WO2021090927A1 - Physical quantity measuring device, and method for manufacturing same - Google Patents

Physical quantity measuring device, and method for manufacturing same Download PDF

Info

Publication number
WO2021090927A1
WO2021090927A1 PCT/JP2020/041590 JP2020041590W WO2021090927A1 WO 2021090927 A1 WO2021090927 A1 WO 2021090927A1 JP 2020041590 W JP2020041590 W JP 2020041590W WO 2021090927 A1 WO2021090927 A1 WO 2021090927A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive portion
physical quantity
bypass housing
bypass
housing
Prior art date
Application number
PCT/JP2020/041590
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 大賀
神谷 信一
章史 栗田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021090927A1 publication Critical patent/WO2021090927A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • This disclosure relates to a physical quantity measuring device and a method for manufacturing the same.
  • a flow meter having a housing having a bypass passage branching from the main passage and a flow rate detecting unit provided in the bypass passage to measure the flow rate of gas flowing through the main passage.
  • the flow rate detection unit may be charged and the characteristics of the flow meter may be deviated.
  • the characteristic deviation means that the output characteristic of the flow meter changes with respect to the gas flow rate measured by the flow meter.
  • the resin material mixed with carbon fibers is used for resin molding of the housing, so that the housing is imparted with conductivity.
  • Patent Document 1 when the content of carbon fiber in the material for resin molding is insufficient, the charge suppressing function of the housing is not properly exhibited, and there is a concern that electric charge is accumulated in the housing. Further, when the material for resin molding does not contain carbon fibers, it is not possible to impart the charge suppressing function to the housing, and there is a concern that the housing will be charged. When the housing is charged as described above, there is a concern that the measurement accuracy of the physical quantity measuring device for measuring the physical quantity such as the flow rate may be lowered due to the occurrence of characteristic deviation.
  • the purpose of this disclosure is to improve the measurement accuracy of the physical quantity measuring device.
  • a physical quantity measuring device for measuring a physical quantity of a fluid has an insulating property and has a resin bypass housing forming a bypass passage through which the fluid flows, and a physical quantity of the fluid flowing through the bypass passage.
  • a physical quantity detecting unit that outputs a corresponding detection signal and a conductive unit having conductivity formed on at least one of the outer surface of the bypass housing and the inner surface of the bypass housing forming the bypass passage are provided, and the electric charge is charged from the conductive unit to the ground. Is released.
  • the charge suppressing function of the housing can be improved by retrofitting the housing with a conductive portion by heating or the like after molding the housing with resin.
  • the housing and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
  • the manufacturing method of the physical quantity measuring device for measuring the physical quantity of the fluid is to prepare a resin bypass housing which has an insulating property and forms a bypass passage through which the fluid flows, and by heat. It includes forming a conductive portion having conductivity on at least one of the outer surface of the bypass housing and the inner surface forming the bypass passage by carbonization.
  • the charge suppressing function of the housing can be improved by retrofitting the resin housing with a conductive portion by heating or the like.
  • the housing and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
  • FIG. 3 is a view taken along the line III in FIG. It is an IV arrow view in FIG. It is a V arrow view in FIG.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. It is sectional drawing of VII-VII in FIG. It is VIII arrow view in FIG.
  • It is a figure corresponding to FIG. 2, and is the figure which showed the conductive part.
  • It is a figure corresponding to FIG. 3, and is the figure which showed the conductive part.
  • FIG. 4 is the figure which showed the conductive part.
  • FIG. 5 It is a figure corresponding to FIG. 5, and is the figure which showed the conductive part. It is a figure which showed the flow of the process of forming a conductive part to a housing. It is a figure for demonstrating the process of forming a conductive part in a housing. It is a figure for demonstrating the distance between patterns and the depth of a pattern. It is sectional drawing of the bypass housing. It is a figure which shows the ab plane of graphite which constitutes the carbonized part in FIG. 15B. It is the figure which showed the air flow meter of 2nd Embodiment, and is the figure corresponding to the VIII arrow view in FIG.
  • FIG. 4 It is a front view of the air flow meter of 4th Embodiment. It is a figure which showed the air flow meter of 4th Embodiment, and is the figure corresponding to the arrow III view in FIG. It is a figure showing the air flow meter of 4th Embodiment, and is the figure corresponding to the IV arrow view in FIG. It is a figure showing the air flow meter of 5th Embodiment, and is the figure corresponding to the VIII arrow view in FIG. It is the figure which showed the air flow meter of 5th Embodiment, and is the figure corresponding to the arrow III view in FIG. It is a figure showing the air flow meter of 5th Embodiment, and is the figure corresponding to the IV arrow view in FIG.
  • FIG. 1 It is a figure showing the air flow meter of the tenth embodiment, and is the figure corresponding to the VI-VI cross-sectional view in FIG. It is a figure showing the air flow meter of the tenth embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. It is the figure which showed the air flow meter of 11th Embodiment, and is the VI-VI sectional view in FIG. It is a figure showing the air flow meter of 11th Embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. It is a front view of the air flow meter of the twelfth embodiment.
  • FIG. 59 is a cross-sectional view schematically showing how the filler is caught in the carbide. It is an enlarged view of the front surface of the resin member of 1st Embodiment. It is sectional drawing of LXIII-LXIII in FIG. 62.
  • the physical quantity measuring device is configured as an air flow meter 20 mounted on a vehicle.
  • the air flow meter 20 is provided in the intake passage 80 as the main passage, and has a function of measuring physical quantities such as the flow rate and temperature of the intake air supplied to the internal combustion engine. Further, the air flow meter 20 can also have a function of measuring physical quantities such as humidity and pressure of intake air.
  • the air flow meter 20 is arranged in the intake passage 80 on the downstream side of the air cleaner (not shown) and on the upstream side of the throttle valve (not shown).
  • the air cleaner side is the upstream side
  • the combustion chamber side is the downstream side for the air flow meter 20.
  • the air flow meter 20 is detachably attached to an intake pipe 82a forming an intake passage 80.
  • the air flow meter 20 is inserted into an air flow insertion hole 82b formed so as to penetrate the tubular wall of the intake pipe 82a, and at least a part thereof is located in the intake passage 80.
  • the intake pipe 82a has an annular pipe flange 82c extending outward from the airflow insertion hole 82b.
  • the intake pipe 82a includes a pipe formed of a synthetic resin material or the like.
  • the longitudinal direction of the intake passage 80 that is, the direction in which the intake air flows in the intake passage 80 will be referred to as a flow direction.
  • the air flow meter 20 includes a housing 21, a flow rate detection unit 22, and an intake air temperature sensor 23.
  • the flow rate detection unit 22 corresponds to a physical quantity detection unit that outputs a detection signal according to the physical quantity of the fluid
  • the intake air temperature sensor 23 corresponds to a temperature sensor that detects the temperature of the fluid.
  • the housing 21 is formed to contain at least resin. In the air flow meter 20, since the housing 21 is attached to the intake pipe 82a, the flow rate detecting unit 22 is in a state where it can come into contact with the intake air flowing through the intake passage 80.
  • the housing 21 has a bypass housing 24, a ring holding portion 25, a flange portion 27, a connector portion 28, a caulking portion 29a, and a protective protrusion 29b.
  • An O-ring 26 is attached to the ring holding portion 25.
  • the ring holding portion 25 is a portion that is internally fitted into the airflow insertion hole 82b via the O-ring 26.
  • the bypass housing 24 protrudes from the ring holding portion 25 toward the intake passage 80.
  • the ring holding portion 25 side of the bypass housing 24 will be referred to as a housing base end, and the side of the bypass housing 24 opposite to the ring holding portion 25 will be referred to as a housing tip.
  • the flange portion 27 is arranged outside the intake pipe 82a with respect to the ring holding portion 25, that is, outside the intake passage 80, and covers the airflow insertion hole 82b from the outside of the intake pipe 82a.
  • the connector portion 28 is a portion that surrounds a plurality of connector terminals 28a, and corresponds to a terminal protection portion that protects the connector terminals 28a.
  • One of the plurality of connector terminals 28a is a ground terminal, which is connected to an external ground 45.
  • the caulking portion 29a is a portion that supports and fixes the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23, which will be described later.
  • the housing 21 is provided with a pair of caulking portions 29a.
  • Each caulked portion 29a is formed with a through hole for inserting the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23.
  • the intake air temperature sensor 23 has a temperature sensing element 23a that senses the temperature of the intake air, a ground terminal 23b, and a signal terminal 23c.
  • the temperature sensitive element 23a is fixed to the housing 21 by being heat-caulked with the ground terminal 23b and the signal terminal 23c inserted into the through holes formed in the caulking portion 29a.
  • the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23 are fixed to the pair of through holes 251 formed in the ring holding portion 25 by soldering.
  • the signal terminal 23c of the intake air temperature sensor 23 is electrically connected to a predetermined connector terminal excluding the ground terminal.
  • the ground terminal 23b of the intake air temperature sensor 23 is connected to the connector terminal 28a connected to the ground 45.
  • the ground terminal 23b of the intake air temperature sensor 23 is grounded to the ground 45 via the connector terminal 28a.
  • the intake air temperature sensor 23 outputs a detection signal according to the intake air temperature sensed by the temperature sensing element 23a.
  • the housing 21 is provided with two protective protrusions 29b that protect the housing 21 from an object close to the intake air temperature sensor 23 from the outside of the housing 21.
  • Each protective protrusion 29b projects laterally from the bypass housing 24.
  • One of the protective protrusions 29b is arranged on the upstream side in the flow direction from the intake air temperature sensor 23, and the other of the protective protrusions 29b is arranged on the downstream side in the flow direction from the intake air temperature sensor 23.
  • the protruding dimension of the protective protrusion 29b from the bypass housing 24 is larger than the distance of the intake air temperature sensor 23 from the bypass housing 24.
  • the protective protrusion 29b suppresses damage to the intake air temperature sensor 23 due to contact between the intake air temperature sensor 23 and the intake pipe 82a when the air flow meter 20 is attached to the intake pipe 82a.
  • the bypass housing 24 forms a bypass passage 30 through which a part of the intake air flowing through the intake passage 80 flows.
  • the bypass passage 30 has a passage passage 31 and a measurement passage 32, and the passage passage 31 and the measurement passage 32 are formed by the internal space of the bypass housing 24.
  • the passage passage 31 penetrates the tip end portion of the bypass housing 24 in the flow direction, and has an inflow port 33a which is an upstream end portion and an outflow outlet 33b which is a downstream end portion.
  • the measurement passage 32 is a branch passage branched from the intermediate portion of the passage passage 31, and has a measurement outlet 33c which is a downstream end portion.
  • One measurement outlet 33c is provided on each side surface of the bypass housing 24.
  • the measurement passage 32 has a folded shape that is folded back at an intermediate position.
  • the measurement passage 32 has a detection path 32a in which the detection element 22b of the flow rate detection unit 22 is arranged, an introduction path 32b for introducing the intake air into the detection path 32a, and an discharge path 32c for discharging the intake air from the detection path 32a.
  • the introduction path 32b extends from the passage 31 toward the base end side of the housing, and the discharge path 32c extends from the detection path 32a toward the tip end side of the housing.
  • the intake air that has flowed in from the passage passage 31 once flows toward the base end side of the housing, and then makes a U-turn by passing through the detection path 32a and flows toward the front end side of the housing.
  • the U-turn-shaped passage makes it difficult for foreign matter such as dust and dirt to reach the detection element 22b even if it is mixed with the intake air.
  • the bypass housing 24 has a cover 24c that covers the end portion of the discharge path 32c on the housing tip side from the outside.
  • One cover 24c is provided on each side surface of the bypass housing 24.
  • a measurement outlet 33c for discharging intake air is formed between the bypass housing 24 and the cover 24c. The intake air sucked into the measurement passage 32 from the passage passage 31 is discharged to the outside of the bypass housing 24 from the discharge passage 32c through the measurement outlet 33c.
  • the flow rate detection unit 22 is a physical quantity detection unit that outputs a detection signal according to the physical quantity of the fluid flowing through the measurement passage 32.
  • the flow rate detection unit 22 outputs a detection signal according to the flow rate of the intake air flowing through the detection path 32a.
  • the flow rate detection unit 22 performs signal processing of a detection element 22b that outputs a signal according to the flow rate of air flowing through the measurement passage 32, a detection board 22a on which the detection element 22b is mounted, and a signal output from the detection element 22b. It has an integrated circuit 22c.
  • the detection element 22b includes a heat generating portion such as a heat generating resistor that generates heat when energized, a first temperature detecting portion arranged on the upstream side of the air flow of the heat generating portion, and a second temperature detection arranged on the downstream side of the air flow of the heat generating portion. It has a part (neither is shown).
  • the detection element 22b transmits a signal based on the temperature difference between the detection temperature of the first temperature detection unit and the detection temperature of the second temperature detection unit when the heat generating unit is energized, according to the flow rate of the air flowing through the measurement passage 32. Output as. If foreign matter such as charged dust adheres to the first temperature detection unit or the second temperature detection unit of the detection element 22b, the balance of the detection temperature is lost and the characteristics are deviated.
  • the detection board 22a forms an outer shell of the flow rate detection unit 22, and the detection element 22b is arranged at the end of the board surface of the detection board 22a.
  • the shape of the measurement passage 32 makes it difficult for foreign matter to reach the flow rate detection unit 22. However, it is not possible to completely eliminate the arrival of foreign matter at the flow rate detecting unit 22. Further, when the foreign matter is charged, the foreign matter may adhere to the flow rate detecting unit 22 and cause a deviation in the characteristics of the air flow meter 20.
  • the conductive portion 90 is omitted in order to make it easier to see the shape of each portion of the air flow meter 20.
  • the actual air flow meter 20 provides conductivity around the entire outer wall surface 24b, which is the outer surface of the bypass housing 24, and the through hole 251 formed in the ring holding portion 25.
  • a grid-like pattern 901 is formed as the conductive portion 90 to have.
  • the housing 21 has an insulating property.
  • the housing 21 has a base polymer made of a resin material and having insulating properties, and a filler having higher strength and insulating properties than the base polymer.
  • the base polymer has excellent moldability.
  • the filler is a reinforcing material that reinforces the housing 21 and contains glass fibers.
  • the conductive portion 90 is formed by carbonizing the surface of the housing body 91 by irradiating the surface of the housing body 91 with laser light.
  • the conductive portion 90 has conductivity because it contains carbides which are aggregates of graphite. That is, the conductive portion 90 having conductivity is formed by irradiating the surface of the insulating housing 21 with laser light. Then, the electric charge is discharged from the conductive portion 90 to the ground 45.
  • the conductive portion 90 prevents the housing 21 from being charged, and suppresses the deviation of the characteristics of the air flow meter 20. As a result, the measurement accuracy of the physical quantity measuring device can be improved.
  • the conductive portion 90 is configured by a grid-like pattern 901. That is, the conductive portion 90 is formed by forming conductive carbides on the surface of the housing 21 as a grid-like pattern 901.
  • the grid-like pattern 901 is an example of the shape of the conductive portion 90.
  • the lattice-shaped pattern 901 has a first conductive portion 901a extending in one direction and a second conductive portion 901b extending in a direction intersecting the first conductive portion 901a.
  • the first conductive portion 901a and the second conductive portion 901b are formed so as to be orthogonal to each other in a + (plus) sign.
  • the spacing between the grid-like patterns 901 is about 2 mm, and the depth of the grid-like pattern 901 is about 300 microns.
  • the pattern 901 is connected to the ground terminal 23b of the intake air temperature sensor 23 which is exposed and arranged on the outside of the housing 21. Specifically, the pattern 901 is a ground terminal of the intake air temperature sensor 23 connected to the ground 45 via the connector terminal 28a around the caulking portion 29a fixing the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23. It is connected to 23b.
  • the first conductive portion 901a when the first conductive portion 901a is arranged so as to extend in the air flow direction, it is possible to make the air flow less likely to be disturbed. Further, when the second conductive portion 901b is arranged so as to extend in a direction intersecting the air flow direction, the charge imparting rate from the foreign matter to the second conductive portion 901b can be increased.
  • the operator prepares an air flow meter 20 including a resin bypass housing 24 in S100.
  • An intake air temperature sensor 23 is attached to the bypass housing 24 in advance. Then, the air flow meter 20 is fixed to the processing jig.
  • the worker carries out the first heating step in S200.
  • the operator uses a laser machine to irradiate the surface of the bypass housing 24 with a laser in a grid pattern to heat the surface of the bypass housing 24.
  • laser irradiation is performed with high output.
  • heat of 2000 ° C. or higher is applied to the surface of the bypass housing 24, the bond of the polymer used as the material is cleaved, and the constituent elements other than carbon are decomposed gases such as carbon dioxide, carbon monoxide, nitrogen, and hydrogen. It is detached and carbonized.
  • a conductive portion 90 containing graphite, which is a carbide is formed on the surface of the bypass housing 24. Conductivity is imparted to the conductive portion 90.
  • the worker carries out a second heating step called fume processing in S300.
  • the operator uses a laser machine to irradiate the entire surface of the bypass housing 24 with a laser at a higher speed to heat the surface of the bypass housing 24.
  • the laser irradiation is performed with a weaker output than the previous first heating step.
  • dust or the like called fume generated when the laser irradiation is performed in the grid pattern is removed.
  • the volume resistivity of the conductive portion 90 is adjusted to a desired value. The laser-irradiated region is whitened by this fume processing. In this way, the air flow meter 20 is completed.
  • FIG. 15A schematically shows a cross-sectional view of a portion where a grid pattern 901 is formed on the outer wall surface 24b of the bypass housing 24. Specifically, a cross-sectional view of a portion where the first conductive portion 901a (that is, the carbonized portion 15) forming the grid-like pattern 901 is formed is schematically shown.
  • the distance from the charge to the grid pattern 901 is too long, the charge will not move due to discharge. According to the studies by the present inventors, it has been found that if the distance from the electric charge to the conductive portion 90 is within 1 mm, the electric charge is relatively stably transferred by the electric discharge.
  • the distance between the first conductive portions 901a constituting the grid pattern 901 is less than 2 mm. Therefore, in the region where the grid pattern 901 is formed, the grid pattern 901 is reached within 1 mm from any position. Therefore, it is possible to relatively stably transfer the charge due to the discharge.
  • the depth of the first conductive portion 901a constituting the grid pattern 901 is about 300 microns. That is, the distance between the first conductive portions 901a forming the grid-like pattern 901 is larger than the depth of the first conductive portions 901a forming the grid-like pattern 901. As described above, it is preferable that the distance between the first conductive portions 901a forming the grid-like pattern 901 is larger than the depth of the first conductive portions 901a forming the grid-like pattern 901. Further, the plate thickness of the housing 21 of the present embodiment is, for example, about 1 mm.
  • the conductive portion 90 is formed.
  • the number of patterns 901 can be reduced. Therefore, the work load for forming the conductive portion 90 can be reduced, and the work cost can be reduced.
  • the depth of the first conductive portion 901a forming the grid-like pattern 901 is shallower than the distance between the first conductive portions 901a forming the grid-like pattern 901, the strength due to the conductive portion 90 being made too deep. It is also possible to prevent the decrease.
  • the wall thickness between the inner wall surface 24a and the outer wall surface 24b of the bypass housing 24 is such that the thickness is dielectric breakdown between one surface of the bypass housing 24 in which the conductive portion 90 is formed and the other surface in which the conductive portion 90 is not formed. It is a length that can be discharged by.
  • a discharge due to dielectric breakdown occurs between the inner wall surface 24a and the grid pattern 901 of the outer wall surface 24b. This phenomenon is likely to occur in a graphite layer having a negatively charged static electricity of -1 kV or less and a resin product having a plate thickness of 0.5 to 2.0 mm, which is likely to attract positively charged dust or dust.
  • the electric charge 77 accumulated on the inner wall surface 24a is discharged to the ground 45 through the grid pattern 901 and the connector terminal 28a.
  • the positive charge or the negative charge disappears from the inner wall surface 24a in this way, the adhesion of foreign matter to the detection element 22b of the flow rate detection unit 22 is suppressed, and the characteristic deviation of the flow rate detection unit 22 is suppressed.
  • the housing 21 is made of a resin member 10.
  • the resin member 10 is composed of a resin material containing a filler and an insulating base polymer as main components.
  • an alignment layer 12 is formed in the vicinity of the surface 11 of the resin member 10.
  • the alignment layer 12 contains a large number of fillers 13 oriented in a direction parallel to the surface 11 (hereinafter, the surface direction), and a base polymer 14 filled between the fillers 13.
  • the resin member 10 has a carbonized portion 15 that imparts conductivity and thermal conductivity.
  • the carbonized portion 15 contains, for example, graphite which is a carbide of the base polymer 14.
  • the carbide 66 is, for example, graphite composed of carbon atoms in a bonded state with each other, and electrons are generated by leaving one electron out of four outer shell electrons belonging to the carbon atom. Since it is in a movable state, it conducts.
  • the carbide 66 is not limited to graphite, but may be conductive carbon.
  • the carbonized portions 15 are formed in a grid pattern and form a conductive pattern.
  • This conductive pattern can also be used as a wiring circuit in an electronic device such as an air flow meter 20 or a rotation angle sensor.
  • the volume resistivity of the generated carbide 66 is at least 1.0 ⁇ 10 -3 ⁇ m or less, preferably 1.0 ⁇ 10 -4 ⁇ m or less. More preferably, it is 1.0 ⁇ 10-5 ⁇ m or less.
  • the carbonized portion 15 may have another pattern such as a stripe shape. Further, the carbonized portion 15 is not limited to the pattern shape, but may be formed into a film shape. Further, the carbonized portion 15 is not limited to the wiring circuit, and may be used for, for example, an electromagnetic shield, an antistatic circuit, an antistatic agent, a heat radiating member, and the like.
  • the base portion 61 has a base polymer 14 formed of a resin material and having an insulating property, and a filler 13 having a strength higher than that of the base polymer 14.
  • the base polymer 14 constitutes the resin portion of the base portion 61.
  • the filler 13 is a reinforcing member that reinforces the base portion 61.
  • the base portion 61 is reinforced by the filler 13 mixed with the base polymer 14.
  • the carbonized portion 15 is a conductive portion 90 provided on the outer surface 62 of the base portion 61 and having conductivity by containing the carbide 66.
  • a plurality of carbonized portions 15 are formed so as to extend linearly.
  • the plurality of carbonized portions 15 are pattern portions arranged in a pattern, and form a wiring pattern.
  • the carbonized portion 15 constitutes the first conductive portion 901a and the second conductive portion 901b shown in FIGS. 9 to 12.
  • the first conductive portion 901a and the second conductive portion 901b are each composed of carbonized portions 15 extending in an elongated shape.
  • the first conductive portion 901a and the second conductive portion 901b are examples of the shape of the carbonized portion 15.
  • the carbonized portion 15 has a plurality of first conductive portions 901a and a plurality of second conductive portions 901b.
  • a plurality of linear first conductive portions 901a extend in parallel to the outer surface 62 of the base portion 61, and a plurality of linear second conductive portions 901b extend in parallel so as to be orthogonal to the first conductive portion 901a.
  • the carbide 66 is a conductive carbon (that is, conductive carbon).
  • the carbide material forming the carbide 66 is a conductive material, such as a carbon material such as graphite, carbon powder, carbon fiber, nanocarbon, graphene or carbon micromaterial. Nanocarbons include, for example, carbon nanotubes, carbon nanofibers and fullerenes.
  • the resin member 10 includes a skin layer 63 extending along the outer surface 62 of the base portion 61, and a core layer 64 provided inside the skin layer 63.
  • the skin layer 63 is a surface layer portion that forms the outer surface 62 of the base portion 61, and is a solidified layer that is a portion of the molten resin that is solidified in contact with the inner surface of the mold during resin molding of the base portion 61.
  • the core layer 64 is a fluidized bed that flows inside the solidified layer of the molten resin during resin molding of the base portion 61.
  • the outer surface 62 of the base portion 61 is the outer surface of the skin layer 63 and also the outer surface of the resin member 10.
  • the outer surface 62 has a groove-shaped concave surface 65 recessed on the core layer 64 side.
  • the carbonized portion 15 is provided so as to extend from the skin layer 63 toward the core layer 64 on the groove-shaped concave surface 65.
  • the carbonized portion 15 is one in which at least a part of the skin layer 63 is carbonized.
  • a material containing at least a six-membered ring of carbon that is, a benzene ring
  • At least the core layer 64 of the skin layer 63 and the core layer 64 forms the base portion 61.
  • the carbonized portion 15 is provided in the skin layer 63 at a position separated from the core layer 64. That is, the groove-shaped concave surface 65 does not reach the core layer 64, and the carbonized portion 15 is provided so as to be adjacent only to the skin layer 63. Both the skin layer 63 and the core layer 64 form the base portion 61.
  • filler 13 oriented so as to extend in a predetermined direction along the outer surface 62 of the base portion 61 as compared with the core layer 64.
  • aligned filler 13 the filler 13 oriented so as to extend in a predetermined direction.
  • the carbonized portion 15 extends in a direction intersecting the alignment filler 13. In particular, in the seventh embodiment, the carbonized portion 15 extends in a direction orthogonal to the alignment filler 13.
  • the carbonized portion 15 is formed by gathering a large number of carbides 66.
  • the filler 13 at least a part of the filler 13 enters the carbonized portion 15 to regulate the separation of the carbonized portion 15 from the base portion 61. That is, the filler 13 is a regulatory member that regulates the separation of the carbide 66 from the carbonized portion 15.
  • a fibrous, powdery or plate-like material can be used as the material of the filler 13, as described in the first embodiment.
  • a fiber material such as a flame-retardant fiber, a glass fiber, or a carbon fiber is used as the material of the filler 13, and the fiber portion is formed by this.
  • the hatching is omitted in order to avoid complication.
  • those protruding from the groove-shaped concave surface 65 are held by the base portion 61 at one end and are caught by the carbonized portion 15 at the other end, so that the carbonized portion 15 and the base portion are caught. It strengthens the connection with 61.
  • the length of catching can be lengthened.
  • the alignment filler 13 intersects in the extending direction of the carbonized portion 15, it easily protrudes from the groove-shaped concave surface 65 and easily gets caught in the carbonized portion 15. Further, a part of the alignment filler 13 penetrates the carbide 66 in the carbonized portion 15, and effectively suppresses the falling off of the carbide 66.
  • the housing 21 is composed of a resin member 10 formed of a resin material. Further, the resin member 10 is provided on a base portion 61 having a base polymer 14 formed of a resin material and having an insulating property, a filler 13 having a strength higher than that of the base polymer 14, and an outer surface 62 of the base portion 61. It is provided with a carbonized portion 15 that is conductive by containing the carbide 66.
  • the base portion 61 is reinforced by the filler 13 mixed with the base polymer 14. Further, in the filler 13, at least a part of the filler 13 enters the carbonized portion 15 to regulate the separation of the carbonized portion 15 from the base portion.
  • the resin member 10 includes a skin layer 63 extending along the outer surface 62 of the base portion 61, and a core layer 64 provided inside the skin layer 63. Further, at least the core layer 64 of the skin layer 63 and the core layer 64 forms the base portion 61, and the outer surface 62 of the base portion 61 has a groove-shaped concave surface 65 recessed on the core layer 64 side.
  • the carbonized portion 15 is provided so as to extend from the skin layer 63 toward the core layer 64 on the groove-shaped concave surface 65.
  • the carbonized portion 15 is provided so as to extend from the skin layer 63, which has the same orientation of the filler 13 and easily regulates the detachment of the carbonized portion 15, toward the core layer 64, the core of the carbonized portion 15 is provided. Withdrawal from layer 64 can be further suppressed.
  • the carbonized portion 15 is provided at a position separated from the core layer 64 in the skin layer 63. According to this, since the carbonized portion 15 is not provided in the core layer 64, the carbonized portion 15 can be more effectively suppressed from being separated from the core layer 64.
  • the carbonized portion 15 extends in the skin layer 63 in a direction intersecting the filler 13 extending along the outer surface 62 of the base portion 61.
  • the filler 13 penetrates the carbide 66 in the carbonized portion 15. Thereby, the falling off of the carbonized portion 15 can be effectively suppressed.
  • the resin member 10 will be described with reference to FIGS. 62 to 63.
  • the carbonized portions 15 of the present embodiment are formed in a grid pattern.
  • the outer surface 62 of the base portion 61 is provided with a deformation mark 85 so as to extend along the peripheral edge portion of the carbonized portion 15.
  • the deformation mark 85 is a mark where a part of the base portion 61 is deformed.
  • the deformation mark 85 is a melt-solidification mark that is melted and solidified.
  • the deformation mark 85 may be a removal mark by, for example, laser processing, machining such as polishing, or dissolution processing using a solution. Even if foreign matter such as scattered matter generated by the formation of the carbonized portion 15 adheres to the base portion 61, it is possible to remove the foreign matter from the base portion 61 when forming the deformation mark 85. Therefore, by providing the deformation mark 85, it is possible to prevent the design of the base portion 61 from being deteriorated due to the foreign matter.
  • the deformation mark 85 has a foamed portion 86 in which at least a part of the base portion 61 is foamed, and a plurality of point-shaped recesses 87 provided on the outer surface 62 of the base portion 61. These foamed portions 86 and point-shaped recesses 87 are deformation marks 85 that can be formed by heating the base portion 61. As shown in FIG. 13, the method for manufacturing the resin member 10 includes a preparation step S100, a first heating step S200, and a second heating step S300.
  • the second heating step S300 after the first heating step S200, at least a part of the base portion 61 is deformed so that the deformation mark 85 extends along the peripheral edge portion of the carbonized portion 15 on the outer surface 62 of the base portion 61.
  • the base portion 61 and the temperature are lower than the heating of the base portion 61 in the first heating step S200 so that the deformation mark 85 is formed on the outer surface 62 of the base portion 61. At least a part of each of the carbonized portions 15 is heated.
  • the foreign matter adhering to the base portion 61 can be removed by combustion or the like by heating in the second heating step S300.
  • the carbonized portion 15 when the carbonized portion 15 includes a portion that is barely attached to the base portion 61 in an unstable posture, the posture of this portion changes, so that the charge can easily pass through the carbonized portion 15. It will change. In this case, there is a concern that the conductivity of the carbonized portion 15 changes depending on the posture of this portion, and the conductivity becomes unstable.
  • the portion of the carbonized portion 15 having an unstable posture is more likely to be removed than the portion having a stable posture. That is, in the second heating step S300, not only the base portion 61 but also the carbonized portion 15 is heated, so that the portion of the carbonized portion 15 having an unstable posture can be removed by heating or burning. Therefore, it is possible to suppress the change in the conductivity of the carbonized portion 15 and stabilize the conductivity of the carbonized portion 15.
  • the resistance value of the carbonized portion 15 can be controlled to a predetermined value by trimming to remove a part of the carbonized portion 15.
  • the base portion 61 is heated by irradiating the base portion 61 with an electromagnetic wave such as a laser beam to form the carbonized portion 15.
  • the intensity (that is, output) is lower than the electromagnetic wave radiated to the base portion 61 in the first heating step S200, the scanning speed is increased, and the frequency is lowered.
  • the base portion 61 is irradiated with electromagnetic waves.
  • the base portion 61 is heated by irradiating the electromagnetic wave in this way to form a deformation mark 85.
  • both the carbonized portion 15 and the deformation mark 85 can be formed by electromagnetic wave irradiation in this way, the work load when forming the carbonized portion 15 and the deformation mark 85 can be reduced.
  • the work of aligning the base portion 61 with respect to the device that irradiates the electromagnetic wave can be summarized at one time. ..
  • the resin may foam and discolor depending on the energy of the laser, but this can be intentionally generated for the purpose of imparting design.
  • a laser it is desirable to use a pulse laser because it is suitable for removal processing.
  • the point-shaped recess 87 can be formed periodically.
  • the air flow meter 20 of the present embodiment includes a resin bypass housing 24 that has an insulating property and forms a bypass passage 30 through which a fluid flows. Further, the air flow meter 20 includes a flow rate detecting unit 22 that outputs a detection signal according to the physical quantity of the fluid flowing through the bypass passage 30. Further, the air flow meter 20 includes a conductive portion 90 having conductivity formed on the entire surface of the outer wall surface 24b of the bypass housing 24. The air flow meter 20 is configured such that an electric charge is discharged from the conductive portion 90 to the ground 45.
  • the charge suppressing function of the housing 21 can be improved by retrofitting the conductive portion 90 to the housing 21 by heating or the like after the housing 21 is resin-molded.
  • the housing 21 and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
  • the conductive portion 90 contains a carbide 66 formed by carbonization by heat on the surface of the bypass housing 24. In this way, the conductive portion 90 can be configured to include the carbide 66 formed by carbonization.
  • the conductive portion 90 is formed on the entire outer wall surface 24b of the bypass housing 24. According to this, the entire outer wall surface 24b of the bypass housing 24 can be made conductive.
  • the conductive portion 90 is composed of a grid-like pattern 901. According to this, the pattern 901 can be formed quickly.
  • the interval between adjacent patterns 901 is longer than the depth of the pattern 901. As described above, it is preferable that the interval between adjacent patterns 901 is longer than the depth of the pattern 901.
  • the interval between the grid-like patterns 901 is larger than the depth of the grid-like pattern 901, the number of patterns 901 constituting the conductive portion 90 can be reduced. Therefore, the work load for forming the conductive portion 90 can be reduced, and the work cost can be reduced. Further, since the depth of the grid-like pattern 901 is shallower than the interval of the grid-like pattern 901, it is possible to prevent the strength from being lowered due to the conductive portion 90 being made too deep.
  • the interval between adjacent patterns 901 is a distance at which electric charges can be moved from one of the adjacent patterns 901 to the other by electric discharge.
  • the conductive portion 90 is connected to the ground 45.
  • the conductive portion 90 can be configured to be connected to the ground 45. Further, the electric charge can be stably discharged from the conductive portion 90 to the ground 45.
  • the air flow meter 20 includes an intake air temperature sensor 23 that detects the temperature of the fluid, and is arranged so that the ground terminal 23b of the intake air temperature sensor 23 is exposed on the outer surface of the bypass housing 24. Then, the electric charge is discharged from the conductive portion 90 to the ground 45 via the ground terminal 23b of the intake air temperature sensor 23.
  • the electric charge can be discharged from the conductive portion 90 to the ground 45 via the ground terminal 23b of the intake air temperature sensor 23 arranged so as to be exposed on the outer surface of the bypass housing 24.
  • the method of manufacturing the air flow meter 20 of the present embodiment includes preparing a resin bypass housing 24 which has an insulating property and forms a bypass passage 30 through which a fluid flows. Further, this manufacturing method includes forming a conductive portion 90 having conductivity so as to spread in a plane on the surface of the outer wall surface 24b of the bypass housing 24 by carbonization by heat.
  • the electrification suppressing function of the housing 21 can be improved by retrofitting the conductive portion 90 to the housing 21 by heating or the like.
  • the housing 21 and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
  • the conductive portion 90 is formed on the surface of the bypass housing 24 by carbonization by heat, the conductive portion 90 is formed on the surface of the outer wall surface 24b of the bypass housing 24.
  • the conductive portion 90 can be formed on the surface of the outer wall surface 24b of the bypass housing 24.
  • the floating particles adhering to the surface of the bypass housing 24 by heat weaker than heat are removed and the volume is low efficiency. Includes performing at least one of the adjustments.
  • the "heat weaker than heat” means heat weaker than the heat forming the conductive portion 90.
  • the conductive portion 90 is formed at the first scanning speed. Further, by performing at least one of removing suspended particles adhering to the surface of the bypass housing 24 and adjusting the volume low efficiency by heat weaker than heat, floating at a second scanning speed faster than the first scanning speed. At least one of particle removal and volume inefficiency adjustment is performed.
  • the second scanning speed is faster than the first scanning speed. It is preferable to carry it out at.
  • the grid-like pattern 901 is formed around the ground terminal 23b of the intake air temperature sensor 23 in the ring holding portion 25, but one surface or the other surface of the ring holding portion 25 is entirely covered.
  • a grid pattern 901 may be formed.
  • the air flow meter 20 according to the second embodiment will be described with reference to FIGS. 16 to 18.
  • a grid-like pattern 901 having conductivity is formed around the entire outer wall surface 24b which is the outer surface of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. Has been done.
  • a grid-like pattern 901 having conductivity is formed around the through hole 251 formed in the ring holding portion 25 and a part of the outer wall surface 24b of the bypass housing 24. Has been done.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 in the portion where the detection element 22b of the flow rate detection unit 22 is located. More specifically, the conductive portion 90 is formed on the outer peripheral surface of the bypass housing 24 in the portion where the detection element 22b of the flow rate detection unit 22 is located. In other words, it is located in the direction orthogonal to the axial core connecting the housing base end side and the housing tip side when viewed from the portion of the outer wall surface 24b of the bypass housing 24 where the detection element 22b of the flow rate detection unit 22 is located. A conductive portion 90 is formed at the portion.
  • the area of the region where the conductive portion 90 is not formed on the outer wall surface 24b of the bypass housing 24 is larger than the area of the region where the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24.
  • the time required for forming the conductive portion 90 is long and the cost is high.
  • the conductive portion 90 of the air flow meter 20 of the present embodiment is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the detection element 22b of the flow rate detection unit 22 is located. According to this, the influence of foreign matter such as charged dust on the detection element 22b can be effectively suppressed.
  • the area of the region where the conductive portion 90 is not formed on the outer wall surface 24b of the bypass housing 24 is larger than the area of the region where the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24.
  • the area of the region where the conductive portion 90 is formed can be reduced, and the strength decrease of the bypass housing 24 due to the formation of the conductive portion 90 can be suppressed.
  • the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24 located on the front side and the back side of the detection element 22b, respectively, and the conductive portion 90 is provided in addition to these portions. It can also be prevented from forming. That is, the detection element 22b may be arranged between the conductive portion 90 formed on one surface of the bypass housing 24 and the conductive portion 90 formed on the other surface of the bypass housing 24.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b which is the outer surface of the bypass housing 24.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the detection element 22b of the flow rate detection unit 22 and the introduction path 32b of the measurement passage 32 are located.
  • the air flow meter 20 has a detection element 22b that detects a physical quantity of air flowing through the bypass passage 30. Further, the bypass passage 30 has an introduction path 32b for introducing intake air into the detection path 32a in which the detection element 22b is arranged.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 so as to surround the detection element 22b and the introduction path 32b.
  • the air flow meter 20 is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
  • the conductive portion 90 of the air flow meter 20 of the present embodiment is formed on a part of the outer wall surface 24b of the bypass housing 24 so as to surround the detection element 22b and the introduction path 32b. According to this, the influence of foreign matter such as charged dust on the detection element 22b can be effectively suppressed.
  • the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24 located on the front side and the back side of the detection element 22b, respectively, and the conductive portion 90 is provided in addition to these portions. It can also be prevented from forming. That is, the detection element 22b may be arranged between the conductive portion 90 formed on one surface of the bypass housing 24 and the conductive portion 90 formed on the other surface of the bypass housing 24.
  • the conductive portion 90 is formed on a part of the wall surface 24b which is the outer surface of the bypass housing 24.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b which is the outer surface of the bypass housing 24 at the portion where the discharge path 32c of the bypass passage 30 is located.
  • the bypass passage 30 has an discharge path 32c for discharging air from the detection path 32a in which the detection element 22b is arranged.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the discharge passage 32c of the bypass passage 30 is located.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b which is the outer surface of the bypass housing 24.
  • the air flow meter 20 of the present embodiment includes a detection path 32a in which the detection element 22b is arranged, and an introduction path 32b for introducing air into the detection path 32a.
  • a conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the passage passage 31 for introducing air into the introduction path 32b is located. That is, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the bypass passage 30 on the upstream side of the air flow from the detection element 22b is located.
  • the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
  • the air flow meter 20 according to the sixth embodiment will be described with reference to FIGS. 28 to 30.
  • the conductive portion 90 is formed on the entire outer wall surface 24b which is the outer surface of the bypass housing 24. Further, a part of the conductive portion 90 of the air flow meter 20 of the present embodiment is formed of a grid-like pattern 901, and the remaining part of the conductive portion 90 is formed of a striped pattern 902.
  • the carbonized portion 15 shown in FIGS. 59 to 61 constitutes a plurality of conductive portions 902a shown in FIGS. 28 to 30.
  • a plurality of carbonized portions 15 are formed so as to extend linearly.
  • the plurality of conductive portions 902a are composed of carbonized portions 15 extending in an elongated shape.
  • a plurality of linear conductive portions 902a extend in parallel to the outer surface 62 of the base portion 61.
  • the striped pattern 902 has a plurality of conductive portions 902a. Further, the plurality of conductive portions 902a extend in parallel.
  • the conductive portion 90 may be formed by combining the grid-like pattern 901 and the striped pattern 902.
  • the air flow meter 20 according to the seventh embodiment will be described with reference to FIGS. 31 to 34.
  • a grid-like pattern 901 having conductivity is formed around the entire outer wall surface 24b which is the outer surface of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. There is.
  • the conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a striped pattern 902. In this way, the conductive portion 90 may be formed only by the striped pattern 902.
  • the air flow meter 20 according to the eighth embodiment will be described with reference to FIGS. 35 to 36.
  • the conductive portion 90 is formed on the entire inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24.
  • the conductive portion 90 is not formed around the outer wall surface 24b of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. Further, the conductive portion 90 has a lattice shape.
  • the air flow meter 20 of the present embodiment is provided with a connection terminal 28b between the conductive portion 90 and the connector terminal 28a. Then, the electric charge of the conductive portion 90 is discharged from the connection terminal 28b to the ground 45 through the connector terminal 28a.
  • the conductive portion 90 is formed on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24, the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24 is formed. Can be made conductive.
  • the air flow meter 20 according to the ninth embodiment will be described with reference to FIGS. 37 to 38.
  • the conductive portion 90 is formed on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24.
  • the conductive portion 90 is formed on a part of the inner wall surface 24a of the bypass passage 30 of the bypass housing 24.
  • the conductive portion 90 is not formed on the outer wall surface 24b of the bypass housing 24. Further, the conductive portion 90 has a lattice shape.
  • the conductive portion 90 is formed on the inner wall surface 24a of the measurement passage 32 out of the inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24. Further, of the inner wall surface 24a of the bypass passage 30 of the bypass housing 24, the conductive portion 90 is not formed on the inner wall surface 24a of the passage passage 31.
  • the conductive portion 90 is formed on a part of the inner wall surface 24a of the bypass passage 30 of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
  • the air flow meter 20 according to the tenth embodiment will be described with reference to FIGS. 39 to 40.
  • the conductive portion 90 is formed on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24. Further, a part of the conductive portion 90 is composed of a grid-like pattern 901, and the remaining part of the conductive portion 90 is composed of a striped pattern 902.
  • the conductive portion 90 may be formed by combining the grid-like pattern 901 and the striped pattern 902.
  • the air flow meter 20 (11th Embodiment) The air flow meter 20 according to the eleventh embodiment will be described with reference to FIGS. 41 to 42.
  • the conductive portion 90 is formed on the entire inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24. Further, the conductive portion 90 is composed of a striped pattern 902.
  • the striped pattern 902 can be arranged on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24 to form the conductive portion 90.
  • the air flow meter 20 according to the twelfth embodiment will be described with reference to FIGS. 43 to 46.
  • the conductive portion 90 is formed around the entire outer wall surface 24b which is the outer surface of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25.
  • the conductive portion 90 of the present embodiment is composed of a plurality of patterns 903 having a circular shape.
  • the plurality of patterns 903 are formed at physically separated positions and are not connected to each other. There is.
  • the pattern 903 is not formed on the inner surface of the bypass housing 24.
  • the pattern 903 is formed on the entire inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24.
  • the conductive portion 90 has a plurality of patterns 903 having a circular shape. The plurality of patterns 903 are formed at physically separated positions. In the conductive portion 90, the pattern 903 is not formed on the outer wall surface 24b, which is the outer surface of the bypass housing 24.
  • a part of the conductive portion 90 of the air flow meter 20 of the present embodiment is formed of a grid-like pattern 901, and the remaining part of the conductive portion 90 is formed of a parallel running pattern 906 running in parallel with each other.
  • the grid-like pattern 901 is formed on the base end side of the bypass housing 24, and the parallel running pattern 906 is from the grid-like pattern 901 formed on the base end side of the housing toward the outlet 33b of the bypass housing 24. It is formed to extend.
  • the conductive portion 90 may be formed by combining the grid-like pattern 901 and the parallel running pattern 906.
  • the conductive portion 90 is formed on a part of the inner wall surface 24a which is the inner surface of the bypass housing 24.
  • the conductive portion 90 is composed of a grid-like pattern 901, a parallel running pattern 906 running in parallel, and a curved curve pattern 907 forming a curved line.
  • the grid-like pattern 901 is formed on the inner wall surface 24a forming the measurement passage 32.
  • the parallel running pattern 906 is formed so as to extend from the grid-like pattern 901 formed in the measurement passage 32 toward the outlet 33b of the bypass housing 24.
  • the curved pattern 907 is formed so as to extend from the grid-like pattern 901 formed in the measuring passage 32 toward the passing passage 31 of the bypass housing 24.
  • the conductive portion 90 may be formed by combining the grid pattern 901, the parallel running pattern 906, and the curved pattern 907.
  • FIG. 53 A method of manufacturing the air flow meter 20 according to the 16th embodiment will be described with reference to FIG. 53.
  • the method for manufacturing the air flow meter 20 of the present embodiment includes a preparation step, a first heating step, and a second heating step.
  • the operator prepares an air flow meter 20 including a resin bypass housing 24 that forms a bypass passage 30 through which a fluid flows in S100.
  • the bypass housing 24 is prepared in a state of being divided by the dividing surface shown by the VI-VI line in FIG. Further, the intake air temperature sensor 23 is attached to the bypass housing 24 in advance. Then, one of the divided bypass housings 24 is fixed to the processing jig.
  • the divided bypass housings are indicated by reference numerals 21A and 21B.
  • the operator carries out the first heating step in S200. Specifically, the operator uses a laser machine to irradiate the surface of the bypass housing 24 with a laser in a grid pattern to heat the surface of the bypass housing 24.
  • laser irradiation is performed with high output.
  • the worker carries out a second heating step called fume processing in S300.
  • the operator uses a laser machine to irradiate the entire surface of the bypass housing 24 with a laser at a higher speed to heat the surface of the bypass housing 24.
  • the laser irradiation is performed with a weaker output than the previous first heating step.
  • dust or the like called fume generated when the laser irradiation is performed in the grid pattern is removed.
  • the volume resistivity of the conductive portion 90 is adjusted to a desired value.
  • the other divided bypass housing 24 is fixed to the processing jig, and the first heating step of S200 and the second heating step of S300 are performed on the bypass housing 24.
  • the bypass housing 24 is divided into a plurality of parts to form the conductive portion 90. .. After that, the conductive portion 90 can be formed on the inner wall surface 24a of the bypass housing 24 by integrating the plurality of divided bypass housings 24.
  • the air flow meter 20 according to the 17th embodiment will be described with reference to FIGS. 54A and 54B.
  • the conductive portion 90 of the air flow meter 20 of the twelfth to fourteenth embodiments is composed of a plurality of patterns 903 having a circular shape.
  • the plurality of patterns 903 can be arranged so that the centers of the patterns 903 are arranged diagonally with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 54B, the center of the pattern 903 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
  • the air flow meter 20 according to the eighteenth embodiment will be described with reference to FIGS. 55A and 55B.
  • the conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a plurality of patterns 904 forming a square.
  • the plurality of patterns 903 can be arranged so that the centers of the patterns 904 are aligned obliquely with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 55B, the center of the pattern 904 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
  • the air flow meter 20 according to the 19th embodiment will be described with reference to FIGS. 56A and 56B.
  • the conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a plurality of patterns 905 forming a triangle.
  • the plurality of patterns 905 can be arranged so that the centers of the patterns 905 are aligned obliquely with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 56B, the center of the pattern 905 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
  • the air flow meter 20 according to the twentieth embodiment will be described with reference to FIGS. 57A and 57B.
  • the conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a plurality of patterns 905 forming an inverted triangle with a triangle.
  • the plurality of patterns 905 can be arranged so that the centers of the patterns 905 are aligned obliquely with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 57B, the center of the pattern 905 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
  • the air flow meter 20 according to the 21st embodiment will be described with reference to FIG. 58.
  • the bypass housing 24 of the present embodiment has a first surface 241 and a second surface 242 extending in a direction intersecting the first surface 241 and a third surface 243 extending in a direction intersecting the second surface 242. ing.
  • bypass housing 24 loosely connects the connecting surface 244 that loosely connects the portion connecting the first surface 241 and the second surface 242 and the portion connecting the second surface 242 and the third surface 243. It has a connection surface 245 and.
  • the conductive portion 90 is formed so as to gently bend from the first surface 241 to the third surface 243 via the connecting surface 244, the second surface 242, and the connecting surface 245.
  • the connecting surface 244 between the first surface 241 and the second surface 242 and the connecting surface 245 between the second surface 242 and the third surface 243 have a relatively large R shape (that is, a round shape).
  • the radius of curvature of the corner portion 34 and the corner portion 35 be as large as possible, and the specific size is preferably at least 5 mm or more.
  • the processing accuracy of the conductive portion 90 can be improved by forming the connecting surface 244 and the connecting surface 245 into a relatively large R shape.
  • the electric charges of the patterns 901 to 906 constituting the conductive portion 90 are discharged to the ground 45 via the ground terminal 23b of the intake air temperature sensor 23 or the connection terminal 28b.
  • the electric charges of the patterns 901 to 906 constituting the conductive portion 90 may be discharged to the ground 45 from a portion other than the ground terminal 23b and the connection terminal 28b of the intake air temperature sensor 23.
  • the patterns 901 to 906 constituting the conductive portion 90 are electrically connected to the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23.
  • the conductive portion 90 and the ground terminal 23b of the intake air temperature sensor 23 may not be connected. Specifically, a gap may be provided between the conductive portion 90 and the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23, and the conductive portion 90 and the ground 45 may not be connected. However, in this case, the separation distance between the conductive portion 90 and the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23 is the distance at which the electric charge can move from the conductive portion 90 to the ground 45.
  • the electric charge can be transferred from the conductive portion 90 to the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23 by the electric discharge, and then discharged to the ground 45 through the connector terminal 28a.
  • the distance between the conductive portion 90 and the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23 is preferably less than 0.5 mm.
  • the conductive portion 90 is formed by laser irradiation, but the present invention is not limited to this, and other methods such as plasma treatment, high-pressure steam irradiation, electron beam irradiation, and heating using Joule heat are used. Also, the optimum method can be selected according to the workability of the resin member 10.
  • the ground connection portion that connects the conductive portion 90 and the ground 45 is not limited to the intake air temperature terminal, and may be another portion such as an intake pipe. In short, the ground connection portion may be connected to the ground 45 and can discharge the electric charge to the ground 45.
  • the conductive portion 90 is not limited to the pattern shape, but may be formed into a film shape. In this case, better electromagnetic wave shielding properties can be imparted to the resin member 10.
  • the conductive portion 90 is not limited to the one containing the carbide 66 formed by carbonization by heat.
  • a metal pattern may be formed on the surface of the housing 21 as the conductive portion 90 having conductivity.
  • the first conductive portion 901a and the second conductive portion 901b are formed in a + shape, but can be formed so as to be connected in a T shape, for example. Further, the first conductive portion 901a and the second conductive portion 901b do not have to be orthogonal to each other. Further, at least one of the first conductive portion 901a and the second conductive portion 901b may be formed. Further, either the first conductive portion 901a or the second conductive portion 901b may be connected to the ground 45, or both the first conductive portion 901a and the second conductive portion 901b may be connected to the ground 45. ..
  • first conductive portion 901a or the second conductive portion 901b may be arranged so as to be close to the ground 45 without being connected to the ground 45. Further, the first conductive portion 901a and the second conductive portion 901b do not have to extend linearly, and may have a curved shape, for example. Further, the first conductive portion 901a and the second conductive portion 901b may be arranged apart from each other. However, in this case, it is preferable to set the separation distance so that the electric charge can move.
  • the plurality of patterns 903 are arranged apart from each other and are not connected to each other. Part or all of the portions may be connected by a second conductive portion (not shown).
  • all or part of the conductive portion 90 is composed of a striped pattern 902.
  • These striped patterns 902 may be formed so as to extend in any of the vertical direction, the horizontal direction, and the oblique direction with respect to the housing 21.
  • the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done.
  • the physical quantity measuring device for measuring the physical quantity of the fluid has an insulating property and is a resin bypass forming a bypass passage through which the fluid flows. It has a housing. Further, the physical quantity measuring device includes a physical quantity detecting unit that outputs a detection signal according to the physical quantity of the fluid flowing through the bypass passage. Further, the physical quantity measuring device includes a conductive portion having conductivity formed on at least one surface of the outer surface of the bypass housing and the inner surface of the bypass housing forming the bypass passage. The physical quantity measuring device is configured such that an electric charge is discharged from the conductive portion to the ground.
  • the conductive portion contains a carbide formed by carbonization by heat on the surface of the bypass housing.
  • the conductive portion can be configured to contain the carbonized material formed by carbonization.
  • the conductive portion is formed on the entire outer surface of the bypass housing. According to this, the entire outer surface of the bypass housing can be made conductive.
  • the conductive portion is formed on a part of the outer surface of the bypass housing. According to this, since the area of the conductive portion can be reduced as compared with the case where the conductive portion is formed on the entire outer surface of the bypass housing, the conductive portion can be formed in a short time and the manufacturing cost is reduced. You can also do it.
  • the physical quantity detecting unit has a detection element for detecting the physical quantity of the fluid flowing through the bypass passage.
  • the conductive portion is formed on a part of the outer surface of the bypass housing so as to surround the periphery of the detection element.
  • the physical quantity detection unit has a detection element for detecting the physical quantity of the fluid flowing through the bypass passage, and the bypass passage introduces the intake air into the detection path in which the detection element is arranged.
  • the bypass passage introduces the intake air into the detection path in which the detection element is arranged.
  • a conductive portion is arranged on a part of the outer surface of the bypass housing so as to surround the detection element and the introduction path.
  • the conductive portion is formed on the entire inner surface forming the bypass passage. In this way, even if the conductive portion is formed on the entire inner surface forming the bypass passage, it is possible to reduce the influence of foreign matter such as charged dust on the physical quantity detecting portion.
  • the conductive portion is formed on a part of the inner surface of the bypass housing forming the bypass passage.
  • the area of the conductive portion can be reduced as compared with the case where the conductive portion is formed on the entire inner surface of the bypass housing forming the bypass passage, so that the conductive portion can be formed in a short time and the manufacturing cost is reduced. It can also be reduced.
  • the conductive portion is composed of a grid-like pattern. According to this, the pattern can be formed quickly.
  • the conductive portion is composed of a striped pattern. According to this, the pattern can be formed more quickly.
  • the interval between adjacent patterns is longer than the depth of the pattern. As described above, it is preferable that the interval between adjacent patterns is longer than the depth of the pattern.
  • the bypass housing loosely connects the first surface, the second surface extending in the direction intersecting the first surface, and the portion connecting the first surface and the second surface. It has a connecting surface.
  • the conductive portion is formed in a path from the first surface to the second surface via the connecting surface.
  • the conductive portion is composed of a plurality of patterns forming a circular shape or a polygonal shape. Further, a plurality of patterns are formed so as to spread in a plane on the surface of the bypass housing, and electric charges are released to the ground by the discharge generated between the plurality of patterns.
  • the conductive portion can be configured by a plurality of patterns forming a circular shape or a polygonal shape, and the electric charge can be discharged to the ground by the discharge generated between the plurality of patterns.
  • the interval between adjacent patterns is a distance at which electric charges can be moved from one of the adjacent patterns to the other by electric discharge.
  • the distance between adjacent patterns can be a distance at which charges can move from one of the adjacent patterns to the other by electric discharge.
  • the conductive portion is connected to the ground.
  • the conductive portion can be configured to be connected to the ground.
  • the conductive portion is not connected to the ground, and the electric charge is discharged from the conductive portion to the ground by the electric discharge.
  • the conductive portion can be not connected to the ground, and the electric charge can be discharged from the conductive portion to the ground by electric discharge.
  • the physical quantity measuring device includes a temperature sensor that detects the temperature of the fluid. Further, the ground terminal of the temperature sensor is arranged so as to be exposed on the outer surface of the bypass housing, and the electric charge is discharged from the conductive portion to the ground via the ground terminal of the temperature sensor.
  • the electric charge can be discharged from the conductive portion to the ground via the ground terminal of the temperature sensor arranged so as to be exposed on the outer surface of the bypass housing.
  • the area of the region where the conductive portion is not formed on the outer surface of the bypass housing is larger than the area of the region where the conductive portion is formed on the outer surface of the bypass housing.
  • the area of the region where the conductive portion is formed can be reduced, and the decrease in strength of the bypass housing due to the formation of the conductive portion can be suppressed.
  • the conductive portion is formed on the surface of only one of the outer surface of the bypass housing and the inner surface of the bypass housing. Further, the wall thickness between one surface of the bypass housing in which the conductive portion is formed and the other surface of the bypass housing is insulated between one surface in which the conductive portion of the bypass housing is formed and the other surface. The length is such that it can be discharged by breakdown.
  • the method for manufacturing the physical quantity detecting device of the present embodiment includes preparing a resin bypass housing having insulating properties and forming a bypass passage through which a fluid flows. Further, this manufacturing method includes forming a conductive portion having conductivity on at least one of an outer surface of the bypass housing and an inner surface forming the bypass passage by carbonization by heat.
  • the conductive portion is formed on the outer surface of the bypass housing.
  • the conductive portion can be formed on the outer surface of the bypass housing.
  • the conductive portion is formed on the inner surface of the bypass housing.
  • the conductive portion can be formed on the inner surface of the bypass housing.
  • the 23rd aspect after forming a conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by heat, it adheres to at least one of the outer surface and the inner surface of the bypass housing by heat weaker than heat. Includes performing at least one of the removal of suspended particles and the adjustment of low volume efficiency.
  • the conductive portion is formed at the first scanning speed. Further, by performing at least one of removing suspended particles adhering to at least one of the outer surface and the inner surface of the bypass housing by heat weaker than heat and adjusting the volume inefficiency, the second scanning speed is faster than the first scanning speed. At least one of the removal of suspended particles and the adjustment of low volume efficiency is performed at the scanning speed.
  • the second scanning speed is faster than the first scanning speed. It is preferable to carry it out.

