WO2021090860A1 - Analog device, method for controlling same, temperature sensor, and analog-element-associated system - Google Patents

Analog device, method for controlling same, temperature sensor, and analog-element-associated system Download PDF

Info

Publication number
WO2021090860A1
WO2021090860A1 PCT/JP2020/041290 JP2020041290W WO2021090860A1 WO 2021090860 A1 WO2021090860 A1 WO 2021090860A1 JP 2020041290 W JP2020041290 W JP 2020041290W WO 2021090860 A1 WO2021090860 A1 WO 2021090860A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
characteristic
transistor
voltage
control device
Prior art date
Application number
PCT/JP2020/041290
Other languages
French (fr)
Japanese (ja)
Inventor
マーフズル エイケイエム イスラム
尚史 久門
修己 和田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2021090860A1 publication Critical patent/WO2021090860A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an analog device provided on an IC (integrated circuit) chip, a control method thereof, a temperature sensor, and an analog element association system.
  • CMOS Complementary Metal Oxide Semiconductor
  • MOS complementary Metal Oxide Semiconductor
  • Non-Patent Documents 1 and 2 disclose a flash type ADC (Analog-to-Digital Converter) that converts an analog signal into a 6-bit digital signal.
  • ADC Analog-to-Digital Converter
  • 63 comparators into which the analog signals are input and a decoder that converts the signals from the 63 comparators into 6-bit digital signals are provided on a single IC chip. There is.
  • Each of the comparators utilizes the fact that the offset voltage follows a normal distribution, and uses the offset voltage as a reference for AD conversion instead of the reference voltage.
  • One aspect of the present invention is to realize an analog device or the like capable of estimating the value of the first characteristic of an analog element related to the operation of the analog device.
  • the analog device is an analog device provided on an IC chip, and the analog device includes a plurality of analog elements that perform analog operation and a control device that controls the operation of the analog device.
  • Each of the analog elements has a first characteristic related to the operation of the analog device, a first characteristic whose variation follows a statistical distribution, and a second characteristic related to the first characteristic, which are on.
  • the control device has a second characteristic that can be measured by a chip, and the control device orders a plurality of the analog elements according to the measured value of the second characteristic, and the statistical distribution regarding the first characteristic and the order of the analog elements. It is characterized in that the value of the first characteristic is associated with the analog element based on the above.
  • the control device operates the analog element corresponding to a predetermined value of the first characteristic.
  • the control device may stop analog elements other than the analog element corresponding to the predetermined value of the first characteristic.
  • the capacitor device further includes a measuring device for measuring the second characteristic, and the control device orders a plurality of the analog elements according to the measured value of the second characteristic measured by the measuring device. You may.
  • the analog element is a transistor
  • the first characteristic of the analog element is the threshold voltage of the transistor
  • the second characteristic of the analog element is the subthreshold leakage current of the transistor. Be done.
  • the analog element is a comparator
  • the first characteristic of the analog element is the offset voltage of the comparator
  • the second characteristic of the analog element is a plurality of characteristics included in the comparator. This is the difference between the output voltage when the operation of a part of the transistors is stopped and the output voltage when the operation of the other part of the plurality of transistors is stopped.
  • Another method of controlling an analog device is an analog device provided on an IC chip, wherein the analog device includes a plurality of analog elements that perform analog operation, and each of the analog elements. Is a first characteristic related to the operation of the analog device, a first characteristic in which the variation follows a statistical distribution, and a second characteristic related to the first characteristic, which is a second characteristic that can be measured on-chip.
  • a method of controlling an analog device having the above based on a step of ordering a plurality of the analog elements according to the measured value of the second characteristic, the statistical distribution regarding the first characteristic, and the order of the analog elements. It is characterized by including a step of associating a value of one characteristic with the analog element.
  • the temperature sensor is a temperature sensor provided on an IC chip, which is a capacitor, a plurality of transistors connected in parallel to the capacitor, the capacitor, and the plurality of transistors, respectively.
  • a plurality of switching elements provided between the two and a control device for controlling the plurality of switching elements are provided, and the control device is such that the current from the capacitor is the transistor for each of the plurality of transistors. It is characterized in that the discharge time until the voltage of the capacitor drops to a predetermined voltage is measured, and the ratio of at least two discharge times of the plurality of transistors is output as temperature information.
  • the temperature sensor includes a plurality of analog elements that are provided on an IC chip and perform analog operation, and a control device that controls the operation of the analog element, and each of the analog elements has a control device.
  • the control device has a first characteristic in which the variation follows a statistical distribution and a second characteristic related to the first characteristic, which can be measured on-chip, and the control device has a measured value of the second characteristic.
  • a plurality of the analog elements are ordered according to the above, and the value of the first characteristic is associated with the analog element based on the statistical distribution regarding the first characteristic and the order of the analog elements.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a temperature sensor 1 (analog device) according to an embodiment of the present disclosure.
  • the temperature sensor 1 is provided on a single IC chip, and is inverted with a control device 2, a switching unit 3, an analog transistor group Tr, a bias generation circuit 4, a capacitor 5, and a charging transistor 6. It includes an amplifier 7, a TDC (Time-to-Digital Converter) 8, and a calculation unit 9.
  • the IC chip is preferably a CMOS IC chip from the viewpoints of miniaturization, high-speed operation, low power consumption, and the like.
  • the control device 2 controls the operation of the temperature sensor 1. Specifically, the control device 2 is input with the clock signal Clock and the result of the TDC 8. The control device 2 is configured to control the opening and closing of the switching element included in the switching unit 3 and to control the gate potential of the charging transistor 6.
  • the switching unit 3 is configured to selectively connect one electrode of the capacitor 5 to any source terminal of any of the N transistors Mn.
  • N is a natural number of 2 or more.
  • FIG. 2 is a circuit diagram showing a configuration example of the switching unit 3.
  • the switching unit 3 includes N switching elements S (first switching element S 1 to Nth switching element SN ).
  • Each switching element S is a fine MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) that operates digitally.
  • MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
  • the analog transistor group Tr includes N transistors Mn (first transistor Mn 1 to Nth transistor Mn N ) (analog element), and each transistor Mn is a fine n-type MOSFET.
  • the k transistor Mn k integer k is 1 ⁇ N
  • the k transistor Mn k is grounded source terminal, connected to the capacitor 5 and the drain terminal via the first k switching elements S k of switching unit 3, gate terminal bias generating circuit It is connected to 4.
  • Each transistor Mn operates in an analog manner, that is, a bias voltage V b equal to or less than the threshold voltage V th is applied and used. Since the N transistors Mn are fine, their characteristics are not negligible at the time of manufacture. This will be described later.
  • the bias generation circuit 4 generates a bias voltage V b applied between the gate and the source of the N transistors Mn.
  • the bias voltage V b is smaller than the threshold voltages V th1 to V thN of any of the first transistors Mn 1 to N transistors Mn N.
  • one electrode is connected to the switching unit 3, the drain terminal of the charging transistor 6, and the input terminal of the inverting amplifier 7, and the other electrode is grounded.
  • the charging transistor 6 is a minute MOSFET that operates digitally.
  • the source terminal is connected to the power supply voltage Vdd on the high potential side
  • the drain terminal is connected to the capacitor 5, and the gate terminal is connected to the control device 2.
  • the input terminal is connected to the capacitor 5 and the output terminal is connected to the TDC 8.
  • the clock signal Clock and the result of the inverting amplifier 7 are input to the TDC 8.
  • the TDC 8 measures the discharge time required for the output voltage V out of the capacitor 5 to decrease to a given threshold voltage V c.
  • the TDC 8 outputs the discharge time as a digital value to the control device 2 and the arithmetic unit 9.
  • the clock signal Clock and the discharge time from the TDC 8 are input to the arithmetic unit 9.
  • the arithmetic unit 9 includes two volatile recording media (registers) 10a and 10b and a logic circuit 11.
  • the two volatile recording media 10a and 10b each temporarily store the two discharge times from the TDC 8.
  • the logic circuit 11 calculates the discharge time ratio between the discharge time stored in the volatile recording medium 10a and the discharge time stored in the volatile recording medium 10b, and outputs a digital signal corresponding to the discharge time ratio. Output as temperature information indicating the temperature.
  • the control device may be a control device in the same IC chip or a control device of another chip. The details of the temperature calculation method (digital signal output method) will be described later.
  • FIG. 3 is a flow chart showing an operation example of the temperature sensor 1 shown in FIG.
  • step S4 the control device 2 finishes the measurement of the discharge time and reads out the measured first discharge time d 1 to Nth discharge time d N (step S6). Then, the control device 2 sorts the first transistors Mn 1 to N transistors Mn N so that the discharge times are arranged in ascending (or descending) order (step S7). That is, the control device 2 orders the first transistor Mn 1 to the Nth transistor Mn N according to the ascending order (or descending order) of the discharge time.
  • control device 2 selects the first reference transistor Tr 1 and the second reference transistor Tr 2 as follows.
  • the control device 2 reads out the order of the first reference transistor Tr 1 (step S8). Then, among the first transistors Mn 1 to N transistors Mn N , the i-th transistor Mn i located in this order is selected as the first reference transistor Tr 1 (step S9), and the selection result is volatilized in the control device 2. Write to the sex recording medium (step S10). Similarly, the control device 2 reads out the order of the second reference transistor Tr 2 (step S11). Then, among the first transistors Mn 1 to N transistors Mn N , the j transistor Mn j located in this order is selected as the second reference transistor Tr 2 (step S12), and the selection result is volatilized in the control device 2. Write to the sex recording medium (step S13). The control device 2 may execute steps S8 to S10 and steps S11 to S13 in parallel or in reverse order. The order of reading in steps 8 and 11 will be described later.
  • control device 2 After selecting as described above, the control device 2 measures the first reference discharge time dref1 and the second reference discharge time dref2 as follows.
  • a subroutine for measuring the k-th discharge time d k in the case of discharging is executed (step S16).
  • the control device 2 writes the i-th discharge time di as the first reference discharge time d ref1 on the first volatile recording medium 10a in the arithmetic unit 9 (step S17).
  • the arithmetic unit 9 reads out the first reference discharge time dref1 and the second reference discharge time dref2 (step S22). Then, the arithmetic unit 9 calculates the discharge time ratio d ref1 / d ref2 between the first reference discharge time d ref1 and the second reference discharge time d ref2 using the logic circuit 11 (step S23), and generates a digital signal. And output (step S24).
  • the information stored in the volatile recording medium is erased when the temperature sensing is completed. Therefore, the temperature sensor 1 repeats the operation from step S1 every time the temperature sensing is started.
  • FIG. 4 is a flow chart showing an example of a subroutine (steps S2, 16, 20) for measuring the k-th discharge time d k when the capacitor 5 is discharged through the k-th transistor Mn k shown in FIG.
  • step S31 When the subroutine is started (START), charging is first started (step S31).
  • step S34 the discharge is started (step S34), and at the same time, the measurement of the discharge time is also started (step S35).
  • step S34 the control device 2 commands the switching unit 3 so that only the kth transistor Mn k is connected to the capacitor 5 and the other transistors remain disconnected from the capacitor 5. Switching unit 3 shown in FIG. 2, only the first k switching elements S k in the closed state, the other switching element remains open.
  • step S36 determines whether V out ⁇ V c (step S36).
  • V c is a given threshold of the potential difference of the capacitor 5. If No in step S36, the discharge is continued. In the case of Yes, it is determined that the capacitor 5 is sufficiently discharged, and the discharge is terminated (step S37). At the same time, the measurement of the discharge time is completed (step S38).
  • step S37 the control device 2 instructs the switching unit 3 so that the switching unit 3 opens all the switching elements.
  • step S38 the elapsed time that is output at this time from TDC8 is acquired as the k discharge time d k.
  • Non-Patent Documents 3 and 4 there is a bandgap type temperature sensor using a bipolar transistor having the same characteristics.
  • Non-Patent Documents 5 and 6 there is a temperature sensor that utilizes the subthreshold characteristics of two MOSFETs having the same characteristics.
  • PTAT proportional-to-absolute-temperature
  • both methods require two transistors having the same characteristics.
  • the characteristic variation of the transistor occurs, and the smaller the transistor size, the larger the characteristic variation.
  • the transistor is manufactured in a size larger than the minimum size that can be manufactured, thereby reducing the variation in the characteristics of the transistor.
  • FIG. 5 is a circuit diagram for explaining the measurement principle.
  • FIG. 6 is a graph showing an example of the voltage-current characteristics of the first and second transistors M n1 and M n2 in the circuit shown in FIG. 5, and more specifically, when the drain-source voltage is constant.
  • Two of the circuit shown in FIG. 5 are identical except the first transistor M n1 the second transistor M n2.
  • the voltage V DS1 applied by the capacitor 5 between the drain and the source of the first transistor M n1 is the same as the voltage V DS2 applied by the capacitor 5 between the drain and the source of the second transistor M n2.
  • Two such circuits are switching unit 3 is achievable by first only the switching element S 1, or when only the second switching element S 2 to the closed state.
  • the threshold voltage V th1 of the first transistor M n1 is larger than the threshold voltage V th2 of the second transistor M n2.
  • a small bias voltage V b than the threshold voltage V th1, V th2 is applied between the gate and the source of the first transistor M n1, and applies the same bias voltage V b between the gate and source of the second transistor M n2.
  • the first transistor M n1 flows a drain current I 1, the drain current I 2 flows through the second transistor M n2.
  • These drain currents I 1 and I 2 are subthreshold leakage currents and show different values as shown in FIG. Approximately, it is expressed by the following equations (1) and (2).
  • T is absolute temperature
  • K is a coefficient depending on the manufacturing process
  • n is a subthreshold coefficient
  • k is Boltzmann's constant
  • q is an elementary charge
  • ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 are positive coefficients.
  • V DS1 indicates the drain-source voltage of the first transistor M n1
  • the absolute temperature T can be calculated by a method that does not depend on the bias voltage V b.
  • the threshold voltages V th1 and V th2 (first characteristic) are constants because they are characteristic values of the first transistor M n1 and the second transistor M n2. Therefore, the absolute temperature T has a linear relationship with the natural logarithm of the drain current ratio I 2 / I 1.
  • d 1 is the time required for the output voltage V out of the capacitor 5 to decrease to a given threshold voltage V c in the circuit including the first transistor M n 1 (the circuit on the left side of FIG. 2).
  • Reference numeral 2 denotes a discharge time required for the output voltage V out of the capacitor 5 to decrease to the same given threshold voltage V c in the circuit including the second transistor M n2 (the circuit on the right side of FIG. 2).
  • the discharge time ratio d 1 / d 2 can also be approximated to the absolute temperature linearly. Therefore, temperature sensing by measuring the discharge time ratio d 1 / d 2 becomes possible.
  • AVth is a parameter depending on the manufacturing process
  • W is a design value of the gate width of the transistor
  • L is a design value of the gate length of the transistor. Therefore, the standard deviation ⁇ in the equation (5) is a constant value determined by the manufacturing process and the design of the transistor size.
  • V th and ref 1 are the threshold voltages of the first reference transistor Tr 1
  • V th and ref 2 are the threshold voltages of the second reference transistor Tr 2.
  • FIG. 7 is a diagram showing variations in the threshold voltage Vth in the analog transistor group Tr.
  • the threshold voltage Vth of the sorted N transistors Mn follows a normal distribution as described above. Therefore, according to statistical estimation, the first reference transistor Tr 1 exists in the order of the ratio obtained by the following equation (7) from the beginning. Similarly, the second reference transistor Tr 2 exists in the order of the ratio obtained by the following equation (8) from the beginning.
  • the order of the first reference transistor Tr 1 read out in step 8 described above is the order obtained by the equation (7), and the order of the second reference transistor Tr 2 read out in step S11 is obtained by the equation (8). It is a ranking.
  • the above statistical inference is more accurate as it is closer to the center of the normal distribution. Therefore, it is preferable that the reference threshold voltages Vth, ref1 , Vth, and ref2 are selected so that their arithmetic mean is close to the center of the normal distribution.
  • the above statistical inference is more accurate as the population parameter increases. Therefore, it is preferable that N is large. Since the N transistors Mn are fine, unlike the transistors that operate in an analog manner with the sensor chip of the prior art, the temperature sensor 1 can be miniaturized even if N is large. In addition, such statistical inference can be made with statistical distributions other than the normal distribution, such as beta distribution and gamma distribution.
  • lambda i, alpha i is a positive coefficient
  • V thi is the threshold voltage
  • V DSi of the i transistors M ni drain of the i transistors M ni - shows the source voltage.
  • step S7 by sorting the N transistors Mn so that the discharge time (second characteristic) is arranged in ascending order, the N transistors Mn are sorted so that the threshold voltage is arranged in ascending order.
  • the upper figure of FIG. 7 shows the threshold voltage Vth with respect to the discharge time d. This also indicates that the larger the threshold voltage V thk, the longer the discharge time d k.
  • the temperature sensor 1 is sorted (ordered) so that the N transistors Mn included in the analog transistor group Tr are arranged in ascending or descending order of the discharge time d. Then, based on the order of the normal distribution and the transistor Mn of variations in the threshold voltage V th, it is associated with the threshold voltage V th and the transistor Mn. Therefore, the relative value of the threshold voltage Vth with respect to the other transistors Mn of each transistor Mn can be estimated on-chip.
  • the second reference transistor Tr 2 is selected.
  • the temperature sensor 1 can be operated appropriately. Therefore, since the temperature information can be detected without measuring the threshold voltage Vth of the transistor Mn, it is not necessary to increase the area of the temperature sensor 1, and it is possible to suppress an increase in power consumption and manufacturing cost. In addition, a high-performance measuring device for measuring the threshold voltage Vth becomes unnecessary.
  • the temperature sensor 1 according to the present disclosure does not require a plurality of analog transistors having the same characteristics, and it is allowed that the characteristics of the analog transistors vary. Therefore, in the temperature sensor 1 according to the present disclosure, since the analog transistor can be miniaturized, the temperature sensor 1 can operate with current saving, and power saving and miniaturization are possible.
  • the temperature sensor 1 according to the present disclosure does not require a reference voltage or a reference current. Therefore, the temperature sensor 1 according to the present disclosure can be reduced in power consumption and size.
  • the temperature sensor 1 according to the present disclosure does not require a non-volatile recording medium. Therefore, the temperature sensor 1 according to the present disclosure can be reduced in power consumption and size.
  • the temperature sensor 1 sorts the transistors Mn and selects the reference transistors Tr 1 and Tr 2 for each temperature sensing. Even if a small number of transistors Mn out of N deteriorate, the distribution followed by the N transistors Mn does not substantially change. Therefore, even if a small number of transistors Mn deteriorate, the temperature sensor 1 according to the present disclosure is suppressed from deteriorating the accuracy of temperature sensing, and can continue to maintain the function as the temperature sensor 1. ..
  • FIG. 12 is a circuit diagram showing a configuration example of the switching unit 3 according to the present embodiment.
  • the switching unit 3 is of a tree type.
  • FIG. 12 shows an example composed of a binary tree, but may include a non-binary tree such as a ternary tree, a quadtree, or a quintuplet.
  • the parasitic capacitance connected in parallel to the capacitor 5 is proportional to log 2 (N). Therefore, the parasitic capacitance can be reduced and the discharge time can be shortened as compared with the configuration example (parasitic capacitance N) shown in FIG. 2 in which N switching elements S are connected in parallel in one stage.
  • FIG. 13 shows an equivalent circuit of the switching unit 3 shown in FIG. 12 when the first transistor Mn 1 is connected to the capacitor 5.
  • the switching unit 3 is configured as shown in FIG. 12, and ⁇ V th is changed from -80 mV to -60 mV in 2 mV units, and the number is in the range of 0 to 100 ° C. It was determined 1 reference discharge time d 1 of the transistor Tr 1 and the discharge time ratio d 1 / d 2 between the discharge time d 2 of the second reference transistor Tr 2.
  • FIG. 8 shows the result of this simulation.
  • the coefficient of determination adjusted for degrees of freedom was calculated from the simulation results shown in FIG.
  • the adjusted coefficient of determination is a value for evaluating linearity. The closer the coefficient of determination adjusted for degrees of freedom is to 1, the higher the linearity of the relationship between the discharge time ratio d 1 / d 2 and the temperature T.
  • FIG. 9 shows the coefficient of determination adjusted for this degree of freedom.
  • the discharge time ratio d 1 / d 2 was measured in the range of 0 to 100 ° C.
  • FIG. 10 shows the measurement result.
  • the temperature was calculated by calibrating the measurement results shown in FIG. 10 at two points of 20 ° C and 80 ° C.
  • FIG. 11 shows the error of the calculated temperature.
  • the error is within ⁇ 1.2 ° C even in the worst case.
  • N may be increased.
  • the magnitude of N required for the margin of error is appropriately determined for those skilled in the art based on statistical inference.
  • FIG. 14 is a circuit diagram showing a schematic configuration of a flash type ADC 20 (analog device, AD converter) according to this embodiment.
  • the ADC 20 includes a sample hold circuit 21, a comparator group 22, a switch matrix 23, an encoder 24, a voltage measuring circuit 25, a control device 26, and a switching element group 27.
  • Sample-and-hold circuit 21 holds the input voltage V in. Input voltage V in that is held is applied to the comparator group 22.
  • the comparator group 22 includes M comparators Cp (first comparator Cp 1 to M first comparator Cp M ), and each comparator Cp contains a plurality of fine MOSFETs.
  • each comparator Cp one of the two input terminals is connected to the sample hold circuit 21 and the other is grounded.
  • the output terminal is connected to the switch matrix 23 and is connected to the voltage measuring circuit 25 via the switching element group 27. Further, in each comparator Cp, the circuit configuration is switched based on the configuration signal from the control device 26. The details of the comparator Cp will be described later.
  • the switch matrix 23 selects N-1 (N is a natural number smaller than M) from the M input signals from the comparator group 22 based on the 26 switch signals from the control device, and rearranges the encoder 24. Output to.
  • the encoder 24 encodes and outputs N input signals from the switch matrix 23. Specifically, the encoder 24 detects the boundary between 0 and 1 for N-1 input signals, and encodes them based on the detection result.
  • the voltage measuring circuit 25 measures the output voltage of each comparator Cp. The voltage measuring circuit 25 notifies the control device 26 of the measurement result.
  • the control device 26 controls the operation of the ADC 20. Specifically, in the control device 26, the output voltage of each comparator Cp is input from the voltage measuring circuit 25. The control device 26 is configured to control the circuit configuration in each comparator Cp, the switch matrix 23, and the switching element group 27.
  • FIG. 15 is a flow chart showing an operation example of the ADC 20 shown in FIG.
  • FIG. 16 is a circuit diagram showing a configuration example of the comparator Cp.
  • the comparator Cp in the present embodiment as compared to a comparator used in the conventional flash-type ADC, except that the switching elements S 1 ⁇ S 3 are newly provided, other configurations are the same.
  • Switching elements S 1 ⁇ S 3 are controlled by a control device 26.
  • Switching element S 1 is provided between the gate terminal and the power supply voltage V dd of FET32 input voltage V in is inputted.
  • the switching element S 2 is provided between the gate terminal of the FET 33 to which the reference voltage V ref is input and the power supply voltage V dd.
  • the switching element S 3 is provided between the output terminals V out + and V out ⁇ .
  • the output terminals V out + and V out ⁇ are connected to the voltage measuring circuit 25.
  • the comparator Cp in the above-described configuration the switching element S 1 to the open state, when the switching element S 2 ⁇ S 3 is closed, current flows through the FET 33 ⁇ 35.
  • the voltage measured by the voltage measuring circuit 25 (hereinafter referred to as the first measured voltage) becomes a function of the above current and exhibits the characteristics of the FETs 33 and 35.
  • the switching element S 2 to the open state, when the switching element S 1 ⁇ S 3 is closed, current flows through the FET 32 ⁇ 34.
  • the voltage measured by the voltage measuring circuit 25 (hereinafter referred to as the second measured voltage) becomes a function of the above current and exhibits the characteristics of the FETs 32 and 34. Therefore, the difference between the first measurement voltage and the second measurement voltage becomes the voltage corresponding to the offset voltage of the comparator Cp.
  • the switching elements S 1 ⁇ S 3 has opened is maintained.
  • control device 26 increments i by 1 (step S44) and determines whether i ⁇ M is satisfied (step S45). If Yes in step S45, the process returns to step S42.
  • step S45 the control device 26 controls the switching element group 27 in the open state, while the first comparators Cp 1 to M comparators so that the recorded voltages are arranged in ascending (or descending) order.
  • Sort Cp M step S46. That is, the control device 2 orders the first comparator Cp 1 to the M first comparator Cp M according to the ascending order (or descending order) of the voltage.
  • control device 26 selects N-1 comparators Cp from M comparators Cp as follows (step S47).
  • control device 26 determines the configuration of the selected comparator Cp and the non-selected comparator Cp, generates a configuration signal indicating the determined configuration, and transmits it to the comparator group 22 (step S48).
  • the power consumption can be reduced by stopping the operation of the non-selective comparator Cp.
  • control device 26 generates a switch signal and transmits it to the switch matrix 23 so that the output signals of the selected comparator Cp are arranged in the order of the offset voltages V offset1 to VoffsetN-1 (step S49).
  • the preparation for AD converting an input voltage V in of the analog to digital n-bit signal is completed, the operation of the AD conversion starts.
  • the reference voltage is not supplied to the comparator Cp by utilizing the fact that the offset voltage follows a normal distribution, and instead, the offset voltage is offset. Use voltage. Therefore, it is not necessary to increase the area of the comparator, and it is possible to suppress an increase in power consumption and manufacturing cost.
  • the comparator Cp is ordered according to the difference from the second measured voltage when stopped. Then, the value of the offset voltage and the comparator Cp are associated with each other based on the normal distribution of the offset voltage and the order of the comparator Cp. Therefore, the offset voltage of each comparator Cp can be estimated. As a result, a high-performance measuring device for measuring the offset voltage becomes unnecessary.
  • the ADC 20 adds the switch matrix 23 as compared with the ADCs of Non-Patent Documents 1 and 2, but does not need to use a wallace tree decoder that uses a large number of adders. Since the switch matrix 23 can be composed of a plurality of switching elements, the switch matrix 23 and the encoder 24 of the present embodiment can reduce the circuit scale as compared with the Wallace tree decoders of Non-Patent Documents 1 and 2. it can.
  • the DNL is used as an index used for evaluating the performance of the ADC.
  • the DNL is expressed by the following equation (12).
  • DNL [i] ⁇ (V i + 1- V i ) / (V LSB-ideal ) ⁇ -1 (0 ⁇ i ⁇ 2 N -1) (12).
  • DNL indicates the difference between the ideal value and the measured value of the step width of a certain output code
  • the unit is LSB (Least Significant Bit)
  • V LSB-ideal the minimum voltage value V LSB-ideal that can detect the actual voltage value. Is standardized by.
  • FIG. 18 is a graph showing the relationship between the output code and DNL. Referring to FIG. 18, in this embodiment, ⁇ 0.3 ⁇ DNL ⁇ +0.3 is satisfied. Therefore, it can be understood that the ADC 20 functions well.
  • FIG. 19 is a graph showing the relationship between the population parameter and DLN.
  • the maximum value and the minimum value of DNL are evaluated by ⁇ 3 ⁇ .
  • the absolute value of DNL is 1 or more, a missing code appears, so that it is required to satisfy -1 ⁇ DNL ⁇ +1.
  • the population parameter is 3000 or more, -1 ⁇ DNL ⁇ 1 is satisfied and the missing code does not appear.
  • FIG. 20 is a circuit diagram showing a schematic configuration of the comparator Cp in this embodiment.
  • comparator Cp As shown in FIG. 20, by changing the threshold voltage [Delta] V Thp3 transistor MP3, and analyze changes in the offset voltage V offset in HSPICE.
  • the analysis result is shown in FIG.
  • Figure 21 is a diagram of a graph showing the relationship between the threshold voltage [Delta] V Thp3 and the offset voltage V offset.
  • the threshold voltage [Delta] V Thp3 and the offset voltage V offset it can be understood that in a substantially linear relationship. Therefore, if the variation of the threshold voltage of the transistor MP3 follows a normal distribution, it is considered that the offset voltage also follows a normal distribution. Further, if the variation of the threshold voltage of other transistors follows a normal distribution, it is expected that the offset voltage also follows a normal distribution.
  • condition of the required number N for including at least one comparator Cp within the allowable range with a probability of 95% is N ⁇ 4 / P.
  • the probability shown in the above equation (13) depends on the standard deviation ⁇ and depends on the position of the error and the allowable range. From this, the required number N of analog elements may differ greatly depending on the target analog device.
  • FIG. 22 is a graph showing the distribution of the offset voltage of the comparator Cp in the ADC of this embodiment by vertical bars.
  • the input / output characteristics, DNL and INL (Integral Non-Linearity) of the ADC 20 according to this embodiment were evaluated by simulation.
  • the simulation was performed under the following conditions.
  • -The comparator Cp has an offset voltage.
  • -The offset voltage of the comparator Cp follows the distribution function obtained by Monte Carlo analysis, as described later.
  • the input voltage V in is, in the range of -90mV ⁇ V in ⁇ 90mV.
  • the output is 6 bits.
  • the offset voltage of the comparator Cp follows the distribution function obtained as follows. 5000 comparators Cp having the same configuration were prepared by a 60 nm process, and the offset voltage of each comparator Cp was measured. Then, the distribution function of the offset voltage of the comparator Cp was obtained by Monte Carlo analysis. Therefore, in the simulation, the offset voltage of the comparator Cp was randomly selected from the distribution function obtained by Monte Carlo analysis.
  • the INL is used as another index used for the performance evaluation of the ADC.
  • INL [i] ⁇ (V i + 1- V 0 ) / (V LSB-ideal ) ⁇ -i (0 ⁇ i ⁇ 2 N ) (14).
  • INL indicates the difference between the ideal input threshold value and the actually measured input threshold value of a certain output code
  • the unit is represented by LSB
  • the actual voltage value is standardized by the minimum voltage value V LSB-ideal that can be detected.
  • the offset voltage of the comparator Cp according to the second embodiment shown in FIG. 22 was used as a reference for AD conversion.
  • the input / output characteristics of the ADC 20 satisfied ⁇ 0.49 ⁇ DNL ⁇ +0.80 and -1.85 ⁇ INL ⁇ +0.44.
  • This result was worse than the theoretical prediction. Therefore, it is estimated that the offset voltage of the comparator Cp according to the second embodiment follows a distorted distribution from the above normal distribution. For example, the offset voltage may deviate from the normal distribution due to the non-linearity of the transistor characteristics.
  • FIG. 22 shows the obtained fitted beta distribution as a curve.
  • the offset voltage of the comparator Cp according to the second embodiment follows the above beta distribution
  • the offset voltage was used as a reference for AD conversion.
  • the input / output characteristics of the ADC 20 satisfied -0.62 ⁇ DNL ⁇ +0.61 and -0.44 ⁇ INL ⁇ +1.41. This result was better than the result when the normal distribution was used. Therefore, the input / output characteristics of the ADC 20 could be improved by using the beta distribution rather than by using the normal distribution.
  • control device 26 can bring out the best performance of the ADC 20 by selecting and using the optimum statistical distribution from various statistical distributions.
  • the voltage measuring circuit 25 and the control device 26 are provided inside the ADC 20, but may be provided outside the ADC 20.
  • control blocks (particularly control devices 2.26) of the temperature sensor 1 and the ADC 20 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. ..
  • the temperature sensor 1 includes a computer that executes a program instruction, which is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • a control device provided outside the IC chip may control an analog device having a plurality of analog elements provided on the IC chip so that the value of the first characteristic and the analog element are associated with each other. Even in this case, a high-performance measuring device becomes unnecessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The present invention estimates the value of a threshold-value voltage of a transistor related to operation of a temperature sensor. Each of a plurality of transistors (Mn) that perform analog operations has: a threshold-value voltage related to operation of a temperature sensor (1), the threshold-value voltage being such that variation therein follows a statistical distribution; and a sub-threshold leak current corresponding to the threshold-value voltage. A control device (2) sequences the plurality of transistors (Mn) in accordance with a measurement value of the sub-threshold leak current, and associates the value of the threshold-value voltage and the transistors (Mn) on the basis of the statistical distribution pertaining to the threshold-value voltage and the sequence of the transistors (Mn).

