WO2021090742A1 - Aerosol for metered spraying for space treatment - Google Patents

Aerosol for metered spraying for space treatment Download PDF

Info

Publication number
WO2021090742A1
WO2021090742A1 PCT/JP2020/040410 JP2020040410W WO2021090742A1 WO 2021090742 A1 WO2021090742 A1 WO 2021090742A1 JP 2020040410 W JP2020040410 W JP 2020040410W WO 2021090742 A1 WO2021090742 A1 WO 2021090742A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
aerosol
pressure
quantitative
resistant container
Prior art date
Application number
PCT/JP2020/040410
Other languages
French (fr)
Japanese (ja)
Inventor
悠耶 原田
洋子 小林
由美 川尻
中山 幸治
Original Assignee
大日本除蟲菊株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本除蟲菊株式会社 filed Critical 大日本除蟲菊株式会社
Priority to CN202080073930.3A priority Critical patent/CN114599226B/en
Priority to JP2021545415A priority patent/JP7427009B2/en
Publication of WO2021090742A1 publication Critical patent/WO2021090742A1/en
Priority to JP2022067000A priority patent/JP2022103175A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0025Mechanical sprayers
    • A01M7/0032Pressure sprayers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/005Special arrangements or adaptations of the spraying or distributing parts, e.g. adaptations or mounting of the spray booms, mounting of the nozzles, protection shields
    • A01M7/006Mounting of the nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/20Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operated by manual action, e.g. button-type actuator or actuator caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/28Nozzles, nozzle fittings or accessories specially adapted therefor
    • B65D83/30Nozzles, nozzle fittings or accessories specially adapted therefor for guiding the flow of spray, e.g. funnels, hoods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/32Dip-tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/44Valves specially adapted therefor; Regulating devices
    • B65D83/52Valves specially adapted therefor; Regulating devices for metering