Abstract

This physical quantity measuring device is provided with a bypass housing (24) made of resin, and a conductive portion (90) that is electrically conductive. The bypass housing (24) is insulating and forms a bypass passage (30) through which a fluid flows. The conductive portion (90) is formed in such a way as to extend in a planar shape over at least one of a wall surface (24b), which is an outer surface of the bypass housing (24), and a wall surface (24a), which is an inner surface of the bypass housing that forms the bypass passage (30). The physical quantity measuring device has a configuration in which electric charge is discharged from the conductive portion (90) to ground (45).

Description

物理量計測装置およびその製造方法Physical quantity measuring device and its manufacturing method 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年11月8日に出願された日本特許出願番号2019-203488号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-203488 filed on November 8, 2019, the contents of which are incorporated herein by reference.
 本開示は、物理量計測装置およびその製造方法に関するものである。 This disclosure relates to a physical quantity measuring device and a method for manufacturing the same.
 従来、主通路から分岐するバイパス通路を有するハウジングと、バイパス通路に設けられた流量検出部とを備え、主通路を流れる気体の流量を計測する流量計が知られている。この種の流量計を使用する際、バイパス通路を流れるダスト等の異物が帯電していると、流量検出部が帯電してしまい流量計の特性ずれが発生するおそれがある。なお、特性ずれとは、流量計が計測する気体流量に対する流量計の出力特性が変化することをいう。
 これに対して、特許文献1では、炭素繊維が混ぜられた樹脂材料がハウジングの樹脂成形に用いられていることで、このハウジングに導電性が付与されている。この構成では、バイパス通路を流れる異物からハウジングに電荷が付与されたとしても、この電荷が炭素繊維によってハウジングから外部に放出され、ハウジングに電荷が溜まりにくくなっている。つまり、ハウジングの帯電が抑制される。
Conventionally, there is known a flow meter having a housing having a bypass passage branching from the main passage and a flow rate detecting unit provided in the bypass passage to measure the flow rate of gas flowing through the main passage. When using this type of flow meter, if foreign matter such as dust flowing through the bypass passage is charged, the flow rate detection unit may be charged and the characteristics of the flow meter may be deviated. The characteristic deviation means that the output characteristic of the flow meter changes with respect to the gas flow rate measured by the flow meter.
On the other hand, in Patent Document 1, the resin material mixed with carbon fibers is used for resin molding of the housing, so that the housing is imparted with conductivity. In this configuration, even if an electric charge is applied to the housing by a foreign substance flowing through the bypass passage, the electric charge is released from the housing to the outside by the carbon fiber, and the electric charge is less likely to be accumulated in the housing. That is, the charging of the housing is suppressed.
独国特許出願公開第102014218579号明細書German Patent Application Publication No. 102014218579
 しかしながら、上記特許文献1では、樹脂成形用の材料での炭素繊維の含有量が不足している場合、ハウジングの帯電抑制機能が適正に発揮されず、ハウジングに電荷が溜まることが懸念される。また、樹脂成型用の材料に炭素繊維が含まれていない場合には、ハウジングに帯電抑制機能を付与することができず、ハウジングが帯電することが懸念される。これらのようにハウジングが帯電した場合には、流量等の物理量を計測する物理量計測装置について、特性ずれの発生など計測精度が低下することが懸念される。 However, in the above-mentioned Patent Document 1, when the content of carbon fiber in the material for resin molding is insufficient, the charge suppressing function of the housing is not properly exhibited, and there is a concern that electric charge is accumulated in the housing. Further, when the material for resin molding does not contain carbon fibers, it is not possible to impart the charge suppressing function to the housing, and there is a concern that the housing will be charged. When the housing is charged as described above, there is a concern that the measurement accuracy of the physical quantity measuring device for measuring the physical quantity such as the flow rate may be lowered due to the occurrence of characteristic deviation.
 本開示の目的は、物理量計測装置の計測精度を高めることである。 The purpose of this disclosure is to improve the measurement accuracy of the physical quantity measuring device.
 本開示の1つの観点によれば、流体の物理量を計測する物理量計測装置は、絶縁性を有し、流体が流れるバイパス通路を形成する樹脂製のバイパスハウジングと、バイパス通路を流れる流体の物理量に応じた検出信号を出力する物理量検出部と、バイパスハウジングの外面およびバイパス通路を形成するバイパスハウジングの内面の少なくとも一方に形成された導電性を有する導電部と、を備え、導電部からグランドへ電荷が放出される構成となっている。 According to one aspect of the present disclosure, a physical quantity measuring device for measuring a physical quantity of a fluid has an insulating property and has a resin bypass housing forming a bypass passage through which the fluid flows, and a physical quantity of the fluid flowing through the bypass passage. A physical quantity detecting unit that outputs a corresponding detection signal and a conductive unit having conductivity formed on at least one of the outer surface of the bypass housing and the inner surface of the bypass housing forming the bypass passage are provided, and the electric charge is charged from the conductive unit to the ground. Is released.
 このような構成によれば、ハウジングを樹脂成形した後に、加熱等によりハウジングに導電部を後付けすることで、ハウジングの帯電抑制機能を向上させることができる。この場合、ハウジングや物理量検出部が帯電するということが生じにくくなるため、物理量計測装置に計測精度を高めることができる。 According to such a configuration, the charge suppressing function of the housing can be improved by retrofitting the housing with a conductive portion by heating or the like after molding the housing with resin. In this case, the housing and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
 また、別の観点によれば、流体の物理量を計測する物理量計測装置の製造方法は、絶縁性を有し、流体が流れるバイパス通路を形成する樹脂製のバイパスハウジングを用意することと、熱による炭化によってバイパスハウジングの外面およびバイパス通路を形成する内面の少なくとも一方に導電性を有する導電部を形成することと、を含んでいる。 From another point of view, the manufacturing method of the physical quantity measuring device for measuring the physical quantity of the fluid is to prepare a resin bypass housing which has an insulating property and forms a bypass passage through which the fluid flows, and by heat. It includes forming a conductive portion having conductivity on at least one of the outer surface of the bypass housing and the inner surface forming the bypass passage by carbonization.
 このような方法によれば、樹脂製のハウジングに、加熱等によりハウジングに導電部を後付けすることで、ハウジングの帯電抑制機能を向上させることができる。この場合、ハウジングや物理量検出部が帯電するということが生じにくくなるため、物理量計測装置に計測精度を高めることができる。 According to such a method, the charge suppressing function of the housing can be improved by retrofitting the resin housing with a conductive portion by heating or the like. In this case, the housing and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference symbols in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態のエアフロメータおよびそれが取り付けられた吸気管を示す図である。It is a figure which shows the air flow meter of 1st Embodiment and the intake pipe to which it attached. 図1のエアフロメータの正面図である。It is a front view of the air flow meter of FIG. 図2中のIII矢視図である。FIG. 3 is a view taken along the line III in FIG. 図2中のIV矢視図である。It is an IV arrow view in FIG. 図2中のV矢視図である。It is a V arrow view in FIG. 図2中のVI-VI断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 図2中のVII-VII断面図である。It is sectional drawing of VII-VII in FIG. 図3中のVIII矢視図である。It is VIII arrow view in FIG. 図2に対応する図であって、導電部を示した図である。It is a figure corresponding to FIG. 2, and is the figure which showed the conductive part. 図3に対応する図であって、導電部を示した図である。It is a figure corresponding to FIG. 3, and is the figure which showed the conductive part. 図4に対応する図であって、導電部を示した図である。It is a figure corresponding to FIG. 4, and is the figure which showed the conductive part. 図5に対応する図であって、導電部を示した図である。It is a figure corresponding to FIG. 5, and is the figure which showed the conductive part. ハウジングへの導電部の形成工程の流れを表した図である。It is a figure which showed the flow of the process of forming a conductive part to a housing. ハウジングへの導電部の形成工程について説明するための図である。It is a figure for demonstrating the process of forming a conductive part in a housing. パターン間の距離とパターンの深さについて説明するための図である。It is a figure for demonstrating the distance between patterns and the depth of a pattern. バイパスハウジングの断面図である。It is sectional drawing of the bypass housing. 図15B中の炭化部を構成するグラファイトのa-b面を示す図である。It is a figure which shows the ab plane of graphite which constitutes the carbonized part in FIG. 15B. 第2実施形態のエアフロメータを表した図であって、図3中のVIII矢視図に対応する図である。It is the figure which showed the air flow meter of 2nd Embodiment, and is the figure corresponding to the VIII arrow view in FIG. 第2実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is a figure showing the air flow meter of the 2nd Embodiment, and is the figure corresponding to the arrow III view in FIG. 第2実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is the figure which showed the air flow meter of 2nd Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第3実施形態のエアフロメータを表した図であって、図3中のVIII矢視図に対応する図である。It is the figure which showed the air flow meter of 3rd Embodiment, and is the figure corresponding to the VIII arrow view in FIG. 第3実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is the figure which showed the air flow meter of 3rd Embodiment, and is the figure corresponding to the arrow III view in FIG. 第3実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is the figure which showed the air flow meter of 3rd Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第4実施形態のエアフロメータの正面図である。It is a front view of the air flow meter of 4th Embodiment. 第4実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is a figure which showed the air flow meter of 4th Embodiment, and is the figure corresponding to the arrow III view in FIG. 第4実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is a figure showing the air flow meter of 4th Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第5実施形態のエアフロメータを表した図であって、図3中のVIII矢視図に対応する図である。It is a figure showing the air flow meter of 5th Embodiment, and is the figure corresponding to the VIII arrow view in FIG. 第5実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is the figure which showed the air flow meter of 5th Embodiment, and is the figure corresponding to the arrow III view in FIG. 第5実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is a figure showing the air flow meter of 5th Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第6実施形態のエアフロメータの正面図である。It is a front view of the air flow meter of the sixth embodiment. 第6実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is the figure which showed the air flow meter of 6th Embodiment, and is the figure corresponding to the arrow III view in FIG. 第6実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is a figure showing the air flow meter of 6th Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第7実施形態のエアフロメータの正面図である。It is a front view of the air flow meter of the 7th embodiment. 第7実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is a figure which showed the air flow meter of 7th Embodiment, and is the figure corresponding to the arrow III view in FIG. 第7実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is a figure showing the air flow meter of 7th Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第7実施形態のエアフロメータを表した図であって、図2中のV矢視図に対応する図である。It is a figure showing the air flow meter of 7th Embodiment, and is the figure corresponding to the V arrow view in FIG. 第8実施形態のエアフロメータを表した図であって、図2中のVI-VI断面図に対応する図である。It is a figure showing the air flow meter of 8th Embodiment, and is the figure corresponding to the VI-VI sectional view in FIG. 第8実施形態のエアフロメータを表した図であって、図2中のVII-VII断面図に対応する図である。It is a figure showing the air flow meter of 8th Embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. 第9実施形態のエアフロメータを表した図であって、図2中のVI-VI断面図に対応する図である。It is a figure showing the air flow meter of the 9th Embodiment, and is the figure corresponding to the VI-VI sectional view in FIG. 第9実施形態のエアフロメータを表した図であって、図2中のVII-VII断面図に対応する図である。It is a figure showing the air flow meter of the 9th Embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. 第10実施形態のエアフロメータを表した図であって、図2中のVI-VI断面図に対応する図である。It is a figure showing the air flow meter of the tenth embodiment, and is the figure corresponding to the VI-VI cross-sectional view in FIG. 第10実施形態のエアフロメータを表した図であって、図2中のVII-VII断面図に対応する図である。It is a figure showing the air flow meter of the tenth embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. 第11実施形態のエアフロメータを表した図であって、図2中のVI-VI断面図である。It is the figure which showed the air flow meter of 11th Embodiment, and is the VI-VI sectional view in FIG. 第11実施形態のエアフロメータを表した図であって、図2中のVII-VII断面図に対応する図である。It is a figure showing the air flow meter of 11th Embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. 第12実施形態のエアフロメータの正面図である。It is a front view of the air flow meter of the twelfth embodiment. 第12実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is a figure which showed the air flow meter of the twelfth embodiment, and is the figure corresponding to the arrow III view in FIG. 第12実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is a figure showing the air flow meter of the twelfth embodiment, and is the figure corresponding to the IV arrow view in FIG. 第12実施形態のエアフロメータを表した図であって、図2中のV矢視図に対応する図である。It is a figure showing the air flow meter of the twelfth embodiment, and is the figure corresponding to the V arrow view in FIG. 第13実施形態のエアフロメータを表した図であって、図2中のVI-VI断面図に対応する図である。It is a figure showing the air flow meter of the thirteenth embodiment, and is the figure corresponding to the VI-VI sectional view in FIG. 第13実施形態のエアフロメータを表した図であって、図2中のVII-VII断面図に対応する図である。It is a figure showing the air flow meter of the thirteenth embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. 第14実施形態のエアフロメータを表した図であって、図2中のIII矢視図に対応する図である。It is the figure which showed the air flow meter of 14th Embodiment, and is the figure corresponding to the arrow III view in FIG. 第14実施形態のエアフロメータを表した図であって、図2中のIV矢視図に対応する図である。It is a figure showing the air flow meter of 14th Embodiment, and is the figure corresponding to the IV arrow view in FIG. 第15実施形態のエアフロメータを表した図であって、図2中のVI-VI断面図に対応する図である。It is a figure showing the air flow meter of the fifteenth embodiment, and is the figure corresponding to the VI-VI cross-sectional view in FIG. 第15実施形態のエアフロメータを表した図であって、図2中のVII-VII断面図に対応する図である。It is a figure showing the air flow meter of the fifteenth embodiment, and is the figure corresponding to the sectional view VII-VII in FIG. 第16実施形態に係るエアフロメータの製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the air flow meter which concerns on 16th Embodiment. 第17実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 17th Embodiment. 第17実施形態に係るエアフロメータの表面に形成されたパターンを表した図であるIt is a figure showing the pattern formed on the surface of the air flow meter which concerns on 17th Embodiment. 第18実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 18th Embodiment. 第18実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 18th Embodiment. 第19実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 19th Embodiment. 第19実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 19th Embodiment. 第20実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 20th Embodiment. 第20実施形態に係るエアフロメータの表面に形成されたパターンを表した図である。It is a figure showing the pattern formed on the surface of the air flow meter which concerns on 20th Embodiment. 第21実施形態に係るエアフロメータのバイパスハウジングの表面に形成された導電部を表した図である。It is a figure showing the conductive part formed on the surface of the bypass housing of the air flow meter which concerns on 21st Embodiment. 第1実施形態に係るエアフロメータのハウジングを構成している樹脂部材の斜視図である。It is a perspective view of the resin member which constitutes the housing of the air flow meter which concerns on 1st Embodiment. 図59中のLX-LX断面図である。It is sectional drawing of LX-LX in FIG. 59. 図60に対応する図であって、フィラーが炭化物に引っかかっている様子を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing how the filler is caught in the carbide. 第1実施形態の樹脂部材の正面の拡大図である。It is an enlarged view of the front surface of the resin member of 1st Embodiment. 図62中のLXIII-LXIII断面図である。It is sectional drawing of LXIII-LXIII in FIG. 62.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each of the following embodiments, the same or equal parts are designated by the same reference numerals, and the description thereof will be omitted.
 (第1実施形態)
 本実施形態に係る物理量計測装置について説明する。まず、本物理量計測装置の基本構成について、図1~図15C、図59~図63を用いて説明する。図1に示すように、本物理量計測装置は、車両に搭載されたエアフロメータ20として構成されている。エアフロメータ20は、主通路としての吸気通路80に設けられており、内燃機関に供給される吸入空気の流量、温度等の物理量を計測する機能を有している。なお、さらに、エアフロメータ20は、吸入空気の湿度、圧力等の物理量を計測する機能を備えることも可能である。
(First Embodiment)
The physical quantity measuring device according to this embodiment will be described. First, the basic configuration of the physical quantity measuring device will be described with reference to FIGS. 1 to 15C and FIGS. 59 to 63. As shown in FIG. 1, the physical quantity measuring device is configured as an air flow meter 20 mounted on a vehicle. The air flow meter 20 is provided in the intake passage 80 as the main passage, and has a function of measuring physical quantities such as the flow rate and temperature of the intake air supplied to the internal combustion engine. Further, the air flow meter 20 can also have a function of measuring physical quantities such as humidity and pressure of intake air.
 エアフロメータ20は、吸気通路80において図示しないエアクリーナの下流側であって図示しないスロットルバルブの上流側に配置されている。この場合、吸気通路80においてエアフロメータ20にとっては、エアクリーナ側が上流側であり、燃焼室側が下流側になる。 The air flow meter 20 is arranged in the intake passage 80 on the downstream side of the air cleaner (not shown) and on the upstream side of the throttle valve (not shown). In this case, in the intake passage 80, the air cleaner side is the upstream side and the combustion chamber side is the downstream side for the air flow meter 20.
 図1に示すように、エアフロメータ20は、吸気通路80を形成する吸気管82aに着脱可能に取り付けられている。エアフロメータ20は、吸気管82aの筒壁を貫通するよう形成されたエアフロ挿入孔82bに挿し込まれており、少なくとも一部が吸気通路80内に位置されている。吸気管82aは、エアフロ挿入孔82bから外側に向けて延びた円環状の管フランジ82cを有している。吸気管82aは、合成樹脂材料等により形成された配管を含んで構成されている。以降、吸気通路80の長手方向、すなわち吸気通路80において吸入空気が流れる方向のことを、流れ方向と記載する。 As shown in FIG. 1, the air flow meter 20 is detachably attached to an intake pipe 82a forming an intake passage 80. The air flow meter 20 is inserted into an air flow insertion hole 82b formed so as to penetrate the tubular wall of the intake pipe 82a, and at least a part thereof is located in the intake passage 80. The intake pipe 82a has an annular pipe flange 82c extending outward from the airflow insertion hole 82b. The intake pipe 82a includes a pipe formed of a synthetic resin material or the like. Hereinafter, the longitudinal direction of the intake passage 80, that is, the direction in which the intake air flows in the intake passage 80 will be referred to as a flow direction.
 図1~図6に示すように、エアフロメータ20は、ハウジング21、流量検出部22及び吸気温センサ23を有している。なお、流量検出部22は、流体の物理量に応じた検出信号を出力する物理量検出部に相当し、吸気温センサ23は、流体の温度を検出する温度センサに相当する。ハウジング21は、少なくとも樹脂を含んで形成されている。エアフロメータ20においては、ハウジング21が吸気管82aに取り付けられていることで、流量検出部22が、吸気通路80を流れる吸入空気と接触可能な状態になる。 As shown in FIGS. 1 to 6, the air flow meter 20 includes a housing 21, a flow rate detection unit 22, and an intake air temperature sensor 23. The flow rate detection unit 22 corresponds to a physical quantity detection unit that outputs a detection signal according to the physical quantity of the fluid, and the intake air temperature sensor 23 corresponds to a temperature sensor that detects the temperature of the fluid. The housing 21 is formed to contain at least resin. In the air flow meter 20, since the housing 21 is attached to the intake pipe 82a, the flow rate detecting unit 22 is in a state where it can come into contact with the intake air flowing through the intake passage 80.
 ハウジング21は、バイパスハウジング24、リング保持部25、フランジ部27、コネクタ部28、かしめ部29a及び保護突起29bを有している。リング保持部25にはOリング26が取り付けられている。リング保持部25は、Oリング26を介してエアフロ挿入孔82bに内嵌される部位である。 The housing 21 has a bypass housing 24, a ring holding portion 25, a flange portion 27, a connector portion 28, a caulking portion 29a, and a protective protrusion 29b. An O-ring 26 is attached to the ring holding portion 25. The ring holding portion 25 is a portion that is internally fitted into the airflow insertion hole 82b via the O-ring 26.
 バイパスハウジング24は、リング保持部25から吸気通路80に向けて突き出している。以降、バイパスハウジング24のリング保持部25側をハウジング基端と記載し、また、バイパスハウジング24のリング保持部25とは反対側をハウジング先端と呼ぶ。 The bypass housing 24 protrudes from the ring holding portion 25 toward the intake passage 80. Hereinafter, the ring holding portion 25 side of the bypass housing 24 will be referred to as a housing base end, and the side of the bypass housing 24 opposite to the ring holding portion 25 will be referred to as a housing tip.
 フランジ部27は、リング保持部25に対して吸気管82aの外側、すなわち吸気通路80外に配置されており、エアフロ挿入孔82bを吸気管82aの外側から覆った状態になっている。 The flange portion 27 is arranged outside the intake pipe 82a with respect to the ring holding portion 25, that is, outside the intake passage 80, and covers the airflow insertion hole 82b from the outside of the intake pipe 82a.
 コネクタ部28は、複数のコネクタターミナル28aを囲う部位であり、コネクタターミナル28aを保護するターミナル保護部に相当する。複数のコネクタターミナル28aのうちの1つはグランド端子であり、外部のグランド45に接続される。 The connector portion 28 is a portion that surrounds a plurality of connector terminals 28a, and corresponds to a terminal protection portion that protects the connector terminals 28a. One of the plurality of connector terminals 28a is a ground terminal, which is connected to an external ground 45.
 かしめ部29aは、後述する吸気温センサ23の接地端子23bおよび信号端子23cを支持固定する部位である。ハウジング21には、一対のかしめ部29aが設けられている。各かしめ部29aには、吸気温センサ23の接地端子23bおよび信号端子23cを挿通するための貫通穴が形成されている。 The caulking portion 29a is a portion that supports and fixes the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23, which will be described later. The housing 21 is provided with a pair of caulking portions 29a. Each caulked portion 29a is formed with a through hole for inserting the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23.
 吸気温センサ23は、吸入空気の温度を感知する感温素子23aと、接地端子23bおよび信号端子23cとを有している。感温素子23aは、接地端子23bおよび信号端子23cがかしめ部29aに形成された各貫通穴に挿通された状態で熱かしめされることによってハウジング21に固定されている。吸気温センサ23の接地端子23bおよび信号端子23cは、リング保持部25に形成された一対のスルーホール251に半田付けにより固定される。また、吸気温センサ23の信号端子23cは、グランド端子を除く所定のコネクタターミナルに電気的に接続されている。吸気温センサ23の接地端子23bは、グランド45に接続されるコネクタターミナル28aに接続される。吸気温センサ23の接地端子23bは、コネクタターミナル28aを介してグランド45に接地される。吸気温センサ23は、感温素子23aにて感知した吸気温に応じた検出信号を出力する。 The intake air temperature sensor 23 has a temperature sensing element 23a that senses the temperature of the intake air, a ground terminal 23b, and a signal terminal 23c. The temperature sensitive element 23a is fixed to the housing 21 by being heat-caulked with the ground terminal 23b and the signal terminal 23c inserted into the through holes formed in the caulking portion 29a. The ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23 are fixed to the pair of through holes 251 formed in the ring holding portion 25 by soldering. Further, the signal terminal 23c of the intake air temperature sensor 23 is electrically connected to a predetermined connector terminal excluding the ground terminal. The ground terminal 23b of the intake air temperature sensor 23 is connected to the connector terminal 28a connected to the ground 45. The ground terminal 23b of the intake air temperature sensor 23 is grounded to the ground 45 via the connector terminal 28a. The intake air temperature sensor 23 outputs a detection signal according to the intake air temperature sensed by the temperature sensing element 23a.
 吸気温センサ23は、ハウジング21の外側に配置されているため、ハウジング21の外側から吸気温センサ23に近接する物体から保護する必要がある。このため、ハウジング21には、ハウジング21の外側から吸気温センサ23に近接する物体から保護する保護突起29bが2つ設けられている。 Since the intake air temperature sensor 23 is arranged outside the housing 21, it is necessary to protect the intake air temperature sensor 23 from an object close to the intake air temperature sensor 23 from the outside of the housing 21. Therefore, the housing 21 is provided with two protective protrusions 29b that protect the housing 21 from an object close to the intake air temperature sensor 23 from the outside of the housing 21.
 各保護突起29bは、バイパスハウジング24から側方に向けて突出している。保護突起29bの一方は、吸気温センサ23より流れ方向上流側に配置され、保護突起29bの他方は、吸気温センサ23より流れ方向下流側に配置されている。バイパスハウジング24からの保護突起29bの突出寸法は、バイパスハウジング24からの吸気温センサ23の離間距離より大きくなっている。保護突起29bは、エアフロメータ20の吸気管82aへの取り付け時において、吸気温センサ23と吸気管82aとの接触による吸気温センサ23の破損を抑制する。 Each protective protrusion 29b projects laterally from the bypass housing 24. One of the protective protrusions 29b is arranged on the upstream side in the flow direction from the intake air temperature sensor 23, and the other of the protective protrusions 29b is arranged on the downstream side in the flow direction from the intake air temperature sensor 23. The protruding dimension of the protective protrusion 29b from the bypass housing 24 is larger than the distance of the intake air temperature sensor 23 from the bypass housing 24. The protective protrusion 29b suppresses damage to the intake air temperature sensor 23 due to contact between the intake air temperature sensor 23 and the intake pipe 82a when the air flow meter 20 is attached to the intake pipe 82a.
 図6、図7に示すように、バイパスハウジング24は、吸気通路80を流れる吸入空気の一部が流れ込むバイパス通路30を形成している。バイパス通路30は、通過通路31及び計測通路32を有しており、これら通過通路31及び計測通路32は、バイパスハウジング24の内部空間により形成されている。 As shown in FIGS. 6 and 7, the bypass housing 24 forms a bypass passage 30 through which a part of the intake air flowing through the intake passage 80 flows. The bypass passage 30 has a passage passage 31 and a measurement passage 32, and the passage passage 31 and the measurement passage 32 are formed by the internal space of the bypass housing 24.
 通過通路31は、バイパスハウジング24の先端部を流れ方向に貫通しており、上流端部である流入口33aと、下流端部である流出口33bとを有している。計測通路32は、通過通路31の中間部分から分岐した分岐通路であり、下流端部である計測出口33cを有している。計測出口33cは、バイパスハウジング24の両側面に1つずつ設けられている。 The passage passage 31 penetrates the tip end portion of the bypass housing 24 in the flow direction, and has an inflow port 33a which is an upstream end portion and an outflow outlet 33b which is a downstream end portion. The measurement passage 32 is a branch passage branched from the intermediate portion of the passage passage 31, and has a measurement outlet 33c which is a downstream end portion. One measurement outlet 33c is provided on each side surface of the bypass housing 24.
 図6、図7に示すように、計測通路32は、中間位置にて折り返された折り返し形状になっている。計測通路32は、流量検出部22の検出素子22bが配置された検出路32aと、検出路32aに吸入空気を導入する導入路32bと、検出路32aから吸入空気を排出する排出路32cとを有している。導入路32bは、通過通路31からハウジング基端側に向けて延びており、排出路32cは、検出路32aからハウジング先端側に向けて延びている。 As shown in FIGS. 6 and 7, the measurement passage 32 has a folded shape that is folded back at an intermediate position. The measurement passage 32 has a detection path 32a in which the detection element 22b of the flow rate detection unit 22 is arranged, an introduction path 32b for introducing the intake air into the detection path 32a, and an discharge path 32c for discharging the intake air from the detection path 32a. Have. The introduction path 32b extends from the passage 31 toward the base end side of the housing, and the discharge path 32c extends from the detection path 32a toward the tip end side of the housing.
