WO2021090768A1 - Polymer powder for producing 3-dimensional model, method for producing 3-dimensional modeled object through powder bed melt bonding method using polymer powder, and 3-dimensional modeled object - Google Patents

Polymer powder for producing 3-dimensional model, method for producing 3-dimensional modeled object through powder bed melt bonding method using polymer powder, and 3-dimensional modeled object Download PDF

Info

Publication number
WO2021090768A1
WO2021090768A1 PCT/JP2020/040805 JP2020040805W WO2021090768A1 WO 2021090768 A1 WO2021090768 A1 WO 2021090768A1 JP 2020040805 W JP2020040805 W JP 2020040805W WO 2021090768 A1 WO2021090768 A1 WO 2021090768A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polyamide
polymer
polymer powder
producing
Prior art date
Application number
PCT/JP2020/040805
Other languages
French (fr)
Japanese (ja)
Inventor
中村友彦
奥野陽太
岩田寛和
西田幹也
浅野到
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020567627A priority Critical patent/JPWO2021090768A1/ja
Publication of WO2021090768A1 publication Critical patent/WO2021090768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a three-dimensional model obtained by a powder bed melt-bonding method, a polymer powder preferably used to obtain the three-dimensional model, and a method for producing a three-dimensional model using the polymer powder.
  • the powder bed fusion bonding method is known as a technique for manufacturing a three-dimensional modeled object (hereinafter, may be referred to as a modeled object).
  • the powder sintering method involves a thin layer forming step of developing a powder into a thin layer, and irradiating the formed thin layer with a laser beam in a shape corresponding to the cross-sectional shape of the object to be modeled to combine the powder. It is a method of manufacturing by sequentially repeating the cross-sectional shape forming step of forming, and has an advantage that a support member is unnecessary, which is suitable for precision modeling as compared with other modeling methods.
  • the polymer powder suitable for the above method has a spherical shape in order to improve fluidity.
  • Non-Patent Document 1 discloses a polymer powder composed of polyamide 12 having a relatively high spherical morphology.
  • Patent Document 1 discloses a spherical polyamide powder obtained by making particles using polyethylene glycol that is incompatible with a polyamide resin.
  • Patent Document 2 discloses a polymer powder containing 0.001% by mass to 5% by mass of a polyol.
  • Non-Patent Document 1 discloses a polyamide powder having a spherical shape, its sphericity is insufficient and there is room for improvement in fluidity.
  • the obtained powder is a powder in which a large amount of polyethylene glycol remains inside the powder, and such powder is used. There was a problem that the fluidity deteriorated when it was made into a modeled object.
  • Patent Document 2 Although the technique of Patent Document 2 is excellent in fluidity, there is a problem that the residual amount of the polyol in Patent Document 2 causes thermal deterioration, and the surface smoothness deteriorates when a modeled product is formed using such powder.
  • an object of the present invention is to obtain a polyamide powder having high fluidity and excellent surface smoothness when the polyamide powder is used to form a model.
  • the polymer powder used in the powder bed melt bonding method of the present invention (hereinafter, may be referred to as polyamide powder) is a polymer powder for producing a three-dimensional model by the powder bed melt bonding method.
  • the polymer powder is composed of polyamide, has a D50 particle size of 1 to 100 ⁇ m, a sphericity of 80 or more, and a weight average molecular weight of 20,000 or less.
  • the method for producing the three-dimensional model of the present invention is a method for producing the three-dimensional model by the powder bed fusion bonding method using the polymer powder.
  • the three-dimensional model of the present invention is a three-dimensional model obtained by a powder bed fusion bonding method using a polymer powder.
  • the polymer powder of the present invention can obtain a polyamide powder having high fluidity and excellent surface smoothness when the polyamide powder is used as a model.
  • FIG. It is a scanning electron micrograph of the polyamide powder obtained in Example 5.
  • the polymer powder in the present invention is composed of a polyamide having a structure containing an amide group.
  • polyamides include polycaproamide (polyamide 6), polyundecamide (polyamide 11), polylauroamide (polyamide 12), polyhexamethylene adipamide (polyamide 66), and polydecamethylenese.
  • Bacamide (polyamide 1010), polydodecamethylene sebacamide (polyamide 1012), polydodecamethylene dodecamide (polyamide 1212), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), poly Decamethylene adipamide (polyamide 106), polydodecamethylene adipamide (polyamide 126), polyhexamethylene terephthalamide (polyamide 6T), polydecamethylene terephthalamide (polyamide 10T), polydodecamethylene terephthalamide (polyamide 12T) , Polycaproamide / polyhexamethylene adipamide copolymer (polyamide 6/66), polycaproamide / polylauroamide copolymer (6/12) and the like.
  • polycaproamide polyamide 6
  • polyundecamide polyamide 11
  • polylauroamide polyamide 12
  • polyhexamethylene adipamide polyamide 66
  • polyhexamethylene adipamide polyamide 66
  • polyhexamethylene adipamide polyamide 66
  • Polydecamethylene sebacamide polyamide 1010
  • polydodecamethylene sebacamide polyamide 1012
  • polydodecamethylene dodecamide polyamide 1212
  • polyhexamethylene sebacamide polyamide 610
  • polyhexamethylene dodecamide polyamide 610) 612
  • polycaproamide polyamide 6
  • polyundecamide polyamide 11
  • polylauroamide polyamide 12
  • polyhexamethylene adipamide polyamide 66
  • poly Decamethylene sebacamide polyamide 1010
  • polydodecamethylene sebacamide polyamide 1012
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polyamide 11 polyundecamide
  • polyamide 12 polylauroamide
  • polydecamethylene sebacamide polyamide 1010
  • polydodecamethylene sebacamide polyamide 1012
  • the polyamide may be copolymerized as long as the effect of the present invention is not impaired.
  • an elastomer component such as polyolefin or polyalkylene glycol that imparts flexibility, a rigid aromatic component that improves heat resistance and strength, and the like can be appropriately selected.
  • a copolymer component for adjusting the terminal group may be used in order to reuse the polymer powder by the powder bed melt bonding method.
  • Examples of such copolymerization components include monocarboxylic acids such as acetic acid, hexanoic acid, lauric acid and benzoic acid, and monoamines such as hexylamine, octylamine and aniline.
  • the range of the weight average molecular weight of the polyamide is preferably 10,000 to 1,000,000.
  • the lower limit is preferably 20,000 or more, more preferably 40,000 or more, and further 70,000 or more.
  • 100,000 or more is particularly preferable, and 200,000 or more is most preferable.
  • the upper limit is preferably 800,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less.
  • the weight average molecular weight of the polyamide constituting the polymer powder refers to a value obtained by measuring the weight average molecular weight by gel permeation chromatography using hexafluoroisopropanol as a solvent and converting it with polymethylmethacrylate.
  • the D50 particle size of the polymer powder of the present invention is in the range of 1 to 100 ⁇ m. When the D50 particle size exceeds 100 ⁇ m, the particle size becomes larger than the modeling surface and the surface becomes rough. If the D50 particle size is less than 1 ⁇ m, it is so fine that it easily adheres to a coater or the like during modeling, and the modeling chamber cannot be raised to the required temperature.
  • the upper limit of the D50 particle size of the polymer powder is preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 70 ⁇ m or less.
  • the lower limit is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the D50 particle size of the polymer powder is a particle size (D50 particle size) at which the cumulative frequency from the small particle size side of the particle size distribution measured by the laser diffraction type particle size distribution meter is 50%.
  • the particle size distribution of the polymer powder is represented by D90 / D10, which is the ratio of the particle size distributions D90 to D10, and is preferably less than 3.0. It is preferable that the particle size distribution is narrow because the difference in meltability during molding due to the difference in particle size is eliminated, the undissolved residue inside is avoided, and the appearance is good. Therefore, D90 / D10 is preferably less than 2.5, more preferably less than 2.0, and even more preferably less than 1.5. The lower limit is theoretically 1.0.
  • D90 / D10 showing the particle size distribution of the polymer powder in the present invention has a particle size (D90) at which the cumulative frequency from the small particle size side of the particle size distribution measured by the laser diffraction type particle size distribution meter is 90%. It is a value divided by the particle size (D10) at which the cumulative frequency from the small particle size side is 10%.
  • the sphericity indicating the sphericity of the polymer powder of the present invention is 80 or more and 100 or less. If the sphericity is less than 80, the fluidity deteriorates and the surface of the modeled object becomes rough.
  • the sphericity is preferably 85 or more and 100 or less, more preferably 90 or more and 100 or less, still more preferably 93 or more and 100 or less, particularly preferably 95 or more and 100 or less, and remarkably preferably 97 or more and 100 or less.
  • the sphericity of the polymer powder of the present invention is determined by observing 30 particles at random from a scanning electron microscope photograph and following the following formulas from the minor axis and the major axis.
  • S sphericity
  • a major axis
  • b minor axis
  • n number of measurements 30.
  • the smoothness of the surface and the solidity of the inside of the polymer powder of the present invention can be expressed by the BET specific surface area due to gas adsorption.
  • the surface area thereof is small, the fluidity is improved, and the surface of the modeled object is smooth, which is preferable.
  • the smoother the surface the smaller the BET specific surface area.
  • it is preferably 10 m 2 / g or less, more preferably 5 m 2 / g or less, further preferably 3 m 2 / g or less, and particularly preferably 1 m 2 / g or less, which is the most. It is preferably 0.5 m 2 / g or less.
  • the lower limit is theoretically 0.05 m 2 / g when the particle size is 100 ⁇ m.
  • the BET specific surface area is measured according to the Japanese Industrial Standards (JIS standard) JIS R 1626 (1996) "Measuring method of specific surface area by gas adsorption BET method”.
  • the solidity of the polymer powder of the present invention can also be evaluated by the following formula showing the ratio of the BET specific surface area to the theoretical surface area calculated from the D50 particle size. The closer the above ratio is to 1, the more adsorption occurs only on the outermost surface of the particles, indicating that the particles have a smooth surface and are solid. 5 or less is preferable, 4 or less is more preferable, 3 or less is further preferable, and 2 or less is most preferable. The lower limit is theoretically 1.
  • the polyamide monomer (B) described in WO2018 / 207728 which was previously disclosed by the present inventors, is simply added to the polymer (A) in the presence of the polymer (A).
  • a method can be used in which the polymer (B) is polymerized and polymerized at a temperature higher than the crystallization temperature of the polyamide obtained, and then the powder is washed and dried.
  • one or more polymers (A) selected from the group consisting of polyethylene glycol having a weight average molecular weight of 20,000 or less, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof. ), It is possible to make the content less than 0.001% by mass with respect to the polymer powder by washing, the fluidity of the polymer powder is improved, and the surface of the obtained model is Found to be smooth.
  • the weight average molecular weight of the polymer (A) exceeds 20,000, the solubility of the polymer (A) deteriorates, which makes cleaning difficult, and further, the particles are bonded via the polymer (A) remaining in the particles. Liquidity deteriorates.
  • the weight average molecular weight is 20,000 or less, preferably 14,000 or less, more preferably 10,000 or less, particularly preferably 6,000 or less, still more preferably 4,000 or less, and most preferably 2,000 or less. is there.
  • the lower limit is 500.
  • the polymer (A) it is preferable that the content of polar groups such as hydroxyl groups, amino groups and carboxyl groups is small because the fluidity is improved.
  • the polymer (A) which is a hydroxyl group and is contained only at both ends of the molecule is preferable.
  • Specific examples are one or more compounds selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof.
  • polyethylene glycol polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof are preferable, polyethylene glycol, and alkyls thereof.
  • the ether form is most preferable. Two or more of these may be used at the same time as long as the present invention is not impaired.
  • the weight average molecular weight of the polymer (A) indicates the weight average molecular weight obtained by converting the value measured by gel permeation chromatography with polyethylene glycol using water as a solvent.
  • tetrahydrofuran is used as a solvent, and the weight average molecular weight obtained by converting the value measured by gel permeation chromatography into polystyrene is shown.
  • the polymer (A) of the present invention it is possible to reduce the polymer (A) to less than 0.001% by mass with respect to the polymer powder by the washing step. Within such a range, the high molecular weight of the polymer (A) and the aggregation of particles derived from polar groups are suppressed, and a spherical polymer powder suitable for a three-dimensional model exhibiting high fluidity can be produced. Further, when the content of the polymer (A) is less than 0.001% by mass, excellent surface smoothness can be obtained in the case of a modeled product. Further, coloring, gelation, deterioration of mechanical properties and the like caused by the polymer (A) can be avoided.
  • the lower limit is indispensable to be more than 0 because the polymer powder becomes spherical solid and surface smoothed by using the polymer (A) and the fluidity is improved.
  • the content of the polymer (A) is 0, the particles agglomerate and the fluidity is inferior.
  • the content of the polymer (A) is a value quantified by gel permeation chromatography using water as a solvent after extracting the polymer powder with water or an organic solvent and then removing the solvent.
  • the lower limit of detection by this measuring method is 0.0001%.
  • the polymer powder of the present invention does not contain an organic solvent.
  • an organic solvent refers to an organic compound that is liquid at normal temperature and pressure.
  • one or more polymers selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer having a weight average molecular weight of 20,000 or less, and alkyl ethers thereof are such. Not included in organic solvents.
  • a known method for analyzing the concentration of volatile organic compounds can be used, and examples thereof include a gas chromatograph mass spectrometer equipped with a heat desorption device. Not contained in the present invention means that the peak indicating the organic solvent by the gas chromatograph mass spectrometer is below the detection limit, and the lower limit of detection in the present invention is 0.0001%.
  • the effect of the polymer powder of the present invention is that the polymer powder exhibits high fluidity.
  • the index can be adopted by any known measuring method.
  • a specific example is the angle of repose, which is 40 degrees or less. It is preferably 37 degrees or less, more preferably 33 degrees or less, and particularly preferably 30 degrees or less.
  • the lower limit is usually 20 degrees or more.
  • the polymer powder of the present invention may be added with other formulations as long as the present invention is not impaired.
  • the compounding agent include an antioxidant and a heat-resistant stabilizer in order to suppress thermal deterioration due to heating during molding by the powder bed melt-bonding method.
  • antioxidants and heat-stabilizing agents include hindered phenols, hydroquinones, phosphites and their substitutes, phosphite, hypophosphite and the like.
  • Others include pigments and dyes for coloring, plasticizers for adjusting viscosity, flow aids for modifying fluidity, antistatic agents for functionalizing, flame retardants and carbon black, silica, titanium dioxide, glass fiber and glass.
  • fillers such as beads and carbon fibers. Known substances can be used as these, and they may be present inside or outside the polymer powder.
  • such a formulation is preferably a filler in that the strength of the modeled object can be further improved.
  • the filler refers to a substance that suppresses the aggregation of polymer powders due to the adhesive force between the polymer powders.
  • the fluidity of the polymer powder can be improved, and the filling property of the polymer powder tends to be improved when it is formed into a model. As a result, defects that cause mechanical properties are reduced, and the strength of the obtained modeled object tends to be further improved.
  • Such fillers include, for example, fused silica, crystalline silica, silica (silicon dioxide) such as amorphous silica, alumina (aluminum oxide), alumina colloid (alumina sol), alumina such as alumina white, light calcium carbonate, heavy calcium carbonate, and fine powder.
  • silica silicon dioxide
  • alumina aluminum oxide
  • alumina colloid alumina sol
  • alumina such as alumina white, light calcium carbonate, heavy calcium carbonate, and fine powder.
  • Calcium carbonate calcium carbonate such as special calcium carbonate-based filler, calcined clay such as Kasumi stone flash stone fine powder, montmorillonite, bentonite, clay (aluminum silicate powder) such as silane modified clay, talc, diatomaceous soil, Silica-containing compounds such as silica sand, crushed natural minerals such as prickly stone powder, prickly stone balloon, slate powder, and mica powder, minerals such as barium sulfate, lithopon, calcium sulfate, molybdenum disulfide, and graphite (graphite), glass fiber , Glass-based fillers such as glass beads, glass flakes, foamed glass beads, fly ash balls, volcanic glass hollow bodies, synthetic inorganic hollow bodies, monocrystalline potassium titanate, carbon fibers, carbon nanotubes, carbon hollow balls, fullerene, smokeless carbon powder , Artificial glacial stone (cryolite), titanium oxide, magnesium oxide, basic magnesium carbonate, dolomite, potassium titanate, calcium
  • silica Commercially available products of such silica include fumed silica "AEROSIL” (registered trademark) series manufactured by Nippon Aerosil Co., Ltd., dry silica “Leolosil” (registered trademark) series manufactured by Tokuyama Corporation, and sol-gel silica powder X manufactured by Shin-Etsu Chemical Industry Co., Ltd. -24 series and the like.
  • AEROSIL registered trademark
  • Laolosil registered trademark
  • sol-gel silica powder X manufactured by Shin-Etsu Chemical Industry Co., Ltd. -24 series and the like.
  • the average particle size of the filler is preferably 20 nm or more and 1 ⁇ m or less.
  • the upper limit of the average particle size of the filler is preferably 1 ⁇ m, more preferably 500 nm, more preferably 400 nm, particularly preferably 300 nm, and remarkably preferably 250 nm.
  • the lower limit is preferably 20 nm, more preferably 30 nm, more preferably 50 nm, and particularly preferably 100 nm.
  • the cumulative curve is obtained with the total volume of the fine particles obtained by analyzing the scattered light of the laser by the dynamic light scattering method as 100%, and the cumulative curve from the small particle size side is 50.
  • the blending amount of the filler is preferably more than 0.01 part by mass and less than 5 parts by mass with respect to 100 parts by mass of the polymer powder.
  • the upper limit of the blending amount is preferably less than 3 parts by mass, more preferably less than 1 part by mass, further preferably less than 0.5 parts by mass, particularly preferably less than 0.3 parts by mass, and remarkably preferably less than 0.1 parts by mass. ..
  • the lower limit of the blending amount is preferably more than 0.02 parts by mass, more preferably more than 0.03 parts by mass, and even more preferably more than 0.04 parts by mass.
  • the blending amount of the filler exceeds 0.01 parts by mass, the fluidity of the polymer powder is further improved and the filling property at the time of modeling is increased, so that voids that are defects in mechanical properties are less likely to occur and can be obtained.
  • the modeled object tends to develop high strength.
  • the blending amount of the filler is less than 5 parts by mass, sintering is not hindered by coating the surface of the polymer powder with the filler, and a high-strength molded product tends to be obtained.
  • a model is made from a part of the polymer powder used, and a large amount of polymer powder remains.
  • Reusing the polymer powder is important in terms of cost. For that purpose, it is important not to change the properties of the polymer powder during the heating and modeling process.
  • Such methods include, for example, a method of blending a stabilizer such as an antioxidant inside the particles to suppress thermal deterioration, a method of reducing the end groups of polyamide, and a method of suppressing changes in molecular weight during modeling.
  • the terminal group of the polyamide is a carboxyl group or an amino group, and it is preferable to reduce the amino group from the high reactivity during molding heating.
  • a monofunctional sealing material such as acetic acid, hexanoic acid, monocarboxylic acid such as lauric acid or benzoic acid, or monoamine such as hexylamine, octylamine, or aniline is used.
  • the method using is used. By appropriately using such adjustment, it tends to be possible to achieve both formability and reuse.
  • the monomer (B) of the polyamide is polymerized in the presence of the polymer (A) at a temperature higher than the crystallization temperature of the polyamide obtained by polymerizing the monomer (B).
  • a method for producing a polyamide powder can be preferably used. In this method, since the polyamide monomer (B) and the polymer (A) are uniformly dissolved at the start of the polymerization, the desired particles are used after the polymerization using the low molecular weight polymer (A) important in the present invention. Polyamide powder having a diameter, a particle size distribution, a sphericity, and a polymer (A) content can be produced.
  • no organic solvent is used in the manufacturing process.
  • it tends to be possible to suppress the generation of voids in the modeled object due to the fusion of particles due to the organic solvent that cannot be completely removed in the washing or drying process.
  • an organic solvent having a boiling point as high as 100 ° C. or higher is not preferable because it becomes difficult to remove.
  • the reaction vessel In order to determine whether the polyamide monomer (B) at the start of polymerization is uniformly dissolved in the polymer (A), visually confirm that the reaction vessel is a transparent solution. When it is in a suspension or separated into two phases at the start of polymerization, it indicates that the polyamide monomer (B) and the polymer (A) are incompatible, and it is necessary to form agglomerates, vigorously stir, etc. Become. In this case, the polymerization may be started after further homogenizing the polyamide monomer (B) and the polymer (A) with water. Visually confirm that the reaction vessel is a suspension to see if the polyamide powder is precipitated after the polymerization. If it is a uniform solution at the end of polymerization, it indicates that the polyamide and the polymer (A) are uniformly compatible with each other, and agglomerates or porous powders are formed by cooling or the like.
  • the polyamide monomer (B) used as a raw material for the polyamide powder is the above-mentioned monomer used as a raw material for the polyamide.
  • these monomers (B) do not impair the present invention, two or more kinds may be used, or other copolymerizable components may be contained.
  • the polymer (A) in the method for producing the polymer powder is the same as that described above.
  • the polyamide is started by polymerization at a temperature higher than the crystallization temperature of the polyamide obtained by polymerizing the monomer (B).
  • Produce powder At this time, as the monomer (B) is converted to polyamide in a uniform mixed solution, the polyamide powder is uniformly induced without crystallizing. Therefore, after polymerization, the surface is solid, the surface is smooth, and the particle size distribution is narrow. Polyamide powder precipitates.
  • the mass ratio of the monomer (B) to the polymer (A) at the time of compounding is preferably in the range of 5/95 to 80/20.