Description

アナログデバイスおよびその制御方法、温度センサ、並びにアナログ素子対応付けシステムAnalog devices and their control methods, temperature sensors, and analog element mapping systems
 本発明は、IC(集積回路)チップに設けられたアナログデバイスおよびその制御方法、温度センサ、並びにアナログ素子対応付けシステムに関する。 The present invention relates to an analog device provided on an IC (integrated circuit) chip, a control method thereof, a temperature sensor, and an analog element association system.
 CMOS((Complementary Metal Oxide Semiconductor)プロセスにおいて、単一のICチップ上にデジタル回路とアナログ回路とを混載することは、小型化、高速動作化、および低消費電力化のメリットがある。しかしながら、MOSトランジスタを使ったアナログデバイスを設計する上での問題点の1つは、製造時に発生するデバイスの特性のばらつきである。プロセスの微細化が進むにつれて、トランジスタのばらつきが大きくなり、これにより、アナログデバイスの特性のばらつきが大きくなる。その結果、上記アナログデバイスが所定の性能を実現できないおそれがある。 In a CMOS ((Complementary Metal Oxide Semiconductor)) process, mounting a digital circuit and an analog circuit on a single IC chip has the advantages of miniaturization, high-speed operation, and low power consumption. However, MOS One of the problems in designing analog devices using transistors is the variation in device characteristics that occurs during manufacturing. As the process becomes finer, the variation in transistors increases, which causes analog. The variation in the characteristics of the device becomes large. As a result, the analog device may not achieve a predetermined performance.
 上記アナログデバイスの特性のばらつきを抑えるには、上記アナログデバイスの面積を増大することが考えられる。しかしながら、この場合、上記アナログデバイスのサイズが大型化するだけでなく、消費電力および製造コストが増大することにもなる。 In order to suppress variations in the characteristics of the analog device, it is conceivable to increase the area of the analog device. However, in this case, not only the size of the analog device is increased, but also the power consumption and the manufacturing cost are increased.
 上記問題点に対し、非特許文献1・2には、アナログ信号を6ビットのデジタル信号に変換するフラッシュ型ADC(Analog-to-Digital Convertor)が開示されている。該ADCでは、上記アナログ信号が入力される63個の比較器と、該63個の比較器からの信号を6ビットのデジタル信号に変換するデコーダとが、単一のICチップ上に設けられている。上記比較器のそれぞれは、オフセット電圧が正規分布に従うことを利用して、参照電圧の代わりに上記オフセット電圧を、AD変換の基準として利用している。 In response to the above problems, Non-Patent Documents 1 and 2 disclose a flash type ADC (Analog-to-Digital Converter) that converts an analog signal into a 6-bit digital signal. In the ADC, 63 comparators into which the analog signals are input and a decoder that converts the signals from the 63 comparators into 6-bit digital signals are provided on a single IC chip. There is. Each of the comparators utilizes the fact that the offset voltage follows a normal distribution, and uses the offset voltage as a reference for AD conversion instead of the reference voltage.
 上記ADCの場合、比較器のオフセット電圧のばらつき(デバイスの特性のばらつき)を利用しているため、上記ばらつきを抑える必要が無い。従って、比較器の面積を増大させる必要がなく、消費電力および製造コストの増大を抑えることができる。 In the case of the above ADC, it is not necessary to suppress the above variation because the variation of the offset voltage of the comparator (the variation of the device characteristics) is used. Therefore, it is not necessary to increase the area of the comparator, and it is possible to suppress an increase in power consumption and manufacturing cost.
 一方、各比較器のオフセット電圧を精度よく測定する必要がある。しかしながら、上記オフセット電圧を上記ICチップ内で(オンチップで)精度よく測定することは困難である。また、上記オフセット電圧を上記ICチップの外部の測定装置で測定する場合、高性能な測定装置が必要であり、また、上記オフセット電圧を測定するための出力ポートを上記ICチップに設ける必要がある。 On the other hand, it is necessary to accurately measure the offset voltage of each comparator. However, it is difficult to accurately measure the offset voltage in the IC chip (on-chip). Further, when measuring the offset voltage with a measuring device outside the IC chip, a high-performance measuring device is required, and an output port for measuring the offset voltage needs to be provided on the IC chip. ..
 本発明の一態様は、アナログデバイスの動作に関連するアナログ素子の第1特性の値を推定できるアナログデバイス等を実現することを目的とする。 One aspect of the present invention is to realize an analog device or the like capable of estimating the value of the first characteristic of an analog element related to the operation of the analog device.
 本発明の一態様に係るアナログデバイスは、ICチップに設けられたアナログデバイスであって、前記アナログデバイスは、アナログ動作を行う複数のアナログ素子と、該アナログデバイスの動作を制御する制御デバイスとを備えており、前記アナログ素子のそれぞれは、前記アナログデバイスの動作に関連する第1特性であって、ばらつきが統計分布に従う第1特性と、第1特性に関連する第2特性であって、オンチップで測定可能な第2特性とを有しており、前記制御デバイスは、第2特性の測定値に従って複数の前記アナログ素子を順番付け、第1特性に関する前記統計分布と前記アナログ素子の順番とに基づいて第1特性の値と前記アナログ素子とを対応付けることを特徴としている。 The analog device according to one aspect of the present invention is an analog device provided on an IC chip, and the analog device includes a plurality of analog elements that perform analog operation and a control device that controls the operation of the analog device. Each of the analog elements has a first characteristic related to the operation of the analog device, a first characteristic whose variation follows a statistical distribution, and a second characteristic related to the first characteristic, which are on. The control device has a second characteristic that can be measured by a chip, and the control device orders a plurality of the analog elements according to the measured value of the second characteristic, and the statistical distribution regarding the first characteristic and the order of the analog elements. It is characterized in that the value of the first characteristic is associated with the analog element based on the above.
 また、本態様に係るコンデンサ装置では、前記制御デバイスは、第1特性の所定値に対応する前記アナログ素子を動作させることが好ましい。なお、前記制御デバイスは、第1特性の所定値に対応する前記アナログ素子以外のアナログ素子を停止させてもよい。 Further, in the capacitor device according to this aspect, it is preferable that the control device operates the analog element corresponding to a predetermined value of the first characteristic. The control device may stop analog elements other than the analog element corresponding to the predetermined value of the first characteristic.
 また、本態様に係るコンデンサ装置では、第2特性を測定する測定デバイスをさらに備え、前記制御デバイスは、前記測定デバイスにて測定された第2特性の測定値に従って複数の前記アナログ素子を順番付けてもよい。 Further, the capacitor device according to this aspect further includes a measuring device for measuring the second characteristic, and the control device orders a plurality of the analog elements according to the measured value of the second characteristic measured by the measuring device. You may.
 一例では、前記アナログ素子は、トランジスタであり、前記アナログ素子の第1特性は、前記トランジスタの閾値電圧であり、前記アナログ素子の第2特性は、前記トランジスタのサブスレッショルドリーク電流であることが挙げられる。 In one example, the analog element is a transistor, the first characteristic of the analog element is the threshold voltage of the transistor, and the second characteristic of the analog element is the subthreshold leakage current of the transistor. Be done.
 他の例では、前記アナログ素子は、比較器であり、前記アナログ素子の第1特性は、前記比較器のオフセット電圧であり、前記アナログ素子の第2特性は、前記比較器に含まれる複数のトランジスタの一部の動作を停止した場合における出力電圧と、前記複数のトランジスタの他の一部の動作を停止した場合における出力電圧との差であることが挙げられる。 In another example, the analog element is a comparator, the first characteristic of the analog element is the offset voltage of the comparator, and the second characteristic of the analog element is a plurality of characteristics included in the comparator. This is the difference between the output voltage when the operation of a part of the transistors is stopped and the output voltage when the operation of the other part of the plurality of transistors is stopped.
 本発明の別の態様に係るアナログデバイスの制御方法は、ICチップに設けられたアナログデバイスであって、該アナログデバイスは、アナログ動作を行う複数のアナログ素子を備えており、前記アナログ素子のそれぞれは、前記アナログデバイスの動作に関連する第1特性であって、ばらつきが統計分布に従う第1特性と、第1特性に関連する第2特性であって、オンチップで測定可能な第2特性とを有しているアナログデバイスの制御方法であって、第2特性の測定値に従って複数の前記アナログ素子を順番付けるステップと、第1特性に関する前記統計分布と前記アナログ素子の順番とに基づいて第1特性の値と前記アナログ素子とを対応付けるステップとを含むことを特徴としている。 Another method of controlling an analog device according to another aspect of the present invention is an analog device provided on an IC chip, wherein the analog device includes a plurality of analog elements that perform analog operation, and each of the analog elements. Is a first characteristic related to the operation of the analog device, a first characteristic in which the variation follows a statistical distribution, and a second characteristic related to the first characteristic, which is a second characteristic that can be measured on-chip. A method of controlling an analog device having the above, based on a step of ordering a plurality of the analog elements according to the measured value of the second characteristic, the statistical distribution regarding the first characteristic, and the order of the analog elements. It is characterized by including a step of associating a value of one characteristic with the analog element.
 本発明のさらに別の態様に係る温度センサは、ICチップ上に設けられる温度センサであって、キャパシタと、該キャパシタに並列接続された複数のトランジスタと、前記キャパシタと、前記複数のトランジスタのそれぞれとの間に設けられた複数のスイッチング素子と、該複数のスイッチング素子を制御する制御デバイスとを備えており、該制御デバイスは、前記複数のトランジスタのそれぞれについて、前記キャパシタからの電流が前記トランジスタに放電して、前記キャパシタの電圧が所定電圧に降下するまでの放電時間を測定し、前記複数のトランジスタの少なくとも2つの放電時間の比を温度情報として出力させることを特徴としている。 The temperature sensor according to still another aspect of the present invention is a temperature sensor provided on an IC chip, which is a capacitor, a plurality of transistors connected in parallel to the capacitor, the capacitor, and the plurality of transistors, respectively. A plurality of switching elements provided between the two and a control device for controlling the plurality of switching elements are provided, and the control device is such that the current from the capacitor is the transistor for each of the plurality of transistors. It is characterized in that the discharge time until the voltage of the capacitor drops to a predetermined voltage is measured, and the ratio of at least two discharge times of the plurality of transistors is output as temperature information.
 本発明の他の態様に係る温度センサは、ICチップ上に設けられ、アナログ動作を行う複数のアナログ素子と、該アナログ素子の動作を制御する制御デバイスとを備え、前記アナログ素子のそれぞれは、ばらつきが統計分布に従う第1特性と、第1特性に関連する第2特性であって、オンチップで測定可能な第2特性とを有しており、前記制御デバイスは、第2特性の測定値に従って複数の前記アナログ素子を順番付け、第1特性に関する前記統計分布と前記アナログ素子の順番とに基づいて第1特性の値と前記アナログ素子とを対応付けることを特徴としている。 The temperature sensor according to another aspect of the present invention includes a plurality of analog elements that are provided on an IC chip and perform analog operation, and a control device that controls the operation of the analog element, and each of the analog elements has a control device. The control device has a first characteristic in which the variation follows a statistical distribution and a second characteristic related to the first characteristic, which can be measured on-chip, and the control device has a measured value of the second characteristic. A plurality of the analog elements are ordered according to the above, and the value of the first characteristic is associated with the analog element based on the statistical distribution regarding the first characteristic and the order of the analog elements.
 本発明の一態様によれば、アナログデバイスの動作に関連するアナログ素子の第1特性の値を推定できるという効果を奏する。 According to one aspect of the present invention, there is an effect that the value of the first characteristic of the analog element related to the operation of the analog device can be estimated.
本開示の一実施形態に係る温度センサの概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the temperature sensor which concerns on one Embodiment of this disclosure. 上記温度センサにおける切換部の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the switching part in the said temperature sensor. 上記温度センサの動作例を示したフロー図である。It is a flow chart which showed the operation example of the said temperature sensor. 上記フローに含まれるサブルーチンの一例を示したフロー図である。It is a flow diagram which showed an example of the subroutine included in the said flow. 上記温度センサの測定原理を説明するための回路図である。It is a circuit diagram for demonstrating the measurement principle of the said temperature sensor. 第1,2トランジスタの電圧電流特性の一例を示すグラフの図である。It is a figure of the graph which shows an example of the voltage-current characteristic of the 1st and 2nd transistors. 上記温度センサのアナログトランジスタ群における閾値電圧のばらつきを示す図である。It is a figure which shows the variation of the threshold voltage in the analog transistor group of the said temperature sensor. 本開示の別の実施形態に係る温度センサにおける温度と放電時間比との対応関係を示すグラフの図である。It is a figure of the graph which shows the correspondence relationship between the temperature and the discharge time ratio in the temperature sensor which concerns on another embodiment of this disclosure. 上記温度センサにおけるトランジスタの閾値電圧差と自由度調整済み決定係数との関係を示すグラフの図である。It is a figure of the graph which shows the relationship between the threshold voltage difference of a transistor in the said temperature sensor, and the coefficient of determination adjusted for degrees of freedom. 上記温度センサにおける温度と放電時間比との対応関係を示すグラフの図である。It is a figure of the graph which shows the correspondence relationship between the temperature and the discharge time ratio in the said temperature sensor. 上記温度センサにおける算出温度の誤差を示すグラフの図である。It is a figure of the graph which shows the error of the calculated temperature in the said temperature sensor. 上記温度センサにおける切換部の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the switching part in the said temperature sensor. 上記切換部において、第1トランジスタをキャパシタに接続する場合の等価回路である。This is an equivalent circuit when the first transistor is connected to the capacitor in the switching unit. 本開示の他の実施形態に係るフラッシュ型ADCの概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the flash type ADC which concerns on other embodiment of this disclosure. 上記ADCの動作例を示したフロー図である。It is a flow chart which showed the operation example of the above-mentioned ADC. 上記ADCにおける比較器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the comparator in the above-mentioned ADC. 上記比較器のオフセット電圧の分布を示すグラフの図である。It is a figure of the graph which shows the distribution of the offset voltage of the said comparator. 上記ADCの一実施例における出力コードとDNLとの関係を示すグラフの図である。It is a figure of the graph which shows the relationship between the output code and DNL in one Example of ADC. 上記実施例における母数とDLNとの関係を示すグラフの図である。It is a figure of the graph which shows the relationship between a population parameter and DLN in the said Example. 上記実施例における比較器の概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the comparator in the said Example. 上記比較器におけるトランジスタの閾値電圧と上記比較器のオフセット電圧との関係を示すグラフの図である。It is a figure of the graph which shows the relationship between the threshold voltage of the transistor in the said comparator and the offset voltage of the said comparator. 上記ADCの一実施例における比較器のオフセット電圧の分布を縦棒で示すグラフの図である。It is a figure of the graph which shows the distribution of the offset voltage of the comparator in one Example of the ADC by a vertical bar.
 〔実施形態1〕
 以下、本開示の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, one embodiment of the present disclosure will be described in detail.
 (温度センサの構成)
 図1は、本開示の一実施形態に係る温度センサ1(アナログデバイス)の概略構成を示す回路図である。
(Temperature sensor configuration)
FIG. 1 is a circuit diagram showing a schematic configuration of a temperature sensor 1 (analog device) according to an embodiment of the present disclosure.
 温度センサ1は、単一のICチップに設けられるものであり、制御デバイス2と、切換部3と、アナログトランジスタ群Trと、バイアス生成回路4と、キャパシタ5と、充電用トランジスタ6と、反転増幅器7と、TDC(時間‐デジタル変換器,Time-to-Digital Convertor)8と、演算ユニット9と、を含む。なお、上記ICチップは、小型化、高速動作化、低消費電力化などの観点から、CMOSのICチップであることが好ましい。 The temperature sensor 1 is provided on a single IC chip, and is inverted with a control device 2, a switching unit 3, an analog transistor group Tr, a bias generation circuit 4, a capacitor 5, and a charging transistor 6. It includes an amplifier 7, a TDC (Time-to-Digital Converter) 8, and a calculation unit 9. The IC chip is preferably a CMOS IC chip from the viewpoints of miniaturization, high-speed operation, low power consumption, and the like.
 制御デバイス2は、温度センサ1の動作を制御する。具体的には、制御デバイス2は、クロック信号Clockと、TDC8の結果とが入力される。制御デバイス2は、切換部3に含まれるスイッチング素子の開閉を制御し、充電用トランジスタ6のゲート電位を制御するように構成されている。 The control device 2 controls the operation of the temperature sensor 1. Specifically, the control device 2 is input with the clock signal Clock and the result of the TDC 8. The control device 2 is configured to control the opening and closing of the switching element included in the switching unit 3 and to control the gate potential of the charging transistor 6.