Definitions

  • the present invention relates to a pressure-resistant container provided with a fixed-quantity injection valve, an actuator provided with an injection port connected to the fixed-quantity injection valve, and a dip tube.
  • the fixed-quantity injection aerosol that can spray a certain amount of chemicals by one injection is a fixed-quantity injection aerosol for coating that locally treats gaps, etc., a fixed-quantity injection aerosol for direct impact that directly injects into an object, and a space. It is classified as a quantitative injection aerosol for spatial treatment where the drug spreads.
  • Patent Document 1 there is an extremely useful quantitative injection aerosol for spatial treatment (see Patent Document 1) that is effective not only for crawling pests and indoor dust mites but also for flying pests on the day of spraying.
  • Patent Document 1 Based on the recognition that the quantitative injection aerosol for spatial treatment is efficient in easily treating the entire room with the drug, the present inventors have conducted various studies to improve the injection efficiency and efficacy of the drug. As a result, it was found that the quantitative injection aerosol for spatial treatment improves the diffusivity of the drug by spraying the drug diagonally upward with respect to the horizontal plane.
  • the injection shaft of the injection port is to be sprayed diagonally upward with respect to the horizontal plane.
  • the aerosol can is tilted diagonally with respect to the horizontal plane so that the aerosol can be directed diagonally upward.
  • Patent Document 1 it is not recognized that injection defects may occur when spraying diagonally upward, and no countermeasure is taken for such a problem.
  • the present invention has been made in view of the above problems, and it is possible to uniformly diffuse the chemicals in the spatial treatment method for pests, particularly crawling pests and indoor dust mites, and the occurrence of injection defects. It is an object of the present invention to provide a quantitative injection aerosol for spatial treatment capable of suppressing.
  • a pressure-resistant container provided with a fixed-quantity injection valve in which an aerosol stock solution containing a control component and a propellant are sealed, an actuator provided with an injection port connected to the fixed-quantity injection valve, the aerosol stock solution and the propellant.
  • a fixed-quantity injection aerosol for spatial treatment provided with a dip tube for supplying the fixed-quantity injection valve. The tip of the dip tube is located at a height of 6 mm or less from the bottom of the pressure resistant container.
  • the present inventor has conducted various studies on the injection direction of the quantitative injection aerosol for spatial treatment, and found that when the chemical is sprayed on the horizontal plane toward an obliquely upward direction of 30 to 60 °, the chemical is applied to the treatment space. It was found that the diffusion becomes uniform and the treatment can be performed efficiently.
  • the spatial treatment quantitative injection aerosol of this configuration when the tip of the dip tube of the spatial treatment quantitative injection aerosol is located at a height of 6 mm or less from the bottom of the pressure-resistant container and the pressure-resistant container is placed on a horizontal surface.
  • the control component suitable for controlling pests is set so that the injection shaft of the injection port is 30 to 60 ° with respect to the horizontal plane.
  • the tip of the dip tube is located at a height of 6 mm or less from the bottom of the pressure-resistant container, so that the aerosol stock solution and the propellant are quantitatively sprayed. Since it is reliably supplied to the valve, the injection state can be maintained well.
  • control component preferably contains a non-volatile control component having a vapor pressure of less than 1 ⁇ 10 -4 mmHg at 30 ° C.
  • crawling pests and indoor dust mites can be suitably controlled.
  • the control component preferably contains a volatilization control component having a vapor pressure of 2 ⁇ 10 -4 to 1 ⁇ 10 ⁇ 2 mmHg at 30 ° C.
  • flying pests can be suitably controlled, and in addition, crawling pests and indoor dust mites can also be controlled.
  • control components are a refractory control component having a vapor pressure of less than 1 ⁇ 10 -4 mmHg at 30 ° C. and a volatilization control component having a vapor pressure of 2 ⁇ 10 -4 to 1 ⁇ 10 ⁇ 2 mmHg at 30 ° C. It is preferable to contain an ingredient.
  • the injection shaft of the injection port preferably has an elevation angle of 15 to 50 ° with respect to the horizontal plane.
  • the injection shaft of the injection port of the spatial treatment quantitative injection aerosol forms an elevation angle of 15 to 50 ° with respect to the horizontal plane, so that the injection port is injected with respect to the horizontal plane.
  • the shaft is injected so as to be 30 to 60 °, the angle at which the pressure-resistant container is tilted is suppressed, so that the occurrence of injection defects is suppressed and a stable injection state can be maintained.
  • the tip of the dip tube is preferably located at a height of 3 mm or less from the bottom of the pressure resistant container.
  • the pressure-resistant container is injected at a slight angle with respect to the horizontal plane.
  • the aerosol stock solution and the propellant can be reliably supplied to the fixed-quantity injection valve, and the occurrence of injection defects can be suppressed.
  • the injection force at an injection distance of 5 cm is set to 5 to 50 gf.
  • the injected aerosol stock solution is subjected to an exposed surface in the treatment space (for example, in the treatment space).
  • the treatment space for example, in the treatment space.
  • Floor surface, wall surface, surface of structures such as furniture, etc. especially the entire floor surface, which is uniformly settled and adhered to, and is practically sufficient for controlling flying pests, pests, and indoor dust mites. It can be effective.
  • the dip tube is preferably configured to be bendable inside the pressure resistant container.
  • the dip tube is configured to be bendable inside the pressure-resistant container. Therefore, by appropriately bending the dip tube, the tip thereof can be positioned at an appropriate position in the pressure-resistant container. Can be easily placed in.
  • FIG. 1 is a cross-sectional view of a quantitative injection aerosol for spatial treatment according to the present invention.
  • FIG. 2 is an explanatory diagram showing (a) an elevation angle of an injection port (injection shaft) and (b) an injection direction in a quantitative injection aerosol for spatial processing.
  • FIG. 3 is an enlarged cross-sectional view of the tip of the dip tube of the quantitative injection aerosol for spatial treatment.
  • FIG. 1 is a cross-sectional view of the quantitative injection aerosol 100 for spatial treatment of the present invention.
  • the fixed-quantity injection aerosol 100 for space treatment is provided with a pressure-resistant container 10 provided with a fixed-quantity injection valve 12 in which an aerosol stock solution containing a control component and a propellant are sealed, and an injection port 21 connected to the fixed-quantity injection valve 12.
  • the actuator 20 is provided with a dip tube 30 that supplies the aerosol stock solution and the propellant to the metering valve 12, and by spatial treatment, flying pests such as mosquitoes and flies, pests such as cockroaches, indoor dust mites, etc. It is used to control pests.
  • the pressure-resistant container 10 includes a storage unit 11 in which the aerosol stock solution and the propellant are stored, and a fixed-quantity injection valve 12 assembled at the mouth of the storage unit 11.
  • the storage portion 11 has a bottomed cylindrical shape or a bottomed substantially cylindrical shape, and is formed of a resin such as polyethylene terephthalate or a metal such as aluminum or tin.
  • the appearance of the storage unit 11 may be transparent, translucent, or opaque.
  • the shape of the bottom may be upright, and examples thereof include a flat shape, a concave shape, and five petal-like shapes.
  • the outer surface of the storage portion 11 is provided with a display for the user to recognize that the dip tube 30 is curved and the opposite side in the direction toward the tip 30a is the front surface.
  • a display indicating the front direction F is printed at the position P on the outer surface of the storage unit 11.
  • the display indicating the front direction F can be, for example, a character or a design, but if the design matches the pattern printed on the actuator 20 when the injection port 21 is directed to the front direction F, the display can be used. The user can be made to recognize the front direction F without impairing the design.
  • the front direction F is a direction in which the injection port 21 is preferably directed at the time of use, and is a direction opposite to the bending direction of the dip tube 30 described later.
  • the pressure-resistant container 10 is tilted slightly upward with respect to the horizontal plane H even when the amount of inclusions is small in the later stage of use of the spatial treatment quantitative injection aerosol 100.
  • the aerosol stock solution and the propellant will be accumulated in the vicinity of the tip 30a of the dip tube 30.
  • the quantitative injection aerosol 100 for spatial treatment is injected, the aerosol stock solution and the propellant are sucked up well by the dip tube 30, and the occurrence of injection defects can be suppressed.
  • injection failure means a state in which the capacity actually injected by one operation of the actuator 20 is less than 85% of the injection capacity of the fixed quantity injection valve 12.
  • the storage unit 11 is made of a transparent or translucent resin, it is preferable that the storage unit 11 is further printed with a horizontal display such as a border pattern.
  • the horizontal display is provided to prevent excessive tilting that causes injection failure when the quantitative injection aerosol 100 for spatial treatment is injected. With such a horizontal display, the user psychologically tries to adjust the liquid level of the aerosol stock solution inside the storage unit 11 to the horizontal display, so that the quantitative injection aerosol 100 for spatial treatment is used in an appropriate posture. be able to.
  • the fixed-quantity injection valve 12 is attached to the mouth of the storage unit 11, is connected to the actuator 20 on the outside of the pressure-resistant container 10, and is connected to the dip tube 30 on the inside of the pressure-resistant container 10.
  • the metering-quantity injection valve 12 has a valve mechanism (not shown), and is usually set so that the injection capacity per injection is 0.2 to 5.0 mL.
  • the actuator 20 is an operating unit for injecting the aerosol stock solution, and the actuator 20 is provided with an injection port 21 which is connected to the metering injection valve 12 and ejects the aerosol stock solution from the pressure resistant container 10 to the outside.
  • the angle of the injection port 21 will be described.
  • FIG. 2 is an explanatory diagram showing (a) an elevation angle of an injection port (injection shaft) and (b) an injection direction in the quantitative injection aerosol 100 for spatial processing.
  • the angle of the injection shaft O of the injection port with respect to the horizontal plane H when the pressure-resistant container 10 is placed on the horizontal plane H is defined as an elevation angle D (FIG. 2A), and the quantitative injection aerosol 100 for spatial treatment is actually used.
  • the angle of the injection shaft O of the injection port with respect to the horizontal plane H when the aerosol stock solution is injected toward the space is defined as the injection direction angle E (FIG. 2B). Therefore, the elevation angle D is basically an angle peculiar to the quantitative injection aerosol 100 for spatial processing, and the injection direction angle E is an angle that varies depending on the injection posture.
  • the elevation angle D of the injection shaft O with respect to the horizontal plane H is set to 10 to 60 °, and is set to 15 to 50 °. Is preferable.
  • the aerosol stock solution can be easily injected toward the vicinity of diagonally upward 30 to 60 ° (that is, the injection direction angle E is 30 to 60 °).
  • the elevation angle D is less than 10 °, it is necessary to excessively tilt the pressure-resistant container 10 in order to inject the aerosol stock solution obliquely upward to the vicinity of 30 to 60 ° with respect to the horizontal plane H, and thus the pressure-resistant container 10 is tilted. If the injection is performed at an excessive tilt, injection defects may occur. If the elevation angle D exceeds 60 °, the injected aerosol stock solution may adhere to the fingers or the like that operate the actuator 20. In FIG.
  • the number, shape, and size of the injection ports 21 are not particularly limited.
  • the number of injection ports 21 may be one or two or more, but from the viewpoint of being simple and inexpensive to manufacture, the number of injection ports 21 may be one. preferable.
  • the perpendicular bisector of the line segment connecting the centers of each injection port 21 is the injection axis O, and for nozzles or actuators having three or more injection ports.
  • the injection shaft O of the injection port 21 is defined as follows. If the injection port 21 is located in the center of the injection portion of the nozzle or actuator, the orthogonal line penetrating the center of the injection port 21 at the center is defined as the injection axis O. If the injection port 21 does not exist in the center of the injection portion of the nozzle or actuator, the orthogonal line penetrating the center of the polygonal circumscribed circle connecting the centers of the injection ports 21 is defined as the injection axis O.
  • the shape (cross-sectional shape) of the injection port 21 may be a circular shape, an elliptical shape, a polygonal shape, or any other irregular shape.
  • the opening area of the injection port 21 is preferably 0.05 ⁇ 8.0 mm 2, more preferably from 0.1 ⁇ 4.0 mm 2, further to be 0.2 ⁇ 3.0 mm 2 preferable.
  • the size of the injection port 21 is preferably 0.3 mm or more, preferably 0.4 mm or more. It is more preferably present, and more preferably 0.6 mm or more.
  • the nozzle diameter is preferably 3.0 mm or less, more preferably 2.0 mm or less, and further preferably 1.8 mm or less.
  • the actuator 20 may have a nozzle or not.
  • the one with a protruding nozzle or the one with a non-protruding nozzle may be used, but the one with a protruding nozzle is preferable.
  • the length of the nozzle is not particularly limited, but is preferably 2.0 to 80 mm, more preferably 3.0 to 70 mm, and particularly preferably 4.0 to 60 mm.
  • a push-down type or trigger type button can be adopted.
  • the dip tube 30 is a hollow member made of a resin such as polyethylene or polypropylene attached to the fixed-quantity injection valve 12, and when the fixed-quantity injection valve 12 is operated, the aerosol stock solution and the propellant sealed in the pressure-resistant container 10 are quantified. It is supplied to the injection valve 12.
  • the dip tube 30 itself has a linear shape, it can be curved when it is attached to the metering injection valve 12 and inserted into the pressure-resistant container 10. Therefore, by appropriately bending the dip tube, the tip 30a thereof can be easily arranged at an appropriate position in the pressure-resistant container 10.
  • the tip 30a of the dip tube 30 is attached to the metering injection valve 12 so that the height h from the lowermost portion B of the pressure resistant container 10 is 6 mm or less, preferably 3 mm or less.
  • the lowermost portion B of the pressure-resistant container 10 is a portion of the inner surface of the pressure-resistant container 10 that is closest to the horizontal surface H when the pressure-resistant container 10 is placed on the horizontal surface H. Even when the bottom surface of the pressure-resistant container 10 has a dome shape as shown in FIG. 1, the aerosol stock solution sealed in the pressure-resistant container 10 exists at the bottom B until the end in the latter stage of use of the quantitative injection aerosol 100 for spatial treatment. Will be done.
  • the tip 30a of the dip tube 30 is located at a position of 6 mm or less from the lowermost portion B of the pressure-resistant container 10, the tip 30a is the aerosol stock solution even when the pressure-resistant container 10 is sprayed at a slight angle with respect to the horizontal plane H. And because it is located below the liquid level of the propellant, the aerosol stock solution and the propellant can be reliably supplied to the fixed quantity injection valve 12. As a result, it is possible to suppress the occurrence of injection defects in the late use of the quantitative injection aerosol 100 for spatial treatment.
  • the dip tube 30 has a linear shape that extends in the downward vertical direction with one end attached to the fixed-quantity injection valve 12, and extends in the downward vertical direction with one end attached to the fixed-quantity injection valve 12, and is curved at the curved portion 30b. It is preferable that the shape is curved or the whole is curved.
  • the curved portion 30b has a curved shape or a curved shape as a whole so that the tip 30a is located near the inner side surface S of the pressure-resistant container 10.
  • the dip tube 30 has a curved shape at the curved portion 30b or a curved shape as a whole and the tip 30a is located in the vicinity of the inner side surface S of the pressure-resistant container 10, from the inner side surface S to the tip 30a of the pressure-resistant container 10.
  • the distance d is set to be 25 mm or less, preferably 15 mm or less, more preferably 6 mm or less, still more preferably 3 mm or less.
  • FIG. 3 is an enlarged cross-sectional view of the tip of the dip tube of the quantitative injection aerosol for spatial treatment, in which (a) an obliquely cut oblique end portion and (b) a U-shaped (concave) cut U end portion.
  • the aerosol stock solution contains (A) a compound having a vapor pressure of less than 1 ⁇ 10 -4 mmHg at 30 ° C. (non-volatile control component) and (B) vapor at 30 ° C. Compounds having a pressure of 2 ⁇ 10 -4 to 1 ⁇ 10 ⁇ 2 mmHg (volatile control component) or a mixture of (A) and (B) can be used.
  • A a compound having a vapor pressure of less than 1 ⁇ 10 -4 mmHg at 30 ° C.
  • an aerosol stock solution A containing a refractory control component and an aerosol stock solution B containing a volatilization control component will be described.
  • a mite control compound for controlling mites can be used as the non-volatile control component.
  • the pest control compound include pyrethroid compounds such as phenothrin, ciphenothrin, permethrin, cypermethrin, cyfluthrin, bifenthrin, phenpropatrin, tralomethrin, etofenprox, and imiprothrin, silicon compounds such as silafluofen, and dichlorbos.
  • organic phosphorus compounds such as fenitrothione, carbamate compounds such as propoxul, neonicotinoid compounds such as dinotefuran, imidacloprid, and clothianidin, fipronil, indoxacarb and the like.
  • phenothrin, cyphenothrin, permethrin, cypermethrin, cyfluthrin, bifentrin, fenpropatrin, tralomethrin, etofenprox, and dinotefuran are preferable.
  • optical isomers or geometric isomers based on asymmetric carbon are present in the acid component or alcohol portion of the pyrethroid compound, each of them or any mixture thereof is also included in the pest control compound.
  • the compound for controlling ticks include amidoflumeth, benzyl benzoate, phenyl salicylate, benzyl salicylate, dibutyl sebacate, dipropyl sebacate, dibutyl adipate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, and p-menthan-3. , 8-diol, 3-iodo-2-propynylbutyl carbamate, phenothrin, DEET and the like.
  • the spray particles when a certain amount is injected in an indoor treatment space, the spray particles mainly settle on the floor surface as adhesive particles, but the treatment is carried out by containing a resistant volatilization control component. It shows excellent control effect especially against aerosol pests and indoor dust mites in space.
  • the refractory control component by including the refractory control component, the volatilization of the refractory control component from the adherent particles settled on the floor surface into the air is suppressed. Due to such a mechanism of action, the quantitative injection aerosol 100 for spatial treatment of the present invention is highly safe and can be used even in the presence of a person.
  • the content of the control component in the aerosol stock solution A is 1 to 90 w / v%, preferably 5 to 80 w / v%, and more preferably 30 to 75 w / v%.
  • the control component in the aerosol stock solution A is within the above range, the control component is easily dissolved in the organic solvent, and when the aerosol is sprayed, the jet particles are formed in an optimum state.
  • the aerosol stock solution A contains an organic solvent in addition to the above-mentioned control components.
  • an aerosol stock solution A can be prepared by dissolving the above-mentioned control component, and a solvent capable of forming optimum jet particles when the prepared aerosol stock solution A is sprayed is used.
  • the organic solvent includes, for example, ethanol, a lower alcohol having 2 to 3 carbon atoms such as isopropanol (IPA), a normal paraffin, and a hydrocarbon solvent such as isoparaffin.
  • lower alcohols having 2 to 3 carbon atoms, hydrocarbon solvents, and higher fatty acid esters having 16 to 20 carbon atoms are preferable.
  • lower alcohols having 2 to 3 carbon atoms have diffusion uniformity of spray particles and exposed surfaces in the treatment space (for example, floors and walls existing in the treatment space, surfaces of structures such as furniture), and the like. This is particularly preferable because it does not easily cause stickiness on the floor surface.
  • the organic solvent it is also possible to further mix glycol ethers, hydrocarbon solvents such as normal paraffin and isoparaffin, and ketone solvents.
  • the specific weight of the aerosol stock solution A is preferably 0.85 to 1.15, more preferably 0.89 to 1.10.
  • the spray particles are mainly used as adhesive particles on the floor. Since it settles and adheres to the surface, an appropriate control effect can be obtained.
  • the specific gravity of the aerosol stock solution A is within the above range, the adherent particles also enter gaps and shadows in the process of sedimentation. Therefore, when a pyrethroid compound is used as a control component, cockroaches and the like enter gaps. You can also expect a flushing effect that pops out of the shadows.
  • the aerosol stock solution A contains antifungal agents, antibacterial agents, bactericides, air fresheners, deodorants, stabilizers, antistatic agents, defoaming agents, and additives for fungi and fungi.
  • a shaping agent or the like can be appropriately blended.
  • fungicides, antibacterial agents and fungicides include hinokitiol, 2-mercaptobenzothiazole, 2- (4-thiazolin) benzimidazole, 5-chloro-2-methyl-4-isothiazolin-3-one, triphorin, 3- Examples thereof include methyl-4-isopropylphenol and ortho-phenylphenol.
  • fragrances orange oil, lemon oil, lavender oil, peppermint oil, eucalyptus oil, citronella oil, lime oil, yuzu oil, jasmine oil, cypress oil, green tea essential oil, limonene, ⁇ -pinene, linalool, geraniol
  • aromatic components such as phenylethyl alcohol, amylcinnamic aldehyde, cumin aldehyde, and benzyl acetate, and fragrance components containing green leaf alcohol and green leaf aldehyde called "green scent”.
  • Aerosol stock solution B Volatile control components that are one of the main components of aerosol stock solution B include flying pests such as mosquitoes and flies, pests such as cockroaches, tokojirami, and ants, and pests such as indoor dust mites. Pest control compounds for controlling flies can be used. Examples of the pest control compound include metoflutrin, profluthrin, transfluthrin, empentrin, terraresrin, flamethrin and the like. Among these, metoflutrin, profluthrin, and transfluthrin are preferable in consideration of vapor pressure, stability, basal insecticidal efficacy, and the like.
  • the spray particles containing the volatilizing control component are mainly as adhesive particles on an exposed surface in the treatment space (for example, in the treatment space). Excellent control effect against flying pests, pests and indoor dust mites in the treatment space where it settles and adheres to the floor surface, wall surface, surface of structures such as furniture, etc. Is shown.
  • the content of the control component in the aerosol stock solution B is 1 to 90 w / v%, preferably 5 to 80 w / v%, and more preferably 8 to 75 w / v%.
  • the control component in the aerosol stock solution B is within the above range, the control component is easily dissolved in the organic solvent, and when the aerosol is sprayed, the jet particles are formed in an optimum state.
  • the aerosol stock solution B contains an organic solvent in addition to the above-mentioned control components.
  • an aerosol stock solution B can be prepared by dissolving the above-mentioned control component, and a solvent capable of forming optimum jet particles when the prepared aerosol stock solution B is sprayed is used.
  • the organic solvent that can be used in the aerosol stock solution B is the same as the organic solvent that can be used in the aerosol stock solution A described above.
  • the specific weight of the aerosol stock solution B is preferably 0.78 to 1.15, more preferably 0.82 to 1.10.
  • the specific gravity of the aerosol stock solution B is in the range of 0.78 to 1.15, when a fixed amount of the quantitative injection aerosol 100 for spatial treatment of the present invention is injected in an indoor processing space, the spray particles are mainly exposed as adhesive particles. Since it adheres uniformly to the surface, an appropriate control effect can be obtained.
  • the aerosol stock solution B contains antifungal agents, antibacterial agents, bactericides, air fresheners, deodorants, stabilizers, antistatic agents, defoaming agents, and additives for fungi and fungi.
  • a shaping agent or the like can be appropriately blended.
  • the propellant used in the quantitative injection aerosol 100 for spatial treatment of the present invention includes liquefied petroleum gas (LPG), dimethyl ether (DME), liquefied gas such as hydrofluoroolefin, and nitrogen gas, carbon dioxide gas, nitrogen borooxide, and the like. Examples thereof include compressed gas such as compressed air.
  • LPG liquefied petroleum gas
  • DME dimethyl ether
  • liquefied gas such as hydrofluoroolefin
  • nitrogen gas carbon dioxide gas, nitrogen borooxide, and the like.
  • compressed gas such as compressed air.
  • the above propellant can be used alone or in a mixed state, but one containing LPG as a main component is easy to use.
  • the volume ratio (a / b) of the aerosol stock solution (a) and the propellant (b) filled in the pressure-resistant container 10 is 10/90 to 50/50 / by volume. It is preferably adjusted to 50.
  • the volume ratio (a / b) is within the above range, a sufficient amount of the control component can be uniformly diffused over the exposed surface, particularly the entire floor surface.
  • the quantitative injection aerosol 100 for spatial treatment of the present invention preferably has an injection force of 5 to 50 gf at a distance of 5 cm from the injection port 21. If the injection force is within the above range, the injected aerosol stock solution will be applied to exposed surfaces in the treatment space (for example, floors and walls existing in the treatment space, surfaces of structures such as furniture), especially the entire floor surface. It is uniformly settled and adhered to, and a practically sufficient control effect can be obtained against flying pests, pests and mites. If the injection force is less than 5 gf, the injection force tends to be insufficient and the diffusibility to the entire exposed surface tends to be insufficient. If the injection force exceeds 50 gf, good diffusivity of the injected aerosol stock solution may not be obtained. Such an injection force can be appropriately adjusted depending on the composition of the aerosol stock solution, the internal pressure of the pressure-resistant container 10, the shape of the injection port 21, and the like.
  • the quantitative injection aerosol 100 for spatial treatment of the present invention includes mosquitoes such as bed bugs, bed bugs, bed bugs and bed bugs, flies such as bedbugs and bed bugs, flying insects such as bedbugs, bedbugs, bedbugs and moths.
  • Bed bugs such as Wamon Gokiburi, Kurogokiburi, Chabanegokiburi, Bed Bugs (Bed Bugs), Bed Bugs (Nettite Bed Bugs), Bed Bugs such as Kusagi Kamemushi, Black Mountain Ali, Amimeari, Tobiiro Keari
  • bedbugs such as the American cockroach, black beetle, and chabanegokiburi
  • bed bugs such as bed bugs and bed bugs
  • bed bugs such as bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, and bed bugs.
  • bedbugs such as spiders such as sea turtle spiders and indoor dust mites such as bedbugs, bedbugs, bedbugs, bedbugs, and bed bugs.
  • the treatment target of the quantitative injection aerosol 100 for spatial treatment of the present invention is mainly an indoor space.
  • the volume of the treatment space is not particularly limited, but the volume corresponding to a room of 4.5 to 16 tatami mats is 18.8 to 66.6 m 3 (area 7.5 to 26.6 m 2 and height 2.2 to 3. 0 m) is preferable, and the volume corresponding to a room of 4.5 to 8 tatami mats is 18.8 to 33.3 m 3 (area 7.5 to 13.3 m 2 , height 2.2 to 3.0 m). Is more preferable.
  • the amount of control component released into the air of the indoor space is 0.1 to 50 mg / m 3 according to the volume of the indoor space.
  • the frequency of use of the quantitative injection aerosol for spatial treatment of the present invention may be applied so that the amount of the pest control component released is within the above range at an appropriate time according to the frequency of occurrence of pests and the situation.
  • a fixed-quantity injection aerosol for spatial treatment was obtained.
  • a dip tube having a U-shaped tip is used, and the height (h) of the tip from the bottom of the pressure-resistant container is 1 mm in the pressure-resistant container. It was attached to the metering injection valve so as to be.
  • the quantitative injection aerosol for spatial treatment of Example 1 had an injection force of 15 gf at an injection distance of 5 cm.
  • Example 1 various quantitative injection aerosols for spatial treatment of Examples 2 to 24 and Comparative Examples 1 to 5 were prepared with the configurations shown in Table 1.
  • Table 1 quantitative injection aerosols of Examples 16, 17, 21, 22, 23, and 24, theoretically, quantitative injection is performed even when a quantitative spray valve having an injection capacity of 0.2 mL or 1.0 mL is used.
  • the filling amount in the pressure-resistant container was adjusted so that the above could be carried out up to 22 times.
  • Example 1 [Examples 25 to 32, Comparative Examples 6 and 7] According to Example 1, various quantitative injection aerosols for spatial treatment of Examples 25 to 32 and Comparative Examples 6 and 7 were prepared with the configurations shown in Table 2.
  • Example 33 2.7 mL of the aerosol stock solution A and 6.1 mL of liquefied petroleum gas as a propellant were pressure-filled in a pressure-resistant container. Other than that, a quantitative injection aerosol for spatial treatment of Example 33 was obtained by the same procedure as that of the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 33 various spatial treatment quantitative injection aerosols of Examples 34 to 38 were prepared with the configurations shown in Table 3.
  • Example 39 and 40 According to Example 1, various spatial treatment quantitative injection aerosols of Examples 39 and 40 were prepared with the configurations shown in Table 4. In the quantitative injection aerosols for spatial treatment of Examples 39 and 40, theoretically, the quantitative injection can be performed up to 22 times even when the quantitative spray valve having an injection capacity of 0.2 mL or 2.0 mL is used. The filling amount in the pressure-resistant container was adjusted so as to be.
  • the variation between the glass plates was analyzed, and the diffusion uniformity of the spray particles was evaluated. The results are shown in three stages, A, B, and C, in order from the one with the best diffusion uniformity. Further, for the quantitative injection aerosols for spatial treatment of Examples 39 and 40, the above-mentioned "injection test (injection angle 45 °)" was carried out. Table 4 shows the test results of the injection test (injection angle 45 °) and the diffusion uniformity test.
  • the spatial treatment quantitative injection aerosols of Examples 39 and 40 are the same as the spatial treatment quantitative injection aerosols of Examples 13 to 17. , The occurrence of injection defects in both the early and late stages of use was suppressed. However, the spatial treatment quantitative injection aerosols of Examples 39 and 40 were inferior in diffusion uniformity to the spatial treatment quantitative injection aerosols of Examples 13 to 17. From this, in order to improve the diffusion uniformity, it is considered preferable that the injection force at an injection distance of 5 cm is in the range of 5 to 50 gf, as in the quantitative injection aerosol for spatial treatment of Examples 13 to 17.
  • Example 41 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to phenothrin (53 w / v%) as a non-volatile control component and metoflutrin (0.7 w / v%) as a volatile control component. Then, the filling amount in the pressure-resistant container was changed to 2.6 mL of the aerosol stock solution (A + B) and 6.2 mL of the propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 41 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 42 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was cyphenothrin (38 w / v%) as a non-volatile control component and transfluthrin (0.7 w / v%) as a volatile control component. ), And the filling amount in the pressure-resistant container was changed to 1.8 mL of the aerosol stock solution (A + B) and 7.0 mL of the propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 42 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 43 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to permethrin (60 w / v%) as a non-volatile control component, and the organic solvent was changed to isopropanol, respectively, and the filling amount in the pressure resistant container was changed.
  • the aerosol stock solution A was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane.
  • a quantitative injection aerosol for spatial treatment of Example 43 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 44 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to phenothrin (53 w / v%) as a non-volatile control component, and the organic solvent was changed to neothiosol (normal paraffin solvent).
  • the filling amount of the aerosol stock solution A was changed to 2.6 mL and the propellant was changed to 6.2 mL.
  • the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane.
  • a quantitative injection aerosol for spatial treatment of Example 44 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 45 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to phenothrin (30 w / v%) as a non-volatile control component, and the organic solvent was changed to isopropyl myristate, respectively, and the filling amount in the pressure-resistant container was changed.
  • the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane.
  • a quantitative injection aerosol for spatial treatment of Example 45 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 46 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to permethrin (60 w / v%) as a non-volatile control component, and the organic solvent was changed to IP Clean LX (isoparaffin solvent). The filling amount in the container was changed to 2.2 mL of the aerosol stock solution A and 6.6 mL of the propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 46 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 47 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to transfluthrin (8 w / v%) as a volatile control component, and the organic solvent was changed to ethanol, respectively, and the filling amount in the pressure-resistant container was changed. , The aerosol stock solution B was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 47 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 48 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to transfluthrin (40 w / v%) as a volatile control component, and the organic solvent was changed to isopropanol, respectively, and the filling amount in the pressure resistant container was changed. , The aerosol stock solution B was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 48 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • Example 49 The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to metoflutrin (20 w / v%) as a volatile control component, and the organic solvent was changed to neothiosol (normal paraffin solvent), respectively, to a pressure-resistant container.
  • the filling amount of the aerosol stock solution B was changed to 2.6 mL and the propellant was changed to 6.2 mL.
  • the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane.
  • a quantitative injection aerosol for spatial treatment of Example 49 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
  • the quantitative injection aerosol for spatial treatment of the present invention can be used for the purpose of controlling a wide range of pests and mites.
  • Pressure-resistant container 12 Fixed-quantity injection valve 20 Actuator 21 Injection port 30 Dip tube 30a Tip of dip tube 100 Fixed-quantity injection aerosol for spatial treatment D Elevation angle H Horizontal plane O Injection shaft S Inner surface of pressure-resistant container

Abstract

Provided is an aerosol for metered spraying for space treatment, the aerosol enabling a chemical to be uniformly diffused when used in space treatment for pests, in particular, crawling pests and indoor dust mites as pests to be controlled and being able to suppress the occurrence of spraying failure. The aerosol 100 for metered spraying for space treatment is provided with: a pressure-resistant container 10 in which an aerosol undiluted liquid containing a pest control component and a propellant are sealed and that is provided with a metered spraying valve 12; an actuator 20 provided with a spraying port 21; and a dip tube 30. The leading end 30a of the dip tube 30 is positioned at a height of 6 mm or less from the lowest portion B of the pressure-resistant container 10. When the pressure-resistant container 10 is placed on a horizontal surface H, a spraying axis O of the spraying port 21 forms an elevation angle D of 10-60° with respect to the horizontal surface H.