  • the lower limit of the mass ratio of the monomer (B) / polymer (A) is more preferably 10/90, even more preferably 20/80, and most preferably 30/70.
  • 70/30 is more preferable, 60/40 is further preferable, and 50/50 is particularly preferable.
  • a known method can be used as a method for polymerizing the monomer (B) to polyamide.
  • the method depends on the type of monomer (B), but in the case of lactams, anion ring-opening polymerization using an alkali metal such as sodium or potassium or an organometallic compound such as butyllithium or butylmagnesium as an initiator.
  • anion ring-opening polymerization using an acid as an initiator and hydrolysis-type ring-opening polymerization using water or the like are generally used.
  • hydrolysis type ring-opening polymerization is more preferable from the viewpoint of suppressing the coloring of the polyamide by the initiator and the gelation and decomposition reaction by the cross-linking reaction.
  • the method for ring-opening polymerization of lactams by hydrolysis is not limited as long as it is a known method, but it is pressurized in the presence of water to generate amino acids while promoting hydrolysis of lactams, and then water is removed. However, a method of performing ring-opening polymerization and polycondensation reaction is preferable.
  • the amount of water used is not particularly limited as long as the hydrolysis of lactams proceeds, but if the total amount of the monomer (B) and the polymer (A) is 100 parts by mass, water is usually used.
  • the amount is preferably 100 parts by mass or less.
  • the amount of water used is more preferably 70 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 30 parts by mass or less.
  • the lower limit of the amount of water used is preferably 1 part by mass or more, more preferably 2 parts by mass or more, further preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more.
  • a known method such as a method of removing while flowing an inert gas such as nitrogen at normal pressure or a method of removing under reduced pressure is appropriately used. it can.
  • the monomer (B) is an amino acid, a dicarboxylic acid and a diamine, or a salt thereof
  • a polycondensation reaction can be used as the polymerization method.
  • these monomers (B) there are combinations that do not dissolve uniformly with the polymer (A).
  • a polyamide powder can be produced by further adding water to the monomer (B) and the polymer (A).
  • the amount of water used is preferably 10 to 200 parts by mass. From the viewpoint of preventing the particle size from becoming coarse, the amount of water used is more preferably 150 parts by mass or less, further preferably 120 parts by mass or less. On the other hand, from the viewpoint of ensuring that water functions as a solvent, the amount of water used is more preferably 20 parts by mass or more, further preferably 40 parts by mass or more.
  • Lactams and amino acids and / or dicarboxylic acids and diamines may be mixed and used, but in this case, water functions as a hydrolysis or solvent.
  • the polymerization temperature is not particularly limited as long as the polymerization of the polyamide proceeds, but the polymerization temperature can be obtained from the viewpoint of controlling the polyamide having a high crystallization temperature to be closer to a true sphere and having a smooth surface. It is preferable that the temperature is equal to or higher than the crystallization temperature of.
  • the polymerization temperature is more preferably the crystallization temperature of the obtained polyamide + 15 ° C. or higher, further preferably the crystallization temperature of the obtained polyamide + 30 ° C. or higher, and the crystallization temperature of the obtained polyamide + 45 ° C. or higher. Is particularly preferable.
  • the polymerization temperature is preferably set to the melting point of the obtained polyamide + 100 ° C. or less, and the melting point of the obtained polyamide. It is more preferably + 50 ° C. or lower, further preferably the melting point of the obtained polyamide + 20 ° C. or lower, particularly preferably polymerization at the same temperature as the melting point of the obtained polyamide, and the melting point of the obtained polyamide ⁇ 10 ° C. or lower. It is most preferable to do so.
  • the crystallization temperature of the polyamide constituting the polyamide powder is raised at a rate of 20 ° C./min from 30 ° C. to a temperature 30 ° C. higher than the heat absorption peak indicating the melting point of the polyamide under a nitrogen atmosphere using the DSC method. After that, it is held for 1 minute and shows the peak of the exothermic peak that appears when the temperature is cooled to 30 ° C. at a rate of 20 ° C./min. Further, once cooled, the apex of the endothermic peak when the temperature is further raised at 20 ° C./min is defined as the melting point of the polyamide powder.
  • the polymerization time can be appropriately adjusted according to the molecular weight of the polyamide powder to be obtained, but while ensuring that the polymerization proceeds to obtain the polyamide powder, side reactions and coloring of the polyamide such as a three-dimensional crosslinked product are ensured. From the viewpoint of preventing progress such as deterioration of the polymer (A) and the polymer (A), it is usually preferably in the range of 0.1 to 70 hours.
  • the lower limit of the polymerization time is more preferably 0.2 hours or more, further preferably 0.3 hours or more, and particularly preferably 0.5 hours or more.
  • the upper limit of the polymerization time is more preferably 50 hours or less, further preferably 25 hours or less, and particularly preferably 10 hours or less.
  • a polymerization accelerator may be added as long as the effect of the present invention is not impaired.
  • Known accelerators can be used, and examples thereof include inorganic phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid and alkali metal salts and alkaline earth metal salts thereof. Be done. You may use two or more kinds of these.
  • the amount to be added can be appropriately selected, but it is preferable to add 1 part by mass or less with respect to 100 parts by mass of the monomer (B).
  • additives such as surfactants for controlling the particle size of the polyamide powder, dispersants, and the stability of the polymer (A) used to modify the properties of the polyamide powder.
  • Fillers such as antioxidants, heat stabilizers, weather resistant agents, lubricants, pigments, dyes, plasticizers, antioxidants, flame retardants, carbon black, silica, titanium dioxide, fiberglass and glass beads, carbon fiber to improve And so on. You may use two or more kinds of these. Further, two or more different substances may be used for the purpose of modifying the monomer (B) or polyamide and for the purpose of modifying the polymer (A). The amount to be added can be appropriately selected.
  • the polyamide powder is homogeneously induced from the uniform solution, a fine powder can be produced without stirring, but even if stirring is performed in order to control the particle size and make the particle size distribution more uniform. I do not care.
  • a stirring device a known device such as a stirring blade, a melt kneader, or a homogenizer can be used.
  • a stirring blade a propeller, a paddle, a flat, a turbine, a cone, an anchor, a screw, a helical type, or the like can be used. Can be mentioned.
  • the stirring speed depends on the type and molecular weight of the polymer (A), but from the viewpoint of uniformly transferring heat even with a large device, while preventing the liquid from adhering to the wall surface and changing the compounding ratio, etc., the stirring speed is 0 to 2,000 rpm. It is preferably in the range.
  • the lower limit of the stirring speed is more preferably 10 rpm or more, further preferably 30 rpm or more, particularly preferably 50 rpm or more
  • the upper limit of the stirring speed is more preferably 1,600 rpm or less, further preferably 1,200 rpm or less. 800 rpm or less is particularly preferable.
  • the present invention is characterized in that the polyamide powder is isolated from the mixture of the polyamide powder and the polymer (A) after the completion of the polymerization while the polymer (A) is melted or maintained in a solution state. Thereby, the content of the polymer (A) in the polymer powder can be reduced to less than 0.001% by mass.
  • the mixture at the end of polymerization is discharged into a poor solvent of the polyamide powder while the polymer (A) is melted or maintained in a solution state.
  • a method of isolating by discharging into a reaction vessel or a method of adding a poor solvent of polyamide powder to the reaction vessel and isolating is preferable, and a method of adding a poor solvent of polyamide powder to the reaction vessel and isolating is more preferable.
  • the discharge means an operation of extracting the contents from the reaction vessel by pressure or its own weight.
  • the content of the polymer (A) is set to 0 with respect to the polymer powder as the lower limit of the temperature at which the mixture is discharged into the poor solvent of the polyamide powder or the poor solvent of the polyamide powder is added to the reaction vessel.
  • a temperature equal to or higher than the melting point of the polymer (A) is preferable because it is difficult to reduce the content to less than .001% by mass.
  • the poor solvent for the polyamide powder is preferably a solvent that does not dissolve the polyamide but further dissolves the monomer (B) and the polymer (A).
  • a solvent can be appropriately selected, and examples thereof include alcohols such as methanol, ethanol and isopropanol, and water, and water is preferable from the viewpoint of preventing voids and the like from being generated in the modeled object due to the organic solvent.
  • isolation method known methods such as decompression, pressure filtration, decantation, centrifugation, and spray drying can be appropriately selected.
  • the polyamide powder can be washed, isolated, and dried by a known method.
  • a cleaning method for removing deposits and inclusions on the polyamide powder reslurry cleaning or the like can be used, and heating may be performed as appropriate.
  • the solvent used for washing is not limited as long as it is a solvent that does not dissolve the polyamide powder but dissolves the monomer (B) and the polymer (A), and water is preferable from the viewpoint of economy.
  • Isolation can be appropriately selected from reduced pressure, pressure filtration, decantation, centrifugation, spray drying and the like.
  • the polymer (A) is removed to less than 0.001% by weight based on the polyamide powder. Drying is preferably carried out at a temperature equal to or lower than the melting point of the polyamide powder, and the pressure may be reduced. Air drying, hot air drying, heat drying, vacuum drying, freeze drying, etc. are selected.
  • Additional heat treatment may be applied to the obtained polyamide powder as long as the effects of the present invention are not impaired.
  • a heat treatment method a known method can be used, and a normal pressure heat treatment using an oven or the like, a reduced pressure heat treatment using a vacuum dryer or the like, and a pressure heat treatment in which heat treatment is performed together with water in a pressure vessel such as an autoclave can be appropriately selected.
  • heat treatment it is possible to control the molecular weight, crystallinity, and melting point of the polyamide within a desired range.
  • the polymer powder of the present invention is a material useful for producing a three-dimensional model by a powder bed fusion bonding method.
  • Powder bed melt-bonding method The manufacturing of a modeled product by additive manufacturing is a thin layer forming process in which polymer powder is developed into a thin layer, and this thin layer is irradiated with laser light in a shape corresponding to the cross-sectional shape of the object to be modeled.
  • a selective laser sintering method in which the cross-section forming steps of bonding the polymer powders are sequentially repeated, or a thin-layer forming step of developing the polymer powder into a thin layer, and the thin layers correspond to the cross-sectional shape of the object to be modeled.
  • Powder bed melt bonding by selective absorption (or suppression) sintering method in which a printing process of printing an energy absorption promoter or an energy absorption inhibitor on a shape and a cross-sectional forming process of bonding polymer powder using electromagnetic radiation are sequentially repeated.
  • Method This can be done by a method of manufacturing a layered model.
  • the electromagnetic radiation used in the selective absorption (suppression) sintering may be any kind as long as it does not impair the quality of the polymer powder or the modeled object, but it is relatively inexpensive and energy suitable for modeling can be obtained. Therefore, infrared rays are preferable. Also, electromagnetic radiation may or may not be coherent.
  • Energy absorption accelerator is a substance that absorbs electromagnetic radiation.
  • Such substances include carbon black, carbon fibers, copper hydroxyphosphate, near-infrared absorbing dyes, near-infrared absorbing pigments, metal nanoparticles, polythiophene, poly (p-phenylene sulfide), polyaniline, poly (pyrrole), etc.
  • Examples thereof include conjugated polymers, and these may be used alone or in combination of two or more.
  • Energy absorption inhibitor is a substance that does not easily absorb electromagnetic radiation.
  • examples of such substances include substances that reflect particle electromagnetic radiation such as titanium, heat insulating powders such as mica powder and ceramic powder, and water, which may be used alone or in combination of two or more. ..
  • Selective absorbent or selective inhibitor In the step of printing into a shape corresponding to the cross-sectional shape of the object to be modeled, a known method such as inkjet can be used.
  • the selective absorbent or selective inhibitor may be used as it is, or may be dispersed or dissolved in a solvent.
  • D90 / D10 showing the particle size distribution has a particle size (D90) in which the cumulative frequency from the small particle size side of the particle size distribution measured by the above method is 90%, and the cumulative frequency from the small particle size side is 10%.
  • the value was divided by the particle size (D10).
  • the refractive index at the time of measurement was 1.52, and the refractive index of the medium (deionized water) was 1.333.
  • S sphericity
  • a major axis
  • b minor axis
  • n number of measurements 30.
  • Crystallization temperature and melting point of polymer powder Using a differential scanning calorimeter (DSCQ20) manufactured by TA Instruments, the temperature is 20 ° C. from 30 ° C. to a temperature 30 ° C. higher than the heat absorption peak indicating the melting point of polyamide under a nitrogen atmosphere.
  • the crystallization temperature was defined as the peak of the exothermic peak that appeared when the temperature was raised at a rate of / min and then held for 1 minute and the temperature was cooled to 30 ° C. at a rate of 20 ° C./min.
  • the melting point was defined as the endothermic peak when the temperature was further raised at 20 ° C./min after cooling.
  • the amount of polyamide powder required for the measurement was about 8 mg.
  • the molecular weight of the weight average molecular weight of the polyamide was calculated by using a gel permeation chromatography method and comparing it with a calibration curve using polymethylmethacrylate.
  • the measurement sample was prepared by dissolving about 3 mg of polyamide powder in about 3 g of hexafluoroisopropanol.
  • Equipment Waters e-Alliance GPC system Column: Showa Denko HFIP-806M x 2 Mobile phase: 5 mmol / L Sodium trifluoroacetate / Hexafluoroisopropanol Flow rate: 1.0 ml / min Temperature: 30 ° C Detection: Differential refractometer.
  • the weight average molecular weight of the polymer (A) was calculated by using a gel permeation chromatography method and comparing it with a calibration curve using polyethylene glycol. The measurement sample was prepared by dissolving about 3 mg of the polymer (A) in about 6 g of water.
  • the bending strength of a three-dimensional model produced using polymer powder is determined by using a powder bed melt-bonding method 3D printer (Aspect Co., Ltd. powder bed melt-bonding device RaFaElII 150C-HT).
  • a test piece having a width of 10 mm, a length of 80 mm, and a thickness of 4 mm was prepared and measured using a Tensilon universal tester (TENSIRON TRG-1250, manufactured by A & D Co., Ltd.).
  • a three-point bending test was measured under the conditions of a distance between fulcrums of 64 mm and a test speed of 2 mm / min, and the bending strength was measured.
  • Example 1 Aminododecanoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 300 g as a polyamide monomer (B) and polyethylene glycol (Wako Pure Chemical Industries, Ltd.) as a polymer (A) in an autoclave with a 3 L helical ribbon type stirring blade. 20,000 primary polyethylene glycol manufactured by the company, 700 g of weight average molecular weight 18,600) and 1000 g of water were added to form a uniform solution, which was then sealed and replaced with nitrogen. Then, the stirring speed was set to 30 rpm and the temperature was raised to 210 ° C.
  • the pressure of the system reached 10 kg / cm 2
  • the pressure was controlled while slightly releasing water vapor so as to maintain the pressure at 10 kg / cm 2.
  • the pressure was released at a rate of 0.2 kg / cm 2 ⁇ min.
  • the temperature was maintained for 1 hour while flowing nitrogen to complete the polymerization, and the mixture of the polymer powder and polyethylene glycol was discharged into a water bath of 2000 g while the polyethylene glycol was kept in a molten state to obtain a slurry.
  • the slurry was sufficiently homogenized by stirring, filtration was performed, 2000 g of water was added to the filter medium, and the slurry was washed at 80 ° C.
  • the slurry liquid from which the agglomerates had been removed by passing through a 200 ⁇ m sieve was filtered again, and the isolated filter product was dried at 80 ° C. for 12 hours to prepare 240 g of polyamide 12 powder.
  • the melting point of the obtained powder was 178 ° C., which was the same as that of polyamide 12, the crystallization temperature was 147 ° C., and the molecular weight was 12,000.
  • the D50 particle size was 53 ⁇ m, the D90 / D10 was 2.5, the sphericity was 98, the polyethylene glycol content was 0.0006% by mass, and the angle of repose was 33 degrees.
  • a three-dimensional model was manufactured using a powder bed fusion coupling device (RaFaElII 150C-HT) manufactured by Aspect Co., Ltd.
  • the setting conditions were a layer average thickness of 0.1 mm, a 60 WCO 2 laser, and a laser scanning space of 0.1 mm.
  • the temperature was set so that the component floor temperature was ⁇ 15 ° C. from the melting point and the supply tank temperature was the crystallization temperature ⁇ 5 ° C.
  • the surface roughness Ra of the obtained modeled product was 9 ⁇ m, the bending strength of the modeled product was 63 MPa, and the appearance of the modeled product was good with no voids.
  • the characteristics are shown in Table 1.
  • Example 2 The polyamide monomer (B) was changed to 200 g of aminododecanoic acid, and the polymer (A) was changed to 800 g of polyethylene glycol having a different molecular weight (primary polyethylene glycol manufactured by Wako Pure Chemical Industries, Ltd., 6,000, molecular weight 7,700).
  • Polyamide 12 powder was prepared in the same manner as in Example 1 except for the above. Table 1 shows the characteristics of the obtained powder and the modeled product. A scanning electron micrograph of the polyamide 12 powder is shown in FIG.
  • Example 3 The polyamide monomer (B) was changed to 100 g of aminododecanoic acid, and the polymer (A) was changed to 900 g of polyethylene glycol having a different molecular weight (primary polyethylene glycol manufactured by Wako Pure Chemical Industries, Ltd., 2,000, molecular weight 2,300). Polyamide 12 powder was prepared in the same manner as in Example 1 except for the above. Table 1 shows the characteristics of the obtained powder and the modeled product.
  • Example 4 Polyamide 11 powder was prepared in the same manner as in Example 2 except that aminododecanoic acid was changed to aminoundecanoic acid as the polyamide monomer (B). Table 1 shows the characteristics of the obtained powder and the modeled product.
  • Example 5 Polyamide 6 powder was prepared in the same manner as in Example 2 except that aminododecanoic acid was changed to aminocaproic acid as the polyamide monomer (B). Table 1 shows the characteristics of the obtained powder and the modeled product. A scanning electron micrograph of the polyamide 6 powder is shown in FIG.
  • Example 6 Adipic acid 90 g (manufactured by Tokyo Kasei Kogyo Co., Ltd.), hexamethylenediamine 50% aqueous solution 110 g (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as the polyamide monomer (B), and the polymerization temperature was changed to 230 ° C.
  • Example 7 Polyamide in the same manner as in Example 2 except that aminododecanoic acid was changed to 108 g of sebacic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 92 g of diaminodecane (manufactured by Tokyo Chemical Industry Co., Ltd.) as the monomer (B) of the polyamide. 1010 powder was prepared. Table 1 shows the characteristics of the obtained powder and the modeled product.
  • Example 8 The same method as in Example 2 except that aminododecanoic acid was changed to 86 g of dodecane diic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 114 g of diaminodecane (manufactured by Tokyo Chemical Industry Co., Ltd.) as the monomer (B) of the polyamide.
  • Polyamide 1012 powder was prepared. Table 1 shows the characteristics of the obtained powder and the modeled product.
  • Example 9 To 100 parts by mass of the polyamide 12 powder produced by the same method as in Example 2, 0.05 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm was added as a filler. Partially added. Table 1 shows the characteristics of the obtained powder and the modeled product.
  • Example 10 0.05 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5. Partially added. Table 1 shows the characteristics of the obtained powder and the modeled product.
  • Example 11 0.08 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5. Partially added. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 12 0.4 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5. Partially added. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 13 To 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5, 0.8 parts by mass of ⁇ -alumina (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having an average particle size of 500 nm was added as a filler. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 14 To 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5, 2.5 parts by mass of ⁇ -alumina (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having an average particle size of 1 ⁇ m was added as a filler. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 15 Conducted except that 198 g of aminohexanoic acid as the polyamide monomer (B), 800 g of polyethylene glycol as the polymer (A), 1000 g of water, and 2 g of benzoic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added to the autoclave.
  • Polyamide 6 powder was prepared in the same manner as in Example 5. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 16 In an autoclave, 198.6 g of aminohexanoic acid as a polyamide monomer (B), 800 g of polyethylene glycol as a polymer (A), 1000 g of water, and 1.4 g of IRGANOX1098 (manufactured by BASF Japan Co., Ltd.) as an antioxidant are blended. Polyamide 6 powder was prepared in the same manner as in Example 5 except for the above. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 17 0.08 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 15. Partially added.
  • Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 18 Polyamide 6 powder was prepared in the same manner as in Example 10 except that aminohexanoic acid was changed to ⁇ -caprolactam as the polyamide monomer (B). Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Example 1 Example 1 except that the polyamide monomer (B) was changed to 400 g of aminododecanoic acid and the polymer (A) was changed to 600 g of polyethylene glycol having a different molecular weight (polyethylene oxide 100,000 made by Aldrich, weight average molecular weight 89,000). Polyamide 12 powder was prepared in the same manner as in the above. Table 2 shows the characteristics of the obtained powder and the modeled product.
  • Polyamide 6 is a method of isolating the polyamide powder after solidifying the mixture of the polyamide powder and the polymer (A) after completion of polymerization by cooling in the same manner as described in Example 1 of WO2018 / 207728. A powder was prepared. The obtained powder contained 0.0326% of polyethylene glycol, had an angle of repose of 51 degrees and had low fluidity, and could not form a three-dimensional model by a powder bed fusion bonding device.
  • the polymer powder of the present invention has high fluidity and excellent surface smoothness can be obtained when the polyamide powder is used as a model, it is a three-dimensional model produced by a powder bed fusion bonding method. It can be suitably used for objects.