 計測通路32においては、通過通路31から流入した吸入空気が一度はハウジング基端側に向かって流れた後、検出路32aを通過することでUターンしてハウジング先端側に向かって流れる。Uターン形状の通路により、吸気に交じって砂塵およびダスト等の異物が飛来しても検出素子22bまで到達しにくくなっている。 In the measurement passage 32, the intake air that has flowed in from the passage passage 31 once flows toward the base end side of the housing, and then makes a U-turn by passing through the detection path 32a and flows toward the front end side of the housing. The U-turn-shaped passage makes it difficult for foreign matter such as dust and dirt to reach the detection element 22b even if it is mixed with the intake air.
 また、図3、図4、図8に示すように、バイパスハウジング24は、排出路32cのハウジング先端側の端部を外側から覆うカバー24cを有している。カバー24cは、バイパスハウジング24の両側面に1つずつ設けられている。バイパスハウジング24とカバー24cの間に吸入空気を排出する計測出口33cが形成されている。通過通路31から計測通路32に吸入された吸入空気は、排出路32cから計測出口33cを通ってバイパスハウジング24の外に排出される。 Further, as shown in FIGS. 3, 4, and 8, the bypass housing 24 has a cover 24c that covers the end portion of the discharge path 32c on the housing tip side from the outside. One cover 24c is provided on each side surface of the bypass housing 24. A measurement outlet 33c for discharging intake air is formed between the bypass housing 24 and the cover 24c. The intake air sucked into the measurement passage 32 from the passage passage 31 is discharged to the outside of the bypass housing 24 from the discharge passage 32c through the measurement outlet 33c.
 図6、図7に示すように、流量検出部22は、計測通路32を流れる流体の物理量に応じた検出信号を出力する物理量検出部である。第1実施形態では、流量検出部22は、検出路32aを流れる吸入空気の流量に応じた検出信号を出力する。 As shown in FIGS. 6 and 7, the flow rate detection unit 22 is a physical quantity detection unit that outputs a detection signal according to the physical quantity of the fluid flowing through the measurement passage 32. In the first embodiment, the flow rate detection unit 22 outputs a detection signal according to the flow rate of the intake air flowing through the detection path 32a.
 流量検出部22は、計測通路32を流れる空気の流量に応じた信号を出力する検出素子22bと、検出素子22bを搭載した検出基板22aと、検出素子22bから出力された信号の信号処理を行う集積回路22cと、を有している。 The flow rate detection unit 22 performs signal processing of a detection element 22b that outputs a signal according to the flow rate of air flowing through the measurement passage 32, a detection board 22a on which the detection element 22b is mounted, and a signal output from the detection element 22b. It has an integrated circuit 22c.
 検出素子22bは、通電によって発熱する発熱抵抗体等の発熱部と、発熱部の空気流れ上流側に配置された第1温度検出部および発熱部の空気流れ下流側に配置された第2温度検出部(いずれも図示せず)を有している。 The detection element 22b includes a heat generating portion such as a heat generating resistor that generates heat when energized, a first temperature detecting portion arranged on the upstream side of the air flow of the heat generating portion, and a second temperature detection arranged on the downstream side of the air flow of the heat generating portion. It has a part (neither is shown).
 検出素子22bは、発熱部を通電させた際の第1温度検出部の検出温度と第2温度検出部の検出温度の温度差に基づく信号を、計測通路32を流れる空気の流量に応じた信号として出力する。なお、帯電したダスト等の異物が検出素子22bの第1温度検出部や第2温度検出部に付着すると検出温度のバランスが崩れて特性ずれが生じる。 The detection element 22b transmits a signal based on the temperature difference between the detection temperature of the first temperature detection unit and the detection temperature of the second temperature detection unit when the heat generating unit is energized, according to the flow rate of the air flowing through the measurement passage 32. Output as. If foreign matter such as charged dust adheres to the first temperature detection unit or the second temperature detection unit of the detection element 22b, the balance of the detection temperature is lost and the characteristics are deviated.
 検出基板22aは流量検出部22の外郭を形成しており、検出基板22aの基板面の端部に検出素子22bが配置されている。 The detection board 22a forms an outer shell of the flow rate detection unit 22, and the detection element 22b is arranged at the end of the board surface of the detection board 22a.
 次に、流量検出部22への異物付着によるエアフロメータ20の検出精度の悪化について説明する。第1実施形態では、前述のように計測通路32の形状により異物が流量検出部22に到達しにくくなっている。しかし、異物の流量検出部22への到達を完全に無くすことはできない。また、異物が帯電している場合、その異物が流量検出部22に付着してエアフロメータ20の特性ずれが発生するおそれがある。 Next, the deterioration of the detection accuracy of the air flow meter 20 due to the adhesion of foreign matter to the flow rate detection unit 22 will be described. In the first embodiment, as described above, the shape of the measurement passage 32 makes it difficult for foreign matter to reach the flow rate detection unit 22. However, it is not possible to completely eliminate the arrival of foreign matter at the flow rate detecting unit 22. Further, when the foreign matter is charged, the foreign matter may adhere to the flow rate detecting unit 22 and cause a deviation in the characteristics of the air flow meter 20.
 この特性ずれに関して、ハウジングの樹脂材料に帯電防止剤を混入させることにより異物の帯電抑制を図る従来技術がある。しかし、帯電防止剤を含むハウジングだと、帯電防止剤の分だけ樹脂材料が減少するため、ハウジングの成形性が低下しやすい。また、帯電防止剤の分だけガラス繊維が少なくなるため、ハウジングの強度が低下しやすい。強度低下は耐久性が低下する要因となる。つまり、樹脂材料に帯電防止剤を混入させることによるハウジングの成形性の低下および耐久性の低下が課題であった。 Regarding this characteristic deviation, there is a conventional technique for suppressing the charge of foreign matter by mixing an antistatic agent into the resin material of the housing. However, in the case of a housing containing an antistatic agent, the resin material is reduced by the amount of the antistatic agent, so that the moldability of the housing tends to decrease. In addition, since the amount of glass fiber is reduced by the amount of the antistatic agent, the strength of the housing tends to decrease. The decrease in strength causes a decrease in durability. That is, the problems are the deterioration of the moldability and the durability of the housing due to the mixing of the antistatic agent in the resin material.
 以下、ハウジング21の成形性および耐久性の低下を回避しつつ、エアフロメータ20の特性ずれを抑制するための構成について説明する。 Hereinafter, a configuration for suppressing a deviation in the characteristics of the air flow meter 20 while avoiding a decrease in moldability and durability of the housing 21 will be described.
 図1~図8では、エアフロメータ20の各部の形状を見易くするため導電部90を省略してある。しかし、実際のエアフロメータ20は、図9~図12に示すように、バイパスハウジング24の外面である外壁面24bの全体と、リング保持部25に形成されたスルーホール251の周囲に導電性を有する導電部90としての格子状のパターン901が形成されている。 In FIGS. 1 to 8, the conductive portion 90 is omitted in order to make it easier to see the shape of each portion of the air flow meter 20. However, as shown in FIGS. 9 to 12, the actual air flow meter 20 provides conductivity around the entire outer wall surface 24b, which is the outer surface of the bypass housing 24, and the through hole 251 formed in the ring holding portion 25. A grid-like pattern 901 is formed as the conductive portion 90 to have.
 ハウジング21は、絶縁性を有している。ハウジング21は、樹脂材料により構成され且つ絶縁性を有するベースポリマーと、ベースポリマーよりも強度が高く且つ絶縁性を有するフィラーとを有する。ベースポリマーは、成形性に優れている。フィラーは、ハウジング21を強化する強化材でありガラス繊維を含んでいる。 The housing 21 has an insulating property. The housing 21 has a base polymer made of a resin material and having insulating properties, and a filler having higher strength and insulating properties than the base polymer. The base polymer has excellent moldability. The filler is a reinforcing material that reinforces the housing 21 and contains glass fibers.
 導電部90は、ハウジング本体91の表面にレーザー光を照射することによってハウジング本体91の表面を炭化させることによって形成されている。導電部90は、グラファイトの集合体である炭化物を含んでいることで導電性を有している。つまり、絶縁性を有するハウジング21の表面にレーザー光を照射することによって導電性を有する導電部90が形成されている。そして、導電部90から電荷がグランド45に放出される。この導電部90によってハウジング21の帯電が防止され、エアフロメータ20の特性ずれが抑制される。この結果、物理量計測装置の計測精度を高めることができる。 The conductive portion 90 is formed by carbonizing the surface of the housing body 91 by irradiating the surface of the housing body 91 with laser light. The conductive portion 90 has conductivity because it contains carbides which are aggregates of graphite. That is, the conductive portion 90 having conductivity is formed by irradiating the surface of the insulating housing 21 with laser light. Then, the electric charge is discharged from the conductive portion 90 to the ground 45. The conductive portion 90 prevents the housing 21 from being charged, and suppresses the deviation of the characteristics of the air flow meter 20. As a result, the measurement accuracy of the physical quantity measuring device can be improved.
 本実施形態のエアフロメータ20には、格子状のパターン901によって導電部90が構成されている。すなわち、導電部90は、ハウジング21の表面に導電性を有する炭化物が格子状のパターン901として形成されたものである。ただし、格子状のパターン901は、導電部90の形状の一例である。格子状のパターン901は、一方向に延びる第1導電部901aと、該第1導電部901aと交差する方向に延びる第2導電部901bを有している。本実施形態では、第1導電部901aと第2導電部901bは、+(プラス)記号状に直交するよう形成されている。 In the air flow meter 20 of the present embodiment, the conductive portion 90 is configured by a grid-like pattern 901. That is, the conductive portion 90 is formed by forming conductive carbides on the surface of the housing 21 as a grid-like pattern 901. However, the grid-like pattern 901 is an example of the shape of the conductive portion 90. The lattice-shaped pattern 901 has a first conductive portion 901a extending in one direction and a second conductive portion 901b extending in a direction intersecting the first conductive portion 901a. In the present embodiment, the first conductive portion 901a and the second conductive portion 901b are formed so as to be orthogonal to each other in a + (plus) sign.
 格子状のパターン901の間隔は、2ミリメートル程度、格子状のパターン901の深さは300ミクロン程度となっている。 The spacing between the grid-like patterns 901 is about 2 mm, and the depth of the grid-like pattern 901 is about 300 microns.
 パターン901は、ハウジング21の外側に露出して配置された吸気温センサ23の接地端子23bに接続されている。具体的には、パターン901は、吸気温センサ23の接地端子23bおよび信号端子23cを固定するかしめ部29aの周囲において、コネクタターミナル28aを介してグランド45に接続される吸気温センサ23の接地端子23bに接続されている。 The pattern 901 is connected to the ground terminal 23b of the intake air temperature sensor 23 which is exposed and arranged on the outside of the housing 21. Specifically, the pattern 901 is a ground terminal of the intake air temperature sensor 23 connected to the ground 45 via the connector terminal 28a around the caulking portion 29a fixing the ground terminal 23b and the signal terminal 23c of the intake air temperature sensor 23. It is connected to 23b.
 パターン901に電荷が蓄積されると、この電荷は吸気温センサ23の接地端子23bおよびコネクタターミナル28aを通ってグランド45に放出されるようになっている。 When an electric charge is accumulated in the pattern 901, this electric charge is discharged to the ground 45 through the ground terminal 23b and the connector terminal 28a of the intake air temperature sensor 23.
 また、例えば、第1導電部901aが空気流れ方向に延びるよう配置されている場合には、空気の流れを乱れにくくすることができる。また、第2導電部901bが空気流れ方向と交差する方向に延びるよう配置されている場合、異物から第2導電部901bへの電荷付与率を高くすることができる。 Further, for example, when the first conductive portion 901a is arranged so as to extend in the air flow direction, it is possible to make the air flow less likely to be disturbed. Further, when the second conductive portion 901b is arranged so as to extend in a direction intersecting the air flow direction, the charge imparting rate from the foreign matter to the second conductive portion 901b can be increased.
 次に、エアフロメータ20の製造方法について図13~図14を用いて説明する。ここでは、エアフロメータ20のバイパスハウジング24の表面にレーザ加工によって導電部90を形成する例について説明する。 Next, a method of manufacturing the air flow meter 20 will be described with reference to FIGS. 13 to 14. Here, an example in which the conductive portion 90 is formed on the surface of the bypass housing 24 of the air flow meter 20 by laser processing will be described.
 まず、図14に示すように、作業者は、S100にて、樹脂製のバイパスハウジング24を含むエアフロメータ20を用意する。なお、バイパスハウジング24には、予め吸気温センサ23が取り付けられている。そして、エアフロメータ20を加工治具に固定する。 First, as shown in FIG. 14, the operator prepares an air flow meter 20 including a resin bypass housing 24 in S100. An intake air temperature sensor 23 is attached to the bypass housing 24 in advance. Then, the air flow meter 20 is fixed to the processing jig.
 次に、作業者は、S200にて、第1加熱工程を実施する。具体的には、作業者は、レーザ機を用いてバイパスハウジング24の表面に格子状にレーザ照射してバイパスハウジング24の表面を加熱する。ここでは、強出力でレーザ照射を行う。このときバイパスハウジング24の表面には2000℃以上の熱が付加され、材料となる高分子の結合の開裂が生じ、炭素以外の構成元素が二酸化炭素、一酸化炭素、窒素、水素等の分解ガスとして離脱させられて炭化させられる。このような炭化によってバイパスハウジング24の表面に炭化物であるグラファイトを含む導電部90が形成される。この導電部90には導電性が付与される。 Next, the worker carries out the first heating step in S200. Specifically, the operator uses a laser machine to irradiate the surface of the bypass housing 24 with a laser in a grid pattern to heat the surface of the bypass housing 24. Here, laser irradiation is performed with high output. At this time, heat of 2000 ° C. or higher is applied to the surface of the bypass housing 24, the bond of the polymer used as the material is cleaved, and the constituent elements other than carbon are decomposed gases such as carbon dioxide, carbon monoxide, nitrogen, and hydrogen. It is detached and carbonized. By such carbonization, a conductive portion 90 containing graphite, which is a carbide, is formed on the surface of the bypass housing 24. Conductivity is imparted to the conductive portion 90.
 次に、作業者は、S300にて、ヒューム加工と呼ばれる第2加熱工程を実施する。具体的には、作業者は、レーザ機を用いてより高速でバイパスハウジング24の表面の全体にレーザ照射してバイパスハウジング24の表面を加熱する。ここでは、先の第1加熱工程よりも弱出力でレーザ照射を行う。これにより、先の格子状にレーザ照射した際に生じたヒュームと呼ばれる粉塵等が除去される。また、導電部90の体積抵抗率が所望の値に調整される。なお、このヒューム加工によりレーザ照射した領域は白色化する。このようにしてエアフロメータ20が完成する。 Next, the worker carries out a second heating step called fume processing in S300. Specifically, the operator uses a laser machine to irradiate the entire surface of the bypass housing 24 with a laser at a higher speed to heat the surface of the bypass housing 24. Here, the laser irradiation is performed with a weaker output than the previous first heating step. As a result, dust or the like called fume generated when the laser irradiation is performed in the grid pattern is removed. Further, the volume resistivity of the conductive portion 90 is adjusted to a desired value. The laser-irradiated region is whitened by this fume processing. In this way, the air flow meter 20 is completed.
 次に、バイパスハウジング24に形成された導電部90における電荷の動きについて図15Aを用いて説明する。図15Aは、バイパスハウジング24の外壁面24bに格子状のパターン901が形成された部位の断面図を模式的に表している。具体的には、格子状のパターン901を構成する第1導電部901a(すなわち炭化部15)が形成された部位の断面図を模式的に表している。 Next, the movement of electric charge in the conductive portion 90 formed in the bypass housing 24 will be described with reference to FIG. 15A. FIG. 15A schematically shows a cross-sectional view of a portion where a grid pattern 901 is formed on the outer wall surface 24b of the bypass housing 24. Specifically, a cross-sectional view of a portion where the first conductive portion 901a (that is, the carbonized portion 15) forming the grid-like pattern 901 is formed is schematically shown.
 まず、バイパスハウジング24の外壁面24bの面方向の電荷の動きについて説明する。 First, the movement of electric charge in the surface direction of the outer wall surface 24b of the bypass housing 24 will be described.
 電荷から格子状のパターン901までの距離が長すぎると放電による電荷の移動は行われない。本発明者らの検討によれば、電荷から導電部90までの距離が1ミリメートル以内であれば放電による電荷の移動が比較的安定的に行われることが分かった。 If the distance from the charge to the grid pattern 901 is too long, the charge will not move due to discharge. According to the studies by the present inventors, it has been found that if the distance from the electric charge to the conductive portion 90 is within 1 mm, the electric charge is relatively stably transferred by the electric discharge.
 本実施形態のエアフロメータ20は、格子状のパターン901を構成する第1導電部901a同士の間隔は2ミリメートル未満となっている。このため、格子状のパターン901が形成された領域において、どの位置からでも1ミリメートル以内で格子状のパターン901に到達する。したがって、放電による電荷の移動を比較的安定的に行うことが可能である。 In the air flow meter 20 of the present embodiment, the distance between the first conductive portions 901a constituting the grid pattern 901 is less than 2 mm. Therefore, in the region where the grid pattern 901 is formed, the grid pattern 901 is reached within 1 mm from any position. Therefore, it is possible to relatively stably transfer the charge due to the discharge.
 また、本実施形態のエアフロメータ20は、格子状のパターン901を構成する第1導電部901aの深さは300ミクロン程度となっている。すなわち、格子状のパターン901を構成する第1導電部901a同士の間隔は、格子状のパターン901を構成する第1導電部901aの深さよりも大きくなっている。このように、格子状のパターン901を構成する第1導電部901a同士の間隔は、格子状のパターン901を構成する第1導電部901aの深さよりも大きくするのが好ましい。また、本実施形態のハウジング21の板厚は、例えば、1ミリメートル程度となっている。 Further, in the air flow meter 20 of the present embodiment, the depth of the first conductive portion 901a constituting the grid pattern 901 is about 300 microns. That is, the distance between the first conductive portions 901a forming the grid-like pattern 901 is larger than the depth of the first conductive portions 901a forming the grid-like pattern 901. As described above, it is preferable that the distance between the first conductive portions 901a forming the grid-like pattern 901 is larger than the depth of the first conductive portions 901a forming the grid-like pattern 901. Further, the plate thickness of the housing 21 of the present embodiment is, for example, about 1 mm.
 また、格子状のパターン901を構成する第1導電部901a同士の間隔は、格子状のパターン901を構成する第1導電部901aの深さよりも大きくなっているので、導電部90を構成しているパターン901の数を少なくできる。このため、導電部90を形成するための作業負担を軽減でき、作業コストを低減することができる。また、格子状のパターン901を構成する第1導電部901aの深さが格子状のパターン901を構成する第1導電部901a同士の間隔よりも浅いため、導電部90を深くしすぎることによる強度低下を防止することもできる。 Further, since the distance between the first conductive portions 901a forming the grid pattern 901 is larger than the depth of the first conductive portions 901a forming the grid pattern 901, the conductive portion 90 is formed. The number of patterns 901 can be reduced. Therefore, the work load for forming the conductive portion 90 can be reduced, and the work cost can be reduced. Further, since the depth of the first conductive portion 901a forming the grid-like pattern 901 is shallower than the distance between the first conductive portions 901a forming the grid-like pattern 901, the strength due to the conductive portion 90 being made too deep. It is also possible to prevent the decrease.
 次に、バイパスハウジング24の内面である内壁面24a側から外壁面24b側への電荷の動きについて説明する。 Next, the movement of electric charge from the inner wall surface 24a side, which is the inner surface of the bypass housing 24, to the outer wall surface 24b side will be described.
 バイパスハウジング24の内壁面24aと外壁面24bの間の肉厚は、バイパスハウジング24の導電部90が形成された一方の面と導電部90が形成されていない他方の面との間で絶縁破壊による放電が可能な長さとなっている。バイパスハウジング24の内壁面24aの電位が上昇すると、その内壁面24aと外壁面24bの格子状のパターン901との間で絶縁破壊による放電が生じる。この現象はプラス電荷を持った埃やダストが吸引され易いマイナス電荷の静電気が-1kV以下で、且つ樹脂製品の板厚が0.5~2.0mmに施したグラファイト層で発現し易い。 The wall thickness between the inner wall surface 24a and the outer wall surface 24b of the bypass housing 24 is such that the thickness is dielectric breakdown between one surface of the bypass housing 24 in which the conductive portion 90 is formed and the other surface in which the conductive portion 90 is not formed. It is a length that can be discharged by. When the potential of the inner wall surface 24a of the bypass housing 24 rises, a discharge due to dielectric breakdown occurs between the inner wall surface 24a and the grid pattern 901 of the outer wall surface 24b. This phenomenon is likely to occur in a graphite layer having a negatively charged static electricity of -1 kV or less and a resin product having a plate thickness of 0.5 to 2.0 mm, which is likely to attract positively charged dust or dust.
 バイパスハウジング24の内壁面24aと外壁面24bの格子状のパターン901との間で絶縁破壊による放電が生じると、図15Aに示すように、内壁面24aの電荷77が外壁面24bの格子状のパターン901へ移動する。 When a discharge occurs due to dielectric breakdown between the inner wall surface 24a of the bypass housing 24 and the grid pattern 901 of the outer wall surface 24b, as shown in FIG. 15A, the electric charge 77 of the inner wall surface 24a becomes a grid pattern of the outer wall surface 24b. Move to pattern 901.
 このような放電及び絶縁破壊が複数の位置で発生することで、内壁面24aに溜まっていた電荷77が格子状のパターン901およびコネクタターミナル28aを通ってグランド45に放出される。このようにして、内壁面24aからプラス電荷あるいはマイナス電荷がなくなると、流量検出部22の検出素子22bへの異物の付着が抑制され、流量検出部22の特性ずれが抑制される。 When such discharge and dielectric breakdown occur at a plurality of positions, the electric charge 77 accumulated on the inner wall surface 24a is discharged to the ground 45 through the grid pattern 901 and the connector terminal 28a. When the positive charge or the negative charge disappears from the inner wall surface 24a in this way, the adhesion of foreign matter to the detection element 22b of the flow rate detection unit 22 is suppressed, and the characteristic deviation of the flow rate detection unit 22 is suppressed.
 次に、ハウジング21の構造について説明する。 Next, the structure of the housing 21 will be described.
 ハウジング21は、樹脂部材10により構成されている。樹脂部材10は、フィラー及び絶縁性を有するベースポリマーを主成分とする樹脂材料で構成されている。図15Bに示すように、樹脂部材10の表面11の近傍には、配向層12が形成されている。配向層12は、表面11に対して平行な方向(以下、表面方向)に配向した多数のフィラー13、および、各フィラー13間に充填されたベースポリマー14を含む。 The housing 21 is made of a resin member 10. The resin member 10 is composed of a resin material containing a filler and an insulating base polymer as main components. As shown in FIG. 15B, an alignment layer 12 is formed in the vicinity of the surface 11 of the resin member 10. The alignment layer 12 contains a large number of fillers 13 oriented in a direction parallel to the surface 11 (hereinafter, the surface direction), and a base polymer 14 filled between the fillers 13.
 樹脂部材10は、導電性及び熱伝導性を付与する炭化部15を有する。炭化部15は、例えば、ベースポリマー14の炭化物であるグラファイトを含む。図15Cに示すように、炭化物66は、例えば、互いに結合状態にある炭素原子からなるグラファイトであり、炭素原子に属する4つの外殻電子のうち1つの電子が余った状態でいることで電子が移動できる状態になっているため、導通する。なお、後述するように、炭化物66は、グラファイトに限らず、導電性を有するカーボンであってもよい。 The resin member 10 has a carbonized portion 15 that imparts conductivity and thermal conductivity. The carbonized portion 15 contains, for example, graphite which is a carbide of the base polymer 14. As shown in FIG. 15C, the carbide 66 is, for example, graphite composed of carbon atoms in a bonded state with each other, and electrons are generated by leaving one electron out of four outer shell electrons belonging to the carbon atom. Since it is in a movable state, it conducts. As will be described later, the carbide 66 is not limited to graphite, but may be conductive carbon.
 炭化部15は、格子状に形成されており、導電性パターンを構成している。この導電性パターンは例えばエアフロメータ20または回転角センサなどの電子装置において配線回路として利用することも可能である。このように電気信号を伝送する配線回路として炭化部15を用いる場合、生成する炭化物66の体積抵抗率は少なくとも1.0×10-3Ωm以下、好ましくは1.0×10-4Ωm以下、より好ましくは1.0×10-5Ωm以下である。なお、炭化部15は、例えばストライプ状などの他のパターン状であってもよい。また、炭化部15は、パターン状に限らず、膜状に形成されてもよい。また、炭化部15は、配線回路に限らず、例えば電磁シールド、静電気除去回路、帯電防止、放熱部材などに利用されてもよい。 The carbonized portions 15 are formed in a grid pattern and form a conductive pattern. This conductive pattern can also be used as a wiring circuit in an electronic device such as an air flow meter 20 or a rotation angle sensor. When the carbide portion 15 is used as the wiring circuit for transmitting an electric signal in this way, the volume resistivity of the generated carbide 66 is at least 1.0 × 10 -3 Ωm or less, preferably 1.0 × 10 -4 Ωm or less. More preferably, it is 1.0 × 10-5 Ωm or less. The carbonized portion 15 may have another pattern such as a stripe shape. Further, the carbonized portion 15 is not limited to the pattern shape, but may be formed into a film shape. Further, the carbonized portion 15 is not limited to the wiring circuit, and may be used for, for example, an electromagnetic shield, an antistatic circuit, an antistatic agent, a heat radiating member, and the like.
 次に、本実施形態に係るエアフロメータ20のハウジング21を構成している樹脂部材10について図59~図61を用いて説明する。図59、図60および図61に示すように、ベース部61は、樹脂材料により形成され且つ絶縁性を有するベースポリマー14と、ベースポリマー14よりも強度が高いフィラー13とを有する。ベースポリマー14は、ベース部61の樹脂部を構成している。フィラー13は、ベース部61を強化する強化部材である。ベース部61は、ベースポリマー14に混じった状態のフィラー13により強化されている。 Next, the resin member 10 constituting the housing 21 of the air flow meter 20 according to the present embodiment will be described with reference to FIGS. 59 to 61. As shown in FIGS. 59, 60 and 61, the base portion 61 has a base polymer 14 formed of a resin material and having an insulating property, and a filler 13 having a strength higher than that of the base polymer 14. The base polymer 14 constitutes the resin portion of the base portion 61. The filler 13 is a reinforcing member that reinforces the base portion 61. The base portion 61 is reinforced by the filler 13 mixed with the base polymer 14.
 炭化部15は、ベース部61の外面62に設けられ、炭化物66を含んでいることで導電性を有する導電部90である。炭化部15は、直線状に延びるように複数形成されている。複数の炭化部15は、パターン状に配置されたパターン部であり、配線パターンを構成している。炭化部15は、図9~図12に示した第1導電部901aと、第2導電部901bを構成している。第1導電部901aおよび第2導電部901bは、それぞれ炭化部15が細長状に延びたものにより構成されている。第1導電部901aおよび第2導電部901bは、炭化部15の形状の一例である。 The carbonized portion 15 is a conductive portion 90 provided on the outer surface 62 of the base portion 61 and having conductivity by containing the carbide 66. A plurality of carbonized portions 15 are formed so as to extend linearly. The plurality of carbonized portions 15 are pattern portions arranged in a pattern, and form a wiring pattern. The carbonized portion 15 constitutes the first conductive portion 901a and the second conductive portion 901b shown in FIGS. 9 to 12. The first conductive portion 901a and the second conductive portion 901b are each composed of carbonized portions 15 extending in an elongated shape. The first conductive portion 901a and the second conductive portion 901b are examples of the shape of the carbonized portion 15.
 より詳細には、炭化部15は、複数の第1導電部901aと、複数の第2導電部901bを有している。ベース部61の外面62に、直線状の第1導電部901aが複数平行に延びるとともに、第1導電部901aと直交するように直線状の第2導電部901bが複数平行に延びている。 More specifically, the carbonized portion 15 has a plurality of first conductive portions 901a and a plurality of second conductive portions 901b. A plurality of linear first conductive portions 901a extend in parallel to the outer surface 62 of the base portion 61, and a plurality of linear second conductive portions 901b extend in parallel so as to be orthogonal to the first conductive portion 901a.
 炭化物66は、導電性を有するカーボン(すなわち導電性カーボン)である。炭化物66を形成する炭化材料は、導電材料であって、例えばグラファイト、カーボン粉、カーボン繊維、ナノカーボン、グラフェンまたは炭素マイクロ材料などのカーボン材料である。ナノカーボンは、例えばカーボンナノチューブ、カーボンナノファイバーおよびフラーレンなどである。 The carbide 66 is a conductive carbon (that is, conductive carbon). The carbide material forming the carbide 66 is a conductive material, such as a carbon material such as graphite, carbon powder, carbon fiber, nanocarbon, graphene or carbon micromaterial. Nanocarbons include, for example, carbon nanotubes, carbon nanofibers and fullerenes.
 図60および図61に示すように、樹脂部材10は、ベース部61の外面62に沿って延びたスキン層63と、スキン層63の内側に設けられたコア層64とを備える。スキン層63は、ベース部61の外面62を形成する表層部であって、ベース部61の樹脂成形時に溶融樹脂のうち金型の内面に接して固化した部位である固化層である。コア層64は、ベース部61の樹脂成形時に溶融樹脂のうち固化層の内側を流動した流動層である。ベース部61の外面62は、スキン層63の外面であり、また樹脂部材10の外面でもある。 As shown in FIGS. 60 and 61, the resin member 10 includes a skin layer 63 extending along the outer surface 62 of the base portion 61, and a core layer 64 provided inside the skin layer 63. The skin layer 63 is a surface layer portion that forms the outer surface 62 of the base portion 61, and is a solidified layer that is a portion of the molten resin that is solidified in contact with the inner surface of the mold during resin molding of the base portion 61. The core layer 64 is a fluidized bed that flows inside the solidified layer of the molten resin during resin molding of the base portion 61. The outer surface 62 of the base portion 61 is the outer surface of the skin layer 63 and also the outer surface of the resin member 10.
