JP3879568B2 - In-cylinder injection spark ignition internal combustion engine - Google Patents

In-cylinder injection spark ignition internal combustion engine Download PDF

Info

Publication number
JP3879568B2
JP3879568B2 JP2002105469A JP2002105469A JP3879568B2 JP 3879568 B2 JP3879568 B2 JP 3879568B2 JP 2002105469 A JP2002105469 A JP 2002105469A JP 2002105469 A JP2002105469 A JP 2002105469A JP 3879568 B2 JP3879568 B2 JP 3879568B2
Authority
JP
Japan
Prior art keywords
valve
cylinder
amount
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105469A
Other languages
Japanese (ja)
Other versions
JP2003301738A (en
Inventor
卓 角岡
幸弘 園田
泰之 入澤
浩一 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002105469A priority Critical patent/JP3879568B2/en
Priority to DE10315783A priority patent/DE10315783B4/en
Priority to FR0304320A priority patent/FR2838162B1/en
Publication of JP2003301738A publication Critical patent/JP2003301738A/en
Application granted granted Critical
Publication of JP3879568B2 publication Critical patent/JP3879568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/10Engines with means for rendering exhaust gases innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/10Providing exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、筒内に直接噴射した燃料を点火プラグを用いて燃焼させる筒内噴射式火花点火内燃機関に関し、特に、その冷間始動時の技術に関する。
【0002】
【従来の技術】
近年、希薄燃焼を実現した筒内噴射式のガソリンエンジンが普及してきている。特開平11−324778号公報に記載されている技術は、こうした技術の一例であって、冷間始動時におけるオイル希釈とスモーク発生を同時に回避するために、排気バルブが閉じてから所定のクランク角度経過後に吸気バルブが開くように設定し、両方のバルブが閉じている間に燃料を噴射するようにしている。このように、排気バルブと吸気バルブの開期間をオーバーラップさせないことで、高温の燃焼ガスの一部を燃焼室内に残留させ、その中に燃料を噴射して、燃料の霧化を促進することでピストン冠面やシリンダボア壁面への燃料の付着を抑制して、スモーク発生とオイル希釈の両方を抑制できると記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、この技術は、冷間始動時には吸気行程の初期に燃料を噴射することから、濃い均質混合気を形成して均質燃焼を行うものであり、燃費は低下してしまう。
【0004】
そこで、本発明は、冷間始動時の燃費向上を実現させた筒内噴射式火花点火内燃機関を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る筒内噴射式火花点火内燃機関は、筒内に噴射した燃料を点火プラグを用いて燃焼させる筒内噴射式火花点火内燃機関において、燃焼ガスを再度筒内に導いて循環させる排ガス再循環装置と、吸気管負圧を判定する手段とをさらに備えており、冷間始動時には、吸気管負圧を判定する手段により判定した吸気管負圧が所定より大きい場合に、排ガス再循環装置を作動させつつ、圧縮行程において筒内への燃料供給を行ない、吸気管負圧を判定する手段により判定した吸気管負圧が所定以下である場合に、吸気行程において筒内への燃料供給を行なうことを特徴とする。
【0006】
排ガス再循環(EGR:Exhaust Gas Recirculation)装置によって高温の排ガスを筒内に再度導入し、気筒内の吸気を加熱することで、燃料の霧化を促進する。これにより、冷間始動時でも筒内壁面への燃料の付着を抑制し、スモーク発生やオイル希釈を抑制できる。さらに、排ガスを導入することで、燃焼温度を低下させてNOx発生量を削減することもできる。
【0007】
吸気管負圧を判定する手段をさらに備えており、判定した吸気管負圧が所定より大きい場合に、排ガス再循環装置を作動させつつ、圧縮行程において筒内への燃料供給を行なう。一方、判定した吸気管負圧が所定以下である場合に、吸気行程において筒内への燃料供給を行なう。吸気管負圧が小さいと、EGR導入が困難であるため、燃焼室内の温度が低く、燃料の霧化が阻害され、シリンダ壁面への燃料付着等が起こるほか、安定した成層燃焼が行えないおそれがあるため、このような場合にはEGR導入を抑制し、圧縮工程噴射を不可であると判定することが好ましいからである。
【0008】
この排ガス再循環装置は、吸気弁と排気弁のバルブオーバーラップ量を調整する可変動弁機構であることが好ましい。バルブオーバーラップを大きくすると、排気管内の排気の気筒内への逆流を促すことができる。
【0009】
冷間始動時には、他の場合よりバルブオーバーラップの可変速度を速めることが好ましい。他の場合、つまり、吸気行程噴射を行っている場合には、EGR量を一気に大きくすると、EGRガスの偏在が起こり、均質な混合気を形成することができず、燃焼不安定を招く可能性がある。これに対して、圧縮行程噴射時は点火プラグ付近にのみ均質な混合気を形成すれば足りるので、バルブオーバーラップ量を一気に大きくして、EGRガスの偏在が起こっても、安定した燃焼を行えるようにすることが可能である。
【0010】
この可変動弁機構は、吸気弁または排気弁の一方が開いているときの他方のリフト量を変更する機構であってもよい。このようなリフト量変更は、例えば3次元カムを利用することで可能となり、吸排気の基本的なタイミングを変えることなく、EGRの導入量を制御することができる。
【0011】
冷間始動時には、さらに、点火プラグによる点火時期をピストンの上死点到達時以降に遅延させてもよい。点火時期を遅らせることで、2次燃焼量を多くして排気温度を上げ、触媒の暖機性を向上させ、エミッションの悪化を抑制することができる。
【0012】
点火時期の遅延量が大きくなるにしたがい、再循環排ガス量が多くなるよう排ガス再循環装置の作動を制御することが好ましい。点火時期を遅延させていくと、筒内が燃料により冷却されて、壁面等への付着量が大きくなり、燃焼が不安定になる可能性がある。そこで、EGR量を多くして筒内温度を上げ、燃料の霧化を促進することで、燃焼を安定させ、黒煙等の発生を抑制する。
【0013】
さらに、点火時期遅延量が大きく、燃焼が不安定になると予想される領域では、点火時期の遅延量が大きくなるにしたがい、再循環排ガス量が小さくなるよう排ガス再循環装置の作動を制御することが好ましい。点火時期遅延量をさらに大きくした場合には、燃焼時間が不足して、燃焼が不安定になる可能性がある。この場合にはEGR量を抑制することで、燃料の集中性を高め、燃焼時間を確保して、燃焼を安定させる。
【0014】
【発明の実施の形態】
以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。
【0015】
図1は、本発明に係る筒内噴射式火花点火内燃機関を示す概略構成図である。この内燃機関1は、高圧式のインジェクタ43により燃焼室13内に直接燃料であるガソリンを噴射し、点火プラグ17によって点火・燃焼させる形式のガソリンエンジンである。
【0016】
エンジンのシリンダ10内には、図の上下方向に往復移動可能にピストンヘッド11が配置され、このピストンヘッド11は、コンロッド12によって図示していないクランク軸に連結され、往復運動を回転運動に転換する。このピストンヘッド11の上部(冠面)にはキャビティ11Aが形成されている。ピストンヘッド11の冠面とシリンダヘッド14の間の空間が燃焼室13を形成する。