Abstract

This polymer powder for producing a three-dimensional modeled object through a powder bed melt bonding method is formed of polyamide. Said polymer powder for producing a three-dimensional modeled object is characterized by containing, with respect to the polymer powder, less than 0.001 mass% of at least one polymer (A) which has a number average particle diameter of 1-100 μm, a sphericity of at least 80, and a weight average molecular weight of at most 20,000 and which is selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, a polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof.

Description

3次元造形物を製造するためのポリマー粉末、ポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法、および3次元造形物Polymer powder for producing 3D model, method for producing 3D model by powder bed fusion bonding method using polymer powder, and 3D model
 本発明は、粉末床溶融結合方式によって得られる3次元造形物、これを得るために好適に用いられるポリマー粉末、およびそのポリマー粉末を用いて3次元造形物を製造する方法に関するものである。 The present invention relates to a three-dimensional model obtained by a powder bed melt-bonding method, a polymer powder preferably used to obtain the three-dimensional model, and a method for producing a three-dimensional model using the polymer powder.
 3次元造形物(以下、造形物と称する場合がある)を製造する技術として、粉末床溶融結合方式が知られている。特に、粉末焼結法は、粉末を薄層に展開する薄層形成工程と、形成された薄層に、造形対象物の断面形状に対応する形状にレーザー光を照射して、その粉末を結合させる断面形状形成工程とを順次繰り返すことにより製造する方法であり、他の造形方法と比較して精密造形に好適である、サポート部材が不要であるという利点を有する。 The powder bed fusion bonding method is known as a technique for manufacturing a three-dimensional modeled object (hereinafter, may be referred to as a modeled object). In particular, the powder sintering method involves a thin layer forming step of developing a powder into a thin layer, and irradiating the formed thin layer with a laser beam in a shape corresponding to the cross-sectional shape of the object to be modeled to combine the powder. It is a method of manufacturing by sequentially repeating the cross-sectional shape forming step of forming, and has an advantage that a support member is unnecessary, which is suitable for precision modeling as compared with other modeling methods.
 前記の方式に適したポリマー粉末としては、流動性を向上させるために、真球状の形態を有することが理想である。 Ideally, the polymer powder suitable for the above method has a spherical shape in order to improve fluidity.
 このような課題に対し、非特許文献1では、比較的高い真球状の形態を有するポリアミド12から構成されるポリマー粉末が開示されている。特許文献1では、ポリアミド樹脂と非相溶のポリエチレングリコールを用いて粒子化して得られる真球状のポリアミド粉末などが開示されている。特許文献2では、0.001質量%~5質量%のポリオールを含有するポリマー粉末が開示されている。 In response to such a problem, Non-Patent Document 1 discloses a polymer powder composed of polyamide 12 having a relatively high spherical morphology. Patent Document 1 discloses a spherical polyamide powder obtained by making particles using polyethylene glycol that is incompatible with a polyamide resin. Patent Document 2 discloses a polymer powder containing 0.001% by mass to 5% by mass of a polyol.
特許第4846425号公報Japanese Patent No. 4846425 特許第5129973号公報Japanese Patent No. 5129973
 しかしながら、非特許文献1の技術は、真球状の形態を有するポリアミド粉末が開示されているものの、その真球度の高さは不十分であり、流動性を改善する余地があった。 However, although the technique of Non-Patent Document 1 discloses a polyamide powder having a spherical shape, its sphericity is insufficient and there is room for improvement in fluidity.
 特許文献1の技術は、粒子化に使用するポリエチレングリコールの分子量が高く、系全体が高粘度となるため、得られる粉末はポリエチレングリコールが粉末内部に多量に残存したものであり、かかる粉末を用いて造形物とした際、流動性が悪化する等の問題があった。 In the technique of Patent Document 1, since the molecular weight of polyethylene glycol used for particle formation is high and the entire system has a high viscosity, the obtained powder is a powder in which a large amount of polyethylene glycol remains inside the powder, and such powder is used. There was a problem that the fluidity deteriorated when it was made into a modeled object.
 特許文献2の技術は、流動性は優れるものの、特許文献2のポリオール残存量では熱劣化を生じ、かかる粉末を用いて造形物とした際、表面平滑性が悪化してしまう問題があった。 Although the technique of Patent Document 2 is excellent in fluidity, there is a problem that the residual amount of the polyol in Patent Document 2 causes thermal deterioration, and the surface smoothness deteriorates when a modeled product is formed using such powder.
 そこで、本発明は、高い流動性を有するポリアミド粉末、ならびに該ポリアミド粉末を用いて造形物とした際に優れた表面平滑性を得ることを目的とするものである。 Therefore, an object of the present invention is to obtain a polyamide powder having high fluidity and excellent surface smoothness when the polyamide powder is used to form a model.
 上記課題を解決するために、次の構成を有する。 In order to solve the above problems, it has the following configuration.
 すなわち、本発明の粉末床溶融結合方式に使用されるポリマー粉末(以下、ポリアミド粉末と称する場合もある)は、粉末床溶融結合方式によって3次元造形物を製造するためのポリマー粉末であって、前記ポリマー粉末とは、ポリアミドから構成され、D50粒子径が1~100μm、真球度が80以上、重量平均分子量が20,000以下のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体からなる群より選ばれる1以上のポリマー(A)をポリマー粉末に対して0.001質量%未満含有することを特徴とする、3次元造形物を製造するためのポリマー粉末である。 That is, the polymer powder used in the powder bed melt bonding method of the present invention (hereinafter, may be referred to as polyamide powder) is a polymer powder for producing a three-dimensional model by the powder bed melt bonding method. The polymer powder is composed of polyamide, has a D50 particle size of 1 to 100 μm, a sphericity of 80 or more, and a weight average molecular weight of 20,000 or less. Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene. Produce a three-dimensional model characterized by containing less than 0.001% by mass of one or more polymers (A) selected from the group consisting of glycol copolymers and alkyl ethers thereof with respect to the polymer powder. It is a polymer powder for
 また、本発明の3次元造形物を製造する方法は、前記ポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法である。 Further, the method for producing the three-dimensional model of the present invention is a method for producing the three-dimensional model by the powder bed fusion bonding method using the polymer powder.
 さらに、本発明の3次元造形物は、ポリマー粉末を用いて粉末床溶融結合方式によって得られた3次元造形物である。 Further, the three-dimensional model of the present invention is a three-dimensional model obtained by a powder bed fusion bonding method using a polymer powder.
 本発明のポリマー粉末は、高い流動性を有するポリアミド粉末、ならびに該ポリアミド粉末を用いて造形物とした際に優れた表面平滑性を得ることができる。 The polymer powder of the present invention can obtain a polyamide powder having high fluidity and excellent surface smoothness when the polyamide powder is used as a model.
実施例2で得られたポリアミド粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the polyamide powder obtained in Example 2. FIG. 実施例5で得られたポリアミド粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the polyamide powder obtained in Example 5.
 以下、本発明について詳細を説明する。 Hereinafter, the present invention will be described in detail.
 本発明におけるポリマー粉末は、アミド基を含む構造のポリアミドから構成される。かかるポリアミドの具体的な例としては、ポリカプロアミド(ポリアミド6)、ポリウンデカアミド(ポリアミド11)、ポリラウロアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリドデカメチレンセバカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンアジパミド(ポリアミド106)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリドデカメチレンテレフタルアミド(ポリアミド12T)、ポリカプロアミド/ポリヘキサメチレンアジパミド共重合体(ポリアミド6/66)、ポリカプロアミド/ポリラウロアミド共重合体(6/12)などが挙げられる。中でも、真球形状に制御し易い点から好ましくは、ポリカプロアミド(ポリアミド6)、ポリウンデカアミド(ポリアミド11)、ポリラウロアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリドデカメチレンセバカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)などが挙げられる。また、造形に適した熱特性である点から、ポリカプロアミド(ポリアミド6)、ポリウンデカアミド(ポリアミド11)、ポリラウロアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリドデカメチレンセバカミド(ポリアミド1012)が特に好ましい。 The polymer powder in the present invention is composed of a polyamide having a structure containing an amide group. Specific examples of such polyamides include polycaproamide (polyamide 6), polyundecamide (polyamide 11), polylauroamide (polyamide 12), polyhexamethylene adipamide (polyamide 66), and polydecamethylenese. Bacamide (polyamide 1010), polydodecamethylene sebacamide (polyamide 1012), polydodecamethylene dodecamide (polyamide 1212), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), poly Decamethylene adipamide (polyamide 106), polydodecamethylene adipamide (polyamide 126), polyhexamethylene terephthalamide (polyamide 6T), polydecamethylene terephthalamide (polyamide 10T), polydodecamethylene terephthalamide (polyamide 12T) , Polycaproamide / polyhexamethylene adipamide copolymer (polyamide 6/66), polycaproamide / polylauroamide copolymer (6/12) and the like. Among them, polycaproamide (polyamide 6), polyundecamide (polyamide 11), polylauroamide (polyamide 12), polyhexamethylene adipamide (polyamide 66), and polyhexamethylene adipamide (polyamide 66) are preferable because they can be easily controlled into a true spherical shape. Polydecamethylene sebacamide (polyamide 1010), polydodecamethylene sebacamide (polyamide 1012), polydodecamethylene dodecamide (polyamide 1212), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 610) 612) and the like. Further, from the viewpoint of thermal properties suitable for modeling, polycaproamide (polyamide 6), polyundecamide (polyamide 11), polylauroamide (polyamide 12), polyhexamethylene adipamide (polyamide 66), poly Decamethylene sebacamide (polyamide 1010) and polydodecamethylene sebacamide (polyamide 1012) are particularly preferable.
 この中でも、造形時の耐熱性の点では、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)が著しく好ましい。また、汎用造形機への適合性の点では、ポリウンデカアミド(ポリアミド11)、ポリラウロアミド(ポリアミド12)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリドデカメチレンセバカミド(ポリアミド1012)が著しく好ましい。 Among these, polycaproamide (polyamide 6) and polyhexamethylene adipamide (polyamide 66) are remarkably preferable in terms of heat resistance during molding. In terms of compatibility with general-purpose molding machines, polyundecamide (polyamide 11), polylauroamide (polyamide 12), polydecamethylene sebacamide (polyamide 1010), and polydodecamethylene sebacamide (polyamide 1012) ) Is remarkably preferable.
 前記ポリアミドは、本発明の効果を損なわない範囲で共重合していても構わない。共重合可能な成分としては、柔軟性を付与するポリオレフィンやポリアルキレングリコールなどのエラストマー成分、耐熱性や強度を向上する剛直な芳香族成分など適宜選択できる。また、後述するが、粉末床溶融結合方式でポリマー粉末を再利用するために末端基を調整する共重合成分を用いても良い。かかる共重合成分としては、酢酸、ヘキサン酸、ラウリン酸や安息香酸などのモノカルボン酸やへキシルアミンやオクチルアミン、アニリンなどのモノアミンが挙げられる。 The polyamide may be copolymerized as long as the effect of the present invention is not impaired. As the copolymerizable component, an elastomer component such as polyolefin or polyalkylene glycol that imparts flexibility, a rigid aromatic component that improves heat resistance and strength, and the like can be appropriately selected. Further, as will be described later, a copolymer component for adjusting the terminal group may be used in order to reuse the polymer powder by the powder bed melt bonding method. Examples of such copolymerization components include monocarboxylic acids such as acetic acid, hexanoic acid, lauric acid and benzoic acid, and monoamines such as hexylamine, octylamine and aniline.
 ポリアミドの重量平均分子量の範囲は、10,000~1,000,000であることが好ましい。重量平均分子量が高いほど結晶化速度が遅くなり、造形時の結晶化に伴う反りなどが抑制できるため、下限は20,000以上が好ましく、40,000以上がより好ましく、70,000以上がさらに好ましく、100,000以上が特に好ましく、200,000以上が最も好ましい。分子量が高すぎると高粘度となり造形時の層同士の接着が悪化するため、上限は、800,000以下が好ましく、500,000以下がより好ましく、300,000以下が特に好ましい。 The range of the weight average molecular weight of the polyamide is preferably 10,000 to 1,000,000. The higher the weight average molecular weight, the slower the crystallization rate, and the warpage caused by crystallization during molding can be suppressed. Therefore, the lower limit is preferably 20,000 or more, more preferably 40,000 or more, and further 70,000 or more. Preferably, 100,000 or more is particularly preferable, and 200,000 or more is most preferable. If the molecular weight is too high, the viscosity becomes high and the adhesion between the layers at the time of molding deteriorates. Therefore, the upper limit is preferably 800,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less.
 なお、ポリマー粉末を構成するポリアミドの重量平均分子量とは、ヘキサフルオロイソプロパノールを溶媒に用い、ゲルパーミエーションクロマトグラフィーで重量平均分子量を測定し、ポリメチルメタクリレートで換算した値を指す。 The weight average molecular weight of the polyamide constituting the polymer powder refers to a value obtained by measuring the weight average molecular weight by gel permeation chromatography using hexafluoroisopropanol as a solvent and converting it with polymethylmethacrylate.
 本発明のポリマー粉末のD50粒子径は、1~100μmの範囲である。D50粒子径が100μmを超えると、粒子サイズが造形面以上となり表面が粗くなる。D50粒子径が1μm未満であると、微細なため造形時のコーターなどに付着し易くなり、造形室を必要温度まで上昇できない。ポリマー粉末のD50粒子径の上限は、90μm以下が好ましく、80μm以下がより好ましく、70μm以下がさらに好ましい。下限は、5μm以上が好ましく、20μm以上がより好ましく、30μm以上がさらに好ましい。 The D50 particle size of the polymer powder of the present invention is in the range of 1 to 100 μm. When the D50 particle size exceeds 100 μm, the particle size becomes larger than the modeling surface and the surface becomes rough. If the D50 particle size is less than 1 μm, it is so fine that it easily adheres to a coater or the like during modeling, and the modeling chamber cannot be raised to the required temperature. The upper limit of the D50 particle size of the polymer powder is preferably 90 μm or less, more preferably 80 μm or less, still more preferably 70 μm or less. The lower limit is preferably 5 μm or more, more preferably 20 μm or more, and even more preferably 30 μm or more.
 なお、ポリマー粉末のD50粒子径は、レーザー回折式粒径分布計にて測定される粒径分布の小粒径側からの累積度数が50%となる粒径(D50粒子径)である。 The D50 particle size of the polymer powder is a particle size (D50 particle size) at which the cumulative frequency from the small particle size side of the particle size distribution measured by the laser diffraction type particle size distribution meter is 50%.
 ポリマー粉末の粒度分布は、粒度分布のD90とD10の比であるD90/D10で表され、3.0未満であることが好ましい。粒度分布が狭い方が、粒子サイズの差による造形時の融解性の差が無くなり、内部の溶け残りなどが回避され外観が良好となるため好ましい。従って、D90/D10は、2.5未満が好ましく、2.0未満がより好ましく、1.5未満がさらに好ましい。また、その下限値は、理論上1.0である。 The particle size distribution of the polymer powder is represented by D90 / D10, which is the ratio of the particle size distributions D90 to D10, and is preferably less than 3.0. It is preferable that the particle size distribution is narrow because the difference in meltability during molding due to the difference in particle size is eliminated, the undissolved residue inside is avoided, and the appearance is good. Therefore, D90 / D10 is preferably less than 2.5, more preferably less than 2.0, and even more preferably less than 1.5. The lower limit is theoretically 1.0.
 本発明におけるポリマー粉末の粒度分布を示すD90/D10は、前記したレーザー回折式粒径分布計により測定した粒径分布の小粒径側からの累積度数が90%となる粒径(D90)を小粒径側からの累積度数が10%となる粒径(D10)で除した値である。 D90 / D10 showing the particle size distribution of the polymer powder in the present invention has a particle size (D90) at which the cumulative frequency from the small particle size side of the particle size distribution measured by the laser diffraction type particle size distribution meter is 90%. It is a value divided by the particle size (D10) at which the cumulative frequency from the small particle size side is 10%.
 本発明のポリマー粉末の真球性を示す真球度は、80以上で100以下ある。真球度が80に満たない場合には、流動性が悪化し造形物の表面が粗くなる。真球度は、好ましくは85以上100以下、より好ましくは90以上100以下、さらに好ましくは93以上100以下、特に好ましくは95以上100以下、著しく好ましくは97以上100以下である。 The sphericity indicating the sphericity of the polymer powder of the present invention is 80 or more and 100 or less. If the sphericity is less than 80, the fluidity deteriorates and the surface of the modeled object becomes rough. The sphericity is preferably 85 or more and 100 or less, more preferably 90 or more and 100 or less, still more preferably 93 or more and 100 or less, particularly preferably 95 or more and 100 or less, and remarkably preferably 97 or more and 100 or less.
 なお、本発明のポリマー粉末の真球度は、走査型電子顕微鏡の写真から無作為に30個の粒子を観察し、その短径と長径から下記数式に従い、決定される。 The sphericity of the polymer powder of the present invention is determined by observing 30 particles at random from a scanning electron microscope photograph and following the following formulas from the minor axis and the major axis.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、S:真球度、a:長径、b:短径、n:測定数30とする。 Note that S: sphericity, a: major axis, b: minor axis, n: number of measurements 30.
 本発明のポリマー粉末の表面の平滑性や内部の中実性は、ガス吸着によるBET比表面積によって表すことが可能である。ポリマー粉末の表面が平滑、内部が中実であると、その表面積が小さくなり、流動性が向上し造形物の表面が滑らかになり好ましい。ここでは、表面が平滑であるほど、BET比表面積は小さくなることを意味する。具体的には、10m/g以下であることが好ましく、より好ましくは5m/g以下であり、さらに好ましくは3m/g以下であり、特に好ましくは1m/g以下であり、最も好ましくは0.5m/g以下である。また、その下限値は、粒子径が100μmであった場合に理論上0.05m/gである。 The smoothness of the surface and the solidity of the inside of the polymer powder of the present invention can be expressed by the BET specific surface area due to gas adsorption. When the surface of the polymer powder is smooth and the inside is solid, the surface area thereof is small, the fluidity is improved, and the surface of the modeled object is smooth, which is preferable. Here, the smoother the surface, the smaller the BET specific surface area. Specifically, it is preferably 10 m 2 / g or less, more preferably 5 m 2 / g or less, further preferably 3 m 2 / g or less, and particularly preferably 1 m 2 / g or less, which is the most. It is preferably 0.5 m 2 / g or less. The lower limit is theoretically 0.05 m 2 / g when the particle size is 100 μm.
 なお、BET比表面積は、日本工業規格(JIS規格)JIS R 1626(1996)「気体吸着BET法による比表面積の測定方法」に準じて測定される。 The BET specific surface area is measured according to the Japanese Industrial Standards (JIS standard) JIS R 1626 (1996) "Measuring method of specific surface area by gas adsorption BET method".
 本発明のポリマー粉末の中実性は、BET比表面積とD50粒子径から算出される理論表面積の比を示す下記の式によって評価することもできる。上記の比が1に近いほど、粒子の最表面のみで吸着が起こるため、表面平滑で中実な粒子であることを示す。5以下が好ましく、4以下がより好ましく、3以下がさらに好ましく、2以下が最も好ましい。また、その下限値は、理論上1である。 The solidity of the polymer powder of the present invention can also be evaluated by the following formula showing the ratio of the BET specific surface area to the theoretical surface area calculated from the D50 particle size. The closer the above ratio is to 1, the more adsorption occurs only on the outermost surface of the particles, indicating that the particles have a smooth surface and are solid. 5 or less is preferable, 4 or less is more preferable, 3 or less is further preferable, and 2 or less is most preferable. The lower limit is theoretically 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、R:表面積の比、D:D50粒子径、α:ポリアミドの密度、A:BET比表面積を示す。 The ratio of R: surface area, D: D50 particle size, α: polyamide density, and A: BET specific surface area are shown.
 本発明のポリマー粉末の製造には、先に本発明者らが開示した国際公開WO2018/207728号公報に記載された、ポリアミドの単量体(B)をポリマー(A)の存在下で、単量体(B)を重合して得られるポリアミドの結晶化温度より高い温度で重合後、粉末を洗浄、乾燥して作製する手法を用いることができる。この際、重量平均分子量が20,000以下のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体からなる群より選ばれる1以上のポリマー(A)を使用することで、洗浄によってポリマー粉末に対して0.001質量%未満の含有量とすることを可能とすることができ、ポリマー粉末の流動性が向上し、得られる造形物の表面が平滑になることを見出した。 In the production of the polymer powder of the present invention, the polyamide monomer (B) described in WO2018 / 207728, which was previously disclosed by the present inventors, is simply added to the polymer (A) in the presence of the polymer (A). A method can be used in which the polymer (B) is polymerized and polymerized at a temperature higher than the crystallization temperature of the polyamide obtained, and then the powder is washed and dried. At this time, one or more polymers (A) selected from the group consisting of polyethylene glycol having a weight average molecular weight of 20,000 or less, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof. ), It is possible to make the content less than 0.001% by mass with respect to the polymer powder by washing, the fluidity of the polymer powder is improved, and the surface of the obtained model is Found to be smooth.
 ポリマー(A)の重量平均分子量が20,000を超える場合は、ポリマー(A)の溶解性が悪化するため洗浄が困難となり、さらに粒子に残存したポリマー(A)を介して粒子が結合するため流動性が悪化する。重量平均分子量は20,000以下であり、好ましくは14,000以下、より好ましくは10,000以下、特に好ましくは6,000以下、さらに好ましくは4,000以下、最も好ましくは2,000以下である。その下限は500である。 When the weight average molecular weight of the polymer (A) exceeds 20,000, the solubility of the polymer (A) deteriorates, which makes cleaning difficult, and further, the particles are bonded via the polymer (A) remaining in the particles. Liquidity deteriorates. The weight average molecular weight is 20,000 or less, preferably 14,000 or less, more preferably 10,000 or less, particularly preferably 6,000 or less, still more preferably 4,000 or less, and most preferably 2,000 or less. is there. The lower limit is 500.
 さらに、ポリマー(A)としては、水酸基、アミノ基、カルボキシル基などの極性基の含有量が少ない方が、流動性が向上するため好ましい。特に、水酸基で分子の両末端のみに含有するポリマー(A)が好ましい。具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体からなる群より選ばれる1以上の化合物である。洗浄などで水を使用でき、粉末の製造から洗浄まで全て水のみで処理できることから、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体が好ましく、ポリエチレングリコール、およびこれらのアルキルエーテル体が最も好ましい。これらは、本発明を損なわない範囲で2種以上を同時に使用しても構わない。 Further, as the polymer (A), it is preferable that the content of polar groups such as hydroxyl groups, amino groups and carboxyl groups is small because the fluidity is improved. In particular, the polymer (A) which is a hydroxyl group and is contained only at both ends of the molecule is preferable. Specific examples are one or more compounds selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof. Since water can be used for washing and the like, and all processes from powder production to washing can be treated with water only, polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof are preferable, polyethylene glycol, and alkyls thereof. The ether form is most preferable. Two or more of these may be used at the same time as long as the present invention is not impaired.
 なお、ポリマー(A)の重量平均分子量とは、水を溶媒に用い、ゲルパーミエーションクロマトグラフィーで測定した値をポリエチレングリコールで換算した重量平均分子量を示す。ポリマー(A)が水に溶解しない場合は、テトラヒドロフランを溶媒に用い、ゲルパーミエーションクロマトグラフィーで測定した値をポリスチレンで換算した重量平均分子量を示す。 The weight average molecular weight of the polymer (A) indicates the weight average molecular weight obtained by converting the value measured by gel permeation chromatography with polyethylene glycol using water as a solvent. When the polymer (A) is insoluble in water, tetrahydrofuran is used as a solvent, and the weight average molecular weight obtained by converting the value measured by gel permeation chromatography into polystyrene is shown.
 本発明のポリマー(A)を使用することで、洗浄工程によって、ポリマー(A)をポリマー粉末に対して0.001質量%未満にまで低減することが可能となる。かかる範囲にすることで、ポリマー(A)の高い分子量や極性基由来の粒子凝集が抑制され、高い流動性を示す3次元造形物に好適な真球形態のポリマー粉末を製造できる。さらに、ポリマー(A)の含有量を0.001質量%未満となれば、造形物とした場合に、優れた表面平滑性が得られる。また、ポリマー(A)を起因とする着色、ゲル化、機械特性の劣化などが回避可能となる。 By using the polymer (A) of the present invention, it is possible to reduce the polymer (A) to less than 0.001% by mass with respect to the polymer powder by the washing step. Within such a range, the high molecular weight of the polymer (A) and the aggregation of particles derived from polar groups are suppressed, and a spherical polymer powder suitable for a three-dimensional model exhibiting high fluidity can be produced. Further, when the content of the polymer (A) is less than 0.001% by mass, excellent surface smoothness can be obtained in the case of a modeled product. Further, coloring, gelation, deterioration of mechanical properties and the like caused by the polymer (A) can be avoided.
 ポリマー(A)の含有量が少ないほど、流動性が向上するため、好ましくは0.0008質量%以下、より好ましくは0.0005質量%以下、特に好ましくは0.0003質量%以下である。その下限は、ポリマー(A)を使用することでポリマー粉末が真球中実、表面平滑になり、流動性が向上するため、0超であることが必須である。ポリマー(A)の含有量が0の場合、粒子が凝集し、流動性が劣る。 The smaller the content of the polymer (A), the better the fluidity. Therefore, it is preferably 0.0008% by mass or less, more preferably 0.0005% by mass or less, and particularly preferably 0.0003% by mass or less. The lower limit is indispensable to be more than 0 because the polymer powder becomes spherical solid and surface smoothed by using the polymer (A) and the fluidity is improved. When the content of the polymer (A) is 0, the particles agglomerate and the fluidity is inferior.
 なお、ポリマー(A)の含有量は、ポリマー粉末から水または有機溶媒で抽出後、溶媒を除去した後に、水を溶媒としてゲルパーミエーションクロマトグラフィーで定量した数値を示す。この測定方法での検出下限は、0.0001%である。 The content of the polymer (A) is a value quantified by gel permeation chromatography using water as a solvent after extracting the polymer powder with water or an organic solvent and then removing the solvent. The lower limit of detection by this measuring method is 0.0001%.
 本発明のポリマー粉末には、有機溶媒を含有しないことが好ましい。有機溶媒を含む場合、粉末床溶融結合方式で造形中の加熱により有機溶媒が揮発し、造形機内を汚染するため好ましくない。本発明において有機溶媒とは、常温常圧下で液体である有機化合物を示す。ただし、重量平均分子量が20,000以下のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体からなる群より選ばれる1以上のポリマーは、かかる有機溶媒には含まない。有機溶媒を含有しないことを確認する方法としては、揮発性有機化合物濃度を分析する公知の方法を使用することができ、例えば加熱脱着装置を付帯したガスクロマトグラフ質量分析計などが挙げられる。本発明において含有しないとは、ガスクロマトグラフ質量分析計によって有機溶媒を示すピークが検出限界以下であることを示し、本発明における検出下限は0.0001%である。 It is preferable that the polymer powder of the present invention does not contain an organic solvent. When an organic solvent is contained, it is not preferable because the organic solvent is volatilized by heating during molding by the powder bed melt-bonding method and contaminates the inside of the molding machine. In the present invention, the organic solvent refers to an organic compound that is liquid at normal temperature and pressure. However, one or more polymers selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer having a weight average molecular weight of 20,000 or less, and alkyl ethers thereof are such. Not included in organic solvents. As a method for confirming that the organic solvent is not contained, a known method for analyzing the concentration of volatile organic compounds can be used, and examples thereof include a gas chromatograph mass spectrometer equipped with a heat desorption device. Not contained in the present invention means that the peak indicating the organic solvent by the gas chromatograph mass spectrometer is below the detection limit, and the lower limit of detection in the present invention is 0.0001%.
 本発明のポリマー粉末の効果は、ポリマー粉末が高い流動性を示すことである。その指標は、公知の測定方法であれば何れでも採用できる。具体的に例示するならば、安息角が挙げられ、その角度が40度以下である。好ましくは37度以下、より好ましくは33度以下、特に好ましくは30度以下である。下限は通常20度以上である。 The effect of the polymer powder of the present invention is that the polymer powder exhibits high fluidity. The index can be adopted by any known measuring method. A specific example is the angle of repose, which is 40 degrees or less. It is preferably 37 degrees or less, more preferably 33 degrees or less, and particularly preferably 30 degrees or less. The lower limit is usually 20 degrees or more.
 本発明のポリマー粉末は、本発明を損なわない範囲で他の配合物を加えても構わない。配合剤としては、例えば、粉末床溶融結合方式で造形中の加熱による熱劣化を抑制するために、酸化防止剤や耐熱安定剤などが挙げられる。酸化防止剤、耐熱安定剤としては、例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体や、亜リン酸塩、次亜リン酸塩などが挙げられる。他には、着色用の顔料や染料、粘度調整用の可塑剤、流動性改質用の流動助剤、機能付与する帯電防止剤、難燃剤やカーボンブラック、シリカ、二酸化チタン、ガラス繊維やガラスビーズ、炭素繊維などのフィラーなどが挙げられる。これらは公知の物を使用することが可能で、ポリマー粉末の内部、外部のいずれに存在していても構わない。 The polymer powder of the present invention may be added with other formulations as long as the present invention is not impaired. Examples of the compounding agent include an antioxidant and a heat-resistant stabilizer in order to suppress thermal deterioration due to heating during molding by the powder bed melt-bonding method. Examples of antioxidants and heat-stabilizing agents include hindered phenols, hydroquinones, phosphites and their substitutes, phosphite, hypophosphite and the like. Others include pigments and dyes for coloring, plasticizers for adjusting viscosity, flow aids for modifying fluidity, antistatic agents for functionalizing, flame retardants and carbon black, silica, titanium dioxide, glass fiber and glass. Examples include fillers such as beads and carbon fibers. Known substances can be used as these, and they may be present inside or outside the polymer powder.
 かかる配合物は、後述のように、造形物の強度をより向上できるという点で、フィラーが好ましい。フィラーとは、ポリマー粉末同士の付着力によってポリマー粉末が凝集することを抑制する物質を指す。かかるフィラーを含むことで、ポリマー粉末の流動性を向上でき、造形物にした際にポリマー粉末の充填性が高くなる傾向にある。その結果、機械特性の要因となる欠陥が減少し、得られる造形物の強度をより向上できる傾向にある。 As described later, such a formulation is preferably a filler in that the strength of the modeled object can be further improved. The filler refers to a substance that suppresses the aggregation of polymer powders due to the adhesive force between the polymer powders. By including such a filler, the fluidity of the polymer powder can be improved, and the filling property of the polymer powder tends to be improved when it is formed into a model. As a result, defects that cause mechanical properties are reduced, and the strength of the obtained modeled object tends to be further improved.
 かかるフィラーは、例えば、溶融シリカ、結晶シリカ、アモルファスシリカなどのシリカ(二酸化ケイ素)、アルミナ(酸化アルミニウム)、アルミナコロイド(アルミナゾル)、アルミナホワイトなどのアルミナ、軽質炭酸カルシウム、重質炭酸カルシウム、微粉化炭酸カルシウム、特殊炭酸カルシウム系充填剤などの炭酸カルシウム、霞石閃長石微粉末、モンモリロナイト、ベントナイト等の焼成クレー、シラン改質クレーなどのクレー(ケイ酸アルミニウム粉末)、タルク、ケイ藻土、ケイ砂などのケイ酸含有化合物、軽石粉、軽石バルーン、スレート粉、雲母粉などの天然鉱物の粉砕品、硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、グラファイト(黒鉛)などの鉱物、ガラス繊維、ガラスビーズ、ガラスフレーク、発泡ガラスビーズなどのガラス系フィラー、フライアッシュ球、火山ガラス中空体、合成無機中空体、単結晶チタン酸カリ、炭素繊維、カーボンナノチューブ、炭素中空球、フラーレン、無煙炭粉末、人造氷晶石(クリオライト)、酸化チタン、酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、チタン酸カリウム、亜硫酸カルシウム、マイカ、アスベスト、ケイ酸カルシウム、硫化モリブデン、ボロン繊維、炭化ケイ素繊維などが挙げられる。さらに好ましくは、シリカ、アルミナ、炭酸カルシウム粉末、ガラス系フィラー、酸化チタンである。特に好ましくは、硬質で強度向上や流動性改良に寄与できるという点で、シリカ、アルミナが挙げられる。 Such fillers include, for example, fused silica, crystalline silica, silica (silicon dioxide) such as amorphous silica, alumina (aluminum oxide), alumina colloid (alumina sol), alumina such as alumina white, light calcium carbonate, heavy calcium carbonate, and fine powder. Calcium carbonate, calcium carbonate such as special calcium carbonate-based filler, calcined clay such as Kasumi stone flash stone fine powder, montmorillonite, bentonite, clay (aluminum silicate powder) such as silane modified clay, talc, diatomaceous soil, Silica-containing compounds such as silica sand, crushed natural minerals such as prickly stone powder, prickly stone balloon, slate powder, and mica powder, minerals such as barium sulfate, lithopon, calcium sulfate, molybdenum disulfide, and graphite (graphite), glass fiber , Glass-based fillers such as glass beads, glass flakes, foamed glass beads, fly ash balls, volcanic glass hollow bodies, synthetic inorganic hollow bodies, monocrystalline potassium titanate, carbon fibers, carbon nanotubes, carbon hollow balls, fullerene, smokeless carbon powder , Artificial glacial stone (cryolite), titanium oxide, magnesium oxide, basic magnesium carbonate, dolomite, potassium titanate, calcium sulfite, mica, asbestos, calcium silicate, molybdenum sulfide, boron fiber, silicon carbide fiber, etc. Be done. More preferably, silica, alumina, calcium carbonate powder, glass-based filler, and titanium oxide are used. Particularly preferably, silica and alumina are mentioned in that they are hard and can contribute to strength improvement and fluidity improvement.
 かかるシリカの市販品としては、日本アエロジル株式会社製フュームドシリカ“AEROSIL”(登録商標)シリーズ、株式会社トクヤマ製乾式シリカ“レオロシール”(登録商標)シリーズ、信越化学工業株式会社製ゾルゲルシリカパウダーX-24シリーズなどが挙げられる。 Commercially available products of such silica include fumed silica "AEROSIL" (registered trademark) series manufactured by Nippon Aerosil Co., Ltd., dry silica "Leolosil" (registered trademark) series manufactured by Tokuyama Corporation, and sol-gel silica powder X manufactured by Shin-Etsu Chemical Industry Co., Ltd. -24 series and the like.
 かかるフィラーの平均粒径は、20nm以上1μm以下のものが好ましく用いられる。フィラーの平均粒径の上限は、1μmが好ましく、さらに好ましくは500nmであり、より好ましくは400nmであり、特に好ましくは300nmであり、著しく好ましくは250nmである。下限は、20nmが好ましく、さらに好ましくは30nmであり、より好ましくは50nmであり、特に好ましくは100nmである。フィラーの平均粒径が上記範囲にあれば、ポリマー粉末の流動性を向上させるとともに、ポリマー粉末に対し、フィラーを均一に分散させることができる傾向にある。 The average particle size of the filler is preferably 20 nm or more and 1 μm or less. The upper limit of the average particle size of the filler is preferably 1 μm, more preferably 500 nm, more preferably 400 nm, particularly preferably 300 nm, and remarkably preferably 250 nm. The lower limit is preferably 20 nm, more preferably 30 nm, more preferably 50 nm, and particularly preferably 100 nm. When the average particle size of the filler is within the above range, the fluidity of the polymer powder can be improved and the filler can be uniformly dispersed in the polymer powder.
 本発明におけるフィラーの平均粒径とは、動的光散乱法によるレーザーの散乱光を解析して得られる微粒子の総体積を100%として累積カーブを求め、小粒径側からの累積カーブが50%となるとなる粒径(d50)である。 For the average particle size of the filler in the present invention, the cumulative curve is obtained with the total volume of the fine particles obtained by analyzing the scattered light of the laser by the dynamic light scattering method as 100%, and the cumulative curve from the small particle size side is 50. % Is the particle size (d50).
 かかるフィラーの配合量は、ポリマー粉末100質量部に対し、0.01質量部超5質量部未満が好ましい。配合量の上限は、3質量部未満が好ましく、1質量部未満がより好ましく、0.5質量部未満がさらに好ましく、0.3質量部未満が特に好ましく、0.1質量部未満が著しく好ましい。また、配合量の下限は、0.02質量部超が好ましく、0.03質量部超がより好ましく、0.04質量部超がさらに好ましい。フィラーの配合量が0.01質量部超であれば、ポリマー粉末の流動性がさらに向上し、造形物した際の充填性が増すため、機械特性で欠陥となるボイドが発生しにくく、得られる造形物は高い強度を発現する傾向にある。また、フィラーの配合量が5質量部未満であれば、ポリマー粉末の表面をフィラーが被覆することによる焼結の阻害が発生せず、強度の高い造形物が得られる傾向にある。 The blending amount of the filler is preferably more than 0.01 part by mass and less than 5 parts by mass with respect to 100 parts by mass of the polymer powder. The upper limit of the blending amount is preferably less than 3 parts by mass, more preferably less than 1 part by mass, further preferably less than 0.5 parts by mass, particularly preferably less than 0.3 parts by mass, and remarkably preferably less than 0.1 parts by mass. .. The lower limit of the blending amount is preferably more than 0.02 parts by mass, more preferably more than 0.03 parts by mass, and even more preferably more than 0.04 parts by mass. When the blending amount of the filler exceeds 0.01 parts by mass, the fluidity of the polymer powder is further improved and the filling property at the time of modeling is increased, so that voids that are defects in mechanical properties are less likely to occur and can be obtained. The modeled object tends to develop high strength. Further, when the blending amount of the filler is less than 5 parts by mass, sintering is not hindered by coating the surface of the polymer powder with the filler, and a high-strength molded product tends to be obtained.
 また、粉末床溶融結合方式では、使用するポリマー粉末の一部で造形物を作製し、多くのポリマー粉末が残存する。そのポリマー粉末を再利用することがコストの観点で重要になる。そのためには、加熱し造形する工程中でポリマー粉末の特性を変化させないことが重要になる。そのような方法としては、例えば、酸化防止剤などの安定化剤を粒子内部などに配合させ、熱劣化を抑制する方法やポリアミドの末端基を低減させ、造形中の分子量変化を抑制する方法などが挙げられる。ポリアミドの末端基は、カルボキシル基やアミノ基であり、造形加熱中の反応性の高さからアミノ基を低減する方が好ましい。これらを低減する方法としては、例えば、ポリアミドを重合する際に、酢酸、ヘキサン酸、ラウリン酸や安息香酸などのモノカルボン酸やへキシルアミンやオクチルアミン、アニリンなどのモノアミンなどの1官能の封鎖材を用いる方法が使用される。このような調整を適宜用いることで、造形性と再利用を両立することが可能となる傾向にある。 In addition, in the powder bed fusion bonding method, a model is made from a part of the polymer powder used, and a large amount of polymer powder remains. Reusing the polymer powder is important in terms of cost. For that purpose, it is important not to change the properties of the polymer powder during the heating and modeling process. Such methods include, for example, a method of blending a stabilizer such as an antioxidant inside the particles to suppress thermal deterioration, a method of reducing the end groups of polyamide, and a method of suppressing changes in molecular weight during modeling. Can be mentioned. The terminal group of the polyamide is a carboxyl group or an amino group, and it is preferable to reduce the amino group from the high reactivity during molding heating. As a method for reducing these, for example, when polymerizing a polyamide, a monofunctional sealing material such as acetic acid, hexanoic acid, monocarboxylic acid such as lauric acid or benzoic acid, or monoamine such as hexylamine, octylamine, or aniline is used. The method using is used. By appropriately using such adjustment, it tends to be possible to achieve both formability and reuse.
 本発明のポリマー粉体の製造方法を詳細に記載する。 The method for producing the polymer powder of the present invention will be described in detail.
 ポリマー粉体の製造方法には、ポリアミドの単量体(B)をポリマー(A)の存在下で、単量体(B)を重合して得られるポリアミドの結晶化温度より高い温度で重合しポリアミド粉末を製造する方法が好ましく用いることができる。本方法では、重合開始時にポリアミドの単量体(B)とポリマー(A)が均一に溶解しているため、本発明で重要な低分子量のポリマー(A)を用いて、重合後に所望の粒子径、粒度分布、真球度、ポリマー(A)含有量のポリアミド粉末を製造することができる。 In the method for producing the polymer powder, the monomer (B) of the polyamide is polymerized in the presence of the polymer (A) at a temperature higher than the crystallization temperature of the polyamide obtained by polymerizing the monomer (B). A method for producing a polyamide powder can be preferably used. In this method, since the polyamide monomer (B) and the polymer (A) are uniformly dissolved at the start of the polymerization, the desired particles are used after the polymerization using the low molecular weight polymer (A) important in the present invention. Polyamide powder having a diameter, a particle size distribution, a sphericity, and a polymer (A) content can be produced.
 さらに好ましくは、製造工程で有機溶媒を使用しないことである。これにより、洗浄や乾燥工程で完全に除去できない有機溶媒を起因とした、粒子の融着による造形物へのボイド発生などが抑制できる傾向にある。特に、沸点が100℃以上と高い有機溶媒ほど、除去が困難になるため好ましくない。 More preferably, no organic solvent is used in the manufacturing process. As a result, it tends to be possible to suppress the generation of voids in the modeled object due to the fusion of particles due to the organic solvent that cannot be completely removed in the washing or drying process. In particular, an organic solvent having a boiling point as high as 100 ° C. or higher is not preferable because it becomes difficult to remove.
 重合開始時のポリアミドの単量体(B)がポリマー(A)に均一に溶解しているかを判別するには、反応槽が透明溶液であることを目視で確認する。重合開始時に懸濁液または2相に分離した状態であるとポリアミドの単量体(B)とポリマー(A)が非相溶であることを示し、凝集物の生成や強撹拌等が必要になる。この場合、更に水を使用してポリアミドの単量体(B)とポリマー(A)を均一化した後に、重合を開始しても構わない。重合後にポリアミド粉末が析出しているかどうかは、反応槽が懸濁液であることを目視で確認する。重合終了時点で均一溶液であると、ポリアミドとポリマー(A)が均一に相溶していることを示し、冷却等によって凝集物や多孔質の粉末となる。 In order to determine whether the polyamide monomer (B) at the start of polymerization is uniformly dissolved in the polymer (A), visually confirm that the reaction vessel is a transparent solution. When it is in a suspension or separated into two phases at the start of polymerization, it indicates that the polyamide monomer (B) and the polymer (A) are incompatible, and it is necessary to form agglomerates, vigorously stir, etc. Become. In this case, the polymerization may be started after further homogenizing the polyamide monomer (B) and the polymer (A) with water. Visually confirm that the reaction vessel is a suspension to see if the polyamide powder is precipitated after the polymerization. If it is a uniform solution at the end of polymerization, it indicates that the polyamide and the polymer (A) are uniformly compatible with each other, and agglomerates or porous powders are formed by cooling or the like.
 本ポリマー粉末の製造方法において、ポリアミド粉末の原料となるポリアミドの単量体(B)とは、前述したポリアミドの原料となる単量体である。これらの単量体(B)は、本発明を損なわない範囲であれば2種以上を使用すること、また共重合可能な他の成分を含むことも構わない。 In the method for producing the polymer powder, the polyamide monomer (B) used as a raw material for the polyamide powder is the above-mentioned monomer used as a raw material for the polyamide. As long as these monomers (B) do not impair the present invention, two or more kinds may be used, or other copolymerizable components may be contained.
 本ポリマー粉末の製造方法におけるポリマー(A)とは前述した物と同一である。 The polymer (A) in the method for producing the polymer powder is the same as that described above.
 これら単量体(B)とポリマー(A)を混合し均一溶液を得た後に、単量体(B)を重合して得られるポリアミドの結晶化温度より高い温度で重合を開始することでポリアミド粉末を製造する。この際、均一な混合溶液中で単量体(B)がポリアミドに変換するに従いポリアミド粉末が結晶化することなく均質に誘起されるため、重合後に真球中実で表面平滑、粒度分布の狭いポリアミド粉末が析出する。 After mixing these monomer (B) and polymer (A) to obtain a uniform solution, the polyamide is started by polymerization at a temperature higher than the crystallization temperature of the polyamide obtained by polymerizing the monomer (B). Produce powder. At this time, as the monomer (B) is converted to polyamide in a uniform mixed solution, the polyamide powder is uniformly induced without crystallizing. Therefore, after polymerization, the surface is solid, the surface is smooth, and the particle size distribution is narrow. Polyamide powder precipitates.
 重合速度が適度で、重合と共に誘発される相分離が発生して粒子形成が円滑に起こる一方、粒子形成が重合の早期から発生するために凝集物等が多量に生成することを防ぐ観点から、重合を行う際の単量体(B)とポリマー(A)の配合時の質量比は、5/95~80/20の範囲であることが好ましい。単量体(B)/ポリマー(A)の質量比下限は、10/90がより好ましく、20/80がさらに好ましく、30/70が最も好ましい。一方、単量体(B)/ポリマー(A)の質量比上限としては、70/30がより好ましく、60/40がさらに好ましく、50/50が特に好ましい。 From the viewpoint of preventing the formation of a large amount of agglomerates and the like because the polymerization rate is moderate and the phase separation induced by the polymerization occurs and the particle formation occurs smoothly, while the particle formation occurs from the early stage of the polymerization. The mass ratio of the monomer (B) to the polymer (A) at the time of compounding is preferably in the range of 5/95 to 80/20. The lower limit of the mass ratio of the monomer (B) / polymer (A) is more preferably 10/90, even more preferably 20/80, and most preferably 30/70. On the other hand, as the upper limit of the mass ratio of the monomer (B) / polymer (A), 70/30 is more preferable, 60/40 is further preferable, and 50/50 is particularly preferable.
 単量体(B)をポリアミドに重合する方法としては、公知の方法を使用することができる。その方法は、単量体(B)の種類によるが、ラクタム類の場合、ナトリウムやカリウムなどのアルカリ金属やブチルリチウム、ブチルマグネシウムなどの有機金属化合物などを開始剤として使用するアニオン開環重合、酸を開始剤とするカチオン開環重合や水などを使用する加水分解型の開環重合などが一般に使用される。真球で表面平滑なポリアミド粉末が容易に得られるポリアミドの結晶化温度以上の温度で重合を行うことが可能であるため、カチオン開環重合や加水分解型の開環重合が好ましく、得られるポリアミドの結晶化温度以上の温度での重合において、開始剤によるポリアミドの着色、架橋反応によるゲル化や分解反応が抑制される観点から、加水分解型の開環重合がより好ましい。ラクタム類を加水分解で開環重合する方法としては、公知の方法であれば制限されないが、水の共存下に加圧し、ラクタムの加水分解を促進しながらアミノ酸を生成させ、その後水を除去しながら開環重合と重縮合反応を行う方法が好ましい。 As a method for polymerizing the monomer (B) to polyamide, a known method can be used. The method depends on the type of monomer (B), but in the case of lactams, anion ring-opening polymerization using an alkali metal such as sodium or potassium or an organometallic compound such as butyllithium or butylmagnesium as an initiator. Cationic ring-opening polymerization using an acid as an initiator and hydrolysis-type ring-opening polymerization using water or the like are generally used. Since it is possible to carry out polymerization at a temperature equal to or higher than the crystallization temperature of the polyamide in which a true sphere and surface-smooth polyamide powder can be easily obtained, cation ring-opening polymerization or hydrolysis type ring-opening polymerization is preferable, and the obtained polyamide In the polymerization at a temperature equal to or higher than the crystallization temperature of the above, hydrolysis type ring-opening polymerization is more preferable from the viewpoint of suppressing the coloring of the polyamide by the initiator and the gelation and decomposition reaction by the cross-linking reaction. The method for ring-opening polymerization of lactams by hydrolysis is not limited as long as it is a known method, but it is pressurized in the presence of water to generate amino acids while promoting hydrolysis of lactams, and then water is removed. However, a method of performing ring-opening polymerization and polycondensation reaction is preferable.