 外面62は、コア層64側に凹んだ溝状凹面65を有する。炭化部15は、溝状凹面65上においてスキン層63からコア層64に向けて延びるように設けられている。炭化部15は、スキン層63の少なくとも一部が炭化したものである。スキン層63およびコア層64を構成する樹脂であるベースポリマー14の材料としては、少なくとも炭素の六員環(すなわち、ベンゼン環)を含む材料が用いられる。 The outer surface 62 has a groove-shaped concave surface 65 recessed on the core layer 64 side. The carbonized portion 15 is provided so as to extend from the skin layer 63 toward the core layer 64 on the groove-shaped concave surface 65. The carbonized portion 15 is one in which at least a part of the skin layer 63 is carbonized. As the material of the base polymer 14, which is the resin constituting the skin layer 63 and the core layer 64, a material containing at least a six-membered ring of carbon (that is, a benzene ring) is used.
 スキン層63およびコア層64の少なくともコア層64がベース部61を形成している。本実施形態では、炭化部15はスキン層63においてコア層64から離間した位置に設けられている。つまり、溝状凹面65はコア層64に到達しておらず、炭化部15はスキン層63のみに隣接するように設けられている。スキン層63およびコア層64の両方がベース部61を形成している。 At least the core layer 64 of the skin layer 63 and the core layer 64 forms the base portion 61. In the present embodiment, the carbonized portion 15 is provided in the skin layer 63 at a position separated from the core layer 64. That is, the groove-shaped concave surface 65 does not reach the core layer 64, and the carbonized portion 15 is provided so as to be adjacent only to the skin layer 63. Both the skin layer 63 and the core layer 64 form the base portion 61.
 図59および図60に示すように、スキン層63では、コア層64と比べて多くのフィラー13がベース部61の外面62に沿って所定方向へ延びるように配向している。以下、所定方向へ延びるように配向しているフィラー13のことを「配向フィラー13」と記載する。炭化部15は、配向フィラー13に交差する方向に延びている。特に第7実施形態では、炭化部15は、配向フィラー13に直交する方向に延びている。 As shown in FIGS. 59 and 60, in the skin layer 63, more fillers 13 are oriented so as to extend in a predetermined direction along the outer surface 62 of the base portion 61 as compared with the core layer 64. Hereinafter, the filler 13 oriented so as to extend in a predetermined direction will be referred to as “aligned filler 13”. The carbonized portion 15 extends in a direction intersecting the alignment filler 13. In particular, in the seventh embodiment, the carbonized portion 15 extends in a direction orthogonal to the alignment filler 13.
 図61に示すように、炭化部15は、たくさんの炭化物66が集まって形成されている。フィラー13は、フィラー13の少なくとも一部が炭化部15に入り込んでベース部61からの炭化部15の離脱を規制している。すなわち、フィラー13は、炭化部15からの炭化物66の離脱を規制する規制部材である。フィラー13の材料としては、第1実施形態において説明したとおり、繊維状、粉粒状または板状のものが用いられ得る。第7実施形態では、フィラー13の材料として例えば難燃性繊維、ガラス繊維、カーボン繊維などの繊維材を用いており、これにより繊維部を構成している。図61では、煩雑になるのを避けるためにハッチングの図示を省略している。 As shown in FIG. 61, the carbonized portion 15 is formed by gathering a large number of carbides 66. In the filler 13, at least a part of the filler 13 enters the carbonized portion 15 to regulate the separation of the carbonized portion 15 from the base portion 61. That is, the filler 13 is a regulatory member that regulates the separation of the carbide 66 from the carbonized portion 15. As the material of the filler 13, as described in the first embodiment, a fibrous, powdery or plate-like material can be used. In the seventh embodiment, a fiber material such as a flame-retardant fiber, a glass fiber, or a carbon fiber is used as the material of the filler 13, and the fiber portion is formed by this. In FIG. 61, the hatching is omitted in order to avoid complication.
 ベース部61に含まれるフィラー13のうち溝状凹面65から突き出したものは、その一端がベース部61に保持されつつ、他端が炭化部15に引っかかっていることで、炭化部15とベース部61との結びつきを強固にしている。フィラー13の材料として繊維材を用いることで、引っかかりの長さを長くすることができる。特に、配向フィラー13は、炭化部15の延出方向に交差しているので溝状凹面65から突き出しやすく、炭化部15に引っかかりやすい。また、配向フィラー13の一部は、炭化部15において炭化物66を貫通しており、炭化物66の脱落を効果的に抑制している。 Of the fillers 13 contained in the base portion 61, those protruding from the groove-shaped concave surface 65 are held by the base portion 61 at one end and are caught by the carbonized portion 15 at the other end, so that the carbonized portion 15 and the base portion are caught. It strengthens the connection with 61. By using a fiber material as the material of the filler 13, the length of catching can be lengthened. In particular, since the alignment filler 13 intersects in the extending direction of the carbonized portion 15, it easily protrudes from the groove-shaped concave surface 65 and easily gets caught in the carbonized portion 15. Further, a part of the alignment filler 13 penetrates the carbide 66 in the carbonized portion 15, and effectively suppresses the falling off of the carbide 66.
 以上説明したように、ハウジング21は、樹脂材料を含んで形成された樹脂部材10により構成されている。また、樹脂部材10は、樹脂材料により形成され且つ絶縁性を有するベースポリマー14と、ベースポリマー14よりも強度が高いフィラー13とを有するベース部61と、ベース部61の外面62に設けられ、炭化物66を含んでいることで導電性を有する炭化部15と、を備えている。ベース部61は、ベースポリマー14に混じった状態のフィラー13により強化されている。また、フィラー13は、フィラー13の少なくとも一部が炭化部15に入り込んでベース部からの炭化部15の離脱を規制している。 As described above, the housing 21 is composed of a resin member 10 formed of a resin material. Further, the resin member 10 is provided on a base portion 61 having a base polymer 14 formed of a resin material and having an insulating property, a filler 13 having a strength higher than that of the base polymer 14, and an outer surface 62 of the base portion 61. It is provided with a carbonized portion 15 that is conductive by containing the carbide 66. The base portion 61 is reinforced by the filler 13 mixed with the base polymer 14. Further, in the filler 13, at least a part of the filler 13 enters the carbonized portion 15 to regulate the separation of the carbonized portion 15 from the base portion.
 また、樹脂部材10は、ベース部61の外面62に沿って延びたスキン層63と、スキン層63の内側に設けられたコア層64と、を備えている。また、スキン層63およびコア層64の少なくともコア層64がベース部61を形成しており、ベース部61の外面62は、コア層64側に凹んだ溝状凹面65を有している。そして、炭化部15は、溝状凹面65上においてスキン層63からコア層64に向けて延びるように設けられている。 Further, the resin member 10 includes a skin layer 63 extending along the outer surface 62 of the base portion 61, and a core layer 64 provided inside the skin layer 63. Further, at least the core layer 64 of the skin layer 63 and the core layer 64 forms the base portion 61, and the outer surface 62 of the base portion 61 has a groove-shaped concave surface 65 recessed on the core layer 64 side. The carbonized portion 15 is provided so as to extend from the skin layer 63 toward the core layer 64 on the groove-shaped concave surface 65.
 これによれば、フィラー13の向きが揃っており炭化部15の離脱を規制しやすいスキン層63からコア層64に向けて延びるように炭化部15が設けられているので、炭化部15のコア層64からの離脱をより抑制できる。 According to this, since the carbonized portion 15 is provided so as to extend from the skin layer 63, which has the same orientation of the filler 13 and easily regulates the detachment of the carbonized portion 15, toward the core layer 64, the core of the carbonized portion 15 is provided. Withdrawal from layer 64 can be further suppressed.
 また、炭化部15は、スキン層63においてコア層64から離間した位置に設けられている。これによれば、炭化部15がコア層64に設けられていないため、炭化部15のコア層64からの離脱をより一層効果的に抑制できる。 Further, the carbonized portion 15 is provided at a position separated from the core layer 64 in the skin layer 63. According to this, since the carbonized portion 15 is not provided in the core layer 64, the carbonized portion 15 can be more effectively suppressed from being separated from the core layer 64.
 炭化部15は、スキン層63においてベース部61の外面62に沿って延びているフィラー13に交差する方向に延びている。 The carbonized portion 15 extends in the skin layer 63 in a direction intersecting the filler 13 extending along the outer surface 62 of the base portion 61.
 このように炭化部15とフィラー13とが交差していると、フィラー13の一端がベース部61に入り込み、且つ他端に炭化部15が引っかかった状態になりやすいため、フィラー13が炭化部15と共にベース部61から離脱するということを抑制できる。 When the carbonized portion 15 and the filler 13 intersect in this way, one end of the filler 13 tends to enter the base portion 61 and the carbonized portion 15 tends to be caught on the other end, so that the filler 13 tends to be caught in the carbonized portion 15. At the same time, it is possible to prevent the base portion 61 from being separated from the base portion 61.
 また、フィラー13は、炭化部15において炭化物66を貫通している。これにより、炭化部15の脱落を効果的に抑制することができる。 Further, the filler 13 penetrates the carbide 66 in the carbonized portion 15. Thereby, the falling off of the carbonized portion 15 can be effectively suppressed.
 次に、樹脂部材10について図62~図63を用いて説明する。図62および図63に示すように、本実施形態の炭化部15は格子状に形成されている。 Next, the resin member 10 will be described with reference to FIGS. 62 to 63. As shown in FIGS. 62 and 63, the carbonized portions 15 of the present embodiment are formed in a grid pattern.
 ベース部61の外面62には、炭化部15の周縁部に沿って延びるように変形跡85が設けられている。変形跡85は、ベース部61の一部が変形した跡である。具体的には、変形跡85は、溶融して固化した溶融固化跡である。なお、他の実施形態では、変形跡85は、例えばレーザ加工、研磨などの機械加工、または溶液を用いた溶解加工による除去跡であってもよい。炭化部15の形成に伴って発生した飛散物等の異物がベース部61に付着していても、変形跡85を形成する際にこの異物をベース部61から除去することが可能である。そのため、変形跡85を設けることで、上記異物によりベース部61の意匠性が低下することを回避できる。 The outer surface 62 of the base portion 61 is provided with a deformation mark 85 so as to extend along the peripheral edge portion of the carbonized portion 15. The deformation mark 85 is a mark where a part of the base portion 61 is deformed. Specifically, the deformation mark 85 is a melt-solidification mark that is melted and solidified. In another embodiment, the deformation mark 85 may be a removal mark by, for example, laser processing, machining such as polishing, or dissolution processing using a solution. Even if foreign matter such as scattered matter generated by the formation of the carbonized portion 15 adheres to the base portion 61, it is possible to remove the foreign matter from the base portion 61 when forming the deformation mark 85. Therefore, by providing the deformation mark 85, it is possible to prevent the design of the base portion 61 from being deteriorated due to the foreign matter.
 変形跡85は、ベース部61の少なくとも一部が発泡した状態になっている発泡部86、及びベース部61の外面62に設けられた複数の点状凹部87を有している。これらの発泡部86や点状凹部87はベース部61が加熱されることで形成可能な変形跡85である。樹脂部材10の製造方法は、図13に示すように用意工程S100、第1加熱工程S200および第2加熱工程S300を含む。第2加熱工程S300では、第1加熱工程S200の後、変形跡85がベース部61の外面62において炭化部15の周縁部に沿って延びるように、ベース部61の少なくとも一部を変形させる。第2加熱工程S300では、ベース部61の外面62に変形跡85が形成されるように、且つ第1加熱工程S200でのベース部61の加熱よりも低い温度になるように、ベース部61及び炭化部15のそれぞれの少なくとも一部を加熱する。 The deformation mark 85 has a foamed portion 86 in which at least a part of the base portion 61 is foamed, and a plurality of point-shaped recesses 87 provided on the outer surface 62 of the base portion 61. These foamed portions 86 and point-shaped recesses 87 are deformation marks 85 that can be formed by heating the base portion 61. As shown in FIG. 13, the method for manufacturing the resin member 10 includes a preparation step S100, a first heating step S200, and a second heating step S300. In the second heating step S300, after the first heating step S200, at least a part of the base portion 61 is deformed so that the deformation mark 85 extends along the peripheral edge portion of the carbonized portion 15 on the outer surface 62 of the base portion 61. In the second heating step S300, the base portion 61 and the temperature are lower than the heating of the base portion 61 in the first heating step S200 so that the deformation mark 85 is formed on the outer surface 62 of the base portion 61. At least a part of each of the carbonized portions 15 is heated.
 ここで、第1加熱工程S200での加熱に伴って発生した異物がベース部61の外面62に付着したままの状態である場合、炭化部15による電荷放出が異物によって阻害されやすいことが懸念される。 Here, when the foreign matter generated by the heating in the first heating step S200 remains attached to the outer surface 62 of the base portion 61, there is a concern that the charge release by the carbonized portion 15 is likely to be hindered by the foreign matter. To.
 これに対して、本実施形態では、第2加熱工程S300での加熱によって、ベース部61に付着している異物を燃焼などにより除去することができる。 On the other hand, in the present embodiment, the foreign matter adhering to the base portion 61 can be removed by combustion or the like by heating in the second heating step S300.
 ここで、炭化部15に、不安定な姿勢でかろうじてベース部61に付着している部位が含まれている場合、この部位の姿勢が変化することで、炭化部15での電荷の通りやすさも変化することになる。この場合、この部位の姿勢によって炭化部15の導電性が変化し、導電性が不安定になることが懸念される。 Here, when the carbonized portion 15 includes a portion that is barely attached to the base portion 61 in an unstable posture, the posture of this portion changes, so that the charge can easily pass through the carbonized portion 15. It will change. In this case, there is a concern that the conductivity of the carbonized portion 15 changes depending on the posture of this portion, and the conductivity becomes unstable.
 これに対して、本実施形態では、変形跡85の形成に際して、ベース部61だけでなく炭化部15の一部も除去される。このとき、炭化部15のうち安定した姿勢の部位よりも不安定な姿勢の部位が除去されやすい。つまり、第2加熱工程S300では、ベース部61だけでなく炭化部15も加熱されるため、炭化部15のうち不安定な姿勢の部位を加熱や燃焼などにより除去することができる。そのため、炭化部15の導電性が変化することを抑制し、炭化部15の導電性を安定させることができる。 On the other hand, in the present embodiment, not only the base portion 61 but also a part of the carbonized portion 15 is removed when the deformation mark 85 is formed. At this time, the portion of the carbonized portion 15 having an unstable posture is more likely to be removed than the portion having a stable posture. That is, in the second heating step S300, not only the base portion 61 but also the carbonized portion 15 is heated, so that the portion of the carbonized portion 15 having an unstable posture can be removed by heating or burning. Therefore, it is possible to suppress the change in the conductivity of the carbonized portion 15 and stabilize the conductivity of the carbonized portion 15.
 また、炭化部15の一部を除去するトリミングを行うことにより、炭化部15の抵抗値を所定の値に制御することができる。 Further, the resistance value of the carbonized portion 15 can be controlled to a predetermined value by trimming to remove a part of the carbonized portion 15.
 第1加熱工程S200では、ベース部61に例えばレーザビームなどの電磁波を照射することでベース部61を加熱して炭化部15を形成する。第2加熱工程S300では、第1加熱工程S200にてベース部61に照射される電磁波よりも強度(すなわち出力)が低くなるように、走査速度が速くなるように、および、周波数が低くなるようにベース部61に電磁波を照射する。第2加熱工程S300では、そのように電磁波を照射することでベース部61を加熱して変形跡85を形成する。 In the first heating step S200, the base portion 61 is heated by irradiating the base portion 61 with an electromagnetic wave such as a laser beam to form the carbonized portion 15. In the second heating step S300, the intensity (that is, output) is lower than the electromagnetic wave radiated to the base portion 61 in the first heating step S200, the scanning speed is increased, and the frequency is lowered. The base portion 61 is irradiated with electromagnetic waves. In the second heating step S300, the base portion 61 is heated by irradiating the electromagnetic wave in this way to form a deformation mark 85.
 このようにして炭化部15および変形跡85の両方を電磁波照射によって形成することができるため、炭化部15および変形跡85を形成する際の作業負担を低減できる。例えば、第1加熱工程S200と第2加熱工程S300とを連続して行う構成であれば、電磁波を照射する装置に対してベース部61の位置合わせを行うという作業を1回にまとめることができる。 Since both the carbonized portion 15 and the deformation mark 85 can be formed by electromagnetic wave irradiation in this way, the work load when forming the carbonized portion 15 and the deformation mark 85 can be reduced. For example, if the first heating step S200 and the second heating step S300 are continuously performed, the work of aligning the base portion 61 with respect to the device that irradiates the electromagnetic wave can be summarized at one time. ..
 変形跡85の形成にレーザを用いる場合、レーザのエネルギによっては樹脂が発泡して変色することがあるが、意匠性の付与を目的としてこれを意図的に生じさせることが可能である。また、変形跡85の形成にレーザを用いる場合、除去加工に適することからパルスレーザを用いることが望ましい。パルスレーザを用いることで点状凹部87を周期的に形成することができる。 When a laser is used to form the deformation mark 85, the resin may foam and discolor depending on the energy of the laser, but this can be intentionally generated for the purpose of imparting design. When a laser is used to form the deformation mark 85, it is desirable to use a pulse laser because it is suitable for removal processing. By using a pulse laser, the point-shaped recess 87 can be formed periodically.
 以上、説明したように、本実施形態のエアフロメータ20は、絶縁性を有し、流体が流れるバイパス通路30を形成する樹脂製のバイパスハウジング24を備えている。また、エアフロメータ20は、バイパス通路30を流れる流体の物理量に応じた検出信号を出力する流量検出部22を備えている。また、エアフロメータ20は、バイパスハウジング24の外壁面24bの全体の表面に形成された導電性を有する導電部90を備えている。そして、エアフロメータ20は、導電部90からグランド45へ電荷が放出される構成となっている。 As described above, the air flow meter 20 of the present embodiment includes a resin bypass housing 24 that has an insulating property and forms a bypass passage 30 through which a fluid flows. Further, the air flow meter 20 includes a flow rate detecting unit 22 that outputs a detection signal according to the physical quantity of the fluid flowing through the bypass passage 30. Further, the air flow meter 20 includes a conductive portion 90 having conductivity formed on the entire surface of the outer wall surface 24b of the bypass housing 24. The air flow meter 20 is configured such that an electric charge is discharged from the conductive portion 90 to the ground 45.
 このような構成によれば、ハウジング21を樹脂成形した後に、加熱等によりハウジング21に導電部90を後付けすることで、ハウジング21の帯電抑制機能を向上させることができる。この場合、ハウジング21や物理量検出部が帯電するということが生じにくくなるため、物理量計測装置に計測精度を高めることができる。 According to such a configuration, the charge suppressing function of the housing 21 can be improved by retrofitting the conductive portion 90 to the housing 21 by heating or the like after the housing 21 is resin-molded. In this case, the housing 21 and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
 また、導電部90は、バイパスハウジング24の表面に熱による炭化によって形成された炭化物66を含む。このように、炭化によって形成された炭化物66を含むように導電部90を構成することができる。 Further, the conductive portion 90 contains a carbide 66 formed by carbonization by heat on the surface of the bypass housing 24. In this way, the conductive portion 90 can be configured to include the carbide 66 formed by carbonization.
 また、導電部90は、バイパスハウジング24の外壁面24bの全体に形成されている。これによれば、バイパスハウジング24の外壁面24bの全体に導電性を持たせることができる。 Further, the conductive portion 90 is formed on the entire outer wall surface 24b of the bypass housing 24. According to this, the entire outer wall surface 24b of the bypass housing 24 can be made conductive.
 また、導電部90は、格子状のパターン901によって構成されている。これによれば、速やかにパターン901を形成することができる。 Further, the conductive portion 90 is composed of a grid-like pattern 901. According to this, the pattern 901 can be formed quickly.
 また、隣接するパターン901の間隔は、パターン901の深さよりも長くなっている。このように、隣接するパターン901の間隔は、パターン901の深さよりも長くなるようにするのが好ましい。 Further, the interval between adjacent patterns 901 is longer than the depth of the pattern 901. As described above, it is preferable that the interval between adjacent patterns 901 is longer than the depth of the pattern 901.
 また、格子状のパターン901の間隔は、格子状のパターン901の深さよりも大きくなっているので、導電部90を構成しているパターン901の数を少なくできる。このため、導電部90を形成するための作業負担を軽減でき、作業コストを低減することができる。また、格子状のパターン901の深さが格子状のパターン901の間隔よりも浅いため、導電部90を深くしすぎることによる強度低下を防止することもできる。 Further, since the interval between the grid-like patterns 901 is larger than the depth of the grid-like pattern 901, the number of patterns 901 constituting the conductive portion 90 can be reduced. Therefore, the work load for forming the conductive portion 90 can be reduced, and the work cost can be reduced. Further, since the depth of the grid-like pattern 901 is shallower than the interval of the grid-like pattern 901, it is possible to prevent the strength from being lowered due to the conductive portion 90 being made too deep.
 また、隣接するパターン901の間隔は、隣接するパターン901の一方から他方へ放電によって電荷が移動可能な距離となっている。 Further, the interval between adjacent patterns 901 is a distance at which electric charges can be moved from one of the adjacent patterns 901 to the other by electric discharge.
 また、導電部90は、グランド45に接続されている。このように、導電部90をグランド45に接続するように構成することができる。また、導電部90からグランド45へ電荷を安定的に放出することができる。 Further, the conductive portion 90 is connected to the ground 45. In this way, the conductive portion 90 can be configured to be connected to the ground 45. Further, the electric charge can be stably discharged from the conductive portion 90 to the ground 45.
 また、エアフロメータ20は、流体の温度を検出する吸気温センサ23を備え、吸気温センサ23の接地端子23bがバイパスハウジング24の外面に露出するよう配置されている。そして、吸気温センサ23の接地端子23bを介して導電部90からグランド45へ電荷が放出される。 Further, the air flow meter 20 includes an intake air temperature sensor 23 that detects the temperature of the fluid, and is arranged so that the ground terminal 23b of the intake air temperature sensor 23 is exposed on the outer surface of the bypass housing 24. Then, the electric charge is discharged from the conductive portion 90 to the ground 45 via the ground terminal 23b of the intake air temperature sensor 23.
 このように、バイパスハウジング24の外面に露出するよう配置された吸気温センサ23の接地端子23bを介して導電部90からグランド45へ電荷を放出させることができる。 In this way, the electric charge can be discharged from the conductive portion 90 to the ground 45 via the ground terminal 23b of the intake air temperature sensor 23 arranged so as to be exposed on the outer surface of the bypass housing 24.
 また、本実施形態のエアフロメータ20の製造方法は、絶縁性を有し、流体が流れるバイパス通路30を形成する樹脂製のバイパスハウジング24を用意することを含む。また、この製造方法は、熱による炭化によってバイパスハウジング24の外壁面24bの表面に面状に拡がるように導電性を有する導電部90を形成することを含む。 Further, the method of manufacturing the air flow meter 20 of the present embodiment includes preparing a resin bypass housing 24 which has an insulating property and forms a bypass passage 30 through which a fluid flows. Further, this manufacturing method includes forming a conductive portion 90 having conductivity so as to spread in a plane on the surface of the outer wall surface 24b of the bypass housing 24 by carbonization by heat.
 これによれば、ハウジング21を樹脂成形した後に、加熱等によりハウジング21に導電部90を後付けすることで、ハウジング21の帯電抑制機能を向上させることができる。この場合、ハウジング21や物理量検出部が帯電するということが生じにくくなるため、物理量計測装置に計測精度を高めることができる。 According to this, after the housing 21 is resin-molded, the electrification suppressing function of the housing 21 can be improved by retrofitting the conductive portion 90 to the housing 21 by heating or the like. In this case, the housing 21 and the physical quantity detecting unit are less likely to be charged, so that the physical quantity measuring device can improve the measurement accuracy.
 また、熱による炭化によってバイパスハウジング24の表面に導電部90を形成することでは、バイパスハウジング24の外壁面24bの表面に導電部90を形成する。 Further, by forming the conductive portion 90 on the surface of the bypass housing 24 by carbonization by heat, the conductive portion 90 is formed on the surface of the outer wall surface 24b of the bypass housing 24.
 これにより、バイパスハウジング24の外壁面24bの表面に導電部90を形成することができる。 Thereby, the conductive portion 90 can be formed on the surface of the outer wall surface 24b of the bypass housing 24.
 また、この製造方法は、熱による炭化によってバイパスハウジング24の表面に導電部90を形成することの後に、熱よりも弱い熱によってバイパスハウジング24の表面に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することを含む。なお、「熱よりも弱い熱」とは、導電部90を形成する熱よりも弱い熱という意味である。 Further, in this manufacturing method, after forming the conductive portion 90 on the surface of the bypass housing 24 by carbonization by heat, the floating particles adhering to the surface of the bypass housing 24 by heat weaker than heat are removed and the volume is low efficiency. Includes performing at least one of the adjustments. The "heat weaker than heat" means heat weaker than the heat forming the conductive portion 90.
 これにより、浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することができる。 This allows at least one of the removal of suspended particles and the adjustment of low volume efficiency.
 また、熱による炭化によってバイパスハウジング24の表面に導電部90を形成することでは、第1の走査速度で導電部90を形成する。また、熱よりも弱い熱によってバイパスハウジング24の表面に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することでは、第1の走査速度よりも速い第2の走査速度で浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施する。 Further, by forming the conductive portion 90 on the surface of the bypass housing 24 by carbonization by heat, the conductive portion 90 is formed at the first scanning speed. Further, by performing at least one of removing suspended particles adhering to the surface of the bypass housing 24 and adjusting the volume low efficiency by heat weaker than heat, floating at a second scanning speed faster than the first scanning speed. At least one of particle removal and volume inefficiency adjustment is performed.
 このように、熱よりも弱い熱によってバイパスハウジング24の表面に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することでは、第1の走査速度よりも速い第2の走査速度でそれを実施するのが好ましい。 In this way, by performing at least one of removing the suspended particles adhering to the surface of the bypass housing 24 by heat weaker than heat and adjusting the volume inefficiency, the second scanning speed is faster than the first scanning speed. It is preferable to carry it out at.
 なお、本実施形態では、リング保持部25のうち吸気温センサ23の接地端子23bの周囲に格子状のパターン901を形成したが、リング保持部25の一面および他面のいずれか一方の全体に格子状のパターン901を形成してもよい。 In the present embodiment, the grid-like pattern 901 is formed around the ground terminal 23b of the intake air temperature sensor 23 in the ring holding portion 25, but one surface or the other surface of the ring holding portion 25 is entirely covered. A grid pattern 901 may be formed.
 (第2実施形態)
 第2実施形態に係るエアフロメータ20について図16~図18を用いて説明する。上記第1実施形態のエアフロメータ20は、バイパスハウジング24の外面である外壁面24bの全体と、リング保持部25に形成されたスルーホール251の周囲に導電性を有する格子状のパターン901が形成されている。
(Second Embodiment)
The air flow meter 20 according to the second embodiment will be described with reference to FIGS. 16 to 18. In the air flow meter 20 of the first embodiment, a grid-like pattern 901 having conductivity is formed around the entire outer wall surface 24b which is the outer surface of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. Has been done.
 これに対し、本実施形態のエアフロメータ20は、リング保持部25に形成されたスルーホール251の周囲と、バイパスハウジング24の外壁面24bの一部に導電性を有する格子状のパターン901が形成されている。 On the other hand, in the air flow meter 20 of the present embodiment, a grid-like pattern 901 having conductivity is formed around the through hole 251 formed in the ring holding portion 25 and a part of the outer wall surface 24b of the bypass housing 24. Has been done.
 具体的には、流量検出部22の検出素子22bが位置する部分のバイパスハウジング24の外壁面24bの一部に導電部90が形成されている。より詳細には、流量検出部22の検出素子22bが位置する部分のバイパスハウジング24の径方向外側の外周面に導電部90が形成されている。言い換えれば、バイパスハウジング24の外壁面24bのうち、流量検出部22の検出素子22bが位置する部分から見てハウジング基端側とハウジング先端側とを結ぶ軸芯に対して直交する方向に位置する部位に導電部90が形成されている。 Specifically, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 in the portion where the detection element 22b of the flow rate detection unit 22 is located. More specifically, the conductive portion 90 is formed on the outer peripheral surface of the bypass housing 24 in the portion where the detection element 22b of the flow rate detection unit 22 is located. In other words, it is located in the direction orthogonal to the axial core connecting the housing base end side and the housing tip side when viewed from the portion of the outer wall surface 24b of the bypass housing 24 where the detection element 22b of the flow rate detection unit 22 is located. A conductive portion 90 is formed at the portion.