Description

空間処理用定量噴射エアゾールFixed-quantity injection aerosol for spatial treatment
 本発明は、定量噴射バルブが設けられた耐圧容器と定量噴射バルブに接続される噴射口が設けられたアクチュエータとディップチューブとを備えた空間処理用定量噴射エアゾールに関する。 The present invention relates to a pressure-resistant container provided with a fixed-quantity injection valve, an actuator provided with an injection port connected to the fixed-quantity injection valve, and a dip tube.
 1回の噴射によって一定量の薬剤を噴霧することができる定量噴射エアゾールは、局所的に隙間等に処理する塗布用定量噴射エアゾール、対象物に直接噴射処理する直撃用定量噴射エアゾール、及び空間に薬剤が広がる空間処理用定量噴射エアゾール等に分類される。 The fixed-quantity injection aerosol that can spray a certain amount of chemicals by one injection is a fixed-quantity injection aerosol for coating that locally treats gaps, etc., a fixed-quantity injection aerosol for direct impact that directly injects into an object, and a space. It is classified as a quantitative injection aerosol for spatial treatment where the drug spreads.
 例えば、匍匐害虫や屋内塵性ダニ類のみならず、噴霧当日は飛翔害虫にも効果がある極めて有用な空間処理用定量噴射エアゾール(特許文献1を参照)がある。本発明者らは、空間処理用定量噴射エアゾールは、薬剤を簡便に室内全体に処理する上で効率的であるとの認識に基づき、薬剤の噴射効率や効力を高めるべく種々検討を行った。その結果、空間処理用定量噴射エアゾールは、薬剤を水平面に対して斜め上方に向けて噴霧することで、薬剤の拡散性が向上するという知見を得た。 For example, there is an extremely useful quantitative injection aerosol for spatial treatment (see Patent Document 1) that is effective not only for crawling pests and indoor dust mites but also for flying pests on the day of spraying. Based on the recognition that the quantitative injection aerosol for spatial treatment is efficient in easily treating the entire room with the drug, the present inventors have conducted various studies to improve the injection efficiency and efficacy of the drug. As a result, it was found that the quantitative injection aerosol for spatial treatment improves the diffusivity of the drug by spraying the drug diagonally upward with respect to the horizontal plane.
特許第5517122号公報Japanese Patent No. 5517122
 (1)水平方向又は(2)斜め上向きの噴射口を設けたアクチュエータを有する空間処理用定量噴射エアゾールを用いて、水平面に対して斜め上方に向けて噴霧するためには、噴射口の噴射軸が斜め上方を向くように、エアゾール缶を水平面に対して斜めに傾けて噴射するという使用方法がある。 In order to use a quantitative injection aerosol for spatial treatment having an actuator provided with an injection port in the horizontal direction or (2) diagonally upward, the injection shaft of the injection port is to be sprayed diagonally upward with respect to the horizontal plane. There is a usage method in which the aerosol can is tilted diagonally with respect to the horizontal plane so that the aerosol can be directed diagonally upward.
 しかしながら、従来の製品では、このような使用方法において噴射不良が生じることがあった。特許文献1では、斜め上方に向けて噴霧することで噴射不良が生じる場合があることが認識されておらず、このような問題に対策を講じたものではなかった。 However, with conventional products, injection defects may occur in such a usage method. In Patent Document 1, it is not recognized that injection defects may occur when spraying diagonally upward, and no countermeasure is taken for such a problem.
 本発明は、上記問題点に鑑みてなされたものであり、害虫、特に匍匐害虫や屋内塵性ダニ類を防除対象として、空間処理用法において薬剤を均一に拡散させることができ、噴射不良の発生を抑制することができる空間処理用定量噴射エアゾールを提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to uniformly diffuse the chemicals in the spatial treatment method for pests, particularly crawling pests and indoor dust mites, and the occurrence of injection defects. It is an object of the present invention to provide a quantitative injection aerosol for spatial treatment capable of suppressing.
 上記課題を解決するための本発明に係る空間処理用定量噴射エアゾールの特徴構成は、
 防除成分を含有するエアゾール原液及び噴射剤を封入してなる定量噴射バルブが設けられた耐圧容器と、前記定量噴射バルブに接続される噴射口が設けられたアクチュエータと、前記エアゾール原液及び前記噴射剤を前記定量噴射バルブに供給するディップチューブとを備えた空間処理用定量噴射エアゾールであって、
 前記ディップチューブの先端は、前記耐圧容器の最下部から6mm以下の高さに位置し、
 前記耐圧容器を水平面に載置したとき、前記噴射口の噴射軸は、前記水平面に対して10~60°の仰角をなすことにある。
The characteristic configuration of the quantitative injection aerosol for spatial treatment according to the present invention for solving the above problems is
A pressure-resistant container provided with a fixed-quantity injection valve in which an aerosol stock solution containing a control component and a propellant are sealed, an actuator provided with an injection port connected to the fixed-quantity injection valve, the aerosol stock solution and the propellant. A fixed-quantity injection aerosol for spatial treatment provided with a dip tube for supplying the fixed-quantity injection valve.
The tip of the dip tube is located at a height of 6 mm or less from the bottom of the pressure resistant container.
When the pressure-resistant container is placed on a horizontal plane, the injection shaft of the injection port is to form an elevation angle of 10 to 60 ° with respect to the horizontal plane.
 本発明者は、空間処理用定量噴射エアゾールの噴射方向について種々検討を行ったところ、薬剤を水平面に対して、特に斜め上方30~60°付近に向けて噴霧した場合、薬剤の処理空間への拡散が均一になり、効率的に処理することができるという知見を得た。
 本構成の空間処理用定量噴射エアゾールによれば、当該空間処理用定量噴射エアゾールのディップチューブの先端が耐圧容器の最下部から6mm以下の高さに位置し、耐圧容器を水平面に載置したとき、噴射口の噴射軸が水平面に対して10~60°の仰角をなすことにより、害虫の防除に好適な防除成分を、水平面に対して噴射口の噴射軸が30~60°となすように噴射する際に、噴射不良の発生を抑制することができる。この場合、耐圧容器を水平面に対して若干斜めに傾けて噴射したときでも、ディップチューブの先端が耐圧容器の最下部から6mm以下の高さに位置することで、エアゾール原液及び噴射剤は定量噴射バルブに確実に供給されるため、噴射状態を良好に維持することができる。
The present inventor has conducted various studies on the injection direction of the quantitative injection aerosol for spatial treatment, and found that when the chemical is sprayed on the horizontal plane toward an obliquely upward direction of 30 to 60 °, the chemical is applied to the treatment space. It was found that the diffusion becomes uniform and the treatment can be performed efficiently.
According to the spatial treatment quantitative injection aerosol of this configuration, when the tip of the dip tube of the spatial treatment quantitative injection aerosol is located at a height of 6 mm or less from the bottom of the pressure-resistant container and the pressure-resistant container is placed on a horizontal surface. By making the injection shaft of the injection port an elevation angle of 10 to 60 ° with respect to the horizontal plane, the control component suitable for controlling pests is set so that the injection shaft of the injection port is 30 to 60 ° with respect to the horizontal plane. When injecting, it is possible to suppress the occurrence of injection defects. In this case, even when the pressure-resistant container is sprayed at a slight angle with respect to the horizontal plane, the tip of the dip tube is located at a height of 6 mm or less from the bottom of the pressure-resistant container, so that the aerosol stock solution and the propellant are quantitatively sprayed. Since it is reliably supplied to the valve, the injection state can be maintained well.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 前記防除成分は、30℃における蒸気圧が1×10-4mmHg未満である難揮散性防除成分を含有することが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
The control component preferably contains a non-volatile control component having a vapor pressure of less than 1 × 10 -4 mmHg at 30 ° C.
 本構成の空間処理用定量噴射エアゾールによれば、匍匐害虫や屋内塵性ダニ類を好適に防除することができる。 According to the quantitative injection aerosol for spatial treatment of this configuration, crawling pests and indoor dust mites can be suitably controlled.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 前記防除成分は、30℃における蒸気圧が2×10-4~1×10-2mmHgである揮散性防除成分を含有することが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
The control component preferably contains a volatilization control component having a vapor pressure of 2 × 10 -4 to 1 × 10 −2 mmHg at 30 ° C.
 本構成の空間処理用定量噴射エアゾールによれば、飛翔害虫を好適に防除することができ、加えて、匍匐害虫や屋内塵性ダニも防除することができる。 According to the quantitative injection aerosol for spatial treatment of this configuration, flying pests can be suitably controlled, and in addition, crawling pests and indoor dust mites can also be controlled.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 前記防除成分は、30℃における蒸気圧が1×10-4mmHg未満である難揮散性防除成分と、30℃における蒸気圧が2×10-4~1×10-2mmHgである揮散性防除成分とを含有することが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
The control components are a refractory control component having a vapor pressure of less than 1 × 10 -4 mmHg at 30 ° C. and a volatilization control component having a vapor pressure of 2 × 10 -4 to 1 × 10 −2 mmHg at 30 ° C. It is preferable to contain an ingredient.
 本構成の空間処理用定量噴射エアゾールによれば、飛翔害虫、及び匍匐害虫や屋内塵性ダニを同時に防除することができる。 According to the quantitative injection aerosol for spatial treatment of this configuration, flying pests, crawling pests and indoor dust mites can be controlled at the same time.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 前記噴射口の噴射軸は、前記水平面に対して15~50°の仰角をなすことが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
The injection shaft of the injection port preferably has an elevation angle of 15 to 50 ° with respect to the horizontal plane.
 本構成の空間処理用定量噴射エアゾールによれば、当該空間処理用定量噴射エアゾールの噴射口の噴射軸が水平面に対して15~50°の仰角をなすことにより、水平面に対して噴射口の噴射軸が30~60°となすように噴射する際に、耐圧容器を傾斜させる角度がおさえられるため、噴射不良の発生が抑制され、安定した噴射状態を維持することができる。 According to the spatial treatment quantitative injection aerosol of the present configuration, the injection shaft of the injection port of the spatial treatment quantitative injection aerosol forms an elevation angle of 15 to 50 ° with respect to the horizontal plane, so that the injection port is injected with respect to the horizontal plane. When the shaft is injected so as to be 30 to 60 °, the angle at which the pressure-resistant container is tilted is suppressed, so that the occurrence of injection defects is suppressed and a stable injection state can be maintained.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 前記ディップチューブの先端は、前記耐圧容器の最下部から3mm以下の高さに位置することが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
The tip of the dip tube is preferably located at a height of 3 mm or less from the bottom of the pressure resistant container.
 本構成の空間処理用定量噴射エアゾールによれば、ディップチューブの先端が耐圧容器の最下部から3mm以下の高さに位置することにより、耐圧容器を水平面に対して若干斜めに傾けて噴射したときでも、エアゾール原液及び噴射剤は定量噴射バルブに確実に供給され、噴射不良の発生を抑制することができる。 According to the quantitative injection aerosol for spatial treatment of this configuration, when the tip of the dip tube is located at a height of 3 mm or less from the bottom of the pressure-resistant container, the pressure-resistant container is injected at a slight angle with respect to the horizontal plane. However, the aerosol stock solution and the propellant can be reliably supplied to the fixed-quantity injection valve, and the occurrence of injection defects can be suppressed.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 噴射距離5cmにおける噴射力を5~50gfに設定してあることが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
It is preferable that the injection force at an injection distance of 5 cm is set to 5 to 50 gf.
 本構成の空間処理用定量噴射エアゾールによれば、噴射距離5cmにおける噴射力を5~50gfに設定してあることにより、噴射されたエアゾール原液は、処理空間内の露出面(例えば、処理空間内に存在する床面や壁面、家具等の構造物の表面等)、特に床面全体に均一に沈降、付着し、飛翔害虫、匍匐害虫、及び屋内塵性ダニ類に対して実用上十分な防除効果を奏することができる。 According to the quantitative injection aerosol for spatial treatment of the present configuration, since the injection force at an injection distance of 5 cm is set to 5 to 50 gf, the injected aerosol stock solution is subjected to an exposed surface in the treatment space (for example, in the treatment space). (Floor surface, wall surface, surface of structures such as furniture, etc.), especially the entire floor surface, which is uniformly settled and adhered to, and is practically sufficient for controlling flying pests, pests, and indoor dust mites. It can be effective.
 本発明に係る空間処理用定量噴射エアゾールにおいて、
 前記ディップチューブは、前記耐圧容器の内部において湾曲可能に構成されていることが好ましい。
In the quantitative injection aerosol for spatial treatment according to the present invention.
The dip tube is preferably configured to be bendable inside the pressure resistant container.
 本構成の空間処理用定量噴射エアゾールによれば、ディップチューブは、耐圧容器の内部において湾曲可能に構成されているので、ディップチューブを適宜湾曲させることにより、その先端を耐圧容器内の適切な位置に容易に配することができる。 According to the quantitative injection aerosol for spatial treatment of this configuration, the dip tube is configured to be bendable inside the pressure-resistant container. Therefore, by appropriately bending the dip tube, the tip thereof can be positioned at an appropriate position in the pressure-resistant container. Can be easily placed in.
図1は、本発明に係る空間処理用定量噴射エアゾールの断面図である。FIG. 1 is a cross-sectional view of a quantitative injection aerosol for spatial treatment according to the present invention. 図2は、空間処理用定量噴射エアゾールにおける(a)噴射口(噴射軸)の仰角、及び(b)噴射方向を示す説明図である。FIG. 2 is an explanatory diagram showing (a) an elevation angle of an injection port (injection shaft) and (b) an injection direction in a quantitative injection aerosol for spatial processing. 図3は、空間処理用定量噴射エアゾールのディップチューブの先端の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the tip of the dip tube of the quantitative injection aerosol for spatial treatment.
 以下、本発明の空間処理用定量噴射エアゾールについて説明する。ただし、本発明は、以下に説明する実施形態に記載される構成や実施例に限定することを意図するものではない。 Hereinafter, the quantitative injection aerosol for spatial treatment of the present invention will be described. However, the present invention is not intended to be limited to the configurations and examples described in the embodiments described below.
 図1は、本発明の空間処理用定量噴射エアゾール100の断面図である。空間処理用定量噴射エアゾール100は、防除成分を含有するエアゾール原液及び噴射剤を封入してなる定量噴射バルブ12が設けられた耐圧容器10と、定量噴射バルブ12に接続される噴射口21が設けられたアクチュエータ20と、エアゾール原液及び噴射剤を定量噴射バルブ12に供給するディップチューブ30とを備え、空間処理によって、カ、ハエ等の飛翔害虫、ゴキブリ等の匍匐害虫や屋内塵性ダニ類等の害虫を防除するために用いられる。 FIG. 1 is a cross-sectional view of the quantitative injection aerosol 100 for spatial treatment of the present invention. The fixed-quantity injection aerosol 100 for space treatment is provided with a pressure-resistant container 10 provided with a fixed-quantity injection valve 12 in which an aerosol stock solution containing a control component and a propellant are sealed, and an injection port 21 connected to the fixed-quantity injection valve 12. The actuator 20 is provided with a dip tube 30 that supplies the aerosol stock solution and the propellant to the metering valve 12, and by spatial treatment, flying pests such as mosquitoes and flies, pests such as cockroaches, indoor dust mites, etc. It is used to control pests.
〔耐圧容器〕
 耐圧容器10は、エアゾール原液及び噴射剤が貯留される貯留部11と、貯留部11の口部に組み付けられた定量噴射バルブ12とを備える。貯留部11は、有底円筒形状又は有底略円筒形状をなし、ポリエチレンテレフタレート等の樹脂、又はアルミニウムやブリキ等の金属により形成されている。貯留部11の外観は、透明、半透明、又は不透明の何れでも構わない。底部の形状は正立するものであればよく、平形状、凹形状、5つの花びら様の形状等が挙げられる。貯留部11の外側面には、ディップチューブ30が湾曲して先端30aが向かう方向の逆側が正面であることを、使用者に認識させるための表示が設けられていることが好ましい。例えば、貯留部11の外側面のPの位置に、正面方向Fを示す表示が印刷されていること等により、ディップチューブ30が湾曲して先端30aが向かう方向の逆側が正面であることを使用者に認識させることができる。正面方向Fを示す表示は、例えば、文字や図柄とすることができるが、噴射口21を正面方向Fに向けたときにアクチュエータ20に印刷された模様等と一致するような図柄とすれば、デザイン性を損なうことなく、使用者に正面方向Fを認識させることができる。ここで、正面方向Fとは、使用時に噴射口21を向けることが好ましい方向であり、後述するディップチューブ30の湾曲方向の逆側の方向である。噴射口21を表示Pにより示される正面方向Fに向けることで、空間処理用定量噴射エアゾール100の使用後期において封入物が少ない状態においても、耐圧容器10を水平面Hに対して若干斜め上方に傾けると、ディップチューブ30の先端30a近傍にエアゾール原液及び噴射剤が溜まることになる。その結果、空間処理用定量噴射エアゾール100を噴射するときに、ディップチューブ30によるエアゾール原液及び噴射剤の吸い上げがよくなり、噴射不良の発生を抑制することができる。ここで、「噴射不良」とは、アクチュエータ20の1回の操作により実際に噴射される容量が、定量噴射バルブ12の噴射容量の85%未満となる状態を意味する。貯留部11が透明又は半透明の樹脂製である場合、貯留部11にはさらに、ボーダー柄等の水平表示が印刷されていることが好ましい。水平表示は、空間処理用定量噴射エアゾール100を噴射するときに、噴射不良を引き起こすほど過剰に傾けることを防止するために設けられる。このような水平表示があると、使用者は心理的に貯留部11の内部のエアゾール原液の液面を水平表示に合わせようとするため、適正な姿勢で空間処理用定量噴射エアゾール100を使用することができる。
[Pressure-resistant container]
The pressure-resistant container 10 includes a storage unit 11 in which the aerosol stock solution and the propellant are stored, and a fixed-quantity injection valve 12 assembled at the mouth of the storage unit 11. The storage portion 11 has a bottomed cylindrical shape or a bottomed substantially cylindrical shape, and is formed of a resin such as polyethylene terephthalate or a metal such as aluminum or tin. The appearance of the storage unit 11 may be transparent, translucent, or opaque. The shape of the bottom may be upright, and examples thereof include a flat shape, a concave shape, and five petal-like shapes. It is preferable that the outer surface of the storage portion 11 is provided with a display for the user to recognize that the dip tube 30 is curved and the opposite side in the direction toward the tip 30a is the front surface. For example, it is used that the dip tube 30 is curved and the opposite side in the direction toward the tip 30a is the front side because a display indicating the front direction F is printed at the position P on the outer surface of the storage unit 11. Can be recognized by others. The display indicating the front direction F can be, for example, a character or a design, but if the design matches the pattern printed on the actuator 20 when the injection port 21 is directed to the front direction F, the display can be used. The user can be made to recognize the front direction F without impairing the design. Here, the front direction F is a direction in which the injection port 21 is preferably directed at the time of use, and is a direction opposite to the bending direction of the dip tube 30 described later. By directing the injection port 21 toward the front direction F indicated by the display P, the pressure-resistant container 10 is tilted slightly upward with respect to the horizontal plane H even when the amount of inclusions is small in the later stage of use of the spatial treatment quantitative injection aerosol 100. Then, the aerosol stock solution and the propellant will be accumulated in the vicinity of the tip 30a of the dip tube 30. As a result, when the quantitative injection aerosol 100 for spatial treatment is injected, the aerosol stock solution and the propellant are sucked up well by the dip tube 30, and the occurrence of injection defects can be suppressed. Here, "injection failure" means a state in which the capacity actually injected by one operation of the actuator 20 is less than 85% of the injection capacity of the fixed quantity injection valve 12. When the storage unit 11 is made of a transparent or translucent resin, it is preferable that the storage unit 11 is further printed with a horizontal display such as a border pattern. The horizontal display is provided to prevent excessive tilting that causes injection failure when the quantitative injection aerosol 100 for spatial treatment is injected. With such a horizontal display, the user psychologically tries to adjust the liquid level of the aerosol stock solution inside the storage unit 11 to the horizontal display, so that the quantitative injection aerosol 100 for spatial treatment is used in an appropriate posture. be able to.
 定量噴射バルブ12は、貯留部11の口部に装着され、耐圧容器10の外側でアクチュエータ20に接続し、耐圧容器10の内側でディップチューブ30に接続する。定量噴射バルブ12は、図示しない弁機構を有し、通常1回当たりの噴射容量が0.2~5.0mLとなるように設定されている。 The fixed-quantity injection valve 12 is attached to the mouth of the storage unit 11, is connected to the actuator 20 on the outside of the pressure-resistant container 10, and is connected to the dip tube 30 on the inside of the pressure-resistant container 10. The metering-quantity injection valve 12 has a valve mechanism (not shown), and is usually set so that the injection capacity per injection is 0.2 to 5.0 mL.
〔アクチュエータ〕
 アクチュエータ20は、エアゾール原液を噴射するための作動部であり、このアクチュエータ20には、定量噴射バルブ12に接続され、エアゾール原液が耐圧容器10から外部へ噴出する噴射口21が設けられている。ここで、噴射口21の角度について説明する。図2は、空間処理用定量噴射エアゾール100における(a)噴射口(噴射軸)の仰角、及び(b)噴射方向を示す説明図である。本発明では、耐圧容器10を水平面Hに載置したときの水平面Hに対する噴射口の噴射軸Oの角度を仰角Dと規定し(図2(a))、実際に空間処理用定量噴射エアゾール100を手に取り、空間に向けてエアゾール原液を噴射するときの水平面Hに対する噴射口の噴射軸Oの角度を噴射方向角Eと規定する(図2(b))。従って、仰角Dは基本的には空間処理用定量噴射エアゾール100の固有の角度であり、噴射方向角Eは噴射姿勢によって変動する角度である。本発明において、噴射口21は、耐圧容器10を水平面Hに載置したとき、水平面Hに対する噴射軸Oの仰角Dが10~60°に設定されており、15~50°に設定されていることが好ましい。仰角Dが10~60°であれば、斜め上方30~60°付近に向けて(すなわち、噴射方向角Eを30~60°となして)エアゾール原液を容易に噴射することができる。仰角Dが10°未満であると、エアゾール原液を水平面Hに対して斜め上方30~60°付近に向けて噴射するために耐圧容器10を過剰に傾ける必要があり、そのように耐圧容器10を過剰に傾けて噴射したときは、噴射不良が生じる虞がある。仰角Dが60°を超えると、噴射したエアゾール原液がアクチュエータ20を操作する手指等に付着する虞がある。なお、図2では、(a)仰角Dが60°に設定された空間処理用定量噴射エアゾール100、及び(b)空間処理用定量噴射エアゾール100を下方に15°傾けて噴射方向角Eを45°とした状態を例示してある。
[Actuator]
The actuator 20 is an operating unit for injecting the aerosol stock solution, and the actuator 20 is provided with an injection port 21 which is connected to the metering injection valve 12 and ejects the aerosol stock solution from the pressure resistant container 10 to the outside. Here, the angle of the injection port 21 will be described. FIG. 2 is an explanatory diagram showing (a) an elevation angle of an injection port (injection shaft) and (b) an injection direction in the quantitative injection aerosol 100 for spatial processing. In the present invention, the angle of the injection shaft O of the injection port with respect to the horizontal plane H when the pressure-resistant container 10 is placed on the horizontal plane H is defined as an elevation angle D (FIG. 2A), and the quantitative injection aerosol 100 for spatial treatment is actually used. The angle of the injection shaft O of the injection port with respect to the horizontal plane H when the aerosol stock solution is injected toward the space is defined as the injection direction angle E (FIG. 2B). Therefore, the elevation angle D is basically an angle peculiar to the quantitative injection aerosol 100 for spatial processing, and the injection direction angle E is an angle that varies depending on the injection posture. In the present invention, when the pressure-resistant container 10 is placed on the horizontal plane H, the elevation angle D of the injection shaft O with respect to the horizontal plane H is set to 10 to 60 °, and is set to 15 to 50 °. Is preferable. When the elevation angle D is 10 to 60 °, the aerosol stock solution can be easily injected toward the vicinity of diagonally upward 30 to 60 ° (that is, the injection direction angle E is 30 to 60 °). When the elevation angle D is less than 10 °, it is necessary to excessively tilt the pressure-resistant container 10 in order to inject the aerosol stock solution obliquely upward to the vicinity of 30 to 60 ° with respect to the horizontal plane H, and thus the pressure-resistant container 10 is tilted. If the injection is performed at an excessive tilt, injection defects may occur. If the elevation angle D exceeds 60 °, the injected aerosol stock solution may adhere to the fingers or the like that operate the actuator 20. In FIG. 2, (a) the quantitative injection aerosol 100 for spatial treatment in which the elevation angle D is set to 60 °, and (b) the quantitative injection aerosol 100 for spatial treatment are tilted downward by 15 ° to set the injection direction angle E to 45. The state set to ° is illustrated.
 噴射口21について、その数、形状、サイズは特に限定されない。噴射口21の数は、1個であってもよく、2個以上であってもよいが、簡便で低コストで製造できるという観点からすれば、噴射口21の数は1個であることが好ましい。なお、噴射口を2個有するノズル又はアクチュエータについては、各噴射口21の中心を結んだ線分の垂直二等分線を噴射軸Oとし、噴射口を3個以上有するノズル又はアクチュエータについては、噴射口21の噴射軸Oを以下のように定める。ノズル又はアクチュエータの噴射部の中央に噴射口21が存在するものについては、その中央の噴射口21の中心を貫く直交線を噴射軸Oとする。ノズル又はアクチュエータの噴射部の中央に噴射口21が存在しないものについては、各噴射口21の中心を結ぶ多角形の外接円の中心を貫く直交線を噴射軸Oとする。 The number, shape, and size of the injection ports 21 are not particularly limited. The number of injection ports 21 may be one or two or more, but from the viewpoint of being simple and inexpensive to manufacture, the number of injection ports 21 may be one. preferable. For nozzles or actuators having two injection ports, the perpendicular bisector of the line segment connecting the centers of each injection port 21 is the injection axis O, and for nozzles or actuators having three or more injection ports. The injection shaft O of the injection port 21 is defined as follows. If the injection port 21 is located in the center of the injection portion of the nozzle or actuator, the orthogonal line penetrating the center of the injection port 21 at the center is defined as the injection axis O. If the injection port 21 does not exist in the center of the injection portion of the nozzle or actuator, the orthogonal line penetrating the center of the polygonal circumscribed circle connecting the centers of the injection ports 21 is defined as the injection axis O.
 噴射口21の形状(断面形状)は、円形、楕円形、多角形等の他、各種不定形であってもよい。噴射口21の開口面積は、0.05~8.0mmであることが好ましく、0.1~4.0mmであることがより好ましく、0.2~3.0mmであることがさらに好ましい。例えば、噴射口21の数が1個であり、噴射口21の形状が円形である場合、噴射口21のサイズ(噴口径)は、0.3mm以上であることが好ましく、0.4mm以上であることがより好ましく、0.6mm以上であることがさらに好ましい。また、噴口径は、3.0mm以下であることが好ましく、2.0mm以下であることがより好ましく、1.8mm以下であることがさらに好ましい。 The shape (cross-sectional shape) of the injection port 21 may be a circular shape, an elliptical shape, a polygonal shape, or any other irregular shape. The opening area of the injection port 21 is preferably 0.05 ~ 8.0 mm 2, more preferably from 0.1 ~ 4.0 mm 2, further to be 0.2 ~ 3.0 mm 2 preferable. For example, when the number of injection ports 21 is one and the shape of the injection port 21 is circular, the size of the injection port 21 (injection port diameter) is preferably 0.3 mm or more, preferably 0.4 mm or more. It is more preferably present, and more preferably 0.6 mm or more. Further, the nozzle diameter is preferably 3.0 mm or less, more preferably 2.0 mm or less, and further preferably 1.8 mm or less.
 アクチュエータ20は、ノズルを有するものでも、ノズルを有さないものでも構わない。ノズルを有するものである場合、突出したノズル付きのものでも、突出していないノズル付きのものでも構わないが、突出したノズル付きのものが好ましい。ノズル付きアクチュエータである場合、ノズルの長さは、特に限定されないが、2.0~80mmが好ましく、3.0~70mmがより好ましく、4.0~60mmが特に好ましい。アクチュエータ20における操作ボタンは、プッシュダウンタイプやトリガータイプのボタンを採用することができる。 The actuator 20 may have a nozzle or not. In the case of having a nozzle, the one with a protruding nozzle or the one with a non-protruding nozzle may be used, but the one with a protruding nozzle is preferable. In the case of an actuator with a nozzle, the length of the nozzle is not particularly limited, but is preferably 2.0 to 80 mm, more preferably 3.0 to 70 mm, and particularly preferably 4.0 to 60 mm. As the operation button in the actuator 20, a push-down type or trigger type button can be adopted.
〔ディップチューブ〕
 ディップチューブ30は、定量噴射バルブ12に取り付けられたポリエチレン、ポリプロピレン等の樹脂製の中空部材であって、定量噴射バルブ12の操作時に、耐圧容器10に封入されているエアゾール原液及び噴射剤を定量噴射バルブ12に供給する。ディップチューブ30は、それ自体は直線形状であるが、定量噴射バルブ12に取り付けられて耐圧容器10の内部に挿入されると、湾曲することが可能となる。従って、ディップチューブを適宜湾曲させることにより、その先端30aを耐圧容器10内の適切な位置に容易に配することができる。ディップチューブ30の先端30aは、耐圧容器10の最下部Bからの高さhが6mm以下、好ましくは3mm以下となるように、定量噴射バルブ12に取り付けられている。ここで、耐圧容器10の最下部Bとは、耐圧容器10を水平面Hに載置したとき、耐圧容器10の内面において水平面Hに最も近い部位である。図1に示すように耐圧容器10の底面がドーム状をなす場合にも、耐圧容器10に封入されたエアゾール原液は、空間処理用定量噴射エアゾール100の使用後期において、最下部Bに最後まで存在することになる。そのため、ディップチューブ30の先端30aが耐圧容器10の最下部Bから6mm以下の位置にあることで、耐圧容器10を水平面Hに対して若干斜めに傾けて噴射したときでも、先端30aがエアゾール原液及び噴射剤の液面下に位置することになり、エアゾール原液及び噴射剤を確実に定量噴射バルブ12に供給することができる。その結果、空間処理用定量噴射エアゾール100の使用後期における噴射不良の発生を抑制することができる。耐圧容器10の最下部Bからの先端30aの高さhが6mmを超えると、噴射時に耐圧容器10を水平面Hに対して若干斜めに傾けたときに、エアゾール原液及び噴射剤の液面より先端30aが高い位置となり易く、その結果、噴射不良が発生する虞がある。ディップチューブ30は、一端を定量噴射バルブ12に取り付けた状態で下方垂直方向に延伸する直線状の形状、一端を定量噴射バルブ12に取り付けた状態で下方垂直方向に延伸し、湾曲部30bにおいて湾曲した形状、又は全体が湾曲した形状をなすことが好ましい。その中でも、先端30aが耐圧容器10の内側面Sの近傍に位置するように、湾曲部30bにおいて湾曲した形状、又は全体が湾曲した形状であることがより好ましい。ディップチューブ30が湾曲部30bにおいて湾曲した形状、又は全体が湾曲した形状をなし、先端30aが耐圧容器10の内側面Sの近傍に位置するときに、耐圧容器10の内側面Sから先端30aまでの距離dは、25mm以下となるように設定され、15mm以下が好ましく、6mm以下がより好ましく、3mm以下がさらに好ましい。内側面Sから先端30aまでの距離dが25mm以下であることで、耐圧容器10を水平面Hに対して斜めに傾けて噴射したときでも、内側面Sの近傍にあるエアゾール原液及び噴射剤を確実に定量噴射バルブ12に供給し、噴射不良の発生をより抑制することができる。ディップチューブ30の先端30aは、様々な形状に加工することができる。図3は、空間処理用定量噴射エアゾールのディップチューブの先端の拡大断面図であり、(a)斜めにカットされた斜端部、(b)U字状(凹状)にカットされたU端部、(c)円弧状(凸状)にカットされた円弧端部、(d)直角にカットされた直角端部を例示している。これらのうち、(a)斜めにカットされた斜端部、(b)U字状にカットされたU端部、又は(c)円弧状にカットされた円弧端部が好ましい。先端30aがこれらの形状であることにより、エアゾール原液及び噴射剤の吸い上げがよくなり、噴射不良の発生をより抑制することができる。
[Dip tube]
The dip tube 30 is a hollow member made of a resin such as polyethylene or polypropylene attached to the fixed-quantity injection valve 12, and when the fixed-quantity injection valve 12 is operated, the aerosol stock solution and the propellant sealed in the pressure-resistant container 10 are quantified. It is supplied to the injection valve 12. Although the dip tube 30 itself has a linear shape, it can be curved when it is attached to the metering injection valve 12 and inserted into the pressure-resistant container 10. Therefore, by appropriately bending the dip tube, the tip 30a thereof can be easily arranged at an appropriate position in the pressure-resistant container 10. The tip 30a of the dip tube 30 is attached to the metering injection valve 12 so that the height h from the lowermost portion B of the pressure resistant container 10 is 6 mm or less, preferably 3 mm or less. Here, the lowermost portion B of the pressure-resistant container 10 is a portion of the inner surface of the pressure-resistant container 10 that is closest to the horizontal surface H when the pressure-resistant container 10 is placed on the horizontal surface H. Even when the bottom surface of the pressure-resistant container 10 has a dome shape as shown in FIG. 1, the aerosol stock solution sealed in the pressure-resistant container 10 exists at the bottom B until the end in the latter stage of use of the quantitative injection aerosol 100 for spatial treatment. Will be done. Therefore, since the tip 30a of the dip tube 30 is located at a position of 6 mm or less from the lowermost portion B of the pressure-resistant container 10, the tip 30a is the aerosol stock solution even when the pressure-resistant container 10 is sprayed at a slight angle with respect to the horizontal plane H. And because it is located below the liquid level of the propellant, the aerosol stock solution and the propellant can be reliably supplied to the fixed quantity injection valve 12. As a result, it is possible to suppress the occurrence of injection defects in the late use of the quantitative injection aerosol 100 for spatial treatment. When the height h of the tip 30a from the bottom B of the pressure-resistant container 10 exceeds 6 mm, the tip of the aerosol stock solution and the propellant tip from the liquid surface when the pressure-resistant container 10 is tilted slightly with respect to the horizontal plane H at the time of injection. 30a tends to be in a high position, and as a result, injection defects may occur. The dip tube 30 has a linear shape that extends in the downward vertical direction with one end attached to the fixed-quantity injection valve 12, and extends in the downward vertical direction with one end attached to the fixed-quantity injection valve 12, and is curved at the curved portion 30b. It is preferable that the shape is curved or the whole is curved. Among them, it is more preferable that the curved portion 30b has a curved shape or a curved shape as a whole so that the tip 30a is located near the inner side surface S of the pressure-resistant container 10. When the dip tube 30 has a curved shape at the curved portion 30b or a curved shape as a whole and the tip 30a is located in the vicinity of the inner side surface S of the pressure-resistant container 10, from the inner side surface S to the tip 30a of the pressure-resistant container 10. The distance d is set to be 25 mm or less, preferably 15 mm or less, more preferably 6 mm or less, still more preferably 3 mm or less. Since the distance d from the inner surface S to the tip 30a is 25 mm or less, the aerosol stock solution and the propellant in the vicinity of the inner surface S are surely secured even when the pressure-resistant container 10 is injected at an angle with respect to the horizontal plane H. It can be supplied to the fixed-quantity injection valve 12 to further suppress the occurrence of injection defects. The tip 30a of the dip tube 30 can be processed into various shapes. FIG. 3 is an enlarged cross-sectional view of the tip of the dip tube of the quantitative injection aerosol for spatial treatment, in which (a) an obliquely cut oblique end portion and (b) a U-shaped (concave) cut U end portion. , (C) The arc end portion cut into an arc shape (convex shape), and (d) the right angle end portion cut at a right angle are illustrated. Of these, (a) an obliquely cut oblique end portion, (b) a U-shaped cut U-end portion, or (c) an arc-shaped arc-shaped end portion are preferable. Since the tip 30a has these shapes, the aerosol stock solution and the propellant can be sucked up well, and the occurrence of injection defects can be further suppressed.
<エアゾール原液>
 エアゾール原液は、その主成分の一つである防除成分として、(A)30℃における蒸気圧が1×10-4mmHg未満である化合物(難揮散性防除成分)、(B)30℃における蒸気圧が2×10-4~1×10-2mmHgである化合物(揮散性防除成分)、あるいは(A)及び(B)の混合物を含むものを使用することができる。以下、難揮散性防除成分を含むものをエアゾール原液A、揮散性防除成分を含むものをエアゾール原液Bとして説明する。
<Aerosol stock solution>
The aerosol stock solution contains (A) a compound having a vapor pressure of less than 1 × 10 -4 mmHg at 30 ° C. (non-volatile control component) and (B) vapor at 30 ° C. Compounds having a pressure of 2 × 10 -4 to 1 × 10 −2 mmHg (volatile control component) or a mixture of (A) and (B) can be used. Hereinafter, an aerosol stock solution A containing a refractory control component and an aerosol stock solution B containing a volatilization control component will be described.
[エアゾール原液A]
 エアゾール原液Aの主成分の一つである難揮散性防除成分としては、ゴキブリ、トコジラミ、アリ等に代表される匍匐害虫を防除するための匍匐害虫防除用化合物、及び/又は主に屋内塵性ダニ類を防除するためのダニ防除用化合物を用いることができる。匍匐害虫防除用化合物としては、例えば、フェノトリン、シフェノトリン、ペルメトリン、シペルメトリン、シフルトリン、ビフェントリン、フェンプロパトリン、トラロメトリン、エトフェンプロックス、及びイミプロトリン等のピレスロイド系化合物、シラフルオフェン等のケイ素系化合物、ジクロルボス、及びフェニトロチオン等の有機リン系化合物、プロポクスル等のカーバメート系化合物、ジノテフラン、イミダクロプリド、及びクロチアニジン等のネオニコチノイド系化合物、フィプロニル、並びにインドキサカルブ等が挙げられる。これらの中でも、フェノトリン、シフェノトリン、ペルメトリン、シペルメトリン、シフルトリン、ビフェントリン、フェンプロパトリン、トラロメトリン、エトフェンプロックス、及びジノテフランが好ましい。なお、ピレスロイド系化合物の酸成分やアルコール部分において、不斉炭素に基づく光学異性体や幾何異性体が存在する場合、それらの各々や任意の混合物も匍匐害虫防除用化合物に含まれる。ダニ防除用化合物としては、例えば、アミドフルメト、安息香酸ベンジル、サリチル酸フェニル、サリチル酸ベンジル、セバシン酸ジブチル、セバシン酸ジプロピル、アジピン酸ジブチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジブチル、p-メンタン-3,8-ジオール、3-ヨード-2-プロピニルブチルカーバメート、フェノトリン、及びディート等が挙げられる。これらの中でも、アミドフルメト、安息香酸ベンジル、サリチル酸フェニル、サリチル酸ベンジル、セバシン酸ジブチル、セバシン酸ジプロピル、アジピン酸ジブチル、フタル酸ジエチル、フタル酸ジブチル、p-メンタン-3,8-ジオール、フェノトリン、及びディートが好ましい。本発明の空間処理用定量噴射エアゾール100は、屋内の処理空間で一定量噴射すると、噴霧粒子が主に付着性粒子として床面に沈降するが、難揮散性防除成分を含むことで、その処理空間において特に匍匐害虫や屋内塵性ダニ類に対して優れた防除効果を示す。また、難揮散性防除成分を含むことで、床面に沈降した付着性粒子から気中への難揮散性防除成分の揮散が抑制される。このような作用機序により、本発明の空間処理用定量噴射エアゾール100は、安全性が高く、人が居る状況下でも使用可能なものとなる。
[Aerosol stock solution A]
As the non-volatile control component, which is one of the main components of the aerosol stock solution A, a compound for controlling mite pests typified by cockroaches, bed bugs, ants, etc., and / or mainly indoor dustiness A mite control compound for controlling mites can be used. Examples of the pest control compound include pyrethroid compounds such as phenothrin, ciphenothrin, permethrin, cypermethrin, cyfluthrin, bifenthrin, phenpropatrin, tralomethrin, etofenprox, and imiprothrin, silicon compounds such as silafluofen, and dichlorbos. , And organic phosphorus compounds such as fenitrothione, carbamate compounds such as propoxul, neonicotinoid compounds such as dinotefuran, imidacloprid, and clothianidin, fipronil, indoxacarb and the like. Among these, phenothrin, cyphenothrin, permethrin, cypermethrin, cyfluthrin, bifentrin, fenpropatrin, tralomethrin, etofenprox, and dinotefuran are preferable. If optical isomers or geometric isomers based on asymmetric carbon are present in the acid component or alcohol portion of the pyrethroid compound, each of them or any mixture thereof is also included in the pest control compound. Examples of the compound for controlling ticks include amidoflumeth, benzyl benzoate, phenyl salicylate, benzyl salicylate, dibutyl sebacate, dipropyl sebacate, dibutyl adipate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, and p-menthan-3. , 8-diol, 3-iodo-2-propynylbutyl carbamate, phenothrin, DEET and the like. Among these, amidoflumeth, benzyl benzoate, phenyl salicylate, benzyl salicylate, dibutyl sebacate, dipropyl sebacate, dibutyl adipate, diethyl phthalate, dibutyl phthalate, p-menthane-3,8-diol, phenothrin, and DEET. Is preferable. In the quantitative injection aerosol 100 for spatial treatment of the present invention, when a certain amount is injected in an indoor treatment space, the spray particles mainly settle on the floor surface as adhesive particles, but the treatment is carried out by containing a resistant volatilization control component. It shows excellent control effect especially against aerosol pests and indoor dust mites in space. Further, by including the refractory control component, the volatilization of the refractory control component from the adherent particles settled on the floor surface into the air is suppressed. Due to such a mechanism of action, the quantitative injection aerosol 100 for spatial treatment of the present invention is highly safe and can be used even in the presence of a person.
 エアゾール原液A中の防除成分の含有量は、1~90w/v%であり、5~80w/v%とすることが好ましく、30~75w/v%とすることがより好ましい。エアゾール原液A中の防除成分の含有量が上記の範囲にあれば、防除成分が有機溶剤に溶解し易く、また、エアゾールが噴射された際、噴射粒子が最適な状態で形成される。 The content of the control component in the aerosol stock solution A is 1 to 90 w / v%, preferably 5 to 80 w / v%, and more preferably 30 to 75 w / v%. When the content of the control component in the aerosol stock solution A is within the above range, the control component is easily dissolved in the organic solvent, and when the aerosol is sprayed, the jet particles are formed in an optimum state.
 エアゾール原液Aには、上記の防除成分の他に有機溶剤が含まれる。有機溶剤は、上記の防除成分を溶解してエアゾール原液Aを調製することができ、また、調製したエアゾール原液Aを噴射したとき、最適な噴射粒子を形成し得るものが使用される。本発明の空間処理用定量噴射エアゾール100においては、有機溶剤としては、例えば、エタノール、及びイソプロパノール(IPA)等の炭素数が2~3の低級アルコール、ノルマルパラフィン、及びイソパラフィン等の炭化水素系溶剤、ミリスチン酸イソプロピル(IPM)、ラウリン酸ヘキシル等の炭素数が16~20の高級脂肪酸エステル、炭素数3~10のグリコールエーテル系溶剤、並びにケトン系溶剤等が挙げられる。これらの中でも、炭素数が2~3の低級アルコール、炭化水素系溶剤、及び炭素数が16~20の高級脂肪酸エステルが好ましい。特に、炭素数が2~3の低級アルコールは、噴霧粒子の拡散均一性や処理空間内の露出面(例えば、処理空間内に存在する床面や壁面、家具等の構造物の表面等)、特に床面にベタツキを生じにくいことからより好ましい。上記の有機溶剤は、二種以上を混合して使用することも可能である。また、有機溶剤として、さらに、グリコールエーテル類や、ノルマルパラフィン、及びイソパラフィン等の炭化水素系溶剤、及びケトン系溶剤等を混合することも可能である。 The aerosol stock solution A contains an organic solvent in addition to the above-mentioned control components. As the organic solvent, an aerosol stock solution A can be prepared by dissolving the above-mentioned control component, and a solvent capable of forming optimum jet particles when the prepared aerosol stock solution A is sprayed is used. In the quantitative injection aerosol 100 for spatial treatment of the present invention, the organic solvent includes, for example, ethanol, a lower alcohol having 2 to 3 carbon atoms such as isopropanol (IPA), a normal paraffin, and a hydrocarbon solvent such as isoparaffin. , Isopropyl myristate (IPM), hexyl laurate and the like, higher fatty acid esters having 16 to 20 carbon atoms, glycol ether solvents having 3 to 10 carbon atoms, ketone solvents and the like. Among these, lower alcohols having 2 to 3 carbon atoms, hydrocarbon solvents, and higher fatty acid esters having 16 to 20 carbon atoms are preferable. In particular, lower alcohols having 2 to 3 carbon atoms have diffusion uniformity of spray particles and exposed surfaces in the treatment space (for example, floors and walls existing in the treatment space, surfaces of structures such as furniture), and the like. This is particularly preferable because it does not easily cause stickiness on the floor surface. It is also possible to use a mixture of two or more of the above organic solvents. Further, as the organic solvent, it is also possible to further mix glycol ethers, hydrocarbon solvents such as normal paraffin and isoparaffin, and ketone solvents.
 エアゾール原液Aの比重は、0.85~1.15であることが好ましく、0.89~1.10であることがより好ましい。エアゾール原液Aの比重が0.85~1.15の範囲にあれば、本発明の空間処理用定量噴射エアゾール100を屋内の処理空間で一定量噴射すると、噴霧粒子が主に付着性粒子として床面に沈降、付着するため、適切な防除効果を得ることができる。また、エアゾール原液Aの比重が上記の範囲にあると、付着性粒子が沈降に至る過程において隙間や物陰にも進入するため、防除成分としてピレスロイド系化合物を用いた場合には、ゴキブリ等が隙間や物陰から飛び出すフラッシング効果も十分期待し得る。 The specific weight of the aerosol stock solution A is preferably 0.85 to 1.15, more preferably 0.89 to 1.10. When the specific gravity of the aerosol stock solution A is in the range of 0.85 to 1.15, when a fixed amount of the quantitative injection aerosol 100 for spatial treatment of the present invention is injected in an indoor treatment space, the spray particles are mainly used as adhesive particles on the floor. Since it settles and adheres to the surface, an appropriate control effect can be obtained. In addition, if the specific gravity of the aerosol stock solution A is within the above range, the adherent particles also enter gaps and shadows in the process of sedimentation. Therefore, when a pyrethroid compound is used as a control component, cockroaches and the like enter gaps. You can also expect a flushing effect that pops out of the shadows.
 エアゾール原液Aには、上記成分に加え、カビ類、菌類等を対象とした防カビ剤、抗菌剤殺菌剤、芳香剤、消臭剤、安定化剤、帯電防止剤、消泡剤、及び賦形剤等を適宜配合することもできる。防カビ剤、抗菌剤や殺菌剤としては、ヒノキチオール、2-メルカプトベンゾチアゾール、2-(4-チアゾリル)ベンゾイミダゾール、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、トリホリン、3-メチル-4-イソプロピルフェノール、及びオルト-フェニルフェノール等を例示できる。また、芳香剤としては、オレンジ油、レモン油、ラベンダー油、ペパーミント油、ユーカリ油、シトロネラ油、ライム油、ユズ油、ジャスミン油、檜油、緑茶精油、リモネン、α-ピネン、リナロール、ゲラニオール、フェニルエチルアルコール、アミルシンナミックアルデヒド、クミンアルデヒド、ベンジルアセテート等の芳香成分、「緑の香り」と呼ばれる青葉アルコールや青葉アルデヒド配合の香料成分等が挙げられる。 In addition to the above components, the aerosol stock solution A contains antifungal agents, antibacterial agents, bactericides, air fresheners, deodorants, stabilizers, antistatic agents, defoaming agents, and additives for fungi and fungi. A shaping agent or the like can be appropriately blended. Examples of fungicides, antibacterial agents and fungicides include hinokitiol, 2-mercaptobenzothiazole, 2- (4-thiazolin) benzimidazole, 5-chloro-2-methyl-4-isothiazolin-3-one, triphorin, 3- Examples thereof include methyl-4-isopropylphenol and ortho-phenylphenol. As fragrances, orange oil, lemon oil, lavender oil, peppermint oil, eucalyptus oil, citronella oil, lime oil, yuzu oil, jasmine oil, cypress oil, green tea essential oil, limonene, α-pinene, linalool, geraniol, Examples include aromatic components such as phenylethyl alcohol, amylcinnamic aldehyde, cumin aldehyde, and benzyl acetate, and fragrance components containing green leaf alcohol and green leaf aldehyde called "green scent".
[エアゾール原液B]
 エアゾール原液Bの主成分の一つである揮散性防除成分としては、カ、ハエ等に代表される飛翔害虫やゴキブリ、トコジラミ、アリ等に代表される匍匐害虫、屋内塵性ダニ類等の害虫を防除するための害虫防除用化合物を用いることができる。害虫防除用化合物としては、例えば、メトフルトリン、プロフルトリン、トランスフルトリン、エムペントリン、テラレスリン、及びフラメトリン等が挙げられる。これらの中でも、蒸気圧や安定性、基礎殺虫効力等を考慮すると、メトフルトリン、プロフルトリン、及びトランスフルトリンが好ましい。これらの化合物の酸成分やアルコール部分において、不斉炭素に基づく光学異性体や幾何異性体が存在する場合、それらの各々や任意の混合物も揮散性防除成分に含まれる。本発明の空間処理用定量噴射エアゾール100は、屋内の処理空間で一定量噴射すると、揮散性防除成分を含む噴霧粒子は、主に付着性粒子として処理空間内の露出面(例えば、処理空間内に存在する床面や壁面、家具等の構造物の表面等)、特に床面に沈降、付着し、その処理空間において、飛翔害虫、匍匐害虫や屋内塵性ダニ類に対して優れた防除効果を示す。
[Aerosol stock solution B]
Volatile control components that are one of the main components of aerosol stock solution B include flying pests such as mosquitoes and flies, pests such as cockroaches, tokojirami, and ants, and pests such as indoor dust mites. Pest control compounds for controlling flies can be used. Examples of the pest control compound include metoflutrin, profluthrin, transfluthrin, empentrin, terraresrin, flamethrin and the like. Among these, metoflutrin, profluthrin, and transfluthrin are preferable in consideration of vapor pressure, stability, basal insecticidal efficacy, and the like. If optical isomers or geometric isomers based on asymmetric carbon are present in the acid component or alcohol moiety of these compounds, each or any mixture thereof is also included in the volatilization control component. When a fixed amount of the quantitative injection aerosol 100 for spatial treatment of the present invention is injected in an indoor treatment space, the spray particles containing the volatilizing control component are mainly as adhesive particles on an exposed surface in the treatment space (for example, in the treatment space). Excellent control effect against flying pests, pests and indoor dust mites in the treatment space where it settles and adheres to the floor surface, wall surface, surface of structures such as furniture, etc. Is shown.
 エアゾール原液B中の防除成分の含有量は、1~90w/v%であり、5~80w/v%とすることが好ましく、8~75w/v%とすることがより好ましい。エアゾール原液B中の防除成分の含有量が上記の範囲にあれば、防除成分が有機溶剤に溶解し易く、また、エアゾールが噴射された際、噴射粒子が最適な状態で形成される。 The content of the control component in the aerosol stock solution B is 1 to 90 w / v%, preferably 5 to 80 w / v%, and more preferably 8 to 75 w / v%. When the content of the control component in the aerosol stock solution B is within the above range, the control component is easily dissolved in the organic solvent, and when the aerosol is sprayed, the jet particles are formed in an optimum state.
 エアゾール原液Bには、上記の防除成分の他に有機溶剤が含まれる。有機溶剤は、上記の防除成分を溶解してエアゾール原液Bを調製することができ、また、調製したエアゾール原液Bを噴射したとき、最適な噴射粒子を形成し得るものが使用される。エアゾール原液Bに使用可能な有機溶剤は、上述したエアゾール原液Aに使用可能な有機溶剤と同じものである。 The aerosol stock solution B contains an organic solvent in addition to the above-mentioned control components. As the organic solvent, an aerosol stock solution B can be prepared by dissolving the above-mentioned control component, and a solvent capable of forming optimum jet particles when the prepared aerosol stock solution B is sprayed is used. The organic solvent that can be used in the aerosol stock solution B is the same as the organic solvent that can be used in the aerosol stock solution A described above.
 エアゾール原液Bの比重は、0.78~1.15であることが好ましく、0.82~1.10であることがより好ましい。エアゾール原液Bの比重が0.78~1.15の範囲にあれば、本発明の空間処理用定量噴射エアゾール100を屋内の処理空間で一定量噴射すると、噴霧粒子が主に付着性粒子として露出面に均一に付着するため、適切な防除効果を得ることができる。 The specific weight of the aerosol stock solution B is preferably 0.78 to 1.15, more preferably 0.82 to 1.10. When the specific gravity of the aerosol stock solution B is in the range of 0.78 to 1.15, when a fixed amount of the quantitative injection aerosol 100 for spatial treatment of the present invention is injected in an indoor processing space, the spray particles are mainly exposed as adhesive particles. Since it adheres uniformly to the surface, an appropriate control effect can be obtained.
 エアゾール原液Bには、上記成分に加え、カビ類、菌類等を対象とした防カビ剤、抗菌剤殺菌剤、芳香剤、消臭剤、安定化剤、帯電防止剤、消泡剤、及び賦形剤等を適宜配合することもできる。これらの追加の成分は、上述したエアゾール原液Aに追加される成分と同じものである。 In addition to the above components, the aerosol stock solution B contains antifungal agents, antibacterial agents, bactericides, air fresheners, deodorants, stabilizers, antistatic agents, defoaming agents, and additives for fungi and fungi. A shaping agent or the like can be appropriately blended. These additional components are the same as those added to the aerosol stock solution A described above.
[エアゾール原液A及びエアゾール原液Bの混合物]
 上記のエアゾール原液Aとエアゾール原液Bとを混合した混合物をエアゾール原液(A+B)として使用した場合、飛翔害虫、匍匐害虫、屋内塵性ダニのすべてに対して効果的な防除が可能となり、より広い用途に利用することができる。すなわち、本発明の空間処理用定量噴射エアゾール100を屋内の処理空間で一定量噴射すると、エアゾール原液Bに由来する揮散性防除成分を含む噴霧粒子は、主に付着性粒子として処理空間内の露出面(例えば、処理空間内に存在する床面や壁面、家具等の構造物の表面等)、特に床面に沈降、付着し、その処理空間において、飛翔害虫、匍匐害虫や屋内塵性ダニ類に対して優れた防除効果を示す。ここで、噴霧粒子の一定量は気中に浮遊残存するが、防除成分としてエアゾール原液Bに由来する揮散性防除成分を含むことで、飛翔害虫に対しても防除効果を発揮し得る。また、エアゾール原液Bに由来する揮散性防除成分は、エアゾール原液Aに由来する難揮散性防除成分と共に一部床面や壁面に付着すると、匍匐害虫及び/又は屋内塵性ダニ類に対する防除効果を相乗的に高めることができる。
[Mixture of aerosol stock solution A and aerosol stock solution B]
When a mixture of the above aerosol stock solution A and aerosol stock solution B is used as the aerosol stock solution (A + B), effective control against all flying pests, crawling pests, and indoor dust mites becomes possible, which is wider. It can be used for various purposes. That is, when a fixed amount of the quantitative injection aerosol 100 for spatial treatment of the present invention is injected in an indoor treatment space, the spray particles containing the volatilization control component derived from the aerosol stock solution B are mainly exposed as adhesive particles in the treatment space. Surfaces (for example, floors and walls existing in the treatment space, surfaces of structures such as furniture), especially the floor surface, settles and adheres, and in the treatment space, flying pests, pests and indoor dust mites Shows excellent control effect against. Here, a certain amount of the spray particles remains suspended in the air, but by including a volatilizing control component derived from the aerosol stock solution B as the control component, a control effect can be exerted against flying pests. Further, when the volatilization control component derived from the aerosol stock solution B adheres to a part of the floor surface or the wall surface together with the volatilization control component derived from the aerosol stock solution A, it has a control effect on crawling pests and / or indoor dust mites. Can be increased synergistically.
<噴射剤>
 本発明の空間処理用定量噴射エアゾール100に用いる噴射剤としては、液化石油ガス(LPG)、ジメチルエーテル(DME)、及びハイドロフルオロオレフィン等の液化ガス、並びに窒素ガス、炭酸ガス、亜酸化窒素、及び圧縮空気等の圧縮ガスが挙げられる。上記の噴射剤は、単独又は混合状態で使用することができるが、LPGを主成分としたものが使い易い。
<Injector>
The propellant used in the quantitative injection aerosol 100 for spatial treatment of the present invention includes liquefied petroleum gas (LPG), dimethyl ether (DME), liquefied gas such as hydrofluoroolefin, and nitrogen gas, carbon dioxide gas, nitrogen borooxide, and the like. Examples thereof include compressed gas such as compressed air. The above propellant can be used alone or in a mixed state, but one containing LPG as a main component is easy to use.
 本発明の空間処理用定量噴射エアゾール100は、耐圧容器10に充填されるエアゾール原液(a)と噴射剤(b)との容量比率(a/b)は、体積比で10/90~50/50に調整されることが好ましい。容量比率(a/b)が上記の範囲にあれば、十分な量の防除成分を露出面全体、特に床面全体へ均一に拡散させることができる。 In the quantitative injection aerosol 100 for spatial treatment of the present invention, the volume ratio (a / b) of the aerosol stock solution (a) and the propellant (b) filled in the pressure-resistant container 10 is 10/90 to 50/50 / by volume. It is preferably adjusted to 50. When the volume ratio (a / b) is within the above range, a sufficient amount of the control component can be uniformly diffused over the exposed surface, particularly the entire floor surface.
 本発明の空間処理用定量噴射エアゾール100は、噴射口21からの距離が5cmの箇所において噴射力が5~50gfであることが好ましい。噴射力が上記の範囲にあれば、噴射されたエアゾール原液は、処理空間内の露出面(例えば処理空間内に存在する床面や壁面、家具等の構造物の表面等)、特に床面全体に均一に沈降、付着し、飛翔害虫、匍匐害虫、及びダニ対して実用上十分な防除効果が得られる。噴射力が5gf未満であると、噴射力が不足して露出面全体への拡散性が不十分になる傾向がある。噴射力が50gfを超えると、噴射されたエアゾール原液の良好な拡散性が得られない虞がある。このような噴射力はエアゾール原液の組成、耐圧容器10の内圧、噴射口21の形状等により適宜調整され得る。 The quantitative injection aerosol 100 for spatial treatment of the present invention preferably has an injection force of 5 to 50 gf at a distance of 5 cm from the injection port 21. If the injection force is within the above range, the injected aerosol stock solution will be applied to exposed surfaces in the treatment space (for example, floors and walls existing in the treatment space, surfaces of structures such as furniture), especially the entire floor surface. It is uniformly settled and adhered to, and a practically sufficient control effect can be obtained against flying pests, pests and mites. If the injection force is less than 5 gf, the injection force tends to be insufficient and the diffusibility to the entire exposed surface tends to be insufficient. If the injection force exceeds 50 gf, good diffusivity of the injected aerosol stock solution may not be obtained. Such an injection force can be appropriately adjusted depending on the composition of the aerosol stock solution, the internal pressure of the pressure-resistant container 10, the shape of the injection port 21, and the like.
<防除対象害虫>
 本発明の空間処理用定量噴射エアゾール100は、アカイエカ、ヒトスジシマカ、ネッタイシマカ、チカイエカ等のカ類、イエバエ、ニクバエ等のハエ類、コバエ類、チョウバエ類、ユスリカ類、ハチ類、ガ類等の飛翔害虫や、ワモンゴキブリ、クロゴキブリ、チャバネゴキブリ等のゴキブリ類、トコジラミ(ナンキンムシ)、タイワントコジラミ(ネッタイトコジラミ)等のトコジラミ類、クサギカメムシ等のカメムシ類、クロヤマアリ、アミメアリ、トビイロケアリ、イエヒメアリ、アカカミアリ、ヒアリ等のアリ類、アシダカグモ、マダラヒメグモ、セアカゴケグモ等のクモ類、ヤスデ類、トビズムカデ等のムカデ類、ダンゴムシ類、ワラジムシ類、イエシロアリ、ヤマトシロアリ等のシロアリ類、ケムシ類等の匍匐害虫に加えて、イガ、コイガ等のイガ類、カツオブシムシ、ヒメカツオブシムシ等のカツオブシムシ類等の衣料害虫、コクゾウムシ類等の貯穀害虫、コナダニ、ヒョウヒダニ、ホコリダニ、ツメダニ、ヤケヒョウヒダニ等の屋内塵性ダニ類等の種々の害虫を防除するために使用することができる。特に、ワモンゴキブリ、クロゴキブリ、チャバネゴキブリ等のゴキブリ類、トコジラミ(ナンキンムシ)、タイワントコジラミ(ネッタイトコジラミ)等のトコジラミ類、クロヤマアリ、アミメアリ、トビイロケアリ、イエヒメアリ、アカカミアリ、ヒアリ等のアリ類、アシダカグモ、マダラヒメグモ、セアカゴケグモ等のクモ類などの匍匐害虫やコナダニ、ヒョウヒダニ、ホコリダニ、ツメダニ、ヤケヒョウヒダニ等の屋内塵性ダニ類の防除に有効であり、とりわけ、チャバネゴキブリ、ワモンゴキブリ、クロゴキブリ、トコジラミ(ナンキンムシ)に対して、優れた防除効果を奏する。
<Pests to be controlled>
The quantitative injection aerosol 100 for spatial treatment of the present invention includes mosquitoes such as bed bugs, bed bugs, bed bugs and bed bugs, flies such as bedbugs and bed bugs, flying insects such as bedbugs, bedbugs, bedbugs and moths. , Bed bugs such as Wamon Gokiburi, Kurogokiburi, Chabanegokiburi, Bed Bugs (Bed Bugs), Bed Bugs (Nettite Bed Bugs), Bed Bugs such as Kusagi Kamemushi, Black Mountain Ali, Amimeari, Tobiiro Keari In addition to ants, bedbugs, bedbugs, bedbugs, bedbugs, bed bugs, bed bugs, bed bugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, bedbugs Controls various pests such as bed bugs such as bed bugs, clothing pests such as bed bugs and bed bugs, bed bugs such as bed bugs, and indoor dust mites such as bed bugs, leopard mites, dust mites, cimex mites, and bedbug mites. Can be used for. In particular, bedbugs such as the American cockroach, black beetle, and chabanegokiburi, bed bugs such as bed bugs and bed bugs, bed bugs such as bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, bed bugs, and bed bugs. It is effective in controlling bedbugs such as spiders such as sea turtle spiders and indoor dust mites such as bedbugs, bedbugs, bedbugs, bedbugs, bedbugs, and bed bugs. , Has an excellent control effect.
<処理対象>
 本発明の空間処理用定量噴射エアゾール100の処理対象は、主に屋内空間である。処理空間の容積は特に限定されないが、4.5~16畳の部屋に相当する容積が18.8~66.6m(面積7.5~26.6m、高さ2.2~3.0m)であることが好ましく、4.5~8畳の部屋に相当する容積が18.8~33.3m(面積7.5~13.3m、高さ2.2~3.0m)であることがより好ましい。ただし、より容積の大きな屋内空間や、より容積の小さな屋内空間においても、その屋内空間の容積にあわせて、屋内空間の気中に、防除成分の放出量が0.1~50mg/mとなるように噴射回数、噴射容量等を適宜設定することで、屋内空間の容積に関わらず同様の防除効果を得ることができる。本発明の空間処理用定量噴射エアゾールの使用頻度は、害虫の発生頻度や状況に応じて適当な時期に、防除成分の放出量が上記の範囲となるように施用すればよい。
<Processing target>
The treatment target of the quantitative injection aerosol 100 for spatial treatment of the present invention is mainly an indoor space. The volume of the treatment space is not particularly limited, but the volume corresponding to a room of 4.5 to 16 tatami mats is 18.8 to 66.6 m 3 (area 7.5 to 26.6 m 2 and height 2.2 to 3. 0 m) is preferable, and the volume corresponding to a room of 4.5 to 8 tatami mats is 18.8 to 33.3 m 3 (area 7.5 to 13.3 m 2 , height 2.2 to 3.0 m). Is more preferable. However, even in a larger indoor space or a smaller indoor space, the amount of control component released into the air of the indoor space is 0.1 to 50 mg / m 3 according to the volume of the indoor space. By appropriately setting the number of injections, the injection capacity, and the like, the same control effect can be obtained regardless of the volume of the indoor space. The frequency of use of the quantitative injection aerosol for spatial treatment of the present invention may be applied so that the amount of the pest control component released is within the above range at an appropriate time according to the frequency of occurrence of pests and the situation.
 実施例1~49、及び比較例1~7に基づいて、本発明の空間処理用定量噴射エアゾールをさらに詳細に検討した。本発明の空間処理用定量噴射エアゾールについて、その効果を確認するため、本発明の特徴構成を備えた空間処理用定量噴射エアゾール(実施例1~49)を作製し、噴射試験を実施した。また、比較のため、本発明の特徴構成を備えていない空間処理用定量噴射エアゾール(比較例1~7)を作製し、同様の効果確認試験を実施した。 Based on Examples 1 to 49 and Comparative Examples 1 to 7, the quantitative injection aerosol for spatial treatment of the present invention was examined in more detail. In order to confirm the effect of the quantitative injection aerosol for spatial treatment of the present invention, the quantitative injection aerosol for spatial treatment (Examples 1 to 49) having the characteristic configuration of the present invention was prepared and an injection test was carried out. Further, for comparison, quantitative injection aerosols for spatial treatment (Comparative Examples 1 to 7) having no characteristic configuration of the present invention were prepared, and the same effect confirmation test was carried out.
〔実施例1〕
 難揮散性防除成分としてフェノトリン(40w/v%)をエタノールに溶解してエアゾール原液Aを調製した。このエアゾール原液A3.5mLと、噴射剤として液化石油ガス5.3mLとを、噴射容量が0.4mLである定量噴霧バルブ付きの耐圧容器に加圧充填した。この充填量は、理論上、定量噴射を最大22回実施可能なものである。耐圧容器の定量噴霧バルブに、耐圧容器を水平面に載置したとき噴射軸が水平面に対して60°の仰角(D)をなすように噴射口が設けられたアクチュエータを装着し、実施例1の空間処理用定量噴射エアゾールを得た。実施例1の空間処理用定量噴射エアゾールでは、ディップチューブは、先端がU字状にカットされたものを用い、耐圧容器内において、耐圧容器の最下部からの先端の高さ(h)が1mmとなるように、定量噴射バルブに取り付けた。実施例1の空間処理用定量噴射エアゾールは、噴射距離5cmにおける噴射力が15gfとなった。
[Example 1]
Phenothrin (40 w / v%) was dissolved in ethanol as a resistant volatilization control component to prepare an aerosol stock solution A. 3.5 mL of this aerosol stock solution A and 5.3 mL of liquefied petroleum gas as a propellant were pressure-filled in a pressure-resistant container with a metering spray valve having an injection capacity of 0.4 mL. This filling amount can theoretically carry out quantitative injection up to 22 times. An actuator provided with an injection port so that the injection shaft forms an elevation angle (D) of 60 ° with respect to the horizontal plane when the pressure resistant container is placed on the horizontal plane is attached to the fixed-quantity spray valve of the pressure-resistant container. A fixed-quantity injection aerosol for spatial treatment was obtained. In the quantitative injection aerosol for spatial treatment of Example 1, a dip tube having a U-shaped tip is used, and the height (h) of the tip from the bottom of the pressure-resistant container is 1 mm in the pressure-resistant container. It was attached to the metering injection valve so as to be. The quantitative injection aerosol for spatial treatment of Example 1 had an injection force of 15 gf at an injection distance of 5 cm.
〔実施例2~24、比較例1~5〕
 実施例1に準じて、表1に示す構成にて、実施例2~24、比較例1~5の各種空間処理用定量噴射エアゾールを作製した。実施例16、17、21、22、23、及び24の空間処理用定量噴射エアゾールでは、噴射容量が0.2mLや1.0mLである定量噴霧バルブを用いた場合においても、理論上、定量噴射を最大22回実施可能なものとなるように耐圧容器への充填量を調整した。
[Examples 2 to 24, Comparative Examples 1 to 5]
According to Example 1, various quantitative injection aerosols for spatial treatment of Examples 2 to 24 and Comparative Examples 1 to 5 were prepared with the configurations shown in Table 1. In the spatial treatment quantitative injection aerosols of Examples 16, 17, 21, 22, 23, and 24, theoretically, quantitative injection is performed even when a quantitative spray valve having an injection capacity of 0.2 mL or 1.0 mL is used. The filling amount in the pressure-resistant container was adjusted so that the above could be carried out up to 22 times.
<噴射試験(噴射角度45°)>
 水平面に対して噴射口の噴射軸が45°の噴射角度をなすように、実施例1~24、及び比較例1~5の空間処理用定量噴射エアゾールを固定し、噴射を繰り返した。噴射回数のカウントを開始する前に2回空打ちを行い、その後、正常に噴射できなくなるまでの噴射回数をカウントした。なお、本実施例において、「正常に噴射できなくなる」とは、前述の「噴射不良」と同義であり、アクチュエータの操作により実際に噴射される容量が、定量噴射バルブの噴射容量の85%未満となることを意味する。以降の実施例においても同じである。各空間処理用定量噴射エアゾールについて試験を4度繰り返して、噴射回数の平均値に応じて、噴射不良抑制効果を以下の評価基準により評価した。
 (評価基準)
 A:18回以上
 B:16回もしくは17回
 C:14回もしくは15回
 D:14回未満
<Injection test (injection angle 45 °)>
The quantitative injection aerosols for spatial treatment of Examples 1 to 24 and Comparative Examples 1 to 5 were fixed so that the injection axis of the injection port formed an injection angle of 45 ° with respect to the horizontal plane, and the injection was repeated. Before starting the counting of the number of injections, the blank shot was performed twice, and then the number of injections until the injection could not be performed normally was counted. In this embodiment, "cannot inject normally" is synonymous with the above-mentioned "injection failure", and the capacity actually injected by the operation of the actuator is less than 85% of the injection capacity of the fixed quantity injection valve. It means that The same applies to the following examples. The test was repeated four times for each spatial treatment quantitative injection aerosol, and the effect of suppressing injection defects was evaluated according to the following evaluation criteria according to the average value of the number of injections.
(Evaluation criteria)
A: 18 times or more B: 16 times or 17 times C: 14 times or 15 times D: Less than 14 times
 また、4度の試験のうちで1度以上、カウント開始2回目までに噴射不良が発生した場合は、使用初期の噴射不良が有ると判定した。試験結果を、表1に示す。 In addition, if injection failure occurs at least once in the four tests and by the second time the count starts, it is determined that there is injection failure at the initial stage of use. The test results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験の結果、薬剤を水平面に対して斜め上方45°に向けて噴霧する場合、実施例1~24の空間処理用定量噴射エアゾールでは、正常に噴射できなくなるまでの噴射回数が何れも14回以上であり、使用後期における噴射不良の発生が抑制された。その中でも、耐圧容器を水平面に載置したとき噴射軸が水平面に対して15°以上の仰角をなすように噴射口が設けられたアクチュエータを装着し、先端がU字形状や斜めにカットされたディップチューブを用いた実施例1~6、8~19、及び21~24の空間処理用定量噴射エアゾールは、使用後期における噴射不良抑制効果が特に優れていた。また、実施例1~24の空間処理用定量噴射エアゾールでは、使用初期の噴射不良も発生しなかった。 As a result of the test, when the drug is sprayed diagonally upward 45 ° with respect to the horizontal plane, the number of injections of the quantitative injection aerosol for spatial treatment of Examples 1 to 24 is 14 or more until it cannot be injected normally. Therefore, the occurrence of injection defects in the latter half of use was suppressed. Among them, an actuator provided with an injection port so that the injection shaft makes an elevation angle of 15 ° or more with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane is attached, and the tip is U-shaped or cut diagonally. The quantitative injection aerosols for spatial treatment of Examples 1 to 6, 8 to 19 and 21 to 24 using the dip tube were particularly excellent in the effect of suppressing injection defects in the latter stage of use. Further, in the quantitative injection aerosols for spatial treatment of Examples 1 to 24, injection defects at the initial stage of use did not occur.
 これに対し、比較例1~5の空間処理用定量噴射エアゾールは、正常に噴射できなくなるまでの噴射回数が何れも13回以下であり、使用後期における噴射不良の発生が十分に抑制されなかった。また、比較例1~3、及び5の空間処理用定量噴射エアゾールでは、使用初期の噴射不良も発生した。 On the other hand, the quantitative injection aerosols for spatial treatment of Comparative Examples 1 to 5 had 13 or less injection times until they could not be injected normally, and the occurrence of injection defects in the latter stage of use was not sufficiently suppressed. .. Further, in the quantitative injection aerosols for spatial treatment of Comparative Examples 1 to 3 and 5, injection defects at the initial stage of use also occurred.
〔実施例25~32、比較例6及び7〕
 実施例1に準じて、表2に示す構成にて、実施例25~32、比較例6及び7の各種空間処理用定量噴射エアゾールを作製した。
[Examples 25 to 32, Comparative Examples 6 and 7]
According to Example 1, various quantitative injection aerosols for spatial treatment of Examples 25 to 32 and Comparative Examples 6 and 7 were prepared with the configurations shown in Table 2.
<噴射試験(噴射角度30°)>
 水平面に対して噴射口の噴射軸が30°の噴射角度をなすように、実施例25~32、並びに比較例6及び7の空間処理用定量噴射エアゾールを固定し、噴射を繰り返した。噴射回数のカウントを開始する前に2回空打ちを行い、その後、正常に噴射できなくなるまでの噴射回数をカウントした。各空間処理用定量噴射エアゾールについて試験を4度繰り返して、噴射回数の平均値に応じて、噴射不良抑制効果を以下の評価基準により評価した。
 (評価基準)
 A:18回以上
 B:16回もしくは17回
 C:14回もしくは15回
 D:14回未満
<Injection test (injection angle 30 °)>
The quantitative injection aerosols for spatial treatment of Examples 25 to 32 and Comparative Examples 6 and 7 were fixed so that the injection axis of the injection port formed an injection angle of 30 ° with respect to the horizontal plane, and the injection was repeated. Before starting the counting of the number of injections, the blank shot was performed twice, and then the number of injections until the injection could not be performed normally was counted. The test was repeated four times for each spatial treatment quantitative injection aerosol, and the effect of suppressing injection defects was evaluated according to the following evaluation criteria according to the average value of the number of injections.
(Evaluation criteria)
A: 18 times or more B: 16 times or 17 times C: 14 times or 15 times D: Less than 14 times
 また、4度の試験のうちで1度以上、カウント開始2回目までに噴射不良が発生した場合は、使用初期の噴射不良が有ると判定した。試験結果を、表2に示す。 In addition, if injection failure occurs at least once in the four tests and by the second time the count starts, it is determined that there is injection failure at the initial stage of use. The test results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試験の結果、薬剤を水平面に対して斜め上方30°に向けて噴霧する場合、実施例25~32の空間処理用定量噴射エアゾールでは、正常に噴射できなくなるまでの噴射回数が何れも15回以上であり、使用後期における噴射不良の発生が抑制された。その中でも、耐圧容器を水平面に載置したとき噴射軸が水平面に対して50°以下の仰角をなすように噴射口が設けられたアクチュエータを装着した実施例26~32の空間処理用定量噴射エアゾールは、使用後期における噴射不良抑制効果が特に優れていた。また、実施例25~32の空間処理用定量噴射エアゾールでは、使用初期の噴射不良も発生しなかった。 As a result of the test, when the drug is sprayed diagonally upward to 30 ° with respect to the horizontal plane, the number of injections of the quantitative injection aerosol for spatial treatment of Examples 25 to 32 is 15 times or more until it cannot be injected normally. Therefore, the occurrence of injection defects in the latter half of use was suppressed. Among them, the quantitative injection aerosol for spatial treatment of Examples 26 to 32 equipped with an actuator provided with an injection port so that the injection shaft forms an elevation angle of 50 ° or less with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Was particularly excellent in the effect of suppressing injection defects in the latter period of use. Further, in the quantitative injection aerosols for spatial treatment of Examples 25 to 32, injection defects at the initial stage of use did not occur.
 これに対し、比較例6及び7の空間処理用定量噴射エアゾールでは、正常に噴射できなくなるまでの噴射回数が何れも14回以下であり、使用後期における噴射不良抑制効果が、実施例25~32の空間処理用定量噴射エアゾールより劣るものであった。また、比較例6及び7の空間処理用定量噴射エアゾールでは、使用初期の噴射不良も発生した。 On the other hand, in the quantitative injection aerosols for spatial treatment of Comparative Examples 6 and 7, the number of injections until the aerosol could not be injected normally was 14 times or less, and the effect of suppressing injection defects in the latter stage of use was obtained in Examples 25 to 32. It was inferior to the quantitative injection aerosol for spatial treatment. Further, in the quantitative injection aerosols for spatial treatment of Comparative Examples 6 and 7, injection defects at the initial stage of use also occurred.
〔実施例33〕
 エアゾール原液A2.7mLと、噴射剤として液化石油ガス6.1mLとを、耐圧容器に加圧充填した。その他は、実施例1の空間処理用定量噴射エアゾールと同様の手順により、実施例33の空間処理用定量噴射エアゾールを得た。
[Example 33]
2.7 mL of the aerosol stock solution A and 6.1 mL of liquefied petroleum gas as a propellant were pressure-filled in a pressure-resistant container. Other than that, a quantitative injection aerosol for spatial treatment of Example 33 was obtained by the same procedure as that of the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例34~38〕
 実施例33に準じて、表3に示す構成にて、実施例34~38の各種空間処理用定量噴射エアゾールを作製した。
[Examples 34 to 38]
According to Example 33, various spatial treatment quantitative injection aerosols of Examples 34 to 38 were prepared with the configurations shown in Table 3.
<噴射試験(噴射角度60°)>
 水平面に対して噴射口の噴射軸が60°の噴射角度をなすように、実施例33~38の空間処理用定量噴射エアゾールを固定し、噴射を繰り返した。噴射回数のカウントを開始する前に2回空打ちを行い、その後、正常に噴射できなくなるまでの噴射回数をカウントした。各空間処理用定量噴射エアゾールについて試験を4度繰り返して、噴射回数の平均値に応じて、噴射不良抑制効果を以下の評価基準により評価した。
 (評価基準)
 A:18回以上
 B:16回もしくは17回
 C:14回もしくは15回
 D:14回未満
<Injection test (injection angle 60 °)>
The quantitative injection aerosol for spatial treatment of Examples 33 to 38 was fixed so that the injection axis of the injection port formed an injection angle of 60 ° with respect to the horizontal plane, and the injection was repeated. Before starting the counting of the number of injections, the blank shot was performed twice, and then the number of injections until the injection could not be performed normally was counted. The test was repeated four times for each spatial treatment quantitative injection aerosol, and the effect of suppressing injection defects was evaluated according to the following evaluation criteria according to the average value of the number of injections.
(Evaluation criteria)
A: 18 times or more B: 16 times or 17 times C: 14 times or 15 times D: Less than 14 times
 また、4度の試験のうちで1度以上、カウント開始2回目までに噴射不良が発生した場合は、使用初期の噴射不良が有ると判定した。試験結果を、表3に示す。 In addition, if injection failure occurs at least once in the four tests and by the second time the count starts, it is determined that there is injection failure at the initial stage of use. The test results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験の結果、薬剤を水平面に対して斜め上方60°に向けて噴霧する場合、実施例33~38の空間処理用定量噴射エアゾールでは、正常に噴射できなくなるまでの噴射回数が何れも15回以上であり、使用後期における噴射不良の発生が抑制された。その中でも、耐圧容器を水平面に載置したとき噴射軸が水平面に対して40~50°の仰角をなすように噴射口が設けられたアクチュエータを装着した実施例34~36の空間処理用定量噴射エアゾールは、使用後期における噴射不良抑制効果が特に優れていた。また、実施例33~38の空間処理用定量噴射エアゾールでは、使用初期の噴射不良も発生しなかった。 As a result of the test, when the drug is sprayed diagonally upward to 60 ° with respect to the horizontal plane, the number of injections of the quantitative injection aerosol for spatial treatment of Examples 33 to 38 is 15 times or more until it cannot be injected normally. Therefore, the occurrence of injection defects in the latter half of use was suppressed. Among them, the quantitative injection for spatial processing of Examples 34 to 36 equipped with an actuator provided with an injection port so that the injection shaft makes an elevation angle of 40 to 50 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. The aerosol was particularly excellent in the effect of suppressing injection defects in the latter stage of use. Further, in the quantitative injection aerosols for spatial treatment of Examples 33 to 38, injection defects at the initial stage of use did not occur.
〔実施例39、40〕
 実施例1に準じて、表4に示す構成にて、実施例39及び40の各種空間処理用定量噴射エアゾールを作製した。実施例39及び40の空間処理用定量噴射エアゾールでは、噴射容量が0.2mLや2.0mLである定量噴霧バルブを用いた場合においても、理論上、定量噴射を最大22回実施可能なものとなるように耐圧容器への充填量を調整した。
[Examples 39 and 40]
According to Example 1, various spatial treatment quantitative injection aerosols of Examples 39 and 40 were prepared with the configurations shown in Table 4. In the quantitative injection aerosols for spatial treatment of Examples 39 and 40, theoretically, the quantitative injection can be performed up to 22 times even when the quantitative spray valve having an injection capacity of 0.2 mL or 2.0 mL is used. The filling amount in the pressure-resistant container was adjusted so as to be.
<拡散均一性試験>
 閉めきった容積25mの部屋(面積10m、高さ2.5m)の床面の6~8ヶ所に20×20cmのガラス板を設置した。水平面に対して噴射口の噴射軸が45°の噴射角度をなすように、実施例13~17、39、及び40の空間処理用定量噴射エアゾールを部屋の中央、高さ1.5mの位置で保持し、一定量噴射処理した。噴射処理から1時間後に全てのガラス板を取り出し、夫々のガラス板に付着した防除成分をアセトンで洗い出してガスクロマトグラフィーにより分析した。ガラス板に付着した防除成分について、各ガラス板間のバラツキを解析し、噴霧粒子の拡散均一性を評価した。結果を、拡散均一性の良好なものから順に、A、B、Cの3段階で示した。また、実施例39及び40の空間処理用定量噴射エアゾールについては、上述の「噴射試験(噴射角度45°)」を実施した。噴射試験(噴射角度45°)、及び拡散均一性試験の試験結果を、表4に示す。
<Diffusion uniformity test>
Glass plates of 20 x 20 cm were installed at 6 to 8 places on the floor of a closed room with a volume of 25 m 3 (area 10 m 2, height 2.5 m). The quantitative injection aerosols for spatial treatment of Examples 13 to 17, 39, and 40 were placed in the center of the room at a height of 1.5 m so that the injection axis of the injection port formed an injection angle of 45 ° with respect to the horizontal plane. It was held and sprayed in a fixed amount. One hour after the injection treatment, all the glass plates were taken out, and the control components adhering to each glass plate were washed out with acetone and analyzed by gas chromatography. Regarding the control components adhering to the glass plates, the variation between the glass plates was analyzed, and the diffusion uniformity of the spray particles was evaluated. The results are shown in three stages, A, B, and C, in order from the one with the best diffusion uniformity. Further, for the quantitative injection aerosols for spatial treatment of Examples 39 and 40, the above-mentioned "injection test (injection angle 45 °)" was carried out. Table 4 shows the test results of the injection test (injection angle 45 °) and the diffusion uniformity test.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試験の結果、薬剤を水平面に対して斜め上方45°に向けて噴霧する場合、実施例39及び40の空間処理用定量噴射エアゾールでは、実施例13~17の空間処理用定量噴射エアゾールと同様に、使用初期及び使用後期の何れの噴射不良も発生が抑制された。ただし、実施例39及び40の空間処理用定量噴射エアゾールでは、実施例13~17の空間処理用定量噴射エアゾールよりも拡散均一性が劣るものであった。このことから、拡散均一性を向上させるには、実施例13~17の空間処理用定量噴射エアゾールのように、噴射距離5cmにおける噴射力が5~50gfの範囲であることが好ましいと考えられる。 As a result of the test, when the drug is sprayed obliquely upward to 45 ° with respect to the horizontal plane, the spatial treatment quantitative injection aerosols of Examples 39 and 40 are the same as the spatial treatment quantitative injection aerosols of Examples 13 to 17. , The occurrence of injection defects in both the early and late stages of use was suppressed. However, the spatial treatment quantitative injection aerosols of Examples 39 and 40 were inferior in diffusion uniformity to the spatial treatment quantitative injection aerosols of Examples 13 to 17. From this, in order to improve the diffusion uniformity, it is considered preferable that the injection force at an injection distance of 5 cm is in the range of 5 to 50 gf, as in the quantitative injection aerosol for spatial treatment of Examples 13 to 17.
〔実施例41〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を、難揮散性防除成分としてフェノトリン(53w/v%)、及び揮散性防除成分としてメトフルトリン(0.7w/v%)に変更し、耐圧容器への充填量を、エアゾール原液(A+B)2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例41の空間処理用定量噴射エアゾールを得た。
[Example 41]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to phenothrin (53 w / v%) as a non-volatile control component and metoflutrin (0.7 w / v%) as a volatile control component. Then, the filling amount in the pressure-resistant container was changed to 2.6 mL of the aerosol stock solution (A + B) and 6.2 mL of the propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 41 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例42〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を、難揮散性防除成分としてシフェノトリン(38w/v%)、及び揮散性防除成分としてトランスフルトリン(0.7w/v%)に変更し、耐圧容器への充填量を、エアゾール原液(A+B)1.8mLと噴射剤7.0mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例42の空間処理用定量噴射エアゾールを得た。
[Example 42]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was cyphenothrin (38 w / v%) as a non-volatile control component and transfluthrin (0.7 w / v%) as a volatile control component. ), And the filling amount in the pressure-resistant container was changed to 1.8 mL of the aerosol stock solution (A + B) and 7.0 mL of the propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 42 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例43〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を難揮散性防除成分としてペルメトリン(60w/v%)に、有機溶剤をイソプロパノールに夫々変更し、耐圧容器への充填量を、エアゾール原液A2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例43の空間処理用定量噴射エアゾールを得た。
[Example 43]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to permethrin (60 w / v%) as a non-volatile control component, and the organic solvent was changed to isopropanol, respectively, and the filling amount in the pressure resistant container was changed. The aerosol stock solution A was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 43 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例44〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を難揮散性防除成分としてフェノトリン(53w/v%)に、有機溶剤をネオチオゾール(ノルマルパラフィン系溶剤)に夫々変更し、耐圧容器への充填量を、エアゾール原液A2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例44の空間処理用定量噴射エアゾールを得た。
[Example 44]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to phenothrin (53 w / v%) as a non-volatile control component, and the organic solvent was changed to neothiosol (normal paraffin solvent). The filling amount of the aerosol stock solution A was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 44 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例45〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を難揮散性防除成分としてフェノトリン(30w/v%)に、有機溶剤をミリスチン酸イソプロピルに夫々変更し、耐圧容器への充填量を、エアゾール原液A2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例45の空間処理用定量噴射エアゾールを得た。
[Example 45]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to phenothrin (30 w / v%) as a non-volatile control component, and the organic solvent was changed to isopropyl myristate, respectively, and the filling amount in the pressure-resistant container was changed. Was changed to 2.6 mL of aerosol stock solution A and 6.2 mL of propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 45 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例46〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を難揮散性防除成分としてペルメトリン(60w/v%)に、有機溶剤をIPクリーンLX(イソパラフィン系溶剤)に夫々変更し、耐圧容器への充填量を、エアゾール原液A2.2mLと噴射剤6.6mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例46の空間処理用定量噴射エアゾールを得た。
[Example 46]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to permethrin (60 w / v%) as a non-volatile control component, and the organic solvent was changed to IP Clean LX (isoparaffin solvent). The filling amount in the container was changed to 2.2 mL of the aerosol stock solution A and 6.6 mL of the propellant. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 46 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
 実施例41~46の空間処理用定量噴射エアゾールを用いて、上述の「噴射試験(噴射角度30°)」、「噴射試験(噴射角度45°)」、「噴射試験(噴射角度60°)」、及び「拡散均一性試験」を実施した。試験の結果、難揮散性防除成分を含むエアゾール原液A、又は難揮散性防除成分及び揮散性防除成分を含むエアゾール原液(A+B)の組成、及び耐圧容器に充填されるエアゾール原液と噴射剤との容量比率が互いに異なる実施例41~46の空間処理用定量噴射エアゾールは、何れも、30°、45°、及び60°の噴射角度において使用初期及び使用後期の噴射不良の発生が抑制され、良好な拡散均一性を示すことが確認された。このことから、噴射不良抑制効果、及び拡散均一性向上効果は、エアゾール原液の組成、及び耐圧容器に充填されるエアゾール原液と噴射剤との容量比率の設定により得られたものではなく、ディップチューブの先端の高さ(h)、及び噴射口(噴射軸)の仰角(D)を適切に設定することで得られたと考えられる。 Using the quantitative injection aerosol for spatial treatment of Examples 41 to 46, the above-mentioned "injection test (injection angle 30 °)", "injection test (injection angle 45 °)", "injection test (injection angle 60 °)" , And a "diffusion uniformity test" was carried out. As a result of the test, the composition of the aerosol stock solution A containing the refractory control component or the aerosol stock solution (A + B) containing the refractory control component and the volatilization control component, and the aerosol stock solution and the propellant filled in the pressure resistant container. The quantitative injection aerosols for spatial treatment of Examples 41 to 46 having different capacity ratios are all good because the occurrence of injection defects in the early and late stages of use is suppressed at the injection angles of 30 °, 45 °, and 60 °. It was confirmed that it showed a good diffusion uniformity. From this, the effect of suppressing injection defects and the effect of improving diffusion uniformity were not obtained by setting the composition of the aerosol stock solution and the volume ratio of the aerosol stock solution filled in the pressure-resistant container and the propellant, but the dip tube. It is considered that this was obtained by appropriately setting the height (h) of the tip of the above and the elevation angle (D) of the injection port (injection shaft).
〔実施例47〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を揮散性防除成分としてトランスフルトリン(8w/v%)に、有機溶剤をエタノールに夫々変更し、耐圧容器への充填量を、エアゾール原液B2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例47の空間処理用定量噴射エアゾールを得た。
[Example 47]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to transfluthrin (8 w / v%) as a volatile control component, and the organic solvent was changed to ethanol, respectively, and the filling amount in the pressure-resistant container was changed. , The aerosol stock solution B was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 47 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例48〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を揮散性防除成分としてトランスフルトリン(40w/v%)に、有機溶剤をイソプロパノールに夫々変更し、耐圧容器への充填量を、エアゾール原液B2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例48の空間処理用定量噴射エアゾールを得た。
[Example 48]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to transfluthrin (40 w / v%) as a volatile control component, and the organic solvent was changed to isopropanol, respectively, and the filling amount in the pressure resistant container was changed. , The aerosol stock solution B was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 48 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
〔実施例49〕
 実施例1の空間処理用定量噴射エアゾールにおけるエアゾール原液Aの防除成分を揮散性防除成分としてメトフルトリン(20w/v%)に、有機溶剤をネオチオゾール(ノルマルパラフィン系溶剤)に夫々変更し、耐圧容器への充填量を、エアゾール原液B2.6mLと噴射剤6.2mLとに変更した。また、アクチュエータを、耐圧容器を水平面に載置したとき噴射軸が水平面に対して45°の仰角をなすように噴射口が設けられたものに変更した。その他は、実施例1の空間処理用定量噴射エアゾールと同様にして実施例49の空間処理用定量噴射エアゾールを得た。
[Example 49]
The control component of the aerosol stock solution A in the quantitative injection aerosol for spatial treatment of Example 1 was changed to metoflutrin (20 w / v%) as a volatile control component, and the organic solvent was changed to neothiosol (normal paraffin solvent), respectively, to a pressure-resistant container. The filling amount of the aerosol stock solution B was changed to 2.6 mL and the propellant was changed to 6.2 mL. Further, the actuator was changed to one provided with an injection port so that the injection shaft makes an elevation angle of 45 ° with respect to the horizontal plane when the pressure-resistant container is placed on the horizontal plane. Other than that, a quantitative injection aerosol for spatial treatment of Example 49 was obtained in the same manner as the quantitative injection aerosol for spatial treatment of Example 1.
 実施例47~49の空間処理用定量噴射エアゾールを用いて、上述の「噴射試験(噴射角度30°)」、「噴射試験(噴射角度45°)」、「噴射試験(噴射角度60°)」、及び「拡散均一性試験」を実施した。試験の結果、揮散性防除成分を含有するエアゾール原液Bを含む実施例47~49の空間処理用定量噴射エアゾールは、何れも、30°、45°、及び60°の噴射角度において使用初期及び使用後期の噴射不良の発生が抑制され、良好な拡散均一性を示すことが確認された。このことからも、噴射不良抑制効果、及び拡散均一性向上効果は、エアゾール原液の組成、及び耐圧容器に充填されるエアゾール原液と噴射剤との容量比率の設定により得られたものではなく、ディップチューブの先端の高さ(h)、及び噴射口(噴射軸)の仰角(D)を適切に設定することで得られたと考えられる。 "Injection test (injection angle 30 °)", "injection test (injection angle 45 °)", "injection test (injection angle 60 °)" described above using the quantitative injection aerosol for spatial treatment of Examples 47 to 49. , And a "diffusion uniformity test" was carried out. As a result of the test, the quantitative injection aerosols for spatial treatment of Examples 47 to 49 containing the aerosol stock solution B containing the volatilization control component were all used at the initial use and at the injection angles of 30 °, 45 °, and 60 °. It was confirmed that the occurrence of injection defects in the latter stage was suppressed and good diffusion uniformity was exhibited. From this, the effect of suppressing injection defects and the effect of improving diffusion uniformity were not obtained by setting the composition of the aerosol stock solution and the volume ratio of the aerosol stock solution filled in the pressure-resistant container and the propellant, and were not obtained by dipping. It is considered that this was obtained by appropriately setting the height (h) of the tip of the tube and the elevation angle (D) of the injection port (injection shaft).
 本発明の空間処理用定量噴射エアゾールは、広範な害虫、ダニ防除を目的として利用することが可能である。 The quantitative injection aerosol for spatial treatment of the present invention can be used for the purpose of controlling a wide range of pests and mites.
 10   耐圧容器
 12   定量噴射バルブ
 20   アクチュエータ
 21   噴射口
 30   ディップチューブ
 30a  ディップチューブの先端
 100  空間処理用定量噴射エアゾール
 D    仰角
 H    水平面
 O    噴射軸
 S    耐圧容器の内側面
10 Pressure-resistant container 12 Fixed-quantity injection valve 20 Actuator 21 Injection port 30 Dip tube 30a Tip of dip tube 100 Fixed-quantity injection aerosol for spatial treatment D Elevation angle H Horizontal plane O Injection shaft S Inner surface of pressure-resistant container