 この場合、水が存在していると重縮合反応が起こらないため、水が反応槽の系外に排出されたと同時に重合が開始する。従ってラクタム類の加水分解が進行する範囲であれば、使用する水の量に特に制限は無いが、通常単量体(B)とポリマー(A)の総量を100質量部とすると、水の使用量を100質量部以下とするのが好ましい。ポリアミド粉末の生産効率が向上するため、水の使用量は70質量部以下がより好ましく、50質量部以下がさらに好ましく、30質量部以下が特に好ましい。ラクタム類の加水分解反応が進行しないのを防ぐため、水の使用量の下限は1質量部以上が好ましく、2質量部以上がより好ましく、5質量部以上がさらに好ましく、10質量部以上が特に好ましい。重縮合中に縮合によって生成する水(縮合水)を除去する方法としては、常圧で窒素などの不活性ガスを流しながら除去する方法や、減圧で除去する方法など、公知の方法を適宜使用できる。 In this case, since the polycondensation reaction does not occur in the presence of water, the polymerization starts at the same time when the water is discharged to the outside of the reaction tank system. Therefore, the amount of water used is not particularly limited as long as the hydrolysis of lactams proceeds, but if the total amount of the monomer (B) and the polymer (A) is 100 parts by mass, water is usually used. The amount is preferably 100 parts by mass or less. In order to improve the production efficiency of the polyamide powder, the amount of water used is more preferably 70 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 30 parts by mass or less. In order to prevent the hydrolysis reaction of lactams from proceeding, the lower limit of the amount of water used is preferably 1 part by mass or more, more preferably 2 parts by mass or more, further preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more. preferable. As a method for removing water (condensed water) generated by condensation during polycondensation, a known method such as a method of removing while flowing an inert gas such as nitrogen at normal pressure or a method of removing under reduced pressure is appropriately used. it can.
 また、単量体(B)がアミノ酸、ジカルボン酸とジアミン、またはそれらの塩の場合、重合方法として重縮合反応を使用できる。一方、これらの単量体(B)の場合、ポリマー(A)と均一に溶解しない組み合わせが存在する。そのような単量体(B)とポリマー(A)においては、更に単量体(B)とポリマー(A)に水を追加することで、ポリアミド粉末を製造することが可能となる。 Further, when the monomer (B) is an amino acid, a dicarboxylic acid and a diamine, or a salt thereof, a polycondensation reaction can be used as the polymerization method. On the other hand, in the case of these monomers (B), there are combinations that do not dissolve uniformly with the polymer (A). In such a monomer (B) and the polymer (A), a polyamide powder can be produced by further adding water to the monomer (B) and the polymer (A).
 アミノ酸、またはジカルボン酸とジアミンとポリマー(A)の総量を100質量部とすると、使用する水の量は10~200質量部であることが好ましい。粒子径が粗大化するのを防ぐ観点から、水の使用量は150質量部以下がより好ましく、120質量部以下がさらに好ましい。一方、水が溶媒として機能するのを担保する観点から、水の使用量は20質量部以上がより好ましく、40質量部以上がさらに好ましい。 When the total amount of amino acid, dicarboxylic acid, diamine and polymer (A) is 100 parts by mass, the amount of water used is preferably 10 to 200 parts by mass. From the viewpoint of preventing the particle size from becoming coarse, the amount of water used is more preferably 150 parts by mass or less, further preferably 120 parts by mass or less. On the other hand, from the viewpoint of ensuring that water functions as a solvent, the amount of water used is more preferably 20 parts by mass or more, further preferably 40 parts by mass or more.
 ラクタム類とアミノ酸および/またはジカルボン酸やジアミンを2種以上混合して使用しても構わないが、この場合は水が、加水分解や溶媒として機能する。 Lactams and amino acids and / or dicarboxylic acids and diamines may be mixed and used, but in this case, water functions as a hydrolysis or solvent.
 重合温度は、ポリアミドの重合が進行する範囲であれば特に制限が無いが、高い結晶化温度のポリアミドを真球により近く、かつ表面平滑な形状に制御する観点から、重合温度を、得られるポリアミドの結晶化温度以上の温度とすることが好ましい。重合温度は、得られるポリアミドの結晶化温度+15℃以上とするのがより好ましく、得られるポリアミドの結晶化温度+30℃以上とするのがさらに好ましく、得られるポリアミドの結晶化温度+45℃以上とするのが特に好ましい。3次元架橋物などのポリアミドの副反応や着色やポリマー(A)の劣化などの進行を防ぐ観点から、重合温度は、得られるポリアミドの融点+100℃以下とするのが好ましく、得られるポリアミドの融点+50℃以下とするのがより好ましく、得られるポリアミドの融点+20℃以下とするのがさらに好ましく、得られるポリアミドの融点と同じ温度での重合が特に好ましく、得られるポリアミドの融点-10℃以下とするのが最も好ましい。 The polymerization temperature is not particularly limited as long as the polymerization of the polyamide proceeds, but the polymerization temperature can be obtained from the viewpoint of controlling the polyamide having a high crystallization temperature to be closer to a true sphere and having a smooth surface. It is preferable that the temperature is equal to or higher than the crystallization temperature of. The polymerization temperature is more preferably the crystallization temperature of the obtained polyamide + 15 ° C. or higher, further preferably the crystallization temperature of the obtained polyamide + 30 ° C. or higher, and the crystallization temperature of the obtained polyamide + 45 ° C. or higher. Is particularly preferable. From the viewpoint of preventing side reactions of polyamide such as a three-dimensional crosslinked product, coloring, and deterioration of the polymer (A), the polymerization temperature is preferably set to the melting point of the obtained polyamide + 100 ° C. or less, and the melting point of the obtained polyamide. It is more preferably + 50 ° C. or lower, further preferably the melting point of the obtained polyamide + 20 ° C. or lower, particularly preferably polymerization at the same temperature as the melting point of the obtained polyamide, and the melting point of the obtained polyamide −10 ° C. or lower. It is most preferable to do so.
 なお、ポリアミド粉末を構成するポリアミドの結晶化温度とは、DSC法を用いて、窒素雰囲気下、30℃からポリアミドの融点を示す吸熱ピークから30℃高い温度まで20℃/分の速度で昇温した後に1分間保持し、20℃/分の速度で30℃まで温度を冷却させる際に出現する発熱ピークの頂点を示す。また一旦冷却後、さらに20℃/分で昇温した際の吸熱ピークの頂点をポリアミド粉末の融点とする。 The crystallization temperature of the polyamide constituting the polyamide powder is raised at a rate of 20 ° C./min from 30 ° C. to a temperature 30 ° C. higher than the heat absorption peak indicating the melting point of the polyamide under a nitrogen atmosphere using the DSC method. After that, it is held for 1 minute and shows the peak of the exothermic peak that appears when the temperature is cooled to 30 ° C. at a rate of 20 ° C./min. Further, once cooled, the apex of the endothermic peak when the temperature is further raised at 20 ° C./min is defined as the melting point of the polyamide powder.
 重合時間としては、得ようとするポリアミド粉末の分子量に応じて適宜調整可能であるが、重合が進行してポリアミド粉末を得ることを担保する一方、3次元架橋物などのポリアミドの副反応や着色やポリマー(A)の劣化など進行を防ぐ観点から、通常0.1~70時間の範囲であることが好ましい。重合時間の下限としては、0.2時間以上がより好ましく、0.3時間以上がさらに好ましく、0.5時間以上が特に好ましい。重合時間の上限としては、50時間以下がより好ましく、25時間以下がさらに好ましく、10時間以下が特に好ましい。 The polymerization time can be appropriately adjusted according to the molecular weight of the polyamide powder to be obtained, but while ensuring that the polymerization proceeds to obtain the polyamide powder, side reactions and coloring of the polyamide such as a three-dimensional crosslinked product are ensured. From the viewpoint of preventing progress such as deterioration of the polymer (A) and the polymer (A), it is usually preferably in the range of 0.1 to 70 hours. The lower limit of the polymerization time is more preferably 0.2 hours or more, further preferably 0.3 hours or more, and particularly preferably 0.5 hours or more. The upper limit of the polymerization time is more preferably 50 hours or less, further preferably 25 hours or less, and particularly preferably 10 hours or less.
 本発明の効果を損なわない範囲で、重合促進剤を加えても構わない。促進剤としては、公知のものが使用でき、例えばリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸およびこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物が挙げられる。これらは、2種類以上を使用しても構わない。添加量としては適宜選択できるが、単量体(B)100質量部に対して1質量部以下添加することが好ましい。 A polymerization accelerator may be added as long as the effect of the present invention is not impaired. Known accelerators can be used, and examples thereof include inorganic phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid and alkali metal salts and alkaline earth metal salts thereof. Be done. You may use two or more kinds of these. The amount to be added can be appropriately selected, but it is preferable to add 1 part by mass or less with respect to 100 parts by mass of the monomer (B).
 また他の添加剤を加えることも可能であり、例えばポリアミド粉末の粒径制御のための界面活性剤、分散剤、ポリアミド粉末の特性を改質するためや使用するポリマー(A)の安定性を向上するための酸化防止剤、耐熱安定剤、耐候剤、滑剤、顔料、染料、可塑剤、帯電防止剤、難燃剤、カーボンブラック、シリカ、二酸化チタン、ガラス繊維やガラスビーズ、炭素繊維などのフィラーなどが挙げられる。これらは2種以上を使用しても構わない。また単量体(B)やポリアミドを改質する目的と、ポリマー(A)を改質する目的で異なる物を2種以上使用しても構わない。添加量としては適宜選択できる。 It is also possible to add other additives, such as surfactants for controlling the particle size of the polyamide powder, dispersants, and the stability of the polymer (A) used to modify the properties of the polyamide powder. Fillers such as antioxidants, heat stabilizers, weather resistant agents, lubricants, pigments, dyes, plasticizers, antioxidants, flame retardants, carbon black, silica, titanium dioxide, fiberglass and glass beads, carbon fiber to improve And so on. You may use two or more kinds of these. Further, two or more different substances may be used for the purpose of modifying the monomer (B) or polyamide and for the purpose of modifying the polymer (A). The amount to be added can be appropriately selected.
 本発明では、均一溶液からポリアミド粉末が均質に誘起されるため、撹拌を実施しなくても微細な粉末を製造できるが、より粒径の制御や粒度分布を均一にするため撹拌を行っても構わない。撹拌装置としては、撹拌翼や溶融混練機、ホモジナイザーなど公知の装置を使用することが可能であり、例えば撹拌翼の場合、プロペラ、パドル、フラット、タービン、コーン、アンカー、スクリュー、ヘリカル型などが挙げられる。撹拌速度は、ポリマー(A)の種類、分子量によるが、大型装置でも熱を均質に伝える一方、壁面へ液が付着して配合比などが変化することを防ぐ観点から、0~2,000rpmの範囲であることが好ましい。撹拌速度の下限としては、より好ましくは10rpm以上、さらに好ましくは30rpm以上、特に好ましくは50rpm以上であり、撹拌速度の上限としては、1,600rpm以下がより好ましく、1,200rpm以下がさらに好ましく、800rpm以下が特に好ましい。 In the present invention, since the polyamide powder is homogeneously induced from the uniform solution, a fine powder can be produced without stirring, but even if stirring is performed in order to control the particle size and make the particle size distribution more uniform. I do not care. As the stirring device, a known device such as a stirring blade, a melt kneader, or a homogenizer can be used. For example, in the case of a stirring blade, a propeller, a paddle, a flat, a turbine, a cone, an anchor, a screw, a helical type, or the like can be used. Can be mentioned. The stirring speed depends on the type and molecular weight of the polymer (A), but from the viewpoint of uniformly transferring heat even with a large device, while preventing the liquid from adhering to the wall surface and changing the compounding ratio, etc., the stirring speed is 0 to 2,000 rpm. It is preferably in the range. The lower limit of the stirring speed is more preferably 10 rpm or more, further preferably 30 rpm or more, particularly preferably 50 rpm or more, and the upper limit of the stirring speed is more preferably 1,600 rpm or less, further preferably 1,200 rpm or less. 800 rpm or less is particularly preferable.
 本発明では、重合終了後のポリアミド粉末とポリマー(A)の混合物を、ポリマー(A)が溶融または溶液状態を維持したまま、ポリアミド粉末を単離することを特徴とする。それにより、ポリマー粉末中のポリマー(A)の含有量を0.001質量%未満に低下させることができる。重合終了後ポリマー粉末とポリマー(A)の混合物からポリアミド粉末を単離するには、ポリマー(A)を溶融または溶液状態を維持したまま、重合終了時点の混合物をポリアミド粉末の貧溶媒中に吐出した後に単離する方法、または、ポリマー(A)を溶融または溶液状態を維持したまま、ポリマー粉末とポリマー(A)の混合物が含まれる反応槽中にポリマー粉末の貧溶媒を加えた後に単離する方法などが挙げられる。ポリアミド粉末同士が溶融し、合着して粒子径分布が広くなることを防ぐ観点から、ポリアミド粉末の融点以下、より好ましくは結晶化温度以下にまで冷却した後に、混合物をポリアミド粉末の貧溶媒中に吐出し単離する方法、または反応槽にポリアミド粉末の貧溶媒を加え単離する方法などが好ましく、反応槽にポリアミド粉末の貧溶媒を加え単離する方法がより好ましい。本発明において吐出とは、反応容器中から圧力または自重などにより、内容物を抜き出す操作を示す。混合物をポリアミド粉末の貧溶媒中に吐出する、または反応槽にポリアミド粉末の貧溶媒を加える温度の下限としては、ポリマー(A)が析出するとポリマー粉末に対し、ポリマー(A)の含有量を0.001質量%未満に低下させることが困難になる点から、ポリマー(A)の融点以上が好ましい。 The present invention is characterized in that the polyamide powder is isolated from the mixture of the polyamide powder and the polymer (A) after the completion of the polymerization while the polymer (A) is melted or maintained in a solution state. Thereby, the content of the polymer (A) in the polymer powder can be reduced to less than 0.001% by mass. To isolate the polyamide powder from the mixture of the polymer powder and the polymer (A) after completion of polymerization, the mixture at the end of polymerization is discharged into a poor solvent of the polyamide powder while the polymer (A) is melted or maintained in a solution state. Isolation after addition of a poor solvent for the polymer powder in a reaction vessel containing a mixture of the polymer powder and the polymer (A) while the polymer (A) is melted or maintained in a solution state. How to do it. From the viewpoint of preventing the polyamide powders from melting and coalescing to widen the particle size distribution, the mixture is cooled to below the melting point of the polyamide powder, more preferably below the crystallization temperature, and then the mixture is placed in a poor solvent for the polyamide powder. A method of isolating by discharging into a reaction vessel or a method of adding a poor solvent of polyamide powder to the reaction vessel and isolating is preferable, and a method of adding a poor solvent of polyamide powder to the reaction vessel and isolating is more preferable. In the present invention, the discharge means an operation of extracting the contents from the reaction vessel by pressure or its own weight. When the polymer (A) is precipitated, the content of the polymer (A) is set to 0 with respect to the polymer powder as the lower limit of the temperature at which the mixture is discharged into the poor solvent of the polyamide powder or the poor solvent of the polyamide powder is added to the reaction vessel. A temperature equal to or higher than the melting point of the polymer (A) is preferable because it is difficult to reduce the content to less than .001% by mass.
 ポリアミド粉末の貧溶媒としては、ポリアミドを溶解せず、さらには単量体(B)やポリマー(A)を溶解する溶媒であることが好ましい。このような溶媒としては適宜選択できるが、メタノール、エタノール、イソプロパノールなどのアルコール類や水が挙げられ、有機溶媒を起因に造形物にボイドなどを発生させることを防ぐ観点から水が好ましい。 The poor solvent for the polyamide powder is preferably a solvent that does not dissolve the polyamide but further dissolves the monomer (B) and the polymer (A). Such a solvent can be appropriately selected, and examples thereof include alcohols such as methanol, ethanol and isopropanol, and water, and water is preferable from the viewpoint of preventing voids and the like from being generated in the modeled object due to the organic solvent.
 単離方法としては、減圧や加圧ろ過、デカンテーション、遠心分離、スプレードライなど公知の方法を適宜選択できる。 As the isolation method, known methods such as decompression, pressure filtration, decantation, centrifugation, and spray drying can be appropriately selected.
 ポリアミド粉末の洗浄、単離、乾燥は公知の方法で実施することが可能である。ポリアミド粉末への付着物や内包物を除去するための洗浄方法としては、リスラリー洗浄などを使用することができ、適宜加温しても構わない。洗浄で使用する溶媒としては、ポリアミド粉末を溶解せず、単量体(B)やポリマー(A)を溶解する溶媒であれば制限はなく、経済性の観点から水が好ましい。単離は、減圧や加圧ろ過、デカンテーション、遠心分離、スプレードライなど適宜選択できる。本洗浄と単離によって、ポリマー(A)をポリアミド粉末に対して0.001質量%未満となるまで除去する。乾燥は、ポリアミド粉末の融点以下で実施するのが好ましく、減圧しても構わない。風乾、熱風乾燥、加熱乾燥、減圧乾燥や凍結乾燥などが選択される。 The polyamide powder can be washed, isolated, and dried by a known method. As a cleaning method for removing deposits and inclusions on the polyamide powder, reslurry cleaning or the like can be used, and heating may be performed as appropriate. The solvent used for washing is not limited as long as it is a solvent that does not dissolve the polyamide powder but dissolves the monomer (B) and the polymer (A), and water is preferable from the viewpoint of economy. Isolation can be appropriately selected from reduced pressure, pressure filtration, decantation, centrifugation, spray drying and the like. By main washing and isolation, the polymer (A) is removed to less than 0.001% by weight based on the polyamide powder. Drying is preferably carried out at a temperature equal to or lower than the melting point of the polyamide powder, and the pressure may be reduced. Air drying, hot air drying, heat drying, vacuum drying, freeze drying, etc. are selected.
 本発明の効果を損なわない範囲で、得られたポリアミド粉末に追加で熱処理を加えても構わない。熱処理の方法としては公知の方法を使用でき、オーブンなどを使用した常圧熱処理、真空乾燥機などを使用した減圧熱処理、オートクレーブなどの圧力容器中で水とともに加熱させる加圧熱処理を適宜選択できる。熱処理をすることで、ポリアミドの分子量や結晶化度、融点を所望の範囲に制御することが可能である。 Additional heat treatment may be applied to the obtained polyamide powder as long as the effects of the present invention are not impaired. As a heat treatment method, a known method can be used, and a normal pressure heat treatment using an oven or the like, a reduced pressure heat treatment using a vacuum dryer or the like, and a pressure heat treatment in which heat treatment is performed together with water in a pressure vessel such as an autoclave can be appropriately selected. By heat treatment, it is possible to control the molecular weight, crystallinity, and melting point of the polyamide within a desired range.
 本発明のポリマー粉末は、粉末床溶融結合方式による3次元造形物の製造に有用な材料である。 The polymer powder of the present invention is a material useful for producing a three-dimensional model by a powder bed fusion bonding method.
 粉末床溶融結合方式積層造形法による造形物の製造は、ポリマー粉末を薄層に展開する薄層形成工程と、この薄層に、造形対象物の断面形状に対応する形状にレーザー光を照射して、ポリマー粉末を結合させる断面形成工程とを順次繰り返す選択式レーザー焼結法、またはポリマー粉末を薄層に展開する薄層形成工程と、この薄層に、造形対象物の断面形状に対応する形状にエネルギー吸収促進剤またはエネルギー吸収抑制剤を印刷する印刷工程と、電磁放射線を用いてポリマー粉末を結合させる断面成形工程とを順次繰り返す選択的吸収(又は抑制)焼結法で粉末床溶融結合方式積層造形物を製造する方法によって行うことができる。選択的吸収(抑制)焼結で用いる電磁放射線としてはポリマー粉末や造形物の品位を損なわないものであればどのようなものであっても良いが、比較的安価で造形に適したエネルギーが得られるため、赤外線が好ましい。また電磁放射線はコヒーレントなものであっても無くとも良い。 Powder bed melt-bonding method The manufacturing of a modeled product by additive manufacturing is a thin layer forming process in which polymer powder is developed into a thin layer, and this thin layer is irradiated with laser light in a shape corresponding to the cross-sectional shape of the object to be modeled. A selective laser sintering method in which the cross-section forming steps of bonding the polymer powders are sequentially repeated, or a thin-layer forming step of developing the polymer powder into a thin layer, and the thin layers correspond to the cross-sectional shape of the object to be modeled. Powder bed melt bonding by selective absorption (or suppression) sintering method in which a printing process of printing an energy absorption promoter or an energy absorption inhibitor on a shape and a cross-sectional forming process of bonding polymer powder using electromagnetic radiation are sequentially repeated. Method This can be done by a method of manufacturing a layered model. The electromagnetic radiation used in the selective absorption (suppression) sintering may be any kind as long as it does not impair the quality of the polymer powder or the modeled object, but it is relatively inexpensive and energy suitable for modeling can be obtained. Therefore, infrared rays are preferable. Also, electromagnetic radiation may or may not be coherent.
 エネルギー吸収促進剤は、電磁放射線を吸収する物質である。このような物質としては、カーボンブラック、炭素繊維、銅ヒドロキシホスフェート、近赤外線吸収性染料、近赤外線吸収性顔料、金属ナノ粒子、ポリチオフェン、ポリ(p-フェニレンスルフィド)、ポリアニリン、ポリ(ピロール)、ポリアセチレン、ポリ(p-フェニレンビニレン)、ポリパラフェニレン、ポリ(スチレンスルホネート)、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンホスホネート)p-ジエチルアミノベンズアルデヒドジフェニルヒドラゾン、又はこれらの組み合わせからなる共役ポリマーなどが例示でき、これらは単体で用いても良く複数組み合わせて用いても良い。 Energy absorption accelerator is a substance that absorbs electromagnetic radiation. Such substances include carbon black, carbon fibers, copper hydroxyphosphate, near-infrared absorbing dyes, near-infrared absorbing pigments, metal nanoparticles, polythiophene, poly (p-phenylene sulfide), polyaniline, poly (pyrrole), etc. Consists of polyacetylene, poly (p-phenylene vinylene), polyparaphenylene, poly (styrene sulfonate), poly (3,4-ethylenedioxythiophene) -poly (styrenephosphonate) p-diethylaminobenzaldehydediphenylhydrazone, or a combination thereof. Examples thereof include conjugated polymers, and these may be used alone or in combination of two or more.
 エネルギー吸収抑制剤は、電磁放射線を吸収しにくい物質である。このような物質としてはチタンなどの粒子電磁放射線を反射する物質、雲母粉末、セラミック粉末などの断熱性の粉末、水などが例示でき、これらは単体で用いても良く複数組み合わせて用いても良い。 Energy absorption inhibitor is a substance that does not easily absorb electromagnetic radiation. Examples of such substances include substances that reflect particle electromagnetic radiation such as titanium, heat insulating powders such as mica powder and ceramic powder, and water, which may be used alone or in combination of two or more. ..
 これら選択的吸収剤または選択的抑制剤はそれぞれ単独で用いても良いし、組み合わせて使用することも可能である。 These selective absorbents or selective inhibitors may be used alone or in combination.
 選択的吸収剤または選択的抑制剤造形対象物の断面形状に対応する形状に印刷する工程においては、インクジェットなどの既知の手法を用いることができる。この場合、選択的吸収剤や選択的抑制剤はそのまま用いても良いし、溶媒中に分散又は溶解して用いてもよい。 Selective absorbent or selective inhibitor In the step of printing into a shape corresponding to the cross-sectional shape of the object to be modeled, a known method such as inkjet can be used. In this case, the selective absorbent or selective inhibitor may be used as it is, or may be dispersed or dissolved in a solvent.
 以下、本発明を実施例に基づき説明する。 Hereinafter, the present invention will be described based on examples.
 (1)D50粒子径およびD90/D10
 日機装株式会社製レーザー回折式粒径分布計測定装置(マイクロトラックMT3300EXII)に、予め100mg程度のポリアミド粉末を5mL程度の脱イオン水で分散させた分散液を測定可能濃度になるまで添加し、測定装置内で30Wにて60秒間の超音波分散を行った後、測定時間10秒で測定される粒径分布の小粒径側からの累積度数が50%となる粒径をD50粒子径とした。粒度分布を示すD90/D10は、上記方法により測定した粒径分布の小粒径側からの累積度数が90%となる粒径(D90)を小粒径側からの累積度数が10%となる粒径(D10)で除した値とした。なお測定時の屈折率は1.52、媒体(脱イオン水)の屈折率は1.333を用いた。
(1) D50 particle size and D90 / D10
To a laser diffraction type particle size distribution meter measuring device (Microtrack MT3300EXII) manufactured by Nikkiso Co., Ltd., a dispersion liquid in which about 100 mg of polyamide powder is previously dispersed in about 5 mL of deionized water is added until it reaches a measurable concentration, and measurement is performed. After ultrasonic dispersion at 30 W for 60 seconds in the apparatus, the particle size at which the cumulative frequency from the small particle size side of the particle size distribution measured in the measurement time of 10 seconds is 50% was defined as the D50 particle size. .. D90 / D10 showing the particle size distribution has a particle size (D90) in which the cumulative frequency from the small particle size side of the particle size distribution measured by the above method is 90%, and the cumulative frequency from the small particle size side is 10%. The value was divided by the particle size (D10). The refractive index at the time of measurement was 1.52, and the refractive index of the medium (deionized water) was 1.333.
 (2)ポリマー粉末の真球度
 ポリアミド粉末の真球度は、走査型電子顕微鏡(日本電子株式会社製、走査型電子顕微鏡:JSM-6301NF)写真から無作為に30個の粒子を観察し、その短径と長径から下記数式に従い算出した。
(2) Sphericality of polymer powder The sphericity of polyamide powder is determined by observing 30 particles at random from a scanning electron microscope (manufactured by JEOL Ltd., scanning electron microscope: JSM-6301NF). It was calculated from the minor axis and the major axis according to the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、S:真球度、a:長径、b:短径、n:測定数30とする。 Note that S: sphericity, a: major axis, b: minor axis, n: number of measurements 30.
 (3)BET比表面積
 日本工業規格(JIS規格)JISR1626(1996)「気体吸着BET法による比表面積の測定方法」に従い、日本ベル製BELSORP-maxを用いて、ポリアミド粉末約0.2gをガラスセルに入れ、80℃で約5時間減圧脱気した後に、液体窒素温度におけるクリプトンガス吸着等温線を測定し、BET法により算出した。
(3) BET specific surface area According to Japanese Industrial Standards (JIS standard) JIS R1626 (1996) "Method of measuring specific surface area by gas adsorption BET method", about 0.2 g of polyamide powder was put into a glass cell using BELSORP-max manufactured by Nippon Bell. After degassing under reduced pressure at 80 ° C. for about 5 hours, the krypton gas adsorption isotherm at the temperature of liquid nitrogen was measured and calculated by the BET method.
 (4)ポリマー粉末の結晶化温度と融点
 TAインスツルメント社製示差走査熱量計(DSCQ20)を用いて、窒素雰囲気下、30℃からポリアミドの融点を示す吸熱ピークから30℃高い温度まで20℃/分の速度で昇温した後に1分間保持し、20℃/分の速度で30℃まで温度を冷却させる際に出現する発熱ピークの頂点を結晶化温度とした。冷却後、さらに20℃/分で昇温した際の吸熱ピークを融点とした。測定に要したポリアミド粉末は、約8mgであった。
(4) Crystallization temperature and melting point of polymer powder Using a differential scanning calorimeter (DSCQ20) manufactured by TA Instruments, the temperature is 20 ° C. from 30 ° C. to a temperature 30 ° C. higher than the heat absorption peak indicating the melting point of polyamide under a nitrogen atmosphere. The crystallization temperature was defined as the peak of the exothermic peak that appeared when the temperature was raised at a rate of / min and then held for 1 minute and the temperature was cooled to 30 ° C. at a rate of 20 ° C./min. The melting point was defined as the endothermic peak when the temperature was further raised at 20 ° C./min after cooling. The amount of polyamide powder required for the measurement was about 8 mg.
 (5)ポリマー粉末を構成するポリアミドの分子量
 ポリアミドの重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリメチルメタクリレートによる校正曲線と対比させて分子量を算出した。測定サンプルは、ポリアミド粉末約3mgをヘキサフルオロイソプロパノール約3gに溶解し調整した。
装置:Waters e-Alliance GPC system
カラム:昭和電工株式会社製HFIP-806M×2
移動相:5mmol/Lトリフルオロ酢酸ナトリウム/ヘキサフルオロイソプロパノール
流速:1.0ml/min
温度:30℃
検出:示差屈折率計。
(5) Molecular Weight of Polyamide Constituting Polymer Powder The molecular weight of the weight average molecular weight of the polyamide was calculated by using a gel permeation chromatography method and comparing it with a calibration curve using polymethylmethacrylate. The measurement sample was prepared by dissolving about 3 mg of polyamide powder in about 3 g of hexafluoroisopropanol.
Equipment: Waters e-Alliance GPC system
Column: Showa Denko HFIP-806M x 2
Mobile phase: 5 mmol / L Sodium trifluoroacetate / Hexafluoroisopropanol Flow rate: 1.0 ml / min
Temperature: 30 ° C
Detection: Differential refractometer.
 (6)ポリマー(A)の分子量
 ポリマー(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて分子量を算出した。測定サンプルは、ポリマー(A)約3mgを水約6gに溶解し調整した。
装置:株式会社島津製作所製 LC-10Aシリーズ
カラム:東ソー株式会社製TSKgelG3000PWXL
移動相:100mmol/L塩化ナトリウム水溶液
流速:0.8ml/min
温度:40℃
検出:示差屈折率計。
(6) Molecular Weight of Polymer (A) The weight average molecular weight of the polymer (A) was calculated by using a gel permeation chromatography method and comparing it with a calibration curve using polyethylene glycol. The measurement sample was prepared by dissolving about 3 mg of the polymer (A) in about 6 g of water.
Equipment: LC-10A series manufactured by Shimadzu Corporation Column: TSKgelG3000PWXL manufactured by Tosoh Corporation
Mobile phase: 100 mmol / L sodium chloride aqueous solution Flow rate: 0.8 ml / min
Temperature: 40 ° C
Detection: Differential refractometer.
 (7)ポリマー(A)の含有率
 ポリアミド粉末1000gに水1000gを加え、80℃に加熱後、水を単離した。水を除去した後に、得られた固形物を水5gに溶解させ、(7)と同様のゲルパーミエーションクロマトグラフィー法を用いポリマー(A)の重量を測定した。ポリマー(A)の重量をポリアミド粉末の量で除することで、ポリマー(A)の含有率(質量%)を算出した。
(7) Content of Polymer (A) 1000 g of water was added to 1000 g of polyamide powder, heated to 80 ° C., and then water was isolated. After removing the water, the obtained solid substance was dissolved in 5 g of water, and the weight of the polymer (A) was measured using the same gel permeation chromatography method as in (7). The content (% by mass) of the polymer (A) was calculated by dividing the weight of the polymer (A) by the amount of the polyamide powder.
 (8)安息角の測定
 セイシン企業製のマルチテスターMT-1を用い、100gのポリアミド粉末をロートから平板上に落下させ、体積した山の斜面と板の角度から測定した。安息角が40度以下であれば「良い」、40度超を「悪い」と評価した。
(8) Measurement of angle of repose Using a multi-tester MT-1 manufactured by Seishin Enterprise, 100 g of polyamide powder was dropped from the funnel onto a flat plate, and the angle of repose was measured from the angle between the volume of the mountain slope and the plate. If the angle of repose was 40 degrees or less, it was evaluated as "good", and if it was over 40 degrees, it was evaluated as "bad".
 (9)造形物の表面粗度
 株式会社キーエンス製光学顕微鏡(VHX-5000)、対物レンズはVH-ZST(ZS-20)を使用し、倍率200倍で造形物の表面を観察した。装置に付属のソフトウェア(システムバージョン1.04)を用い自動合成モードで造形物表面の凹凸を三次元画像化したのち、1mm以上長さにわたって断面の高さプロファイルを取得し、算術平均によって表面粗度Raを計算した。表面粗度Raが小さいほど、表面の平滑性に優れることを示している。なお、Raが10以下を「良い」、10超を「悪い」と評価した。
(9) Surface Roughness of the Modeled Object Using an optical microscope (VHX-5000) manufactured by KEYENCE CORPORATION and an objective lens of VH-ZST (ZS-20), the surface of the modeled object was observed at a magnification of 200 times. After three-dimensional imaging of the unevenness of the surface of the modeled object in the automatic composition mode using the software (system version 1.04) attached to the device, the height profile of the cross section is acquired over a length of 1 mm or more, and the surface is roughened by the arithmetic mean. The degree Ra was calculated. It is shown that the smaller the surface roughness Ra, the better the smoothness of the surface. In addition, Ra of 10 or less was evaluated as "good", and Ra of more than 10 was evaluated as "bad".
 (10)曲げ強度の測定
 ポリマー粉末を使用して作製した三次元造形物の曲げ強度は、粉末床溶融結合方式3Dプリンター(株式会社アスペクト製粉末床溶融結合装置RaFaElII 150C-HT)を使用して幅10mm、長さ80mm、厚さ4mmの試験片を作製し、テンシロン万能試験機(TENSIRON TRG-1250、エー・アンド・デイ社製)を用いて測定した。JIS K7171(2008)に従い、支点間距離64mm、試験速度2mm/分の条件で3点曲げ試験を測定し、曲げ強度を測定した。測定温度は室温(23℃)、測定数はn=5とし、その平均値を求めた。
(10) Measurement of bending strength The bending strength of a three-dimensional model produced using polymer powder is determined by using a powder bed melt-bonding method 3D printer (Aspect Co., Ltd. powder bed melt-bonding device RaFaElII 150C-HT). A test piece having a width of 10 mm, a length of 80 mm, and a thickness of 4 mm was prepared and measured using a Tensilon universal tester (TENSIRON TRG-1250, manufactured by A & D Co., Ltd.). According to JIS K7171 (2008), a three-point bending test was measured under the conditions of a distance between fulcrums of 64 mm and a test speed of 2 mm / min, and the bending strength was measured. The measurement temperature was room temperature (23 ° C.), the number of measurements was n = 5, and the average value was calculated.
 [実施例1]
 3Lのヘリカルリボン型の撹拌翼が付属したオートクレーブに、ポリアミドの単量体(B)としてアミノドデカン酸(和光純薬工業株式会社製)300g、ポリマー(A)としてポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール20,000、重量平均分子量18,600)700g、水1000gを加え均一な溶液を形成後に密封し、窒素で置換した。その後、撹拌速度を30rpmに設定し、温度を210℃まで昇温させた。この際、系の圧力が10kg/cmに達した後、圧が10kg/cmを維持するよう水蒸気を微放圧させながら制御した。温度が210℃に達した後に、0.2kg/cm・分の速度で放圧させた。その後、窒素を流しながら1時間温度を維持し重合を完了させ、ポリマー粉末とポリエチレングリコールの混合物から、ポリエチレングリコールが溶融状態を維持したまま、2000gの水浴に吐出しスラリーを得た。スラリーを撹拌により十分に均質化させた後に、ろ過を行い、ろ上物に水2000gを加え、80℃で洗浄を行った。その後200μmの篩を通過させた凝集物を除いたスラリー液を、再度ろ過して単離したろ上物を80℃で12時間乾燥させ、ポリアミド12粉末を240g作製した。得られた粉末の融点はポリアミド12と同様の178℃、結晶化温度は147℃であり、分子量は12,000であった。D50粒子径は53μm、D90/D10は2.5、真球度は98、ポリエチレングリコールの含有率は0.0006質量%であり、安息角は33度であった。BET比表面積は0.16m/gでR=1.3であった。
[Example 1]
Aminododecanoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 300 g as a polyamide monomer (B) and polyethylene glycol (Wako Pure Chemical Industries, Ltd.) as a polymer (A) in an autoclave with a 3 L helical ribbon type stirring blade. 20,000 primary polyethylene glycol manufactured by the company, 700 g of weight average molecular weight 18,600) and 1000 g of water were added to form a uniform solution, which was then sealed and replaced with nitrogen. Then, the stirring speed was set to 30 rpm and the temperature was raised to 210 ° C. At this time, after the pressure of the system reached 10 kg / cm 2 , the pressure was controlled while slightly releasing water vapor so as to maintain the pressure at 10 kg / cm 2. After the temperature reached 210 ° C., the pressure was released at a rate of 0.2 kg / cm 2 · min. Then, the temperature was maintained for 1 hour while flowing nitrogen to complete the polymerization, and the mixture of the polymer powder and polyethylene glycol was discharged into a water bath of 2000 g while the polyethylene glycol was kept in a molten state to obtain a slurry. After the slurry was sufficiently homogenized by stirring, filtration was performed, 2000 g of water was added to the filter medium, and the slurry was washed at 80 ° C. Then, the slurry liquid from which the agglomerates had been removed by passing through a 200 μm sieve was filtered again, and the isolated filter product was dried at 80 ° C. for 12 hours to prepare 240 g of polyamide 12 powder. The melting point of the obtained powder was 178 ° C., which was the same as that of polyamide 12, the crystallization temperature was 147 ° C., and the molecular weight was 12,000. The D50 particle size was 53 μm, the D90 / D10 was 2.5, the sphericity was 98, the polyethylene glycol content was 0.0006% by mass, and the angle of repose was 33 degrees. The BET specific surface area was 0.16 m 2 / g and R = 1.3.
 本ポリアミド粉末1.5kgを用いて、株式会社アスペクト製粉末床溶融結合装置(RaFaElII 150C-HT)を使用し、立体造形物の製造を行った。設定条件は0.1mmの層平均厚み、60WCOレーザーを使用し、レーザー走査スペースを0.1mmとした。温度設定は、部品床温度を融点より-15℃、供給槽温度を結晶化温度-5℃とした。得られた造形物の表面粗度Raは9μm、造形物の曲げ強度は63MPa、造形物の外観はボイドなど無く良好であった。特性を表1に示す。 Using 1.5 kg of this polyamide powder, a three-dimensional model was manufactured using a powder bed fusion coupling device (RaFaElII 150C-HT) manufactured by Aspect Co., Ltd. The setting conditions were a layer average thickness of 0.1 mm, a 60 WCO 2 laser, and a laser scanning space of 0.1 mm. The temperature was set so that the component floor temperature was −15 ° C. from the melting point and the supply tank temperature was the crystallization temperature −5 ° C. The surface roughness Ra of the obtained modeled product was 9 μm, the bending strength of the modeled product was 63 MPa, and the appearance of the modeled product was good with no voids. The characteristics are shown in Table 1.
 [実施例2]
 ポリアミドの単量体(B)としてアミノドデカン酸を200g、ポリマー(A)として分子量の異なるポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール6,000、分子量7,700)800gに変更した以外は実施例1と同様の方法でポリアミド12粉末を作製した。得られた粉末および造形物の特性を表1に示す。該ポリアミド12粉末の走査型電子顕微鏡写真を図1に示す。
[Example 2]
The polyamide monomer (B) was changed to 200 g of aminododecanoic acid, and the polymer (A) was changed to 800 g of polyethylene glycol having a different molecular weight (primary polyethylene glycol manufactured by Wako Pure Chemical Industries, Ltd., 6,000, molecular weight 7,700). Polyamide 12 powder was prepared in the same manner as in Example 1 except for the above. Table 1 shows the characteristics of the obtained powder and the modeled product. A scanning electron micrograph of the polyamide 12 powder is shown in FIG.
 [実施例3]
 ポリアミドの単量体(B)としてアミノドデカン酸を100g、ポリマー(A)として分子量の異なるポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール2,000、分子量2,300)900gに変更した以外は実施例1と同様の方法でポリアミド12粉末を作製した。得られた粉末および造形物の特性を表1に示す。
[Example 3]
The polyamide monomer (B) was changed to 100 g of aminododecanoic acid, and the polymer (A) was changed to 900 g of polyethylene glycol having a different molecular weight (primary polyethylene glycol manufactured by Wako Pure Chemical Industries, Ltd., 2,000, molecular weight 2,300). Polyamide 12 powder was prepared in the same manner as in Example 1 except for the above. Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例4]
 ポリアミドの単量体(B)としてアミノドデカン酸をアミノウンデカン酸に変更した以外は実施例2と同様の方法でポリアミド11粉末を作製した。得られた粉末および造形物の特性を表1に示す。
[Example 4]
Polyamide 11 powder was prepared in the same manner as in Example 2 except that aminododecanoic acid was changed to aminoundecanoic acid as the polyamide monomer (B). Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例5]
 ポリアミドの単量体(B)としてアミノドデカン酸をアミノヘキサン酸に変更した以外は実施例2と同様の方法でポリアミド6粉末を作製した。得られた粉末および造形物の特性を表1に示す。該ポリアミド6粉末の走査型電子顕微鏡写真を図2に示す。
[Example 5]
Polyamide 6 powder was prepared in the same manner as in Example 2 except that aminododecanoic acid was changed to aminocaproic acid as the polyamide monomer (B). Table 1 shows the characteristics of the obtained powder and the modeled product. A scanning electron micrograph of the polyamide 6 powder is shown in FIG.
 [実施例6]
 ポリアミドの単量体(B)としてアミノドデカン酸をアジピン酸90g(東京化成工業株式会社製)、ヘキサメチレンジアミン50%水溶液110g(東京化成工業株式会社製)、重合温度を230℃に変更した以外は実施例2と同様の方法でポリアミド66粉末を作製した。得られた粉末および造形物の特性を表1に示す。
[Example 6]
Adipic acid 90 g (manufactured by Tokyo Kasei Kogyo Co., Ltd.), hexamethylenediamine 50% aqueous solution 110 g (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as the polyamide monomer (B), and the polymerization temperature was changed to 230 ° C. Made a polyamide 66 powder in the same manner as in Example 2. Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例7]
 ポリアミドの単量体(B)としてアミノドデカン酸をセバシン酸108g(東京化成工業株式会社製)、ジアミノデカン92g(東京化成工業株式会社製)に変更した以外は実施例2と同様の方法でポリアミド1010粉末を作製した。得られた粉末および造形物の特性を表1に示す。
[Example 7]
Polyamide in the same manner as in Example 2 except that aminododecanoic acid was changed to 108 g of sebacic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 92 g of diaminodecane (manufactured by Tokyo Chemical Industry Co., Ltd.) as the monomer (B) of the polyamide. 1010 powder was prepared. Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例8]
 ポリアミドの単量体(B)としてアミノドデカン酸をドデカン二酸86g (東京化成工業株式会社製)、ジアミノデカン114g(東京化成工業株式会社製)に変更した以外は実施例2と同様の方法でポリアミド1012粉末を作製した。得られた粉末および造形物の特性を表1に示す。
[Example 8]
The same method as in Example 2 except that aminododecanoic acid was changed to 86 g of dodecane diic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 114 g of diaminodecane (manufactured by Tokyo Chemical Industry Co., Ltd.) as the monomer (B) of the polyamide. Polyamide 1012 powder was prepared. Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例9]
 実施例2と同様の方法で作製したポリアミド12粉末100質量部に対し、フィラーとして平均粒径170nmのトリメチルシリル化非晶質シリカ(信越化学工業株式会社製X-24-9500)を0.05質量部添加した。得られた粉末および造形物の特性を表1に示す。
[Example 9]
To 100 parts by mass of the polyamide 12 powder produced by the same method as in Example 2, 0.05 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm was added as a filler. Partially added. Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例10]
 実施例5と同様の方法で作製したポリアミド6粉末100質量部に対し、フィラーとして平均粒径170nmのトリメチルシリル化非晶質シリカ(信越化学工業株式会社製X-24-9500)を0.05質量部添加した。得られた粉末および造形物の特性を表1に示す。
[Example 10]
0.05 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5. Partially added. Table 1 shows the characteristics of the obtained powder and the modeled product.
 [実施例11]
 実施例5と同様の方法で作製したポリアミド6粉末100質量部に対し、フィラーとして平均粒径170nmのトリメチルシリル化非晶質シリカ(信越化学工業株式会社製X-24-9500)を0.08質量部添加した。得られた粉末および造形物の特性を表2に示す。
[Example 11]
0.08 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5. Partially added. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例12]
 実施例5と同様の方法で作製したポリアミド6粉末100質量部に対し、フィラーとして平均粒径170nmのトリメチルシリル化非晶質シリカ(信越化学工業株式会社製X-24-9500)を0.4質量部添加した。得られた粉末および造形物の特性を表2に示す。
[Example 12]
0.4 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5. Partially added. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例13]
 実施例5と同様の方法で作製したポリアミド6粉末100質量部に対し、フィラーとして平均粒径500nmのα‐アルミナ(富士フィルム和光純薬株式会社製)を0.8質量部添加した。得られた粉末および造形物の特性を表2に示す。
[Example 13]
To 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5, 0.8 parts by mass of α-alumina (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having an average particle size of 500 nm was added as a filler. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例14]
 実施例5と同様の方法で作製したポリアミド6粉末100質量部に対し、フィラーとして平均粒径1μmのα‐アルミナ(富士フィルム和光純薬株式会社製)を2.5質量部添加した。得られた粉末および造形物の特性を表2に示す。
[Example 14]
To 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 5, 2.5 parts by mass of α-alumina (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) having an average particle size of 1 μm was added as a filler. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例15]
 オートクレーブにポリアミドの単量体(B)としてアミノヘキサン酸198g、ポリマー(A)としてポリエチレングリコール800g、水1000gに加え、安息香酸(富士フィルム和光純薬株式会社製)2gを配合させた以外は実施例5と同様の方法でポリアミド6粉末を作製した。得られた粉末および造形物の特性を表2に示す。
[Example 15]
Conducted except that 198 g of aminohexanoic acid as the polyamide monomer (B), 800 g of polyethylene glycol as the polymer (A), 1000 g of water, and 2 g of benzoic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added to the autoclave. Polyamide 6 powder was prepared in the same manner as in Example 5. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例16]
 オートクレーブにポリアミドの単量体(B)としてアミノヘキサン酸198.6g、ポリマー(A)としてポリエチレングリコール800g、水1000gに加え、酸化防止剤としてIRGANOX1098(BASFジャパン株式会社製)1.4gを配合させた以外は実施例5と同様の方法でポリアミド6粉末を作製した。得られた粉末および造形物の特性を表2に示す。
[Example 16]
In an autoclave, 198.6 g of aminohexanoic acid as a polyamide monomer (B), 800 g of polyethylene glycol as a polymer (A), 1000 g of water, and 1.4 g of IRGANOX1098 (manufactured by BASF Japan Co., Ltd.) as an antioxidant are blended. Polyamide 6 powder was prepared in the same manner as in Example 5 except for the above. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例17]
 実施例15と同様の方法で作製したポリアミド6粉末100質量部に対し、フィラーとして平均粒径170nmのトリメチルシリル化非晶質シリカ(信越化学工業株式会社製X-24-9500)を0.08質量部添加した。得られた粉末および造形物の特性を表2に示す。
[Example 17]
0.08 mass by mass of trimethylsilylated amorphous silica (X-24-9500 manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 170 nm as a filler with respect to 100 parts by mass of the polyamide 6 powder produced by the same method as in Example 15. Partially added. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [実施例18]
 ポリアミドの単量体(B)としてアミノヘキサン酸をε-カプロラクタムに変更した以外は実施例10と同様の方法でポリアミド6粉末を作製した。得られた粉末および造形物の特性を表2に示す。
[Example 18]
Polyamide 6 powder was prepared in the same manner as in Example 10 except that aminohexanoic acid was changed to ε-caprolactam as the polyamide monomer (B). Table 2 shows the characteristics of the obtained powder and the modeled product.
 [比較例1]
 ポリアミドの単量体(B)としてアミノドデカン酸を400g、ポリマー(A)として分子量の異なるポリエチレングリコール(アルドリッチ製ポリエチレンオキサイド100,000、重量平均分子量89,000)600gに変更した以外は実施例1と同様の方法でポリアミド12粉末を作製した。得られた粉末および造形物の特性を表2に示す。
[Comparative Example 1]
Example 1 except that the polyamide monomer (B) was changed to 400 g of aminododecanoic acid and the polymer (A) was changed to 600 g of polyethylene glycol having a different molecular weight (polyethylene oxide 100,000 made by Aldrich, weight average molecular weight 89,000). Polyamide 12 powder was prepared in the same manner as in the above. Table 2 shows the characteristics of the obtained powder and the modeled product.
 [比較例2]
 ポリアミド12(‘VESTAMID’(登録商標)L1600)50g、ポリエチレングリコール(アルドリッチ製ポリエチレンオキサイド100,000、重量平均分子量89,000)150gをラボプラストミル(東洋精機製)で、温度192℃、スクリュー回転数50rpmにて溶融混練し、得られた混合物を水3.6Lに溶解させた。この分散液から濾別し、水で複数回洗浄した粉末を80℃で6時間乾燥した。得られた粉末および造形物の特性を表2に示す。
[比較例3]
 国際公開WO2018/207728号公報の実施例1に記載されたものと同様に、重合終了後のポリアミド粉末とポリマー(A)の混合物を冷却により固化させた後にポリアミド粉末を単離する方法でポリアミド6粉末を作製した。得られた粉末はポリエチレングリコールを0.0326%含有し、安息角は51度と流動性が低く、粉末床溶融結合装置による3次元造形物の造形はできなかった。
[Comparative Example 2]
Polyamide 12 ('VESTAMID'® L1600) 50 g, polyethylene glycol (Aldrich polyethylene oxide 100,000, weight average molecular weight 89,000) 150 g in a laboplast mill (manufactured by Toyo Seiki) at a temperature of 192 ° C., screw rotation It was melt-kneaded at several 50 rpm, and the obtained mixture was dissolved in 3.6 L of water. The powder was separated by filtration from this dispersion, washed with water multiple times, and dried at 80 ° C. for 6 hours. Table 2 shows the characteristics of the obtained powder and the modeled product.
[Comparative Example 3]
Polyamide 6 is a method of isolating the polyamide powder after solidifying the mixture of the polyamide powder and the polymer (A) after completion of polymerization by cooling in the same manner as described in Example 1 of WO2018 / 207728. A powder was prepared. The obtained powder contained 0.0326% of polyethylene glycol, had an angle of repose of 51 degrees and had low fluidity, and could not form a three-dimensional model by a powder bed fusion bonding device.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のポリマー粉末は、高い流動性を有し、該ポリアミド粉末を用いて造形物とした際に優れた表面平滑性を得ることができるため、粉末床溶融結合方式によって作製される3次元造形物に好適に用いることができる。 Since the polymer powder of the present invention has high fluidity and excellent surface smoothness can be obtained when the polyamide powder is used as a model, it is a three-dimensional model produced by a powder bed fusion bonding method. It can be suitably used for objects.

Claims (13)

  1. 粉末床溶融結合方式によって3次元造形物を製造するためのポリマー粉末であって、前記ポリマー粉末とは、ポリアミドから構成され、D50粒子径が1~100μm、真球度が80以上、重量平均分子量が20,000以下のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体からなる群より選ばれる1以上のポリマー(A)をポリマー粉末に対して0.001質量%未満含有することを特徴とする、3次元造形物を製造するためのポリマー粉末。 A polymer powder for producing a three-dimensional model by a powder bed melt bonding method. The polymer powder is composed of polyamide, has a D50 particle size of 1 to 100 μm, a sphericity of 80 or more, and a weight average molecular weight. One or more polymers (A) selected from the group consisting of polyethylene glycols, polypropylene glycols, polytetramethylene glycols, polyethylene glycol-polypropylene glycol copolymers, and alkyl ethers having an amount of 20,000 or less are applied to the polymer powder. A polymer powder for producing a three-dimensional molded product, which comprises less than 0.001% by mass.
  2. 前記ポリマー粉末の真球度が90以上であることを特徴とする、請求項1に記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing a three-dimensional model according to claim 1, wherein the polymer powder has a sphericity of 90 or more.
  3. 前記ポリマー粉末の粒度分布を示すD90/D10が3未満であることを特徴とする、請求項1または2に記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing a three-dimensional model according to claim 1 or 2, wherein D90 / D10 indicating the particle size distribution of the polymer powder is less than 3.
  4. 前記ポリマー粉末が有機溶媒を含まないことを特徴とする、請求項1~3のいずれかに記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing a three-dimensional model according to any one of claims 1 to 3, wherein the polymer powder does not contain an organic solvent.
  5. 前記ポリマー粉末のBET比表面積と数平均粒子径から算出される理論表面積の比が5以下であることを特徴とする、請求項1~4のいずれかに記載の3次元造形物を製造するためのポリマー粉末。 The three-dimensional model according to any one of claims 1 to 4, wherein the ratio of the theoretical surface area calculated from the BET specific surface area and the number average particle diameter of the polymer powder is 5 or less. Polymer powder.
  6.  前記ポリマー粉末がフィラーを含むことを特徴とする、請求項1~5のいずれかに記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing a three-dimensional model according to any one of claims 1 to 5, wherein the polymer powder contains a filler.
  7. 前記フィラーがシリカであることを特徴とする、請求項6に記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing the three-dimensional model according to claim 6, wherein the filler is silica.
  8. 前記ポリマー粉末100質量部に対し、フィラーを0.01質量部超5質量部未満含むことを特徴とする、請求項6または7に記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing a three-dimensional model according to claim 6 or 7, wherein the filler is contained in an amount of more than 0.01 parts by mass and less than 5 parts by mass with respect to 100 parts by mass of the polymer powder.
  9. 前記ポリマーが、ポリアミド6、ポリアミド66、またはその共重合体を含むことを特徴とする、請求項1~8のいずれかに記載の3次元造形物を製造するためのポリマー粉末。 The polymer powder for producing a three-dimensional model according to any one of claims 1 to 8, wherein the polymer contains polyamide 6, polyamide 66, or a copolymer thereof.
  10. 前記ポリマーが、ポリアミド11、ポリアミド12、ポリアミド1010、ポリアミド1012、またはその共重合体を含むことを特徴とする、請求項1~8のいずれかに記載の3次元造形物を製造するためのポリマー粉末。 The polymer for producing a three-dimensional model according to any one of claims 1 to 8, wherein the polymer contains a polyamide 11, a polyamide 12, a polyamide 1010, a polyamide 1012, or a copolymer thereof. Powder.
  11. 請求項1~10のいずれかに記載のポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法。 A method for producing a three-dimensional model by a powder bed melt-bonding method using the polymer powder according to any one of claims 1 to 10.
  12. 請求項1~10のいずれかに記載のポリマー粉末を用いて粉末床溶融結合方式によって得られた3次元造形物。 A three-dimensional model obtained by a powder bed melt-bonding method using the polymer powder according to any one of claims 1 to 10.
  13. ポリアミドの単量体(B)をポリマー(A)の存在下、得られるポリアミドの結晶化温度以上で重合しポリアミドから構成されるポリマー粉末を製造する方法であって、重合終了後のポリマー粉末とポリマー(A)の混合物から、ポリマー(A)が溶融または溶液状態を維持したまま、ポリマー粉末を単離することを特徴とするポリアミド粉末の製造方法。 A method for producing a polymer powder composed of polyamide by polymerizing a polyamide monomer (B) in the presence of a polymer (A) at a temperature equal to or higher than the crystallization temperature of the obtained polyamide. A method for producing a polyamide powder, which comprises isolating a polymer powder from a mixture of the polymer (A) while maintaining the molten or solution state of the polymer (A).
PCT/JP2020/040805 2019-11-05 2020-10-30 Polymer powder for producing 3-dimensional model, method for producing 3-dimensional modeled object through powder bed melt bonding method using polymer powder, and 3-dimensional modeled object WO2021090768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020567627A JPWO2021090768A1 (en) 2019-11-05 2020-10-30

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019200493 2019-11-05
JP2019-200493 2019-11-05
JP2020-009350 2020-01-23
JP2020009350 2020-01-23
JP2020-106812 2020-06-22
JP2020106812 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021090768A1 true WO2021090768A1 (en) 2021-05-14

Family

ID=75848258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040805 WO2021090768A1 (en) 2019-11-05 2020-10-30 Polymer powder for producing 3-dimensional model, method for producing 3-dimensional modeled object through powder bed melt bonding method using polymer powder, and 3-dimensional modeled object

Country Status (2)

Country Link
JP (1) JPWO2021090768A1 (en)
WO (1) WO2021090768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286824A1 (en) * 2021-07-15 2023-01-19 東レ株式会社 Powder composition, method for producing three-dimensionally shaped article by powder bed melt bonding process using powder composition, and three-dimensionally shaped article
JP7457925B2 (en) 2021-07-15 2024-03-29 東レ株式会社 Powder composition, method for producing a three-dimensional object by powder bed fusion bonding method using the powder composition, and three-dimensional object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191760A1 (en) * 2016-05-06 2017-11-09 コニカミノルタ株式会社 Method for manufacturing nylon-6 particles and method for manufacturing three-dimensional molded article
WO2018207728A1 (en) * 2017-05-12 2018-11-15 東レ株式会社 Method for producing polyamide fine particles, and polyamide fine particles
JP2018196983A (en) * 2016-07-22 2018-12-13 株式会社リコー Resin powder for solid fabrication, device for manufacturing solid fabrication object, and method of manufacturing solid fabrication object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191760A1 (en) * 2016-05-06 2017-11-09 コニカミノルタ株式会社 Method for manufacturing nylon-6 particles and method for manufacturing three-dimensional molded article
JP2018196983A (en) * 2016-07-22 2018-12-13 株式会社リコー Resin powder for solid fabrication, device for manufacturing solid fabrication object, and method of manufacturing solid fabrication object
WO2018207728A1 (en) * 2017-05-12 2018-11-15 東レ株式会社 Method for producing polyamide fine particles, and polyamide fine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286824A1 (en) * 2021-07-15 2023-01-19 東レ株式会社 Powder composition, method for producing three-dimensionally shaped article by powder bed melt bonding process using powder composition, and three-dimensionally shaped article
JP7457925B2 (en) 2021-07-15 2024-03-29 東レ株式会社 Powder composition, method for producing a three-dimensional object by powder bed fusion bonding method using the powder composition, and three-dimensional object

Also Published As

Publication number Publication date
JPWO2021090768A1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
JP6756390B2 (en) Polyamide fine particles
JP6256818B2 (en) Polyarylene sulfide resin powder and method for producing the same
WO2021090768A1 (en) Polymer powder for producing 3-dimensional model, method for producing 3-dimensional modeled object through powder bed melt bonding method using polymer powder, and 3-dimensional modeled object
TW200806710A (en) Polymer powder with block polyetheramide, use in a shaping process, and moldings produced from this polymer powder
JP6773051B2 (en) Powder sintering method Method for manufacturing polyallylen sulfide resin powder and granular material mixture for 3D printer and three-dimensional model
JP2022001432A (en) Polymer powder used in powder bed melt bonding method and method for producing three-dimensional molded object
WO2022181633A1 (en) Polymer powder, method for producing same and method for producing 3-dimensional model object
JP6702516B1 (en) Method for producing fine polyamide particles, and fine polyamide particles
US20240140026A1 (en) Method of manufacturing 3-dimensional model object using resin granular material, 3-dimensional model object and resin granular material
WO2022181634A1 (en) Method for manufacturing three-dimensionally shaped article using resin granular material, three-dimensionally shaped article, and resin granular material
WO2024043029A1 (en) Polymer particles and polymer particle composition for producing three-dimensional shaped article, production method for polymer particles, and three-dimensional shaped article and production method therefor
JP2023551616A (en) Powder compositions based on PAEK(s), sintered construction processes and objects derived therefrom
JP2024007383A (en) Polymer particle and polymer particle composition for producing three-dimensional molded object, and three-dimensional molded object
WO2023286824A1 (en) Powder composition, method for producing three-dimensionally shaped article by powder bed melt bonding process using powder composition, and three-dimensionally shaped article
CN116887973A (en) Method for producing three-dimensional molded article using resin powder, three-dimensional molded article, and resin powder
JP7457925B2 (en) Powder composition, method for producing a three-dimensional object by powder bed fusion bonding method using the powder composition, and three-dimensional object
CN116887972A (en) Polymer powder, method for producing same, and method for producing 3-dimensional molded article
JP2023013967A (en) Powder composition, method for manufacturing three-dimensional molding by powder bed melting bonding method using the same, and three-dimensional molding
RU2771710C2 (en) Method for producing fine polyamide particles, and fine polyamide particles
JP2022129658A (en) Thermoplastic resin particle, and method for manufacturing three-dimensional object by powder bed fusion coupling system using the same
JP2024035214A (en) Powder composition, method for producing a three-dimensional object by powder bed fusion bonding method using the powder composition, and three-dimensional object
CN117642274A (en) Powder composition, method for producing three-dimensional shaped article by powder bed fusion using powder composition, and three-dimensional shaped article
JP2021091861A (en) Method for producing polyamide fine particles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020567627

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884290

Country of ref document: EP

Kind code of ref document: A1