 切換部3は、キャパシタ5の一方電極を、N個のトランジスタMnの何れかのソース端子に選択的に接続するように構成されている。なお、Nは、2以上の自然数である。 The switching unit 3 is configured to selectively connect one electrode of the capacitor 5 to any source terminal of any of the N transistors Mn. N is a natural number of 2 or more.
 図2は、切換部3の一構成例を示す回路図である。図2に示すように、切換部3は、N個のスイッチング素子S(第1スイッチング素子S~第Nスイッチング素子S)を含む。各スイッチング素子Sは、デジタル的に動作する微細なMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)である。 FIG. 2 is a circuit diagram showing a configuration example of the switching unit 3. As shown in FIG. 2, the switching unit 3 includes N switching elements S (first switching element S 1 to Nth switching element SN ). Each switching element S is a fine MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) that operates digitally.
 アナログトランジスタ群Trは、N個のトランジスタMn(第1トランジスタMn~第NトランジスタMn)(アナログ素子)を含み、各トランジスタMnは微細なn型のMOSFETである。第kトランジスタMn(kは1~Nの整数)は、ソース端子がアースされ、ドレイン端子が切換部3の第kスイッチング素子Sを介してキャパシタ5に接続され、ゲート端子がバイアス生成回路4に接続されている。各トランジスタMnは、アナログ的に動作する、すなわち、閾値電圧Vth以下のバイアス電圧Vが印加されて利用される。N個のトランジスタMnは微細なので、製造時にその特性に、無視できない程のばらつきが生じている。これに関しては後述する。 The analog transistor group Tr includes N transistors Mn (first transistor Mn 1 to Nth transistor Mn N ) (analog element), and each transistor Mn is a fine n-type MOSFET. The k transistor Mn k (integer k is 1 ~ N) is grounded source terminal, connected to the capacitor 5 and the drain terminal via the first k switching elements S k of switching unit 3, gate terminal bias generating circuit It is connected to 4. Each transistor Mn operates in an analog manner, that is, a bias voltage V b equal to or less than the threshold voltage V th is applied and used. Since the N transistors Mn are fine, their characteristics are not negligible at the time of manufacture. This will be described later.
 バイアス生成回路4は、N個のトランジスタMnのゲート‐ソース間に印加するバイアス電圧Vを生成する。バイアス電圧Vは、第1トランジスタMn~第NトランジスタMnの何れの閾値電圧Vth1~VthNよりも小さい。 The bias generation circuit 4 generates a bias voltage V b applied between the gate and the source of the N transistors Mn. The bias voltage V b is smaller than the threshold voltages V th1 to V thN of any of the first transistors Mn 1 to N transistors Mn N.
 キャパシタ5は、一方電極が切換部3と充電用トランジスタ6のドレイン端子と反転増幅器7の入力端子とに接続され、他方電極がアースされている。 In the capacitor 5, one electrode is connected to the switching unit 3, the drain terminal of the charging transistor 6, and the input terminal of the inverting amplifier 7, and the other electrode is grounded.
 充電用トランジスタ6は、デジタル的に動作する微細なMOSFETである。充電用トランジスタ6は、ソース端子が高電位側の電源電圧Vddに接続され、ドレイン端子がキャパシタ5に接続され、ゲート端子が制御デバイス2に接続されている。 The charging transistor 6 is a minute MOSFET that operates digitally. In the charging transistor 6, the source terminal is connected to the power supply voltage Vdd on the high potential side, the drain terminal is connected to the capacitor 5, and the gate terminal is connected to the control device 2.
 反転増幅器7は、入力端子がキャパシタ5に接続され、出力端子がTDC8に接続されている。 In the inverting amplifier 7, the input terminal is connected to the capacitor 5 and the output terminal is connected to the TDC 8.
 TDC8は、クロック信号Clockと、反転増幅器7の結果とが入力される。TDC8は、キャパシタ5の出力電圧Voutが所与の閾値電圧Vまで減少するのに要する放電時間を計測する。TDC8は放電時間を、デジタル値で制御デバイス2と演算ユニット9とに出力する。 The clock signal Clock and the result of the inverting amplifier 7 are input to the TDC 8. The TDC 8 measures the discharge time required for the output voltage V out of the capacitor 5 to decrease to a given threshold voltage V c. The TDC 8 outputs the discharge time as a digital value to the control device 2 and the arithmetic unit 9.
 演算ユニット9は、クロック信号Clockと、TDC8からの放電時間とが入力される。演算ユニット9は、2つの揮発性記録媒体(レジスタ)10a,10bと論理回路11とを含む。2つの揮発性記録媒体10a,10bは各々、TDC8からの2つの放電時間を一時的に記憶する。論理回路11は、揮発性記録媒体10aに記憶されている放電時間と揮発性記録媒体10bに記憶されている放電時間との放電時間比を算出して、放電時間比に対応するデジタル信号を、温度を示す温度情報として出力する。そして、図示しない制御デバイスは、上記デジタル信号を受信すると、校正データに基づいて放電時間比から温度を算出して出力する。ここで、図示しない制御デバイスは、同一ICチップ内の制御デバイスでもよいし、他のチップの制御デバイスでもよい。なお、上記温度の算出方法(デジタル信号の出力方法)の詳細については後述する。 The clock signal Clock and the discharge time from the TDC 8 are input to the arithmetic unit 9. The arithmetic unit 9 includes two volatile recording media (registers) 10a and 10b and a logic circuit 11. The two volatile recording media 10a and 10b each temporarily store the two discharge times from the TDC 8. The logic circuit 11 calculates the discharge time ratio between the discharge time stored in the volatile recording medium 10a and the discharge time stored in the volatile recording medium 10b, and outputs a digital signal corresponding to the discharge time ratio. Output as temperature information indicating the temperature. Then, when the control device (not shown) receives the digital signal, it calculates the temperature from the discharge time ratio based on the calibration data and outputs it. Here, the control device (not shown) may be a control device in the same IC chip or a control device of another chip. The details of the temperature calculation method (digital signal output method) will be described later.
 (温度センサの動作)
 図3は、図1に示した温度センサ1の動作例を示したフロー図である。
(Operation of temperature sensor)
FIG. 3 is a flow chart showing an operation example of the temperature sensor 1 shown in FIG.
 温度センサ1が温度センシングを開始する(START)とき、制御デバイス2は、初期設定k=1から動作を開始する(ステップS1)。制御デバイス2は、まず、第kトランジスタMnを通じてキャパシタ5が放電する場合の第k放電時間dを計測するサブルーチン(ステップS2)を実行する。なお、このサブルーチンに関しては後述する。続いて、制御デバイス2は、制御デバイス2内の揮発性記録媒体に第k放電時間を書き込み(ステップS3)、k=Nを満たすか判定する(ステップS4)。ステップS4でNoの場合、kを1増分して(ステップS5)、ステップS2に戻る。 When the temperature sensor 1 starts temperature sensing (START), the control device 2 starts operation from the initial setting k = 1 (step S1). First, the control device 2 executes a subroutine (step S2) for measuring the k-th discharge time d k when the capacitor 5 is discharged through the k-th transistor Mn k. This subroutine will be described later. Subsequently, the control device 2 writes the k-th discharge time on the volatile recording medium in the control device 2 (step S3), and determines whether k = N is satisfied (step S4). If No in step S4, k is incremented by 1 (step S5), and the process returns to step S2.
 ステップS4でYesの場合、制御デバイス2は、放電時間の計測を終了し、計測した第1放電時間d~第N放電時間dを読み出す(ステップS6)。そして、制御デバイス2は、放電時間が昇順(あるいは降順)に並ぶように第1トランジスタMn~第NトランジスタMnをソートする(ステップS7)。すなわち、制御デバイス2は、放電時間の昇順(あるいは降順)に従って、第1トランジスタMn~第NトランジスタMnを順番付ける。 In the case of Yes in step S4, the control device 2 finishes the measurement of the discharge time and reads out the measured first discharge time d 1 to Nth discharge time d N (step S6). Then, the control device 2 sorts the first transistors Mn 1 to N transistors Mn N so that the discharge times are arranged in ascending (or descending) order (step S7). That is, the control device 2 orders the first transistor Mn 1 to the Nth transistor Mn N according to the ascending order (or descending order) of the discharge time.
 以上のようにソートし終えた後、制御デバイス2は、以下のように、第1参照トランジスタTrと第2参照トランジスタTrとを選択する。 After sorting as described above, the control device 2 selects the first reference transistor Tr 1 and the second reference transistor Tr 2 as follows.
 制御デバイス2は、第1参照トランジスタTrの順位を読み出す(ステップS8)。そして、第1トランジスタMn~第NトランジスタMnのうち、この順位に位置する第iトランジスタMnを第1参照トランジスタTrに選択し(ステップS9)、選択結果を制御デバイス2内の揮発性記録媒体に書き込む(ステップS10)。同様に、制御デバイス2は、第2参照トランジスタTrの順位を読み出す(ステップS11)。そして、第1トランジスタMn~第NトランジスタMnのうち、この順位に位置する第jトランジスタMnを第2参照トランジスタTrに選択し(ステップS12)、選択結果を制御デバイス2内の揮発性記録媒体に書き込む(ステップS13)。なお、制御デバイス2は、ステップS8~S10とステップS11~S13とを、同時並行に実行しても逆順に実行してもよい。なお、ステップ8,11で読み出す順位については、後述する。 The control device 2 reads out the order of the first reference transistor Tr 1 (step S8). Then, among the first transistors Mn 1 to N transistors Mn N , the i-th transistor Mn i located in this order is selected as the first reference transistor Tr 1 (step S9), and the selection result is volatilized in the control device 2. Write to the sex recording medium (step S10). Similarly, the control device 2 reads out the order of the second reference transistor Tr 2 (step S11). Then, among the first transistors Mn 1 to N transistors Mn N , the j transistor Mn j located in this order is selected as the second reference transistor Tr 2 (step S12), and the selection result is volatilized in the control device 2. Write to the sex recording medium (step S13). The control device 2 may execute steps S8 to S10 and steps S11 to S13 in parallel or in reverse order. The order of reading in steps 8 and 11 will be described later.
 以上のように選択した後、制御デバイス2は、以下のように、第1参照放電時間dref1と第2参照放電時間dref2とを計測する。 After selecting as described above, the control device 2 measures the first reference discharge time dref1 and the second reference discharge time dref2 as follows.
 制御デバイス2は、第1参照トランジスタTrについての選択結果を読み出し(ステップS14)、第i放電時間dを計測する設定k=iにし(ステップS15)、第kトランジスタMnを通じてキャパシタ5が放電する場合の第k放電時間dを計測するサブルーチンを実行する(ステップS16)。続いて、制御デバイス2は、演算ユニット9内の第1揮発性記録媒体10aに第1参照放電時間dref1として、第i放電時間diを書き込む(ステップS17)。同様に、制御デバイス2は、第2参照トランジスタTrについての選択結果を読み出し(ステップS18)、第j放電時間dを計測する設定k=jにし(ステップS19)、第kトランジスタMnを通じてキャパシタ5が放電する場合の第k放電時間dを計測するサブルーチンを実行する(ステップS20)。続いて、制御デバイス2は、演算ユニット9内の第2揮発性記録媒体10bに第2参照放電時間dref2として、第j放電時間djを書き込む(ステップS21)。 The control device 2 reads out the selection result for the first reference transistor Tr 1 (step S14), sets the setting k = i for measuring the i- th discharge time di (step S15), and the capacitor 5 passes through the k-th transistor Mn k. A subroutine for measuring the k-th discharge time d k in the case of discharging is executed (step S16). Subsequently, the control device 2 writes the i-th discharge time di as the first reference discharge time d ref1 on the first volatile recording medium 10a in the arithmetic unit 9 (step S17). Similarly, control device 2 reads the selection result for the second reference transistor Tr 2 (step S18), and the set k = j to measure the j discharge time d j (step S19), through the first k transistor Mn k A subroutine for measuring the k-th discharge time d k when the capacitor 5 is discharged is executed (step S20). Subsequently, the control device 2 writes the j-th discharge time dj as the second reference discharge time dref2 on the second volatile recording medium 10b in the arithmetic unit 9 (step S21).
 この後、演算ユニット9は、第1参照放電時間dref1と第2参照放電時間dref2とを読み出す(ステップS22)。そして演算ユニット9は、論理回路11を用いて、第1参照放電時間dref1と第2参照放電時間dref2との放電時間比dref1/dref2を算出し(ステップS23)、デジタル信号を生成して出力する(ステップS24)。なお、演算ユニット9は、放電時間比dref1/dref2を算出した後、校正データを読み出し、放電時間比dref1/dref2と校正データとに基づいて絶対温度を算出して出力してもよい。そして、終了するかを判定し(ステップS25)、Yesであれば温度センシングを終了し(END)、Noであれば、ステップ14に戻る。 After that, the arithmetic unit 9 reads out the first reference discharge time dref1 and the second reference discharge time dref2 (step S22). Then, the arithmetic unit 9 calculates the discharge time ratio d ref1 / d ref2 between the first reference discharge time d ref1 and the second reference discharge time d ref2 using the logic circuit 11 (step S23), and generates a digital signal. And output (step S24). The arithmetic unit 9, after calculating the discharge time ratio d ref1 / d ref2, reads calibration data, be output to calculate the absolute temperature on the basis of the discharge time ratio d ref1 / d ref2 and calibration data Good. Then, it is determined whether to end (step S25), if Yes, the temperature sensing is ended (END), and if No, the process returns to step 14.
 揮発性記録媒体に記憶された情報は、温度センシングを終了すると、消去される。このため、温度センサ1は、温度センシングを開始する毎に、ステップS1からの動作を繰り返す。 The information stored in the volatile recording medium is erased when the temperature sensing is completed. Therefore, the temperature sensor 1 repeats the operation from step S1 every time the temperature sensing is started.
 (放電時間を計測するサブルーチン)
 図4は、図3に示した第kトランジスタMnを通じてキャパシタ5が放電する場合の第k放電時間dを計測するサブルーチン(ステップS2,16,20)の一例を示したフロー図である。
(Subroutine to measure discharge time)
FIG. 4 is a flow chart showing an example of a subroutine (steps S2, 16, 20) for measuring the k-th discharge time d k when the capacitor 5 is discharged through the k-th transistor Mn k shown in FIG.
 サブルーチンが開始される(START)と、まず、充電を開始する(ステップS31)。ステップS31において、制御デバイス2は、切換部3が全てのスイッチング素子を開状態にして、アナログトランジスタ群Trをキャパシタ5から切り離すように、切換部3に指令する。切り離し後、制御デバイス2は、充電用トランジスタ6が通電状態になるように、充電用トランジスタ6のゲート電圧を印加する。そして、キャパシタ5の両端の電位差Voutについて、Vout=Vddであるか判定する(ステップS32)。ステップS32でNoの場合は充電を継続し、Yesの場合は充電を終了する(ステップS33)。ステップS33において、制御デバイス2は、充電用トランジスタ6が非通電状態になるように、充電用トランジスタ6のゲート電圧を印加する。 When the subroutine is started (START), charging is first started (step S31). In step S31, the control device 2 instructs the switching unit 3 to open all the switching elements and disconnect the analog transistor group Tr from the capacitor 5. After disconnection, the control device 2 applies the gate voltage of the charging transistor 6 so that the charging transistor 6 is energized. Then, with respect to the potential difference V out at both ends of the capacitor 5, it is determined whether V out = V dd (step S32). If No in step S32, charging is continued, and if Yes, charging is terminated (step S33). In step S33, the control device 2 applies the gate voltage of the charging transistor 6 so that the charging transistor 6 is in a non-energized state.
 充電終了後、放電が開始され(ステップS34)、同時に、放電時間の計測も開始される(ステップS35)。ステップS34において、制御デバイス2は、第kトランジスタMnのみがキャパシタ5に接続し、その他のトランジスタはキャパシタ5から切り離されたままであるように、切換部3に指令する。図2に示した切換部3は、第kスイッチング素子Sのみを閉状態にして、その他のスイッチング素子を開状態のままにする。ステップS35において、TDC8は、Vout<Vddの間に、Vout=Vddであった時点からの経過時間を計測し、この経過時間をデジタル変換して出力し続ける。 After the charging is completed, the discharge is started (step S34), and at the same time, the measurement of the discharge time is also started (step S35). In step S34, the control device 2 commands the switching unit 3 so that only the kth transistor Mn k is connected to the capacitor 5 and the other transistors remain disconnected from the capacitor 5. Switching unit 3 shown in FIG. 2, only the first k switching elements S k in the closed state, the other switching element remains open. In step S35, the TDC 8 measures the elapsed time from the time when V out = V dd during V out <V dd , digitally converts this elapsed time, and continues to output.
 放電中、制御デバイス2は、Vout<Vかを判定する(ステップS36)。Vは、キャパシタ5の電位差の所与の閾値である。ステップS36でNoの場合、放電を継続する。Yesの場合、キャパシタ5が十分に放電したと判断して、放電を終了する(ステップS37)。同時に、放電時間の計測も終了する(ステップS38)。ステップS37において、制御デバイス2は、切換部3が全てのスイッチング素子を開状態にするように、切換部3に指令する。ステップS38において、TDC8からこの時点に出力された経過時間が、第k放電時間dとして取得される。 During discharging, the control device 2 determines whether V out <V c (step S36). V c is a given threshold of the potential difference of the capacitor 5. If No in step S36, the discharge is continued. In the case of Yes, it is determined that the capacitor 5 is sufficiently discharged, and the discharge is terminated (step S37). At the same time, the measurement of the discharge time is completed (step S38). In step S37, the control device 2 instructs the switching unit 3 so that the switching unit 3 opens all the switching elements. In step S38, the elapsed time that is output at this time from TDC8 is acquired as the k discharge time d k.
 (従来技術の温度センサ)
 従来技術のオンチップ型の温度センサには、様々な測定原理を利用したものがある。
(Conventional temperature sensor)
Some conventional on-chip temperature sensors utilize various measurement principles.
 一例として、同一特性を有するバイポーラトランジスタを用いるバンドギャップ型温度センサがある(非特許文献3・4)。別の一例として、同一特性を有する2つのMOSFETのサブスレッショルド特性を利用した温度センサがある(非特許文献5・6)。しかし、何れの方式も、低消費電力で、出力値が温度と線形関係(PTAT,proportional-to-absolute-temperature)にあるオンチップ型の温度センサを実現できていない。 As an example, there is a bandgap type temperature sensor using a bipolar transistor having the same characteristics (Non-Patent Documents 3 and 4). As another example, there is a temperature sensor that utilizes the subthreshold characteristics of two MOSFETs having the same characteristics (Non-Patent Documents 5 and 6). However, none of these methods has realized an on-chip type temperature sensor with low power consumption and an output value linearly related to temperature (PTAT, proportional-to-absolute-temperature).
