정 후에 후열처리 공정에서 템퍼링 단계 없이 퀜칭 단계만을 수행한 것을 제외하고는 샘플 6의 제조와 실질적으로 동일한 공정을 통해서 비교샘플 6을 얻었다.
샘플 6과 비교샘플 6의 경도 및 인성 특성 평가
샘플 6과 비교샘플 6 각각에 대해서 샘플 1에 대한 경도 및 인성 특성 평가를 위한 시험과 동일한 실험을 수행하였다.
그 결과, 샘플 6의 경도는 58.23 HRc를 나타냈고, 충격 흡수 에너지는 1.38 J인 것을 확인하였고, 비교샘플 6의 경우에는 경도가 64.76 HRc이었으며 충격 흡수 에너지는 1.27 J이었다.
샘플 1의 결과와 비교하여 샘플 6의 충격 흡수 에너지는 낮은 값을 나타내므로 퀜칭 단계에서 공랭보다는 기체 냉각이 높은 인성 특성을 나타내도록 하는데 더 유리한 것을 확인할 수 있다.
비록 샘플 6의 인성 특성은 비교샘플 2 및 3보다는 낮은 수치를 나타내지만 비교샘플 6보다는 높은 값을 나타내는 것을 확인함을 통해서, 후열처리 공정으로서 퀜칭 단계 후에 템퍼링 단계가 수반되어야만 인성 특성이 높아지는 것이고 퀜칭 단계와 템퍼링 단계 중 어느 하나의 단계만으로는 인성 특성과 경도를 모두 최적화시킬 수 없다는 것을 알 수 있다. 즉, 본 발명에서와 같이 예열 공정 및 적층 공정 후에는 퀜칭 단계와 템퍼링 단계가 순차적으로 1회씩 수행되는 후열처리 공정을 거쳐야만 인성 특성과 경도를 모두 최적화시킬 수 있다는 것을 확인할 수 있는 근거가 된다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 모재 구조물로서 준비된 프레스 금형을 예열시키는 예열 공정;
    예열된 모재 구조물에 레이저를 이용하여 용융 풀을 형성하면서 고속도공구강 분말을 제공하여 모재 구조물에 표면 강화층을 형성하는 적층 공정; 및
    상기 모재 구조물에 표면 강화층이 형성된 상태에서 퀜칭 단계 및 템퍼링 단계를 순차적으로 수행하는 후열처리 공정을 포함하는,
    프레스 금형의 표면 강화 방법.
  2. 제1항에 있어서,
    상기 후열처리 공정을 거친 표면 강화층이 형성된 적층 영역의 경도는 적어도 60 HRc 이상이고,
    샤르피 충격 테스트(Charpy impact test)에 의한 전체 충격 흡수 에너지가 2.0 J 이상인 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  3. 제1항에 있어서,
    상기 후열처리 공정은
    상기 적층 공정이 완료된 후에 1회의 퀜칭 단계를 수행한 후 1회의 템퍼링 단계만 수행되도록 구성된 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  4. 제1항에 있어서,
    상기 후열처리 공정의 퀜칭 단계는
    상기 표면 강화층의 적층 후에 1,000 내지 1,100℃까지 승온시키는 단계;
    1,000 내지 1,100℃의 온도 조건에서 등온 상태로 유지하는 단계; 및
    냉각시키는 단계를 포함하는 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  5. 제4항에 있어서,
    상기 퀜칭 단계의 냉각은
    냉각 가스를 이용하여 500 내지 800℃/분의 냉각 속도로 기체 냉각(gas cooling)시키거나 대기 조건에서 공랭(air cooling)시키는 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  6. 제4항에 있어서,
    상기 1,000 내지 1,100℃까지 승온시키는 단계에서 승온 속도는 5℃/분이고,
    등온으로 유지시키는 시간은 1 시간인 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  7. 제1항에 있어서,
    상기 후열처리 공정의 템퍼링 단계는
    퀜칭 단계의 냉각 후에, 500 내지 600℃까지 승온시키는 단계;
    500 내지 600℃의 온도 조건에서 등온 상태로 유지하는 단계; 및
    노내 냉각(furnace cooling)시키는 단계를 포함하는 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  8. 제1항에 있어서,
    상기 모재 구조물은 AISI 1045(JIS S45C) 또는 AISI D2(SKD11)의 기계 구조용 탄소강으로 형성되고,
    상기 고속도공구강 분말은 AISI M2 또는 AISI M4인 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  9. 제1항에 있어서,
    상기 모재 구조물이 AISI D2(SKD11)이고, 상기 고속도공구강 분말은 AISI M4이며, 퀜칭 단계에서 1,050℃까지 승온된 후 등온 상태를 유지하며, 템퍼링 단계에서 550℃까지 승온된 후 등온 상태를 유지한 경우,
    표면 강화층이 형성된 적층 영역의 경도가 적어도 60.3 HRc이고, 전체 충격 흡수 에너지가 2.8 J인 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  10. 제9항에 있어서,
    상기 예열 공정은 300℃ 내지 500℃에서 수행되는 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  11. 제1항에 있어서,
    상기 예열 공정은 적어도 300℃ 이상에서 수행되되 500℃ 미만에서 수행되는 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  12. 제1항에 있어서,
    상기 예열 공정을 300℃ 미만에서 수행하는 경우에 상기 적층 공정에 의해 형성되는 표면 강화층에 균열이 생기거나 계면 전체로 균열이 진전되고,
    상기 예열 공정을 500℃ 초과에서 수행하는 경우에 과도한 입열로 인해 상기 적층 공정에 의해서 형성된 표면 강화층에 기공이 생기며,
    상기 예열 공정을 300℃ 내지 500℃에서 수행하는 경우 표면 강화층에 균열의 생성, 균열의 진전 및 기공의 형성이 방지되는 것을 특징으로 하는,
    프레스 금형의 표면 강화 방법.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 방법으로 표면이 강화된 것을 특징으로 하는, 프레스 금형.
PCT/KR2019/014886 2019-11-05 2019-11-05 프레스 금형의 표면 강화 방법 WO2021090966A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/014886 WO2021090966A1 (ko) 2019-11-05 2019-11-05 프레스 금형의 표면 강화 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/014886 WO2021090966A1 (ko) 2019-11-05 2019-11-05 프레스 금형의 표면 강화 방법

Publications (1)

Publication Number Publication Date
WO2021090966A1 true WO2021090966A1 (ko) 2021-05-14

Family

ID=75848975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014886 WO2021090966A1 (ko) 2019-11-05 2019-11-05 프레스 금형의 표면 강화 방법

Country Status (1)

Country Link
WO (1) WO2021090966A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085933A (ja) * 1996-09-10 1998-04-07 Nippon Steel Corp 熱間押出、鍛造用金型への多層肉盛方法
US20140017509A1 (en) * 2011-03-25 2014-01-16 Ngk Insulators, Ltd. Bonded object of tungsten carbide-based superhard alloy and process for producing same
KR20160116920A (ko) * 2015-03-31 2016-10-10 부산대학교 산학협력단 레이저빔을 이용한 금속 표면의 합금화 방법
KR20190041729A (ko) * 2017-10-13 2019-04-23 한국해양대학교 산학협력단 프레스 금형의 표면 강화 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085933A (ja) * 1996-09-10 1998-04-07 Nippon Steel Corp 熱間押出、鍛造用金型への多層肉盛方法
US20140017509A1 (en) * 2011-03-25 2014-01-16 Ngk Insulators, Ltd. Bonded object of tungsten carbide-based superhard alloy and process for producing same
KR20160116920A (ko) * 2015-03-31 2016-10-10 부산대학교 산학협력단 레이저빔을 이용한 금속 표면의 합금화 방법
KR20190041729A (ko) * 2017-10-13 2019-04-23 한국해양대학교 산학협력단 프레스 금형의 표면 강화 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIM DO-SIK, BAEK GYEONG-YUN, LEE EUN-MI: "Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder", MATERIALS SCIENCE AND ENGINEE RING A, vol. 682, no. 551, 12 November 2016 (2016-11-12), pages 550 - 560, XP055821863 *

Similar Documents

Publication Publication Date Title
KR101996144B1 (ko) 프레스 금형의 표면 강화 방법
CN110944774B (zh) 来自增材制造的工具钢制品
EP3533558A1 (en) Steel welding component with aluminum or aluminum alloy coating, and preparation method therefor
WO2010079995A2 (ko) 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
WO2018117716A1 (ko) 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
KR20230090376A (ko) 분말 층 융합용 3d 인쇄 가능한 경질 철계 금속 합금
US20130183463A1 (en) Method for producing highly mechanically demanded pieces and specially tools from low cost ceramics or polymers
WO2016190538A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
EP1465205A2 (de) Verbundbauteil für Fusionsreaktor
CN101210325B (zh) 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
EP2595791B1 (en) Mold half with metal-matrix composite at feature areas, and its method of production
CN109396429B (zh) 一种改善激光增材制造合金结构钢组织和力学性能方法
EP3437782B1 (en) Method for friction stir bonding of structural steel
CN111655874A (zh) 工具材料的再生方法及工具材料
WO2021090966A1 (ko) 프레스 금형의 표면 강화 방법
CN114571058A (zh) 一种大尺寸块体超细晶金属材料的固态增材制造方法
WO2018117650A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
US20080073006A1 (en) Low alloy steel plastic injection mold base plate, method of manufacture and use thereof
KR102434157B1 (ko) 금속 표면 상에 3d 프린팅 및 코팅 공정을 통한 다단 적층 공법
WO2023121179A1 (ko) 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
CN113564498B (zh) 一种抗冲击耐磨复合衬板及其制备方法
WO2023277543A1 (ko) 알루미늄계 도금층을 갖는 강판의 레이저 용접용 탄소 필라멘트 와이어, 이를 이용한 알루미늄계 도금층을 갖는 강판의 레이저 용접방법 및 이에 의해 제조된 용접 제품
KR20170106613A (ko) 알루미늄합금 클래드 판재의 제조방법 및 이를 이용하여 제조된 알루미늄합금 클래드 판재
CN112746270A (zh) 高锰钢辙叉的激光熔覆方法和高锰钢辙叉
CN115142061B (zh) 一种耐磨高速钢复合轧辊制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951655

Country of ref document: EP

Kind code of ref document: A1