 また、バイパスハウジング24の外壁面24bにおいて導電部90が形成されていない領域の面積は、バイパスハウジング24の外壁面24bにおいて導電部90が形成されている領域の面積よりも大きくなっている。 Further, the area of the region where the conductive portion 90 is not formed on the outer wall surface 24b of the bypass housing 24 is larger than the area of the region where the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24.
 上記第1実施形態のエアフロメータ20のようにバイパスハウジング24の外壁面24bの全体に導電部90を形成する場合、導電部90の形成に要する時間が長くコストが高くなってしまう。 When the conductive portion 90 is formed on the entire outer wall surface 24b of the bypass housing 24 as in the air flow meter 20 of the first embodiment, the time required for forming the conductive portion 90 is long and the cost is high.
 しかし、上記したように、本実施形態のエアフロメータ20の導電部90は、バイパスハウジング24の外壁面24bの一部に形成されている。したがって、導電部90の形成に要する時間を短くできコストを低減することができる。 However, as described above, the conductive portion 90 of the air flow meter 20 of the present embodiment is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
 また、本実施形態のエアフロメータ20は、流量検出部22の検出素子22bが位置する部分のバイパスハウジング24の外壁面24bの一部に導電部90が形成されている。これによれば、帯電したダスト等の異物による検出素子22bへの影響を効果的に抑制することができる。 Further, in the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the detection element 22b of the flow rate detection unit 22 is located. According to this, the influence of foreign matter such as charged dust on the detection element 22b can be effectively suppressed.
 また、バイパスハウジング24の外壁面24bにおいて導電部90が形成されていない領域の面積は、バイパスハウジング24の外壁面24bにおいて導電部90が形成されている領域の面積よりも大きくなっている。 Further, the area of the region where the conductive portion 90 is not formed on the outer wall surface 24b of the bypass housing 24 is larger than the area of the region where the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24.
 これにより、導電部90が形成されている領域の面積を小さくすることができ、導電部90を形成することによるバイパスハウジング24の強度低下を抑制することが可能である。 As a result, the area of the region where the conductive portion 90 is formed can be reduced, and the strength decrease of the bypass housing 24 due to the formation of the conductive portion 90 can be suppressed.
 なお、上記した本実施形態の構成の他に、例えば、検出素子22bの表側および裏側にそれぞれ位置するバイパスハウジング24の外壁面24bに導電部90を形成し、これらの部位以外に導電部90を形成しないようにすることもできる。すなわち、バイパスハウジング24の一面に形成された導電部90と、バイパスハウジング24の他面に形成された導電部90の間に検出素子22bが配置された構成とすることもできる。 In addition to the configuration of the present embodiment described above, for example, the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24 located on the front side and the back side of the detection element 22b, respectively, and the conductive portion 90 is provided in addition to these portions. It can also be prevented from forming. That is, the detection element 22b may be arranged between the conductive portion 90 formed on one surface of the bypass housing 24 and the conductive portion 90 formed on the other surface of the bypass housing 24.
 (第3実施形態)
 第3実施形態に係るエアフロメータ20について図19~図21を用いて説明する。本実施形態のエアフロメータ20も、バイパスハウジング24の外面である外壁面24bの一部に導電部90が形成されている。本実施形態のエアフロメータ20は、流量検出部22の検出素子22bと計測通路32の導入路32bが位置する部分のバイパスハウジング24の外壁面24bの一部に導電部90が形成されている。
(Third Embodiment)
The air flow meter 20 according to the third embodiment will be described with reference to FIGS. 19 to 21. Also in the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the outer wall surface 24b which is the outer surface of the bypass housing 24. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the detection element 22b of the flow rate detection unit 22 and the introduction path 32b of the measurement passage 32 are located.
 エアフロメータ20は、バイパス通路30を流れる空気の物理量を検出する検出素子22bを有している。また、バイパス通路30は、検出素子22bが配置される検出路32aに吸入空気を導入する導入路32bを有している。そして、導電部90は、検出素子22bおよび導入路32bの周囲を囲むようにバイパスハウジング24の外壁面24bの一部に形成されている。 The air flow meter 20 has a detection element 22b that detects a physical quantity of air flowing through the bypass passage 30. Further, the bypass passage 30 has an introduction path 32b for introducing intake air into the detection path 32a in which the detection element 22b is arranged. The conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 so as to surround the detection element 22b and the introduction path 32b.
 このように、エアフロメータ20は、バイパスハウジング24の外壁面24bの一部に形成されている。したがって、導電部90の形成に要する時間を短くできコストを低減することができる。 As described above, the air flow meter 20 is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
 また、本実施形態のエアフロメータ20の導電部90は、検出素子22bおよび導入路32bの周囲を囲むようにバイパスハウジング24の外壁面24bの一部に形成されている。これによれば、帯電したダスト等の異物による検出素子22bへの影響を効果的に抑制することができる。 Further, the conductive portion 90 of the air flow meter 20 of the present embodiment is formed on a part of the outer wall surface 24b of the bypass housing 24 so as to surround the detection element 22b and the introduction path 32b. According to this, the influence of foreign matter such as charged dust on the detection element 22b can be effectively suppressed.
 なお、上記した本実施形態の構成の他に、例えば、検出素子22bの表側および裏側にそれぞれ位置するバイパスハウジング24の外壁面24bに導電部90を形成し、これらの部位以外に導電部90を形成しないようにすることもできる。すなわち、バイパスハウジング24の一面に形成された導電部90と、バイパスハウジング24の他面に形成された導電部90の間に検出素子22bが配置された構成とすることもできる。 In addition to the configuration of the present embodiment described above, for example, the conductive portion 90 is formed on the outer wall surface 24b of the bypass housing 24 located on the front side and the back side of the detection element 22b, respectively, and the conductive portion 90 is provided in addition to these portions. It can also be prevented from forming. That is, the detection element 22b may be arranged between the conductive portion 90 formed on one surface of the bypass housing 24 and the conductive portion 90 formed on the other surface of the bypass housing 24.
 (第4実施形態)
 第4実施形態に係るエアフロメータ20について図22~図24を用いて説明する。本実施形態のエアフロメータ20も、バイパスハウジング24の外面である壁面24bの一部に導電部90が形成されている。本実施形態のエアフロメータ20は、バイパス通路30の排出路32cが位置する部分のバイパスハウジング24の外面である外壁面24bの一部に導電部90が形成されている。
(Fourth Embodiment)
The air flow meter 20 according to the fourth embodiment will be described with reference to FIGS. 22 to 24. Also in the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the wall surface 24b which is the outer surface of the bypass housing 24. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the outer wall surface 24b which is the outer surface of the bypass housing 24 at the portion where the discharge path 32c of the bypass passage 30 is located.
 本実施形態のエアフロメータ20では、バイパス通路30は、検出素子22bが配置される検出路32aから空気を排出する排出路32cを有している。そして、導電部90は、バイパス通路30の排出路32cが位置する部分のバイパスハウジング24の外壁面24bの一部に形成されている。 In the air flow meter 20 of the present embodiment, the bypass passage 30 has an discharge path 32c for discharging air from the detection path 32a in which the detection element 22b is arranged. The conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the discharge passage 32c of the bypass passage 30 is located.
 このように、導電部90は、バイパスハウジング24の外壁面24bの一部に形成されている。したがって、導電部90の形成に要する時間を短くできコストを低減することができる。 As described above, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
 (第5実施形態)
 第5実施形態に係るエアフロメータ20について図25~図27を用いて説明する。本実施形態のエアフロメータ20も、バイパスハウジング24の外面である外壁面24bの一部に導電部90が形成されている。本実施形態のエアフロメータ20は、検出素子22bが配置される検出路32aと、検出路32aに空気を導入する導入路32bと、を備えている。また、導入路32bに空気を導入する通過通路31が位置する部分のバイパスハウジング24の外壁面24bの一部に導電部90が形成されている。すなわち、検出素子22bより空気流れ上流側のバイパス通路30が位置する部分のバイパスハウジング24の外壁面24bの一部に導電部90が形成されている。
(Fifth Embodiment)
The air flow meter 20 according to the fifth embodiment will be described with reference to FIGS. 25 to 27. Also in the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the outer wall surface 24b which is the outer surface of the bypass housing 24. The air flow meter 20 of the present embodiment includes a detection path 32a in which the detection element 22b is arranged, and an introduction path 32b for introducing air into the detection path 32a. Further, a conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the passage passage 31 for introducing air into the introduction path 32b is located. That is, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24 at the portion where the bypass passage 30 on the upstream side of the air flow from the detection element 22b is located.
 このように、導電部90は、バイパスハウジング24の外壁面24bの一部に形成されている。したがって、導電部90の形成に要する時間を短くできコストを低減することができる。 As described above, the conductive portion 90 is formed on a part of the outer wall surface 24b of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
 (第6実施形態)
 第6実施形態に係るエアフロメータ20について図28~図30を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24の外面である外壁面24bの全体に導電部90が形成されている。また、本実施形態のエアフロメータ20の導電部90の一部は格子状のパターン901によって構成され、導電部90の残りの一部はストライプ状のパターン902によって構成されている。
(Sixth Embodiment)
The air flow meter 20 according to the sixth embodiment will be described with reference to FIGS. 28 to 30. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on the entire outer wall surface 24b which is the outer surface of the bypass housing 24. Further, a part of the conductive portion 90 of the air flow meter 20 of the present embodiment is formed of a grid-like pattern 901, and the remaining part of the conductive portion 90 is formed of a striped pattern 902.
 図59~図61に示した炭化部15は、図28~図30に示した複数の導電部902aを構成している。炭化部15は、直線状に延びるように複数形成されている。複数の導電部902aは、炭化部15が細長状に延びたものにより構成されている。ベース部61の外面62に、直線状の導電部902aが複数平行に延びている。 The carbonized portion 15 shown in FIGS. 59 to 61 constitutes a plurality of conductive portions 902a shown in FIGS. 28 to 30. A plurality of carbonized portions 15 are formed so as to extend linearly. The plurality of conductive portions 902a are composed of carbonized portions 15 extending in an elongated shape. A plurality of linear conductive portions 902a extend in parallel to the outer surface 62 of the base portion 61.
 ストライプ状のパターン902は、複数の導電部902aを有している。また、複数の導電部902aは平行に延びている。 The striped pattern 902 has a plurality of conductive portions 902a. Further, the plurality of conductive portions 902a extend in parallel.
 このように、格子状のパターン901とストライプ状のパターン902を組み合わせて導電部90を構成してもよい。 In this way, the conductive portion 90 may be formed by combining the grid-like pattern 901 and the striped pattern 902.
 (第7実施形態)
 第7実施形態に係るエアフロメータ20について図31~図34を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24の外面である外壁面24bの全体と、リング保持部25に形成されたスルーホール251の周囲に導電性を有する格子状のパターン901が形成されている。
(7th Embodiment)
The air flow meter 20 according to the seventh embodiment will be described with reference to FIGS. 31 to 34. In the air flow meter 20 of the present embodiment, a grid-like pattern 901 having conductivity is formed around the entire outer wall surface 24b which is the outer surface of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. There is.
 また、本実施形態のエアフロメータ20の導電部90は、ストライプ状のパターン902によって構成されている。このように、ストライプ状のパターン902のみによって導電部90を構成してもよい。 Further, the conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a striped pattern 902. In this way, the conductive portion 90 may be formed only by the striped pattern 902.
 (第8実施形態)
 第8実施形態に係るエアフロメータ20について図35~図36を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内面である内壁面24aの全体に導電部90が形成されている。なお、本実施形態のエアフロメータ20は、バイパスハウジング24の外壁面24bと、リング保持部25に形成されたスルーホール251の周囲に導電部90は形成されていない。また、導電部90は、格子状を成している。
(8th Embodiment)
The air flow meter 20 according to the eighth embodiment will be described with reference to FIGS. 35 to 36. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on the entire inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24. In the air flow meter 20 of the present embodiment, the conductive portion 90 is not formed around the outer wall surface 24b of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. Further, the conductive portion 90 has a lattice shape.
 本実施形態のエアフロメータ20は、導電部90とコネクタターミナル28aの間に接続ターミナル28bが設けられている。そして、導電部90の電荷は、接続ターミナル28bからコネクタターミナル28aを通ってグランド45に放出されるようになっている。 The air flow meter 20 of the present embodiment is provided with a connection terminal 28b between the conductive portion 90 and the connector terminal 28a. Then, the electric charge of the conductive portion 90 is discharged from the connection terminal 28b to the ground 45 through the connector terminal 28a.
 このように、本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内壁面24aの全体に導電部90が形成されているので、バイパスハウジング24のバイパス通路30の内壁面24aの全体に導電性を持たせることができる。 As described above, in the air flow meter 20 of the present embodiment, since the conductive portion 90 is formed on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24, the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24 is formed. Can be made conductive.
 (第9実施形態)
 第9実施形態に係るエアフロメータ20について図37~図38を用いて説明する。上記第8実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内壁面24aの全体に導電部90が形成されている。これに対し、本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内壁面24aの一部に導電部90が形成されている。なお、本実施形態のエアフロメータ20は、バイパスハウジング24の外壁面24bに導電部90は形成されていない。また、導電部90は、格子状を成している。
(9th Embodiment)
The air flow meter 20 according to the ninth embodiment will be described with reference to FIGS. 37 to 38. In the air flow meter 20 of the eighth embodiment, the conductive portion 90 is formed on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24. On the other hand, in the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the inner wall surface 24a of the bypass passage 30 of the bypass housing 24. In the air flow meter 20 of the present embodiment, the conductive portion 90 is not formed on the outer wall surface 24b of the bypass housing 24. Further, the conductive portion 90 has a lattice shape.
 本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内面である内壁面24aのうち計測通路32の内壁面24aに導電部90が形成されている。また、バイパスハウジング24のバイパス通路30の内壁面24aのうち通過通路31の内壁面24aに導電部90は形成されていない。 In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on the inner wall surface 24a of the measurement passage 32 out of the inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24. Further, of the inner wall surface 24a of the bypass passage 30 of the bypass housing 24, the conductive portion 90 is not formed on the inner wall surface 24a of the passage passage 31.
 このように、本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内壁面24aの一部に導電部90が形成されている。したがって、導電部90の形成に要する時間を短くできコストを低減することができる。 As described above, in the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the inner wall surface 24a of the bypass passage 30 of the bypass housing 24. Therefore, the time required for forming the conductive portion 90 can be shortened, and the cost can be reduced.
 (第10実施形態)
 第10実施形態に係るエアフロメータ20について図39~図40を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の全体の内壁面24aに導電部90が形成されている。また、導電部90の一部は格子状のパターン901によって構成され、導電部90の残りの一部はストライプ状のパターン902によって構成されている。
(10th Embodiment)
The air flow meter 20 according to the tenth embodiment will be described with reference to FIGS. 39 to 40. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24. Further, a part of the conductive portion 90 is composed of a grid-like pattern 901, and the remaining part of the conductive portion 90 is composed of a striped pattern 902.
 このように、格子状のパターン901とストライプ状のパターン902を組み合わせて導電部90を構成してもよい。 In this way, the conductive portion 90 may be formed by combining the grid-like pattern 901 and the striped pattern 902.
 (第11実施形態)
 第11実施形態に係るエアフロメータ20について図41~図42を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内面である内壁面24aの全体に導電部90が形成されている。また、導電部90は、ストライプ状のパターン902によって構成されている。
(11th Embodiment)
The air flow meter 20 according to the eleventh embodiment will be described with reference to FIGS. 41 to 42. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on the entire inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24. Further, the conductive portion 90 is composed of a striped pattern 902.
 このように、ストライプ状のパターン902をバイパスハウジング24のバイパス通路30の内壁面24aの全体に配置して導電部90を構成することもできる。 In this way, the striped pattern 902 can be arranged on the entire inner wall surface 24a of the bypass passage 30 of the bypass housing 24 to form the conductive portion 90.
 (第12実施形態)
 第12実施形態に係るエアフロメータ20について図43~図46を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24の外面である外壁面24bの全体と、リング保持部25に形成されたスルーホール251の周囲に導電部90が形成されている。本実施形態の導電部90は、円形形状を成す複数のパターン903によって構成されている。複数のパターン903は、物理的に離れた位置に形成されており、互いに接続されていない。いる。なお、導電部90は、バイパスハウジング24の内面にパターン903は形成されていない。
(12th Embodiment)
The air flow meter 20 according to the twelfth embodiment will be described with reference to FIGS. 43 to 46. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed around the entire outer wall surface 24b which is the outer surface of the bypass housing 24 and the through hole 251 formed in the ring holding portion 25. The conductive portion 90 of the present embodiment is composed of a plurality of patterns 903 having a circular shape. The plurality of patterns 903 are formed at physically separated positions and are not connected to each other. There is. In the conductive portion 90, the pattern 903 is not formed on the inner surface of the bypass housing 24.
 複数のパターン903の一部に電荷が蓄積すると、この電荷は放電によって複数のパターン903の間を次々に移動する。そして、吸気温センサ23の接地端子23bからコネクタターミナル28aを通ってグランド45に放出される。 When an electric charge is accumulated in a part of a plurality of patterns 903, the electric charge moves one after another between the plurality of patterns 903 by electric discharge. Then, it is discharged from the ground terminal 23b of the intake air temperature sensor 23 to the ground 45 through the connector terminal 28a.
 (第13実施形態)
 第13実施形態に係るエアフロメータ20について図47~図48を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24のバイパス通路30の内面である内壁面24aの全体にパターン903が形成されている。導電部90は、円形形状を成す複数のパターン903を有している。複数のパターン903は、物理的に離れた位置に形成されている。なお、導電部90は、バイパスハウジング24の外面である外壁面24bにパターン903は形成されていない。
(13th Embodiment)
The air flow meter 20 according to the thirteenth embodiment will be described with reference to FIGS. 47 to 48. In the air flow meter 20 of the present embodiment, the pattern 903 is formed on the entire inner wall surface 24a which is the inner surface of the bypass passage 30 of the bypass housing 24. The conductive portion 90 has a plurality of patterns 903 having a circular shape. The plurality of patterns 903 are formed at physically separated positions. In the conductive portion 90, the pattern 903 is not formed on the outer wall surface 24b, which is the outer surface of the bypass housing 24.
 複数のパターン903の一部に電荷が蓄積すると、この電荷は放電によって複数のパターン903の間を次々に移動する。そして、パターン903から接続ターミナル28bおよびコネクタターミナル28aを通ってグランド45に放出される。 When an electric charge is accumulated in a part of a plurality of patterns 903, the electric charge moves one after another between the plurality of patterns 903 by electric discharge. Then, the pattern 903 is discharged to the ground 45 through the connection terminal 28b and the connector terminal 28a.
 (第14実施形態)
 第14実施形態に係るエアフロメータ20について図49~図50を用いて説明する。本実施形態のエアフロメータ20の導電部90の一部は格子状のパターン901によって構成され、導電部90の残りの一部は互いに並走する並走パターン906によって構成されている。
(14th Embodiment)
The air flow meter 20 according to the 14th embodiment will be described with reference to FIGS. 49 to 50. A part of the conductive portion 90 of the air flow meter 20 of the present embodiment is formed of a grid-like pattern 901, and the remaining part of the conductive portion 90 is formed of a parallel running pattern 906 running in parallel with each other.
 格子状のパターン901は、バイパスハウジング24のうちハウジング基端側に形成され、並走パターン906は、ハウジング基端側に形成された格子状のパターン901からバイパスハウジング24の流出口33bに向かって延びるように形成されている。 The grid-like pattern 901 is formed on the base end side of the bypass housing 24, and the parallel running pattern 906 is from the grid-like pattern 901 formed on the base end side of the housing toward the outlet 33b of the bypass housing 24. It is formed to extend.
 このように、格子状のパターン901と並走パターン906を組み合わせて導電部90を構成してもよい。 In this way, the conductive portion 90 may be formed by combining the grid-like pattern 901 and the parallel running pattern 906.
 (第15実施形態)
 第15実施形態に係るエアフロメータ20について図51~図52を用いて説明する。本実施形態のエアフロメータ20は、バイパスハウジング24の内面である内壁面24aの一部に導電部90が形成されている。導電部90は、格子状のパターン901と、並走する並走パターン906と、曲線状を成す曲線パターン907によって構成されている。
(15th Embodiment)
The air flow meter 20 according to the fifteenth embodiment will be described with reference to FIGS. 51 to 52. In the air flow meter 20 of the present embodiment, the conductive portion 90 is formed on a part of the inner wall surface 24a which is the inner surface of the bypass housing 24. The conductive portion 90 is composed of a grid-like pattern 901, a parallel running pattern 906 running in parallel, and a curved curve pattern 907 forming a curved line.
 格子状のパターン901は、計測通路32を形成する内壁面24aに形成されている。並走パターン906は、計測通路32に形成された格子状のパターン901からバイパスハウジング24の流出口33bに向かって延びるように形成されている。曲線パターン907は、計測通路32に形成された格子状のパターン901からバイパスハウジング24の通過通路31に向かって延びるように形成されている。 The grid-like pattern 901 is formed on the inner wall surface 24a forming the measurement passage 32. The parallel running pattern 906 is formed so as to extend from the grid-like pattern 901 formed in the measurement passage 32 toward the outlet 33b of the bypass housing 24. The curved pattern 907 is formed so as to extend from the grid-like pattern 901 formed in the measuring passage 32 toward the passing passage 31 of the bypass housing 24.
 このように、格子状のパターン901と並走パターン906と曲線パターン907を組み合わせて導電部90を構成してもよい。 In this way, the conductive portion 90 may be formed by combining the grid pattern 901, the parallel running pattern 906, and the curved pattern 907.
 (第16実施形態)
 第16実施形態に係るエアフロメータ20の製造方法について図53を用いて説明する。本実施形態では、図35~図36に示したようにエアフロメータ20のバイパスハウジング24のバイパス通路30を形成する内面である内壁面24aの全体に導電部90を形成する例について説明する。本実施形態のエアフロメータ20の製造方法は、図13に示したように、用意工程、第1加熱工程および第2加熱工程を含んでいる。
(16th Embodiment)
A method of manufacturing the air flow meter 20 according to the 16th embodiment will be described with reference to FIG. 53. In the present embodiment, as shown in FIGS. 35 to 36, an example in which the conductive portion 90 is formed on the entire inner wall surface 24a, which is the inner surface forming the bypass passage 30 of the bypass housing 24 of the air flow meter 20, will be described. As shown in FIG. 13, the method for manufacturing the air flow meter 20 of the present embodiment includes a preparation step, a first heating step, and a second heating step.
 まず、図53(a)に示すように、作業者は、S100にて、流体が流れるバイパス通路30を形成する樹脂製のバイパスハウジング24を含むエアフロメータ20を用意する。なお、バイパスハウジング24は、図2のVI-VI線で示す分割面で分割した状態で用意する。また、バイパスハウジング24には、予め吸気温センサ23が取り付けられている。そして、分割した一方のバイパスハウジング24を加工治具に固定する。なお、図53では、分割したバイパスハウジングを符号21A、21Bで示している。 First, as shown in FIG. 53A, the operator prepares an air flow meter 20 including a resin bypass housing 24 that forms a bypass passage 30 through which a fluid flows in S100. The bypass housing 24 is prepared in a state of being divided by the dividing surface shown by the VI-VI line in FIG. Further, the intake air temperature sensor 23 is attached to the bypass housing 24 in advance. Then, one of the divided bypass housings 24 is fixed to the processing jig. In FIG. 53, the divided bypass housings are indicated by reference numerals 21A and 21B.
 次に、図53(b)に示すように、作業者は、S200にて、第1加熱工程を実施する。具体的には、作業者は、レーザ機を用いてバイパスハウジング24の表面に格子状にレーザ照射してバイパスハウジング24の表面を加熱する。ここでは、強出力でレーザ照射を行う。 Next, as shown in FIG. 53 (b), the operator carries out the first heating step in S200. Specifically, the operator uses a laser machine to irradiate the surface of the bypass housing 24 with a laser in a grid pattern to heat the surface of the bypass housing 24. Here, laser irradiation is performed with high output.
 次に、図53(c)に示すように、作業者は、S300にて、ヒューム加工と呼ばれる第2加熱工程を実施する。具体的には、作業者は、レーザ機を用いてより高速でバイパスハウジング24の表面の全体にレーザ照射してバイパスハウジング24の表面を加熱する。ここでは、先の第1加熱工程よりも弱出力でレーザ照射を行う。これにより、先の格子状にレーザ照射した際に生じたヒュームと呼ばれる粉塵等が除去される。また、導電部90の体積抵抗率が所望の値に調整される。 Next, as shown in FIG. 53 (c), the worker carries out a second heating step called fume processing in S300. Specifically, the operator uses a laser machine to irradiate the entire surface of the bypass housing 24 with a laser at a higher speed to heat the surface of the bypass housing 24. Here, the laser irradiation is performed with a weaker output than the previous first heating step. As a result, dust or the like called fume generated when the laser irradiation is performed in the grid pattern is removed. Further, the volume resistivity of the conductive portion 90 is adjusted to a desired value.
 次に、分割した他方のバイパスハウジング24を加工治具に固定し、このバイパスハウジング24に対してS200の第1加熱工程とS300の第2加熱工程を実施する。 Next, the other divided bypass housing 24 is fixed to the processing jig, and the first heating step of S200 and the second heating step of S300 are performed on the bypass housing 24.
 次に、図53(d)に示すように、作業者は、分割された一方のバイパスハウジング24と他方のバイパスハウジング24を一体化する。このようにしてエアフロメータ20が完成する。 Next, as shown in FIG. 53 (d), the operator integrates the divided one bypass housing 24 and the other bypass housing 24. In this way, the air flow meter 20 is completed.
 上記したように、エアフロメータ20のバイパスハウジング24のバイパス通路30を形成する内壁面24aの全体に導電部90を形成する際には、バイパスハウジング24を複数に分割して導電部90を形成する。その後、分割した複数のバイパスハウジング24を一体化することでバイパスハウジング24の内壁面24aに導電部90を形成することができる。 As described above, when the conductive portion 90 is formed on the entire inner wall surface 24a forming the bypass passage 30 of the bypass housing 24 of the air flow meter 20, the bypass housing 24 is divided into a plurality of parts to form the conductive portion 90. .. After that, the conductive portion 90 can be formed on the inner wall surface 24a of the bypass housing 24 by integrating the plurality of divided bypass housings 24.
 (第17実施形態)
 第17実施形態に係るエアフロメータ20について図54Aおよび図54Bを用いて説明する。上記第12~14実施形態のエアフロメータ20の導電部90は、円形形状を成す複数のパターン903により構成されている。
(17th Embodiment)
The air flow meter 20 according to the 17th embodiment will be described with reference to FIGS. 54A and 54B. The conductive portion 90 of the air flow meter 20 of the twelfth to fourteenth embodiments is composed of a plurality of patterns 903 having a circular shape.
 複数のパターン903は、図54Aに示すようにパターン903の中心がバイパスハウジング24の長手方向に対して斜め方向に並ぶように配置することもできる。また、図54Bに示すようにパターン903の中心がバイパスハウジング24の長手方向に対して上下方向または左右方向に並ぶように配置することもできる。 As shown in FIG. 54A, the plurality of patterns 903 can be arranged so that the centers of the patterns 903 are arranged diagonally with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 54B, the center of the pattern 903 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
 (第18実施形態)
 第18実施形態に係るエアフロメータ20について図55Aおよび図55Bを用いて説明する。本実施形態のエアフロメータ20の導電部90は、正方形を成す複数のパターン904により構成されている。
(18th Embodiment)
The air flow meter 20 according to the eighteenth embodiment will be described with reference to FIGS. 55A and 55B. The conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a plurality of patterns 904 forming a square.