 また、何れの方式も、同一特性を有する2つのトランジスタを必要とする。トランジスタの製造時に、トランジスタの特性ばらつきが発生し、この特性ばらつきは、トランジスタサイズが小さいほど大きくなる。トランジスタの製造後に、トランジスタの特性を正確に測定することは困難である。このため、従来技術では、製造可能な最小サイズよりも、大きなサイズでトランジスタを製造し、これによってトランジスタの特性ばらつきを低減している。 In addition, both methods require two transistors having the same characteristics. When the transistor is manufactured, the characteristic variation of the transistor occurs, and the smaller the transistor size, the larger the characteristic variation. After manufacturing a transistor, it is difficult to accurately measure the characteristics of the transistor. Therefore, in the prior art, the transistor is manufactured in a size larger than the minimum size that can be manufactured, thereby reducing the variation in the characteristics of the transistor.
 (本開示に係る温度センサの測定原理)
 以下、本開示に係る温度センサ1の測定原理について、詳細に説明する。
(Measurement principle of temperature sensor according to the present disclosure)
Hereinafter, the measurement principle of the temperature sensor 1 according to the present disclosure will be described in detail.
 図5は、測定原理を説明するための回路図である。図6は、図5に示した回路における第1,2トランジスタMn1,Mn2の電圧電流特性の一例を示すグラフの図であり、より詳細には、ドレイン‐ソース間電圧が一定の場合における、ゲート‐ソース間電圧とドレイン電流との関係の一例を示す図である。 FIG. 5 is a circuit diagram for explaining the measurement principle. FIG. 6 is a graph showing an example of the voltage-current characteristics of the first and second transistors M n1 and M n2 in the circuit shown in FIG. 5, and more specifically, when the drain-source voltage is constant. , Is a diagram showing an example of the relationship between the gate-source voltage and the drain current.
 図5に示す2つの回路は、第1トランジスタMn1と第2トランジスタMn2を除いて同一である。キャパシタ5が第1トランジスタMn1のドレイン‐ソース間に印加する電圧VDS1は、キャパシタ5が第2トランジスタMn2のドレイン‐ソース間に印加する電圧VDS2と同一である。このような2つの回路は、切換部3が第1スイッチング素子Sのみ、または第2スイッチング素子Sのみを閉状態にすることによって実現可能される。 Two of the circuit shown in FIG. 5 are identical except the first transistor M n1 the second transistor M n2. The voltage V DS1 applied by the capacitor 5 between the drain and the source of the first transistor M n1 is the same as the voltage V DS2 applied by the capacitor 5 between the drain and the source of the second transistor M n2. Two such circuits are switching unit 3 is achievable by first only the switching element S 1, or when only the second switching element S 2 to the closed state.
 図6に示す例で、第1トランジスタMn1の閾値電圧Vth1は、第2トランジスタMn2の閾値電圧Vth2よりも大きい。閾値電圧Vth1,Vth2よりも小さいバイアス電圧Vを第1トランジスタMn1のゲートソース間に印加し、同一のバイアス電圧Vを第2トランジスタMn2のゲートソース間に印加する。このとき、第1トランジスタMn1にはドレイン電流Iが流れ、第2トランジスタMn2にはドレイン電流Iが流れる。これらのドレイン電流I,Iは、サブスレッショルドリーク電流であり、図6に示すように異なる値を示す。近似的には、下記の式(1),(2)で表される。 In the example shown in FIG. 6, the threshold voltage V th1 of the first transistor M n1 is larger than the threshold voltage V th2 of the second transistor M n2. A small bias voltage V b than the threshold voltage V th1, V th2 is applied between the gate and the source of the first transistor M n1, and applies the same bias voltage V b between the gate and source of the second transistor M n2. At this time, the first transistor M n1 flows a drain current I 1, the drain current I 2 flows through the second transistor M n2. These drain currents I 1 and I 2 are subthreshold leakage currents and show different values as shown in FIG. Approximately, it is expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、Tは絶対温度、Kは製造プロセスに依存する係数、nはサブスレッショルド係数、kはボルツマン定数、qは電荷素量、λ,λ,α,αは正の係数、VDS1は第1トランジスタMn1のドレイン‐ソース間電圧、VDS2は第2トランジスタMn2のドレイン‐ソース間電圧、を示す。VDS1≒VDS2であり、λ,λ,α,αのばらつきは無視できるので、αT-αT≒0,λDS1-λDS2=≒0と近似される。従って、Tは下記の式(3)で近似される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Here, T is absolute temperature, K is a coefficient depending on the manufacturing process, n is a subthreshold coefficient, k is Boltzmann's constant, q is an elementary charge, and λ 1 , λ 2 , α 1 , α 2 are positive coefficients. V DS1 indicates the drain-source voltage of the first transistor M n1 , and V DS2 indicates the drain-source voltage of the second transistor M n2 . Since V DS1 ≈ V DS2 and the variation of λ 1 , λ 2 , α 1 , α 2 can be ignored, it is approximated as α 1 T−α 2 T ≈ 0, λ 1 V DS1 −λ 2 V DS2 = ≈ 0. Will be done. Therefore, T is approximated by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 式(3)より、絶対温度Tを、バイアス電圧Vに依存しない方式で算出することができる。閾値電圧Vth1,Vth2(第1特性)は、第1トランジスタMn1と第2トランジスタMn2との特性値なので、定数である。従って絶対温度Tは、ドレイン電流の比I/Iの自然対数と線形関係にある。ここで、ΔVth=Vth1-Vth2を適切に設定すると、任意の温度範囲内において、自然対数を線形近似することによって、絶対温度Tをドレイン電流比I/Iと線形関係に近似することができる。この線形関係によって、バイアス電圧Vに依存せず、出力値が温度と線形関係にある温度センシングが可能になる。
Figure JPOXMLDOC01-appb-M000003
From equation (3), the absolute temperature T can be calculated by a method that does not depend on the bias voltage V b. The threshold voltages V th1 and V th2 (first characteristic) are constants because they are characteristic values of the first transistor M n1 and the second transistor M n2. Therefore, the absolute temperature T has a linear relationship with the natural logarithm of the drain current ratio I 2 / I 1. Here, if ΔV th = V th1 −V th2 is appropriately set, the absolute temperature T is approximated to a linear relationship with the drain current ratio I 2 / I 1 by linearly approximating the natural logarithm within an arbitrary temperature range. can do. This linear relationship enables temperature sensing in which the output value is linearly related to the temperature without depending on the bias voltage V b.
 図2に示す2つの回路において、キャパシタ5が同一の電源電圧Vddで充電されており、第1トランジスタMn1および第2トランジスタMn2には同一のバイアス電圧Vが印加されている。この場合、下記の式(4)が近似的に成立する。 In two of the circuit shown in FIG. 2, the capacitor 5 are charged with the same supply voltage V dd, the same bias voltage V b is applied to the first transistor M n1 and the second transistor M n2. In this case, the following equation (4) approximately holds.
Figure JPOXMLDOC01-appb-M000004
 ここで、dは、第1トランジスタMn1を含む回路(図2の左側の回路)でキャパシタ5の出力電圧Voutが所与の閾値電圧Vまで減少するのに要する時間であり、dは、第2トランジスタMn2を含む回路(図2の右側の回路)でキャパシタ5の出力電圧Voutが同じ所与の閾値電圧Vまで減少するのに要する放電時間である。
Figure JPOXMLDOC01-appb-M000004
Here, d 1 is the time required for the output voltage V out of the capacitor 5 to decrease to a given threshold voltage V c in the circuit including the first transistor M n 1 (the circuit on the left side of FIG. 2). Reference numeral 2 denotes a discharge time required for the output voltage V out of the capacitor 5 to decrease to the same given threshold voltage V c in the circuit including the second transistor M n2 (the circuit on the right side of FIG. 2).
 従って、ドレイン電流比I/Iが絶対温度と線形関係に近似できるので、放電時間比d/dも絶対温度と線形関係に近似できる。よって、放電時間比d/dを測定することによる温度センシングが可能になる。 Therefore, since the drain current ratio I 2 / I 1 can be approximated to the absolute temperature linearly, the discharge time ratio d 1 / d 2 can also be approximated to the absolute temperature linearly. Therefore, temperature sensing by measuring the discharge time ratio d 1 / d 2 becomes possible.
 (トランジスタの選出方法)
 上述のように、N個のトランジスタTrの特性には、無視できない程のばらつきがある。1つのチップに多数のMOSFETを製造したとき、そのMOSFETの閾値電圧は下記の式(5)で表される正規分布(統計分布)に従うことが報告されている(非特許文献7)。この分布の標準偏差σは、ペルグロムの法則(Pelgrom’s Law)により下記の式(6)で求まる(非特許文献8)。
(Transistor selection method)
As described above, the characteristics of the N transistors Tr have a non-negligible variation. It has been reported that when a large number of MOSFETs are manufactured on one chip, the threshold voltage of the MOSFETs follows a normal distribution (statistical distribution) represented by the following equation (5) (Non-Patent Document 7). The standard deviation σ of this distribution can be obtained by the following equation (6) according to Pelgrom's Law (Non-Patent Document 8).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、AVthは製造プロセスに依存するパラメータであり、Wはトランジスタのゲート幅の設計値であり、Lはトランジスタのゲート長の設計値である。従って、式(5)における標準偏差σは、製造プロセスおよびトランジスタサイズの設計とで決定される定数値である。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Here, AVth is a parameter depending on the manufacturing process, W is a design value of the gate width of the transistor, and L is a design value of the gate length of the transistor. Therefore, the standard deviation σ in the equation (5) is a constant value determined by the manufacturing process and the design of the transistor size.
 従って、ΔVth=Vth1-Vth2が適切に得られるように、第1トランジスタMn1の閾値電圧Vth1と第2トランジスタMn2の閾値電圧Vth2とを設定することは困難である。しかし、ΔVth=Vth,ref1-Vth,ref2が適切に得られるように、第1トランジスタMn~第NトランジスタMnから第1参照トランジスタTrと第2参照トランジスタTrとを選択することは可能である。ここで、Vth,ref1は第1参照トランジスタTrの閾値電圧であり、Vth,ref2は第2参照トランジスタTrの閾値電圧である。 Accordingly, as ΔV th = V th1 -V th2 is properly obtained, it is difficult to set the threshold voltage V th1 of the first transistor M n1 and threshold voltage V th2 of the second transistor M n2. However, the first reference transistor Tr 1 and the second reference transistor Tr 2 are selected from the first transistors Mn 1 to N transistors Mn N so that ΔV th = V th, ref1- V th, ref 2 can be appropriately obtained. It is possible to do. Here, V th and ref 1 are the threshold voltages of the first reference transistor Tr 1, and V th and ref 2 are the threshold voltages of the second reference transistor Tr 2.
 図7は、アナログトランジスタ群Trにおける閾値電圧Vthのばらつきを示す図である。 FIG. 7 is a diagram showing variations in the threshold voltage Vth in the analog transistor group Tr.
 ソートされたN個のトランジスタMnの閾値電圧Vthは、図7に示すように、上述のように正規分布に従う。従って、統計的推定によれば、第1参照トランジスタTrは、初めから下記の式(7)で求められる割合の順位に存在する。同様に、第2参照トランジスタTrは、初めから下記の式(8)で求められる割合の順位に存在する。 As shown in FIG. 7, the threshold voltage Vth of the sorted N transistors Mn follows a normal distribution as described above. Therefore, according to statistical estimation, the first reference transistor Tr 1 exists in the order of the ratio obtained by the following equation (7) from the beginning. Similarly, the second reference transistor Tr 2 exists in the order of the ratio obtained by the following equation (8) from the beginning.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 上述のステップ8で読み出した第1参照トランジスタTrの順位は、式(7)で求めた順位であり、ステップS11で読み出した第2参照トランジスタTrの順位は、式(8)で求めた順位である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
The order of the first reference transistor Tr 1 read out in step 8 described above is the order obtained by the equation (7), and the order of the second reference transistor Tr 2 read out in step S11 is obtained by the equation (8). It is a ranking.
 上述の統計的推定は、正規分布の中心に近いほど確度が高い。このため、参照閾値電圧Vth,ref1,Vth,ref2は、その算術平均が正規分布の中心に近いように選択されることが好ましい。上述の統計的推定は、母数が多いほど確度が高い。このため、Nは大きいことが好ましい。N個のトランジスタMnは、従来技術のセンサチップでアナログ的に動作するトランジスタと異なり微細なので、Nが大きくても、温度センサ1を小型化することができる。また、このような統計的推定は、例えばベータ分布およびガンマ分布など、正規分布以外の統計分布でも可能である。 The above statistical inference is more accurate as it is closer to the center of the normal distribution. Therefore, it is preferable that the reference threshold voltages Vth, ref1 , Vth, and ref2 are selected so that their arithmetic mean is close to the center of the normal distribution. The above statistical inference is more accurate as the population parameter increases. Therefore, it is preferable that N is large. Since the N transistors Mn are fine, unlike the transistors that operate in an analog manner with the sensor chip of the prior art, the temperature sensor 1 can be miniaturized even if N is large. In addition, such statistical inference can be made with statistical distributions other than the normal distribution, such as beta distribution and gamma distribution.
 (トランジスタのソート方法)
 上述のサブルーチンで第iトランジスタMniを流れる電流Iは、V=0Vの場合、MOSFETのサブスレッショルド特性により近似的に、下記の式(9)で表される。
(Transistor sorting method)
In the above subroutine, the current I i flowing through the i-th transistor M ni is approximately represented by the following equation (9) according to the subthreshold characteristics of the MOSFET when V c = 0 V.
Figure JPOXMLDOC01-appb-M000009
 ここで、λ,αは正の係数、Vthiは第iトランジスタMniの閾値電圧、VDSiは第iトランジスタMniのドレイン‐ソース間電圧を示す。
Figure JPOXMLDOC01-appb-M000009
Here, lambda i, alpha i is a positive coefficient, V thi is the threshold voltage, V DSi of the i transistors M ni drain of the i transistors M ni - shows the source voltage.
 従って、閾値電圧Vthiが大きいほど、電流Iは小さい。 Therefore, the larger the threshold voltage V thi , the smaller the current I i .
 N個のトランジスタMnから、第iトランジスタMnと第jトランジスタMnと比較すると近似的に、下記の式(10)で表される関係が成立する。 From the N transistors Mn, the relationship represented by the following equation (10) is approximately established when the i-th transistor Mn i and the j-th transistor Mn j are compared.
Figure JPOXMLDOC01-appb-M000010
 V>0Vの場合も、放電時間比d/d≒I/Iの関係は成立する。このため、放電電流Iが小さいほど、放電時間dは長い。従って、上述のステップS7において、放電時間(第2特性)が昇順に並ぶようにN個のトランジスタMnをソートすることによって、閾値電圧が昇順に並ぶようにN個のトランジスタMnがソートされる。
Figure JPOXMLDOC01-appb-M000010
In the case of V c> 0V, the relationship of the discharge time ratio d i / d j ≒ I j / I i is established. Therefore, as the discharge current I i is small, the discharge time d i is long. Therefore, in step S7 described above, by sorting the N transistors Mn so that the discharge time (second characteristic) is arranged in ascending order, the N transistors Mn are sorted so that the threshold voltage is arranged in ascending order.
 また、図7の上側の図は、放電時間dに対する閾値電圧Vthを示す。これも、閾値電圧Vthkが大きいほど、放電時間dが長いことを示している。 The upper figure of FIG. 7 shows the threshold voltage Vth with respect to the discharge time d. This also indicates that the larger the threshold voltage V thk, the longer the discharge time d k.
 (作用効果)
 以上のように、本開示に係る温度センサ1は、アナログトランジスタ群Trに含まれるN個のトランジスタMnについて、放電時間dの昇順または降順に並ぶように、ソートされる(順番付けられる)。そして、閾値電圧Vthのばらつきの正規分布とトランジスタMnの順番とに基づいて、閾値電圧VthとトランジスタMnとが対応付けられる。従って、各トランジスタMnの他のトランジスタMnに対する閾値電圧Vthの相対値をオンチップで推定することができる。
(Action effect)
As described above, the temperature sensor 1 according to the present disclosure is sorted (ordered) so that the N transistors Mn included in the analog transistor group Tr are arranged in ascending or descending order of the discharge time d. Then, based on the order of the normal distribution and the transistor Mn of variations in the threshold voltage V th, it is associated with the threshold voltage V th and the transistor Mn. Therefore, the relative value of the threshold voltage Vth with respect to the other transistors Mn of each transistor Mn can be estimated on-chip.
 本開示に係る温度センサ1は、アナログトランジスタ群Trに含まれるN個のトランジスタMnから、ΔVth=Vth,ref1-Vth,ref2が適切に得られるように、第1参照トランジスタTrと第2参照トランジスタTrとを選択する。これにより、温度センサ1を適切に動作させることができる。従って、トランジスタMnの閾値電圧Vthを測定することなく、温度情報を検出できるので、温度センサ1の面積を増大させる必要が無く、消費電力および製造コストの増大を抑えることができる。また、閾値電圧Vthを測定するための高性能な測定デバイスが不要となる。 The temperature sensor 1 according to the present disclosure includes the first reference transistor Tr 1 so that ΔV th = V th, ref1 −V th, ref2 can be appropriately obtained from the N transistors Mn included in the analog transistor group Tr. The second reference transistor Tr 2 is selected. As a result, the temperature sensor 1 can be operated appropriately. Therefore, since the temperature information can be detected without measuring the threshold voltage Vth of the transistor Mn, it is not necessary to increase the area of the temperature sensor 1, and it is possible to suppress an increase in power consumption and manufacturing cost. In addition, a high-performance measuring device for measuring the threshold voltage Vth becomes unnecessary.
 本開示に係る温度センサ1は、同一特性の複数のアナログトランジスタを必要とせず、アナログトランジスタの特性がばらつくことが許容される。このため、本開示に係る温度センサ1では、アナログトランジスタを微細化できるので、温度センサ1は省電流で動作可能であり、省電力化および小型化が可能である。 The temperature sensor 1 according to the present disclosure does not require a plurality of analog transistors having the same characteristics, and it is allowed that the characteristics of the analog transistors vary. Therefore, in the temperature sensor 1 according to the present disclosure, since the analog transistor can be miniaturized, the temperature sensor 1 can operate with current saving, and power saving and miniaturization are possible.