【0017】
シリンダヘッド14の燃焼室13に面する部位には、インジェクタ43、吸気バルブ23、排気バルブ24、点火プラグ17が配置されている。このうち、インジェクタ43は、ピストンヘッド11のキャビティ11Aに向けて燃料を噴射しうる方向に配置されている。また、点火プラグ17は、吸気バルブ23と排気バルブ24との間で、キャビティ11Aのインジェクタ43側とは逆の端部近傍に位置するよう配置されている。吸気バルブ23は燃焼室13と吸気管15との間に、排気バルブ24は燃焼室13と排気管16との間に配置される。両バルブ23、24はそれぞれカム21、22によって駆動されるものであり、可変動弁機構2は、吸気バルブ23、排気バルブ24の開閉位相を変更する機能を有する。
【0018】
インジェクタ43は、燃料タンク40に接続され、ポンプ41により加圧された燃料が送られる。この燃料ライン上には、燃料の圧力を検出する燃圧センサ42が配置されている。
【0019】
内燃機関1の作動は、エンジンECU3によって制御されるものであり、エンジンECU3にはエンジン冷却水温を測定する水温センサ5、クランク角度を測定するクランク角センサ6、スロットル7下流の吸気管15内の負圧を検出する負圧センサ8、燃圧センサ42等の出力が入力されており、可変動弁機構2、点火プラグ17、インジェクタ43の作動を制御するものである。
【0020】
図2は、可変動弁機構2の動作の詳細を説明する図である。カム21、22のそれぞれのクランクシャフトに対する回転位相を調整することで、吸気バルブ23、排気バルブ24それぞれが開く(バルブリフト)タイミングを調整して、吸気バルブ23と排気バルブ24がともに開いているバルブオーバーラップの長さを調整することができる。以下、各バルブ23、24が早く開くように調整すること(図中のバルブリフト曲線を左側にずらすことに相当)を進角側に調整すると呼び、逆に遅く開ように調整すること(図中のバルブリフト曲線を右側にずらすことに相当)を遅角側に調整すると呼ぶ。吸気バルブ23を進角側に調整するか、排気バルブ24を遅角側に調整するか、両方を同時に行うことでバルブオーバーラップ量を大きくすることができる。つまり、吸気バルブ23と排気バルブ24の少なくともいずれか一方のバルブリフトタイミングを調整可能であればよい。
【0021】
続いて、このエンジン1の始動時の動作について説明する。図3は、このエンジン1の始動時の第1の制御動作を示すフローチャートである。この制御は、特に記載のない限り、エンジンECU3によって行われるものであり、エンジン1の始動から停止までの間、所定のタイミングで繰り返し実行される。
【0022】
ステップS1では、始動時か否かを判定する。ここで始動時とはエンジン1を始動させる時点のみでなく、始動から数分後のエンジン1の暖機完了までを含む概念である。ステップS1で始動時と判定された場合には、ステップS2へと移行して圧縮行程噴射が可能な運転条件か否かの判定を行う。この判定処理の詳細なフローチャートを図4に示す。ステップS21では、まず、負圧センサ8の出力と、燃圧センサ42の出力を読み込むことで吸気管負圧Piと燃料印圧Pfとを検出する。続くステップS22では、吸気管負圧Piと閾値αとを比較する。吸気管負圧Piが閾値αより高い場合には、ステップS23へと移行して今度は燃料印圧Pfと閾値βとを比較する。燃料印圧Pfが閾値βより高い場合には、ステップS24へ移行する。ステップS24では、圧縮行程での燃料噴射を効果的に行うことが可能な燃料印圧Pfに到達しており、EGR効果を十分に発揮することが可能な吸気管負圧Piに達しているとして、圧縮行程噴射が可能であると判定し、処理を終了する。
【0023】
一方、ステップS22で吸気管負圧Piが閾値α以下と判定された場合には、EGRガスの導入が阻害されるため、燃焼室13内の温度が低く、燃料の霧化が阻害され、シリンダ10壁面への燃料付着等が起こるほか、安定した成層燃焼が行えないおそれがあるため、ステップS25へと移行し、圧縮行程噴射は不可であると判定する。また、ステップS23で燃料印圧Pfが閾値β以下と判定された場合は、燃料印圧が不足するため、圧縮行程で必要な量の燃料噴射を確保することができず、最悪の場合には失火に至ってしまうことから、ステップS25へと移行し、圧縮行程噴射は不可であると判定する。
【0024】
この処理の結果、圧縮行程噴射が可能であると判定した場合には、図3のメイン処理でステップS3へと移行し、噴射時期を圧縮行程時に設定する。次に、ステップS4でVVT目標値をオーバーラップ量が大になる方向に設定して処理を終了する。これにより、可変動弁機構2は、カム21、22の位相を調整することにより吸気バルブ23、排気バルブ24のバルブリフトタイミングをこの目標値に合致させることで、バルブオーバーラップを増大させ、インジェクタ43は圧縮行程において燃料噴射を行う。バルブオーバーラップを増大させることで、一旦排気管16へ排出された燃焼ガスが吸気行程で再び燃焼室13に導入される内部EGR効果が得られる。こうして、EGRガスの還流量を増大させることで、実圧縮比を増大させるとともに、高温の燃焼ガスによって燃焼室12内を早期に昇温することにより燃料の霧化を促進して燃焼室12の内壁等への燃料の付着を抑制し、成層化による燃焼安定性を向上させて黒煙の排出を抑制し、エミッションを向上させる。これにより、理論空燃比よりも若干薄い15〜16程度の空燃比での成層燃焼が可能となるため、始動時の燃費、エミッションが向上する。
【0025】
一方、ステップS2で圧縮行程噴射は不可であると判定した場合には、ステップS5へと移行して噴射時期を吸気行程時に設定し、ステップS6でVVT目標値をオーバーラップ量が小となるように設定する。この場合には、圧縮行程噴射が効率よく行える状態にないため、吸気行程噴射を行うことになるが、始動時の吸気行程噴射時にバルブオーバーラップ量を大きくすると、EGRガスが燃焼室13内で偏在して均一に混ざりにくいことや、燃焼速度が遅いことにより、燃焼が不安定になるおそれがある。そこで、バルブオーバーラップ量を小さくしてEGRガスの還流を抑制することで安定した燃焼を行い、エミッションの劣化を抑制する。
【0026】
ステップS1で始動時ではないと判定した場合には、ステップS7へと移行し、負荷・エンジン回転数に応じて燃料噴射時期、VVT目標値を設定する。例えば、低回転低負荷時には、燃料を圧縮行程時に噴射し、安定した成層燃焼を行い、燃費とエミッションの向上を図る。高回転・高負荷時には、燃料を吸気行程で噴射して均質混合気を形成することにより均質燃焼を行うことで、高出力を確保する。
【0027】
実際に可変動弁機構2によって吸気バルブ23、排気バルブ24のバルブリフトタイミングを調整する際には、以下のような制御を行うことが好ましい。図5はこの調整制御を示すフローチャートであり、この制御は、図3の制御処理に引き続いて実行される。
【0028】
まず、ステップSでは、始動時か否かを判定する。ステップSで始動時と判定された場合には、ステップSへと移行して圧縮行程噴射に設定されているか否かを判定する。圧縮行程噴射に設定されているときには、ステップS33へと移行してバルブオーバーラップの変更速度を大に設定し、続くステップS34でこの変更速度が得られるよう、実際の可変動弁機構2の制御量を算出する。このようにすることで、圧縮行程噴射を行う際には、速やかにバルブオーバーラップ量を目標値に変更し、内部EGRの供給量を増大させることで、筒内温度を昇温させて、燃料の霧化を促進し、燃焼を安定させることができる。
【0029】
一方、ステップSで始動時ではないと判定された場合およびステップSで圧縮行程噴射に設定されていない、つまり、吸気行程噴射に設定されていると判定された場合には、ステップS35へと移行してバルブオーバーラップの変更速度を小に設定し、続くステップS34でこの変更速度が得られるよう、実際の可変動弁機構2の制御量を算出する。このようにすることで、特に、吸気行程噴射時にバルブオーバーラップ量の急変を抑制し、内部EGR供給量の急変を抑制することで、燃焼条件の急変を抑制し、燃焼が不安定になるのを防止する。
【0030】
続いて、エンジン1の始動時の動作の別の形態のいくつかについて具体的に説明する。まず、図6は、このエンジン1の始動時の第2の制御動作を示すフローチャートである。この制御も、特に記載のない限り、エンジンECU3によって行われるものであり、エンジン1の始動から停止までの間、所定のタイミングで繰り返し実行されるものである。
【0031】
ステップS1からS2、S7への分岐処理およびS2からS3、S5への分岐処理内容は図3に示される第1の制御動作と同一であり、その詳細な説明は省略する。ステップS3で噴射時期を圧縮行程に設定した後は、ステップS51へと移行し、点火遅角量を設定する。この遅角量は、エンジン1の運転状態、例えば、水温センサ5で測定したエンジン冷却水温や負圧センサ8で測定した吸気管15内の負圧をもとに予め作成したマップを参照することで設定すればよい。これにより、点火プラグ17による点火時期を圧縮行程から膨張行程に移行する際のピストンヘッド11のTDC(上死点)位置到達以降(以下、単にTDC以降と称する。)に遅らせる遅角処理を行う。
【0032】
続く、ステップS52では、VVT目標値を設定する。このVVT目標値は、例えば、エンジン回転数に応じて、吸入空気量もしくは内部EGR量が最大となるオーバーラップ量に設定される。図7、図8は、バルブオーバーラップ量に対して吸入空気量、内部EGR量がどのように変動するかを示したグラフである。図7に示されるように、エンジン回転数が同一のとき、吸入空気量が最大となるバルブオーバーラップ量が存在する。バルブオーバーラップ量をこの値に設定すると、充填効率が最大となる。また、点火を遅角させることで2次燃焼の割合を増大させ、排気温度を上げて触媒の早期活性化を促す。これにより、未燃HCの排出を抑制することができる。一方、内部EGR量についても図8に示されるように、エンジン回転数が同一のとき、内部EGR量が最大となるバルブオーバーラップ量が存在する。ここで、吸入空気量が最大となるバルブオーバーラップ量と内部EGR量が最大となるバルブオーバーラップ量とは一致することもあるが、通常は、別の値をとる。内部EGR量が最大となるバルブオーバーラップ量を選択した場合には、燃料霧化の促進効果、筒内早期暖機効果が最大となるため、燃焼安定性を保ちつつ、黒煙の排出低減効果を最大にすることができる。
【0033】
一方、ステップS5で始動時において噴射時期を吸気行程時に設定した場合には、ステップS53へと移行し、点火時期を進角側に設定する。そして、ステップS54では、図3に示されるステップS6と同様にVVT目標値をオーバーラップ量が小となるように設定する。この場合の制御は、第1の制御動作と同様になる。始動時以外の制御についても同様である。
【0034】
ここでは、VVT目標値を、そのエンジン回転数において、吸入空気量もしくは内部EGR量が最大となるバルブオーバーラップ量に設定する場合を例に説明したが、点火遅角量に基づいて設定してもよい。この場合、図9に示されるように、点火遅角量ΔIがある値ΔIthをとるときにバルブオーバーラップ量を最大とし、点火遅角量ΔIがこれより小さいときは点火遅角量が大きくなるほどバルブオーバーラップ量を大きく設定し、点火遅角量ΔIがこれより大きいときは点火遅角量が大きくなるほどバルブオーバーラップ量を小さく設定してもよい。点火遅角量が大きいほど、シリンダ10壁面への燃料付着が起こりやすくなる。そこで、点火遅角量が比較的小さい領域では、点火遅角量が増大するほど、バルブオーバーラップ量を大きくすることで、内部EGR量を増大させて燃料噴射時における筒内温度を上げて燃料霧化を促進し、シリンダ10壁面への燃料付着を抑制し、燃焼安定性を保ちつつ、黒煙の生成を抑制する。一方、点火遅角を大きくするほど燃焼の不安定さが増す傾向がある。燃焼が不安定になる領域では、内部EGR量を減少させることで、燃焼安定性を向上させる。
【0035】
閾値となるΔIthは、実験データ等をもとにしてあらかじめ設定しておき、エンジンECU3内に保持しておけばよい。また、燃焼状態(排気の空燃比や回転数変動等)を基にして運転中に設定するようにしてもよい。
【0036】
以上の説明では、図2に示されるように、バルブリフト曲線の形状を変えずに進角側、遅角側に移動させることでバルブオーバーラップを変える例を説明してきた。しかし、例えば、排気バルブ24を開閉させるためのカム22が図10に示されるように、軸方向で異なるカム形状を有し、一部断面では1つのカム山22aのみを一部断面では2つのカム山22a、22bを有するような形状とすることで、図11に示されるように吸気バルブ23が開いているときに、排気バルブ24もまた再度開くようにしてもよい。このようなバルブ機構を用いてもバルブオーバーラップを増大させて内部EGRを行うことができる。吸気バルブ23を開閉させるためのカム21を2つのカム山を有する形状として排気バルブ24が開いているときに、吸気バルブ23も開くような構造としてもよい。このようにすると、カム21または22をカム軸方向にスライドさせることで、バルブオーバーラップ量の変更が可能となるため、可変動弁機構2の構成が簡単になり、その信頼性がさらに向上する。
【0037】
もちろん、バルブオーバーラップによるのではなく、排気管16から吸気管15へ直接既燃ガスを戻す循環装置を備えていてもよい。
【0038】
【発明の効果】
以上説明したように本発明によれば、冷間始動時において、圧縮行程で燃料噴射を行い、EGRガスを導入することで、燃料の霧化を促進し、筒内を早期に暖機させて、燃焼を安定させて黒煙の排出、エミッションの低下を抑制する。
【0039】
さらに、点火時期をTDC移行に遅らせることで、触媒の早期活性化を実現し、暖機性を向上させてエミッションの悪化を抑制することができる。
【図面の簡単な説明】
【図1】本発明に係る筒内噴射式火花点火内燃機関の概略構成図である。
【図2】図1の可変動弁機構の動作の詳細を説明する図である。
【図3】図1のエンジンの始動時の第1の制御動作を示すフローチャートである。
【図4】図3における圧縮行程噴射の可否を判定する処理の詳細なフローチャートである。
【図5】図3の処理に引き続いて実行されるバルブリフトタイミングの調整制御のフローチャートである。
【図6】図1のエンジンの始動時の第2の制御動作を示すフローチャートである。
【図7】バルブオーバーラップ量に対する吸入空気量の変動を示すグラフである。
【図8】バルブオーバーラップ量に対する内部EGR量の変動を示すグラフである。
【図9】点火遅角量に対して設定されたバルブオーバーラップ量を示すグラフである。
【図10】排気カムのカム山形状を示す図である。
【図11】図10のカムを用いた可変動弁機構の動作の詳細を説明する図である。
【符号の説明】
1…内燃機関、2…バルブリフト可変機構、3…エンジンECU、4…インジェクタ、5…水温センサ、6…クランク角センサ、7…触媒温度センサ、10…シリンダ、11…ピストンヘッド、11A…キャビティ、12…コンロッド、13…燃焼室、14…シリンダヘッド、15…吸気管、16…排気管、17…点火プラグ、21…吸気カム、22…排気カム、23…吸気バルブ、24…排気バルブ、。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-cylinder injection spark ignition internal combustion engine in which fuel directly injected into a cylinder is burned using an ignition plug, and more particularly to a technology at the time of cold start.
[0002]
[Prior art]
In recent years, in-cylinder injection type gasoline engines that realize lean combustion have become widespread. The technique described in Japanese Patent Application Laid-Open No. 11-324778 is an example of such a technique, and in order to avoid oil dilution and smoke generation at the time of cold start at the same time, a predetermined crank angle after the exhaust valve is closed. The intake valve is set to open after a lapse of time, and fuel is injected while both valves are closed. Thus, by not overlapping the open periods of the exhaust valve and the intake valve, a part of the high-temperature combustion gas remains in the combustion chamber, and fuel is injected into the combustion chamber to promote fuel atomization. Describes that it is possible to suppress both the generation of smoke and oil dilution by suppressing the adhesion of fuel to the piston crown surface and the cylinder bore wall surface.
[0003]
[Problems to be solved by the invention]
However, since this technique injects fuel at the beginning of the intake stroke at the time of cold start, it forms a homogeneous homogeneous mixture and performs homogeneous combustion, resulting in a reduction in fuel consumption.
[0004]
Accordingly, an object of the present invention is to provide an in-cylinder injection spark ignition internal combustion engine that realizes an improvement in fuel efficiency during cold start.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problem, a cylinder injection spark ignition internal combustion engine according to the present invention is a cylinder injection spark ignition internal combustion engine in which fuel injected into a cylinder is burned using an ignition plug. An exhaust gas recirculation device that guides and circulates in the interior and means for determining intake pipe negative pressure, and during cold start, the intake pipe negative pressure determined by the means for determining intake pipe negative pressure is greater than a predetermined value. If the intake pipe negative pressure determined by the means for determining the intake pipe negative pressure is equal to or less than a predetermined value while supplying the fuel into the cylinder during the compression stroke while operating the exhaust gas recirculation device, The fuel supply to the cylinder is performed .
[0006]
High temperature exhaust gas is reintroduced into the cylinder by an exhaust gas recirculation (EGR) device, and the intake air in the cylinder is heated to promote atomization of the fuel. Thereby, even at the time of cold start, adhesion of fuel to the cylinder inner wall surface can be suppressed, and smoke generation and oil dilution can be suppressed. Furthermore, by introducing exhaust gas, the combustion temperature can be lowered to reduce the amount of NOx generated.
[0007]
A means for determining the intake pipe negative pressure is further provided, and when the determined intake pipe negative pressure is larger than a predetermined value , fuel is supplied into the cylinder during the compression stroke while the exhaust gas recirculation device is operated . On the other hand, when the determined intake pipe negative pressure is less than or equal to a predetermined value, fuel is supplied into the cylinder during the intake stroke. If the intake pipe negative pressure is small, EGR introduction is difficult, so the temperature in the combustion chamber is low, fuel atomization is hindered, fuel adheres to the cylinder wall, and stable stratified combustion may not be possible. because there is, it suppresses the EGR introduction in such a case, because it is preferable to determine that is impossible compression process injection.
[0008]
The exhaust gas recirculation device is preferably a variable valve mechanism that adjusts the valve overlap amount between the intake valve and the exhaust valve. When the valve overlap is increased, it is possible to promote the backflow of the exhaust gas in the exhaust pipe into the cylinder.
[0009]
At the time of cold start, it is preferable to increase the variable speed of the valve overlap more than other cases. In other cases, that is, when the intake stroke injection is performed, if the EGR amount is increased at a stretch, the EGR gas may be unevenly distributed, so that a homogeneous mixture cannot be formed and combustion instability may occur. There is. On the other hand, since it is sufficient to form a homogeneous air-fuel mixture only in the vicinity of the spark plug during the compression stroke injection, the valve overlap amount can be increased at a stretch, and stable combustion can be performed even if the EGR gas is unevenly distributed. It is possible to do so.
[0010]
This variable valve mechanism may be a mechanism that changes the lift amount of the other when either the intake valve or the exhaust valve is open. Such a lift amount change can be made by using, for example, a three-dimensional cam, and the EGR introduction amount can be controlled without changing the basic timing of intake and exhaust.
[0011]
At the time of cold start, the ignition timing by the spark plug may be further delayed after reaching the top dead center of the piston. By delaying the ignition timing, it is possible to increase the secondary combustion amount and raise the exhaust temperature, improve the warm-up property of the catalyst, and suppress the deterioration of the emission.
[0012]
As the ignition timing delay amount increases, it is preferable to control the operation of the exhaust gas recirculation device so that the amount of recirculated exhaust gas increases. If the ignition timing is delayed, the inside of the cylinder is cooled by the fuel, the amount of adhesion to the wall surface or the like increases, and combustion may become unstable. Therefore, by increasing the EGR amount to increase the in-cylinder temperature and promoting the atomization of fuel, the combustion is stabilized and the generation of black smoke and the like is suppressed.
[0013]
Furthermore, in an area where the ignition timing delay amount is large and combustion is expected to become unstable, the operation of the exhaust gas recirculation device is controlled so that the amount of recirculated exhaust gas decreases as the ignition timing delay amount increases. Is preferred. If the ignition timing delay amount is further increased, the combustion time may be insufficient and the combustion may become unstable. In this case, by suppressing the amount of EGR, the concentration of fuel is enhanced, the combustion time is secured, and the combustion is stabilized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.
[0015]
FIG. 1 is a schematic diagram showing a direct injection spark ignition internal combustion engine according to the present invention. The internal combustion engine 1 is a gasoline engine of a type in which gasoline as fuel is directly injected into a combustion chamber 13 by a high-pressure injector 43 and is ignited and burned by a spark plug 17.
[0016]
A piston head 11 is disposed in the cylinder 10 of the engine so as to be reciprocally movable in the vertical direction in the figure. The piston head 11 is connected to a crankshaft (not shown) by a connecting rod 12 to convert the reciprocating motion into a rotational motion. To do. A cavity 11A is formed in the upper part (crown surface) of the piston head 11. A space between the crown surface of the piston head 11 and the cylinder head 14 forms a combustion chamber 13.
[0017]
An injector 43, an intake valve 23, an exhaust valve 24, and a spark plug 17 are disposed at a portion of the cylinder head 14 facing the combustion chamber 13. Among these, the injector 43 is disposed in a direction in which fuel can be injected toward the cavity 11 </ b> A of the piston head 11. In addition, the spark plug 17 is disposed between the intake valve 23 and the exhaust valve 24 so as to be positioned in the vicinity of the end opposite to the injector 43 side of the cavity 11A. The intake valve 23 is disposed between the combustion chamber 13 and the intake pipe 15, and the exhaust valve 24 is disposed between the combustion chamber 13 and the exhaust pipe 16. Both valves 23 and 24 are driven by cams 21 and 22, respectively. The variable valve mechanism 2 has a function of changing the opening / closing phase of the intake valve 23 and the exhaust valve 24.
[0018]
The injector 43 is connected to the fuel tank 40 and the fuel pressurized by the pump 41 is sent. A fuel pressure sensor 42 that detects the pressure of the fuel is disposed on the fuel line.
[0019]
The operation of the internal combustion engine 1 is controlled by the engine ECU 3. The engine ECU 3 includes a water temperature sensor 5 for measuring the engine cooling water temperature, a crank angle sensor 6 for measuring the crank angle, and an intake pipe 15 downstream of the throttle 7. Outputs of a negative pressure sensor 8 for detecting a negative pressure, a fuel pressure sensor 42, and the like are input, and the operations of the variable valve mechanism 2, the spark plug 17, and the injector 43 are controlled.
[0020]
FIG. 2 is a diagram for explaining the details of the operation of the variable valve mechanism 2. By adjusting the rotational phase of each of the cams 21 and 22 with respect to the crankshaft, the intake valve 23 and the exhaust valve 24 are opened (valve lift) timing is adjusted, and both the intake valve 23 and the exhaust valve 24 are opened. The length of the valve overlap can be adjusted. Hereinafter, adjusting the valves 23 and 24 to open early (corresponding to shifting the valve lift curve in the drawing to the left) is referred to as adjusting to the advance side, and conversely adjusting to open slowly (see FIG. This is equivalent to shifting the valve lift curve in the middle to the right). The valve overlap amount can be increased by adjusting the intake valve 23 to the advance side or adjusting the exhaust valve 24 to the retard side, or both. That is, it is sufficient that the valve lift timing of at least one of the intake valve 23 and the exhaust valve 24 can be adjusted.
[0021]
Next, the operation at the start of the engine 1 will be described. FIG. 3 is a flowchart showing a first control operation when the engine 1 is started. This control is performed by the engine ECU 3 unless otherwise specified, and is repeatedly executed at a predetermined timing from the start to the stop of the engine 1.
[0022]
In step S1, it is determined whether or not the engine is starting. Here, the start time is a concept including not only the time of starting the engine 1 but also the completion of warm-up of the engine 1 after several minutes from the start. If it is determined in step S1 that the engine is being started, the process proceeds to step S2 where it is determined whether or not the operating condition allows the compression stroke injection. A detailed flowchart of this determination processing is shown in FIG. In step S21, first, the intake pipe negative pressure Pi and the fuel printing pressure Pf are detected by reading the output of the negative pressure sensor 8 and the output of the fuel pressure sensor 42. In the subsequent step S22, the intake pipe negative pressure Pi is compared with the threshold value α. When the intake pipe negative pressure Pi is higher than the threshold value α, the routine proceeds to step S23, where the fuel printing pressure Pf and the threshold value β are compared. When the fuel printing pressure Pf is higher than the threshold value β, the process proceeds to step S24. In step S24, it is assumed that the fuel pressure Pf that can effectively perform the fuel injection in the compression stroke has been reached, and the intake pipe negative pressure Pi that can sufficiently exhibit the EGR effect has been reached. Then, it is determined that the compression stroke injection is possible, and the process is terminated.
[0023]
On the other hand, if it is determined in step S22 that the intake pipe negative pressure Pi is equal to or lower than the threshold value α, the introduction of EGR gas is inhibited, so the temperature in the combustion chamber 13 is low, fuel atomization is inhibited, and the cylinder Since fuel adheres to the 10 wall surface and stable stratified combustion may not be performed, the process proceeds to step S25 and it is determined that the compression stroke injection is impossible. If it is determined in step S23 that the fuel printing pressure Pf is equal to or less than the threshold value β, the fuel printing pressure is insufficient, so that it is not possible to ensure the required amount of fuel injection in the compression stroke. Since misfire has occurred, the process proceeds to step S25, where it is determined that compression stroke injection is not possible.
[0024]
If it is determined that the compression stroke injection is possible as a result of this process, the process proceeds to step S3 in the main process of FIG. 3, and the injection timing is set during the compression stroke. Next, in step S4, the VVT target value is set in a direction in which the overlap amount becomes large, and the process is terminated. As a result, the variable valve mechanism 2 adjusts the phases of the cams 21 and 22 to match the valve lift timings of the intake valve 23 and the exhaust valve 24 with the target values, thereby increasing the valve overlap. 43 performs fuel injection in the compression stroke. By increasing the valve overlap, an internal EGR effect is obtained in which the combustion gas once discharged into the exhaust pipe 16 is again introduced into the combustion chamber 13 in the intake stroke. Thus, by increasing the recirculation amount of the EGR gas, the actual compression ratio is increased, and the temperature in the combustion chamber 12 is increased quickly by the high-temperature combustion gas, thereby promoting fuel atomization and Suppresses fuel from adhering to the inner wall, etc., improves combustion stability by stratification, suppresses black smoke emission, and improves emissions. As a result, stratified combustion can be performed at an air-fuel ratio of about 15 to 16, which is slightly lower than the stoichiometric air-fuel ratio, so that the fuel efficiency and emission at the time of starting are improved.
[0025]
On the other hand, if it is determined in step S2 that the compression stroke injection is not possible, the routine proceeds to step S5, where the injection timing is set during the intake stroke, and in step S6, the VVT target value is set so that the overlap amount becomes small. Set to. In this case, since the compression stroke injection cannot be performed efficiently, the intake stroke injection is performed. However, if the valve overlap amount is increased during the intake stroke injection at the start, the EGR gas is caused to enter the combustion chamber 13. There is a possibility that combustion may become unstable due to uneven distribution and difficulty in mixing uniformly, or due to a slow combustion speed. Therefore, by reducing the valve overlap amount and suppressing the recirculation of the EGR gas, stable combustion is performed and emission deterioration is suppressed.
[0026]
If it is determined in step S1 that the engine is not at the start, the routine proceeds to step S7, where the fuel injection timing and the VVT target value are set according to the load and engine speed. For example, at low rotation and low load, fuel is injected during the compression stroke, stable stratified combustion is performed, and fuel efficiency and emission are improved. At high rotation and high load, high output is secured by performing homogeneous combustion by injecting fuel in the intake stroke to form a homogeneous mixture.
[0027]
When actually adjusting the valve lift timing of the intake valve 23 and the exhaust valve 24 by the variable valve mechanism 2, it is preferable to perform the following control. FIG. 5 is a flowchart showing this adjustment control, and this control is executed following the control process of FIG.
[0028]
First, in step S 1, determines whether the startup. If it is determined that at start, step S 1 determines whether it is set to transition to the compression stroke injection to step S 2. When the compression stroke injection is set, the process proceeds to step S33 to set the valve overlap change speed to a large value, and in step S34, the actual variable valve mechanism 2 is controlled so that this change speed can be obtained. Calculate the amount. In this way, when performing the compression stroke injection, the valve overlap amount is quickly changed to the target value, and the supply amount of the internal EGR is increased, so that the in-cylinder temperature is raised and the fuel is increased. It can promote atomization and stabilize combustion.
[0029]
On the other hand, and not set in the compression stroke injection in the step S 2 If it is determined not to be at starting at step S 1, i.e., if it is determined to be set to the intake stroke injection, to step S35 In step S34, the actual control amount of the variable valve mechanism 2 is calculated so that this change speed is obtained. By doing so, in particular, the sudden change in the valve overlap amount during intake stroke injection is suppressed, and the sudden change in the internal EGR supply amount is suppressed, so that the sudden change in combustion conditions is suppressed and the combustion becomes unstable. To prevent.
[0030]
Subsequently, some of other forms of operation at the start of the engine 1 will be specifically described. First, FIG. 6 is a flowchart showing a second control operation when the engine 1 is started. This control is also performed by the engine ECU 3 unless otherwise specified, and is repeatedly executed at a predetermined timing from the start to the stop of the engine 1.
[0031]
The contents of branch processing from steps S1 to S2 and S7 and branch processing from S2 to S3 and S5 are the same as those in the first control operation shown in FIG. 3, and detailed description thereof is omitted. After the injection timing is set to the compression stroke in step S3, the process proceeds to step S51, and the ignition retard amount is set. This retard amount refers to a map prepared in advance based on the operating state of the engine 1, for example, the engine coolant temperature measured by the water temperature sensor 5 or the negative pressure in the intake pipe 15 measured by the negative pressure sensor 8. You can set in. Thus, a retarding process is performed to delay the ignition timing by the spark plug 17 after reaching the TDC (top dead center) position of the piston head 11 when shifting from the compression stroke to the expansion stroke (hereinafter simply referred to as TDC or later). .
[0032]
In subsequent step S52, a VVT target value is set. This VVT target value is set to an overlap amount that maximizes the intake air amount or the internal EGR amount, for example, according to the engine speed. 7 and 8 are graphs showing how the intake air amount and the internal EGR amount change with respect to the valve overlap amount. As shown in FIG. 7, when the engine speed is the same, there is a valve overlap amount that maximizes the intake air amount. When the valve overlap amount is set to this value, the charging efficiency is maximized. Further, by retarding ignition, the rate of secondary combustion is increased, and the exhaust gas temperature is raised to promote early activation of the catalyst. Thereby, discharge | emission of unburned HC can be suppressed. On the other hand, as for the internal EGR amount, as shown in FIG. 8, when the engine speed is the same, there is a valve overlap amount that maximizes the internal EGR amount. Here, the valve overlap amount at which the intake air amount becomes maximum may coincide with the valve overlap amount at which the internal EGR amount becomes maximum, but usually takes a different value. When the valve overlap amount that maximizes the internal EGR amount is selected, the fuel atomization promotion effect and the early in-cylinder warm-up effect are maximized. Therefore, the black smoke emission reduction effect is maintained while maintaining combustion stability. Can be maximized.
[0033]
On the other hand, when the injection timing is set during the intake stroke at the start in step S5, the process proceeds to step S53, and the ignition timing is set to the advance side. In step S54, the VVT target value is set so that the overlap amount is small, as in step S6 shown in FIG. The control in this case is the same as the first control operation. The same applies to the control other than at the start.
[0034]
In this example, the VVT target value is set to the valve overlap amount that maximizes the intake air amount or the internal EGR amount at the engine speed, but the VVT target value is set based on the ignition retard amount. Also good. In this case, as shown in FIG. 9, the valve overlap amount is maximized when the ignition retardation amount ΔI takes a certain value ΔIth, and the ignition retardation amount increases as the ignition retardation amount ΔI is smaller than this. The valve overlap amount may be set large, and when the ignition delay amount ΔI is larger than this, the valve overlap amount may be set smaller as the ignition delay amount becomes larger. The larger the ignition retard amount, the easier the fuel adheres to the cylinder 10 wall surface. Therefore, in a region where the ignition retardation amount is relatively small, the valve overlap amount increases as the ignition retardation amount increases, thereby increasing the internal EGR amount and increasing the in-cylinder temperature at the time of fuel injection. Atomization is promoted, fuel adhesion to the wall surface of the cylinder 10 is suppressed, and generation of black smoke is suppressed while maintaining combustion stability. On the other hand, the instability of combustion tends to increase as the ignition retardation increases. In the region where the combustion becomes unstable, the combustion stability is improved by reducing the amount of internal EGR.
[0035]
The threshold value ΔIth may be set in advance based on experimental data or the like and held in the engine ECU 3. Further, it may be set during operation based on the combustion state (exhaust air-fuel ratio, rotational speed fluctuation, etc.).
[0036]
In the above description, as shown in FIG. 2, an example has been described in which the valve overlap is changed by moving the valve lift curve to the advance side or the retard side without changing the shape of the valve lift curve. However, for example, as shown in FIG. 10, the cam 22 for opening and closing the exhaust valve 24 has a different cam shape in the axial direction, with only one cam crest 22a in the partial cross section and two in the partial cross section. By adopting a shape having cam peaks 22a and 22b, when the intake valve 23 is open as shown in FIG. 11, the exhaust valve 24 may be opened again. Even when such a valve mechanism is used, the internal EGR can be performed while increasing the valve overlap. The cam 21 for opening and closing the intake valve 23 may have a shape having two cam peaks, and the intake valve 23 may be opened when the exhaust valve 24 is open. In this case, the valve overlap amount can be changed by sliding the cam 21 or 22 in the cam shaft direction, so that the configuration of the variable valve mechanism 2 is simplified and the reliability thereof is further improved. .
[0037]
Of course, a circulation device for returning the burned gas directly from the exhaust pipe 16 to the intake pipe 15 may be provided instead of the valve overlap.
[0038]
【The invention's effect】
As described above, according to the present invention, during cold start, fuel injection is performed in the compression stroke, and EGR gas is introduced to promote fuel atomization and to quickly warm up the cylinder. , Stabilize the combustion and suppress the emission of black smoke and emission.
[0039]
Furthermore, by delaying the ignition timing to transition to TDC, early activation of the catalyst can be realized, warm-up performance can be improved, and deterioration of emissions can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a direct injection spark ignition internal combustion engine according to the present invention.
FIG. 2 is a diagram for explaining the details of the operation of the variable valve mechanism in FIG. 1;
FIG. 3 is a flowchart showing a first control operation when the engine of FIG. 1 is started.
4 is a detailed flowchart of a process for determining whether or not compression stroke injection is possible in FIG. 3;
FIG. 5 is a flowchart of valve lift timing adjustment control executed subsequent to the process of FIG. 3;
6 is a flowchart showing a second control operation when starting the engine of FIG. 1; FIG.
FIG. 7 is a graph showing fluctuations in the intake air amount with respect to the valve overlap amount.
FIG. 8 is a graph showing the variation of the internal EGR amount with respect to the valve overlap amount.
FIG. 9 is a graph showing a valve overlap amount set with respect to an ignition retard amount.
FIG. 10 is a view showing a cam crest shape of an exhaust cam.
11 is a diagram for explaining the details of the operation of the variable valve mechanism using the cam of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Valve lift variable mechanism, 3 ... Engine ECU, 4 ... Injector, 5 ... Water temperature sensor, 6 ... Crank angle sensor, 7 ... Catalyst temperature sensor, 10 ... Cylinder, 11 ... Piston head, 11A ... Cavity , 12 ... Connecting rod, 13 ... Combustion chamber, 14 ... Cylinder head, 15 ... Intake pipe, 16 ... Exhaust pipe, 17 ... Spark plug, 21 ... Intake cam, 22 ... Exhaust cam, 23 ... Intake valve, 24 ... Exhaust valve, .

Claims (7)

筒内に噴射した燃料を点火プラグを用いて燃焼させる筒内噴射式火花点火内燃機関において、
燃焼ガスを再度筒内に導いて循環させる排ガス再循環装置と、吸気管負圧を判定する手段とをさらに備えており、
冷間始動時には、
前記吸気管負圧を判定する手段により判定した吸気管負圧が所定より大きい場合に、前記排ガス再循環装置を作動させつつ、圧縮行程において筒内への燃料供給を行ない、
前記吸気管負圧を判定する手段により判定した吸気管負圧が所定以下である場合に、吸気行程において筒内への燃料供給を行なう、
ことを特徴とする筒内噴射式火花点火内燃機関。
In a cylinder injection spark ignition internal combustion engine in which fuel injected into a cylinder is burned using an ignition plug,
An exhaust gas recirculation device that guides and circulates the combustion gas into the cylinder again, and means for determining the intake pipe negative pressure ;
During cold start,
When the intake pipe negative pressure determined by the means for determining the intake pipe negative pressure is larger than a predetermined value, fuel is supplied into the cylinder during the compression stroke while operating the exhaust gas recirculation device.
When the intake pipe negative pressure determined by the means for determining the intake pipe negative pressure is less than or equal to a predetermined value, fuel is supplied into the cylinder during the intake stroke.
An in-cylinder injection spark ignition internal combustion engine.
前記排ガス再循環装置は、吸気弁と排気弁のバルブオーバーラップ量を調整する可変動弁機構である請求項に記載の筒内噴射式火花点火内燃機関。The in-cylinder injection spark ignition internal combustion engine according to claim 1 , wherein the exhaust gas recirculation device is a variable valve mechanism that adjusts a valve overlap amount between the intake valve and the exhaust valve. 前記冷間始動時には、他の場合よりバルブオーバーラップの可変速度を速める請求項記載の筒内噴射式火花点火内燃機関。The in-cylinder spark-ignition internal combustion engine according to claim 2, wherein at the cold start, the variable speed of the valve overlap is increased as compared with other cases. 前記可変動弁機構は、吸気弁または排気弁の一方が開いているときの他方のリフト量を変更する機構である請求項またはに記載の筒内噴射式火花点火内燃機関。The in-cylinder injection spark ignition internal combustion engine according to claim 2 or 3 , wherein the variable valve mechanism is a mechanism that changes a lift amount of one of the intake valve and the exhaust valve when the other is open. 冷間始動時には、さらに、点火プラグによる点火時期をピストンの上死点到達時以降に遅延させる請求項1〜のいずれかに記載の筒内噴射式火花点火内燃機関。The in-cylinder injection spark ignition internal combustion engine according to any one of claims 1 to 4 , wherein at the time of cold start, the ignition timing by the spark plug is further delayed after reaching the top dead center of the piston. 点火時期の遅延量が大きくなるにしたがい、再循環排ガス量が多くなるよう前記排ガス再循環装置の作動を制御する請求項記載の筒内噴射式火花点火内燃機関。6. The direct injection spark ignition internal combustion engine according to claim 5, wherein the operation of the exhaust gas recirculation device is controlled so that the amount of recirculated exhaust gas increases as the ignition timing delay amount increases. 点火時期遅延量が大きく、燃焼が不安定になると予想される領域では、点火時期の遅延量が大きくなるにしたがい、再循環排ガス量が小さくなるよう前記排ガス再循環装置の作動を制御する請求項記載の筒内噴射式火花点火内燃機関。The operation of the exhaust gas recirculation device is controlled so that the amount of recirculated exhaust gas decreases as the ignition timing delay amount increases in a region where the ignition timing delay amount is large and combustion is expected to become unstable. 6. An in-cylinder injection spark ignition internal combustion engine according to claim 6.
JP2002105469A 2002-04-08 2002-04-08 In-cylinder injection spark ignition internal combustion engine Expired - Fee Related JP3879568B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002105469A JP3879568B2 (en) 2002-04-08 2002-04-08 In-cylinder injection spark ignition internal combustion engine
DE10315783A DE10315783B4 (en) 2002-04-08 2003-04-07 Otto internal combustion engine with direct cylinder injection and associated control method
FR0304320A FR2838162B1 (en) 2002-04-08 2003-04-08 INTERNAL COMBUSTION ENGINE WITH SPARK IGNITION OF INJECTION TYPE IN THE CYLINDER AND PROCEDURE FOR CONTROLLING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105469A JP3879568B2 (en) 2002-04-08 2002-04-08 In-cylinder injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003301738A JP2003301738A (en) 2003-10-24
JP3879568B2 true JP3879568B2 (en) 2007-02-14

Family

ID=28449904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105469A Expired - Fee Related JP3879568B2 (en) 2002-04-08 2002-04-08 In-cylinder injection spark ignition internal combustion engine

Country Status (3)

Country Link
JP (1) JP3879568B2 (en)
DE (1) DE10315783B4 (en)
FR (1) FR2838162B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877048A1 (en) * 2004-10-25 2006-04-28 Renault Sas Internal combustion engine e.g. direct injection diesel engine, control method for vehicle, involves controlling closing of exhaust valve before piston reaches top dead center, and opening inlet valve after reaching center
FR2887589B1 (en) * 2005-06-27 2007-09-14 Renault Sas METHOD FOR CONTROLLING A DIRECT INJECTION ENGINE DURING COLD STARTING AND CORRESPONDING ENGINE
JP4926917B2 (en) * 2007-11-12 2012-05-09 日立オートモティブシステムズ株式会社 Engine control device
DE102008061236A1 (en) 2008-12-09 2010-06-10 Man Diesel Se Method and valve cam for valve control of an internal combustion engine
JP5029627B2 (en) * 2009-02-10 2012-09-19 トヨタ自動車株式会社 Control device for internal combustion engine
CN103370519A (en) * 2011-03-23 2013-10-23 丰田自动车株式会社 Device for controlling fuel injection in internal combustion engine
DE102017208857A1 (en) * 2017-05-24 2018-12-13 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine, internal combustion engine and motor vehicle
CN114508439B (en) * 2020-11-16 2023-06-23 天津大学 Control method suitable for cold start process of exhaust gas turbocharged engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267310B (en) * 1992-05-27 1996-04-24 Fuji Heavy Ind Ltd System for controlling a valve mechanism for an internal combustion engine
DE69430596T2 (en) * 1993-12-28 2002-11-14 Hitachi Ltd Method and device for controlling an internal combustion engine
JP3414303B2 (en) * 1998-03-17 2003-06-09 日産自動車株式会社 Control device for direct injection spark ignition type internal combustion engine
JP3521790B2 (en) * 1998-03-25 2004-04-19 株式会社デンソー Control device for internal combustion engine
JP3525737B2 (en) 1998-05-06 2004-05-10 日産自動車株式会社 In-cylinder injection gasoline engine
JP3325230B2 (en) * 1998-08-03 2002-09-17 マツダ株式会社 Method and apparatus for warming up a catalyst in a direct injection engine
DE10052344A1 (en) * 2000-10-21 2002-05-02 Bosch Gmbh Robert Method for starting an internal combustion engine

Also Published As

Publication number Publication date
DE10315783B4 (en) 2006-08-10
DE10315783A1 (en) 2003-10-23
JP2003301738A (en) 2003-10-24
FR2838162A1 (en) 2003-10-10
FR2838162B1 (en) 2007-10-12

Similar Documents

Publication Publication Date Title
US20190107040A1 (en) Control device for compression self-ignition engine
US6837040B2 (en) In-cylinder injection type spark-ignition internal combustion engine and control method thereof
JP3815163B2 (en) Compression self-ignition internal combustion engine
EP1484494B1 (en) Device and method for controlling multiple fuel injection and variable valve timing in a direct injection engine
JP4472932B2 (en) Engine combustion control device
EP2264303B1 (en) Control method and device of engine and corresponding engine
US9470174B2 (en) Control system and control method of spark ignition gasoline engine
JP4122630B2 (en) Compression self-ignition gasoline engine
JP2010236496A (en) Method and device for controlling internal combustion engine
JP2001152919A (en) Compressed self-ignition gasoline engine
JP2017186984A (en) Control device of internal combustion engine
JP5585533B2 (en) gasoline engine
US10914259B2 (en) Control device for pre-mixture compression ignition engine
JP2008163793A (en) Egr control device for internal combustion engine
JP4161789B2 (en) Fuel injection control device
JP5428473B2 (en) Method and apparatus for controlling an internal combustion engine
US10677187B2 (en) Combustion control device for compression autoignition engine
JP2016031067A (en) Compression ignition engine control device
JP2018040263A (en) Control device for internal combustion engine
JP4534403B2 (en) Compression ignition internal combustion engine
JP5907013B2 (en) Spark ignition direct injection engine
JP3879568B2 (en) In-cylinder injection spark ignition internal combustion engine
US11092108B2 (en) Control device for compression self-ignition engine
JP2018040264A (en) Control device for internal combustion engine
JP2009036086A (en) Direct injection engine and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees