WO2021090653A1 - Internal combustion engine control device and control method - Google Patents

Internal combustion engine control device and control method Download PDF

Info

Publication number
WO2021090653A1
WO2021090653A1 PCT/JP2020/038783 JP2020038783W WO2021090653A1 WO 2021090653 A1 WO2021090653 A1 WO 2021090653A1 JP 2020038783 W JP2020038783 W JP 2020038783W WO 2021090653 A1 WO2021090653 A1 WO 2021090653A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
injection
fuel
period
timing
Prior art date
Application number
PCT/JP2020/038783
Other languages
French (fr)
Japanese (ja)
Inventor
高輔 神田
村井 淳
吉辰 中村
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2021554857A priority Critical patent/JP7232349B2/en
Priority to BR112022004206A priority patent/BR112022004206A2/en
Publication of WO2021090653A1 publication Critical patent/WO2021090653A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine that injects fuel in synchronization with intake air from a port injection type fuel injection valve.
  • the S / V ratio ratio of the surface area of the combustion chamber to the volume of the combustion chamber
  • the straightening of the intake port is used to reduce the in-cylinder flow.
  • Patent Document 1 does not disclose the injection end timing when fuel is injected in synchronization with the intake air from the port injection type fuel injection valve. Therefore, if fuel injection is performed even after the exhaust valve is closed, the amount of fuel adhering to the inner wall surface of the cylinder increases because there is no backflow of exhaust gas from the exhaust port into the cylinder, and PN (during exhaust). The number of fine particles) may increase.
  • an object of the present invention is to provide a control device and a control method for an internal combustion engine that further suppresses fuel adhesion to the inner wall surface of the cylinder due to synchronous intake intake injection.
  • the valve overlap period of the intake valve and the exhaust valve of the internal combustion engine is set after the exhaust top dead point, and fuel is supplied to the inside of the intake port opened and closed by the intake valve.
  • the injection end timing of the fuel injection valve to be injected is set so that the fuel injected from the fuel injection valve at the injection end timing flows into the combustion chamber during the valve overlap period.
  • the valve overlap period of the intake valve and the exhaust valve of the internal combustion engine is set after the exhaust top dead point, and fuel is injected into the intake port opened and closed by the intake valve.
  • the injection end timing of the fuel injection valve is set so that the fuel injected from the fuel injection valve at the injection end timing flows into the combustion chamber during the valve overlap period.
  • control device and control method for the internal combustion engine according to the present invention it is possible to suppress fuel adhesion to the inner wall surface of the cylinder due to intake synchronous injection.
  • FIG. 1 shows an example of an internal combustion engine to which the control device and the control method according to the present invention are applied.
  • the internal combustion engine 1 is a vehicle internal combustion engine that is mounted on a vehicle to generate power for the vehicle, and is, for example, a multi-cylinder 4-stroke spark ignition engine.
  • the internal combustion engine 1 has a cylinder block 2 in which a cylinder 2A and a crank chamber 2B are formed, and a cylinder head 3 in which an intake port 3A and an exhaust port 3B are formed.
  • the cylinder head 3 is attached to the cylinder block 2 so that the opening 3Aop of the intake port 3A and the opening 3Bop of the exhaust port 3B face the cylinder 2A.
  • a piston 4 is reciprocally inserted into the cylinder 2A of the cylinder block 2 in the axial direction of the cylinder 2A, and a combustion chamber 5 is formed between the crown surface 4a of the piston 4 and the lower surface of the cylinder head 3.
  • a water jacket 2C for circulating cooling water circulating between the internal combustion engine 1 and an external heat exchanger is formed in the wall around the cylinder 2A.
  • a crank shaft 6 is arranged in the crank chamber 2B of the cylinder block 2, and the crank shaft 6 is connected to the piston 4 via a conrod (connecting rod) 7 whose upper end is rotatably attached to the piston 4 by a piston pin 4b. It is connected.
  • crankshaft 6 is rotatably supported by the main bearing (not shown) of the cylinder block 2 by the journal 6a. Further, the crankshaft 6 has a crankpin 6b eccentric from the rotation axis of the journal 6a, and the crankpin 6b is rotatably connected to the lower end of the connecting rod 7.
  • the journal 6a and the crank pin 6b are connected by a crank arm 6c.
  • the cylinder head 3 is provided with an intake valve 8 and an exhaust valve 9.
  • the intake valve 8 includes an umbrella portion 8a that abuts on the opening 3Aop of the intake port 3A facing the combustion chamber 5, a rod-shaped stem portion 8b extending from the umbrella portion 8a, and a tappet portion located at the extending end of the stem portion 8b. Has 8c.
  • the exhaust valve 9 is located at the umbrella portion 9a that comes into contact with the opening 3Bop of the exhaust port 3B facing the combustion chamber 5, the rod-shaped stem portion 9b that extends from the umbrella portion 9a, and the extending end of the stem portion 9b. It has a tappet portion 9c to be used.
  • An intake pipe 14 for guiding air from the outside of the vehicle to the internal combustion engine 1 is connected to the intake port 3A of the cylinder head 3 via an intake manifold (not shown).
  • An electronically controlled throttle 15 including a throttle motor 15a and a throttle valve 15b is arranged in the intake pipe 14. The electronically controlled throttle 15 adjusts the amount of intake air sucked into the combustion chamber 5 of each cylinder 2A via the intake valve 8.
  • An exhaust pipe 16 for guiding the exhaust generated by the internal combustion engine 1 to the outside of the vehicle is connected to the exhaust port 3B of the cylinder head 3 via an exhaust manifold (not shown).
  • a front catalytic converter 17 and a rear catalytic converter 18 that convert exhaust components are arranged in the exhaust pipe 16.
  • the cylinder head 3 is provided with a port injection type fuel injection valve 19 that injects fuel into the intake port 3A on the upstream side of the intake valve 8.
  • the fuel injection valve 19 is, for example, a swirl spray type fuel injection valve that is atomized by swirling fuel in a swirl chamber formed in a fuel passage and injecting the fuel in a spiral shape.
  • the fuel injected from the fuel injection valve 19 into the intake port 3A during the valve closing period of the intake valve 8 adheres to the umbrella portion 8a of the intake valve 8 which has become hot due to the heat of combustion and vaporizes, and the intake valve 8 is opened. Mix with intake air during the valve period to form a uniform air-fuel mixture.
  • the fuel injected from the fuel injection valve 19 into the intake port 3A during the valve opening period of the intake valve 8 passes between the umbrella portion 8a of the intake valve 8 and the opening 3Aop of the intake port 3A and enters the combustion chamber 5. Inflow with intake air.
  • a spark plug 20 for igniting and burning a mixture of fuel and air in the combustion chamber 5 is attached to the cylinder head 3 at a position facing the combustion chamber 5.
  • the variable valve timing mechanism 21 is composed of an intake variable mechanism 21a and an exhaust variable mechanism 21b.
  • the intake variable mechanism 21a is a mechanism that continuously changes the valve timing of the intake valve 8 in the advance direction and the retard direction by continuously changing the rotation phase of the intake camshaft 10 with respect to the crankshaft 6 by an actuator. is there.
  • the variable exhaust mechanism 21b is a mechanism that continuously changes the valve timing of the exhaust valve 9 in the advance and retard directions by continuously changing the rotation phase of the exhaust camshaft 12 with respect to the crankshaft 6 by an actuator. is there.
  • An engine control module (hereinafter referred to as "ECM") 100 is provided as a first control unit for controlling the throttle motor 15a of the electronically controlled throttle 15, the fuel injection valve 19, and the spark plug 20. Further, the VTC controller 200 is provided as a second control unit that individually controls the two actuators of the intake variable mechanism 21a and the exhaust variable mechanism 21b.
  • the ECM 100 and the VTC controller 200 have a microcomputer including a processor such as a CPU (Central Processing Unit), a non-volatile memory such as a ROM (Read Only Memory), a volatile memory such as a RAM (Random Access Memory), and an input / output port. ..
  • the ECM 100 and the VTC controller 200 are communicably connected to each other by a communication line such as a CAN (Control Area Network) to form a control device for the internal combustion engine 1.
  • the ECM100 inputs the output signals of various sensors via the input / output ports of the built-in microprocessor.
  • various sensors include an accelerator opening sensor 22, an intake air pressure sensor 23, a crank angle sensor 24, a throttle sensor 25, an intake cam sensor 26, an exhaust cam sensor 27, and a water temperature sensor 28.
  • the accelerator opening sensor 22 is a sensor for detecting the amount of depression of the accelerator pedal 29, that is, the accelerator opening ACC.
  • the intake air pressure sensor 23 is a sensor for detecting the intake air pressure PS of the internal combustion engine 1.
  • the crank angle sensor 24 is a sensor that outputs a pulsed crank angle signal CRANK whose frequency changes according to the rotation speed of the crankshaft 6.
  • the throttle sensor 25 is a sensor for detecting the opening degree TVO of the throttle valve 15b.
  • the intake cam sensor 26 is a sensor that outputs a pulsed intake cam signal CAM1 whose frequency changes according to the rotation speed of the intake cam shaft 10.
  • the exhaust cam sensor 27 is a sensor that outputs a pulsed exhaust cam signal CAM2 whose frequency changes according to the rotation speed of the exhaust cam shaft 12.
  • the water temperature sensor 28 is a sensor for detecting the water temperature TW of the cooling water circulating between the internal combustion engine 1 and the external heat exchanger, such as the cooling water flowing through the water jacket 2C.
  • the processor of the built-in microcomputer reads the program stored in advance in the non-volatile memory into the volatile memory and executes it.
  • the ECM 100 determines the operating state of the internal combustion engine 1 from the output signals of the various sensors described above, and operates the electronically controlled throttle 15, the fuel injection valve 19, and the spark plug 20 according to the operating state of the internal combustion engine 1. Generate a signal. Further, the ECM 100 calculates a target value of the rotation phase adjusted by the variable valve timing mechanism 21. Then, the ECM 100 outputs the generated operation signal to the electronically controlled throttle 15, the fuel injection valve 19, and the ignition plug 20, and outputs the target value of the rotation phase adjusted by the variable valve timing mechanism 21 to the VTC controller 200. ..
  • the ECM 100 calculates the fuel injection amount FI according to the operating state of the internal combustion engine 1, and injects the fuel pressure (fuel pressure) supplied to the fuel injection valve 19, the injection hole diameter of the fuel injection valve 19, and the like. Based on the characteristics, the fuel injection time required to inject the fuel injection amount FI is calculated. The fuel injection time is converted into a fuel injection period indicated by the amount of rotation angle of the crankshaft 6 based on the engine rotation speed NE calculated by using the crank angle signal CRANK in the ECM100. The fuel injection period is a continuous period in which fuel is injected from the fuel injection valve 19 in one cycle (4 strokes) in the cold state of the internal combustion engine 1.
  • the ECM 100 includes an injection timing setting means for setting an injection start timing and an injection end timing during the fuel injection period. Then, the ECM 100 outputs an injection signal including a fuel injection period, an injection start timing, and an injection end timing as an operation signal of the fuel injection valve 19.
  • the term "period” means the amount of rotation angle of the crankshaft 6.
  • the fuel injection amount FI is calculated as follows, for example. That is, the ECM 100 calculates the fuel injection amount FI by multiplying the basic injection amount by various correction coefficients in consideration of the water temperature TW and the like, and adding the correction value for compensating for the injection delay of the fuel injection valve 19 to this multiplication value.
  • the basic injection amount can be calculated based on the engine rotation speed NE calculated using the crank angle signal CRANK and the intake air amount Q estimated from the output signal related to the intake air pressure PS of the intake air pressure sensor 23.
  • An airflow sensor may be provided in the intake pipe 14 to directly detect the intake air amount Q from the output signal of the airflow sensor.
  • the ECM 100 calculates the target value of the rotation phase adjusted by the variable valve timing mechanism 21 based on the engine operation conditions such as the engine rotation speed NE and the engine load TP calculated by using the crank angle signal CRANK.
  • the ECM 100 can use the fuel injection amount FI, the intake air pressure PS, the throttle opening TVO, and the like as the engine load TP.
  • the VTC controller 200 inputs the crank angle signal CRANK, the intake cam signal CAM1 and the exhaust cam signal CAM2 via the ECM100, and based on these signals, determines the rotation phases of the intake camshaft 10 and the exhaust camshaft 12 with respect to the crankshaft 6. measure. Then, the VTC controller 200 generates and outputs an operation signal of at least one actuator of the intake variable mechanism 21a and the exhaust variable mechanism 21b so that the measured value of the rotational phase approaches the target value, thereby controlling the feedback of the rotational phase. To carry out.
  • the temperature of the internal combustion engine 1 has not risen sufficiently in the cold state immediately after the start of the internal combustion engine 1. Therefore, when fuel is injected into the intake port 3A from the fuel injection valve 19 with the intake valve 8 closed, not only is the injected fuel difficult to vaporize, but the injected fuel easily adheres to the wall surface of the intake port 3A. Become. Therefore, in the cold state of the internal combustion engine 1, the ECM 100 performs intake synchronous injection in which fuel is injected in synchronization with intake in a state where the intake valve 8 is opened, so that the injected fuel flows into the combustion chamber 5 together with the intake air. I have to.
  • the diameter of the cylinder bore is reduced in order to reduce the S / V ratio and the cooling loss, and the intake port is used to strengthen the in-cylinder flow to improve combustion. It is assumed that 3A is straightened.
  • the internal combustion engine 1 When the internal combustion engine 1 is configured to improve fuel efficiency as described above, the following problems occur when intake synchronous injection is performed as shown in FIG. That is, the distance from the injection hole of the fuel injection valve 19 to the inner wall surface of the cylinder 2A close to the exhaust port 3B is shortened, or the intake air flowing toward the inner wall surface of the cylinder 2A is increased, so that the inner wall surface of the cylinder 2A is reached. Fuel collisions increase and the amount of fuel deposited tends to increase. This increases the amount of unburned fuel, which may not only reduce fuel consumption but also increase PN in the cold state of the internal combustion engine 1.
  • the exhaust valve 9 is opened as follows. That is, the exhaust valve 9 is opened so that the high-temperature exhaust gas flows back from the exhaust port 3B to the combustion chamber 5 due to the decrease in the internal pressure of the combustion chamber 5 accompanying the lowering of the piston 4.
  • the fuel collision with the inner wall surface of the cylinder 2A during the intake synchronous injection is reduced by the so-called high temperature air curtain due to the backflow exhaust from the exhaust port 3B, and the fuel adhesion to the inner wall surface of the cylinder 2A is suppressed. I have to.
  • FIG. 3 shows the valve timings of the intake valve 8 and the exhaust valve 9 in the cold state of the internal combustion engine 1.
  • the valve timing is the rotation angle of the crankshaft 6 when the intake valve 8 and the exhaust valve 9 open and close.
  • the angle when rotating clockwise around the origin O indicates the rotation angle of the crankshaft 6, and the intake cam when the crankshaft 6 rotates two turns (720 deg).
  • the shaft 10 and the exhaust cam shaft 12 each rotate once (360 deg).
  • the intake valve 8 opens at the valve opening timing IVO between the exhaust top dead center TDC and the intake bottom dead center BDC, and then the exhaust valve 9 closes.
  • the valve is set to close at the valve timing EVC.
  • the intake valve 8 closes at the valve closing timing IVC which is retarded (or late) by a predetermined working angle of the intake cam 11 with respect to the valve opening timing IVO.
  • the exhaust valve 9 advances by a predetermined working angle of the exhaust cam 13 with respect to the valve closing timing EVC at the third rotation (720 to 1080 deg) ().
  • Valve opening timing EVO opens the valve.
  • the valve overlap (O / L) period in which both the intake valve 8 and the exhaust valve 9 are opened is between the exhaust top dead center TDC and the intake bottom dead center BDC. It is provided, but the reason is as follows.
  • the valve opening timing IVO of the intake valve 8 is set after the exhaust top dead center TDC. Further, in the intake synchronous injection, in order to reduce the fuel collision with the inner wall surface of the cylinder 2A by the so-called high temperature air curtain due to the backflow exhaust, the pressure of the combustion chamber 5 decreases as the piston 4 descends, and the combustion chamber 5 from the exhaust port 3B. It is done so that the exhaust flows back to.
  • the valve closing timing EVC of the exhaust valve 9 is set to a range that is retarded from the valve opening timing IVO of the intake valve 8 and is before the intake bottom dead center BDC. Therefore, in the cold state of the internal combustion engine 1, the valve O / L period in which both the intake valve 8 and the exhaust valve 9 are opened is provided between the exhaust top dead center TDC and the intake bottom dead center BDC.
  • FIG. 4 shows an example of setting the fuel injection period regarding the injection start timing FO and the injection end timing FC.
  • two valve opening periods of the intake valve 8 and the exhaust valve 9 are shown corresponding to the rotation angle of the crankshaft 6 before and after the exhaust top dead center TDC.
  • the exhaust flow velocity at the exhaust port 3B is shown corresponding to the rotation angle of the crankshaft 6 before and after the exhaust top dead center TDC.
  • the exhaust flow velocity of the forward exhaust gas flowing from the combustion chamber 5 to the exhaust port 3B is indicated by a positive value
  • the exhaust flow velocity of the backflow exhaust gas flowing from the exhaust port 3B to the combustion chamber 5 is indicated by a negative value. ..
  • a known time lag occurs before the fuel injected from the fuel injection valve 19 reaches the opening 3Aop of the intake port 3A opened and closed by the intake valve 8, that is, the intake inlet of the combustion chamber 5. .. Therefore, the period during which the fuel injected from the fuel injection valve 19 reaches the opening 3Aop of the intake port 3A opened and closed by the intake valve 8, that is, the intake inlet of the combustion chamber 5 (fuel arrival period) is as a whole. It is retarded by the amount of angle corresponding to the required arrival time with respect to the fuel injection period.
  • the period of the fuel arrival period that overlaps with the valve O / L period is the inflow period (intake synchronous injection period) in which the fuel injected from the fuel injection valve 19 flows into the combustion chamber 5.
  • the injection end timing FC which is the end of the fuel injection period, is set so that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period.
  • the injection end timing FC sets the required arrival time with respect to the end of the inflow period ending within the valve O / L period. It is set as an angle advanced by the amount of angle corresponding to.
  • the injection end timing FC is set so that the end of the valve O / L period and the end of the inflow period coincide with each other, so that the overlap period between the valve O / L period and the inflow period can be lengthened.
  • the injection end timing FC is set so that the fuel arrival period falls within the valve O / L period when the fuel injection period is shorter than the valve O / L period.
  • the injection end timing FC may simply be set as the end of the inflow period that ends within the valve O / L period.
  • the injection start timing FO which is the beginning of the fuel injection period, is set to an angle advanced by the angle amount of the fuel injection period from the injection end timing FC set as described above. Therefore, the injection start timing FO may be either coincident with the valve opening timing IVO of the intake valve 8 or may be advanced or retarded from the valve opening timing IVO.
  • the injection start timing FO and the injection end timing FC can be set on the assumption that backflow exhaust can occur during the entire period of the valve O / L period.
  • the injection start timing FO and the injection end timing FC are set according to the backflow period as follows. be able to.
  • the injection end timing FC is set in consideration of the effect of suppressing fuel adhesion to the inner wall surface of the cylinder 2A due to the backflow exhaust during the backflow period. It is good to do. That is, it is preferable to set the injection end timing FC so that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the backflow period.
  • the injection end timing FC is set so that the end of the backflow period and the end of the inflow period coincide with each other, and the overlap period between the backflow period and the inflow period can be lengthened.
  • the injection end timing FC is set so that the fuel arrival period falls within the backflow period when the fuel injection period is shorter than the backflow period.
  • the injection end timing FC can be set so that the integrated value of the absolute value of the exhaust flow velocity in the overlap period between the fuel arrival period and the backflow period is maximized.
  • the injection start timing FO is set to an angle advanced by the angle amount of the fuel injection period from the injection end timing FC.
  • FIG. 5 shows an example of the control process of the fuel injection valve 19 that the ECM 100 repeatedly executes periodically (for example, every cycle of the internal combustion engine 1) in the cold state of the internal combustion engine 1. It is assumed that the ECM 100 sets the intake valve 8 and the exhaust valve 9 at the valve timing (see FIG. 3) according to the cold state of the internal combustion engine 1 via the VTC controller 200. That is, it is assumed that the ECM 100 is set so that the valve O / L period is between the exhaust top dead center TDC and the intake bottom dead center BDC.
  • step S1 (abbreviated as "S1" in the figure; the same applies hereinafter), the ECM 100 calculates the fuel injection amount required in the cold state of the internal combustion engine 1.
  • step S2 the ECM 100 sets the fuel injection period including the injection start timing FO and the injection end timing FC.
  • the ECM 100 calculates the fuel injection time from the fuel injection amount calculated in step S1 based on the injection characteristics of the fuel injection valve 19, and fuels based on the engine rotation speed NE calculated using the crank angle signal CRANK. Convert the injection time to the fuel injection period.
  • the ECM 100 sets the injection end timing FC so that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period of FIG.
  • the ECM 100 stores the data of the backflow period of FIG. 4 in advance, the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the backflow period.
  • the injection end timing FC can be set.
  • the ECM 100 sets the angle advanced by the angle amount of the fuel injection period from the injection end timing FC as the injection start timing FO.
  • step S3 the ECM 100 outputs an injection signal including the fuel injection period, the injection start timing FO, and the injection end timing FC as the operation signal of the fuel injection valve 19.
  • the fuel injected from the fuel injection valve 19 at the injection end timing FC burns during the valve O / L period (or backflow period) of FIG.
  • the injection end timing FC is set so as to flow into the chamber 5. Therefore, since the inflow of fuel into the combustion chamber 5 is restricted at least after the exhaust valve 9 is closed, the fuel collision with the inner wall surface of the cylinder 2A due to the intake synchronous injection is effective with the so-called high temperature air curtain due to the backflow exhaust. Can be reduced. As a result, fuel adhesion to the inner wall surface of the cylinder 2A is suppressed and unburned fuel is reduced, so that it is possible not only to improve fuel efficiency but also to suppress an increase in PN in the cold state of the internal combustion engine 1.
  • FIG. 6 shows a setting example of the fuel injection period in which the injection start timing FO and the injection end timing FC are changed in FIG.
  • FIG. 7 shows an example of setting the injection start timing FO according to the required arrival time.
  • the backflow exhaust from the exhaust port 3B suppresses fuel adhesion to the inner wall surface of the cylinder 2A, and the inner wall of the intake port 3A and the intake valve 8 It is preferable to suppress fuel adhesion to the umbrella portion 8a and the like. Therefore, as shown in FIG. 6, the fuel injected from the fuel injection valve 19 at the injection start timing FO may flow into the combustion chamber 5 at the beginning of the valve O / L period. Therefore, as shown in FIG. 7, the injection start timing FO of the fuel injection valve 19 is an angle advanced by an angle amount ⁇ 1 corresponding to the required arrival time from the valve opening timing IVO of the intake valve 8 (ideal injection start timing). Is set to.
  • the injection start timing FO of the fuel injection valve 19 is set to an angle advanced by an angle amount corresponding to the required arrival time from the beginning of the backflow period.
  • the arrival time is the intake flow velocity of the intake port 3A such as the intake pressure PS, the intake air amount Q, and the engine rotation speed NE with respect to the injection fuel speed calculated from the injection characteristics of the fuel injection valve 19 such as the fuel pressure and the injection hole diameter.
  • the injection end timing FC is only the length of the fuel injection period from the set injection start timing FO. It is set to a retarded angle.
  • the fuel injected from the fuel injection valve 19 at the injection end timing FC set in this way also needs to flow into the combustion chamber 5 during the valve O / L period of FIG.
  • the fuel injected from the fuel injection valve 19 at the injection end timing FC does not flow into the combustion chamber 5 during the valve O / L period. That is, as shown by the thick broken line in FIG. 6, it is assumed that the end of the inflow period is later than the valve closing timing EVC of the exhaust valve 9.
  • the injection end timing FC is advanced and reset so that the end of the inflow period is the valve closing timing EVC of the exhaust valve 9. Specifically, the injection end timing FC is reset to an angle advanced by an angle amount ⁇ 1 corresponding to the required arrival time from the valve closing timing EVC of the exhaust valve 9. The value of the required arrival time at this time is determined in consideration of the parameters related to the intake flow velocity of the intake port 3A as described above. Then, the injection start timing FO is reset to an angle advanced by the length of the fuel injection period from the reset injection end timing FC, that is, an angle advanced from the ideal injection start timing. In short, the fuel injection period is reset as a whole by advancing according to the amount of advance of the injection end timing FC.
  • the injection start timing is such that the inflow period coincides with the valve O / L period, as shown in FIG.
  • the FO and the injection end timing FC are reset. That is, the injection start timing FO is reset so that the fuel injected at the injection start timing FO flows into the combustion chamber 5 at the valve opening timing IVO of the intake valve 8. Further, the injection end timing FC is reset so that the fuel injected by the injection end timing FC flows into the combustion chamber 5 at the valve closing timing EVC of the exhaust valve 9.
  • the length of the new fuel injection period defined by the injection start timing FO and the injection end timing FC reset in this way is shortened as compared with the fuel injection period before the reset due to the shortening of the inflow period. Therefore, the fuel pressure is increased so that the required fuel injection amount can be injected in a new fuel injection period. Since the arrival time is shortened when the fuel pressure is increased, the injection start timing FO and the injection end timing FC are reset in consideration of the shortened arrival time.
  • the closing timing of the exhaust valve 9 is such that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period.
  • the EVC is retarded.
  • the injection start timing FO of the fuel injection valve 19 can be set to an angle advanced by an angle amount corresponding to the required arrival time from the beginning of the backflow period. Therefore, depending on the length of the fuel injection period, it is assumed that the fuel injected at the injection end timing FC does not flow into the combustion chamber 5 during the backflow period.
  • the injection end timing FC by adjusting the injection end timing FC by a method according to the first and second methods described above, the inflow of fuel into the combustion chamber 5 after the backflow period is restricted and the inside of the cylinder 2A. Fuel adhesion to the wall surface can be suppressed.
  • the "exhaust valve closing timing EVC" is read as "the end of the backflow period”
  • the "valve O / L period” is read as the "backflow period”.
  • the injection start timing FO of the fuel injection valve 19 When the fuel injection period is shorter than the backflow period, it is not necessary to set the injection start timing FO of the fuel injection valve 19 to an angle advanced by an angle amount corresponding to the required arrival time from the start of the backflow period. In this case, the injection start timing FO and the injection end timing FC are set with priority given to the fact that the fuel arrival period falls within the backflow period.
  • the ECM100 sets the injection start timing FO and the injection end timing FC in step S2 of FIG. 5 as follows.
  • the ECM 100 calculates the arrival required time based on the parameters related to the intake flow velocity of the intake port 3A, and sets the ideal injection start timing corresponding to the calculated arrival required time as the injection start timing FO (see FIG. 7). Then, the ECM 100 sets an angle retarded by the length of the fuel injection period from the set injection start timing FO as the injection end timing FC.
  • the injection end timing FC is optimized by any of the above first to third methods.
  • the injection end timing FC is optimized according to the first or second method described above.
  • the injection start timing FO is set as follows. .. That is, the injection start timing FO is set so that the fuel injected from the fuel injection valve 19 at the injection start timing FO flows into the combustion chamber 5 at the beginning of the valve O / L period (or backflow period) of FIG. .. Therefore, not only the fuel adhesion to the inner wall surface of the cylinder 2A due to the intake synchronous injection is suppressed, but also the fuel adhesion to the inner wall surface of the intake port 3A is suppressed. As a result, the amount of unburned fuel is reduced, the suppression of the increase in PN in the cold state of the internal combustion engine 1 is promoted, and the fuel consumption can be further improved.
  • the setting of the injection end timing FC of the first embodiment is further embodied.
  • the present invention relates to a setting method according to the engine rotation speed NE of the injection end timing FC.
  • FIG. 11 shows the influence of the change in the engine rotation speed NE on the inflow period.
  • FIG. 11A shows a case where the engine rotation speed NE is relatively low
  • FIG. 11B shows a case where the engine rotation speed NE is relatively high.
  • FIG. 12 shows a setting example of the injection end timing FC according to the engine rotation speed NE.
  • the engine rotation speed NE is high or low. There is almost no change regardless.
  • the time corresponding to the valve O / L period becomes shorter as the engine speed NE increases. For example, if the engine rotation speed NE is doubled, the time corresponding to the valve O / L period is halved. Therefore, as shown in FIGS. 11A and 11B, the time from the injection end timing FC to the end of the valve O / L period, that is, the valve closing timing EVC of the exhaust valve 9, also becomes shorter as the engine speed NE increases. .. That is, the time ⁇ tH from the injection end timing FC when the engine rotation speed NE is relatively high to the valve closing timing EVC of the exhaust valve 9 is shorter than the time ⁇ tL when the engine rotation speed NE is relatively low.
  • the injection speed of the fuel injected from the fuel injection valve 19 having a constant injection characteristic is more dominant than the intake flow velocity of the intake port 3A as an influential factor affecting the arrival time.
  • the time required to reach the engine is less likely to change depending on the level of the engine rotation speed NE.
  • the arrival time is when the engine speed NE is relatively high. It may not fit within the time ⁇ tH (see FIG. 11B).
  • the injection end timing FC needs to be set to the limit injection end timing shown in FIG. 12 or an angle advanced from this.
  • the limit injection end timing is the most retarded angle among the injection end timing FCs at which the fuel injected from the fuel injection valve 19 can flow into the combustion chamber during the valve O / L period at each engine rotation speed NE.
  • the limit injection end timing is an angle advanced by an angle amount ⁇ 2 according to the required arrival time from the valve closing timing EVC of the exhaust valve 9. Is set as. This amount of angle ⁇ 2 increases in proportion to the increase in the engine rotation speed NE.
  • FIG. 13 shows an additional process inserted into the control process of the fuel injection valve 19 of FIG.
  • step S2 of FIG. 5 in step S2 of FIG. 5, the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period (or backflow period) of FIG.
  • the injection end timing FC is set so as to be performed.
  • step S2 the ECM 100 sets an angle advanced from the injection end timing FC by the length of the fuel injection period as the injection start timing FO. Then, the ECM 100 executes steps S2a and S2b as additional processing before executing step S3 of FIG.
  • step S2a the ECM 100 determines whether or not the set injection end timing FC is later than the limit injection end timing of FIG. 12 based on the engine rotation speed NE calculated using the crank angle signal CRANK. Then, when the ECM 100 determines that the set injection end timing FC is later than the limit injection end timing (YES), the process proceeds to step S2b. On the other hand, if the ECM 100 determines that the set injection end timing FC is before the limit injection end timing (NO), step S2a is omitted and the process proceeds to step S3.
  • step S2b the ECM100 corrects the set injection end timing FC to the limit injection end timing or an angle advanced from this. Further, the ECM 100 corrects the injection start timing FO to an angle advanced by the length of the fuel injection period from the corrected injection end timing FC in accordance with the correction of the injection end timing FC.
  • the ECM100 sets the engine rotation speed NE as described above. In consideration of this, the fuel injection valve 19 is controlled. However, “valve O / L period” is read as “backflow period”, and “valve closing timing EVC of exhaust valve 9" is read as "end of backflow period”.
  • the fuel injected from the fuel injection valve 19 at the injection end timing FC burns during the valve O / L period (or backflow period) of FIG.
  • the injection end timing FC is set in consideration of the engine rotation speed NE so as to flow into the chamber 5. Therefore, since the inflow of fuel into the combustion chamber 5 is restricted at least after the exhaust valve 9 is closed, it is possible to effectively reduce the fuel adhesion to the inner wall surface of the cylinder 2A due to the intake synchronous injection by the backflow exhaust. it can. As a result, fuel adhesion to the inner wall surface of the cylinder 2A is suppressed and unburned fuel is reduced, so that it is possible to further improve fuel efficiency and further suppress the increase in PN in the cold state.
  • the setting of the injection end timing FC of the first embodiment is further embodied.
  • the present invention relates to a method of setting an injection end timing FC when the vehicle is accelerated in a cold state of the internal combustion engine 1.
  • FIG. 14 shows a setting example of the injection end timing FC according to the change in the accelerator opening.
  • (a) is a time change of the accelerator opening ACC
  • (b) is a time change of the valve closing timing EVC of the exhaust valve 9
  • (c) is a time change of the valve O / L period
  • (d) is an injection.
  • the time change of the end timing FC is shown.
  • a positive value of the valve O / L period indicates that the two valve opening periods of the intake valve 8 and the exhaust valve 9 overlap.
  • a negative value of the length of the valve O / L period indicates that the two valve opening periods of the intake valve 8 and the exhaust valve 9 do not overlap, and indicates that the valve O / L period does not occur. ing.
  • the ECM 100 exhaust valve 9 via the VTC controller 200 according to the amount of increase in the accelerator opening ACC.
  • the valve closing timing EVC is advanced (see FIG. 14B).
  • the valve O / L period is reduced according to the amount of advance of the valve closing timing EVC of the exhaust valve 9 (see FIG. 14 (c)).
  • the ECM 100 also advances the injection end timing FC according to the amount of advance when the valve closing timing EVC of the exhaust valve 9 is advanced.
  • valve closing timing EVC of the exhaust valve 9 When the valve closing timing EVC of the exhaust valve 9 is advanced as the accelerator opening ACC increases (see FIG. 14B), the valve closing timing EVC of the exhaust valve 9 and the valve opening timing IVO of the intake valve 8 are changed. Consistently, the valve O / L period goes to zero (see FIG. 14 (d)).
  • the injection end timing FC is advanced according to the advance amount of the valve closing timing EVC of the exhaust valve 9 until the valve O / L period becomes zero.
  • step S2 of FIG. 5 in step S2 of FIG. 5, the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period (or backflow period) of FIG.
  • the injection end timing FC is set so as to be performed.
  • the ECM 100 also advances the injection end timing FC according to the amount of advance when the valve closing timing EVC of the exhaust valve 9 is advanced as the accelerator opening degree ACC increases. Further, in step S2, the ECM 100 sets an angle advanced by the angle amount of the fuel injection period from the injection end timing FC as the injection start timing FO.
  • the fuel injected from the fuel injection valve 19 at the injection end timing FC burns during the valve O / L period (or backflow period) of FIG.
  • the injection end timing FC is set so as to flow into the chamber 5 while considering the advancement of the valve closing timing EVC of the exhaust valve 9 as the accelerator opening ACC increases. Therefore, since the inflow of fuel into the combustion chamber 5 is restricted at least after the exhaust valve 9 is closed, it is possible to effectively reduce the fuel adhesion to the inner wall surface of the cylinder 2A due to the intake synchronous injection by the backflow exhaust. it can. As a result, fuel adhesion to the inner wall surface of the cylinder 2A is suppressed and unburned fuel is reduced, so that it is possible to further improve fuel efficiency and further suppress the increase in PN in the cold state.
  • the valve O / L period in the above embodiment was a cold valve O / L period in which the valve timings of the intake valve 8 and the exhaust valve 9 were set according to the cold state of the internal combustion engine 1.
  • the valve timings of the intake valve 8 and the exhaust valve 9 are set corresponding to the high load operation region including the full load (engine load TP equivalent to the full throttle opening) instead of the cold valve O / L period.
  • the valve O / L period at the time of high load can be set.
  • the high rotation valve O / L period can be set when the engine rotation speed NE is set corresponding to the relatively high high rotation operation region.
  • the valve opening timing IVO of the intake valve 8 is set to advance with respect to the exhaust top dead center TDC, and the valve O / L period at high load or high rotation is the exhaust top dead center. Even if it is started in a range advanced from the TDC, the same effect as that of the above-described embodiment is obtained.
  • the injection end timing FC is the period (or backflow period) after the exhaust top dead center TDC in the valve O / L period when the fuel injected at this timing is high load or high rotation. Is set to flow into.
  • the fuel collision with the inner wall surface of the cylinder 2A at the time of intake synchronous injection is caused by the backflow exhaust from the exhaust port 3B. It is reduced by a high temperature air curtain. Therefore, since fuel adhesion to the inner wall surface of the cylinder 2A is suppressed, it is possible not only to improve fuel efficiency but also to suppress an increase in PN.
  • the injection end timing FC is set to the exhaust top dead center TDC or later during the valve O / L period of the intake valve and the exhaust valve. It may be set to a period (or a backflow period).
  • the specific engine operating state includes, for example, a cold state of the internal combustion engine 1 and a high load or high rotation operating region.
  • the injection end timing FC is set to the period after the exhaust top dead center TDC in the valve O / L period of the intake valve and the exhaust valve. It is not necessary to set (or backflow period).
  • Such an engine operating state includes, for example, a partial low load region larger than the idle load after the completion of warming up of the internal combustion engine 1.
  • the internal combustion engine 1 uses a variable valve timing mechanism 21 composed of an intake variable mechanism 21a and an exhaust variable mechanism 21b, but the present invention is not limited to this, and can be configured as follows. That is, in the internal combustion engine 1, if a part or all of the valve O / L period can be set between the exhaust top dead center TDC and the intake bottom dead center BDC, either the intake variable mechanism 21a or the exhaust variable mechanism 21b. Either one may be omitted.
  • the valve timings of the intake valve 8 and the exhaust valve 9 are fixed, that is, even if the configuration does not include the variable valve timing mechanism 21, part or all of the valve O / L period is
  • the injection end timing FC and the injection start timing FO may be set as described above.
  • the ECM 100 and the VTC controller 200 may be configured separately or integrally.
  • the injection end timing FC can be set to advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

In the present invention, a valve overlap (O/L) period of an intake valve and an exhaust valve of an internal combustion engine is set so as to include a period on or after an exhaust top dead center point, and an injection end timing of a fuel injection valve through which fuel is injected to the inside of an intake port that is opened/closed by means of the intake valve is set such that fuel having been injected by means of the fuel injection valve at the injection end timing is caused to flow into a combustion chamber during the valve O/L period on or after the exhaust top dead center point.

Description

内燃機関の制御装置及び制御方法Internal combustion engine control device and control method
 本発明は、ポート噴射式の燃料噴射弁から吸気と同期して燃料を噴射する内燃機関の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for an internal combustion engine that injects fuel in synchronization with intake air from a port injection type fuel injection valve.
 昨今の燃費指向の内燃機関では、ボア小径化によってS/V比(燃焼室容積に対する燃焼室表面積の割合)を減少させて冷却損失を低減することや、吸気ポートのストレート化によって筒内流動を強化して燃焼を改善することで、燃費向上の試みがなされている。 In recent fuel-efficient internal combustion engines, the S / V ratio (ratio of the surface area of the combustion chamber to the volume of the combustion chamber) is reduced by reducing the bore diameter to reduce cooling loss, and the straightening of the intake port is used to reduce the in-cylinder flow. Attempts have been made to improve fuel efficiency by strengthening and improving combustion.
 このような燃費指向の内燃機関においてポート噴射式の燃料噴射弁から吸気と同期して燃料を噴射すると、噴孔から筒内壁面までの距離の短距離化、あるいは、筒内壁面に向けて流れる吸気の増加によって、筒内壁面への燃料衝突が増加し燃料付着量が増大してしまう。これに対し、例えば特許文献1に記載されるように、排気ポートから高温の排気を筒内に逆流させて筒内壁面に付着した燃料を気化させることが知られている。 In such a fuel-efficient internal combustion engine, when fuel is injected from a port injection type fuel injection valve in synchronization with intake air, the distance from the injection hole to the inner wall surface of the cylinder is shortened, or the fuel flows toward the inner wall surface of the cylinder. Due to the increase in intake air, fuel collision with the inner wall surface of the cylinder increases and the amount of fuel adhered increases. On the other hand, as described in Patent Document 1, for example, it is known that high-temperature exhaust gas flows back into the cylinder from the exhaust port to vaporize the fuel adhering to the inner wall surface of the cylinder.
特開2005-248766号公報Japanese Unexamined Patent Publication No. 2005-248766
 しかし、特許文献1には、ポート噴射式の燃料噴射弁から吸気と同期して燃料を噴射したときの噴射終了タイミングについて開示がなされていない。このため、排気バルブの閉弁以降も燃料噴射が行われた場合には、排気ポートから筒内への排気の逆流がないことにより筒内壁面への燃料付着量が増大し、PN(排気中微粒子の粒子数)増加を招くおそれがある。 However, Patent Document 1 does not disclose the injection end timing when fuel is injected in synchronization with the intake air from the port injection type fuel injection valve. Therefore, if fuel injection is performed even after the exhaust valve is closed, the amount of fuel adhering to the inner wall surface of the cylinder increases because there is no backflow of exhaust gas from the exhaust port into the cylinder, and PN (during exhaust). The number of fine particles) may increase.
 そこで、本発明は、吸気同期噴射による筒内壁面への燃料付着をさらに抑制する、内燃機関の制御装置及び制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a control device and a control method for an internal combustion engine that further suppresses fuel adhesion to the inner wall surface of the cylinder due to synchronous intake intake injection.
 このため、本発明に係る内燃機関の制御装置は、内燃機関の吸気バルブ及び排気バルブのバルブオーバーラップ期間を排気上死点以降に設定し、吸気バルブで開閉される吸気ポートの内部に燃料を噴射する燃料噴射弁の噴射終了タイミングを、燃料噴射弁から噴射終了タイミングで噴射された燃料がバルブオーバーラップ期間中に燃焼室に流入するように設定する。 Therefore, in the internal combustion engine control device according to the present invention, the valve overlap period of the intake valve and the exhaust valve of the internal combustion engine is set after the exhaust top dead point, and fuel is supplied to the inside of the intake port opened and closed by the intake valve. The injection end timing of the fuel injection valve to be injected is set so that the fuel injected from the fuel injection valve at the injection end timing flows into the combustion chamber during the valve overlap period.
 また、本発明に係る内燃機関の制御方法は、内燃機関の吸気バルブ及び排気バルブのバルブオーバーラップ期間を排気上死点以降に設定し、吸気バルブで開閉される吸気ポートの内部に燃料を噴射する燃料噴射弁の噴射終了タイミングを、燃料噴射弁から噴射終了タイミングで噴射された燃料がバルブオーバーラップ期間中に燃焼室に流入するように設定する。 Further, in the control method of the internal combustion engine according to the present invention, the valve overlap period of the intake valve and the exhaust valve of the internal combustion engine is set after the exhaust top dead point, and fuel is injected into the intake port opened and closed by the intake valve. The injection end timing of the fuel injection valve is set so that the fuel injected from the fuel injection valve at the injection end timing flows into the combustion chamber during the valve overlap period.
 本発明に係る内燃機関の制御装置及び制御方法によれば、吸気同期噴射による筒内壁面への燃料付着を抑制することができる。 According to the control device and control method for the internal combustion engine according to the present invention, it is possible to suppress fuel adhesion to the inner wall surface of the cylinder due to intake synchronous injection.
第1実施形態による内燃機関の一例を示す構成図である。It is a block diagram which shows an example of the internal combustion engine by 1st Embodiment. 同実施形態による筒内燃料付着の抑制イメージを示す模式図である。It is a schematic diagram which shows the image of suppressing fuel adhesion in a cylinder by the same embodiment. 同実施形態による冷機状態におけるバルブタイミングの一例を示す説明図である。It is explanatory drawing which shows an example of the valve timing in the cold state by the same embodiment. 同実施形態による噴射開始及び噴射終了タイミングの一例を示す説明図である。It is explanatory drawing which shows an example of the injection start and injection end timing by the same embodiment. 同実施形態による燃料噴射弁の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control process of the fuel injection valve by the same embodiment. 第2実施形態による噴射開始及び噴射終了タイミングの一例を示す説明図である。It is explanatory drawing which shows an example of the injection start and injection end timing by the 2nd Embodiment. 同実施形態による噴射開始タイミング設定方法を示す説明図である。It is explanatory drawing which shows the injection start timing setting method by the same embodiment. 同実施形態による噴射終了タイミング適切化の第1方法を示す説明図である。It is explanatory drawing which shows the 1st method of optimizing the injection end timing by the same embodiment. 同実施形態による噴射終了タイミング適切化の第2方法を示す説明図である。It is explanatory drawing which shows the 2nd method of optimizing the injection end timing by the same embodiment. 同実施形態による噴射終了タイミング適切化の第3方法を示す説明図である。It is explanatory drawing which shows the 3rd method of the injection end timing optimization by the same embodiment. 第3実施形態による機関回転速度変化の影響を示すタイムチャートである。It is a time chart which shows the influence of the engine rotation speed change by 3rd Embodiment. 同実施形態による噴射終了タイミング設定方法を示す説明図である。It is explanatory drawing which shows the injection end timing setting method by the same embodiment. 同実施形態による燃料噴射弁の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control process of the fuel injection valve by the same embodiment. 第4実施形態による噴射終了タイミング設定方法を示すタイムチャートである。It is a time chart which shows the injection end timing setting method by 4th Embodiment. 従来の吸気同期噴射による筒内燃料付着イメージを示す模式図である。It is a schematic diagram which shows the fuel adhesion image in a cylinder by the conventional intake air synchronous injection.
〔第1実施形態〕
 図1~図5を参照して、本発明を実施するための第1実施形態について詳述する。
[First Embodiment]
The first embodiment for carrying out the present invention will be described in detail with reference to FIGS. 1 to 5.
 図1は、本発明に係る制御装置及び制御方法を適用する内燃機関の一例を示す。内燃機関1は、車両に搭載されて車両の動力を発生する車両用内燃機関であり、一例として複数気筒の4ストローク火花点火機関とする。 FIG. 1 shows an example of an internal combustion engine to which the control device and the control method according to the present invention are applied. The internal combustion engine 1 is a vehicle internal combustion engine that is mounted on a vehicle to generate power for the vehicle, and is, for example, a multi-cylinder 4-stroke spark ignition engine.
 内燃機関1は、シリンダ2A及びクランク室2Bが形成されたシリンダブロック2と、吸気ポート3A及び排気ポート3Bが形成されたシリンダヘッド3と、を有する。シリンダヘッド3は、吸気ポート3Aの開口3Aop及び排気ポート3Bの開口3Bopがシリンダ2Aに臨むように、シリンダブロック2に取り付けられている。 The internal combustion engine 1 has a cylinder block 2 in which a cylinder 2A and a crank chamber 2B are formed, and a cylinder head 3 in which an intake port 3A and an exhaust port 3B are formed. The cylinder head 3 is attached to the cylinder block 2 so that the opening 3Aop of the intake port 3A and the opening 3Bop of the exhaust port 3B face the cylinder 2A.
 シリンダブロック2のシリンダ2Aには、シリンダ2Aの軸方向にピストン4が往復動可能に嵌挿され、ピストン4の冠面4aとシリンダヘッド3の下面との間に、燃焼室5が形成されている。シリンダ2Aの周囲の壁内には、内燃機関1と外部の熱交換器との間を循環する冷却水を流通させるためのウォータジャケット2Cが形成されている。 A piston 4 is reciprocally inserted into the cylinder 2A of the cylinder block 2 in the axial direction of the cylinder 2A, and a combustion chamber 5 is formed between the crown surface 4a of the piston 4 and the lower surface of the cylinder head 3. There is. A water jacket 2C for circulating cooling water circulating between the internal combustion engine 1 and an external heat exchanger is formed in the wall around the cylinder 2A.
 シリンダブロック2のクランク室2Bにはクランク軸6が配置され、クランク軸6は、ピストンピン4bでピストン4に上端部が回動可能に取り付けられたコンロッド(コネクティングロッド)7を介してピストン4と連結されている。 A crank shaft 6 is arranged in the crank chamber 2B of the cylinder block 2, and the crank shaft 6 is connected to the piston 4 via a conrod (connecting rod) 7 whose upper end is rotatably attached to the piston 4 by a piston pin 4b. It is connected.
 クランク軸6は、ジャーナル6aによってシリンダブロック2の主軸受(図示省略)に回転可能に支持されている。また、クランク軸6は、ジャーナル6aの回転軸線から偏心したクランクピン6bを有し、クランクピン6bは、コンロッド7の下端部に回転可能に連結されている。ジャーナル6aとクランクピン6bとの間はクランクアーム6cによって連結されている。 The crankshaft 6 is rotatably supported by the main bearing (not shown) of the cylinder block 2 by the journal 6a. Further, the crankshaft 6 has a crankpin 6b eccentric from the rotation axis of the journal 6a, and the crankpin 6b is rotatably connected to the lower end of the connecting rod 7. The journal 6a and the crank pin 6b are connected by a crank arm 6c.
 シリンダヘッド3には、吸気バルブ8及び排気バルブ9が備えられている。吸気バルブ8は、燃焼室5に臨む吸気ポート3Aの開口3Aopと当接する傘部8a、傘部8aから延出する棒状のステム部8b、及び、ステム部8bの延出端に位置するタペット部8cを有する。同様に、排気バルブ9は、燃焼室5に臨む排気ポート3Bの開口3Bopと当接する傘部9a、傘部9aから延出する棒状のステム部9b、及び、ステム部9bの延出端に位置するタペット部9cを有する。 The cylinder head 3 is provided with an intake valve 8 and an exhaust valve 9. The intake valve 8 includes an umbrella portion 8a that abuts on the opening 3Aop of the intake port 3A facing the combustion chamber 5, a rod-shaped stem portion 8b extending from the umbrella portion 8a, and a tappet portion located at the extending end of the stem portion 8b. Has 8c. Similarly, the exhaust valve 9 is located at the umbrella portion 9a that comes into contact with the opening 3Bop of the exhaust port 3B facing the combustion chamber 5, the rod-shaped stem portion 9b that extends from the umbrella portion 9a, and the extending end of the stem portion 9b. It has a tappet portion 9c to be used.
 シリンダヘッド3に回転可能に支持された吸気カム軸10と一体に回転する吸気カム11がタペット部8cと接触することで、吸気バルブ8はステム部8bの軸方向で往復移動する。これにより吸気バルブ8の傘部8aが燃焼室5に臨む吸気ポート3Aの開口3Aopを周期的に開閉する。同様に、シリンダヘッド3に回転可能に支持された排気カム軸12と一体に回転する排気カム13がタペット部9cと接触することで、排気バルブ9はステム部9bの軸方向で往復移動する。これにより排気バルブ9の傘部9aが燃焼室5に臨む排気ポート3Bの開口3Bopを開閉する。なお、吸気カム軸10及び排気カム軸12には、クランク軸6の回転が図外のタイミングベルトを介して伝達される。 When the intake cam 11 that rotates integrally with the intake cam shaft 10 rotatably supported by the cylinder head 3 comes into contact with the tappet portion 8c, the intake valve 8 reciprocates in the axial direction of the stem portion 8b. As a result, the umbrella portion 8a of the intake valve 8 periodically opens and closes the opening 3Aop of the intake port 3A facing the combustion chamber 5. Similarly, when the exhaust cam 13 that rotates integrally with the exhaust cam shaft 12 rotatably supported by the cylinder head 3 comes into contact with the tappet portion 9c, the exhaust valve 9 reciprocates in the axial direction of the stem portion 9b. As a result, the umbrella portion 9a of the exhaust valve 9 opens and closes the opening 3Bop of the exhaust port 3B facing the combustion chamber 5. The rotation of the crankshaft 6 is transmitted to the intake camshaft 10 and the exhaust camshaft 12 via a timing belt (not shown).
 シリンダヘッド3の吸気ポート3Aには、図外のインテークマニホールドを介して、車両外部から内燃機関1へ空気を導くための吸気管14が接続されている。吸気管14には、スロットルモータ15aとスロットルバルブ15bとで構成される電子制御スロットル15が配置されている。電子制御スロットル15は、各シリンダ2Aの燃焼室5内に吸気バルブ8を介して吸入される吸入空気量を調整する。 An intake pipe 14 for guiding air from the outside of the vehicle to the internal combustion engine 1 is connected to the intake port 3A of the cylinder head 3 via an intake manifold (not shown). An electronically controlled throttle 15 including a throttle motor 15a and a throttle valve 15b is arranged in the intake pipe 14. The electronically controlled throttle 15 adjusts the amount of intake air sucked into the combustion chamber 5 of each cylinder 2A via the intake valve 8.
 シリンダヘッド3の排気ポート3Bには、図外のエキゾーストマニホールドを介して、内燃機関1で発生した排気を車両外部へ導くための排気管16が接続されている。排気管16には、排気成分の転換を行うフロント触媒コンバータ17及びリア触媒コンバータ18が配置されている。 An exhaust pipe 16 for guiding the exhaust generated by the internal combustion engine 1 to the outside of the vehicle is connected to the exhaust port 3B of the cylinder head 3 via an exhaust manifold (not shown). A front catalytic converter 17 and a rear catalytic converter 18 that convert exhaust components are arranged in the exhaust pipe 16.
 シリンダヘッド3には、吸気バルブ8よりも上流側の吸気ポート3A内に燃料を噴射するポート噴射式の燃料噴射弁19が配置されている。燃料噴射弁19は、例えば、燃料通路に作られた旋回室で燃料を旋回させて渦状に噴射することで霧状化するスワール噴霧方式の燃料噴射弁である。吸気バルブ8の閉弁期間に燃料噴射弁19から吸気ポート3A内に噴射された燃料は、燃焼熱によって高温化した吸気バルブ8の傘部8a等に付着して気化し、吸気バルブ8の開弁期間に吸入空気と混合して均一な混合気を形成する。一方、吸気バルブ8の開弁期間に燃料噴射弁19から吸気ポート3A内に噴射された燃料は、吸気バルブ8の傘部8aと吸気ポート3Aの開口3Aopとの間を抜けて燃焼室5内へ吸入空気と共に流入する。 The cylinder head 3 is provided with a port injection type fuel injection valve 19 that injects fuel into the intake port 3A on the upstream side of the intake valve 8. The fuel injection valve 19 is, for example, a swirl spray type fuel injection valve that is atomized by swirling fuel in a swirl chamber formed in a fuel passage and injecting the fuel in a spiral shape. The fuel injected from the fuel injection valve 19 into the intake port 3A during the valve closing period of the intake valve 8 adheres to the umbrella portion 8a of the intake valve 8 which has become hot due to the heat of combustion and vaporizes, and the intake valve 8 is opened. Mix with intake air during the valve period to form a uniform air-fuel mixture. On the other hand, the fuel injected from the fuel injection valve 19 into the intake port 3A during the valve opening period of the intake valve 8 passes between the umbrella portion 8a of the intake valve 8 and the opening 3Aop of the intake port 3A and enters the combustion chamber 5. Inflow with intake air.
 シリンダヘッド3には、燃焼室5内の燃料と空気との混合気を着火燃焼させる点火栓20が、燃焼室5に臨む位置で取り付けられている。 A spark plug 20 for igniting and burning a mixture of fuel and air in the combustion chamber 5 is attached to the cylinder head 3 at a position facing the combustion chamber 5.
 可変バルブタイミング機構21は、吸気可変機構21a及び排気可変機構21bで構成される。吸気可変機構21aは、クランク軸6に対する吸気カム軸10の回転位相をアクチュエータによって連続的に変化させることで、吸気バルブ8のバルブタイミングを連続的に進角方向及び遅角方向に変化させる機構である。排気可変機構21bは、クランク軸6に対する排気カム軸12の回転位相をアクチュエータによって連続的に変化させることで、排気バルブ9のバルブタイミングを連続的に進角方向及び遅角方向に変化させる機構である。 The variable valve timing mechanism 21 is composed of an intake variable mechanism 21a and an exhaust variable mechanism 21b. The intake variable mechanism 21a is a mechanism that continuously changes the valve timing of the intake valve 8 in the advance direction and the retard direction by continuously changing the rotation phase of the intake camshaft 10 with respect to the crankshaft 6 by an actuator. is there. The variable exhaust mechanism 21b is a mechanism that continuously changes the valve timing of the exhaust valve 9 in the advance and retard directions by continuously changing the rotation phase of the exhaust camshaft 12 with respect to the crankshaft 6 by an actuator. is there.
 電子制御スロットル15のスロットルモータ15a、燃料噴射弁19及び点火栓20を制御する第1制御ユニットとして、エンジンコントロールモジュール(以下、「ECM」という)100が備えられている。また、吸気可変機構21a及び排気可変機構21bの2つのアクチュエータを個別に制御する第2制御ユニットとして、VTCコントローラ200が備えられている。ECM100及びVTCコントローラ200は、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)等の不揮発性メモリ、RAM(Random Access Memory)等の揮発性メモリ及び入出力ポートを含むマイクロコンピュータを有する。ECM100とVTCコントローラ200との間は、CAN(Control Area Network)等の通信線によって相互に通信可能に接続されて、内燃機関1の制御装置を構成している。 An engine control module (hereinafter referred to as "ECM") 100 is provided as a first control unit for controlling the throttle motor 15a of the electronically controlled throttle 15, the fuel injection valve 19, and the spark plug 20. Further, the VTC controller 200 is provided as a second control unit that individually controls the two actuators of the intake variable mechanism 21a and the exhaust variable mechanism 21b. The ECM 100 and the VTC controller 200 have a microcomputer including a processor such as a CPU (Central Processing Unit), a non-volatile memory such as a ROM (Read Only Memory), a volatile memory such as a RAM (Random Access Memory), and an input / output port. .. The ECM 100 and the VTC controller 200 are communicably connected to each other by a communication line such as a CAN (Control Area Network) to form a control device for the internal combustion engine 1.
 ECM100は、内蔵するマイクロコンピュータの入出力ポートを介して各種センサの出力信号を入力する。各種センサとしては、アクセル開度センサ22、吸入空気圧センサ23、クランク角センサ24、スロットルセンサ25、吸気カムセンサ26、排気カムセンサ27、水温センサ28等がある。アクセル開度センサ22は、アクセルペダル29の踏み込み量、すなわちアクセル開度ACCを検出するためのセンサである。吸入空気圧センサ23は、内燃機関1の吸入空気圧PSを検出するためのセンサである。クランク角センサ24は、クランク軸6の回転速度に応じて周波数が変化するパルス状のクランク角信号CRANKを出力するセンサである。スロットルセンサ25は、スロットルバルブ15bの開度TVOを検出するためのセンサである。吸気カムセンサ26は、吸気カム軸10の回転速度に応じて周波数が変化するパルス状の吸気カム信号CAM1を出力するセンサである。排気カムセンサ27は、排気カム軸12の回転速度に応じて周波数が変化するパルス状の排気カム信号CAM2を出力するセンサである。水温センサ28は、例えばウォータジャケット2Cを流れる冷却水等、内燃機関1と外部の熱交換器との間を循環する冷却水の水温TWを検出するためのセンサである。 The ECM100 inputs the output signals of various sensors via the input / output ports of the built-in microprocessor. Examples of various sensors include an accelerator opening sensor 22, an intake air pressure sensor 23, a crank angle sensor 24, a throttle sensor 25, an intake cam sensor 26, an exhaust cam sensor 27, and a water temperature sensor 28. The accelerator opening sensor 22 is a sensor for detecting the amount of depression of the accelerator pedal 29, that is, the accelerator opening ACC. The intake air pressure sensor 23 is a sensor for detecting the intake air pressure PS of the internal combustion engine 1. The crank angle sensor 24 is a sensor that outputs a pulsed crank angle signal CRANK whose frequency changes according to the rotation speed of the crankshaft 6. The throttle sensor 25 is a sensor for detecting the opening degree TVO of the throttle valve 15b. The intake cam sensor 26 is a sensor that outputs a pulsed intake cam signal CAM1 whose frequency changes according to the rotation speed of the intake cam shaft 10. The exhaust cam sensor 27 is a sensor that outputs a pulsed exhaust cam signal CAM2 whose frequency changes according to the rotation speed of the exhaust cam shaft 12. The water temperature sensor 28 is a sensor for detecting the water temperature TW of the cooling water circulating between the internal combustion engine 1 and the external heat exchanger, such as the cooling water flowing through the water jacket 2C.
 ECM100は、内蔵するマイクロコンピュータのプロセッサが不揮発性メモリに予め記憶されたプログラムを揮発性メモリに読み出して実行する。これにより、ECM100は、上記の各種センサの出力信号から内燃機関1の運転状態を判断し、この内燃機関1の運転状態に応じて、電子制御スロットル15、燃料噴射弁19及び点火栓20に対する操作信号を生成する。また、ECM100は、可変バルブタイミング機構21で調整される回転位相の目標値を演算する。そして、ECM100は、生成した操作信号を、電子制御スロットル15、燃料噴射弁19及び点火栓20へ出力するとともに、可変バルブタイミング機構21で調整される回転位相の目標値をVTCコントローラ200へ出力する。 In the ECM100, the processor of the built-in microcomputer reads the program stored in advance in the non-volatile memory into the volatile memory and executes it. As a result, the ECM 100 determines the operating state of the internal combustion engine 1 from the output signals of the various sensors described above, and operates the electronically controlled throttle 15, the fuel injection valve 19, and the spark plug 20 according to the operating state of the internal combustion engine 1. Generate a signal. Further, the ECM 100 calculates a target value of the rotation phase adjusted by the variable valve timing mechanism 21. Then, the ECM 100 outputs the generated operation signal to the electronically controlled throttle 15, the fuel injection valve 19, and the ignition plug 20, and outputs the target value of the rotation phase adjusted by the variable valve timing mechanism 21 to the VTC controller 200. ..
 具体的には、ECM100は、内燃機関1の運転状態に応じた燃料噴射量FIを算出し、燃料噴射弁19に供給される燃料の圧力(燃圧)や燃料噴射弁19の噴孔径等の噴射特性に基づいて、燃料噴射量FIを噴射するのに必要となる燃料噴射時間を算出する。燃料噴射時間は、ECM100において、クランク角信号CRANKを用いて算出した機関回転速度NEに基づいて、クランク軸6の回転角度量で示される燃料噴射期間に変換される。燃料噴射期間は、内燃機関1の冷機状態において1サイクル(4ストローク)中に燃料噴射弁19から燃料を噴射する連続期間である。また、ECM100は、燃料噴射期間の噴射開始タイミング及び噴射終了タイミングを設定する噴射タイミング設定手段を備えている。そして、ECM100は、燃料噴射弁19の操作信号として、燃料噴射期間と噴射開始タイミング及び噴射終了タイミングとを含む噴射信号を出力する。なお、本明細書において、「期間」という用語は、クランク軸6の回転角度量を意味するものとする。 Specifically, the ECM 100 calculates the fuel injection amount FI according to the operating state of the internal combustion engine 1, and injects the fuel pressure (fuel pressure) supplied to the fuel injection valve 19, the injection hole diameter of the fuel injection valve 19, and the like. Based on the characteristics, the fuel injection time required to inject the fuel injection amount FI is calculated. The fuel injection time is converted into a fuel injection period indicated by the amount of rotation angle of the crankshaft 6 based on the engine rotation speed NE calculated by using the crank angle signal CRANK in the ECM100. The fuel injection period is a continuous period in which fuel is injected from the fuel injection valve 19 in one cycle (4 strokes) in the cold state of the internal combustion engine 1. Further, the ECM 100 includes an injection timing setting means for setting an injection start timing and an injection end timing during the fuel injection period. Then, the ECM 100 outputs an injection signal including a fuel injection period, an injection start timing, and an injection end timing as an operation signal of the fuel injection valve 19. In this specification, the term "period" means the amount of rotation angle of the crankshaft 6.
 燃料噴射量FIは、例えば以下のようにして算出される。すなわち、ECM100は、基本噴射量に水温TW等を考慮した各種補正係数を乗算し、この乗算値に燃料噴射弁19の噴射遅れを補償する補正値を加算して燃料噴射量FIを算出する。基本噴射量は、クランク角信号CRANKを用いて算出した機関回転速度NEと、吸入空気圧センサ23の吸入空気圧PSに関する出力信号から推定される吸入空気量Qと、に基づいて算出可能である。なお、吸気管14にエアフローセンサを設けて、エアフローセンサの出力信号から吸入空気量Qを直接検出してもよい。 The fuel injection amount FI is calculated as follows, for example. That is, the ECM 100 calculates the fuel injection amount FI by multiplying the basic injection amount by various correction coefficients in consideration of the water temperature TW and the like, and adding the correction value for compensating for the injection delay of the fuel injection valve 19 to this multiplication value. The basic injection amount can be calculated based on the engine rotation speed NE calculated using the crank angle signal CRANK and the intake air amount Q estimated from the output signal related to the intake air pressure PS of the intake air pressure sensor 23. An airflow sensor may be provided in the intake pipe 14 to directly detect the intake air amount Q from the output signal of the airflow sensor.
 また、ECM100は、クランク角信号CRANKを用いて算出した機関回転速度NE、機関負荷TP等の機関運転条件に基づいて、可変バルブタイミング機構21で調整される回転位相の目標値を演算する。なお、ECM100は、機関負荷TPとして、燃料噴射量FI、吸入空気圧PS、スロットル開度TVO等を用いることができる。 Further, the ECM 100 calculates the target value of the rotation phase adjusted by the variable valve timing mechanism 21 based on the engine operation conditions such as the engine rotation speed NE and the engine load TP calculated by using the crank angle signal CRANK. The ECM 100 can use the fuel injection amount FI, the intake air pressure PS, the throttle opening TVO, and the like as the engine load TP.
 VTCコントローラ200は、ECM100を介してクランク角信号CRANK、吸気カム信号CAM1及び排気カム信号CAM2を入力し、これらの信号に基づいてクランク軸6に対する吸気カム軸10及び排気カム軸12の回転位相を計測する。そして、VTCコントローラ200は、回転位相の計測値が目標値に近づくように吸気可変機構21a及び排気可変機構21bの少なくとも一方のアクチュエータの操作信号を生成して出力することで、回転位相のフィードバック制御を実施する。 The VTC controller 200 inputs the crank angle signal CRANK, the intake cam signal CAM1 and the exhaust cam signal CAM2 via the ECM100, and based on these signals, determines the rotation phases of the intake camshaft 10 and the exhaust camshaft 12 with respect to the crankshaft 6. measure. Then, the VTC controller 200 generates and outputs an operation signal of at least one actuator of the intake variable mechanism 21a and the exhaust variable mechanism 21b so that the measured value of the rotational phase approaches the target value, thereby controlling the feedback of the rotational phase. To carry out.
 内燃機関1の始動直後における冷機状態では、内燃機関1が十分昇温していないことが想定される。このため、吸気バルブ8を閉弁した状態で燃料噴射弁19から吸気ポート3A内に燃料を噴射すると、噴射燃料が気化し難いというだけでなく、吸気ポート3Aの壁面に噴射燃料が付着し易くなる。そこで、ECM100は、内燃機関1の冷機状態において、吸気バルブ8を開弁した状態で吸気と同期させて燃料を噴射する吸気同期噴射を行い、噴射燃料を吸入空気とともに燃焼室5へ流入させるようにしている。 It is assumed that the temperature of the internal combustion engine 1 has not risen sufficiently in the cold state immediately after the start of the internal combustion engine 1. Therefore, when fuel is injected into the intake port 3A from the fuel injection valve 19 with the intake valve 8 closed, not only is the injected fuel difficult to vaporize, but the injected fuel easily adheres to the wall surface of the intake port 3A. Become. Therefore, in the cold state of the internal combustion engine 1, the ECM 100 performs intake synchronous injection in which fuel is injected in synchronization with intake in a state where the intake valve 8 is opened, so that the injected fuel flows into the combustion chamber 5 together with the intake air. I have to.
 ところで、内燃機関1では、燃費向上を図るべく、S/V比を減少させて冷却損失を低減するためにシリンダボアが小径化されたり、筒内流動を強化して燃焼を改善するために吸気ポート3Aがストレート化されたりしていることが想定される。 By the way, in the internal combustion engine 1, in order to improve fuel efficiency, the diameter of the cylinder bore is reduced in order to reduce the S / V ratio and the cooling loss, and the intake port is used to strengthen the in-cylinder flow to improve combustion. It is assumed that 3A is straightened.
 内燃機関1が上記のように燃費向上を指向して構成されている場合には、図15に示すように吸気同期噴射を行うと以下のような問題が発生する。すなわち、燃料噴射弁19の噴孔からシリンダ2Aのうち排気ポート3Bに近い内壁面までの短距離化、あるいは、シリンダ2Aの内壁面に向けて流れる吸気の増加によって、シリンダ2Aの内壁面への燃料衝突が増加して燃料付着量が増大しやすくなる。これは、未燃燃料を増加させて、燃費の低下のみならず内燃機関1の冷機状態ではPN増加を招くおそれがある。 When the internal combustion engine 1 is configured to improve fuel efficiency as described above, the following problems occur when intake synchronous injection is performed as shown in FIG. That is, the distance from the injection hole of the fuel injection valve 19 to the inner wall surface of the cylinder 2A close to the exhaust port 3B is shortened, or the intake air flowing toward the inner wall surface of the cylinder 2A is increased, so that the inner wall surface of the cylinder 2A is reached. Fuel collisions increase and the amount of fuel deposited tends to increase. This increases the amount of unburned fuel, which may not only reduce fuel consumption but also increase PN in the cold state of the internal combustion engine 1.
 そこで、図2に示すように、内燃機関1の冷機状態で吸気同期噴射を行う際には、吸気バルブ8を開弁することに加え、排気バルブ9を以下のように開弁させる。すなわち、ピストン4の下降に伴う燃焼室5の内部圧力低下によって排気ポート3Bから高温の排気が燃焼室5へ逆流するように排気バルブ9を開弁させる。これにより、吸気同期噴射の際のシリンダ2Aの内壁面への燃料衝突を排気ポート3Bからの逆流排気によるいわば高温のエアカーテンで低減して、シリンダ2Aの内壁面への燃料付着を抑制するようにしている。 Therefore, as shown in FIG. 2, when the intake synchronous injection is performed in the cold state of the internal combustion engine 1, in addition to opening the intake valve 8, the exhaust valve 9 is opened as follows. That is, the exhaust valve 9 is opened so that the high-temperature exhaust gas flows back from the exhaust port 3B to the combustion chamber 5 due to the decrease in the internal pressure of the combustion chamber 5 accompanying the lowering of the piston 4. As a result, the fuel collision with the inner wall surface of the cylinder 2A during the intake synchronous injection is reduced by the so-called high temperature air curtain due to the backflow exhaust from the exhaust port 3B, and the fuel adhesion to the inner wall surface of the cylinder 2A is suppressed. I have to.
 図3は、内燃機関1の冷機状態における吸気バルブ8及び排気バルブ9のバルブタイミングを示す。バルブタイミングは、吸気バルブ8及び排気バルブ9が開閉するときのクランク軸6の回転角度である。図3では、排気上死点TDCを0degとして、原点O周りに時計方向に回転したときの角度がクランク軸6の回転角度を示し、クランク軸6が2周(720deg)回転したときに吸気カム軸10及び排気カム軸12がそれぞれ1周(360deg)回転する。 FIG. 3 shows the valve timings of the intake valve 8 and the exhaust valve 9 in the cold state of the internal combustion engine 1. The valve timing is the rotation angle of the crankshaft 6 when the intake valve 8 and the exhaust valve 9 open and close. In FIG. 3, with the exhaust top dead point TDC as 0 deg, the angle when rotating clockwise around the origin O indicates the rotation angle of the crankshaft 6, and the intake cam when the crankshaft 6 rotates two turns (720 deg). The shaft 10 and the exhaust cam shaft 12 each rotate once (360 deg).
 クランク軸6の1回転目(0~360deg)では、排気上死点TDCから吸気下死点BDCまでの間において、吸気バルブ8が開弁タイミングIVOで開弁し、その後、排気バルブ9が閉弁タイミングEVCで閉弁するように設定される。吸気バルブ8は、開弁タイミングIVOに対して吸気カム11の所定の作用角だけ遅角した(あるいは遅い)閉弁タイミングIVCで閉弁する。そして、クランク軸6の2回転目(360~720deg)では、排気バルブ9は、3回転目(720~1080deg)の閉弁タイミングEVCに対して排気カム13の所定の作用角だけ進角した(あるいは早い)開弁タイミングEVOで開弁する。このように、内燃機関1の冷機状態では、吸気バルブ8及び排気バルブ9がいずれも開弁するバルブオーバーラップ(O/L)期間は排気上死点TDCから吸気下死点BDCまでの間に設けられるが、その理由は以下の通りである。 At the first rotation (0 to 360 deg) of the crankshaft 6, the intake valve 8 opens at the valve opening timing IVO between the exhaust top dead center TDC and the intake bottom dead center BDC, and then the exhaust valve 9 closes. The valve is set to close at the valve timing EVC. The intake valve 8 closes at the valve closing timing IVC which is retarded (or late) by a predetermined working angle of the intake cam 11 with respect to the valve opening timing IVO. Then, at the second rotation (360 to 720 deg) of the crankshaft 6, the exhaust valve 9 advances by a predetermined working angle of the exhaust cam 13 with respect to the valve closing timing EVC at the third rotation (720 to 1080 deg) (). Or early) Valve opening timing EVO opens the valve. As described above, in the cold state of the internal combustion engine 1, the valve overlap (O / L) period in which both the intake valve 8 and the exhaust valve 9 are opened is between the exhaust top dead center TDC and the intake bottom dead center BDC. It is provided, but the reason is as follows.
 内燃機関1の冷機状態で行われる吸気同期噴射では、排気上死点TDCより進角した範囲でバルブO/L期間が始まると、ピストン4の上昇に伴う燃焼室5の圧力上昇によって吸気ポート3Aから排気ポート3Bへの噴射燃料の吹き抜けが発生するおそれがある。このため、吸気バルブ8の開弁タイミングIVOは、排気上死点TDC以降に設定される。また、吸気同期噴射は、シリンダ2Aの内壁面への燃料衝突を逆流排気によるいわば高温のエアカーテンで低減すべく、ピストン4の下降に伴う燃焼室5の圧力低下によって排気ポート3Bから燃焼室5へ排気を逆流させるようにして行われる。このため、排気バルブ9の閉弁タイミングEVCは、吸気バルブ8の開弁タイミングIVOより遅角し、かつ、吸気下死点BDC以前の範囲に設定される。したがって、内燃機関1の冷機状態では、吸気バルブ8及び排気バルブ9がいずれも開弁するバルブO/L期間は、排気上死点TDCから吸気下死点BDCまでの間に設けられる。 In the intake synchronous injection performed in the cold state of the internal combustion engine 1, when the valve O / L period starts in the range advanced from the exhaust top dead center TDC, the pressure of the combustion chamber 5 rises with the rise of the piston 4 and the intake port 3A There is a risk that the injected fuel will blow through to the exhaust port 3B. Therefore, the valve opening timing IVO of the intake valve 8 is set after the exhaust top dead center TDC. Further, in the intake synchronous injection, in order to reduce the fuel collision with the inner wall surface of the cylinder 2A by the so-called high temperature air curtain due to the backflow exhaust, the pressure of the combustion chamber 5 decreases as the piston 4 descends, and the combustion chamber 5 from the exhaust port 3B. It is done so that the exhaust flows back to. Therefore, the valve closing timing EVC of the exhaust valve 9 is set to a range that is retarded from the valve opening timing IVO of the intake valve 8 and is before the intake bottom dead center BDC. Therefore, in the cold state of the internal combustion engine 1, the valve O / L period in which both the intake valve 8 and the exhaust valve 9 are opened is provided between the exhaust top dead center TDC and the intake bottom dead center BDC.
 図4は、噴射開始タイミングFO及び噴射終了タイミングFCに関する燃料噴射期間の設定例を示す。図4の上部には、吸気バルブ8及び排気バルブ9の2つの開弁期間が排気上死点TDCの前後におけるクランク軸6の回転角度に対応して示される。また、図4の下部には、排気ポート3Bにおける排気流速が排気上死点TDC前後におけるクランク軸6の回転角度に対応して示される。ここで、燃焼室5から排気ポート3Bへ流れる順流の排気の排気流速は正の値で示され、排気ポート3Bから燃焼室5へ流れる逆流の排気の排気流速は負の値で示されている。 FIG. 4 shows an example of setting the fuel injection period regarding the injection start timing FO and the injection end timing FC. At the top of FIG. 4, two valve opening periods of the intake valve 8 and the exhaust valve 9 are shown corresponding to the rotation angle of the crankshaft 6 before and after the exhaust top dead center TDC. Further, in the lower part of FIG. 4, the exhaust flow velocity at the exhaust port 3B is shown corresponding to the rotation angle of the crankshaft 6 before and after the exhaust top dead center TDC. Here, the exhaust flow velocity of the forward exhaust gas flowing from the combustion chamber 5 to the exhaust port 3B is indicated by a positive value, and the exhaust flow velocity of the backflow exhaust gas flowing from the exhaust port 3B to the combustion chamber 5 is indicated by a negative value. ..
 燃料噴射弁19から噴射された燃料が、吸気バルブ8によって開閉される吸気ポート3Aの開口3Aopすなわち燃焼室5の吸気流入口に到達するまでには、既知のタイムラグ(到達所要時間)が発生する。このため、燃料噴射弁19から噴射された燃料が、吸気バルブ8によって開閉される吸気ポート3Aの開口3Aopすなわち燃焼室5の吸気流入口に到達する期間(燃料到達期間)は、全体的に、燃料噴射期間に対して到達所要時間に相当する角度量だけ遅角する。そして、燃料到達期間のうちバルブO/L期間と重複する期間が、燃料噴射弁19から噴射された燃料が燃焼室5に流入する流入期間(吸気同期噴射期間)となる。 A known time lag (required time) occurs before the fuel injected from the fuel injection valve 19 reaches the opening 3Aop of the intake port 3A opened and closed by the intake valve 8, that is, the intake inlet of the combustion chamber 5. .. Therefore, the period during which the fuel injected from the fuel injection valve 19 reaches the opening 3Aop of the intake port 3A opened and closed by the intake valve 8, that is, the intake inlet of the combustion chamber 5 (fuel arrival period) is as a whole. It is retarded by the amount of angle corresponding to the required arrival time with respect to the fuel injection period. The period of the fuel arrival period that overlaps with the valve O / L period is the inflow period (intake synchronous injection period) in which the fuel injected from the fuel injection valve 19 flows into the combustion chamber 5.
 内燃機関1の冷機状態で行われる吸気同期噴射では、上記のように、シリンダ2Aの内壁面への燃料衝突を排気ポート3Bからの逆流排気によるいわば高温のエアカーテンで低減する。このため、流入期間を、排気の逆流が発生し得るバルブO/L期間内に終了させる必要がある。したがって、燃料噴射期間の終期である噴射終了タイミングFCは、この噴射終了タイミングFCで燃料噴射弁19から噴射された燃料がバルブO/L期間中に燃焼室5に流入するように設定される。具体的には、到達所要時間が実験又はシミュレーション等で予め取得されていることを前提として、噴射終了タイミングFCは、バルブO/L期間内で終了する流入期間の終期に対して、到達所要時間に相当する角度量だけ進角した角度として設定される。例えば、噴射終了タイミングFCは、バルブO/L期間の終期と流入期間の終期とが一致するように設定されて、バルブO/L期間と流入期間とのオーバーラップ期間を長くすることができる。また、例えば、噴射終了タイミングFCは、燃料噴射期間がバルブO/L期間よりも短い場合には、燃料到達期間がバルブO/L期間内に収まるように設定される。 In the intake synchronous injection performed in the cold state of the internal combustion engine 1, as described above, the fuel collision with the inner wall surface of the cylinder 2A is reduced by the so-called high temperature air curtain due to the backflow exhaust from the exhaust port 3B. Therefore, it is necessary to end the inflow period within the valve O / L period in which the backflow of exhaust gas can occur. Therefore, the injection end timing FC, which is the end of the fuel injection period, is set so that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period. Specifically, on the premise that the required arrival time has been acquired in advance by an experiment or simulation, the injection end timing FC sets the required arrival time with respect to the end of the inflow period ending within the valve O / L period. It is set as an angle advanced by the amount of angle corresponding to. For example, the injection end timing FC is set so that the end of the valve O / L period and the end of the inflow period coincide with each other, so that the overlap period between the valve O / L period and the inflow period can be lengthened. Further, for example, the injection end timing FC is set so that the fuel arrival period falls within the valve O / L period when the fuel injection period is shorter than the valve O / L period.
 なお、例えば機関回転速度NEが低速度域である等、到達所要時間が燃料噴射期間やバルブO/L期間と比較して時間的に極めて微小で無視できる場合がある。この場合には、噴射終了タイミングFCは、単に、バルブO/L期間内で終了する流入期間の終期として設定されてもよい。 In some cases, for example, the engine rotation speed NE is in the low speed range, the time required to reach the engine is extremely small compared to the fuel injection period and the valve O / L period and can be ignored. In this case, the injection end timing FC may simply be set as the end of the inflow period that ends within the valve O / L period.
 燃料噴射期間の始期である噴射開始タイミングFOは、上記のように設定された噴射終了タイミングFCから燃料噴射期間の角度量だけ進角した角度に設定される。したがって、噴射開始タイミングFOは、吸気バルブ8の開弁タイミングIVOと一致するか、又は、開弁タイミングIVOよりも進角若しくは遅角した角度となるか、いずれであってもよい。 The injection start timing FO, which is the beginning of the fuel injection period, is set to an angle advanced by the angle amount of the fuel injection period from the injection end timing FC set as described above. Therefore, the injection start timing FO may be either coincident with the valve opening timing IVO of the intake valve 8 or may be advanced or retarded from the valve opening timing IVO.
 上記のように、バルブO/L期間中の全期間で逆流排気が発生し得るものと仮定して、噴射開始タイミングFO及び噴射終了タイミングFCを設定することができる。これに対して、実際に排気が逆流する逆流期間に関するデータが実験やシミュレーションによって予め取得されている場合には、以下のように逆流期間に応じて噴射開始タイミングFO及び噴射終了タイミングFCを設定することができる。 As described above, the injection start timing FO and the injection end timing FC can be set on the assumption that backflow exhaust can occur during the entire period of the valve O / L period. On the other hand, when the data on the backflow period in which the exhaust actually flows backward is acquired in advance by experiments or simulations, the injection start timing FO and the injection end timing FC are set according to the backflow period as follows. be able to.
 図4の下部に示されるように、排気上死点TDC以前の排気バルブ9の開弁期間では、燃焼室5の圧力上昇により排気ポート3B内には概ね順流の排気が流れる。一方、排気上死点TDCより後のバルブO/L期間では、燃焼室5の圧力低下により排気ポート3Bから燃焼室5へ排気が逆流する。しかし、バルブO/L期間では、排気バルブ9の開弁度が徐々に小さくなるとともに吸気バルブ8の開弁度が徐々に大きくなる。このため、実際にはバルブO/L期間のうち開始当初の一部期間において連続して逆流が発生し(図中のハッチング部)、それ以降のバルブO/L期間では排気の逆流が殆ど発生しない場合がある。例えば、逆流期間は、排気上死点TDCからこれより30~60deg遅角した回転角度までの範囲に発生する。 As shown in the lower part of FIG. 4, during the valve opening period of the exhaust valve 9 before the exhaust top dead center TDC, almost forward exhaust flows into the exhaust port 3B due to the pressure rise in the combustion chamber 5. On the other hand, in the valve O / L period after the exhaust top dead center TDC, the exhaust gas flows back from the exhaust port 3B to the combustion chamber 5 due to the pressure drop in the combustion chamber 5. However, during the valve O / L period, the opening degree of the exhaust valve 9 gradually decreases and the opening degree of the intake valve 8 gradually increases. Therefore, in reality, backflow occurs continuously in a part of the valve O / L period at the beginning of the start (hatched part in the figure), and almost all exhaust backflow occurs in the subsequent valve O / L period. It may not be. For example, the backflow period occurs in the range from the exhaust top dead center TDC to the rotation angle 30 to 60 deg retarded from this.
 図4の下部に示される逆流期間に関するデータが予め取得されている場合には、この逆流期間中の逆流排気によるシリンダ2Aの内壁面への燃料付着抑制効果を考慮して噴射終了タイミングFCを設定するとよい。すなわち、噴射終了タイミングFCで燃料噴射弁19から噴射された燃料が逆流期間中に燃焼室5に流入するように、噴射終了タイミングFCを設定するとよい。例えば、噴射終了タイミングFCは、逆流期間の終期と流入期間の終期とが一致するように設定されて、逆流期間と流入期間とのオーバーラップ期間を長くすることができる。また、例えば、噴射終了タイミングFCは、燃料噴射期間が逆流期間よりも短い場合には、燃料到達期間が逆流期間内に収まるように設定される。この場合、燃料到達期間と逆流期間とのオーバーラップ期間における排気流速の絶対値の積分値が最大となるように、噴射終了タイミングFCを設定することができる。なお、噴射開始タイミングFOは、上記のように、噴射終了タイミングFCから燃料噴射期間の角度量だけ進角した角度に設定される。 When the data on the backflow period shown in the lower part of FIG. 4 is acquired in advance, the injection end timing FC is set in consideration of the effect of suppressing fuel adhesion to the inner wall surface of the cylinder 2A due to the backflow exhaust during the backflow period. It is good to do. That is, it is preferable to set the injection end timing FC so that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the backflow period. For example, the injection end timing FC is set so that the end of the backflow period and the end of the inflow period coincide with each other, and the overlap period between the backflow period and the inflow period can be lengthened. Further, for example, the injection end timing FC is set so that the fuel arrival period falls within the backflow period when the fuel injection period is shorter than the backflow period. In this case, the injection end timing FC can be set so that the integrated value of the absolute value of the exhaust flow velocity in the overlap period between the fuel arrival period and the backflow period is maximized. As described above, the injection start timing FO is set to an angle advanced by the angle amount of the fuel injection period from the injection end timing FC.
 図5は、内燃機関1の冷機状態においてECM100が周期的に(例えば内燃機関1の1サイクル毎に)繰り返し実行する、燃料噴射弁19の制御処理の一例を示す。なお、ECM100は、VTCコントローラ200を介して、吸気バルブ8及び排気バルブ9を内燃機関1の冷機状態に応じたバルブタイミング(図3参照)に設定しているものとする。すなわち、ECM100は、バルブO/L期間が排気上死点TDCから吸気下死点BDCまでの間となるように設定しているものとする。 FIG. 5 shows an example of the control process of the fuel injection valve 19 that the ECM 100 repeatedly executes periodically (for example, every cycle of the internal combustion engine 1) in the cold state of the internal combustion engine 1. It is assumed that the ECM 100 sets the intake valve 8 and the exhaust valve 9 at the valve timing (see FIG. 3) according to the cold state of the internal combustion engine 1 via the VTC controller 200. That is, it is assumed that the ECM 100 is set so that the valve O / L period is between the exhaust top dead center TDC and the intake bottom dead center BDC.
 ステップS1(図中では「S1」と略記する。以下同様。)では、ECM100は、内燃機関1の冷機状態において必要となる燃料噴射量を演算する。 In step S1 (abbreviated as "S1" in the figure; the same applies hereinafter), the ECM 100 calculates the fuel injection amount required in the cold state of the internal combustion engine 1.
 ステップS2では、ECM100は、噴射開始タイミングFO及び噴射終了タイミングFCを含む燃料噴射期間の設定を行う。先ず、ECM100は、燃料噴射弁19の噴射特性に基づいて、ステップS1で演算された燃料噴射量から燃料噴射時間を算出し、クランク角信号CRANKを用いて演算した機関回転速度NEに基づいて燃料噴射時間を燃料噴射期間に変換する。 In step S2, the ECM 100 sets the fuel injection period including the injection start timing FO and the injection end timing FC. First, the ECM 100 calculates the fuel injection time from the fuel injection amount calculated in step S1 based on the injection characteristics of the fuel injection valve 19, and fuels based on the engine rotation speed NE calculated using the crank angle signal CRANK. Convert the injection time to the fuel injection period.
 そして、ECM100は、噴射終了タイミングFCで燃料噴射弁19から噴射された燃料が図3のバルブO/L期間中に燃焼室5に流入するように噴射終了タイミングFCを設定する。なお、ECM100は、図4の逆流期間のデータを予め記憶している場合には、噴射終了タイミングFCで燃料噴射弁19から噴射された燃料が逆流期間中に燃焼室5に流入するように、噴射終了タイミングFCを設定することができる。 Then, the ECM 100 sets the injection end timing FC so that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period of FIG. When the ECM 100 stores the data of the backflow period of FIG. 4 in advance, the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the backflow period. The injection end timing FC can be set.
 また、ECM100は、噴射終了タイミングFCから燃料噴射期間の角度量だけ進角した角度を噴射開始タイミングFOとして設定する。 Further, the ECM 100 sets the angle advanced by the angle amount of the fuel injection period from the injection end timing FC as the injection start timing FO.
 ステップS3では、ECM100は、燃料噴射弁19の操作信号として、燃料噴射期間と噴射開始タイミングFO及び噴射終了タイミングFCとを含む噴射信号を出力する。 In step S3, the ECM 100 outputs an injection signal including the fuel injection period, the injection start timing FO, and the injection end timing FC as the operation signal of the fuel injection valve 19.
 第1実施形態に係る内燃機関1の制御装置及び制御方法によれば、燃料噴射弁19から噴射終了タイミングFCで噴射された燃料が図3のバルブO/L期間(または逆流期間)中に燃焼室5へ流入するように、噴射終了タイミングFCが設定される。したがって、少なくとも排気バルブ9の閉弁以降には燃焼室5への燃料の流入が制限されるので、吸気同期噴射によるシリンダ2Aの内壁面への燃料衝突を逆流排気によるいわば高温のエアカーテンで効果的に減少させることができる。これにより、シリンダ2Aの内壁面への燃料付着が抑制されて未燃燃料が減少するので、燃費の向上だけでなく内燃機関1の冷機状態におけるPN増加の抑制を図ることが可能となる。 According to the control device and control method of the internal combustion engine 1 according to the first embodiment, the fuel injected from the fuel injection valve 19 at the injection end timing FC burns during the valve O / L period (or backflow period) of FIG. The injection end timing FC is set so as to flow into the chamber 5. Therefore, since the inflow of fuel into the combustion chamber 5 is restricted at least after the exhaust valve 9 is closed, the fuel collision with the inner wall surface of the cylinder 2A due to the intake synchronous injection is effective with the so-called high temperature air curtain due to the backflow exhaust. Can be reduced. As a result, fuel adhesion to the inner wall surface of the cylinder 2A is suppressed and unburned fuel is reduced, so that it is possible not only to improve fuel efficiency but also to suppress an increase in PN in the cold state of the internal combustion engine 1.
〔第2実施形態〕
 次に、図6及び図7を参照して、本発明を実施するための第2実施形態について説明する。なお、本実施形態では、第1実施形態と異なる点について説明し、第1実施形態と同様の構成については、同一の符号を付してその説明を省略ないし簡略化する。以下の実施形態において同様である。
[Second Embodiment]
Next, a second embodiment for carrying out the present invention will be described with reference to FIGS. 6 and 7. In this embodiment, the points different from those of the first embodiment will be described, and the same reference numerals will be given to the same configurations as those of the first embodiment, and the description thereof will be omitted or simplified. The same applies to the following embodiments.
 図6は、図4において噴射開始タイミングFO及び噴射終了タイミングFCが変更された燃料噴射期間の設定例を示す。図7は、到達所要時間に応じた噴射開始タイミングFOの設定例を示す。 FIG. 6 shows a setting example of the fuel injection period in which the injection start timing FO and the injection end timing FC are changed in FIG. FIG. 7 shows an example of setting the injection start timing FO according to the required arrival time.
 内燃機関1の冷機状態で燃料噴射弁19から噴射された燃料については、排気ポート3Bからの逆流排気でシリンダ2Aの内壁面への燃料付着を抑制するとともに、吸気ポート3Aの内壁や吸気バルブ8の傘部8a等への燃料付着を抑制することが好ましい。したがって、図6に示すように、燃料噴射弁19から噴射開始タイミングFOで噴射された燃料はバルブO/L期間の始期に燃焼室5へ流入するとよい。このため、図7に示すように、燃料噴射弁19の噴射開始タイミングFOは、吸気バルブ8の開弁タイミングIVOから到達所要時間に相当する角度量Δθ1だけ進角した角度(理想噴射開始タイミング)に設定される。 With respect to the fuel injected from the fuel injection valve 19 in the cold state of the internal combustion engine 1, the backflow exhaust from the exhaust port 3B suppresses fuel adhesion to the inner wall surface of the cylinder 2A, and the inner wall of the intake port 3A and the intake valve 8 It is preferable to suppress fuel adhesion to the umbrella portion 8a and the like. Therefore, as shown in FIG. 6, the fuel injected from the fuel injection valve 19 at the injection start timing FO may flow into the combustion chamber 5 at the beginning of the valve O / L period. Therefore, as shown in FIG. 7, the injection start timing FO of the fuel injection valve 19 is an angle advanced by an angle amount Δθ1 corresponding to the required arrival time from the valve opening timing IVO of the intake valve 8 (ideal injection start timing). Is set to.
 図示省略するが、図6の下部に示される逆流期間に関するデータが予め取得されている場合には、燃料噴射弁19から噴射開始タイミングFOで噴射された燃料は逆流期間の始期に燃焼室5へ流入するとよい。このため、燃料噴射弁19の噴射開始タイミングFOは、逆流期間の始期から到達所要時間に相当する角度量だけ進角した角度に設定される。 Although not shown, when the data regarding the backflow period shown in the lower part of FIG. 6 is acquired in advance, the fuel injected from the fuel injection valve 19 at the injection start timing FO enters the combustion chamber 5 at the beginning of the backflow period. It is good to flow in. Therefore, the injection start timing FO of the fuel injection valve 19 is set to an angle advanced by an angle amount corresponding to the required arrival time from the beginning of the backflow period.
 到達所要時間は、燃圧や噴孔径等の燃料噴射弁19の噴射特性により算出される噴射燃料速度に対して、吸気圧PS、吸入空気量Q、機関回転速度NE等の吸気ポート3Aの吸気流速に関するパラメータの影響を受けて変化する場合がある。すなわち、吸気ポート3Aの吸気流速が増大すると到達所要時間が短くなる一方、吸気流速が減少すると到達所要時間が長くなる場合がある。このため、図7に示すように、上記の理想噴射開始タイミングは、到達所要時間の長短によって変化する角度量Δθ1の増減に従って変化する。すなわち、理想噴射開始タイミングは、到達所要時間が短くなるに従って遅角する一方、到達所要時間が長くなるに従って進角する。したがって、噴射終了タイミングFCは、到達所要時間の変化に応じた理想噴射開始タイミングに設定される。 The arrival time is the intake flow velocity of the intake port 3A such as the intake pressure PS, the intake air amount Q, and the engine rotation speed NE with respect to the injection fuel speed calculated from the injection characteristics of the fuel injection valve 19 such as the fuel pressure and the injection hole diameter. May change under the influence of parameters related to. That is, when the intake flow velocity of the intake port 3A increases, the arrival time may become shorter, while when the intake flow velocity decreases, the arrival time may become longer. Therefore, as shown in FIG. 7, the ideal injection start timing changes according to the increase / decrease of the angle amount Δθ1 that changes depending on the length of the arrival time. That is, the ideal injection start timing is retarded as the arrival time becomes shorter, while it advances as the arrival time becomes longer. Therefore, the injection end timing FC is set to the ideal injection start timing according to the change in the arrival required time.
 ところで、上記のように噴射開始タイミングFOを到達所要時間の変化に応じた理想噴射開始タイミングに設定されると、噴射終了タイミングFCは、設定された噴射開始タイミングFOから燃料噴射期間の長さだけ遅角した角度に設定される。このように設定された噴射終了タイミングFCで燃料噴射弁19から噴射された燃料も、図3バルブO/L期間中に燃焼室5に流入する必要がある。しかし、燃料噴射期間の長さによっては、噴射終了タイミングFCで燃料噴射弁19から噴射した燃料がバルブO/L期間中に燃焼室5に流入しないことも想定される。すなわち、図6の太破線で示されるように、流入期間の終期が排気バルブ9の閉弁タイミングEVCより後になってしまうことが想定される。この場合には、例えば以下のいずれかの方法によって噴射終了タイミングFCを適切にすることで、排気バルブ9の閉弁タイミングEVCの後における燃焼室5への燃料流入を制限してシリンダ2Aの内壁面への燃料付着を抑制できる。 By the way, when the injection start timing FO is set to the ideal injection start timing according to the change in the arrival time as described above, the injection end timing FC is only the length of the fuel injection period from the set injection start timing FO. It is set to a retarded angle. The fuel injected from the fuel injection valve 19 at the injection end timing FC set in this way also needs to flow into the combustion chamber 5 during the valve O / L period of FIG. However, depending on the length of the fuel injection period, it is assumed that the fuel injected from the fuel injection valve 19 at the injection end timing FC does not flow into the combustion chamber 5 during the valve O / L period. That is, as shown by the thick broken line in FIG. 6, it is assumed that the end of the inflow period is later than the valve closing timing EVC of the exhaust valve 9. In this case, for example, by adjusting the injection end timing FC by one of the following methods, the inflow of fuel into the combustion chamber 5 after the valve closing timing EVC of the exhaust valve 9 is restricted and the inside of the cylinder 2A. Fuel adhesion to the wall surface can be suppressed.
 第1の方法として、図8に示すように、先ず、流入期間の終期が排気バルブ9の閉弁タイミングEVCとなるように、噴射終了タイミングFCを進角させて再設定する。具体的には、噴射終了タイミングFCは、排気バルブ9の閉弁タイミングEVCから到達所要時間に相当する角度量Δθ1だけ進角した角度に再設定される。このときの到達所要時間の値は、上記のように吸気ポート3Aの吸気流速に関するパラメータを考慮して決定される。そして、噴射開始タイミングFOは、再設定された噴射終了タイミングFCよりも燃料噴射期間の長さだけ進角した角度、すなわち、理想噴射開始タイミングよりも進角した角度に再設定される。要するに、燃料噴射期間が、全体的に、噴射終了タイミングFCの進角量に応じて進角して再設定される。 As the first method, as shown in FIG. 8, first, the injection end timing FC is advanced and reset so that the end of the inflow period is the valve closing timing EVC of the exhaust valve 9. Specifically, the injection end timing FC is reset to an angle advanced by an angle amount Δθ1 corresponding to the required arrival time from the valve closing timing EVC of the exhaust valve 9. The value of the required arrival time at this time is determined in consideration of the parameters related to the intake flow velocity of the intake port 3A as described above. Then, the injection start timing FO is reset to an angle advanced by the length of the fuel injection period from the reset injection end timing FC, that is, an angle advanced from the ideal injection start timing. In short, the fuel injection period is reset as a whole by advancing according to the amount of advance of the injection end timing FC.
 第2の方法として、燃料噴射弁19に燃料を圧送する燃料ポンプによって燃圧を制御できる場合には、図9に示すように、流入期間がバルブO/L期間と一致するように、噴射開始タイミングFO及び噴射終了タイミングFCを再設定する。すなわち、噴射開始タイミングFOで噴射した燃料が吸気バルブ8の開弁タイミングIVOで燃焼室5に流入するように噴射開始タイミングFOを再設定する。また、噴射終了タイミングFCで噴射した燃料が排気バルブ9の閉弁タイミングEVCで燃焼室5に流入するように噴射終了タイミングFCを再設定する。このように再設定された噴射開始タイミングFO及び噴射終了タイミングFCで規定される新たな燃料噴射期間の長さは、流入期間の短縮により、再設定前の燃料噴射期間に比べて短縮される。このため、要求される燃料噴射量を新たな燃料噴射期間で噴射できるように燃圧を上昇させる。なお、燃圧を上昇させると到達所要時間も短縮されるので、噴射開始タイミングFO及び噴射終了タイミングFCは、短縮された到達所要時間を考慮して再設定される。 As a second method, when the fuel pressure can be controlled by a fuel pump that pumps fuel to the fuel injection valve 19, the injection start timing is such that the inflow period coincides with the valve O / L period, as shown in FIG. The FO and the injection end timing FC are reset. That is, the injection start timing FO is reset so that the fuel injected at the injection start timing FO flows into the combustion chamber 5 at the valve opening timing IVO of the intake valve 8. Further, the injection end timing FC is reset so that the fuel injected by the injection end timing FC flows into the combustion chamber 5 at the valve closing timing EVC of the exhaust valve 9. The length of the new fuel injection period defined by the injection start timing FO and the injection end timing FC reset in this way is shortened as compared with the fuel injection period before the reset due to the shortening of the inflow period. Therefore, the fuel pressure is increased so that the required fuel injection amount can be injected in a new fuel injection period. Since the arrival time is shortened when the fuel pressure is increased, the injection start timing FO and the injection end timing FC are reset in consideration of the shortened arrival time.
 第3の方法として、図10に示すように、噴射終了タイミングFCで燃料噴射弁19から噴射した燃料がバルブO/L期間中に燃焼室5に流入するように、排気バルブ9の閉弁タイミングEVCを遅角化する。 As a third method, as shown in FIG. 10, the closing timing of the exhaust valve 9 is such that the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period. The EVC is retarded.
 上記のように、燃料噴射弁19の噴射開始タイミングFOを逆流期間の始期から到達所要時間に相当する角度量だけ進角した角度に設定することができる。このため、燃料噴射期間の長さによっては、噴射終了タイミングFCで噴射した燃料が逆流期間中に燃焼室5へ流入しないことも想定される。この場合には、上記の第1及び第2の方法に準じた方法によって、噴射終了タイミングFCを適切にすることで、逆流期間後における燃焼室5への燃料流入を制限してシリンダ2Aの内壁面への燃料付着を抑制できる。ただし、上記の第1及び第2の方法において、「排気弁の閉弁タイミングEVC」は「逆流期間の終期」と読み替えられるとともに、「バルブO/L期間」は「逆流期間」と読み替えられる。 As described above, the injection start timing FO of the fuel injection valve 19 can be set to an angle advanced by an angle amount corresponding to the required arrival time from the beginning of the backflow period. Therefore, depending on the length of the fuel injection period, it is assumed that the fuel injected at the injection end timing FC does not flow into the combustion chamber 5 during the backflow period. In this case, by adjusting the injection end timing FC by a method according to the first and second methods described above, the inflow of fuel into the combustion chamber 5 after the backflow period is restricted and the inside of the cylinder 2A. Fuel adhesion to the wall surface can be suppressed. However, in the first and second methods described above, the "exhaust valve closing timing EVC" is read as "the end of the backflow period", and the "valve O / L period" is read as the "backflow period".
 なお、燃料噴射期間が逆流期間よりも短いときには、燃料噴射弁19の噴射開始タイミングFOを逆流期間の始期から到達所要時間に相当する角度量だけ進角した角度に設定しなくてもよい。この場合、噴射開始タイミングFO及び噴射終了タイミングFCは、燃料到達期間が逆流期間内に収まることを優先して設定される。 When the fuel injection period is shorter than the backflow period, it is not necessary to set the injection start timing FO of the fuel injection valve 19 to an angle advanced by an angle amount corresponding to the required arrival time from the start of the backflow period. In this case, the injection start timing FO and the injection end timing FC are set with priority given to the fact that the fuel arrival period falls within the backflow period.
 ECM100は、図5のステップS2において噴射開始タイミングFO及び噴射終了タイミングFCを以下のようにして設定する。 The ECM100 sets the injection start timing FO and the injection end timing FC in step S2 of FIG. 5 as follows.
 先ず、ECM100は、吸気ポート3Aの吸気流速に関するパラメータに基づいて到達所要時間を算出し、算出した到達所要時間に対応する理想噴射開始タイミングを噴射開始タイミングFOとして設定する(図7参照)。そして、ECM100は、設定した噴射開始タイミングFOから燃料噴射期間の長さだけ遅角した角度を噴射終了タイミングFCとして設定する。 First, the ECM 100 calculates the arrival required time based on the parameters related to the intake flow velocity of the intake port 3A, and sets the ideal injection start timing corresponding to the calculated arrival required time as the injection start timing FO (see FIG. 7). Then, the ECM 100 sets an angle retarded by the length of the fuel injection period from the set injection start timing FO as the injection end timing FC.
 噴射終了タイミングFCがバルブO/L期間の後になった場合には、上記の第1~第3のいずれかの方法によって、噴射終了タイミングFCの適切化を行う。噴射終了タイミングFCが逆流期間の後になった場合には、上記の第1又は第2の方法に準じて、噴射終了タイミングFCの適切化を行う。 When the injection end timing FC is after the valve O / L period, the injection end timing FC is optimized by any of the above first to third methods. When the injection end timing FC is after the regurgitation period, the injection end timing FC is optimized according to the first or second method described above.
 第2実施形態に係る内燃機関1の制御装置及び制御方法によれば、第1実施形態と同様に噴射終了タイミングFCが設定されることに加え、噴射開始タイミングFOが以下のように設定される。すなわち、燃料噴射弁19から噴射開始タイミングFOで噴射された燃料が図3のバルブO/L期間(又は逆流期間)の始期に燃焼室5へ流入するように、噴射開始タイミングFOが設定される。したがって、吸気同期噴射によるシリンダ2Aの内壁面への燃料付着を抑制するだけでなく、吸気ポート3Aの内壁面への燃料付着も抑制される。これにより、未燃燃料が減少して、内燃機関1の冷機状態におけるPN増加の抑制が促進されるとともに、さらなる燃費の向上を図ることが可能となる。 According to the control device and control method of the internal combustion engine 1 according to the second embodiment, in addition to setting the injection end timing FC as in the first embodiment, the injection start timing FO is set as follows. .. That is, the injection start timing FO is set so that the fuel injected from the fuel injection valve 19 at the injection start timing FO flows into the combustion chamber 5 at the beginning of the valve O / L period (or backflow period) of FIG. .. Therefore, not only the fuel adhesion to the inner wall surface of the cylinder 2A due to the intake synchronous injection is suppressed, but also the fuel adhesion to the inner wall surface of the intake port 3A is suppressed. As a result, the amount of unburned fuel is reduced, the suppression of the increase in PN in the cold state of the internal combustion engine 1 is promoted, and the fuel consumption can be further improved.
〔第3実施形態〕
 次に、図11~図13を参照して、本発明を実施するための第3実施形態について説明する。本実施形態では、第1実施形態の噴射終了タイミングFCの設定をさらに具体化したものである。具体的には、噴射終了タイミングFCの機関回転速度NEに応じた設定方法に関するものである。
[Third Embodiment]
Next, a third embodiment for carrying out the present invention will be described with reference to FIGS. 11 to 13. In the present embodiment, the setting of the injection end timing FC of the first embodiment is further embodied. Specifically, the present invention relates to a setting method according to the engine rotation speed NE of the injection end timing FC.
 図11は、機関回転速度NEの変化による流入期間への影響を示し、(a)は機関回転速度NEが比較的低い場合であり、(b)は機関回転速NEが比較的高い場合である。図12は、機関回転速度NEに応じた噴射終了タイミングFCの設定例を示す。 FIG. 11 shows the influence of the change in the engine rotation speed NE on the inflow period. FIG. 11A shows a case where the engine rotation speed NE is relatively low, and FIG. 11B shows a case where the engine rotation speed NE is relatively high. .. FIG. 12 shows a setting example of the injection end timing FC according to the engine rotation speed NE.
 図11(a)及び(b)に示すように、燃料噴射期間及び燃料到達期間に相当する各時間は、一定の噴射特性で同一噴射量の燃料を噴射するとすれば、機関回転速度NEの高低にかかわらず殆ど変化しない。これに対し、バルブO/L期間に相当する時間は、機関回転速度NEの上昇に従って短くなる。例えば、機関回転速度NEが2倍になればバルブO/L期間に相当する時間は半分となる。したがって、図11(a)及び(b)に示すように、噴射終了タイミングFCからバルブO/L期間の終期すなわち排気バルブ9の閉弁タイミングEVCまでの時間も機関回転速度NEの上昇に従って短くなる。すなわち、機関回転速度NEが比較的高いときの噴射終了タイミングFCから排気バルブ9の閉弁タイミングEVCまでの時間ΔtHは、機関回転速度NEが比較的低いときの時間ΔtLよりも短くなる。 As shown in FIGS. 11A and 11B, if the same injection amount of fuel is injected with constant injection characteristics during each time corresponding to the fuel injection period and the fuel arrival period, the engine rotation speed NE is high or low. There is almost no change regardless. On the other hand, the time corresponding to the valve O / L period becomes shorter as the engine speed NE increases. For example, if the engine rotation speed NE is doubled, the time corresponding to the valve O / L period is halved. Therefore, as shown in FIGS. 11A and 11B, the time from the injection end timing FC to the end of the valve O / L period, that is, the valve closing timing EVC of the exhaust valve 9, also becomes shorter as the engine speed NE increases. .. That is, the time ΔtH from the injection end timing FC when the engine rotation speed NE is relatively high to the valve closing timing EVC of the exhaust valve 9 is shorter than the time ΔtL when the engine rotation speed NE is relatively low.
 ところで、到達所要時間に影響を与える影響因子として、吸気ポート3Aの吸気流速よりも、一定の噴射特性を有する燃料噴射弁19から噴射される燃料の噴射速度の方が支配的である場合には、到達所要時間は機関回転速度NEの高低によって変化し難くなる。この場合には、機関回転速度NEが比較的低いときに到達所要時間が時間ΔtL内に収まっていても(図11(a)参照)、機関回転速度NEが比較的高いときに到達所要時間が時間ΔtHに収まらない(図11(b)参照)可能性がある。これは、機関回転速度NEが比較的高いときには、噴射終了タイミングFCで燃料噴射弁19から噴射された燃料がバルブO/L期間中に燃焼室5に流入しなくなり、シリンダ2Aの内壁面へ燃料が付着し易くなることを意味する。 By the way, when the injection speed of the fuel injected from the fuel injection valve 19 having a constant injection characteristic is more dominant than the intake flow velocity of the intake port 3A as an influential factor affecting the arrival time. , The time required to reach the engine is less likely to change depending on the level of the engine rotation speed NE. In this case, even if the arrival time is within the time ΔtL when the engine speed NE is relatively low (see FIG. 11A), the arrival time is when the engine speed NE is relatively high. It may not fit within the time ΔtH (see FIG. 11B). This is because when the engine speed NE is relatively high, the fuel injected from the fuel injection valve 19 at the injection end timing FC does not flow into the combustion chamber 5 during the valve O / L period, and the fuel enters the inner wall surface of the cylinder 2A. Means that it becomes easy to adhere.
 そこで、噴射終了タイミングFCは、図12に示される限界噴射終了タイミングあるいはこれより進角した角度に設定される必要がある。限界噴射終了タイミングは、各機関回転速度NEにおいて、燃料噴射弁19から噴射した燃料がバルブO/L期間中に燃焼室に流入可能な噴射終了タイミングFCのうち最も遅角した角度である。仮に、到達所要時間が機関回転速度NEの高低にかかわらず一定であるとすると、限界噴射終了タイミングは、排気バルブ9の閉弁タイミングEVCから到達所要時間に応じた角度量Δθ2だけ進角した角度として設定される。この角度量Δθ2は、機関回転速度NEの上昇に比例して増大する。 Therefore, the injection end timing FC needs to be set to the limit injection end timing shown in FIG. 12 or an angle advanced from this. The limit injection end timing is the most retarded angle among the injection end timing FCs at which the fuel injected from the fuel injection valve 19 can flow into the combustion chamber during the valve O / L period at each engine rotation speed NE. Assuming that the required arrival time is constant regardless of the level of the engine rotation speed NE, the limit injection end timing is an angle advanced by an angle amount Δθ2 according to the required arrival time from the valve closing timing EVC of the exhaust valve 9. Is set as. This amount of angle Δθ2 increases in proportion to the increase in the engine rotation speed NE.
 図13は、図5の燃料噴射弁19の制御処理に挿入される追加処理を示す。ECM100は、図5のステップS2において、上記のように、噴射終了タイミングFCで燃料噴射弁19から噴射された燃料が図3のバルブO/L期間(又は逆流期間)中に燃焼室5に流入するように、噴射終了タイミングFCを設定する。また、ECM100は、ステップS2において、噴射終了タイミングFCから燃料噴射期間の長さだけ進角した角度を噴射開始タイミングFOとして設定する。そして、ECM100は、図5のステップS3を実行する前に、追加処理としてステップS2a及びステップS2bを実行する。 FIG. 13 shows an additional process inserted into the control process of the fuel injection valve 19 of FIG. In step S2 of FIG. 5, in step S2 of FIG. 5, the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period (or backflow period) of FIG. The injection end timing FC is set so as to be performed. Further, in step S2, the ECM 100 sets an angle advanced from the injection end timing FC by the length of the fuel injection period as the injection start timing FO. Then, the ECM 100 executes steps S2a and S2b as additional processing before executing step S3 of FIG.
 ステップS2aでは、ECM100は、クランク角信号CRANKを用いて演算した機関回転速度NEに基づいて、設定した噴射終了タイミングFCが図12の限界噴射終了タイミングよりも後であるか否かを判定する。そして、ECM100は、設定した噴射終了タイミングFCが限界噴射終了タイミングよりも後であると判定した場合には(YES)、処理をステップS2bに進める。一方、ECM100は、設定した噴射終了タイミングFCが限界噴射終了タイミング以前であると判定した場合には(NO)、ステップS2aを省略して、処理をステップS3に進める。 In step S2a, the ECM 100 determines whether or not the set injection end timing FC is later than the limit injection end timing of FIG. 12 based on the engine rotation speed NE calculated using the crank angle signal CRANK. Then, when the ECM 100 determines that the set injection end timing FC is later than the limit injection end timing (YES), the process proceeds to step S2b. On the other hand, if the ECM 100 determines that the set injection end timing FC is before the limit injection end timing (NO), step S2a is omitted and the process proceeds to step S3.
 ステップS2bでは、ECM100は、設定した噴射終了タイミングFCを、限界噴射終了タイミングあるいはこれより進角した角度に補正する。また、ECM100は、噴射終了タイミングFCの補正に伴い、噴射開始タイミングFOを、補正後の噴射終了タイミングFCから燃料噴射期間の長さだけ進角した角度に補正する。 In step S2b, the ECM100 corrects the set injection end timing FC to the limit injection end timing or an angle advanced from this. Further, the ECM 100 corrects the injection start timing FO to an angle advanced by the length of the fuel injection period from the corrected injection end timing FC in accordance with the correction of the injection end timing FC.
 なお、燃料噴射弁19の噴射終了タイミングFCを逆流期間の終期から到達所要時間に相当する角度量だけ進角した角度に設定した場合にも、ECM100は、上記のように、機関回転速度NEを考慮して燃料噴射弁19の制御処理を行う。ただし、「バルブO/L期間」は「逆流期間」と読み替えられるとともに、「排気バルブ9の閉弁タイミングEVC」は「逆流期間の終期」と読み替えられる。 Even when the injection end timing FC of the fuel injection valve 19 is set to an angle advanced by an angle amount corresponding to the required arrival time from the end of the backflow period, the ECM100 sets the engine rotation speed NE as described above. In consideration of this, the fuel injection valve 19 is controlled. However, "valve O / L period" is read as "backflow period", and "valve closing timing EVC of exhaust valve 9" is read as "end of backflow period".
 第3実施形態に係る内燃機関1の制御装置及び制御方法によれば、燃料噴射弁19から噴射終了タイミングFCで噴射された燃料が図3のバルブO/L期間(又は逆流期間)中に燃焼室5へ流入するように、機関回転速度NEを考慮しつつ噴射終了タイミングFCが設定される。したがって、少なくとも排気バルブ9の閉弁以降には燃焼室5への燃料の流入が制限されるので、吸気同期噴射によるシリンダ2Aの内壁面への燃料付着を逆流排気で効果的に減少させることができる。これにより、シリンダ2Aの内壁面への燃料付着が抑制されて未燃燃料が減少するので、燃費の向上や冷機状態におけるPN増加の抑制をさらに促進することが可能となる。 According to the control device and control method of the internal combustion engine 1 according to the third embodiment, the fuel injected from the fuel injection valve 19 at the injection end timing FC burns during the valve O / L period (or backflow period) of FIG. The injection end timing FC is set in consideration of the engine rotation speed NE so as to flow into the chamber 5. Therefore, since the inflow of fuel into the combustion chamber 5 is restricted at least after the exhaust valve 9 is closed, it is possible to effectively reduce the fuel adhesion to the inner wall surface of the cylinder 2A due to the intake synchronous injection by the backflow exhaust. it can. As a result, fuel adhesion to the inner wall surface of the cylinder 2A is suppressed and unburned fuel is reduced, so that it is possible to further improve fuel efficiency and further suppress the increase in PN in the cold state.
〔第4実施形態〕
 次に、図14を参照して、本発明を実施するための第4実施形態について説明する。第4実施形態では、第1実施形態の噴射終了タイミングFCの設定をさらに具体化したものである。具体的には、内燃機関1の冷機状態で車両を加速した場合の噴射終了タイミングFCの設定方法に関するものである。
[Fourth Embodiment]
Next, a fourth embodiment for carrying out the present invention will be described with reference to FIG. In the fourth embodiment, the setting of the injection end timing FC of the first embodiment is further embodied. Specifically, the present invention relates to a method of setting an injection end timing FC when the vehicle is accelerated in a cold state of the internal combustion engine 1.
 図14は、アクセル開度の変化に伴う噴射終了タイミングFCの設定例を示す。図14において、(a)はアクセル開度ACCの時間変化、(b)は排気バルブ9の閉弁タイミングEVCの時間変化、(c)はバルブO/L期間の時間変化、(d)は噴射終了タイミングFCの時間変化を示す。なお、図14(c)において、バルブO/L期間の正の値は、吸気バルブ8及び排気バルブ9の2つの開弁期間がオーバーラップすることを示している。また、バルブO/L期間の長さの負の値は、吸気バルブ8及び排気バルブ9の2つの開弁期間がオーバーラップしないことを示し、バルブO/L期間が発生していないことを示している。 FIG. 14 shows a setting example of the injection end timing FC according to the change in the accelerator opening. In FIG. 14, (a) is a time change of the accelerator opening ACC, (b) is a time change of the valve closing timing EVC of the exhaust valve 9, (c) is a time change of the valve O / L period, and (d) is an injection. The time change of the end timing FC is shown. In FIG. 14C, a positive value of the valve O / L period indicates that the two valve opening periods of the intake valve 8 and the exhaust valve 9 overlap. Further, a negative value of the length of the valve O / L period indicates that the two valve opening periods of the intake valve 8 and the exhaust valve 9 do not overlap, and indicates that the valve O / L period does not occur. ing.
 ECM100は、アクセル開度センサ22の出力信号から検出したアクセル開度ACCが増大すると(図14(a)参照)、VTCコントローラ200を介して、アクセル開度ACCの増大量に応じて排気バルブ9の閉弁タイミングEVCを進角させる(図14(b)参照)。すると、排気バルブ9の閉弁タイミングEVCの進角量に応じてバルブO/L期間は縮小していく(図14(c)参照)。ところが、噴射終了タイミングFCとバルブO/L期間の終期との間隔が短くなるため、噴射終了タイミングFCで燃料噴射弁19から噴射した燃料がバルブO/L期間内に燃焼室5へ流入しなくなるおそれがある。このため、ECM100は、排気バルブ9の閉弁タイミングEVCを進角させたときの進角量に応じて、噴射終了タイミングFCも進角させる。 When the accelerator opening ACC detected from the output signal of the accelerator opening sensor 22 increases (see FIG. 14 (a)), the ECM 100 exhaust valve 9 via the VTC controller 200 according to the amount of increase in the accelerator opening ACC. The valve closing timing EVC is advanced (see FIG. 14B). Then, the valve O / L period is reduced according to the amount of advance of the valve closing timing EVC of the exhaust valve 9 (see FIG. 14 (c)). However, since the interval between the injection end timing FC and the end of the valve O / L period becomes short, the fuel injected from the fuel injection valve 19 at the injection end timing FC does not flow into the combustion chamber 5 within the valve O / L period. There is a risk. Therefore, the ECM 100 also advances the injection end timing FC according to the amount of advance when the valve closing timing EVC of the exhaust valve 9 is advanced.
 アクセル開度ACCの増大に伴って排気バルブ9の閉弁タイミングEVCを進角させると(図14(b)参照)、排気バルブ9の閉弁タイミングEVCと吸気バルブ8の開弁タイミングIVOとが一致して、バルブO/L期間は零になる(図14(d)参照)。排気バルブ9の閉弁タイミングEVCの進角量に応じた噴射終了タイミングFCの進角化は、バルブO/L期間が零となるまで行われる。 When the valve closing timing EVC of the exhaust valve 9 is advanced as the accelerator opening ACC increases (see FIG. 14B), the valve closing timing EVC of the exhaust valve 9 and the valve opening timing IVO of the intake valve 8 are changed. Consistently, the valve O / L period goes to zero (see FIG. 14 (d)). The injection end timing FC is advanced according to the advance amount of the valve closing timing EVC of the exhaust valve 9 until the valve O / L period becomes zero.
 ECM100は、図5のステップS2において、上記のように、噴射終了タイミングFCで燃料噴射弁19から噴射された燃料が図3のバルブO/L期間(又は逆流期間)中に燃焼室5に流入するように、噴射終了タイミングFCを設定する。そして、ECM100は、アクセル開度ACCの増大に伴って排気バルブ9の閉弁タイミングEVCを進角させたときの進角量に応じて、噴射終了タイミングFCも進角させる。また、ECM100は、ステップS2において、噴射終了タイミングFCから燃料噴射期間の角度量だけ進角した角度を噴射開始タイミングFOとして設定する。 In step S2 of FIG. 5, in step S2 of FIG. 5, the fuel injected from the fuel injection valve 19 at the injection end timing FC flows into the combustion chamber 5 during the valve O / L period (or backflow period) of FIG. The injection end timing FC is set so as to be performed. Then, the ECM 100 also advances the injection end timing FC according to the amount of advance when the valve closing timing EVC of the exhaust valve 9 is advanced as the accelerator opening degree ACC increases. Further, in step S2, the ECM 100 sets an angle advanced by the angle amount of the fuel injection period from the injection end timing FC as the injection start timing FO.
 第4実施形態に係る内燃機関1の制御装置及び制御方法によれば、燃料噴射弁19から噴射終了タイミングFCで噴射された燃料が図3のバルブO/L期間(又は逆流期間)中に燃焼室5へ流入するように、アクセル開度ACCの増大に伴う排気バルブ9の閉弁タイミングEVCの進角化を考慮しつつ噴射終了タイミングFCが設定される。したがって、少なくとも排気バルブ9の閉弁以降には燃焼室5への燃料の流入が制限されるので、吸気同期噴射によるシリンダ2Aの内壁面への燃料付着を逆流排気で効果的に減少させることができる。これにより、シリンダ2Aの内壁面への燃料付着が抑制されて未燃燃料が減少するので、燃費の向上や冷機状態におけるPN増加の抑制をさらに促進することが可能となる。 According to the control device and control method of the internal combustion engine 1 according to the fourth embodiment, the fuel injected from the fuel injection valve 19 at the injection end timing FC burns during the valve O / L period (or backflow period) of FIG. The injection end timing FC is set so as to flow into the chamber 5 while considering the advancement of the valve closing timing EVC of the exhaust valve 9 as the accelerator opening ACC increases. Therefore, since the inflow of fuel into the combustion chamber 5 is restricted at least after the exhaust valve 9 is closed, it is possible to effectively reduce the fuel adhesion to the inner wall surface of the cylinder 2A due to the intake synchronous injection by the backflow exhaust. it can. As a result, fuel adhesion to the inner wall surface of the cylinder 2A is suppressed and unburned fuel is reduced, so that it is possible to further improve fuel efficiency and further suppress the increase in PN in the cold state.
 以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、以下のように、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, those skilled in the art can use various modifications based on the basic technical ideas and teachings of the present invention as described below. It is self-evident that it can be obtained.
 上記の実施形態におけるバルブO/L期間は、吸気バルブ8及び排気バルブ9のバルブタイミングが内燃機関1の冷機状態に対応して設定された冷機時バルブO/L期間であった。この冷機時バルブO/L期間に代えて、吸気バルブ8及び排気バルブ9のバルブタイミングが全負荷(スロットル開度全開相当の機関負荷TP)を含む高負荷運転領域に対応して設定されたときの高負荷時バルブO/L期間とすることができる。あるいは、冷機時バルブO/L期間に代えて、機関回転速度NEが比較的高い高回転運転領域に対応して設定されたときの高回転時バルブO/L期間とすることができる。すなわち、高負荷又は高回転運転領域において吸気バルブ8の開弁タイミングIVOが排気上死点TDCに対して進角設定されて、高負荷時又は高回転時バルブO/L期間が排気上死点TDCよりも進角した範囲で開始しても、上記の実施形態と同様の効果を奏する。 The valve O / L period in the above embodiment was a cold valve O / L period in which the valve timings of the intake valve 8 and the exhaust valve 9 were set according to the cold state of the internal combustion engine 1. When the valve timings of the intake valve 8 and the exhaust valve 9 are set corresponding to the high load operation region including the full load (engine load TP equivalent to the full throttle opening) instead of the cold valve O / L period. The valve O / L period at the time of high load can be set. Alternatively, instead of the cold valve O / L period, the high rotation valve O / L period can be set when the engine rotation speed NE is set corresponding to the relatively high high rotation operation region. That is, in the high load or high rotation operation region, the valve opening timing IVO of the intake valve 8 is set to advance with respect to the exhaust top dead center TDC, and the valve O / L period at high load or high rotation is the exhaust top dead center. Even if it is started in a range advanced from the TDC, the same effect as that of the above-described embodiment is obtained.
 高負荷又は高回転運転領域では、噴射終了タイミングFCは、このタイミングで噴射された燃料が高負荷時又は高回転時バルブO/L期間のうち排気上死点TDC以降の期間(あるいは逆流期間)に流入するように設定される。これにより、燃料噴射量が増大する高負荷運転領域や気化時間が短くなる高回転運転領域においても、吸気同期噴射の際のシリンダ2Aの内壁面への燃料衝突が排気ポート3Bからの逆流排気による高温のエアカーテンで低減される。したがって、シリンダ2Aの内壁面への燃料付着が抑制されるので、燃費の向上だけでなくPN増加の抑制を図ることが可能となる。要するに、シリンダ2Aの内壁面に対する燃料付着の増加が懸念される特定の機関運転状態では、噴射終了タイミングFCを、吸気バルブ及び排気バルブのバルブO/L期間のうち排気上死点TDC以降となる期間(あるいは逆流期間)に設定すればよい。特定の機関運転状態としては、上記のように、例えば、内燃機関1の冷機状態や高負荷又は高回転運転領域等がある。 In the high load or high rotation operation region, the injection end timing FC is the period (or backflow period) after the exhaust top dead center TDC in the valve O / L period when the fuel injected at this timing is high load or high rotation. Is set to flow into. As a result, even in the high load operation region where the fuel injection amount increases and the high rotation operation region where the vaporization time becomes short, the fuel collision with the inner wall surface of the cylinder 2A at the time of intake synchronous injection is caused by the backflow exhaust from the exhaust port 3B. It is reduced by a high temperature air curtain. Therefore, since fuel adhesion to the inner wall surface of the cylinder 2A is suppressed, it is possible not only to improve fuel efficiency but also to suppress an increase in PN. In short, in a specific engine operating state where there is a concern that fuel adhesion to the inner wall surface of the cylinder 2A may increase, the injection end timing FC is set to the exhaust top dead center TDC or later during the valve O / L period of the intake valve and the exhaust valve. It may be set to a period (or a backflow period). As described above, the specific engine operating state includes, for example, a cold state of the internal combustion engine 1 and a high load or high rotation operating region.
 一方、シリンダ2Aの内壁面に対する燃料付着の可能性が比較的低い機関運転状態では、噴射終了タイミングFCを、吸気バルブ及び排気バルブのバルブO/L期間のうち排気上死点TDC以降となる期間(あるいは逆流期間)に設定しなくともよい。このような機関運転状態としては、例えば、内燃機関1の暖機完了後におけるアイドル負荷より大きいパーシャル低負荷領域等がある。 On the other hand, in the engine operating state where the possibility of fuel adhering to the inner wall surface of the cylinder 2A is relatively low, the injection end timing FC is set to the period after the exhaust top dead center TDC in the valve O / L period of the intake valve and the exhaust valve. It is not necessary to set (or backflow period). Such an engine operating state includes, for example, a partial low load region larger than the idle load after the completion of warming up of the internal combustion engine 1.
 内燃機関1では、吸気可変機構21a及び排気可変機構21bで構成された可変バルブタイミング機構21を用いていたが、これに限られず、以下のように構成することもできる。すなわち、内燃機関1において、バルブO/L期間の一部又は全部を排気上死点TDCから吸気下死点BDCまでの間に設定可能であれば、吸気可変機構21a又は排気可変機構21bのいずれか一方を省略してもよい。また、内燃機関1において、吸気バルブ8及び排気バルブ9のバルブタイミングが固定される、すなわち、可変バルブタイミング機構21を備えていない構成であっても、バルブO/L期間の一部又は全部が排気上死点TDCから吸気下死点BDCまでの間に含まれる場合には、上記のように噴射終了タイミングFCや噴射開始タイミングFOを設定してもよい。 The internal combustion engine 1 uses a variable valve timing mechanism 21 composed of an intake variable mechanism 21a and an exhaust variable mechanism 21b, but the present invention is not limited to this, and can be configured as follows. That is, in the internal combustion engine 1, if a part or all of the valve O / L period can be set between the exhaust top dead center TDC and the intake bottom dead center BDC, either the intake variable mechanism 21a or the exhaust variable mechanism 21b. Either one may be omitted. Further, in the internal combustion engine 1, the valve timings of the intake valve 8 and the exhaust valve 9 are fixed, that is, even if the configuration does not include the variable valve timing mechanism 21, part or all of the valve O / L period is When it is included between the exhaust top dead center TDC and the intake bottom dead center BDC, the injection end timing FC and the injection start timing FO may be set as described above.
 ECM100及びVTCコントローラ200は、別体で構成されるほか、一体的に構成されてもよい。 The ECM 100 and the VTC controller 200 may be configured separately or integrally.
 なお、上記の第1~第4実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合せて使用することができる。 Note that the technical ideas described in the first to fourth embodiments can be used in combination as appropriate as long as there is no contradiction.
 例えば、第3実施形態と第4実施形態とを組み合わせて、機関回転速度NEの上昇と、アクセル開度ACCの増大に伴う排気バルブ9の閉弁タイミングEVCの進角化と、を考慮しつつ、噴射終了タイミングFCを進角設定することができる。 For example, in combination with the third embodiment and the fourth embodiment, while considering an increase in the engine rotation speed NE and an advancement of the valve closing timing EVC of the exhaust valve 9 due to an increase in the accelerator opening ACC. , The injection end timing FC can be set to advance.
 1…内燃機関、3A…吸気ポート、5…燃焼室、8…吸気バルブ、9…排気バルブ、19…燃料噴射弁、NE…機関回転速度、TDC…排気上死点、IVO…吸気バルブの開弁タイミング、EVC…排気バルブの閉弁タイミング、EO…噴射開始タイミング、EC…噴射終了タイミング 1 ... Internal combustion engine, 3A ... Intake port, 5 ... Combustion chamber, 8 ... Intake valve, 9 ... Exhaust valve, 19 ... Fuel injection valve, NE ... Engine rotation speed, TDC ... Exhaust top dead center, IVO ... Intake valve opening Valve timing, EVC ... Exhaust valve closing timing, EO ... Injection start timing, EC ... Injection end timing

Claims (12)

  1.  内燃機関の吸気バルブ及び排気バルブのバルブオーバーラップ期間を排気上死点以降に設定し、前記吸気バルブで開閉される吸気ポートの内部に燃料を噴射する燃料噴射弁の噴射終了タイミングを、前記燃料噴射弁から前記噴射終了タイミングで噴射された燃料が前記バルブオーバーラップ期間中に燃焼室に流入するように設定する、内燃機関の制御装置。 The valve overlap period of the intake valve and the exhaust valve of the internal combustion engine is set after the exhaust top dead point, and the injection end timing of the fuel injection valve that injects fuel into the intake port opened and closed by the intake valve is set to the fuel. An internal combustion engine control device that sets the fuel injected from the injection valve at the injection end timing so as to flow into the combustion chamber during the valve overlap period.
  2.  前記燃料噴射弁の噴射開始タイミングは、前記燃料噴射弁から前記噴射開始タイミングで噴射された燃料が、前記吸気バルブが開弁するタイミングで前記燃焼室に流入するように設定される、請求項1に記載の内燃機関の制御装置。 The injection start timing of the fuel injection valve is set so that the fuel injected from the fuel injection valve at the injection start timing flows into the combustion chamber at the timing when the intake valve opens. The control device for an internal combustion engine according to.
  3.  前記噴射終了タイミングは、前記内燃機関の回転速度の上昇に応じて進角補正される、請求項1に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, wherein the injection end timing is corrected in advance according to an increase in the rotational speed of the internal combustion engine.
  4.  前記内燃機関の冷機状態で車両が加速したときに前記排気バルブが閉弁するタイミングを進角化し、前記バルブオーバーラップ期間が0になるまで、前記排気バルブが閉弁するタイミングを進角させたときの進角量に応じて前記噴射終了タイミングを進角化する、請求項1に記載の内燃機関の制御装置。 The timing at which the exhaust valve closes when the vehicle accelerates in the cold state of the internal combustion engine is advanced, and the timing at which the exhaust valve closes is advanced until the valve overlap period becomes zero. The control device for an internal combustion engine according to claim 1, wherein the injection end timing is advanced according to the advance amount at the time.
  5.  前記バルブオーバーラップ期間のうち排気が前記燃焼室へ逆流する期間である逆流期間のデータを予め記憶し、
     前記噴射終了タイミングは、前記逆流期間のデータに基づいて、前記燃料噴射弁から前記噴射終了タイミングで噴射された燃料が、前記逆流期間中に前記燃焼室に流入するように設定される、請求項1に記載の内燃機関の制御装置。
    Data of the backflow period, which is the period during which the exhaust gas flows back to the combustion chamber in the valve overlap period, is stored in advance.
    The injection end timing is set so that the fuel injected from the fuel injection valve at the injection end timing flows into the combustion chamber during the backflow period based on the data of the backflow period. The control device for an internal combustion engine according to 1.
  6.  前記噴射終了タイミングは、前記燃料噴射弁から噴射された燃料が前記燃焼室に流入する期間における前記排気の流速の積分値が最大となるように設定される、請求項5に記載の内燃機関の制御装置。 The internal combustion engine according to claim 5, wherein the injection end timing is set so that the integrated value of the flow velocity of the exhaust gas during the period in which the fuel injected from the fuel injection valve flows into the combustion chamber becomes maximum. Control device.
  7.  前記噴射燃料タイミングの設定は、前記内燃機関の冷機状態で行われる、請求項1に記載の制御装置。 The control device according to claim 1, wherein the injection fuel timing is set in a cold state of the internal combustion engine.
  8.  前記噴射終了タイミングが、前記噴射開始タイミングに対して燃料噴射期間の角度量で遅角化したタイミングよりも遅い場合には、前記噴射開始タイミングの設定をキャンセルして、前記噴射終了タイミングの設定を優先する、請求項2に記載の内燃機関の制御装置。 If the injection end timing is later than the timing delayed by the angle amount of the fuel injection period with respect to the injection start timing, the setting of the injection start timing is canceled and the injection end timing is set. The control device for an internal combustion engine according to claim 2, which has priority.
  9.  前記噴射終了タイミングが、前記噴射開始タイミングに対して燃料噴射期間の角度量で遅角化したタイミングよりも遅い場合には、前記燃料の燃圧を上昇させて前記燃料噴射期間を短縮化する、請求項2に記載の内燃機関の制御装置。 When the injection end timing is later than the timing delayed by the angle amount of the fuel injection period with respect to the injection start timing, the fuel pressure of the fuel is increased to shorten the fuel injection period. Item 2. The control device for an internal combustion engine according to item 2.
  10.  前記噴射終了タイミングが、前記噴射開始タイミングに対して燃料噴射期間の角度量で遅角化したタイミングよりも遅い場合には、前記排気バルブが閉弁するタイミングを遅角化する、請求項2に記載の内燃機関の制御装置。 According to claim 2, when the injection end timing is later than the timing at which the injection end timing is retarded by the angle amount of the fuel injection period with respect to the injection start timing, the timing at which the exhaust valve closes is delayed. The control device for an internal combustion engine as described.
  11.  内燃機関の吸気バルブで開閉される吸気ポートの内部に燃料を噴射する燃料噴射弁を制御する内燃機関の制御装置であって、
     前記吸気バルブ及び排気バルブのバルブオーバーラップ期間が排気上死点以降を含む期間となるときは、前記燃料噴射弁の噴射終了タイミングを前記排気上死点以降の前記バルブオーバーラップ期間に設定する噴射タイミング設定手段を備えることを特徴とする、内燃機機関の制御装置。
    An internal combustion engine control device that controls a fuel injection valve that injects fuel into an intake port that is opened and closed by an internal combustion engine intake valve.
    When the valve overlap period of the intake valve and the exhaust valve is a period including after the exhaust top dead center, the injection end timing of the fuel injection valve is set to the valve overlap period after the exhaust top dead center. A control device for an internal combustion engine, which comprises a timing setting means.
  12.  内燃機関の吸気バルブ及び排気バルブのバルブオーバーラップ期間を排気上死点以降に設定し、前記吸気バルブで開閉される吸気ポートの内部に燃料を噴射する燃料噴射弁の噴射終了タイミングを、前記燃料噴射弁から前記噴射終了タイミングで噴射された燃料が前記バルブオーバーラップ期間中に燃焼室に流入するように設定する、内燃機関の制御方法。 The valve overlap period of the intake valve and the exhaust valve of the internal combustion engine is set after the exhaust top dead point, and the injection end timing of the fuel injection valve that injects fuel into the intake port opened and closed by the intake valve is set to the fuel. A control method for an internal combustion engine, in which fuel injected from an injection valve at the injection end timing is set to flow into a combustion chamber during the valve overlap period.
PCT/JP2020/038783 2019-11-08 2020-10-14 Internal combustion engine control device and control method WO2021090653A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021554857A JP7232349B2 (en) 2019-11-08 2020-10-14 CONTROL DEVICE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
BR112022004206A BR112022004206A2 (en) 2019-11-08 2020-10-14 Control device for internal combustion engine and control method for this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203200 2019-11-08
JP2019203200 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021090653A1 true WO2021090653A1 (en) 2021-05-14

Family

ID=75849942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038783 WO2021090653A1 (en) 2019-11-08 2020-10-14 Internal combustion engine control device and control method

Country Status (3)

Country Link
JP (1) JP7232349B2 (en)
BR (1) BR112022004206A2 (en)
WO (1) WO2021090653A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229430A (en) * 1994-02-18 1995-08-29 Toyota Motor Corp Controller of internal combustion engine
US20060037306A1 (en) * 2004-08-18 2006-02-23 Michael Pozar Controlling an engine with adjustable intake valve timing
JP2015059456A (en) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229430A (en) * 1994-02-18 1995-08-29 Toyota Motor Corp Controller of internal combustion engine
US20060037306A1 (en) * 2004-08-18 2006-02-23 Michael Pozar Controlling an engine with adjustable intake valve timing
JP2015059456A (en) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JPWO2021090653A1 (en) 2021-05-14
JP7232349B2 (en) 2023-03-02
BR112022004206A2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
KR100425543B1 (en) Variable valve timing apparatus
US8985086B2 (en) Method and device for controlling spark-ignition direct injection engine
JP5802229B2 (en) Ignition control device for internal combustion engine
US9909520B2 (en) Device and method for controlling internal combustion engine
JP4161789B2 (en) Fuel injection control device
US6581564B2 (en) Ignition time controller, ignition time control method and engine control unit for internal combustion engine
US20130213035A1 (en) Engine
JP2010048194A (en) Start control device for internal combustion engine
JP2003314308A (en) Valve characteristic control device of internal combustion engine
JP4182888B2 (en) Engine control device
WO2021090653A1 (en) Internal combustion engine control device and control method
JP6960370B2 (en) Internal combustion engine fuel injection control device
JP3879568B2 (en) In-cylinder injection spark ignition internal combustion engine
JP3771101B2 (en) Control device for internal combustion engine
JP2015096698A (en) Fuel injection control device of direct-injection type engine
JP5303349B2 (en) EGR control device for internal combustion engine
JP4946996B2 (en) Fuel injection control device for internal combustion engine
JP2003161185A (en) Control unit for cylinder injection engine with turbosupercharger
JP2004316449A (en) Direct injection spark ignition type internal combustion engine
JP2001073819A (en) Control device for direct injection spark ignition type internal combustion engine
US11802518B2 (en) Engine system and engine controlling method
US20230103525A1 (en) Engine system and engine controlling method
JP4386199B2 (en) Variable valve timing device
JP2009127485A (en) Internal combustion engine
JP3033422B2 (en) Fuel injection amount control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554857

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004206

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022004206

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220307

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884488

Country of ref document: EP

Kind code of ref document: A1