Claims (8)

  1.  防除成分を含有するエアゾール原液及び噴射剤を封入してなる定量噴射バルブが設けられた耐圧容器と、前記定量噴射バルブに接続される噴射口が設けられたアクチュエータと、前記エアゾール原液及び前記噴射剤を前記定量噴射バルブに供給するディップチューブとを備えた空間処理用定量噴射エアゾールであって、
     前記ディップチューブの先端は、前記耐圧容器の最下部から6mm以下の高さに位置し、
     前記耐圧容器を水平面に載置したとき、前記噴射口の噴射軸は、前記水平面に対して10~60°の仰角をなす空間処理用定量噴射エアゾール。
    A pressure-resistant container provided with a fixed-quantity injection valve in which an aerosol stock solution containing a control component and a propellant are sealed, an actuator provided with an injection port connected to the fixed-quantity injection valve, the aerosol stock solution and the propellant. A fixed-quantity injection aerosol for spatial treatment provided with a dip tube for supplying the fixed-quantity injection valve.
    The tip of the dip tube is located at a height of 6 mm or less from the bottom of the pressure resistant container.
    When the pressure-resistant container is placed on a horizontal plane, the injection shaft of the injection port is a quantitative injection aerosol for spatial treatment having an elevation angle of 10 to 60 ° with respect to the horizontal plane.
  2.  前記防除成分は、30℃における蒸気圧が1×10-4mmHg未満である難揮散性防除成分を含有する請求項1に記載の空間処理用定量噴射エアゾール。 The quantitative injection aerosol for spatial treatment according to claim 1, wherein the control component contains a non-volatile control component having a vapor pressure of less than 1 × 10 -4 mmHg at 30 ° C.
  3.  前記防除成分は、30℃における蒸気圧が2×10-4~1×10-2mmHgである揮散性防除成分を含有する請求項1に記載の空間処理用定量噴射エアゾール。 The quantitative injection aerosol for spatial treatment according to claim 1, wherein the control component contains a volatile control component having a vapor pressure of 2 × 10 -4 to 1 × 10 -2 mmHg at 30 ° C.
  4.  前記防除成分は、30℃における蒸気圧が1×10-4mmHg未満である難揮散性防除成分と、30℃における蒸気圧が2×10-4~1×10-2mmHgである揮散性防除成分とを含有する請求項1に記載の空間処理用定量噴射エアゾール。 The control components are a refractory control component having a vapor pressure of less than 1 × 10 -4 mmHg at 30 ° C. and a volatilization control component having a vapor pressure of 2 × 10 -4 to 1 × 10 −2 mmHg at 30 ° C. The quantitative injection aerosol for spatial treatment according to claim 1, which contains an ingredient.
  5.  前記噴射口の噴射軸は、前記水平面に対して15~50°の仰角をなす請求項1~4の何れか一項に記載の空間処理用定量噴射エアゾール。 The quantitative injection aerosol for spatial treatment according to any one of claims 1 to 4, wherein the injection shaft of the injection port has an elevation angle of 15 to 50 ° with respect to the horizontal plane.
  6.  前記ディップチューブの先端は、前記耐圧容器の最下部から3mm以下の高さに位置する請求項1~5の何れか一項に記載の空間処理用定量噴射エアゾール。 The quantitative injection aerosol for spatial treatment according to any one of claims 1 to 5, wherein the tip of the dip tube is located at a height of 3 mm or less from the lowermost part of the pressure-resistant container.
  7.  噴射距離5cmにおける噴射力を5~50gfに設定してある請求項1~6の何れか一項に記載の空間処理用定量噴射エアゾール。 The quantitative injection aerosol for spatial treatment according to any one of claims 1 to 6, wherein the injection force at an injection distance of 5 cm is set to 5 to 50 gf.
  8.  前記ディップチューブは、前記耐圧容器の内部において湾曲可能に構成されている請求項1~7の何れか一項に記載の空間処理用定量噴射エアゾール。 The quantitative injection aerosol for spatial treatment according to any one of claims 1 to 7, wherein the dip tube is configured to be bendable inside the pressure-resistant container.
PCT/JP2020/040410 2019-11-08 2020-10-28 Aerosol for metered spraying for space treatment WO2021090742A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080073930.3A CN114599226B (en) 2019-11-08 2020-10-28 Quantitative spray aerosol for space treatment
JP2021545415A JP7427009B2 (en) 2019-11-08 2020-10-28 Metered dose aerosol for space treatment
JP2022067000A JP2022103175A (en) 2019-11-08 2022-04-14 Fixed quantity injection aerosol for space processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019203461 2019-11-08
JP2019-203461 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021090742A1 true WO2021090742A1 (en) 2021-05-14