 本開示に係る温度センサ1は、参照電圧または参照電流を必要としない。このため、本開示に係る温度センサ1は、省電力化および小型化が可能である。 The temperature sensor 1 according to the present disclosure does not require a reference voltage or a reference current. Therefore, the temperature sensor 1 according to the present disclosure can be reduced in power consumption and size.
 本開示に係る温度センサ1は、不揮発性記録媒体を必要としない。このため、本開示に係る温度センサ1は、省電力化および小型化が可能である。 The temperature sensor 1 according to the present disclosure does not require a non-volatile recording medium. Therefore, the temperature sensor 1 according to the present disclosure can be reduced in power consumption and size.
 本開示に係る温度センサ1は、温度センシングの毎に、トランジスタMnのソートおよび参照トランジスタTr,Trの選出を行う。N個のうちの少数のトランジスタMnが劣化しても、N個のトランジスタMnが従う分布は実質的に変化しない。これらのため、本開示に係る温度センサ1は、少数のトランジスタMnが劣化しても、温度センシングの精度が劣化することが抑制され、温度センサ1としての機能を維持し続けることが可能である。 The temperature sensor 1 according to the present disclosure sorts the transistors Mn and selects the reference transistors Tr 1 and Tr 2 for each temperature sensing. Even if a small number of transistors Mn out of N deteriorate, the distribution followed by the N transistors Mn does not substantially change. Therefore, even if a small number of transistors Mn deteriorate, the temperature sensor 1 according to the present disclosure is suppressed from deteriorating the accuracy of temperature sensing, and can continue to maintain the function as the temperature sensor 1. ..
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
 図12は、本実施形態に係る切換部3の一構成例を示す回路図である。 FIG. 12 is a circuit diagram showing a configuration example of the switching unit 3 according to the present embodiment.
 図12に示すように、切換部3はツリー型である。図12は、2分木から成る例を示すが、3分木、4分木、5分木など、2分木以外を含んでもよい。図12に示すように2分木から成る場合、キャパシタ5に並列接続される寄生容量は、log(N)に比例する。このため、N個のスイッチング素子Sが1段で並列接続された図2に示す構成例(寄生容量N)よりも、寄生容量を低減して、放電時間を短縮することができる。 As shown in FIG. 12, the switching unit 3 is of a tree type. FIG. 12 shows an example composed of a binary tree, but may include a non-binary tree such as a ternary tree, a quadtree, or a quintuplet. When composed of a binary tree as shown in FIG. 12, the parasitic capacitance connected in parallel to the capacitor 5 is proportional to log 2 (N). Therefore, the parasitic capacitance can be reduced and the discharge time can be shortened as compared with the configuration example (parasitic capacitance N) shown in FIG. 2 in which N switching elements S are connected in parallel in one stage.
 図13は、図12に示す切換部3の、第1トランジスタMnをキャパシタ5に接続するときの、等価回路を示す。 FIG. 13 shows an equivalent circuit of the switching unit 3 shown in FIG. 12 when the first transistor Mn 1 is connected to the capacitor 5.
 (適切な閾値電圧差)
 前述のように、絶対温度Tは、下記の式(11)で近似的に表される。
(Appropriate threshold voltage difference)
As described above, the absolute temperature T is approximately expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000011
 これは近似なので、近似誤差が少ないように閾値電圧差ΔVth(第1特性)を決定することが好ましい。
Figure JPOXMLDOC01-appb-M000011
Since this is an approximation, it is preferable to determine the threshold voltage difference ΔV th (first characteristic) so that the approximation error is small.
 一例として、シミュレーション上の図1に示す回路で、切換部3を図12に示す構成として、ΔVthを-80mVから-60mVまで2mV単位で変化させて、0~100℃の範囲での、第1参照トランジスタTrの放電時間dと第2参照トランジスタTrの放電時間dとの放電時間比d/dを求めた。図8はこのシミュレーション結果を示す。 As an example, in the circuit shown in FIG. 1 on the simulation, the switching unit 3 is configured as shown in FIG. 12, and ΔV th is changed from -80 mV to -60 mV in 2 mV units, and the number is in the range of 0 to 100 ° C. It was determined 1 reference discharge time d 1 of the transistor Tr 1 and the discharge time ratio d 1 / d 2 between the discharge time d 2 of the second reference transistor Tr 2. FIG. 8 shows the result of this simulation.
 図8に示すシミュレーション結果から自由度調整済み決定係数(Adjust-R)を算出した。自由度調整済み決定係数は、直線性を評価する値である。自由度調整済み決定係数が1に近いほど、放電時間比d/dと温度Tとの関係の直線性が高い。図9はこの自由度調整済み決定係数を示す。 The coefficient of determination adjusted for degrees of freedom (Adjust-R 2 ) was calculated from the simulation results shown in FIG. The adjusted coefficient of determination is a value for evaluating linearity. The closer the coefficient of determination adjusted for degrees of freedom is to 1, the higher the linearity of the relationship between the discharge time ratio d 1 / d 2 and the temperature T. FIG. 9 shows the coefficient of determination adjusted for this degree of freedom.
 図9に示すように、ΔVth=-64mVのときに、直線性が最も1に近い。従って、ΔVth=-64mVが最適な閾値電圧差である。 As shown in FIG. 9, when ΔV th = −64 mV, the linearity is closest to 1. Therefore, ΔV th = −64 mV is the optimum threshold voltage difference.
 (誤差の評価)
 上述のシミュレーション例で、ΔVth=-64mVに設定した場合における測定誤差を評価する。
(Evaluation of error)
In the above simulation example, the measurement error when ΔV th = −64 mV is set is evaluated.
 図1に示すアナログトランジスタ群Trを、N=1024として、10回ランダムに発生させた。そして、ステップS1~S13を実行して、10組の参照閾値電圧の組(Vth,ref1,Vth,ref2)を得た。この時点で、Vth,ref1-Vth,ref2≠-64mVの誤差が各組で生じていることに留意されたい。 The analog transistor group Tr shown in FIG. 1 was randomly generated 10 times with N = 1024. Then, steps S1 to S13 were executed to obtain 10 sets of reference threshold voltage sets (V th, ref1 , V th, ref 2 ). At this point, it should be noted that an error of V th, ref1- V th, ref2 ≠ -64 mV occurs in each set.
 この10組の参照閾値電圧の組み合わせを用いて、放電時間比d/dを0~100℃の範囲で測定した。図10はこの測定結果を示す。 Using this combination of 10 sets of reference threshold voltages, the discharge time ratio d 1 / d 2 was measured in the range of 0 to 100 ° C. FIG. 10 shows the measurement result.
 図10に示す測定結果を、20℃と80℃との2点で校正することによって、温度を算出した。図11は、その算出温度の誤差を示す。 The temperature was calculated by calibrating the measurement results shown in FIG. 10 at two points of 20 ° C and 80 ° C. FIG. 11 shows the error of the calculated temperature.
 図11に示すように、最悪の場合でも誤差は±1.2℃以内である。 As shown in FIG. 11, the error is within ± 1.2 ° C even in the worst case.
 なお、この誤差を低減するためには、Nを大きくすればよい。許容誤差に対して必要なNの大きさは、統計的推論に基づいて、当業者にとって適当に決定される。 In order to reduce this error, N may be increased. The magnitude of N required for the margin of error is appropriately determined for those skilled in the art based on statistical inference.
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
 図14は、本実施形態に係るフラッシュ型ADC20(アナログデバイス、ADコンバータ)の概略構成を示す回路図である。 FIG. 14 is a circuit diagram showing a schematic configuration of a flash type ADC 20 (analog device, AD converter) according to this embodiment.
 図14に示すように、ADC20は、サンプルホールド回路21と、比較器群22と、スイッチマトリックス23と、エンコーダ24と、電圧測定回路25と、制御デバイス26と、スイッチング素子群27とを含む。 As shown in FIG. 14, the ADC 20 includes a sample hold circuit 21, a comparator group 22, a switch matrix 23, an encoder 24, a voltage measuring circuit 25, a control device 26, and a switching element group 27.
 サンプルホールド回路21は、入力電圧Vinを保持する。保持された入力電圧Vinは比較器群22に印加される。 Sample-and-hold circuit 21 holds the input voltage V in. Input voltage V in that is held is applied to the comparator group 22.
 比較器群22は、M個の比較器Cp(第1比較器Cp~第M比較器Cp)を含み、各比較器Cpは、複数の微細なMOSFETを含む。各比較器Cpでは、2つの入力端子の一方はサンプルホールド回路21に接続され、他方はアースされている。各比較器Cpでは、出力端子がスイッチマトリックス23に接続されていると共に、スイッチング素子群27を介して電圧測定回路25に接続されている。また、各比較器Cpでは、制御デバイス26からの構成信号に基づいて回路構成が切り替わる。なお、比較器Cpの詳細は後述する。 The comparator group 22 includes M comparators Cp (first comparator Cp 1 to M first comparator Cp M ), and each comparator Cp contains a plurality of fine MOSFETs. In each comparator Cp, one of the two input terminals is connected to the sample hold circuit 21 and the other is grounded. In each comparator Cp, the output terminal is connected to the switch matrix 23 and is connected to the voltage measuring circuit 25 via the switching element group 27. Further, in each comparator Cp, the circuit configuration is switched based on the configuration signal from the control device 26. The details of the comparator Cp will be described later.
 スイッチマトリックス23は、制御デバイスから26のスイッチ信号に基づき、比較器群22からのM個の入力信号のうち、N-1個(NはMより小さい自然数)を選択し、並び替えてエンコーダ24に出力する。 The switch matrix 23 selects N-1 (N is a natural number smaller than M) from the M input signals from the comparator group 22 based on the 26 switch signals from the control device, and rearranges the encoder 24. Output to.
 エンコーダ24は、スイッチマトリックス23からのN個の入力信号を符号化して出力する。具体的には、エンコーダ24は、N-1個の入力信号について、0と1との境目を検出し、該検出結果に基づいて符号化を行う。 The encoder 24 encodes and outputs N input signals from the switch matrix 23. Specifically, the encoder 24 detects the boundary between 0 and 1 for N-1 input signals, and encodes them based on the detection result.
 電圧測定回路25は、各比較器Cpの出力電圧を測定する。電圧測定回路25は、測定結果を制御デバイス26に通知する。 The voltage measuring circuit 25 measures the output voltage of each comparator Cp. The voltage measuring circuit 25 notifies the control device 26 of the measurement result.
 制御デバイス26は、ADC20の動作を制御する。具体的には、制御デバイス26は、各比較器Cpの出力電圧が電圧測定回路25から入力される。制御デバイス26は、各比較器Cp、スイッチマトリックス23およびスイッチング素子群27における回路構成を制御するように構成されている。 The control device 26 controls the operation of the ADC 20. Specifically, in the control device 26, the output voltage of each comparator Cp is input from the voltage measuring circuit 25. The control device 26 is configured to control the circuit configuration in each comparator Cp, the switch matrix 23, and the switching element group 27.
 (ADCの動作)
 図15は、図14に示したADC20の動作例を示したフロー図である。
(Operation of ADC)
FIG. 15 is a flow chart showing an operation example of the ADC 20 shown in FIG.
 電源を投入すると、制御デバイス26は、初期設定i=0から動作を開始する(ステップS41)。制御デバイス26は、まず、第i比較器(コンパレータ)を選択し(ステップS42)、以下のように、オフセット電圧に対応する電圧を測定し記録する(ステップS43)。このため、制御デバイス26は、スイッチング素子群27を閉状態に制御する。 When the power is turned on, the control device 26 starts operation from the initial setting i = 0 (step S41). The control device 26 first selects the i-th comparator (comparator) (step S42), and measures and records the voltage corresponding to the offset voltage as follows (step S43). Therefore, the control device 26 controls the switching element group 27 in the closed state.
 図16は、比較器Cpの一構成例を示す回路図である。本実施形態の比較器Cpは、従来のフラッシュ型ADCに用いられる比較器に比べて、スイッチング素子S~Sが新たに設けられている点が異なり、その他の構成は同様である。 FIG. 16 is a circuit diagram showing a configuration example of the comparator Cp. The comparator Cp in the present embodiment, as compared to a comparator used in the conventional flash-type ADC, except that the switching elements S 1 ~ S 3 are newly provided, other configurations are the same.
 スイッチング素子S~Sは制御デバイス26によって制御される。スイッチング素子Sは、入力電圧Vinが入力されるFET32のゲート端子と電源電圧Vddとの間に設けられている。スイッチング素子Sは、基準電圧Vrefが入力されるFET33のゲート端子と電源電圧Vddとの間に設けられている。スイッチング素子Sは、出力端子Vout ・Vout の間に設けられている。出力端子Vout ・Vout は電圧測定回路25に接続されている。 Switching elements S 1 ~ S 3 are controlled by a control device 26. Switching element S 1 is provided between the gate terminal and the power supply voltage V dd of FET32 input voltage V in is inputted. The switching element S 2 is provided between the gate terminal of the FET 33 to which the reference voltage V ref is input and the power supply voltage V dd. The switching element S 3 is provided between the output terminals V out + and V out −. The output terminals V out + and V out are connected to the voltage measuring circuit 25.
 上記構成の比較器Cpにおいて、スイッチング素子Sを開状態とし、スイッチング素子S・Sを閉状態とすると、FET33・35に電流が流れる。このとき、電圧測定回路25が測定する電圧(以下、第1測定電圧と称する。)は、上記電流の関数となり、FET33・35の特性を示すものとなる。 The comparator Cp in the above-described configuration, the switching element S 1 to the open state, when the switching element S 2 · S 3 is closed, current flows through the FET 33 · 35. At this time, the voltage measured by the voltage measuring circuit 25 (hereinafter referred to as the first measured voltage) becomes a function of the above current and exhibits the characteristics of the FETs 33 and 35.
 次に、スイッチング素子Sを開状態とし、スイッチング素子S・Sを閉状態とすると、FET32・34に電流が流れる。このとき、電圧測定回路25が測定する電圧(以下、第2測定電圧と称する。)は、上記電流の関数となり、FET32・34の特性を示すものとなる。従って、第1測定電圧および第2測定電圧の差が、比較器Cpのオフセット電圧に対応する電圧となる。なお、AD変換の動作時には、スイッチング素子S~Sは開状態が維持される。 Then, the switching element S 2 to the open state, when the switching element S 1 · S 3 is closed, current flows through the FET 32 · 34. At this time, the voltage measured by the voltage measuring circuit 25 (hereinafter referred to as the second measured voltage) becomes a function of the above current and exhibits the characteristics of the FETs 32 and 34. Therefore, the difference between the first measurement voltage and the second measurement voltage becomes the voltage corresponding to the offset voltage of the comparator Cp. At the time of operation of the AD converter, the switching elements S 1 ~ S 3 has opened is maintained.
 図15を参照すると、制御デバイス26は、iを1増分して(ステップS44)、i<Mを満たすかを判定する(ステップS45)。ステップS45でYesの場合、ステップS42に戻る。 With reference to FIG. 15, the control device 26 increments i by 1 (step S44) and determines whether i <M is satisfied (step S45). If Yes in step S45, the process returns to step S42.
 ステップS45でNoの場合、制御デバイス26は、スイッチング素子群27を開状態に制御する一方、記録した上記電圧が昇順(あるいは降順)に並ぶように、第1比較器Cp~第M比較器Cpをソートする(ステップS46)。すなわち、制御デバイス2は、上記電圧の昇順(あるいは降順)に従って、第1比較器Cp~第M比較器Cpを順番付ける。 If No in step S45, the control device 26 controls the switching element group 27 in the open state, while the first comparators Cp 1 to M comparators so that the recorded voltages are arranged in ascending (or descending) order. Sort Cp M (step S46). That is, the control device 2 orders the first comparator Cp 1 to the M first comparator Cp M according to the ascending order (or descending order) of the voltage.
 次に、制御デバイス26は、以下のように、M個の比較器CpからN-1個の比較器Cpを選択する(ステップS47)。 Next, the control device 26 selects N-1 comparators Cp from M comparators Cp as follows (step S47).
 図17は、比較器Cpのオフセット電圧の分布を示すグラフの図である。比較器Cpは、複数のトランジスタから成るので、そのオフセット電圧は、図17に示すように正規分布に従う。従って、ソートされた第1比較器Cp~第M比較器Cpを、正規分布に従うオフセット電圧の値に対応付けることができる。その結果、制御デバイス26は、所定の電圧間隔を有するN-1個のオフセット電圧Voffset1~VoffsetN-1に対応するN-1個の比較器Cpを選択することができる。なお、Nは、エンコーダ24の出力信号のビット数nに依存し、N=2である。 FIG. 17 is a graph showing the distribution of the offset voltage of the comparator Cp. Since the comparator Cp consists of a plurality of transistors, its offset voltage follows a normal distribution as shown in FIG. Therefore, the sorted first comparator Cp 1 to M first comparator Cp M can be associated with the value of the offset voltage according to the normal distribution. As a result, the control device 26 can select N-1 comparators Cp corresponding to N-1 offset voltages V offset1 to VoffsetN-1 having a predetermined voltage interval. Note that N depends on the number of bits n of the output signal of the encoder 24, and N = 2 n .
 次に、制御デバイス26は、選択した比較器Cpと非選択の比較器Cpとの構成を決定し、決定した構成を示す構成信号を生成して比較器群22に送信する(ステップS48)。この場合、非選択の比較器Cpの動作を停止させることにより、消費電力を低減することができる。 Next, the control device 26 determines the configuration of the selected comparator Cp and the non-selected comparator Cp, generates a configuration signal indicating the determined configuration, and transmits it to the comparator group 22 (step S48). In this case, the power consumption can be reduced by stopping the operation of the non-selective comparator Cp.
 次に、制御デバイス26は、選択した比較器Cpの出力信号がオフセット電圧Voffset1~VoffsetN-1の順番に並ぶように、スイッチ信号を生成してスイッチマトリックス23に送信する(ステップS49)。これにより、アナログの入力電圧Vinをnビットのデジタル信号にAD変換する準備が完了するので、上記AD変換の動作が開始される。 Next, the control device 26 generates a switch signal and transmits it to the switch matrix 23 so that the output signals of the selected comparator Cp are arranged in the order of the offset voltages V offset1 to VoffsetN-1 (step S49). Thus, since the preparation for AD converting an input voltage V in of the analog to digital n-bit signal is completed, the operation of the AD conversion starts.
 (作用効果)
 以上のように、本実施形態に係るADC20では、非特許文献1・2と同様に、オフセット電圧が正規分布に従うことを利用して、比較器Cpに参照電圧を供給せず、代わりに、オフセット電圧を利用する。従って、比較器の面積を増大させる必要がなく、消費電力および製造コストの増大を抑えることができる。
(Action effect)
As described above, in the ADC 20 according to the present embodiment, as in Non-Patent Documents 1 and 2, the reference voltage is not supplied to the comparator Cp by utilizing the fact that the offset voltage follows a normal distribution, and instead, the offset voltage is offset. Use voltage. Therefore, it is not necessary to increase the area of the comparator, and it is possible to suppress an increase in power consumption and manufacturing cost.