 複数のパターン903は、図55Aに示すようにパターン904の中心がバイパスハウジング24の長手方向に対して斜め方向に並ぶように配置することもできる。また、図55Bに示すようにパターン904の中心がバイパスハウジング24の長手方向に対して上下方向または左右方向に並ぶように配置することもできる。 As shown in FIG. 55A, the plurality of patterns 903 can be arranged so that the centers of the patterns 904 are aligned obliquely with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 55B, the center of the pattern 904 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
 (第19実施形態)
 第19実施形態に係るエアフロメータ20について図56Aおよび図56Bを用いて説明する。本実施形態のエアフロメータ20の導電部90は、三角形を成す複数のパターン905により構成されている。
(19th Embodiment)
The air flow meter 20 according to the 19th embodiment will be described with reference to FIGS. 56A and 56B. The conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a plurality of patterns 905 forming a triangle.
 複数のパターン905は、図56Aに示すようにパターン905の中心がバイパスハウジング24の長手方向に対して斜め方向に並ぶように配置することもできる。また、図56Bに示すようにパターン905の中心がバイパスハウジング24の長手方向に対して上下方向または左右方向に並ぶように配置することもできる。 As shown in FIG. 56A, the plurality of patterns 905 can be arranged so that the centers of the patterns 905 are aligned obliquely with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 56B, the center of the pattern 905 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
 (第20実施形態)
 第20実施形態に係るエアフロメータ20について図57Aおよび図57Bを用いて説明する。本実施形態のエアフロメータ20の導電部90は、三角形と逆三角形を成す複数のパターン905によって構成されている。
(20th Embodiment)
The air flow meter 20 according to the twentieth embodiment will be described with reference to FIGS. 57A and 57B. The conductive portion 90 of the air flow meter 20 of the present embodiment is composed of a plurality of patterns 905 forming an inverted triangle with a triangle.
 複数のパターン905は、図57Aに示すようにパターン905の中心がバイパスハウジング24の長手方向に対して斜め方向に並ぶように配置することもできる。また、図57Bに示すようにパターン905の中心がバイパスハウジング24の長手方向に対して上下方向または左右方向に並ぶように配置することもできる。 As shown in FIG. 57A, the plurality of patterns 905 can be arranged so that the centers of the patterns 905 are aligned obliquely with respect to the longitudinal direction of the bypass housing 24. Further, as shown in FIG. 57B, the center of the pattern 905 may be arranged so as to be aligned in the vertical direction or the horizontal direction with respect to the longitudinal direction of the bypass housing 24.
 (第21実施形態)
 第21実施形態に係るエアフロメータ20について図58を用いて説明する。本実施形態のバイパスハウジング24は、第1面241と、第1面241と交差する方向に拡がる第2面242と、第2面242と交差する方向に拡がる第3面243と、を有している。
(21st Embodiment)
The air flow meter 20 according to the 21st embodiment will be described with reference to FIG. 58. The bypass housing 24 of the present embodiment has a first surface 241 and a second surface 242 extending in a direction intersecting the first surface 241 and a third surface 243 extending in a direction intersecting the second surface 242. ing.
 バイパスハウジング24は、さらに、第1面241と第2面242とを接続する部分を緩やかに接続する接続面244と、第2面242と第3面243とを接続する部分を緩やかに接続する接続面245と、を有している。 Further, the bypass housing 24 loosely connects the connecting surface 244 that loosely connects the portion connecting the first surface 241 and the second surface 242 and the portion connecting the second surface 242 and the third surface 243. It has a connection surface 245 and.
 そして、導電部90は、第1面241から接続面244、第2面242、接続面245を経て第3面243に至るよう緩やかに曲がるように形成されている。 The conductive portion 90 is formed so as to gently bend from the first surface 241 to the third surface 243 via the connecting surface 244, the second surface 242, and the connecting surface 245.
 導電部90を形成する前の成形体の形状としては、炭化すべき箇所において、なるべく成形時に溶融樹脂が流動する形状が望ましい。そのため、第1面241と第2面242との間の接続面244および第2面242と第3面243との間の接続面245は、比較的大きなR形状(すなわちラウンド形状)になっている。角部34および隅部35の曲率半径は、できる限り大きいことが望ましく、具体的な大きさとしては少なくとも5mm以上が望ましい。 As the shape of the molded body before forming the conductive portion 90, it is desirable that the molten resin flows at the portion to be carbonized as much as possible during molding. Therefore, the connecting surface 244 between the first surface 241 and the second surface 242 and the connecting surface 245 between the second surface 242 and the third surface 243 have a relatively large R shape (that is, a round shape). There is. It is desirable that the radius of curvature of the corner portion 34 and the corner portion 35 be as large as possible, and the specific size is preferably at least 5 mm or more.
 また、接続面244および接続面245を比較的大きなR形状とすることにより導電部90の加工精度を向上することもできる。 Further, the processing accuracy of the conductive portion 90 can be improved by forming the connecting surface 244 and the connecting surface 245 into a relatively large R shape.
 (他の実施形態)
 (1)上記各実施形態では、吸気温センサ23の接地端子23b、あるいは接続ターミナル28b介して導電部90を構成している各パターン901~906の電荷をグランド45に放出するようにした。しかし、吸気温センサ23の接地端子23b、接続ターミナル28b以外の部位から導電部90を構成している各パターン901~906の電荷をグランド45に放出するようにしてもよい。
(Other embodiments)
(1) In each of the above embodiments, the electric charges of the patterns 901 to 906 constituting the conductive portion 90 are discharged to the ground 45 via the ground terminal 23b of the intake air temperature sensor 23 or the connection terminal 28b. However, the electric charges of the patterns 901 to 906 constituting the conductive portion 90 may be discharged to the ground 45 from a portion other than the ground terminal 23b and the connection terminal 28b of the intake air temperature sensor 23.
 (2)上記各実施形態では、導電部90を構成している各パターン901~906と、吸気温センサ23の接地端子23bあるいは接続ターミナル28bと、の間を電気的に接続するようにした。 (2) In each of the above embodiments, the patterns 901 to 906 constituting the conductive portion 90 are electrically connected to the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23.
 これに対し、導電部90と吸気温センサ23の接地端子23bとの間を未接続としてもよい。具体的には、導電部90と、吸気温センサ23の接地端子23bあるいは接続ターミナル28bとの間に隙間を設け、導電部90とグランド45の間を未接続としてもよい。ただしこの場合、導電部90と、吸気温センサ23の接地端子23bあるいは接続ターミナル28bとの間の離間距離が、電荷が導電部90からグランド45に移動可能な距離とする。 On the other hand, the conductive portion 90 and the ground terminal 23b of the intake air temperature sensor 23 may not be connected. Specifically, a gap may be provided between the conductive portion 90 and the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23, and the conductive portion 90 and the ground 45 may not be connected. However, in this case, the separation distance between the conductive portion 90 and the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23 is the distance at which the electric charge can move from the conductive portion 90 to the ground 45.
 このような場合でも、放電によって電荷が導電部90から吸気温センサ23の接地端子23bあるいは接続ターミナル28bに移動した後、コネクタターミナル28aを通ってグランド45に放出されることが可能である。なお、導電部90と、吸気温センサ23の接地端子23bあるいは接続ターミナル28bとの間の隙間の間隔は0.5ミリメートル未満とするのが好ましい。 Even in such a case, the electric charge can be transferred from the conductive portion 90 to the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23 by the electric discharge, and then discharged to the ground 45 through the connector terminal 28a. The distance between the conductive portion 90 and the ground terminal 23b or the connection terminal 28b of the intake air temperature sensor 23 is preferably less than 0.5 mm.
 このように、導電部90と吸気温センサ23の接地端子23bとの間を未接続とした場合、レーザを吸気温センサ23の接地端子23bに当てる必要がないため、レーザー照射や熱による接地端子23bの変形や変質を抑制することができる。 In this way, when the conductive portion 90 and the ground terminal 23b of the intake air temperature sensor 23 are not connected, it is not necessary to apply the laser to the ground terminal 23b of the intake air temperature sensor 23. Deformation and alteration of 23b can be suppressed.
 (3)上記各実施形態では、レーザ照射によって導電部90を形成したが、これに限らず、プラズマ処理、高圧水蒸気照射、電子線照射、ジュール熱を利用した加熱等の他の方法を用いてもよく、樹脂部材10の加工性に応じて最適な方法を選択することができる。 (3) In each of the above embodiments, the conductive portion 90 is formed by laser irradiation, but the present invention is not limited to this, and other methods such as plasma treatment, high-pressure steam irradiation, electron beam irradiation, and heating using Joule heat are used. Also, the optimum method can be selected according to the workability of the resin member 10.
 (4)導電部90とグランド45の間を接続するグランド接続部は、吸気温ターミナルに限らず、例えば吸気管などの他の部位であってもよい。要するにグランド接続部は、グランド45に接続されており、電荷をグランド45に放出可能であればよい。 (4) The ground connection portion that connects the conductive portion 90 and the ground 45 is not limited to the intake air temperature terminal, and may be another portion such as an intake pipe. In short, the ground connection portion may be connected to the ground 45 and can discharge the electric charge to the ground 45.
 (5)導電部90は、パターン状に限らず、膜状に形成されてもよい。この場合、より優れた電磁波シールド性を樹脂部材10に付与することができる。 (5) The conductive portion 90 is not limited to the pattern shape, but may be formed into a film shape. In this case, better electromagnetic wave shielding properties can be imparted to the resin member 10.
 (6)導電部90は、熱による炭化によって形成された炭化物66を含むものに限定されない。例えば、導電性を有する導電部90として、ハウジング21の表面に金属パターンを形成してもよい。 (6) The conductive portion 90 is not limited to the one containing the carbide 66 formed by carbonization by heat. For example, a metal pattern may be formed on the surface of the housing 21 as the conductive portion 90 having conductivity.
 (7)上記第1実施形態では、第1導電部901aと第2導電部901bを、+字状に形成したが、例えば、T字状に接続するように形成することもできる。また、第1導電部901aと第2導電部901bは直交していなくてもよい。また、第1導電部901aと第2導電部901bは、少なくとも1つ形成されていればよい。また、第1導電部901aと第2導電部901bのいずれかがグランド45に接続されていてもよく、第1導電部901aと第2導電部901bの両方がグランド45に接続されていてもよい。また、第1導電部901aと第2導電部901bのいずれかがグランド45に接続されることなくグランド45に近接するよう配置されていてもよい。また、第1導電部901aと第2導電部901bは、直線状に延びていなくてもよく、例えば、曲線形状となっていてもよい。また、第1導電部901aと第2導電部901bは互いに離間して配置されていてもよい。ただし、この場合、電荷が移動可能な離間距離とするのが好ましい。 (7) In the first embodiment, the first conductive portion 901a and the second conductive portion 901b are formed in a + shape, but can be formed so as to be connected in a T shape, for example. Further, the first conductive portion 901a and the second conductive portion 901b do not have to be orthogonal to each other. Further, at least one of the first conductive portion 901a and the second conductive portion 901b may be formed. Further, either the first conductive portion 901a or the second conductive portion 901b may be connected to the ground 45, or both the first conductive portion 901a and the second conductive portion 901b may be connected to the ground 45. .. Further, either the first conductive portion 901a or the second conductive portion 901b may be arranged so as to be close to the ground 45 without being connected to the ground 45. Further, the first conductive portion 901a and the second conductive portion 901b do not have to extend linearly, and may have a curved shape, for example. Further, the first conductive portion 901a and the second conductive portion 901b may be arranged apart from each other. However, in this case, it is preferable to set the separation distance so that the electric charge can move.
 (8)上記第12~第13実施形態において、複数のパターン903は、離間して配置され互いに接続されていないが、離間した複数のパターン903を第1の導電部とし、これらの第1導電部の一部またはすべてを図示しない第2の導電部で接続することもできる。 (8) In the twelfth to thirteenth embodiments, the plurality of patterns 903 are arranged apart from each other and are not connected to each other. Part or all of the portions may be connected by a second conductive portion (not shown).
 (9)上記第6~第7、第10~第11実施形態では、導電部90の全てまたは一部がストライプ状のパターン902によって構成されている。これらのストライプ状のパターン902は、ハウジング21に対して、縦方向、横方向、斜め方向のいずれの方向に延びるように形成されていてもよい。 (9) In the sixth to seventh and tenth to eleventh embodiments described above, all or part of the conductive portion 90 is composed of a striped pattern 902. These striped patterns 902 may be formed so as to extend in any of the vertical direction, the horizontal direction, and the oblique direction with respect to the housing 21.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Note that the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. Further, in each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., except when specifically specified or when the material, shape, positional relationship, etc. are limited in principle. , The material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、流体の物理量を計測する物理量計測装置は、絶縁性を有し、流体が流れるバイパス通路を形成する樹脂製のバイパスハウジングを備えている。また、物理量計測装置は、バイパス通路を流れる流体の物理量に応じた検出信号を出力する物理量検出部を備えている。また、物理量計測装置は、バイパスハウジングの外面およびバイパス通路を形成するバイパスハウジングの内面の少なくとも一方の表面に形成された導電性を有する導電部を備えている。そして、物理量計測装置は、導電部からグランドへ電荷が放出される構成となっている。
(Summary)
According to the first aspect shown in a part or all of the above-described embodiments, the physical quantity measuring device for measuring the physical quantity of the fluid has an insulating property and is a resin bypass forming a bypass passage through which the fluid flows. It has a housing. Further, the physical quantity measuring device includes a physical quantity detecting unit that outputs a detection signal according to the physical quantity of the fluid flowing through the bypass passage. Further, the physical quantity measuring device includes a conductive portion having conductivity formed on at least one surface of the outer surface of the bypass housing and the inner surface of the bypass housing forming the bypass passage. The physical quantity measuring device is configured such that an electric charge is discharged from the conductive portion to the ground.
 また、第2の観点によれば、導電部は、バイパスハウジングの表面に熱による炭化によって形成された炭化物を含む。このように、炭化によって形成された炭化物を含むように導電部を構成することができる。 Further, according to the second aspect, the conductive portion contains a carbide formed by carbonization by heat on the surface of the bypass housing. In this way, the conductive portion can be configured to contain the carbonized material formed by carbonization.
 また、第3の観点によれば、導電部は、バイパスハウジングの外面の全体に形成されている。これによれば、バイパスハウジングの外面の全体に導電性を持たせることができる。 Further, according to the third viewpoint, the conductive portion is formed on the entire outer surface of the bypass housing. According to this, the entire outer surface of the bypass housing can be made conductive.
 また、第4の観点によれば、導電部は、バイパスハウジングの外面の一部に形成されている。これによれば、バイパスハウジングの外面の全体に導電部を形成する場合と比較して導電部の面積を小さくすることができるので、短時間で導電部を形成することができ製造コストを低減することもできる。 Further, according to the fourth viewpoint, the conductive portion is formed on a part of the outer surface of the bypass housing. According to this, since the area of the conductive portion can be reduced as compared with the case where the conductive portion is formed on the entire outer surface of the bypass housing, the conductive portion can be formed in a short time and the manufacturing cost is reduced. You can also do it.
 また、第5の観点によれば、物理量検出部は、バイパス通路を流れる流体の物理量を検出する検出素子を有している。そして、導電部は、検出素子の周囲を囲むようにバイパスハウジングの外面の一部に形成されている。 Further, according to the fifth viewpoint, the physical quantity detecting unit has a detection element for detecting the physical quantity of the fluid flowing through the bypass passage. The conductive portion is formed on a part of the outer surface of the bypass housing so as to surround the periphery of the detection element.
 このように、バイパスハウジングの外面の全体に導電部を形成しなくても、帯電したダスト等の異物による検出素子への影響を低減することが可能である。 In this way, it is possible to reduce the influence of foreign matter such as charged dust on the detection element without forming a conductive portion on the entire outer surface of the bypass housing.
 また、第6の観点によれば、物理量検出部は、バイパス通路を流れる流体の物理量を検出する検出素子を有し、バイパス通路は、検出素子が配置される検出路に吸入空気を導入する導入路を有している。そして、検出素子および導入路の周囲を囲むようにバイパスハウジングの外面の一部に導電部が配置される。 Further, according to the sixth aspect, the physical quantity detection unit has a detection element for detecting the physical quantity of the fluid flowing through the bypass passage, and the bypass passage introduces the intake air into the detection path in which the detection element is arranged. Has a road. Then, a conductive portion is arranged on a part of the outer surface of the bypass housing so as to surround the detection element and the introduction path.
 このように、バイパスハウジングの外面の全体に導電部を形成しなくても、帯電したダスト等の異物による検出素子への影響を低減することが可能である。 In this way, it is possible to reduce the influence of foreign matter such as charged dust on the detection element without forming a conductive portion on the entire outer surface of the bypass housing.
 また、第7の観点によれば、導電部は、バイパス通路を形成する内面の全体に形成されている。このように、バイパス通路を形成する内面の全体に導電部を形成しても、帯電したダスト等の異物による物理量検出部への影響を低減することが可能である。 Further, according to the seventh viewpoint, the conductive portion is formed on the entire inner surface forming the bypass passage. In this way, even if the conductive portion is formed on the entire inner surface forming the bypass passage, it is possible to reduce the influence of foreign matter such as charged dust on the physical quantity detecting portion.
 また、第8の観点によれば、導電部は、バイパス通路を形成するバイパスハウジングの内面の一部に形成されている。 Further, according to the eighth viewpoint, the conductive portion is formed on a part of the inner surface of the bypass housing forming the bypass passage.
 したがって、バイパス通路を形成するバイパスハウジングの内面の全部に導電部を形成する場合と比較して導電部の面積を小さくすることができるので、短時間で導電部を形成することができ製造コストを低減することもできる。 Therefore, the area of the conductive portion can be reduced as compared with the case where the conductive portion is formed on the entire inner surface of the bypass housing forming the bypass passage, so that the conductive portion can be formed in a short time and the manufacturing cost is reduced. It can also be reduced.
 また、第9の観点によれば、導電部は、格子状のパターンによって構成されている。これによれば、速やかにパターンを形成することができる。 Further, according to the ninth viewpoint, the conductive portion is composed of a grid-like pattern. According to this, the pattern can be formed quickly.
 また、第10の観点によれば、導電部は、ストライプ状のパターンによって構成されている。これによれば、さらに速やかにパターンを形成することができる。 Further, according to the tenth viewpoint, the conductive portion is composed of a striped pattern. According to this, the pattern can be formed more quickly.
 また、第11の観点によれば、隣接するパターンの間隔は、パターンの深さよりも長くなっている。このように、隣接するパターンの間隔は、パターンの深さよりも長くなるようにするのが好ましい。 Also, according to the eleventh viewpoint, the interval between adjacent patterns is longer than the depth of the pattern. As described above, it is preferable that the interval between adjacent patterns is longer than the depth of the pattern.
 また、第12の観点によれば、バイパスハウジングは、第1面と、第1面と交差する方向に拡がる第2面と、第1面と第2面とを接続する部分を緩やかに接続する接続面と、を有している。そして、導電部は、第1面から接続面を経て第2面に至る経路に形成されている。 Further, according to the twelfth viewpoint, the bypass housing loosely connects the first surface, the second surface extending in the direction intersecting the first surface, and the portion connecting the first surface and the second surface. It has a connecting surface. The conductive portion is formed in a path from the first surface to the second surface via the connecting surface.
 このような構成によれば、第1面と第2面とを接続する部分を緩やかに接続する接続面を有しているので、接続面への導電部の加工を容易にすることができる。 According to such a configuration, since the portion connecting the first surface and the second surface is loosely connected, it is possible to easily process the conductive portion on the connecting surface.
 また、第13の観点によれば、導電部は、円形形状または多角形形状を成す複数のパターンによって構成されている。また、複数のパターンが、バイパスハウジングの表面に面状に拡がるように形成され、複数のパターンの間で生じる放電によりグランドへ電荷が放出される。 Further, according to the thirteenth viewpoint, the conductive portion is composed of a plurality of patterns forming a circular shape or a polygonal shape. Further, a plurality of patterns are formed so as to spread in a plane on the surface of the bypass housing, and electric charges are released to the ground by the discharge generated between the plurality of patterns.
 このように、円形形状または多角形形状を成す複数のパターンによって導電部を構成し、複数のパターンの間で生じる放電によりグランドへ電荷が放出されるよう構成することもできる。 In this way, the conductive portion can be configured by a plurality of patterns forming a circular shape or a polygonal shape, and the electric charge can be discharged to the ground by the discharge generated between the plurality of patterns.
 また、第14の観点によれば、隣接するパターンの間隔は、隣接するパターンの一方から他方へ放電によって電荷が移動可能な距離となっている。 Further, according to the fourteenth viewpoint, the interval between adjacent patterns is a distance at which electric charges can be moved from one of the adjacent patterns to the other by electric discharge.
 このように、隣接するパターンの間隔は、隣接するパターンの一方から他方へ放電によって電荷が移動可能な距離とすることができる。 In this way, the distance between adjacent patterns can be a distance at which charges can move from one of the adjacent patterns to the other by electric discharge.
 また、第15の観点によれば、導電部は、グランドに接続されている。このように、導電部をグランドに接続するように構成することができる。 Further, according to the fifteenth viewpoint, the conductive portion is connected to the ground. In this way, the conductive portion can be configured to be connected to the ground.
 また、第16の観点によれば、導電部は、グランドと未接続となっており、放電により導電部からグランドへ電荷が放出される。このように、導電部をグランドと未接続とし、放電により導電部からグランドへ電荷が放出されるよう構成することもできる。 Further, according to the 16th viewpoint, the conductive portion is not connected to the ground, and the electric charge is discharged from the conductive portion to the ground by the electric discharge. In this way, the conductive portion can be not connected to the ground, and the electric charge can be discharged from the conductive portion to the ground by electric discharge.
 また、第17の観点によれば、物理量計測装置は、流体の温度を検出する温度センサを備えている。また、温度センサの接地端子がバイパスハウジングの外面に露出するよう配置され、温度センサの接地端子を介して導電部からグランドへ電荷が放出される。 Further, according to the 17th viewpoint, the physical quantity measuring device includes a temperature sensor that detects the temperature of the fluid. Further, the ground terminal of the temperature sensor is arranged so as to be exposed on the outer surface of the bypass housing, and the electric charge is discharged from the conductive portion to the ground via the ground terminal of the temperature sensor.
 このように、バイパスハウジングの外面に露出するよう配置された温度センサの接地端子を介して導電部からグランドへ電荷を放出させることができる。 In this way, the electric charge can be discharged from the conductive portion to the ground via the ground terminal of the temperature sensor arranged so as to be exposed on the outer surface of the bypass housing.
 また、第18の観点によれば、バイパスハウジングの外面において導電部が形成されていない領域の面積は、バイパスハウジングの外面において導電部が形成されている領域の面積よりも大きくなっている。 Further, according to the eighteenth viewpoint, the area of the region where the conductive portion is not formed on the outer surface of the bypass housing is larger than the area of the region where the conductive portion is formed on the outer surface of the bypass housing.
 これにより、導電部が形成されている領域の面積を小さくすることができ、導電部を形成することによるバイパスハウジングの強度低下を抑制することが可能である。 As a result, the area of the region where the conductive portion is formed can be reduced, and the decrease in strength of the bypass housing due to the formation of the conductive portion can be suppressed.
 また、第19の観点によれば、導電部は、バイパスハウジングの外面とバイパスハウジングの内面のいずれか一方のみの表面に形成されている。また、導電部が形成されたバイパスハウジングの一方の面とバイパスハウジングの他方の面との間の肉厚は、バイパスハウジングの導電部が形成された一方の面と他方の面との間で絶縁破壊による放電が可能な長さとなっている。 Further, according to the nineteenth viewpoint, the conductive portion is formed on the surface of only one of the outer surface of the bypass housing and the inner surface of the bypass housing. Further, the wall thickness between one surface of the bypass housing in which the conductive portion is formed and the other surface of the bypass housing is insulated between one surface in which the conductive portion of the bypass housing is formed and the other surface. The length is such that it can be discharged by breakdown.
 これによれば、バイパスハウジングの導電部が形成された一方の面と他方の面との間で絶縁破壊による放電を生じさせることが可能である。 According to this, it is possible to generate an electric discharge due to dielectric breakdown between one surface on which the conductive portion of the bypass housing is formed and the other surface.
 また、第20の観点によれば、本実施形態の物理量検出装置の製造方法は、絶縁性を有し、流体が流れるバイパス通路を形成する樹脂製のバイパスハウジングを用意することを含む。また、この製造方法は、熱による炭化によってバイパスハウジングの外面およびバイパス通路を形成する内面の少なくとも一方に導電性を有する導電部を形成することを含む。 Further, according to the twentieth viewpoint, the method for manufacturing the physical quantity detecting device of the present embodiment includes preparing a resin bypass housing having insulating properties and forming a bypass passage through which a fluid flows. Further, this manufacturing method includes forming a conductive portion having conductivity on at least one of an outer surface of the bypass housing and an inner surface forming the bypass passage by carbonization by heat.
 また、第21の観点によれば、熱による炭化によってバイパスハウジングの外面および内面の少なくとも一方に導電部を形成することでは、バイパスハウジングの外面に導電部を形成する。これにより、バイパスハウジングの外面に導電部を形成することができる。 Further, according to the 21st viewpoint, by forming the conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by heat, the conductive portion is formed on the outer surface of the bypass housing. Thereby, the conductive portion can be formed on the outer surface of the bypass housing.
 また、第22の観点によれば、熱による炭化によってバイパスハウジングの外面および内面の少なくとも一方に導電部を形成することでは、バイパスハウジングの内面に導電部を形成する。これにより、バイパスハウジングの内面に導電部を形成することができる。 Further, according to the 22nd viewpoint, by forming the conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by heat, the conductive portion is formed on the inner surface of the bypass housing. Thereby, the conductive portion can be formed on the inner surface of the bypass housing.
 また、第23の観点によれば、熱による炭化によってバイパスハウジングの外面および内面の少なくとも一方に導電部を形成することの後に、熱よりも弱い熱によってバイパスハウジングの外面および内面の少なくとも一方に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施すること、を含む。 Further, according to the 23rd aspect, after forming a conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by heat, it adheres to at least one of the outer surface and the inner surface of the bypass housing by heat weaker than heat. Includes performing at least one of the removal of suspended particles and the adjustment of low volume efficiency.
 これにより、浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することができる。 This allows at least one of the removal of suspended particles and the adjustment of low volume efficiency.
 また、第24の観点によれば、熱による炭化によってバイパスハウジングの外面および内面の少なくとも一方に導電部を形成することでは、第1の走査速度で導電部を形成する。また、熱よりも弱い熱によってバイパスハウジングの外面および内面の少なくとも一方に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することでは、第1の走査速度よりも速い第2の走査速度で浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施する。 Further, according to the 24th viewpoint, by forming the conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by heat, the conductive portion is formed at the first scanning speed. Further, by performing at least one of removing suspended particles adhering to at least one of the outer surface and the inner surface of the bypass housing by heat weaker than heat and adjusting the volume inefficiency, the second scanning speed is faster than the first scanning speed. At least one of the removal of suspended particles and the adjustment of low volume efficiency is performed at the scanning speed.
 このように、熱よりも弱い熱によってバイパスハウジングの表面に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施することでは、第1の走査速度よりも速い第2の走査速度でそれを実施するのが好ましい。 Thus, by performing at least one of removing suspended particles adhering to the surface of the bypass housing and adjusting the volume inefficiency by heat weaker than heat, the second scanning speed is faster than the first scanning speed. It is preferable to carry it out.

Claims (24)

  1.  流体の物理量を計測する物理量計測装置(20)であって、
     絶縁性を有し、前記流体が流れるバイパス通路(30)を形成する樹脂製のバイパスハウジング(24)と、
     前記バイパス通路を流れる前記流体の物理量に応じた検出信号を出力する物理量検出部(22)と、
     前記バイパスハウジングの外面(24b)および前記バイパス通路を形成する前記バイパスハウジングの内面(24a)の少なくとも一方に形成された導電性を有する導電部(90)と、を備え、
     前記導電部からグランド(45)へ電荷が放出される物理量計測装置。
    A physical quantity measuring device (20) that measures a physical quantity of a fluid.
    A resin bypass housing (24) having an insulating property and forming a bypass passage (30) through which the fluid flows,
    A physical quantity detection unit (22) that outputs a detection signal according to the physical quantity of the fluid flowing through the bypass passage, and a physical quantity detection unit (22).
    A conductive portion (90) formed on at least one of an outer surface (24b) of the bypass housing and an inner surface (24a) of the bypass housing forming the bypass passage is provided.
    A physical quantity measuring device in which an electric charge is discharged from the conductive portion to the ground (45).
  2.  前記導電部は、前記バイパスハウジングの表面に熱による炭化によって形成された炭化物を含む請求項1に記載の物理量計測装置。 The physical quantity measuring device according to claim 1, wherein the conductive portion contains carbides formed by carbonization by heat on the surface of the bypass housing.
  3.  前記導電部は、前記バイパスハウジングの前記外面の全体に形成されている請求項1または2に記載の物理量計測装置。 The physical quantity measuring device according to claim 1 or 2, wherein the conductive portion is formed on the entire outer surface of the bypass housing.
  4.  前記導電部は、前記バイパスハウジングの前記外面の一部に形成されている請求項1または2に記載の物理量計測装置。 The physical quantity measuring device according to claim 1 or 2, wherein the conductive portion is formed on a part of the outer surface of the bypass housing.
  5.  前記物理量検出部は、前記流体の物理量を検出する検出素子(22b)を有し、
     前記導電部は、前記検出素子の周囲を囲むように前記バイパスハウジングの前記外面の一部に形成されている請求項4に記載の物理量計測装置。
    The physical quantity detecting unit has a detection element (22b) for detecting the physical quantity of the fluid.
    The physical quantity measuring device according to claim 4, wherein the conductive portion is formed on a part of the outer surface of the bypass housing so as to surround the detection element.
  6.  前記物理量検出部は、前記バイパス通路を流れる前記流体の物理量を検出する検出素子(22b)を有し、
     前記バイパス通路は、前記検出素子が配置される検出路(32a)に吸入空気を導入する導入路(32b)を有し、
     前記導電部は、前記検出素子および前記導入路の周囲を囲むように前記バイパスハウジングの前記外面の一部に形成されている請求項4に記載の物理量計測装置。
    The physical quantity detecting unit has a detection element (22b) for detecting the physical quantity of the fluid flowing through the bypass passage.
    The bypass passage has an introduction path (32b) for introducing intake air into the detection path (32a) in which the detection element is arranged.
    The physical quantity measuring device according to claim 4, wherein the conductive portion is formed on a part of the outer surface of the bypass housing so as to surround the detection element and the introduction path.
  7.  前記導電部は、前記バイパス通路を形成する前記内面の全体に形成されている請求項1ないし6のいずれか1つに記載の物理量計測装置。 The physical quantity measuring device according to any one of claims 1 to 6, wherein the conductive portion is formed on the entire inner surface forming the bypass passage.
  8.  前記導電部は、前記バイパス通路を形成する前記バイパスハウジングの前記内面の一部に形成されている請求項1ないし6のいずれか1つに記載の物理量計測装置。 The physical quantity measuring device according to any one of claims 1 to 6, wherein the conductive portion is formed on a part of the inner surface of the bypass housing forming the bypass passage.
  9.  前記導電部は、格子状のパターン(901)によって構成されている請求項1ないし8のいずれか1つに記載の物理量計測装置。 The physical quantity measuring device according to any one of claims 1 to 8, wherein the conductive portion is composed of a grid-like pattern (901).
  10.  前記導電部は、ストライプ状のパターン(902)によって構成されている請求項1ないし8のいずれか1つに記載の物理量計測装置。 The physical quantity measuring device according to any one of claims 1 to 8, wherein the conductive portion is composed of a striped pattern (902).
  11.  隣接する前記パターンの間隔は、前記パターンの深さよりも長くなっている請求項9または10に記載の物理量計測装置。 The physical quantity measuring device according to claim 9 or 10, wherein the interval between adjacent patterns is longer than the depth of the pattern.
  12.  前記バイパスハウジングは、第1面(241)と、前記第1面と交差する方向に拡がる第2面(242)と、前記第1面と前記第2面とを接続する部分を緩やかに接続する接続面(244)と、を有し、
     前記導電部は、前記第1面から前記接続面を経て前記第2面に至る経路に形成されている請求項1ないし11のいずれか1つに記載の物理量計測装置。
    The bypass housing loosely connects a first surface (241), a second surface (242) extending in a direction intersecting the first surface, and a portion connecting the first surface and the second surface. Has a connecting surface (244) and
    The physical quantity measuring device according to any one of claims 1 to 11, wherein the conductive portion is formed in a path from the first surface to the second surface via the connecting surface.
  13.  前記導電部は、円形形状または多角形形状を成す複数のパターン(903~905)によって構成され、
     前記複数のパターンが、前記バイパスハウジングの表面に面状に拡がるように形成され、
     前記複数のパターンの間で生じる放電により前記グランドへ前記電荷が放出される請求項1ないし12のいずれか1つに記載の物理量計測装置。
    The conductive portion is composed of a plurality of patterns (903 to 905) forming a circular shape or a polygonal shape.
    The plurality of patterns are formed so as to spread in a plane on the surface of the bypass housing.
    The physical quantity measuring device according to any one of claims 1 to 12, wherein the electric charge is discharged to the ground by a discharge generated between the plurality of patterns.
  14.  隣接する前記パターンの間隔は、隣接する前記パターンの一方から他方へ放電によって電荷が移動可能な距離となっている請求項11に記載の物理量計測装置。 The physical quantity measuring device according to claim 11, wherein the interval between adjacent patterns is a distance at which electric charges can be moved from one of the adjacent patterns to the other by electric discharge.
  15.  前記導電部は、前記グランド(45)に接続されている請求項1ないし14のいずれか1つに記載の物理量計測装置。 The physical quantity measuring device according to any one of claims 1 to 14, wherein the conductive portion is connected to the ground (45).
  16.  前記導電部は、前記グランドと未接続となっており、
     放電により前記導電部から前記グランドへ電荷が放出される請求項1ないし14のいずれか1つに記載の物理量計測装置。
    The conductive portion is not connected to the ground and is not connected.
    The physical quantity measuring device according to any one of claims 1 to 14, wherein an electric charge is discharged from the conductive portion to the ground by electric discharge.
  17.  前記流体の温度を検出する温度センサ(23)を備え、
     前記温度センサの接地端子が前記バイパスハウジングの前記外面に露出するよう配置され、
     前記温度センサの前記接地端子を介して前記導電部からグランド(45)へ電荷が放出される請求項1ないし16のいずれか1つに記載の物理量計測装置。
    A temperature sensor (23) for detecting the temperature of the fluid is provided.
    The ground terminal of the temperature sensor is arranged so as to be exposed on the outer surface of the bypass housing.
    The physical quantity measuring device according to any one of claims 1 to 16, wherein an electric charge is discharged from the conductive portion to the ground (45) via the ground terminal of the temperature sensor.
  18.  前記バイパスハウジングの前記外面において前記導電部が形成されていない領域の面積は、前記バイパスハウジングの前記外面において前記導電部が形成されている領域の面積よりも大きくなっている請求項4に記載の物理量計測装置。 The fourth aspect of the present invention, wherein the area of the region where the conductive portion is not formed on the outer surface of the bypass housing is larger than the area of the region where the conductive portion is formed on the outer surface of the bypass housing. Physical quantity measuring device.
  19.  前記導電部は、前記バイパスハウジングの前記外面と前記バイパスハウジングの前記内面のいずれか一方のみの表面に形成されており、
     前記導電部が形成された前記バイパスハウジングの前記一方の面と前記バイパスハウジングの他方の面との間の肉厚は、前記バイパスハウジングの前記導電部が形成された前記一方の面と前記他方の面との間で絶縁破壊による放電が可能な長さとなっている請求項1または2に記載の物理量計測装置。
    The conductive portion is formed on the surface of only one of the outer surface of the bypass housing and the inner surface of the bypass housing.
    The wall thickness between the one surface of the bypass housing on which the conductive portion is formed and the other surface of the bypass housing is the thickness between the one surface on which the conductive portion of the bypass housing is formed and the other surface. The physical quantity measuring device according to claim 1 or 2, which has a length that allows discharge due to dielectric breakdown between the surface and the surface.
  20.  流体の物理量を計測する物理量計測装置の製造方法であって、
     絶縁性を有し、前記流体が流れるバイパス通路(30)を形成する樹脂製のバイパスハウジング(24)を用意することと、
     熱による炭化によって前記バイパスハウジングの外面(24b)および前記バイパス通路を形成する内面(24a)の少なくとも一方に導電性を有する導電部を形成することと、を含む物理量計測装置の製造方法。
    It is a manufacturing method of a physical quantity measuring device that measures the physical quantity of a fluid.
    To prepare a resin bypass housing (24) that has insulating properties and forms a bypass passage (30) through which the fluid flows.
    A method for manufacturing a physical quantity measuring device, comprising forming a conductive portion having conductivity on at least one of an outer surface (24b) of the bypass housing and an inner surface (24a) forming the bypass passage by carbonization by heat.
  21.  前記熱による炭化によって前記バイパスハウジングの前記外面および前記内面の少なくとも一方に導電部を形成することでは、前記バイパスハウジングの前記外面に導電部を形成する請求項20に記載の物理量計測装置の製造方法。 The method for manufacturing a physical quantity measuring device according to claim 20, wherein a conductive portion is formed on at least one of the outer surface and the inner surface of the bypass housing by carbonization by the heat to form a conductive portion on the outer surface of the bypass housing. ..
  22.  前記熱による炭化によって前記バイパスハウジングの前記外面および前記内面の少なくとも一方に前記導電部を形成することでは、前記バイパスハウジングの前記内面に前記導電部を形成する請求項20に記載の物理量計測装置の製造方法。 The physical quantity measuring device according to claim 20, wherein the conductive portion is formed on the inner surface of the bypass housing by forming the conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by the heat. Production method.
  23.  前記熱による炭化によって前記バイパスハウジングの前記外面および前記内面の少なくとも一方に前記導電部を形成することの後に、前記熱よりも弱い熱によって前記バイパスハウジングの前記外面および前記内面の少なくとも一方に付着した浮遊粒子の除去および体積低効率の調整の少なくとも一方を実施すること、を含む請求項20ないし22のいずれか1つに記載の物理量計測装置の製造方法。 After forming the conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by the heat, the conductive portion was attached to at least one of the outer surface and the inner surface of the bypass housing by heat weaker than the heat. The method for manufacturing a physical quantity measuring device according to any one of claims 20 to 22, wherein at least one of removal of suspended particles and adjustment of low volume efficiency is performed.
  24.  前記熱による炭化によって前記バイパスハウジングの前記外面および前記内面の少なくとも一方に前記導電部を形成することでは、第1の走査速度で前記導電部を形成し、
     前記熱よりも弱い熱によって前記バイパスハウジングの前記外面および前記内面の少なくとも一方に付着した前記浮遊粒子の除去および前記体積低効率の調整の少なくとも一方を実施することでは、前記第1の走査速度よりも速い第2の走査速度で前記浮遊粒子の除去および前記体積低効率の調整の少なくとも一方を実施する請求項23に記載の物理量計測装置の製造方法。
    By forming the conductive portion on at least one of the outer surface and the inner surface of the bypass housing by carbonization by the heat, the conductive portion is formed at the first scanning speed.
    By removing the suspended particles adhering to at least one of the outer surface and the inner surface of the bypass housing by heat weaker than the heat and adjusting the volume low efficiency, the scanning speed is higher than that of the first scanning speed. The method for manufacturing a physical quantity measuring device according to claim 23, wherein at least one of the removal of the suspended particles and the adjustment of the low volume efficiency is performed at a second scanning speed which is also fast.
PCT/JP2020/041590 2019-11-08 2020-11-06 Physical quantity measuring device, and method for manufacturing same WO2021090927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203488 2019-11-08
JP2019203488A JP2021076478A (en) 2019-11-08 2019-11-08 Physical quantity measurement device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2021090927A1 true WO2021090927A1 (en) 2021-05-14

Family

ID=75849089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041590 WO2021090927A1 (en) 2019-11-08 2020-11-06 Physical quantity measuring device, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2021076478A (en)
WO (1) WO2021090927A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238712A (en) * 2002-02-22 2003-08-27 Asahi Kasei Corp Box part made of resin having shielding properties
US20130061684A1 (en) * 2010-05-28 2013-03-14 Rainer Frauenholz Air mass flow meter
JP2014196448A (en) * 2013-03-29 2014-10-16 ポリプラスチックス株式会社 Electric-field-shielded crystalline thermoplastic resin molding, method of producing the same and housing for electronic apparatus for transport having the same
JP2017211384A (en) * 2016-05-25 2017-11-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor for determining at least one parameter of fluid medium flowing through measuring channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238712A (en) * 2002-02-22 2003-08-27 Asahi Kasei Corp Box part made of resin having shielding properties
US20130061684A1 (en) * 2010-05-28 2013-03-14 Rainer Frauenholz Air mass flow meter
JP2014196448A (en) * 2013-03-29 2014-10-16 ポリプラスチックス株式会社 Electric-field-shielded crystalline thermoplastic resin molding, method of producing the same and housing for electronic apparatus for transport having the same
JP2017211384A (en) * 2016-05-25 2017-11-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor for determining at least one parameter of fluid medium flowing through measuring channel

Also Published As

Publication number Publication date
JP2021076478A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US10309839B2 (en) Temperature sensor
US9658092B2 (en) Air mass flow meter
EP3680630B1 (en) Thermal-type flowmeter
JP5445535B2 (en) Air flow measurement device
US20140223887A1 (en) Method and device for measuring the concentration of soot particles in an exhaust gas, in particular from an internal combustion engine
CN104364618B (en) Thermal flowmeter
WO2021090927A1 (en) Physical quantity measuring device, and method for manufacturing same
CN107209037A (en) The sensor of at least one parameter of the fluid media (medium) of Measurement channel is flowed through for determination
US7251877B2 (en) Method of manufacturing a sensor assembly for a magnetic flowmeter
CN108713148A (en) Current sensor and current sensor module
WO2021106598A1 (en) Sensor device
CN103389134B (en) Flow sensor
JP2018036111A (en) Current measurement device
CN107533088B (en) Current sensor
JP2014001972A (en) Thermal flowmeter
JP2007128967A (en) Suction pad for semiconductor wafer
JP7024764B2 (en) Flowmeter and physical quantity measuring device
JP6973268B2 (en) Physical quantity measuring device
JP2014092430A (en) Flow rate measuring device
JP5980155B2 (en) Thermal flow meter
JP6179450B2 (en) Air flow measurement device
JP6973164B2 (en) Carbon nanotube manufacturing equipment and carbon nanotube manufacturing method
JP2016042035A (en) Thermal type flowmeter
KR102466025B1 (en) Sensor for determining at least one parameter of a fluid medium flowing through a measuring channel
CN110678728A (en) Particle sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885829

Country of ref document: EP

Kind code of ref document: A1