Family

ID=75848358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040410 WO2021090742A1 (en) 2019-11-08 2020-10-28 Aerosol for metered spraying for space treatment

Country Status (4)

Country Link
JP (2) JP7427009B2 (en)
CN (1) CN114599226B (en)
TW (1) TWI772949B (en)
WO (1) WO2021090742A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016971A1 (en) * 1993-01-29 1994-08-04 Precision Valve Corporation A dispenser having a cut off valve
JPH06255688A (en) * 1993-03-01 1994-09-13 Osaka Aerosol Ind Corp Quantitative spray type aerosol container
JP2003335382A (en) * 2003-06-17 2003-11-25 Kao Corp Manufacturing method for aerosol product containing skin treatment agent
JP2004018118A (en) * 2002-06-17 2004-01-22 Summit Packaging Systems Inc Quantity adjustment valve assembly and method for supplying adjusted quantity of product via the assembly
JP2004307071A (en) * 1999-03-10 2004-11-04 L'oreal Sa Unit for storing product including cosmetics and dispensing them under pressure
US20070051754A1 (en) * 2005-09-08 2007-03-08 Strand Toralf H Button actuated mechanism for a dispensing canister
JP2010089828A (en) * 2008-10-10 2010-04-22 Shiseido Co Ltd Hair-spray device
JP2011063576A (en) * 2009-08-20 2011-03-31 Dainippon Jochugiku Co Ltd Method for exterminating insect pest and mite
JP2014088327A (en) * 2012-10-29 2014-05-15 Dainippon Jochugiku Co Ltd Method for controlling clothing insect pest
JP2018027789A (en) * 2016-08-17 2018-02-22 サンスター株式会社 Aerosol product
JP2019127295A (en) * 2018-01-25 2019-08-01 株式会社ダイゾー Quantitative aerosol valve and aerosol valve product

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143733A (en) * 1998-09-07 2002-05-21 Earth Chem Corp Ltd Aerosol apparatus
JP2002362656A (en) * 2001-06-05 2002-12-18 Mitani Valve Co Ltd Spout having cover for aerosol container
AU2004316102A1 (en) * 2004-02-25 2005-09-01 Earth Chemical Co., Ltd. Medicine spraying device
JP5346614B2 (en) 2009-02-17 2013-11-20 京楽産業.株式会社 Game machine
JP5517496B2 (en) * 2009-06-05 2014-06-11 大日本除蟲菊株式会社 Pest control method
JP5612893B2 (en) * 2010-04-09 2014-10-22 株式会社ダイゾー Aerosol products
JP2011250799A (en) * 2011-08-10 2011-12-15 Earth Chemical Co Ltd Pest control method
JP6255688B2 (en) 2013-03-27 2018-01-10 富士通株式会社 Support member, assembly, and information processing apparatus
CN106028806B (en) * 2014-03-04 2020-07-10 大日本除虫菊株式会社 Aerosol for mosquito control and method for mosquito control
JP6875215B2 (en) * 2016-06-30 2021-05-19 アース製薬株式会社 How to apply a cockroach repellent
TWM532740U (en) * 2016-07-12 2016-12-01 Hsieh-Ping Chen A spray gun
JP6908254B2 (en) * 2016-07-22 2021-07-21 フマキラー株式会社 Cockroach extermination aerosol products and cockroach extermination methods
JPWO2019111961A1 (en) * 2017-12-05 2020-12-10 アース製薬株式会社 Fixed-quantity injection aerosol products

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016971A1 (en) * 1993-01-29 1994-08-04 Precision Valve Corporation A dispenser having a cut off valve
JPH06255688A (en) * 1993-03-01 1994-09-13 Osaka Aerosol Ind Corp Quantitative spray type aerosol container
JP2004307071A (en) * 1999-03-10 2004-11-04 L'oreal Sa Unit for storing product including cosmetics and dispensing them under pressure
JP2004018118A (en) * 2002-06-17 2004-01-22 Summit Packaging Systems Inc Quantity adjustment valve assembly and method for supplying adjusted quantity of product via the assembly
JP2003335382A (en) * 2003-06-17 2003-11-25 Kao Corp Manufacturing method for aerosol product containing skin treatment agent
US20070051754A1 (en) * 2005-09-08 2007-03-08 Strand Toralf H Button actuated mechanism for a dispensing canister
JP2010089828A (en) * 2008-10-10 2010-04-22 Shiseido Co Ltd Hair-spray device
JP2011063576A (en) * 2009-08-20 2011-03-31 Dainippon Jochugiku Co Ltd Method for exterminating insect pest and mite
JP2014088327A (en) * 2012-10-29 2014-05-15 Dainippon Jochugiku Co Ltd Method for controlling clothing insect pest
JP2018027789A (en) * 2016-08-17 2018-02-22 サンスター株式会社 Aerosol product
JP2019127295A (en) * 2018-01-25 2019-08-01 株式会社ダイゾー Quantitative aerosol valve and aerosol valve product

Also Published As

Publication number Publication date
JPWO2021090742A1 (en) 2021-12-02
JP7427009B2 (en) 2024-02-02
TW202126171A (en) 2021-07-16
TWI772949B (en) 2022-08-01
CN114599226A (en) 2022-06-07
CN114599226B (en) 2024-01-12
JP2022103175A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP5517496B2 (en) Pest control method
TWI655139B (en) Mosquito control aerosol and mosquito control method
JP7433349B2 (en) Aerosol for mosquito control
KR102619497B1 (en) Methods for controlling pests and ticks, and aerosols for controlling pests and ticks
JP6774482B2 (en) Mosquito control aerosol and mosquito control method
JP6490847B2 (en) Pest control aerosol and pest control method using the same
JP5483324B2 (en) How to prevent pests from flying
JP6681420B2 (en) Mosquito control aerosol and mosquito control method using the same
WO2015159772A1 (en) Mosquito control aerosol and mosquito control method
WO2021090742A1 (en) Aerosol for metered spraying for space treatment
JP2021107387A (en) Constant quantity jetting aerosol product for insect pest control, and insect pest control method using the same
JPWO2020111071A1 (en) Crawling pest control method and aerosol device for crawling pest control
JP7152613B2 (en) Cockroach extermination aerosol and cockroach extermination method
JP2022109097A (en) Space treatment aerosol product for ant control, and ant control method
JP7098066B2 (en) Crawling pest control method and aerosol for crawling pest control
JP2022111683A (en) Aerosol product for ant control and ant control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885959

Country of ref document: EP

Kind code of ref document: A1