 さらに、本実施形態に係るADC20では、比較器Cpに含まれる複数のFETの一部の動作を停止した場合における第1測定電圧(出力電圧)と、複数のFETの他の一部の動作を停止した場合における第2測定電圧との差に従って、比較器Cpが順番付けられる。そして、オフセット電圧の正規分布と比較器Cpの順番とに基づいて、オフセット電圧の値と比較器Cpとが対応付けられる。従って、各比較器Cpのオフセット電圧を推定することができる。その結果、上記オフセット電圧を測定するための高性能な測定デバイスが不要となる。 Further, in the ADC 20 according to the present embodiment, the first measurement voltage (output voltage) when the operation of a part of the plurality of FETs included in the comparator Cp is stopped and the operation of the other part of the plurality of FETs are performed. The comparator Cp is ordered according to the difference from the second measured voltage when stopped. Then, the value of the offset voltage and the comparator Cp are associated with each other based on the normal distribution of the offset voltage and the order of the comparator Cp. Therefore, the offset voltage of each comparator Cp can be estimated. As a result, a high-performance measuring device for measuring the offset voltage becomes unnecessary.
 これにより、M個の比較器CpからN-1個の比較器Cpを利用し、スイッチマトリックス23にてN-1個の比較器Cpの出力信号をオフセット電圧の順番に並び替えて、エンコーダ24にてnビットのデジタル信号を適切に出力することができる。従って、本実施形態に係るADC20は、非特許文献1・2のADCに比べて、スイッチマトリックス23を追加している一方、多数の加算器を利用するウォレスツリーデコーダを利用する必要が無い。スイッチマトリックス23は、複数のスイッチング素子で構成することができるので本実施形態のスイッチマトリックス23およびエンコーダ24は、非特許文献1・2のウォレス(Wallace)ツリーデコーダに比べて回路規模を抑えることができる。 As a result, the output signals of the N-1 comparators Cp are rearranged in the order of the offset voltage by the switch matrix 23 using the N-1 comparators Cp from the M comparators Cp, and the encoder 24 is used. Can output an n-bit digital signal appropriately. Therefore, the ADC 20 according to the present embodiment adds the switch matrix 23 as compared with the ADCs of Non-Patent Documents 1 and 2, but does not need to use a wallace tree decoder that uses a large number of adders. Since the switch matrix 23 can be composed of a plurality of switching elements, the switch matrix 23 and the encoder 24 of the present embodiment can reduce the circuit scale as compared with the Wallace tree decoders of Non-Patent Documents 1 and 2. it can.
 〔実施例1〕
 本実施形態に係るADC20の入出力特性およびDNL(微分非直線性誤差,Differential Non-Linearity)について、シミュレーションにより性能評価を行った。シミュレーションは以下の条件で行った。
・比較器Cpはオフセット電圧を有する。
・比較器Cpのオフセット電圧は、期待値μ=0mV、標準偏差σ=90mVの正規分布に従う。
・入力電圧Vinは、-90mV≦Vin≦90mVの範囲とする。
・出力は6ビットとする。
[Example 1]
The input / output characteristics and DNL (Differential Non-Linearity) of the ADC 20 according to this embodiment were evaluated by simulation. The simulation was performed under the following conditions.
-The comparator Cp has an offset voltage.
The offset voltage of the comparator Cp follows a normal distribution with an expected value of μ = 0 mV and a standard deviation of σ = 90 mV.
• The input voltage V in is, in the range of -90mV ≦ V in ≦ 90mV.
-The output is 6 bits.
 上記DNLは、ADCの性能評価に使用される指標として用いられている。出力コードがiのときの入力電圧Viと、ADCを理想としたときの入力幅VLSB‐ideal=Vref/2を用いて、DNLは次式(12)で表される。 The DNL is used as an index used for evaluating the performance of the ADC. Using the input voltage Vi when the output code is i and the input width V LSB-ideal = V ref / 2 N when the ADC is ideal, the DNL is expressed by the following equation (12).
  DNL[i]={(Vi+1-V)/(VLSB‐ideal)}-1 (0<i<2-1)  (12)。 DNL [i] = {(V i + 1- V i ) / (V LSB-ideal )} -1 (0 <i <2 N -1) (12).
 すなわち、DNLは、ある出力コードのステップ幅の理想値と実測値との差を示し、単位がLSB(Least Significant Bit)で表され、実際の電圧値を検出可能な最小電圧値VLSB‐idealで規格化される。 That is, DNL indicates the difference between the ideal value and the measured value of the step width of a certain output code, the unit is LSB (Least Significant Bit), and the minimum voltage value V LSB-ideal that can detect the actual voltage value. Is standardized by.
 (入出力特性)
 シミュレーション上で、母集団としてM=5000個の比較器を生成し、2-1=63個の比較器Cpを選出した(N=64、n=6)。選出した比較器Cpを、図14に示すADC20を用いて、0~63の出力コードにおけるDNLを算出した。その結果を図18に示す。
(Input / output characteristics)
In the simulation, to generate M = 5000 or comparators as population elected 2 6 -1 = 63 comparators Cp (N = 64, n = 6). Using the selected comparator Cp with the ADC 20 shown in FIG. 14, the DNL in the output codes of 0 to 63 was calculated. The result is shown in FIG.
 図18は、出力コードとDNLとの関係を示すグラフの図である。図18を参照すると、本実施例では、-0.3<DNL<+0.3を満たす。このため、ADC20が良好に機能することが理解できる。 FIG. 18 is a graph showing the relationship between the output code and DNL. Referring to FIG. 18, in this embodiment, −0.3 <DNL <+0.3 is satisfied. Therefore, it can be understood that the ADC 20 functions well.
 (比較器の母数)
 また、各母数(1000、2000、3000、4000、5000、7000、10000)に対して、DNLを300回ずつ実行し、比較器Cpの母数とDNLとの関係を調べた。その結果を図19に示す。
(Parameter of comparator)
In addition, DNL was executed 300 times for each parameter (1000, 2000, 3000, 4000, 5000, 7000, 10000), and the relationship between the parameter of the comparator Cp and DNL was investigated. The result is shown in FIG.
 図19は、母数とDLNとの関係を示すグラフの図である。図19では、DNLの最大値と最小値を±3σで評価している。DNLの絶対値が1以上の場合、ミッシングコードが出現するので、-1<DNL<+1を満たすことが要求される。図19を参照すると、母数が3000以上であれば、-1<DNL<1を満たしミッシングコードが現れないことが理解できる。 FIG. 19 is a graph showing the relationship between the population parameter and DLN. In FIG. 19, the maximum value and the minimum value of DNL are evaluated by ± 3σ. When the absolute value of DNL is 1 or more, a missing code appears, so that it is required to satisfy -1 <DNL <+1. With reference to FIG. 19, it can be understood that if the population parameter is 3000 or more, -1 <DNL <1 is satisfied and the missing code does not appear.
 (比較器のオフセット電圧)
 図20は、本実施例における比較器Cpの概略構成を示す回路図である。図20に示す比較器Cpについて、トランジスタMP3の閾値電圧ΔVthp3を変化させて、オフセット電圧Voffsetの変化をHSPICEにて解析した。その解析結果を図21に示す。なお、解析条件は以下のように設定した。
・Vref=0
・Vinの振幅:1mV
・CLK周波数:1GHz
・トランジスタ(MOSFET)のサイズ:L=65nm、W=140nm
・閾値電圧の範囲:ΔVthp3=±40mV。
(Offset voltage of comparator)
FIG. 20 is a circuit diagram showing a schematic configuration of the comparator Cp in this embodiment. For comparator Cp as shown in FIG. 20, by changing the threshold voltage [Delta] V Thp3 transistor MP3, and analyze changes in the offset voltage V offset in HSPICE. The analysis result is shown in FIG. The analysis conditions were set as follows.
・ V ref = 0
Of · V in amplitude: 1mV
・ CLK frequency: 1GHz
-Transistor (MOSFET) size: L = 65 nm, W = 140 nm
-Threshold voltage range: ΔV thp3 = ± 40 mV.
 図21は、閾値電圧ΔVthp3とオフセット電圧Voffsetとの関係を示すグラフの図である。図21を参照すると、閾値電圧ΔVthp3とオフセット電圧Voffsetとは、略線形関係にあることが理解できる。従って、トランジスタMP3の閾値電圧のばらつきが正規分布に従っていれば、オフセット電圧も正規分布に従うと考えられる。また、他のトランジスタの閾値電圧のばらつきが正規分布に従っていれば、オフセット電圧も正規分布に従うことが予想される。 Figure 21 is a diagram of a graph showing the relationship between the threshold voltage [Delta] V Thp3 and the offset voltage V offset. Referring to FIG. 21, the threshold voltage [Delta] V Thp3 and the offset voltage V offset, it can be understood that in a substantially linear relationship. Therefore, if the variation of the threshold voltage of the transistor MP3 follows a normal distribution, it is considered that the offset voltage also follows a normal distribution. Further, if the variation of the threshold voltage of other transistors follows a normal distribution, it is expected that the offset voltage also follows a normal distribution.
 (比較器の必要数)
 図17を参照すると、第1オフセット電圧Voffset1および第N-1オフセット電圧VoffsetN-1は確率密度が最小であることが理解できる。ある比較器Cpが、第N-1オフセット電圧VoffsetN-1の誤差の位置および許容範囲(2σ±0.1σ)内に入る確率は、次式(13)にて示される。
(Required number of comparators)
Referring to FIG. 17, the first offset voltage V offset1 and the N-1 offset voltage V offsetN-1 it will be understood that the probability density is minimal. The position of the error of the N-1 offset voltage VoffsetN-1 and the probability that a certain comparator Cp falls within the allowable range (2σ ± 0.1σ) are expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000012
 また、95%の確率で上記許容範囲内に少なくとも1つの比較器Cpを含むための必要数Nの条件は、N≧4/Pである。なお、第1オフセット電圧Voffset1の場合も同様である。
Figure JPOXMLDOC01-appb-M000012
Further, the condition of the required number N for including at least one comparator Cp within the allowable range with a probability of 95% is N ≧ 4 / P. The same applies to the case of the first offset voltage V offset1.
 上記式(13)に示す確率は、標準偏差σに依存し、誤差の位置と許容範囲とに依存する。このことから、アナログ素子の必要数Nは、対象となるアナログデバイスに依存して大きく相違する可能性がある。 The probability shown in the above equation (13) depends on the standard deviation σ and depends on the position of the error and the allowable range. From this, the required number N of analog elements may differ greatly depending on the target analog device.
 〔実施例2〕
 図22は、本実施例のADCにおける比較器Cpのオフセット電圧の分布を縦棒で示すグラフの図である。
[Example 2]
FIG. 22 is a graph showing the distribution of the offset voltage of the comparator Cp in the ADC of this embodiment by vertical bars.
 本実施形態に係るADC20の入出力特性、DNLおよびINL(積分非直線性誤差,Integral Non-Linearity)について、シミュレーションにより性能評価を行った。シミュレーションは以下の条件で行った。
・比較器Cpはオフセット電圧を有する。
・比較器Cpのオフセット電圧は、後述のように、モンテカルロ解析によって得た分布関数に従う。
・入力電圧Vinは、-90mV≦Vin≦90mVの範囲とする。
・出力は6ビットとする。
The input / output characteristics, DNL and INL (Integral Non-Linearity) of the ADC 20 according to this embodiment were evaluated by simulation. The simulation was performed under the following conditions.
-The comparator Cp has an offset voltage.
-The offset voltage of the comparator Cp follows the distribution function obtained by Monte Carlo analysis, as described later.
• The input voltage V in is, in the range of -90mV ≦ V in ≦ 90mV.
-The output is 6 bits.
 比較器Cpのオフセット電圧に関し、比較器Cpのオフセット電圧が次のようにして得た分布関数に従うとした。同一構成の比較器Cpを60nmプロセスで5000個作製し、各比較器Cpのオフセット電圧を測定した。そして、モンテカルロ解析によって、当該比較器Cpのオフセット電圧の分布関数を得た。したがって、シミュレーションにおいて比較器Cpのオフセット電圧は、モンテカルロ解析によって得た分布関数からランダム選択された。 Regarding the offset voltage of the comparator Cp, it was assumed that the offset voltage of the comparator Cp follows the distribution function obtained as follows. 5000 comparators Cp having the same configuration were prepared by a 60 nm process, and the offset voltage of each comparator Cp was measured. Then, the distribution function of the offset voltage of the comparator Cp was obtained by Monte Carlo analysis. Therefore, in the simulation, the offset voltage of the comparator Cp was randomly selected from the distribution function obtained by Monte Carlo analysis.
 上記INLは、ADCの性能評価に使用されるもう一つの指標として用いられている。出力コードがiのときの入力電圧Vと、ADCを理想としたときの入力幅VLSB‐ideal=Vref/2を用いて、INLは次式(14)で表される。 The INL is used as another index used for the performance evaluation of the ADC. The input voltage V i when the output code is i, using input width V LSB-ideal = V ref / 2 N when the ideal the ADC, INL is represented by the following formula (14).
  INL[i]={(Vi+1-V)/(VLSB‐ideal)}-i (0<i<2)  (14)。 INL [i] = {(V i + 1- V 0 ) / (V LSB-ideal )}-i (0 <i <2 N ) (14).
 すなわち、INLは、ある出力コードの理想入力閾値と実測入力閾値との差を示し、単位がLSBで表され、実際の電圧値を検出可能な最小電圧値VLSB‐idealで規格化される。 That is, INL indicates the difference between the ideal input threshold value and the actually measured input threshold value of a certain output code, the unit is represented by LSB, and the actual voltage value is standardized by the minimum voltage value V LSB-ideal that can be detected.
 期待値μ=0mV、標準偏差σ=90mVの正規分布に従う場合、ADC20の入出力特性は理論的に、-0.47<DNL<+0.53、および-1.23<INL<+1.24を満たす。 When following a normal distribution with expected value μ = 0 mV and standard deviation σ = 90 mV, the input / output characteristics of ADC20 are theoretically -0.47 <DNL <+0.53 and -1.23 <INL <+1.24. Fulfill.
 最初に、図22に示した本実施例2に係る比較器Cpのオフセット電圧の分布が正規分布に従うと見做して、オフセット電圧をAD変換の基準として利用した。このAD変換の結果、ADC20の入出力特性は、-0.49<DNL<+0.80、および-1.85<INL<+0.44を満たした。この結果は理論的予測から悪化していた。このため、本実施例2に係る比較器Cpのオフセット電圧は、上記正規分布から歪んだ分布に従っていると推定した。例えば、トランジスタ特性の非線形性などにより、上記オフセット電圧が正規分布から外れる場合があり得る。 First, assuming that the distribution of the offset voltage of the comparator Cp according to the second embodiment shown in FIG. 22 follows a normal distribution, the offset voltage was used as a reference for AD conversion. As a result of this AD conversion, the input / output characteristics of the ADC 20 satisfied −0.49 <DNL <+0.80 and -1.85 <INL <+0.44. This result was worse than the theoretical prediction. Therefore, it is estimated that the offset voltage of the comparator Cp according to the second embodiment follows a distorted distribution from the above normal distribution. For example, the offset voltage may deviate from the normal distribution due to the non-linearity of the transistor characteristics.
 次に、図22に示した分布にフィットするベータ分布を求めた。ベータ分布は、非対称の統計分布を表現できる。図22に、求めたフィットするベータ分布を曲線で示す。 Next, a beta distribution that fits the distribution shown in FIG. 22 was obtained. The beta distribution can represent an asymmetric statistical distribution. FIG. 22 shows the obtained fitted beta distribution as a curve.
 そして、本実施例2に係る比較器Cpのオフセット電圧が上記ベータ分布に従うと見做して、オフセット電圧をAD変換の基準として利用した。このAD変換の結果、ADC20の入出力特性は、-0.62<DNL<+0.61、および-0.44<INL<+1.41を満たした。この結果は正規分布を利用した場合の結果よりも改善していた。故に、正規分布を利用するよりも、ベータ分布を利用する方が、ADC20の入出力特性を改善できた。 Then, assuming that the offset voltage of the comparator Cp according to the second embodiment follows the above beta distribution, the offset voltage was used as a reference for AD conversion. As a result of this AD conversion, the input / output characteristics of the ADC 20 satisfied -0.62 <DNL <+0.61 and -0.44 <INL <+1.41. This result was better than the result when the normal distribution was used. Therefore, the input / output characteristics of the ADC 20 could be improved by using the beta distribution rather than by using the normal distribution.
 従って、制御デバイス26が、種々の統計分布のうち、最適な統計分布を選択して利用することにより、ADC20の最良の性能を引き出せることが理解できる。 Therefore, it can be understood that the control device 26 can bring out the best performance of the ADC 20 by selecting and using the optimum statistical distribution from various statistical distributions.
 (付記事項)
 なお、上記実施形態では、電圧測定回路25および制御デバイス26が、ADC20の内部に設けられているが、ADC20の外部に設けてもよい。
(Additional notes)
In the above embodiment, the voltage measuring circuit 25 and the control device 26 are provided inside the ADC 20, but may be provided outside the ADC 20.
 〔ソフトウェアによる実現例〕
 温度センサ1およびADC20の制御ブロック(特に制御デバイス2・26)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The control blocks (particularly control devices 2.26) of the temperature sensor 1 and the ADC 20 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. ..
 後者の場合、温度センサ1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the temperature sensor 1 includes a computer that executes a program instruction, which is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 たとえば、ICチップの外に設けられた制御デバイスにより、ICチップに設けられた複数のアナログ素子を備えるアナログデバイスが、第1特性の値とアナログ素子とが対応付ける制御を行われてもよい。この場合であっても、高性能な測定装置が不要になる。 For example, a control device provided outside the IC chip may control an analog device having a plurality of analog elements provided on the IC chip so that the value of the first characteristic and the analog element are associated with each other. Even in this case, a high-performance measuring device becomes unnecessary.
 1 温度センサ(アナログデバイス、アナログ素子対応付けシステム)
 2 制御デバイス
 3 切換部
 4 バイアス生成回路
 5 キャパシタ
 6 充電用トランジスタ
 7 反転増幅器
 8 TDC(測定デバイス)
 9 演算ユニット
10a、10b 揮発性記録媒体
11 論理回路
20 ADC(アナログデバイス、アナログ素子対応付けシステム)
21 サンプルホールド回路
22 比較器群(複数のアナログ素子)
23 スイッチマトリックス
24 エンコーダ
25 電圧測定回路(測定デバイス)
26 制御デバイス
27 スイッチング素子群
Tr トランジスタ群(複数のアナログ素子)
1 Temperature sensor (analog device, analog element association system)
2 Control device 3 Switching unit 4 Bias generation circuit 5 Capacitor 6 Charging transistor 7 Inversion amplifier 8 TDC (Measuring device)
9 Arithmetic unit 10a, 10b Volatile recording medium 11 Logic circuit 20 ADC (Analog device, analog element association system)
21 Sample hold circuit 22 Comparator group (multiple analog elements)
23 Switch matrix 24 Encoder 25 Voltage measurement circuit (measurement device)
26 Control device 27 Switching element group Tr Transistor group (multiple analog elements)

Claims (8)

  1.  ICチップに設けられたアナログデバイスであって、
     前記アナログデバイスは、アナログ動作を行う複数のアナログ素子と、該アナログデバイスの動作を制御する制御デバイスとを備えており、
     前記アナログ素子のそれぞれは、
      前記アナログデバイスの動作に関連する第1特性であって、ばらつきが統計分布に従う第1特性と、
      第1特性に関連する第2特性であって、オンチップで測定可能な第2特性とを有しており、
     前記制御デバイスは、
      第2特性の測定値に従って複数の前記アナログ素子を順番付け、
      第1特性に関する前記統計分布と前記アナログ素子の順番とに基づいて第1特性の値と前記アナログ素子とを対応付けることを特徴とするアナログデバイス。
    An analog device installed on an IC chip
    The analog device includes a plurality of analog elements that perform analog operation and a control device that controls the operation of the analog device.
    Each of the analog elements
    The first characteristic related to the operation of the analog device, the first characteristic in which the variation follows a statistical distribution, and
    It is a second characteristic related to the first characteristic and has a second characteristic that can be measured on-chip.
    The control device is
    The plurality of analog elements are ordered according to the measured value of the second characteristic,
    An analog device characterized in that the value of the first characteristic and the analog element are associated with each other based on the statistical distribution regarding the first characteristic and the order of the analog elements.
  2.  前記制御デバイスは、第1特性の所定値に対応する前記アナログ素子を動作させることを特徴とする請求項1に記載のアナログデバイス。 The analog device according to claim 1, wherein the control device operates the analog element corresponding to a predetermined value of the first characteristic.
  3.  第2特性を測定する測定デバイスをさらに備え、
     前記制御デバイスは、前記測定デバイスにて測定された第2特性の測定値に従って複数の前記アナログ素子を順番付けることを特徴とする請求項1または2に記載のアナログデバイス。
    Further equipped with a measuring device for measuring the second characteristic,
    The analog device according to claim 1 or 2, wherein the control device orders a plurality of the analog elements according to a measured value of a second characteristic measured by the measuring device.
  4.  前記アナログ素子は、トランジスタであり、
     前記アナログ素子の第1特性は、前記トランジスタの閾値電圧であり、
     前記アナログ素子の第2特性は、前記トランジスタのサブスレッショルドリーク電流であることを特徴とする請求項1から3までの何れか1項に記載のアナログデバイス。
    The analog element is a transistor and
    The first characteristic of the analog element is the threshold voltage of the transistor.
    The analog device according to any one of claims 1 to 3, wherein the second characteristic of the analog element is a subthreshold leakage current of the transistor.
  5.  前記アナログ素子は、比較器であり、
     前記アナログ素子の第1特性は、前記比較器のオフセット電圧であり、
     前記アナログ素子の第2特性は、前記比較器に含まれる複数のトランジスタの一部の動作を停止した場合における出力電圧と、前記複数のトランジスタの他の一部の動作を停止した場合における出力電圧との差であることを特徴とする請求項1から3までの何れか1項に記載のアナログデバイス。
    The analog element is a comparator and
    The first characteristic of the analog element is the offset voltage of the comparator.
    The second characteristic of the analog element is the output voltage when a part of the plurality of transistors included in the comparator is stopped, and the output voltage when the other part of the plurality of transistors is stopped. The analog device according to any one of claims 1 to 3, wherein the analog device is the difference from the above.
  6.  ICチップに設けられたアナログデバイスであって、該アナログデバイスは、アナログ動作を行う複数のアナログ素子を備えており、前記アナログ素子のそれぞれは、前記アナログデバイスの動作に関連する第1特性であって、ばらつきが統計分布に従う第1特性と、第1特性に関連する第2特性であって、オンチップで測定可能な第2特性とを有しているアナログデバイスの制御方法であって、
     第2特性の測定値に従って複数の前記アナログ素子を順番付けるステップと、
     第1特性に関する前記統計分布と前記アナログ素子の順番とに基づいて第1特性の値と前記アナログ素子とを対応付けるステップとを含むことを特徴とするアナログデバイスの制御方法。
    An analog device provided on an IC chip, the analog device includes a plurality of analog elements that perform analog operation, and each of the analog elements is a first characteristic related to the operation of the analog device. This is a control method for an analog device having a first characteristic in which the variation follows a statistical distribution and a second characteristic related to the first characteristic, which is a second characteristic that can be measured on-chip.
    A step of ordering a plurality of the analog elements according to the measured value of the second characteristic, and
    A method for controlling an analog device, which comprises a step of associating a value of the first characteristic with the analog element based on the statistical distribution regarding the first characteristic and the order of the analog elements.
  7.  ICチップ上に設けられる温度センサであって、
     キャパシタと、
     該キャパシタに並列接続された複数のトランジスタと、
     前記キャパシタと、前記複数のトランジスタのそれぞれとの間に設けられた複数のスイッチング素子と、
     該複数のスイッチング素子を制御する制御デバイスとを備えており、
     該制御デバイスは、
      前記複数のトランジスタのそれぞれについて、前記キャパシタからの電流が前記トランジスタに放電して、前記キャパシタの電圧が所定電圧に降下するまでの放電時間を測定し、
      前記複数のトランジスタの少なくとも2つの放電時間の比を温度情報として出力させることを特徴とする温度センサ。
    It is a temperature sensor installed on the IC chip.
    Capacitors and
    A plurality of transistors connected in parallel to the capacitor,
    A plurality of switching elements provided between the capacitor and each of the plurality of transistors, and
    It is equipped with a control device that controls the plurality of switching elements.
    The control device is
    For each of the plurality of transistors, the discharge time until the current from the capacitor is discharged to the transistor and the voltage of the capacitor drops to a predetermined voltage is measured.
    A temperature sensor characterized in that the ratio of at least two discharge times of the plurality of transistors is output as temperature information.
  8.  ICチップ上に設けられ、アナログ動作を行う複数のアナログ素子と、
     該アナログ素子の動作を制御する制御デバイスとを備え、
     前記アナログ素子のそれぞれは、
      ばらつきが統計分布に従う第1特性と、
      第1特性に関連する第2特性であって、オンチップで測定可能な第2特性とを有しており、
     前記制御デバイスは、
      第2特性の測定値に従って複数の前記アナログ素子を順番付け、
      第1特性に関する前記統計分布と前記アナログ素子の順番とに基づいて第1特性の値と前記アナログ素子とを対応付けることを特徴とする、アナログ素子対応付けシステム。
    A plurality of analog elements provided on the IC chip and performing analog operation,
    A control device for controlling the operation of the analog element is provided.
    Each of the analog elements
    The first characteristic that the variation follows a statistical distribution,
    It is a second characteristic related to the first characteristic and has a second characteristic that can be measured on-chip.
    The control device is
    The plurality of analog elements are ordered according to the measured value of the second characteristic,
    An analog element mapping system, characterized in that the value of the first characteristic is associated with the analog element based on the statistical distribution relating to the first characteristic and the order of the analog elements.
PCT/JP2020/041290 2019-11-05 2020-11-05 Analog device, method for controlling same, temperature sensor, and analog-element-associated system WO2021090860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-200993 2019-11-05
JP2019200993A JP2022180671A (en) 2019-11-05 2019-11-05 Analog device, method for controlling the same, temperature sensor, and analog-element-associated system

Publications (1)

Publication Number Publication Date
WO2021090860A1 true WO2021090860A1 (en) 2021-05-14

Family

ID=75849939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041290 WO2021090860A1 (en) 2019-11-05 2020-11-05 Analog device, method for controlling same, temperature sensor, and analog-element-associated system

Country Status (3)

Country Link
JP (1) JP2022180671A (en)
TW (1) TW202122766A (en)
WO (1) WO2021090860A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084352A1 (en) * 2007-12-28 2009-07-09 Nec Corporation Temperature measuring device and method
JP2016213531A (en) * 2015-04-28 2016-12-15 国立大学法人金沢大学 AD converter and AD conversion method
US20170234816A1 (en) * 2015-05-11 2017-08-17 The Trustees Of Columbia University In The City Of New York Temperature sensor based on direct threshold-voltage sensing for on-chip dense thermal monitoring
JP2018087888A (en) * 2016-11-29 2018-06-07 京セラディスプレイ株式会社 Temperature detection circuit and liquid crystal display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084352A1 (en) * 2007-12-28 2009-07-09 Nec Corporation Temperature measuring device and method
JP2016213531A (en) * 2015-04-28 2016-12-15 国立大学法人金沢大学 AD converter and AD conversion method
US20170234816A1 (en) * 2015-05-11 2017-08-17 The Trustees Of Columbia University In The City Of New York Temperature sensor based on direct threshold-voltage sensing for on-chip dense thermal monitoring
JP2018087888A (en) * 2016-11-29 2018-06-07 京セラディスプレイ株式会社 Temperature detection circuit and liquid crystal display panel

Also Published As

Publication number Publication date
JP2022180671A (en) 2022-12-07
TW202122766A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US10735008B2 (en) Comparator offset voltage self-correction circuit
US8587466B2 (en) System and method for a successive approximation analog to digital converter
TWI470939B (en) Analog-to-digital converter and related calibratable comparator
US7280063B2 (en) Programmable voltage-output floating-gate digital to analog converter and tunable resistors
JP6831421B2 (en) Voltage-based power cycling
CN105262465A (en) Comparator and amplifier
US12057850B2 (en) Analog system and associated methods thereof
JP5456736B2 (en) Relaxation oscillation circuit
CN110068401B (en) Temperature sensing device and temperature-voltage converter
JP2013223112A (en) A/d converter circuit
US20150035550A1 (en) High accuracy measurement of on-chip component parameters
WO2021090860A1 (en) Analog device, method for controlling same, temperature sensor, and analog-element-associated system
US7116261B1 (en) Method and apparatus for accurate inverse-linear voltage/current generator
Vertregt et al. Assessment of the merits of CMOS technology scaling for analog circuit design
JP2008160593A (en) A/d converter and adjusting method therefor
Scott et al. A flash-based digital to analog converter for low power applications
Khanfir et al. Systematic hysteresis analysis for dynamic comparators
Strong et al. A Simple Monitor for Tracking NBTI in Integrated Systems
US11493390B2 (en) Temperature sensing circuit
CN117555212B (en) Time delay module, time-to-digital converter, system and method
CN110995159B (en) Digital temperature sensor circuit based on resistance oscillator
US7567071B1 (en) Current and voltage source that is unaffected by temperature, power supply, and device process
US8581595B2 (en) Method of measuring flash memory cell current
Petrie Ultra-Low-Supply-Voltage Analog-to-Digital Converters
Radhakrishnan Accelerated successive approximation technique for analog to digital converter design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP