WO2021090648A1 - Blower - Google Patents

Blower Download PDF

Info

Publication number
WO2021090648A1
WO2021090648A1 PCT/JP2020/038688 JP2020038688W WO2021090648A1 WO 2021090648 A1 WO2021090648 A1 WO 2021090648A1 JP 2020038688 W JP2020038688 W JP 2020038688W WO 2021090648 A1 WO2021090648 A1 WO 2021090648A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
impeller
air introduction
flow path
guide wall
Prior art date
Application number
PCT/JP2020/038688
Other languages
French (fr)
Japanese (ja)
Inventor
善博 鈴木
ウェイ 黄
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021090648A1 publication Critical patent/WO2021090648A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • This disclosure relates to a blower.
  • a separation cylinder is provided to separate the air introduced from the air introduction box and passing through the filter (that is, the outside air and the inside air) into the first ventilation passage and the second ventilation passage.
  • the separation cylinder has a shape that extends radially outward from the air inlet portion arranged adjacent to the filter through the inside of the impeller. With this configuration, a part of the air that has passed through the filter enters the air inlet portion of the separation cylinder, flows inside the separation cylinder, and flows to the second ventilation passage through the impeller. On the other hand, the other part of the air that has passed through the filter flows outside the separation cylinder without entering the air inlet portion of the separation cylinder, and flows to the first ventilation passage through the impeller.
  • the blower is configured to divide the outside air and the inside air sucked from the air introduction box into the first ventilation passage and the second ventilation passage and blow them out.
  • the object of the present disclosure is to provide a blower capable of suppressing the generation of abnormal noise.
  • a blower capable of simultaneously sucking in the first air and the second air and blowing them out separately.
  • An air introduction box in which a first air introduction port into which the first air is introduced and a second air introduction port into which the second air is introduced are formed.
  • the casing provided on the downstream side of the air introduction box and An impeller housed in a casing, which sucks at least one of the first air and the second air introduced into the air introduction box from one side of the impeller in the direction of the rotation axis and blows them out in a direction away from the rotation axis.
  • An annular bell mouth which is provided between the air introduction box and the impeller and forms a suction port for air sucked into the impeller from the air introduction box.
  • a separation cylinder with a shape that extends radially outward from the air inlet located on the air introduction box side with respect to the impeller, passing through the inside of the impeller, and The flow path formed between the separation cylinder and the bell mouth is divided into an inner flow path on the separation cylinder side and an outer flow path on the bell mouth side, and air flowing through the inner flow path and air flowing through the outer flow path are separated.
  • Each is equipped with a guide wall that guides the impeller.
  • the air flowing outside the separation cylinder is separated into the air flowing through the inner flow path and the air flowing through the outer flow path by the guide wall. It is sucked into the impeller. At that time, the air flowing through the inner flow path flows at a place away from the bell mouth. Therefore, among the air sucked from the air introduction box to the impeller, the air that flows concentrated in the vicinity of the bell mouth is reduced. Therefore, this blower can reduce the variation in the wind speed distribution in the flow path outside the separation cylinder and suppress the generation of abnormal noise.
  • FIG. 1 It is sectional drawing of the blower which concerns on 1st Embodiment. It is a perspective view which shows the state which removed the air introduction box and the filter of the blower which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the flow of the air of the flow path outside the separation cylinder (that is, the outer flow path and the inner flow path) in the blower which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the flow of the air of the flow path outside the separation cylinder in the blower of a comparative example. It is a perspective view which shows the state which removed the air introduction box and the filter of the blower which concerns on 2nd Embodiment. FIG.
  • FIG. 5 is a cross-sectional view showing a separation cylinder, a guide wall, a connecting portion, and the like in the VI-VI line of FIG. It is sectional drawing of the blower which concerns on 3rd Embodiment. It is sectional drawing of the blower which concerns on 4th Embodiment.
  • FIG. 5 is a plan view showing a separation cylinder, a guide wall, a connecting portion, and the like in the IX-IX line cross section of FIG. It is explanatory drawing for demonstrating the position of the guide wall in the blower which concerns on 4th Embodiment.
  • the blower 1 of the present embodiment is applicable to a vehicle air conditioner having two layers of inside and outside air.
  • the blower 1 simultaneously sucks in the vehicle interior air as the first air (hereinafter referred to as "outside air") and the vehicle interior air as the second air (hereinafter referred to as "inside air”), and separately blows them out. It is a possible configuration.
  • the air blown from the blower 1 (that is, outside air and inside air) is supplied to an air conditioning unit (not shown) included in the vehicle air conditioner.
  • the air conditioning unit generates air conditioning air that regulates the temperature and humidity of the air supplied from the blower 1, and blows the air conditioning air from each air outlet toward the front window of the vehicle, the upper body of the occupant, the feet of the occupant, and the like. It is possible.
  • the blower 1 includes an air introduction box 10, a scroll casing 20, an impeller 30, a filter 40, a bell mouth 50, a separation cylinder 60, a guide wall 70, and the like.
  • the radial direction of the virtual circle drawn on a plane orthogonal to the rotation axis Ax of the impeller 30 with an arbitrary point on the rotation axis Ax of the impeller 30 as the center is defined as "the diameter of the impeller 30". It is called “direction”, and the circumferential direction of the virtual circle is sometimes called “circumferential direction of the impeller 30". It is assumed that the rotating shaft Ax of the impeller 30 coincides with the shaft core of the impeller 30.
  • the air introduction box 10 is arranged above the blower 1.
  • the air introduction box 10 is formed with an outside air introduction port 11, a first inside air introduction port 12, and a second inside air introduction port 13.
  • the outside air introduction port 11 is an opening for introducing outside air inside the air introduction box 10.
  • the first inside air introduction port 12 and the second inside air introduction port 13 are openings for introducing inside air inside the air introduction box 10.
  • the outside air introduction port 11 is an example of a first air introduction port into which the first air is introduced.
  • the first inside air introduction port 12 and the second inside air introduction port 13 are examples of the second air introduction port into which the second air is introduced.
  • an outside air door 14 is a door that opens and closes the outside air introduction port 11.
  • the inside / outside air door 15 is a door for selectively introducing air into the air introduction cylinder 17 from the outside air introduction port 11 and the first inside air introduction port 12.
  • the inside air door 16 is a door that opens and closes the second inside air introduction port 13.
  • the outside air door 14 and the inside air door 16 are composed of butterfly doors.
  • the inside / outside air door 15 is composed of a rotary door.
  • the outside air door 14 and the inside air door 16 may be composed of doors other than the butterfly door (for example, a rotary door). Further, the inside / outside air door 15 may be composed of a door other than the rotary door (for example, a butterfly door).
  • the filter 40 is arranged in the air introduction box 10 in contact with or adjacent to the end of the air introduction cylinder 17 on the impeller 30 side.
  • the filter 40 is configured, for example, by bending a dust removing filter medium having a predetermined air permeability into a fold shape.
  • the filter 40 collects foreign matter contained in the air flowing from the air introduction box 10 toward the impeller 30.
  • the air introduction box 10 and the filter 40 are formed in a substantially rectangular shape when viewed from above.
  • a scroll casing 20 is provided on the downstream side of the air introduction box 10.
  • the impeller 30 is housed inside the scroll casing 20.
  • the impeller 30 is a centrifugal fan that rotates by being driven by an electric motor 31.
  • the impeller 30 is composed of a sirocco fan.
  • the impeller 30 is not limited to this, and may be composed of a radial fan, a turbo fan, or the like.
  • the impeller 30 is configured to suck in air from one side in the direction of the rotating shaft Ax and blow out the sucked air in the direction away from the rotating shaft Ax. There is.
  • the impeller 30 has a main plate 32, a plurality of first blades 33, a plurality of second blades 34, and a separation plate 35.
  • the main plate 32 is formed in a disk shape.
  • the shaft 36 of the electric motor 31 is fixed to the central portion of the main plate 32.
  • a plurality of second blades 34 are arranged with respect to the main plate 32.
  • a plurality of first blades 33 are arranged on the filter 40 side of the plurality of second blades 34 via the separation plate 35.
  • the plurality of first blades 33 and the plurality of second blades 34 are all arranged at predetermined intervals in the circumferential direction of the impeller 30.
  • a flow path 37 between the first blades through which air flows is formed between the plurality of first blades 33.
  • a flow path 38 between the second blades through which air flows is formed between the plurality of second blades 34.
  • the separation plate 35 connects the plurality of first blades 33 and the plurality of second blades 34. The separation plate 35 separates the first blade-to-blade flow path 37 and the second blade-to-blade flow path 38.
  • the scroll casing 20 forms ventilation passages 21 and 22 on the radial outer side of the impeller 30.
  • a partition wall 23 is provided in the ventilation passages 21 and 22.
  • the partition wall 23 is provided at a position corresponding to the separating plate 35 of the impeller 30.
  • the ventilation passages 21 and 22 on the outer side in the radial direction of the impeller 30 are the first ventilation passage 21 in the rotation axis Ax direction of the impeller 30 and the other first ventilation passage 21 in the rotation axis Ax direction of the impeller 30. It is divided into two ventilation passages 22.
  • the first ventilation passage 21 and the second ventilation passage 22 are configured to rectify the airflow radiating from the impeller 30 into a flow in the circumferential direction of the impeller 30 and supply the airflow to an air conditioning unit (not shown). Has been done.
  • a suction port forming portion 24 forming an upper wall of the first ventilation passage 21 is provided on one side of the scroll casing 20 in the direction of the rotation axis Ax of the impeller 30.
  • An annular bell mouth 50 for forming a suction port for air sucked into the impeller 30 is provided substantially in the center of the suction port forming portion 24. That is, the flow path inside the bell mouth 50 serves as a suction port for air sucked into the impeller 30.
  • the bell mouth 50 is provided between the filter 40 and the impeller 30, and has a cross-sectional shape curved in an arc shape so that the air passing through the filter 40 smoothly flows to the suction port of the impeller 30. ..
  • a separation cylinder 60 is provided in the space inside the first blade 33 and the second blade 34 of the impeller 30 in the radial direction (hereinafter, simply referred to as "inside the impeller 30").
  • the separation cylinder 60 is a tubular member extending in the rotation axis Ax direction of the impeller 30, and both ends in the axial direction are open.
  • the opening on the filter 40 side with respect to the impeller 30 is referred to as an air inlet portion 61
  • the opening on the side opposite to the filter 40 with respect to the impeller 30 is referred to as an air outlet portion 62.
  • the air inlet portion 61 of the separation cylinder 60 is arranged on the filter 40 side with respect to the impeller 30, and is in contact with or adjacent to the filter 40.
  • the opening on the filter 40 side of the air introduction cylinder 17 provided inside the air introduction box 10 and the air inlet portion 61 of the separation cylinder 60 are aligned or coincide with each other when viewed from the axial direction of the impeller 30. , Most of them are provided so as to overlap. Therefore, most of the air flowing inside the air introduction cylinder 17 flows to the inside of the separation cylinder 60 through the filter 40. On the other hand, most of the air flowing outside the air introduction cylinder 17 flows outside the separation cylinder 60 through the filter 40.
  • the separation cylinder 60 is formed in a flare shape that passes from the air inlet portion 61 to the inside of the impeller 30 and gradually expands outward in the radial direction as it approaches the air outlet portion 62.
  • the outer edge portion of the separation cylinder 60 on the air outlet portion 62 side is provided at a position corresponding to the separation plate 35 of the impeller 30.
  • a guide wall 70 is provided inside the impeller 30 and outside the separation cylinder 60.
  • the guide wall 70 of the present embodiment is a tubular member extending in the rotation axis Ax direction of the impeller 30, and both ends in the axial direction are open.
  • the end 71 of the guide wall 70 on the filter 40 side is in contact with or adjacent to the filter 40.
  • the guide wall 70 is in contact with or adjacent to the surface of the filter 40 on the impeller 30 side, and extends from there to the middle of the inside of the impeller 30.
  • the guide wall 70 has a flow path formed between the separation cylinder 60 and the bell mouth 50, an inner flow path 72 on the separation cylinder 60 side of the guide wall 70 and an outer flow path on the bell mouth 50 side of the guide wall 70. It is divided into 73.
  • the inner flow path 72 is a flow path formed between the guide wall 70 and the separation cylinder 60.
  • the outer flow path 73 is a flow path formed radially outside the guide wall 70.
  • the guide wall 70 guides the air flowing through the inner flow path 72 and the air flowing through the outer flow path 73 to the impeller 30, respectively.
  • the guide wall 70 is formed in a tapered shape whose diameter gradually decreases as the distance from the filter 40 increases.
  • the guide wall 70 is formed in a flare shape in which the diameter gradually increases as it approaches the filter 40. Therefore, as shown in FIGS. 2 and 3, the diameter D1 of the end portion 71 of the guide wall 70 on the filter 40 side is larger than the diameter D2 of the end portion 74 of the guide wall 70 on the side opposite to the filter 40.
  • the distance L1 between the end 71 of the guide wall 70 on the filter 40 side and the rotation shaft Ax of the impeller 30 is the rotation shaft of the end 74 of the guide wall 70 on the opposite side of the filter 40 and the impeller 30. Distance from Ax is farther than L2.
  • the position of the guide wall 70 is appropriately set by an experiment or the like so that the flow velocity of the air flowing through the inner flow path 72 and the flow velocity of the air flowing through the outer flow path 73 are close to each other. Further, the shape and size of the guide wall 70 are also appropriately set by experiments and the like.
  • Arrows FA1 and FA2 in FIG. 3 schematically show the air flow in the flow path outside the separation cylinder 60.
  • the air that flows outside the separation cylinder 60 is sucked into the impeller 30 in a state of being separated by the guide wall 70 into the air that flows through the inner flow path 72 and the air that flows through the outer flow path 73. Is done.
  • the air flowing through the inner flow path 72 flows at a place away from the bell mouth 50. Therefore, among the air flowing through the flow paths outside the separation cylinder 60 (that is, the inner flow path 72 and the outer flow path 73), the air flowing concentrated in the vicinity of the bell mouth 50 is reduced. Therefore, the blower 1 can reduce the variation in the wind speed distribution in the flow path outside the separation cylinder 60 and suppress the generation of abnormal noise.
  • the blower 1 is configured to be able to set as an air suction mode, an inside / outside air mode in which the outside air and the inside air are simultaneously sucked and separately blown out, an outside air mode in which the outside air is sucked in and blown out, and an inside air mode in which the inside air is sucked in and blown out. ..
  • FIG. 1 shows a state in which the inside / outside air mode is set in the blower 1.
  • the outside air door 14 is displaced to a position where the outside air introduction port 11 is opened.
  • the inside / outside air door 15 is displaced to a position where the first inside air introduction port 12 and the air introduction cylinder 17 communicate with each other and the communication between the outside air introduction port 11 and the air introduction cylinder 17 is cut off.
  • the inside air door 16 is displaced to a position where the second inside air introduction port 13 is closed.
  • the outside air introduced from the outside air introduction port 11 to the outside of the air introduction cylinder 17 passes through the filter 40, and from the flow path outside the separation cylinder 60, the first impeller 30 It is sucked into the inter-blade flow path 37 and blown out to the first ventilation passage 21.
  • the flow path outside the separation cylinder 60 includes an inner flow path 72 and an outer flow path 73.
  • the inside air introduced from the first inside air introduction port 12 to the inside of the air introduction cylinder 17 passes through the filter 40 and flows inside the separation cylinder 60, and the impeller 30 It is sucked into the flow path 38 between the second blades and blown out to the second ventilation passage 22.
  • the outside air flowing through the first ventilation passage 21 and the inside air flowing through the second ventilation passage 22 are introduced into an air conditioning unit (not shown), adjusted to a desired temperature and humidity inside the air conditioning unit, and then the vehicle is driven from each outlet. It is blown into the room.
  • an air conditioning unit not shown
  • the outside air flowing through the first ventilation passage 21 is mainly blown out to the windshield from the defroster outlet provided in the vehicle interior.
  • the outside air door 14 when the outside air mode is set, the outside air door 14, the inside / outside air door 15, and the inside air door 16 are displaced as follows.
  • the outside air door 14 is displaced to a position where the outside air introduction port 11 is opened.
  • the inside / outside air door 15 is displaced to a position where the outside air introduction port 11 and the air introduction cylinder 17 communicate with each other and the communication between the first inside air introduction port 12 and the air introduction cylinder 17 is cut off.
  • the inside air door 16 is displaced to a position where the second inside air introduction port 13 is closed.
  • the outside air door 14 when the inside air mode is set, the outside air door 14, the inside / outside air door 15, and the inside air door 16 are displaced as follows.
  • the outside air door 14 is displaced to a position where the outside air introduction port 11 is closed.
  • the inside / outside air door 15 is displaced to a position where the first inside air introduction port 12 and the air introduction cylinder 17 communicate with each other and the communication between the outside air introduction port 11 and the air introduction cylinder 17 is cut off.
  • the inside air door 16 is displaced to a position where the second inside air introduction port 13 is opened.
  • the inside air introduced from the first inside air introduction port 12 flows inside the air introduction cylinder 17 and the separation cylinder 60, and is blown out to the second ventilation passage 22.
  • the inside air introduced from the second inside air introduction port 13 flows outside the air introduction cylinder 17 and the separation cylinder 60, and is blown out to the first ventilation passage 21.
  • the blower 100 of the comparative example is different from the blower 1 of the first embodiment in that the guide wall 70 is not provided, and the other configurations are the same. That is, both the blower 100 of the comparative example and the blower 1 of the first embodiment include a separation cylinder 60. Further, the filter 40 is formed large with respect to the inner peripheral edge of the bell mouth 50.
  • the arrow FB in FIG. 4 schematically shows the air flow in the flow path outside the separation cylinder 60 in the blower 100 of the comparative example.
  • the blower 100 of the comparative example has a configuration in which the air that has passed through the filter 40 and flows through the flow path outside the separation cylinder 60 is concentrated in the vicinity of the bell mouth 50. It has become. Therefore, in the blower 100 of the comparative example, the variation in the wind speed distribution in the flow path outside the separation cylinder 60 becomes large, and a high-frequency abnormal noise such as a siren sound may be generated.
  • the blower 1 of the first embodiment has the following effects on the blower 100 of the comparative example described above.
  • the blower 1 of the first embodiment includes a guide wall 70 that divides the flow path formed between the separation cylinder 60 and the bell mouth 50 into an inner flow path 72 and an outer flow path 73.
  • the blower 1 can reduce the variation in the wind speed distribution in the flow paths outside the separation cylinder 60 (that is, the inner flow path 72 and the outer flow path 73), and can suppress the generation of abnormal noise.
  • the guide wall 70 extends from the lower surface side of the filter 40 to the middle of the space inside the impeller 30 in the radial direction. As a result, the guide wall 70 can separate the air flowing through the outer flow path 73 and the air flowing through the inner flow path 72 and guide them to the impeller 30.
  • the flow velocity of the air flowing through the inner flow path 72 and the flow velocity of the air flowing through the outer flow path 73 are close to each other within the range of the separation cylinder 60 and the bell mouth 50. It is provided at the position where. As a result, the variation in the wind speed distribution in the flow path outside the separation cylinder 60 can be reduced, and the generation of abnormal noise can be suppressed.
  • the diameter D1 of the end portion 71 of the guide wall 70 on the air introduction box 10 side is larger than the diameter D2 of the end portion 74 of the guide wall 70 on the side opposite to the air introduction box 10. ..
  • the second embodiment shows an example of a method of fixing the guide wall 70 with respect to the first embodiment, and the other parts are the same as those of the first embodiment. Therefore, only a part different from the first embodiment is used. explain.
  • the blower 1 of the second embodiment includes a connecting portion 75 for connecting the guide wall 70 and the separation cylinder 60.
  • a plurality of connecting portions 75 are arranged in the circumferential direction. The number, shape, size, etc. of the connecting portions 75 can be arbitrarily set.
  • the guide wall 70, the separation cylinder 60, and the connecting portion 75 can be integrally configured. Therefore, the man-hours for assembling the guide wall 70 and the separation cylinder 60 can be reduced. Further, the rigidity of the guide wall 70 and the separation cylinder 60 can be increased.
  • the blower 1 of the third embodiment includes a plurality of guide walls 701 and 702.
  • the plurality of guide walls 701 and 702 are arranged so as to overlap each other in the radial direction between the separation cylinder 60 and the bell mouth 50.
  • the number, shape, size, etc. of the plurality of guide walls 701 and 702 can be arbitrarily set by experiments and the like. By increasing the number of the guide walls 701 and 702, it is possible to enhance the effect of reducing the variation in the wind speed distribution in the flow path outside the separation cylinder 60.
  • the plurality of guide walls 701 and 702 can be installed. It is possible to reduce the variation in the wind speed distribution and suppress the generation of abnormal noise.
  • the air introduction box 10 provided in the blower 1 of the fourth embodiment also has an outside air introduction port 11, a first inside air introduction port 12, and a second inside air introduction port 13.
  • a first inside / outside air door 18 and a second inside / outside air door 19 are provided inside the air introduction box 10.
  • Both the first inside / outside air door 18 and the second inside / outside air door 19 are composed of rotary doors.
  • the first inside / outside air door 18 is a door for selectively opening / closing the outside air introduction port 11 and the first inside / outside air introduction port 12.
  • the second inside / outside air door 19 is a door that opens / closes the second inside / outside air introduction port 13.
  • the second inside / outside air door 19 introduces the second inside air into a predetermined region 41 of the filter 40 (for example, a region of the filter 40 shown in FIG. 8 on the right side half of the rotation axis Ax of the impeller 30). This is a door for selectively communicating the port 13 and the outside air introduction port 11.
  • the separation cylinder 60 integrally has a tubular portion 63 and a wind collecting portion 64.
  • the air collecting portion 64 is a portion arranged between the suction port forming portion 24 and the filter 40.
  • the air collecting portion 64 is arranged at a position corresponding to the predetermined region 41 of the filter 40 described above, and introduces the air that has passed through the predetermined region 41 of the filter 40 into the flow path inside the tubular portion 63. ..
  • the tubular portion 63 is formed integrally with the wind collecting portion 64 and is arranged inside the impeller 30.
  • the tubular portion 63 is arranged inside the impeller 30 at a position shifted to one side in the radial direction.
  • the central axis CL of the tubular portion 63 and the rotation axis Ax of the impeller 30 are located at different positions.
  • the tubular portion 63 is formed in a flare shape that gradually expands outward in the radial direction as it approaches the air outlet portion 62.
  • the outer edge portion of the tubular portion 63 on the air outlet portion 62 side is provided at a position corresponding to the separation plate 35 of the impeller 30.
  • the guide wall 76 of the fourth embodiment is formed in an arc shape when viewed from the rotation axis Ax direction of the impeller 30.
  • the guide wall 76 is provided in an area of the separation cylinder 60 on the opposite side of the air collecting portion 64. In other words, the guide wall 76 is provided in a region where the distance between the tubular portion 63 of the separation cylinder 60 and the bell mouth 50 is long.
  • the separation cylinder 60 is not provided in a region where the tubular portion 63 of the separation cylinder 60 and the bell mouth 50 are close to each other.
  • the separation cylinder 60 disperses the variation in the wind speed distribution in the region where the distance between the tubular portion 63 of the separation cylinder 60 and the bell mouth 50 is long (in other words, the region where the air collecting portion 64 is not mainly provided). It can be reduced.
  • the distance L1 between the end 71 on the filter 40 side of the guide wall 76 and the rotation axis Ax of the impeller 30 is on the opposite side of the guide wall 76 from the filter 40.
  • the distance between the end portion 74 of the impeller and the rotation axis Ax of the impeller 30 is longer than L2.
  • the guide wall 76 is provided at a position where the flow velocity of the air flowing through the inner flow path 72 and the flow velocity of the air flowing through the outer flow path 73 are close to each other.
  • the position where the guide wall 76 is provided can be appropriately set by an experiment or the like.
  • the shape and size of the guide wall 76 can be appropriately set by an experiment or the like.
  • the blower 1 of the fourth embodiment described above can also exhibit the same effects as those of the first embodiment and the like.
  • the guide walls 70, 76, 701, and 702, the connecting portion 75, and the separation cylinder 60 are integrally configured, but the present invention is not limited to this.
  • the guide walls 70, 76, 701, and 702 may be integrally formed with the frame of the bell mouth 50 or the filter 40.
  • the scroll casing 20 is arranged on the downstream side of the air introduction box 10, and the impeller 30 and the like are housed therein, but the present invention is not limited to this.
  • the scroll casing 20 may be a casing having a ventilation path having a shape different from that of the scroll.
  • blower 1 has been described as being applied to a vehicle air conditioner, but the present invention is not limited to this.
  • the blower 1 may be applied to a device other than the vehicle air conditioner.
  • the first air is referred to as outside air and the second air is referred to as inside air, but the present invention is not limited to this.
  • As the first air and the second air various gases having different humidity, temperature, composition, etc. may be adopted.
  • the first aspect shown in a part or all of the above-described embodiment is a blower capable of simultaneously sucking in the first air and the second air and blowing them out separately, such as an air introduction box and a casing. , Impeller, bell mouth, separator and guide wall.
  • the air introduction box is formed with a first air introduction port into which the first air is introduced and a second air introduction port into which the second air is introduced.
  • the casing is provided on the downstream side of the air introduction box. The impeller sucks at least one of the first air and the second air introduced into the air introduction box into the casing from one side in the rotation axis direction and blows them out in the direction away from the rotation axis.
  • the annular bell mouth is provided between the air introduction box and the impeller and forms a suction port for air sucked from the air introduction box into the impeller.
  • the separation cylinder has a shape that extends radially outward from the air inlet portion arranged on the air introduction box side with respect to the impeller, passing through the inside of the impeller.
  • the guide wall divides the flow path formed between the separation cylinder and the bell mouth into an inner flow path on the separation cylinder side and an outer flow path on the bell mouth side, and air and an outer flow flowing through the inner flow path. Guide the air flowing through the road to the impellers.
  • the blower further includes a filter that collects foreign matter contained in the air flowing from the air introduction box toward the impeller.
  • the guide wall abuts or is adjacent to the impeller side surface of the filter and extends halfway through the radial inner space of the impeller. According to this, the guide wall can separate the air flowing through the outer flow path and the air flowing through the inner flow path and guide them to the impeller.
  • a plurality of guide walls are arranged so as to overlap in the radial direction between the separation cylinder and the bell mouth. According to this, it is possible to enhance the effect of reducing the variation in the wind speed distribution in the flow path outside the separation cylinder. Therefore, even if the blower does not have a guide wall and the variation in the wind speed distribution in the flow path outside the separation cylinder is large, by arranging a plurality of guide walls, the variation in the wind speed distribution can be reduced and abnormal noise can be generated. Occurrence can be suppressed.
  • the guide wall is provided at a position where the flow velocity of the air flowing through the inner flow path and the flow velocity of the air flowing through the outer flow path are close to each other within the range of the separation cylinder and the bell mouth. According to this, in this blower, the variation in the wind speed distribution between the outer flow path and the inner flow path in the flow path outside the separation cylinder is reduced, so that the generation of abnormal noise can be suppressed.
  • the distance between the end of the guide wall on the filter side and the rotating shaft of the impeller is larger than the distance between the end of the guide wall on the opposite side of the filter and the rotating shaft of the impeller. Is far away. According to this, even if the filter is large with respect to the inner flow path of the bell mouth (that is, the suction port of the impeller), the guide wall allows the air that has passed through the filter to flow concentrated in the vicinity of the bell mouth. Can be prevented.
  • the guide wall is formed in a tubular shape, and the diameter of the end portion of the guide wall on the filter side is larger than the diameter of the end portion of the guide wall on the side opposite to the filter. According to this, even if the filter is large relative to the inner flow path of the bell mouth (that is, the suction port of the impeller), the guide wall can prevent the air passing through the filter from concentrating near the bell mouth. it can.
  • the guide wall is formed so that the diameter gradually decreases as the distance from the filter increases. According to this, even if the filter is large relative to the inner flow path of the bell mouth (that is, the suction port of the impeller), the guide wall prevents the air passing through the filter from concentrating and flowing near the bell mouth. be able to.
  • a connecting portion for connecting the guide wall and the separation cylinder is provided. According to this, it is possible to integrally configure the guide wall and the separation cylinder. Therefore, the man-hours for assembling the guide wall and the separation cylinder can be reduced. In addition, the rigidity of the guide wall and the separation cylinder can be increased.
  • the guide wall has a tubular shape or an arc shape when viewed from the rotation axis direction of the impeller. According to this, in the case where the rotation axis of the impeller and the central axis of the separation cylinder are close to each other, the guide wall has a tubular shape to reduce the variation in the wind speed distribution in the flow path outside the separation cylinder. can do. On the other hand, in the case where the rotation axis of the impeller and the central axis of the separation cylinder are deviated from each other, the distance between the separation cylinder and the bell mouth is formed by making the guide wall arcuate when viewed from the direction of the rotation axis of the impeller. It is possible to reduce the variation in the wind speed distribution in the region where is far away.

Abstract

A first air introduction opening (11) and second air introduction openings (12, 13) are formed in an air introduction box (10). An impeller (30) is accommodated in a casing (20) provided on the downstream side of the air introduction box (10). A bell mouth (50) is provided between the air introduction box (10) and the impeller (30) and forms a suction opening for air to be sucked into the impeller (30) from the air introduction box (10). A separating tube (60) has a shape which broadens radially outward through the inside of the impeller (30) from an air inlet portion (61) disposed on the air introduction box (10) of the impeller (30). A guide wall (70, 76, 701, 702) divides a flow passage formed between the separating tube (60) and the bell mouth (50) into an inside flow passage (72) on the separating tube (60) side and an outside flow passage (73) on the bell mouth (50) side, and guides both air flowing through the inside flow passage (72) and air flowing through the outside flow passage (73) to the impeller (30).

Description

送風機Blower 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年11月7日に出願された日本特許出願番号2019-202569号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-202569 filed on November 7, 2019, the contents of which are incorporated herein by reference.
 本開示は、送風機に関するものである。 This disclosure relates to a blower.
 従来、車室内空気(以下、内気という)と車室外空気(以下、外気という)を同時に吸い込み、区分して吹き出すことが可能な片側吸込式の送風機が知られている。
 特許文献1に記載の送風機は、空気導入箱に形成された空気導入口から導入される外気と内気が、フィルタを経由して羽根車に吸い込まれ、羽根車の径方向外側の通風路に吹き出されるように構成されている。羽根車の径方向外側の通風路は、仕切壁によって羽根車の回転軸方向の一方の第1通風路と他方の第2通風路とに仕切られている。羽根車の内側には、空気導入箱から導入されてフィルタを通過した空気(すなわち、外気と内気)を、第1通風路と第2通風路に分離して流すための分離筒が設けられている。分離筒は、フィルタに隣接して配置される空気入口部から羽根車の内側を通って径方向外側に拡がる形状とされている。この構成により、フィルタを通過した空気の一部は、分離筒の空気入口部に入り、分離筒の内側を流れ、羽根車を介して第2通風路へ流れる。一方、フィルタを通過した空気の他の一部は、分離筒の空気入口部に入ることなく、その分離筒より外側を流れ、羽根車を介して第1通風路へ流れる。このように、送風機は、空気導入箱から同時に吸い込んだ外気と内気を第1通風路と第2通風路とに区分して吹き出す構成となっている。
Conventionally, there is known a one-sided suction type blower capable of sucking in vehicle interior air (hereinafter referred to as inside air) and vehicle interior outside air (hereinafter referred to as outside air) at the same time and blowing them out separately.
In the blower described in Patent Document 1, the outside air and the inside air introduced from the air introduction port formed in the air introduction box are sucked into the impeller via the filter and blown out to the ventilator outside the radial direction of the impeller. It is configured to be. The radial outer ventilation path of the impeller is partitioned by a partition wall into one first ventilation path and the other second ventilation path in the rotation axis direction of the impeller. Inside the impeller, a separation cylinder is provided to separate the air introduced from the air introduction box and passing through the filter (that is, the outside air and the inside air) into the first ventilation passage and the second ventilation passage. There is. The separation cylinder has a shape that extends radially outward from the air inlet portion arranged adjacent to the filter through the inside of the impeller. With this configuration, a part of the air that has passed through the filter enters the air inlet portion of the separation cylinder, flows inside the separation cylinder, and flows to the second ventilation passage through the impeller. On the other hand, the other part of the air that has passed through the filter flows outside the separation cylinder without entering the air inlet portion of the separation cylinder, and flows to the first ventilation passage through the impeller. In this way, the blower is configured to divide the outside air and the inside air sucked from the air introduction box into the first ventilation passage and the second ventilation passage and blow them out.
仏国特許出願公開第3072054A1号明細書French Patent Application Publication No. 3072054A1
 上述した特許文献1に記載の送風機に関し、発明者らは次のような課題を見出した。すなわち、この送風機は、羽根車の吸込口を形成するベルマウスの内周縁に対してフィルタが大きく形成されている。また、この送風機は、フィルタの下流側の流路が、分離筒の内側の流路と、分離筒の外側の流路とに分離されている。そのため、その分離筒より外側の流路では、フィルタを通過した空気がベルマウスの付近に集中して流れる構成となっている。これにより、分離筒より外側の流路では、風速分布のばらつきが大きくなり、例えばサイレン音のような高周波の異音が発生することがある。 Regarding the blower described in Patent Document 1 described above, the inventors have found the following problems. That is, in this blower, a large filter is formed on the inner peripheral edge of the bell mouth forming the suction port of the impeller. Further, in this blower, the flow path on the downstream side of the filter is separated into a flow path inside the separation cylinder and a flow path outside the separation cylinder. Therefore, in the flow path outside the separation cylinder, the air that has passed through the filter is concentrated in the vicinity of the bell mouth. As a result, in the flow path outside the separation cylinder, the variation in the wind speed distribution becomes large, and high-frequency abnormal noise such as a siren sound may be generated.
 本開示は、異音の発生を抑制可能な送風機を提供することを目的とする。 The object of the present disclosure is to provide a blower capable of suppressing the generation of abnormal noise.
 本開示の1つの観点によれば、第1空気と第2空気を同時に吸入し区分して吹き出すことが可能な送風機において、
 第1空気が導入される第1空気導入口、および第2空気が導入される第2空気導入口が形成された空気導入箱と、
 空気導入箱の下流側に設けられるケーシングと、
 ケーシングに収容される羽根車であって、空気導入箱に導入される第1空気および第2空気の少なくとも一方を羽根車の回転軸方向の一方側から吸い込み、回転軸から遠ざかる方向に向けて吹き出す羽根車と、
 空気導入箱と羽根車との間に設けられ、空気導入箱から羽根車に吸い込まれる空気の吸込口を形成する環状のベルマウスと、
 羽根車に対して空気導入箱側に配置される空気入口部から羽根車の内側を通って径方向外側に拡がる形状の分離筒と、
 分離筒とベルマウスとの間に形成される流路を、分離筒側の内側流路とベルマウス側の外側流路とに仕切ると共に、内側流路を流れる空気と外側流路を流れる空気をそれぞれ羽根車へ案内するガイド壁と、を備える。
According to one aspect of the present disclosure, in a blower capable of simultaneously sucking in the first air and the second air and blowing them out separately.
An air introduction box in which a first air introduction port into which the first air is introduced and a second air introduction port into which the second air is introduced are formed.
The casing provided on the downstream side of the air introduction box and
An impeller housed in a casing, which sucks at least one of the first air and the second air introduced into the air introduction box from one side of the impeller in the direction of the rotation axis and blows them out in a direction away from the rotation axis. With an impeller
An annular bell mouth, which is provided between the air introduction box and the impeller and forms a suction port for air sucked into the impeller from the air introduction box.
A separation cylinder with a shape that extends radially outward from the air inlet located on the air introduction box side with respect to the impeller, passing through the inside of the impeller, and
The flow path formed between the separation cylinder and the bell mouth is divided into an inner flow path on the separation cylinder side and an outer flow path on the bell mouth side, and air flowing through the inner flow path and air flowing through the outer flow path are separated. Each is equipped with a guide wall that guides the impeller.
 これによれば、空気導入箱から羽根車へ吸い込まれる空気のうち分離筒より外側を流れる空気は、ガイド壁により、内側流路を流れる空気と外側流路を流れる空気とに分けられた状態で羽根車へ吸い込まれる。その際、内側流路を流れる空気はベルマウスから離れた場所を流れる。そのため、空気導入箱から羽根車へ吸い込まれる空気のうちベルマウス付近に集中して流れる空気が減少する。したがって、この送風機は、分離筒より外側の流路における風速分布のばらつきを低減し、異音の発生を抑制することができる。 According to this, of the air sucked from the air introduction box to the impeller, the air flowing outside the separation cylinder is separated into the air flowing through the inner flow path and the air flowing through the outer flow path by the guide wall. It is sucked into the impeller. At that time, the air flowing through the inner flow path flows at a place away from the bell mouth. Therefore, among the air sucked from the air introduction box to the impeller, the air that flows concentrated in the vicinity of the bell mouth is reduced. Therefore, this blower can reduce the variation in the wind speed distribution in the flow path outside the separation cylinder and suppress the generation of abnormal noise.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference symbols in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態に係る送風機の断面図である。It is sectional drawing of the blower which concerns on 1st Embodiment. 第1実施形態に係る送風機の空気導入箱およびフィルタを除いた状態を示す斜視図である。It is a perspective view which shows the state which removed the air introduction box and the filter of the blower which concerns on 1st Embodiment. 第1実施形態に係る送風機において分離筒より外側の流路(すなわち、外側流路と内側流路)の空気の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the air of the flow path outside the separation cylinder (that is, the outer flow path and the inner flow path) in the blower which concerns on 1st Embodiment. 比較例の送風機において分離筒より外側の流路の空気の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the air of the flow path outside the separation cylinder in the blower of a comparative example. 第2実施形態に係る送風機の空気導入箱およびフィルタを除いた状態を示す斜視図である。It is a perspective view which shows the state which removed the air introduction box and the filter of the blower which concerns on 2nd Embodiment. 図5のVI-VI線において、分離筒、ガイド壁および接続部などを示す断面図である。FIG. 5 is a cross-sectional view showing a separation cylinder, a guide wall, a connecting portion, and the like in the VI-VI line of FIG. 第3実施形態に係る送風機の断面図である。It is sectional drawing of the blower which concerns on 3rd Embodiment. 第4実施形態に係る送風機の断面図である。It is sectional drawing of the blower which concerns on 4th Embodiment. 図8のIX-IX線断面において、分離筒、ガイド壁および接続部などを示す平面図である。FIG. 5 is a plan view showing a separation cylinder, a guide wall, a connecting portion, and the like in the IX-IX line cross section of FIG. 第4実施形態に係る送風機において、ガイド壁の位置を説明するための説明図である。It is explanatory drawing for demonstrating the position of the guide wall in the blower which concerns on 4th Embodiment.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。なお、以下の説明において、上、下、左、右の用語は、説明の便宜上用いるものであり、車両搭載時などにおいて各部材が配置される方向を意味するものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each of the following embodiments, the same or equal parts are designated by the same reference numerals, and the description thereof will be omitted. In the following description, the terms upper, lower, left, and right are used for convenience of explanation, and do not mean the direction in which each member is arranged when the member is mounted on a vehicle or the like.
 (第1実施形態)
 第1実施形態について説明する。本実施形態の送風機1は、内外気二層式の車両用空調装置に適用可能なものである。この送風機1は、第1空気としての車室外空気(以下、「外気」という)と、第2空気としての車室内空気(以下、「内気」という)を同時に吸入し、区分して吹き出すことの可能な構成である。送風機1から吹き出される空気(すなわち、外気と内気)は、車両用空調装置が備える図示しない空調ユニットに供給される。その空調ユニットは、送風機1から供給される空気の温度および湿度を調整した空調風を生成し、その空調風を各吹出口から車両のフロントウインドウ、乗員の上半身および乗員の足元などに向けて吹き出すことが可能である。
(First Embodiment)
The first embodiment will be described. The blower 1 of the present embodiment is applicable to a vehicle air conditioner having two layers of inside and outside air. The blower 1 simultaneously sucks in the vehicle interior air as the first air (hereinafter referred to as "outside air") and the vehicle interior air as the second air (hereinafter referred to as "inside air"), and separately blows them out. It is a possible configuration. The air blown from the blower 1 (that is, outside air and inside air) is supplied to an air conditioning unit (not shown) included in the vehicle air conditioner. The air conditioning unit generates air conditioning air that regulates the temperature and humidity of the air supplied from the blower 1, and blows the air conditioning air from each air outlet toward the front window of the vehicle, the upper body of the occupant, the feet of the occupant, and the like. It is possible.
 <送風機1の構成>
 図1および図2に示すように、送風機1は、空気導入箱10、スクロールケーシング20、羽根車30、フィルタ40、ベルマウス50、分離筒60およびガイド壁70などを備えている。
 なお、以下の説明では、羽根車30の回転軸Ax上の任意の点を中心として羽根車30の回転軸Axと直交する平面上に描かれた仮想円の径方向を「羽根車30の径方向」といい、その仮想円の周方向を「羽根車30の周方向」ということがある。なお、羽根車30の回転軸Axは、羽根車30の軸芯と一致しているものとする。
<Structure of blower 1>
As shown in FIGS. 1 and 2, the blower 1 includes an air introduction box 10, a scroll casing 20, an impeller 30, a filter 40, a bell mouth 50, a separation cylinder 60, a guide wall 70, and the like.
In the following description, the radial direction of the virtual circle drawn on a plane orthogonal to the rotation axis Ax of the impeller 30 with an arbitrary point on the rotation axis Ax of the impeller 30 as the center is defined as "the diameter of the impeller 30". It is called "direction", and the circumferential direction of the virtual circle is sometimes called "circumferential direction of the impeller 30". It is assumed that the rotating shaft Ax of the impeller 30 coincides with the shaft core of the impeller 30.
 空気導入箱10は、送風機1の上部に配置されている。空気導入箱10には、外気導入口11、第1内気導入口12および第2内気導入口13が形成されている。外気導入口11は、空気導入箱10の内側に外気を導入するための開口である。第1内気導入口12と第2内気導入口13は、空気導入箱10の内側に内気を導入するための開口である。なお、外気導入口11は、第1空気が導入される第1空気導入口の一例である。また、第1内気導入口12および第2内気導入口13は、第2空気が導入される第2空気導入口の一例である。 The air introduction box 10 is arranged above the blower 1. The air introduction box 10 is formed with an outside air introduction port 11, a first inside air introduction port 12, and a second inside air introduction port 13. The outside air introduction port 11 is an opening for introducing outside air inside the air introduction box 10. The first inside air introduction port 12 and the second inside air introduction port 13 are openings for introducing inside air inside the air introduction box 10. The outside air introduction port 11 is an example of a first air introduction port into which the first air is introduced. Further, the first inside air introduction port 12 and the second inside air introduction port 13 are examples of the second air introduction port into which the second air is introduced.
 空気導入箱10の内側には、外気ドア14、内外気ドア15、内気ドア16および空気導入筒17などが設けられている。外気ドア14は、外気導入口11を開閉するドアである。内外気ドア15は、外気導入口11および第1内気導入口12から空気導入筒17に選択的に空気を導入するためのドアである。内気ドア16は、第2内気導入口13を開閉するドアである。外気ドア14と内気ドア16はバタフライドアで構成されている。内外気ドア15は、ロータリドアで構成されている。
 なお、外気ドア14と内気ドア16は、バタフライドア以外のドア(例えば、ロータリドア)で構成されていてもよい。また、内外気ドア15は、ロータリドア以外のドア(例えば、バタフライドア)で構成されていてもよい。
Inside the air introduction box 10, an outside air door 14, an inside / outside air door 15, an inside air door 16, an air introduction cylinder 17, and the like are provided. The outside air door 14 is a door that opens and closes the outside air introduction port 11. The inside / outside air door 15 is a door for selectively introducing air into the air introduction cylinder 17 from the outside air introduction port 11 and the first inside air introduction port 12. The inside air door 16 is a door that opens and closes the second inside air introduction port 13. The outside air door 14 and the inside air door 16 are composed of butterfly doors. The inside / outside air door 15 is composed of a rotary door.
The outside air door 14 and the inside air door 16 may be composed of doors other than the butterfly door (for example, a rotary door). Further, the inside / outside air door 15 may be composed of a door other than the rotary door (for example, a butterfly door).
 フィルタ40は、空気導入箱10の中で、空気導入筒17の羽根車30側の端部に当接または隣接して配置されている。フィルタ40は、例えば、所定の通気性を有する除塵用濾材がひだ形状に折り曲げられて構成されている。フィルタ40は、空気導入箱10から羽根車30に向けて流れる空気に含まれる異物を捕集する。なお、空気導入箱10とフィルタ40は、上方から視て、その外形が略矩形状に形成されている。 The filter 40 is arranged in the air introduction box 10 in contact with or adjacent to the end of the air introduction cylinder 17 on the impeller 30 side. The filter 40 is configured, for example, by bending a dust removing filter medium having a predetermined air permeability into a fold shape. The filter 40 collects foreign matter contained in the air flowing from the air introduction box 10 toward the impeller 30. The air introduction box 10 and the filter 40 are formed in a substantially rectangular shape when viewed from above.
 空気導入箱10の下流側にスクロールケーシング20が設けられている。そのスクロールケーシング20の内側に羽根車30が収容されている。 A scroll casing 20 is provided on the downstream side of the air introduction box 10. The impeller 30 is housed inside the scroll casing 20.
 羽根車30は、電動モータ31の駆動により回転する遠心ファンである。具体的には、羽根車30は、シロッコファンで構成されている。なお、羽根車30は、それに限らず、ラジアルファンまたはターボファンなどで構成されていてもよい。電動モータ31の駆動により羽根車30が回転すると、羽根車30は、回転軸Ax方向の一方側から空気を吸い込み、その吸い込んだ空気を回転軸Axから遠ざかる方向に向けて吹き出すように構成されている。 The impeller 30 is a centrifugal fan that rotates by being driven by an electric motor 31. Specifically, the impeller 30 is composed of a sirocco fan. The impeller 30 is not limited to this, and may be composed of a radial fan, a turbo fan, or the like. When the impeller 30 is rotated by the drive of the electric motor 31, the impeller 30 is configured to suck in air from one side in the direction of the rotating shaft Ax and blow out the sucked air in the direction away from the rotating shaft Ax. There is.
 羽根車30は、主板32、複数の第1ブレード33、複数の第2ブレード34、および分離板35を有している。
 主板32は、円盤状に形成されている。主板32の中心部には電動モータ31のシャフト36が固定されている。主板32に対して複数の第2ブレード34が配置されている。複数の第2ブレード34のフィルタ40側に分離板35を介して複数の第1ブレード33が配置されている。
The impeller 30 has a main plate 32, a plurality of first blades 33, a plurality of second blades 34, and a separation plate 35.
The main plate 32 is formed in a disk shape. The shaft 36 of the electric motor 31 is fixed to the central portion of the main plate 32. A plurality of second blades 34 are arranged with respect to the main plate 32. A plurality of first blades 33 are arranged on the filter 40 side of the plurality of second blades 34 via the separation plate 35.
 複数の第1ブレード33と複数の第2ブレード34はいずれも、羽根車30の周方向に所定の間隔をあけて配置されている。複数の第1ブレード33同士の間には、空気が流れる第1ブレード間流路37が形成されている。複数の第2ブレード34同士の間には、空気が流れる第2ブレード間流路38が形成されている。
 分離板35は、複数の第1ブレード33と複数の第2ブレード34とを接続している。そして、分離板35は、第1ブレード間流路37と第2ブレード間流路38とを分離している。
The plurality of first blades 33 and the plurality of second blades 34 are all arranged at predetermined intervals in the circumferential direction of the impeller 30. A flow path 37 between the first blades through which air flows is formed between the plurality of first blades 33. A flow path 38 between the second blades through which air flows is formed between the plurality of second blades 34.
The separation plate 35 connects the plurality of first blades 33 and the plurality of second blades 34. The separation plate 35 separates the first blade-to-blade flow path 37 and the second blade-to-blade flow path 38.
 スクロールケーシング20は、羽根車30の径方向外側に通風路21、22を形成している。通風路21、22には、仕切壁23が設けられている。仕切壁23は、羽根車30の分離板35に対応する位置に設けられている。仕切壁23は、羽根車30の径方向外側の通風路21、22を、羽根車30の回転軸Ax方向の一方の第1通風路21と、羽根車30の回転軸Ax方向の他方の第2通風路22とに仕切っている。第1通風路21と第2通風路22は、羽根車30から放射状に吹き出される気流を羽根車30の周方向への流れに整流し、その気流を図示しない空調ユニットに供給するように構成されている。 The scroll casing 20 forms ventilation passages 21 and 22 on the radial outer side of the impeller 30. A partition wall 23 is provided in the ventilation passages 21 and 22. The partition wall 23 is provided at a position corresponding to the separating plate 35 of the impeller 30. In the partition wall 23, the ventilation passages 21 and 22 on the outer side in the radial direction of the impeller 30 are the first ventilation passage 21 in the rotation axis Ax direction of the impeller 30 and the other first ventilation passage 21 in the rotation axis Ax direction of the impeller 30. It is divided into two ventilation passages 22. The first ventilation passage 21 and the second ventilation passage 22 are configured to rectify the airflow radiating from the impeller 30 into a flow in the circumferential direction of the impeller 30 and supply the airflow to an air conditioning unit (not shown). Has been done.
 スクロールケーシング20のうち羽根車30の回転軸Ax方向の一方には、第1通風路21の上壁を構成する吸込口形成部24が設けられている。吸込口形成部24のほぼ中央には、羽根車30に吸い込まれる空気の吸込口を形成するための環状のベルマウス50が設けられている。すなわち、ベルマウス50の内側の流路が、羽根車30に吸い込まれる空気の吸込口となる。ベルマウス50は、フィルタ40と羽根車30との間に設けられ、フィルタ40を通過した空気が羽根車30の吸込口に円滑に流れるよう、断面形状が円弧状に湾曲した形状とされている。 A suction port forming portion 24 forming an upper wall of the first ventilation passage 21 is provided on one side of the scroll casing 20 in the direction of the rotation axis Ax of the impeller 30. An annular bell mouth 50 for forming a suction port for air sucked into the impeller 30 is provided substantially in the center of the suction port forming portion 24. That is, the flow path inside the bell mouth 50 serves as a suction port for air sucked into the impeller 30. The bell mouth 50 is provided between the filter 40 and the impeller 30, and has a cross-sectional shape curved in an arc shape so that the air passing through the filter 40 smoothly flows to the suction port of the impeller 30. ..
 羽根車30が有する第1ブレード33および第2ブレード34の径方向内側の空間(以下、単に「羽根車30の内側」という)には、分離筒60が設けられている。分離筒60は、羽根車30の回転軸Ax方向に延びる筒状の部材であり、その軸方向の両端が開口している。分離筒60のうち、羽根車30に対してフィルタ40側の開口を空気入口部61と呼び、羽根車30に対してフィルタ40とは反対側の開口を空気出口部62と呼ぶこととする。 A separation cylinder 60 is provided in the space inside the first blade 33 and the second blade 34 of the impeller 30 in the radial direction (hereinafter, simply referred to as "inside the impeller 30"). The separation cylinder 60 is a tubular member extending in the rotation axis Ax direction of the impeller 30, and both ends in the axial direction are open. In the separation cylinder 60, the opening on the filter 40 side with respect to the impeller 30 is referred to as an air inlet portion 61, and the opening on the side opposite to the filter 40 with respect to the impeller 30 is referred to as an air outlet portion 62.
 分離筒60の空気入口部61は、羽根車30に対してフィルタ40側に配置され、フィルタ40に当接または隣接している。空気導入箱10の内側に設けられている空気導入筒17のフィルタ40側の開口部と、分離筒60の空気入口部61とは、羽根車30の軸方向から視て一致しているか、または、大部分が重なるように設けられている。そのため、空気導入筒17の内側を流れる空気は、その殆どがフィルタ40を介して分離筒60の内側へ流れる。一方、空気導入筒17より外側を流れる空気は、その殆どがフィルタ40を介して分離筒60より外側へ流れる。 The air inlet portion 61 of the separation cylinder 60 is arranged on the filter 40 side with respect to the impeller 30, and is in contact with or adjacent to the filter 40. The opening on the filter 40 side of the air introduction cylinder 17 provided inside the air introduction box 10 and the air inlet portion 61 of the separation cylinder 60 are aligned or coincide with each other when viewed from the axial direction of the impeller 30. , Most of them are provided so as to overlap. Therefore, most of the air flowing inside the air introduction cylinder 17 flows to the inside of the separation cylinder 60 through the filter 40. On the other hand, most of the air flowing outside the air introduction cylinder 17 flows outside the separation cylinder 60 through the filter 40.
 分離筒60は、空気入口部61から羽根車30の内側を通り、空気出口部62に近づくに従って次第に径方向外側に拡がるフレア状に形成されている。分離筒60の空気出口部62側の外縁部は、羽根車30の分離板35に対応する位置に設けられている。これにより、フィルタ40を通過した空気のうち分離筒60より外側を流れる空気は、羽根車30の第1ブレード間流路37を経由して第1通風路21へ流れる。一方、フィルタ40を通過した空気のうち分離筒60の内側を流れる空気は、羽根車30の第2ブレード間流路38を経由して第2通風路22へ流れる。 The separation cylinder 60 is formed in a flare shape that passes from the air inlet portion 61 to the inside of the impeller 30 and gradually expands outward in the radial direction as it approaches the air outlet portion 62. The outer edge portion of the separation cylinder 60 on the air outlet portion 62 side is provided at a position corresponding to the separation plate 35 of the impeller 30. As a result, of the air that has passed through the filter 40, the air that flows outside the separation cylinder 60 flows to the first ventilation passage 21 via the flow path 37 between the first blades of the impeller 30. On the other hand, of the air that has passed through the filter 40, the air that flows inside the separation cylinder 60 flows to the second ventilation passage 22 via the flow path 38 between the second blades of the impeller 30.
 羽根車30の内側で、且つ、分離筒60の外側には、ガイド壁70が設けられている。本実施形態のガイド壁70は、羽根車30の回転軸Ax方向に延びる筒状の部材であり、その軸方向の両端が開口している。ガイド壁70のうちフィルタ40側の端部71は、フィルタ40に当接または隣接している。ガイド壁70は、フィルタ40のうち羽根車30側の面に当接または隣接し、そこから羽根車30の内側の途中まで延びている。ガイド壁70は、分離筒60とベルマウス50との間に形成される流路を、ガイド壁70より分離筒60側の内側流路72と、ガイド壁70よりベルマウス50側の外側流路73とに仕切っている。すなわち、内側流路72は、ガイド壁70と分離筒60との間に形成される流路である。一方、外側流路73は、ガイド壁70より径方向外側に形成される流路である。ガイド壁70は、内側流路72を流れる空気と外側流路73を流れる空気をそれぞれ羽根車30へ案内する。 A guide wall 70 is provided inside the impeller 30 and outside the separation cylinder 60. The guide wall 70 of the present embodiment is a tubular member extending in the rotation axis Ax direction of the impeller 30, and both ends in the axial direction are open. The end 71 of the guide wall 70 on the filter 40 side is in contact with or adjacent to the filter 40. The guide wall 70 is in contact with or adjacent to the surface of the filter 40 on the impeller 30 side, and extends from there to the middle of the inside of the impeller 30. The guide wall 70 has a flow path formed between the separation cylinder 60 and the bell mouth 50, an inner flow path 72 on the separation cylinder 60 side of the guide wall 70 and an outer flow path on the bell mouth 50 side of the guide wall 70. It is divided into 73. That is, the inner flow path 72 is a flow path formed between the guide wall 70 and the separation cylinder 60. On the other hand, the outer flow path 73 is a flow path formed radially outside the guide wall 70. The guide wall 70 guides the air flowing through the inner flow path 72 and the air flowing through the outer flow path 73 to the impeller 30, respectively.
 ガイド壁70は、フィルタ40から遠ざかるに従って径が次第に小さくなるテーパ状に形成されている。言い換えれば、ガイド壁70は、フィルタ40に近づく従って径が次第に拡がるフレア状に形成されている。そのため、図2および図3に示すように、ガイド壁70のうちフィルタ40側の端部71の径D1は、ガイド壁70のうちフィルタ40とは反対側の端部74の径D2より大きい。また、ガイド壁70のうちフィルタ40側の端部71と羽根車30の回転軸Axとの距離L1は、ガイド壁70のうちフィルタ40とは反対側の端部74と羽根車30の回転軸Axとの距離L2よりも遠い。そして、ガイド壁70の位置は、内側流路72を流れる空気の流速と、外側流路73を流れる空気の流速とが近づくように、実験などにより適切に設定されている。また、ガイド壁70の形状、大きさなども、実験などにより適切に設定されている。 The guide wall 70 is formed in a tapered shape whose diameter gradually decreases as the distance from the filter 40 increases. In other words, the guide wall 70 is formed in a flare shape in which the diameter gradually increases as it approaches the filter 40. Therefore, as shown in FIGS. 2 and 3, the diameter D1 of the end portion 71 of the guide wall 70 on the filter 40 side is larger than the diameter D2 of the end portion 74 of the guide wall 70 on the side opposite to the filter 40. Further, the distance L1 between the end 71 of the guide wall 70 on the filter 40 side and the rotation shaft Ax of the impeller 30 is the rotation shaft of the end 74 of the guide wall 70 on the opposite side of the filter 40 and the impeller 30. Distance from Ax is farther than L2. The position of the guide wall 70 is appropriately set by an experiment or the like so that the flow velocity of the air flowing through the inner flow path 72 and the flow velocity of the air flowing through the outer flow path 73 are close to each other. Further, the shape and size of the guide wall 70 are also appropriately set by experiments and the like.
 図3の矢印FA1、FA2は、分離筒60より外側の流路の空気の流れを模式的に示したものである。フィルタ40を通過した空気のうち分離筒60より外側を流れる空気は、ガイド壁70により、内側流路72を流れる空気と外側流路73を流れる空気とに分けられた状態で羽根車30に吸い込まれる。その際、内側流路72を流れる空気は、ベルマウス50から離れた場所を流れる。そのため、分離筒60より外側の流路(すなわち、内側流路72および外側流路73)を流れる空気のうち、ベルマウス50の付近に集中して流れる空気が減少する。したがって、この送風機1は、分離筒60より外側の流路における風速分布のばらつきを低減し、異音の発生を抑制することができる。 Arrows FA1 and FA2 in FIG. 3 schematically show the air flow in the flow path outside the separation cylinder 60. Of the air that has passed through the filter 40, the air that flows outside the separation cylinder 60 is sucked into the impeller 30 in a state of being separated by the guide wall 70 into the air that flows through the inner flow path 72 and the air that flows through the outer flow path 73. Is done. At that time, the air flowing through the inner flow path 72 flows at a place away from the bell mouth 50. Therefore, among the air flowing through the flow paths outside the separation cylinder 60 (that is, the inner flow path 72 and the outer flow path 73), the air flowing concentrated in the vicinity of the bell mouth 50 is reduced. Therefore, the blower 1 can reduce the variation in the wind speed distribution in the flow path outside the separation cylinder 60 and suppress the generation of abnormal noise.
 <送風機1の作動>
 送風機1は、空気の吸込モードとして、外気と内気を同時に吸入し区分して吹き出す内外気モード、外気を吸入して吹き出す外気モード、内気を吸入して吹き出す内気モードを設定可能に構成されている。
<Operation of blower 1>
The blower 1 is configured to be able to set as an air suction mode, an inside / outside air mode in which the outside air and the inside air are simultaneously sucked and separately blown out, an outside air mode in which the outside air is sucked in and blown out, and an inside air mode in which the inside air is sucked in and blown out. ..
 図1は、送風機1に内外気モードが設定された状態を示している。その際、外気ドア14は、外気導入口11を開放する位置に変位する。内外気ドア15は、第1内気導入口12と空気導入筒17とを連通させ、外気導入口11と空気導入筒17との連通を遮断する位置に変位する。内気ドア16は、第2内気導入口13を閉塞する位置に変位する。その状態で、電動モータ31の駆動により羽根車30が回転すると、外気導入口11から空気導入筒17の外側に外気が導入されるとともに、第1内気導入口12から空気導入筒17の内側に内気が導入される。 FIG. 1 shows a state in which the inside / outside air mode is set in the blower 1. At that time, the outside air door 14 is displaced to a position where the outside air introduction port 11 is opened. The inside / outside air door 15 is displaced to a position where the first inside air introduction port 12 and the air introduction cylinder 17 communicate with each other and the communication between the outside air introduction port 11 and the air introduction cylinder 17 is cut off. The inside air door 16 is displaced to a position where the second inside air introduction port 13 is closed. In this state, when the impeller 30 is rotated by the drive of the electric motor 31, the outside air is introduced from the outside air introduction port 11 to the outside of the air introduction cylinder 17, and the outside air is introduced from the first inside air introduction port 12 to the inside of the air introduction cylinder 17. Shyness is introduced.
 図1の矢印FEに示すように、外気導入口11から空気導入筒17の外側に導入される外気は、フィルタ40を通過し、分離筒60より外側の流路から、羽根車30の第1ブレード間流路37に吸い込まれ、第1通風路21へ吹き出される。なお、分離筒60より外側の流路とは、内側流路72および外側流路73を含んでいる。
 一方、図1の矢印FRに示すように、第1内気導入口12から空気導入筒17の内側に導入される内気は、フィルタ40を通過し、分離筒60の内側を流れ、羽根車30の第2ブレード間流路38に吸い込まれ、第2通風路22へ吹き出される。
As shown by the arrow FE in FIG. 1, the outside air introduced from the outside air introduction port 11 to the outside of the air introduction cylinder 17 passes through the filter 40, and from the flow path outside the separation cylinder 60, the first impeller 30 It is sucked into the inter-blade flow path 37 and blown out to the first ventilation passage 21. The flow path outside the separation cylinder 60 includes an inner flow path 72 and an outer flow path 73.
On the other hand, as shown by the arrow FR in FIG. 1, the inside air introduced from the first inside air introduction port 12 to the inside of the air introduction cylinder 17 passes through the filter 40 and flows inside the separation cylinder 60, and the impeller 30 It is sucked into the flow path 38 between the second blades and blown out to the second ventilation passage 22.
 なお、第1通風路21を流れる外気と第2通風路22を流れる内気は、図示しない空調ユニットに導入され、空調ユニットの内部で所望の温度および湿度に調整された後、各吹出口から車室内へ吹出される。なお、送風機1に内外気モードが設定される場合、第1通風路21を流れる外気は、主に車室内に設けられたデフロスタ吹出口からフロントガラスに吹き出される。 The outside air flowing through the first ventilation passage 21 and the inside air flowing through the second ventilation passage 22 are introduced into an air conditioning unit (not shown), adjusted to a desired temperature and humidity inside the air conditioning unit, and then the vehicle is driven from each outlet. It is blown into the room. When the inside / outside air mode is set in the blower 1, the outside air flowing through the first ventilation passage 21 is mainly blown out to the windshield from the defroster outlet provided in the vehicle interior.
 図示は省略するが、送風機1は、外気モードが設定されると、外気ドア14、内外気ドア15、内気ドア16が次のように変位する。外気ドア14は、外気導入口11を開放する位置に変位する。内外気ドア15は、外気導入口11と空気導入筒17とを連通させ、第1内気導入口12と空気導入筒17との連通を遮断する位置に変位する。内気ドア16は、第2内気導入口13を閉塞する位置に変位する。その状態で、電動モータ31の駆動により羽根車30が回転すると、外気導入口11から導入される外気は、空気導入筒17および分離筒60の内側と外側の両方を流れ、第1通風路21と第2通風路22へ吹き出される。 Although not shown, in the blower 1, when the outside air mode is set, the outside air door 14, the inside / outside air door 15, and the inside air door 16 are displaced as follows. The outside air door 14 is displaced to a position where the outside air introduction port 11 is opened. The inside / outside air door 15 is displaced to a position where the outside air introduction port 11 and the air introduction cylinder 17 communicate with each other and the communication between the first inside air introduction port 12 and the air introduction cylinder 17 is cut off. The inside air door 16 is displaced to a position where the second inside air introduction port 13 is closed. In this state, when the impeller 30 is rotated by the drive of the electric motor 31, the outside air introduced from the outside air introduction port 11 flows through both the inside and outside of the air introduction cylinder 17 and the separation cylinder 60, and the first ventilation passage 21 Is blown out to the second ventilation passage 22.
 また、送風機1は、内気モードが設定されると、外気ドア14、内外気ドア15、内気ドア16が次のように変位する。外気ドア14は、外気導入口11を閉塞する位置に変位する。内外気ドア15は、第1内気導入口12と空気導入筒17とを連通させ、外気導入口11と空気導入筒17との連通を遮断する位置に変位する。内気ドア16は、第2内気導入口13を開放する位置に変位する。その状態で、電動モータ31の駆動により羽根車30が回転すると、第1内気導入口12から導入される内気は空気導入筒17および分離筒60の内側を流れ、第2通風路22へ吹き出される。また、第2内気導入口13から導入される内気は空気導入筒17および分離筒60の外側を流れ、第1通風路21へ吹き出される。 Further, in the blower 1, when the inside air mode is set, the outside air door 14, the inside / outside air door 15, and the inside air door 16 are displaced as follows. The outside air door 14 is displaced to a position where the outside air introduction port 11 is closed. The inside / outside air door 15 is displaced to a position where the first inside air introduction port 12 and the air introduction cylinder 17 communicate with each other and the communication between the outside air introduction port 11 and the air introduction cylinder 17 is cut off. The inside air door 16 is displaced to a position where the second inside air introduction port 13 is opened. In this state, when the impeller 30 is rotated by the drive of the electric motor 31, the inside air introduced from the first inside air introduction port 12 flows inside the air introduction cylinder 17 and the separation cylinder 60, and is blown out to the second ventilation passage 22. To. Further, the inside air introduced from the second inside air introduction port 13 flows outside the air introduction cylinder 17 and the separation cylinder 60, and is blown out to the first ventilation passage 21.
 <比較例の送風機>
 ここで、上述した第1実施形態の送風機1と比較するため、比較例の送風機100について説明する。
<Blower of comparative example>
Here, in order to compare with the blower 1 of the first embodiment described above, the blower 100 of the comparative example will be described.
 図4に示すように、比較例の送風機100は、第1実施形態の送風機1に対して、ガイド壁70を備えていない点が異なっており、その他の構成は同一である。すなわち、比較例の送風機100と第1実施形態の送風機1とはいずれも、分離筒60を備えている。また、ベルマウス50の内周縁に対してフィルタ40が大きく形成されている。 As shown in FIG. 4, the blower 100 of the comparative example is different from the blower 1 of the first embodiment in that the guide wall 70 is not provided, and the other configurations are the same. That is, both the blower 100 of the comparative example and the blower 1 of the first embodiment include a separation cylinder 60. Further, the filter 40 is formed large with respect to the inner peripheral edge of the bell mouth 50.
 図4の矢印FBは、比較例の送風機100において、分離筒60より外側の流路の空気の流れを模式的に示したものである。比較例の送風機100は、破線Cで囲った範囲で示すように、フィルタ40を通過した空気のうち分離筒60より外側の流路を流れる空気が、ベルマウス50の付近に集中して流れる構成となっている。そのため、比較例の送風機100では、分離筒60より外側の流路における風速分布のばらつきが大きくなり、例えばサイレン音のような高周波の異音が発生することがある。 The arrow FB in FIG. 4 schematically shows the air flow in the flow path outside the separation cylinder 60 in the blower 100 of the comparative example. As shown in the range surrounded by the broken line C, the blower 100 of the comparative example has a configuration in which the air that has passed through the filter 40 and flows through the flow path outside the separation cylinder 60 is concentrated in the vicinity of the bell mouth 50. It has become. Therefore, in the blower 100 of the comparative example, the variation in the wind speed distribution in the flow path outside the separation cylinder 60 becomes large, and a high-frequency abnormal noise such as a siren sound may be generated.
 <第1実施形態の作用効果>
 上述した比較例の送風機100に対して、第1実施形態の送風機1は次の作用効果を奏する。
 (1)第1実施形態の送風機1は、分離筒60とベルマウス50との間に形成される流路を内側流路72と外側流路73とに仕切るガイド壁70を備えている。これにより、フィルタ40を通過した空気のうち分離筒60より外側を流れる空気は、内側流路72を流れる空気と外側流路73を流れる空気とに分けられた状態で羽根車30へ吸い込まれる。その際、内側流路72を流れる空気はベルマウス50から離れた場所を流れる。そのため、フィルタ40から羽根車30へ吸い込まれる空気のうちベルマウス50付近に集中して流れる空気が減少する。したがって、この送風機1は、分離筒60より外側の流路(すなわち、内側流路72と外側流路73)における風速分布のばらつきを低減し、異音の発生を抑制することができる。
<Action and effect of the first embodiment>
The blower 1 of the first embodiment has the following effects on the blower 100 of the comparative example described above.
(1) The blower 1 of the first embodiment includes a guide wall 70 that divides the flow path formed between the separation cylinder 60 and the bell mouth 50 into an inner flow path 72 and an outer flow path 73. As a result, of the air that has passed through the filter 40, the air that flows outside the separation cylinder 60 is sucked into the impeller 30 in a state of being separated into air that flows through the inner flow path 72 and air that flows through the outer flow path 73. At that time, the air flowing through the inner flow path 72 flows at a place away from the bell mouth 50. Therefore, among the air sucked from the filter 40 to the impeller 30, the air concentrated in the vicinity of the bell mouth 50 is reduced. Therefore, the blower 1 can reduce the variation in the wind speed distribution in the flow paths outside the separation cylinder 60 (that is, the inner flow path 72 and the outer flow path 73), and can suppress the generation of abnormal noise.
 (2)第1実施形態では、ガイド壁70は、フィルタ40の下面側から羽根車30の径方向内側の空間の途中まで延びている。これにより、ガイド壁70は、外側流路73を流れる空気と内側流路72を流れる空気とを区分して羽根車30へ案内することが可能である。 (2) In the first embodiment, the guide wall 70 extends from the lower surface side of the filter 40 to the middle of the space inside the impeller 30 in the radial direction. As a result, the guide wall 70 can separate the air flowing through the outer flow path 73 and the air flowing through the inner flow path 72 and guide them to the impeller 30.
 (3)第1実施形態では、ガイド壁70は、分離筒60とベルマウス50との範囲内で、内側流路72を流れる空気の流速と、外側流路73を流れる空気の流速とが近くなる位置に設けられる。これにより、分離筒60より外側の流路における風速分布のばらつきが低減され、異音の発生を抑制することができる。 (3) In the first embodiment, in the guide wall 70, the flow velocity of the air flowing through the inner flow path 72 and the flow velocity of the air flowing through the outer flow path 73 are close to each other within the range of the separation cylinder 60 and the bell mouth 50. It is provided at the position where. As a result, the variation in the wind speed distribution in the flow path outside the separation cylinder 60 can be reduced, and the generation of abnormal noise can be suppressed.
 (4)第1実施形態では、ガイド壁70のうち空気導入箱10側の端部71の径D1は、ガイド壁70のうち空気導入箱10とは反対側の端部74の径D2より大きい。これにより、ベルマウス50の内側の流路(すなわち、羽根車30の吸込口)に対してフィルタ40が大きい場合でも、ガイド壁70は、フィルタ40を通過した空気がベルマウス50付近に集中して流れることを防ぐことができる。 (4) In the first embodiment, the diameter D1 of the end portion 71 of the guide wall 70 on the air introduction box 10 side is larger than the diameter D2 of the end portion 74 of the guide wall 70 on the side opposite to the air introduction box 10. .. As a result, even when the filter 40 is large with respect to the inner flow path of the bell mouth 50 (that is, the suction port of the impeller 30), the air passing through the filter 40 is concentrated in the vicinity of the bell mouth 50 on the guide wall 70. Can be prevented from flowing.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対してガイド壁70の固定方法の一例を示したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
The second embodiment will be described. The second embodiment shows an example of a method of fixing the guide wall 70 with respect to the first embodiment, and the other parts are the same as those of the first embodiment. Therefore, only a part different from the first embodiment is used. explain.
 図5および図6に示すように、第2実施形態の送風機1は、ガイド壁70と分離筒60とを接続する接続部75を備えている。接続部75は、周方向に複数個配置されている。接続部75の個数、形状、大きさなどは、任意に設定可能である。
 第2実施形態では、ガイド壁70と分離筒60と接続部75とを一体に構成することが可能である。そのため、ガイド壁70と分離筒60の組み付け工数を低減することができる。また、ガイド壁70と分離筒60の剛性を高めることができる。
As shown in FIGS. 5 and 6, the blower 1 of the second embodiment includes a connecting portion 75 for connecting the guide wall 70 and the separation cylinder 60. A plurality of connecting portions 75 are arranged in the circumferential direction. The number, shape, size, etc. of the connecting portions 75 can be arbitrarily set.
In the second embodiment, the guide wall 70, the separation cylinder 60, and the connecting portion 75 can be integrally configured. Therefore, the man-hours for assembling the guide wall 70 and the separation cylinder 60 can be reduced. Further, the rigidity of the guide wall 70 and the separation cylinder 60 can be increased.
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態等に対してガイド壁70の個数を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Third Embodiment)
The third embodiment will be described. In the third embodiment, the number of guide walls 70 is changed with respect to the first embodiment and the like, and the other parts are the same as those in the first embodiment and the like. Therefore, only the parts different from the first embodiment and the like are used. explain.
 図7に示すように、第3実施形態の送風機1は、複数のガイド壁701、702を備えている。複数のガイド壁701、702は、分離筒60とベルマウス50との間で径方向に重なるように配置されている。複数のガイド壁701、702の個数、形状、大きさなどは、実験などにより任意に設定可能である。ガイド壁701、702の個数を増加することで、分離筒60より外側の流路における風速分布のばらつきの低減効果を高めることが可能である。そのため、送風機1がガイド壁を備えていない状態で分離筒60より外側の流路における風速分布のばらつきが大きい程、ガイド壁701、702の個数を増加することが好ましい。従って、第3実施形態では、送風機1がガイド壁を備えていない状態では分離筒60より外側の流路における風速分布のばらつきが大きい場合でも、複数のガイド壁701、702を設置することにより、その風速分布のばらつきを低減し、異音の発生を抑制できる。 As shown in FIG. 7, the blower 1 of the third embodiment includes a plurality of guide walls 701 and 702. The plurality of guide walls 701 and 702 are arranged so as to overlap each other in the radial direction between the separation cylinder 60 and the bell mouth 50. The number, shape, size, etc. of the plurality of guide walls 701 and 702 can be arbitrarily set by experiments and the like. By increasing the number of the guide walls 701 and 702, it is possible to enhance the effect of reducing the variation in the wind speed distribution in the flow path outside the separation cylinder 60. Therefore, it is preferable to increase the number of guide walls 701 and 702 as the variation in the wind speed distribution in the flow path outside the separation cylinder 60 becomes larger in the state where the blower 1 is not provided with the guide wall. Therefore, in the third embodiment, even if the blower 1 is not provided with the guide wall and the wind speed distribution in the flow path outside the separation cylinder 60 varies widely, the plurality of guide walls 701 and 702 can be installed. It is possible to reduce the variation in the wind speed distribution and suppress the generation of abnormal noise.
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第1実施形態等に対して空気導入箱10、分離筒60およびガイド壁70などの構成を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Fourth Embodiment)
A fourth embodiment will be described. In the fourth embodiment, the configurations of the air introduction box 10, the separation cylinder 60, the guide wall 70, and the like are changed from those of the first embodiment and the like, and the other parts are the same as those of the first embodiment and the like. Only the parts different from the first embodiment and the like will be described.
 図8に示すように、第4実施形態の送風機1が備える空気導入箱10にも、外気導入口11、第1内気導入口12および第2内気導入口13が形成されている。空気導入箱10の内側には、第1内外気ドア18と第2内外気ドア19が設けられている。第1内外気ドア18と第2内外気ドア19はいずれもロータリドアで構成されている。第1内外気ドア18は、外気導入口11と第1内気導入口12とを選択的に開閉するためのドアである。第2内外気ドア19は、第2内気導入口13を開閉するドアである。また、第2内外気ドア19は、フィルタ40の所定の領域41(例えば、図8に示されるフィルタ40のうち羽根車30の回転軸Axより右側半分程度の領域)に対して第2内気導入口13と外気導入口11とを選択的に連通させるためのドアである。 As shown in FIG. 8, the air introduction box 10 provided in the blower 1 of the fourth embodiment also has an outside air introduction port 11, a first inside air introduction port 12, and a second inside air introduction port 13. Inside the air introduction box 10, a first inside / outside air door 18 and a second inside / outside air door 19 are provided. Both the first inside / outside air door 18 and the second inside / outside air door 19 are composed of rotary doors. The first inside / outside air door 18 is a door for selectively opening / closing the outside air introduction port 11 and the first inside / outside air introduction port 12. The second inside / outside air door 19 is a door that opens / closes the second inside / outside air introduction port 13. Further, the second inside / outside air door 19 introduces the second inside air into a predetermined region 41 of the filter 40 (for example, a region of the filter 40 shown in FIG. 8 on the right side half of the rotation axis Ax of the impeller 30). This is a door for selectively communicating the port 13 and the outside air introduction port 11.
 分離筒60は、筒状部63と集風部64とを一体に有している。集風部64は、吸込口形成部24とフィルタ40との間に配置される部位である。集風部64は、上述したフィルタ40の所定の領域41に対応する位置に配置されており、そのフィルタ40の所定の領域41を通過した空気を筒状部63の内側の流路に導入する。
 筒状部63は、集風部64と一体に形成され、羽根車30の内側に配置されている。筒状部63は、羽根車30の内側で、径方向の一方にずれた位置に配置されている。そのため、分離筒60のうち筒状部63の中心軸CLと羽根車30の回転軸Axとは、ずれた位置にある。なお、筒状部63は、空気出口部62に近づくに従って次第に径方向外側に拡がるフレア状に形成されている。筒状部63の空気出口部62側の外縁部は、羽根車30の分離板35に対応する位置に設けられている。
The separation cylinder 60 integrally has a tubular portion 63 and a wind collecting portion 64. The air collecting portion 64 is a portion arranged between the suction port forming portion 24 and the filter 40. The air collecting portion 64 is arranged at a position corresponding to the predetermined region 41 of the filter 40 described above, and introduces the air that has passed through the predetermined region 41 of the filter 40 into the flow path inside the tubular portion 63. ..
The tubular portion 63 is formed integrally with the wind collecting portion 64 and is arranged inside the impeller 30. The tubular portion 63 is arranged inside the impeller 30 at a position shifted to one side in the radial direction. Therefore, in the separation cylinder 60, the central axis CL of the tubular portion 63 and the rotation axis Ax of the impeller 30 are located at different positions. The tubular portion 63 is formed in a flare shape that gradually expands outward in the radial direction as it approaches the air outlet portion 62. The outer edge portion of the tubular portion 63 on the air outlet portion 62 side is provided at a position corresponding to the separation plate 35 of the impeller 30.
 図9に示すように、第4実施形態のガイド壁76は、羽根車30の回転軸Ax方向から視て円弧状に形成されている。ガイド壁76は、分離筒60の有する集風部64とは反対側の領域に設けられている。言い換えれば、ガイド壁76は、分離筒60の有する筒状部63とベルマウス50との距離が遠くなっている領域に設けられている。なお、分離筒60は、分離筒60の有する筒状部63とベルマウス50との距離が近くなっている領域には設けられていない。分離筒60は、分離筒60の有する筒状部63とベルマウス50との距離が遠くなっている領域(言い換えれば、主に集風部64が設けられていない領域)における風速分布のばらつきを低減することが可能である。 As shown in FIG. 9, the guide wall 76 of the fourth embodiment is formed in an arc shape when viewed from the rotation axis Ax direction of the impeller 30. The guide wall 76 is provided in an area of the separation cylinder 60 on the opposite side of the air collecting portion 64. In other words, the guide wall 76 is provided in a region where the distance between the tubular portion 63 of the separation cylinder 60 and the bell mouth 50 is long. The separation cylinder 60 is not provided in a region where the tubular portion 63 of the separation cylinder 60 and the bell mouth 50 are close to each other. The separation cylinder 60 disperses the variation in the wind speed distribution in the region where the distance between the tubular portion 63 of the separation cylinder 60 and the bell mouth 50 is long (in other words, the region where the air collecting portion 64 is not mainly provided). It can be reduced.
 図8に示すように、第4実施形態では、ガイド壁76のうちフィルタ40側の端部71と羽根車30の回転軸Axとの距離L1が、ガイド壁76のうちフィルタ40とは反対側の端部74と羽根車30の回転軸Axとの距離L2よりも遠い。これにより、ベルマウス50の内側の流路よりフィルタ40が大きい場合でも、ガイド壁76は、フィルタ40を通過して分離筒60の有する集風部64を除く領域から羽根車30に吸い込まれる空気が、ベルマウス50付近に集中して流れることを抑制できる。なお、ベルマウス50の内側の流路とは、羽根車30の吸込口である。 As shown in FIG. 8, in the fourth embodiment, the distance L1 between the end 71 on the filter 40 side of the guide wall 76 and the rotation axis Ax of the impeller 30 is on the opposite side of the guide wall 76 from the filter 40. The distance between the end portion 74 of the impeller and the rotation axis Ax of the impeller 30 is longer than L2. As a result, even if the filter 40 is larger than the inner flow path of the bell mouth 50, the guide wall 76 passes through the filter 40 and is sucked into the impeller 30 from a region other than the air collecting portion 64 of the separation cylinder 60. However, it is possible to suppress the flow concentrated in the vicinity of the bell mouth 50. The inner flow path of the bell mouth 50 is a suction port of the impeller 30.
 また、図10に示すように、ガイド壁76は、内側流路72を流れる空気の流速と、外側流路73を流れる空気の流速とが近づく位置に設けられている。図10の破線76a、76bに示すように、ガイド壁76を設ける位置は、実験などにより適切に設定することが可能である。また、ガイド壁76の形状、大きさなども、実験などにより適切に設定することが可能である。
 以上説明した第4実施形態の送風機1も、第1実施形態等と同様の作用効果を奏することができるものである。
Further, as shown in FIG. 10, the guide wall 76 is provided at a position where the flow velocity of the air flowing through the inner flow path 72 and the flow velocity of the air flowing through the outer flow path 73 are close to each other. As shown by the broken lines 76a and 76b in FIG. 10, the position where the guide wall 76 is provided can be appropriately set by an experiment or the like. Further, the shape and size of the guide wall 76 can be appropriately set by an experiment or the like.
The blower 1 of the fourth embodiment described above can also exhibit the same effects as those of the first embodiment and the like.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
 (1)上記各実施形態では、ガイド壁70、76、701、702と接続部75と分離筒60とを一体に構成したものを例示したが、これに限らない。例えば、ガイド壁70、76、701、702は、ベルマウス50またはフィルタ40の枠体などと一体に構成してもよい。 (1) In each of the above embodiments, the guide walls 70, 76, 701, and 702, the connecting portion 75, and the separation cylinder 60 are integrally configured, but the present invention is not limited to this. For example, the guide walls 70, 76, 701, and 702 may be integrally formed with the frame of the bell mouth 50 or the filter 40.
 (2)上記各実施形態では、空気導入箱10の下流側にスクロールケーシング20を配置し、そこに羽根車30などを収容する構成としたが、これに限らない。スクロールケーシング20は、スクロールとは異なる形状の通風路を有するケーシングとしてもよい。 (2) In each of the above embodiments, the scroll casing 20 is arranged on the downstream side of the air introduction box 10, and the impeller 30 and the like are housed therein, but the present invention is not limited to this. The scroll casing 20 may be a casing having a ventilation path having a shape different from that of the scroll.
 (3)上記各実施形態では、送風機1を車両用空調装置に適用するものとして説明したが、これに限らない。送風機1は、車両用空調装置以外の装置に適用してもよい。 (3) In each of the above embodiments, the blower 1 has been described as being applied to a vehicle air conditioner, but the present invention is not limited to this. The blower 1 may be applied to a device other than the vehicle air conditioner.
 (4)上記各実施形態では、第1空気を外気、第2空気を内気として説明したが、これに限らない。第1空気と第2空気として、湿度、温度または組成などが互いに異なる種々の気体を採用してもよい。 (4) In each of the above embodiments, the first air is referred to as outside air and the second air is referred to as inside air, but the present invention is not limited to this. As the first air and the second air, various gases having different humidity, temperature, composition, etc. may be adopted.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、第1空気と第2空気を同時に吸入し区分して吹き出すことが可能な送風機であって、空気導入箱、ケーシング、羽根車、ベルマウス、分離筒およびガイド壁を備える。空気導入箱には、第1空気が導入される第1空気導入口、および第2空気が導入される第2空気導入口が形成されている。ケーシングは、空気導入箱の下流側に設けられる。羽根車は、ケーシングに収容され、空気導入箱に導入される第1空気および第2空気の少なくとも一方を回転軸方向の一方側から吸い込み、回転軸から遠ざかる方向に向けて吹き出す。環状のベルマウスは、空気導入箱と羽根車との間に設けられ、空気導入箱から羽根車に吸い込まれる空気の吸込口を形成する。分離筒は、羽根車に対して空気導入箱側に配置される空気入口部から羽根車の内側を通って径方向外側に拡がる形状である。ガイド壁は、分離筒とベルマウスとの間に形成される流路を、分離筒側の内側流路とベルマウス側の外側流路とに仕切ると共に、その内側流路を流れる空気と外側流路を流れる空気をそれぞれ羽根車へ案内する。
(Summary)
According to the first aspect shown in a part or all of the above-described embodiment, it is a blower capable of simultaneously sucking in the first air and the second air and blowing them out separately, such as an air introduction box and a casing. , Impeller, bell mouth, separator and guide wall. The air introduction box is formed with a first air introduction port into which the first air is introduced and a second air introduction port into which the second air is introduced. The casing is provided on the downstream side of the air introduction box. The impeller sucks at least one of the first air and the second air introduced into the air introduction box into the casing from one side in the rotation axis direction and blows them out in the direction away from the rotation axis. The annular bell mouth is provided between the air introduction box and the impeller and forms a suction port for air sucked from the air introduction box into the impeller. The separation cylinder has a shape that extends radially outward from the air inlet portion arranged on the air introduction box side with respect to the impeller, passing through the inside of the impeller. The guide wall divides the flow path formed between the separation cylinder and the bell mouth into an inner flow path on the separation cylinder side and an outer flow path on the bell mouth side, and air and an outer flow flowing through the inner flow path. Guide the air flowing through the road to the impellers.
 第2の観点によれば、送風機は、空気導入箱から羽根車に向けて流れる空気に含まれる異物を捕集するフィルタをさらに備える。ガイド壁は、フィルタのうち羽根車側の面に当接または隣接し、羽根車の径方向内側の空間の途中まで延びている。
 これによれば、ガイド壁は、外側流路を流れる空気と内側流路を流れる空気とを区分して羽根車へ案内することが可能である。
According to the second aspect, the blower further includes a filter that collects foreign matter contained in the air flowing from the air introduction box toward the impeller. The guide wall abuts or is adjacent to the impeller side surface of the filter and extends halfway through the radial inner space of the impeller.
According to this, the guide wall can separate the air flowing through the outer flow path and the air flowing through the inner flow path and guide them to the impeller.
 第3の観点によれば、ガイド壁は、分離筒とベルマウスとの間で径方向に重なるように複数個配置される。
 これによれば、分離筒より外側の流路における風速分布のばらつきの低減効果を高めることが可能である。したがって、送風機がガイド壁を備えていない状態で分離筒より外側の流路における風速分布のばらつきが大きい場合でも、ガイド壁を複数個配置することでその風速分布のばらつきを低減し、異音の発生を抑制することができる。
According to the third aspect, a plurality of guide walls are arranged so as to overlap in the radial direction between the separation cylinder and the bell mouth.
According to this, it is possible to enhance the effect of reducing the variation in the wind speed distribution in the flow path outside the separation cylinder. Therefore, even if the blower does not have a guide wall and the variation in the wind speed distribution in the flow path outside the separation cylinder is large, by arranging a plurality of guide walls, the variation in the wind speed distribution can be reduced and abnormal noise can be generated. Occurrence can be suppressed.
 第4の観点によれば、ガイド壁は、分離筒とベルマウスとの範囲内で、内側流路を流れる空気の流速と、外側流路を流れる空気の流速とが近くなる位置に設けられる。
 これによれば、この送風機は、分離筒より外側の流路において外側流路と内側流路との風速分布のばらつきが低減されるので、異音の発生を抑制することができる。
According to the fourth aspect, the guide wall is provided at a position where the flow velocity of the air flowing through the inner flow path and the flow velocity of the air flowing through the outer flow path are close to each other within the range of the separation cylinder and the bell mouth.
According to this, in this blower, the variation in the wind speed distribution between the outer flow path and the inner flow path in the flow path outside the separation cylinder is reduced, so that the generation of abnormal noise can be suppressed.
 第5の観点によれば、ガイド壁のうちフィルタ側の端部と羽根車の回転軸との距離は、ガイド壁のうちフィルタとは反対側の端部と羽根車の回転軸との距離よりも遠い。
 これによれば、ベルマウスの内側の流路(すなわち、羽根車の吸込口)に対してフィルタが大きい場合でも、ガイド壁は、フィルタを通過した空気がベルマウス付近に集中して流れることを防ぐことができる。
According to the fifth viewpoint, the distance between the end of the guide wall on the filter side and the rotating shaft of the impeller is larger than the distance between the end of the guide wall on the opposite side of the filter and the rotating shaft of the impeller. Is far away.
According to this, even if the filter is large with respect to the inner flow path of the bell mouth (that is, the suction port of the impeller), the guide wall allows the air that has passed through the filter to flow concentrated in the vicinity of the bell mouth. Can be prevented.
 第6の観点によれば、ガイド壁は筒状に形成されており、ガイド壁のうちフィルタ側の端部の径は、ガイド壁のうちフィルタとは反対側の端部の径より大きい。
 これによれば、ベルマウスの内側の流路(すなわち、羽根車の吸込口)に対してフィルタが大きい場合でも、ガイド壁はフィルタを通過した空気がベルマウス付近に集中することを防ぐことができる。
According to the sixth aspect, the guide wall is formed in a tubular shape, and the diameter of the end portion of the guide wall on the filter side is larger than the diameter of the end portion of the guide wall on the side opposite to the filter.
According to this, even if the filter is large relative to the inner flow path of the bell mouth (that is, the suction port of the impeller), the guide wall can prevent the air passing through the filter from concentrating near the bell mouth. it can.
 第7の観点によれば、ガイド壁は、フィルタから遠ざかるに従って径が次第に小さくなるように形成されている。
 これによれば、ベルマウスの内側の流路(すなわち、羽根車の吸込口)に対してフィルタが大きい場合でも、ガイド壁はフィルタを通過した空気がベルマウス付近に集中して流れることを防ぐことができる。
According to the seventh aspect, the guide wall is formed so that the diameter gradually decreases as the distance from the filter increases.
According to this, even if the filter is large relative to the inner flow path of the bell mouth (that is, the suction port of the impeller), the guide wall prevents the air passing through the filter from concentrating and flowing near the bell mouth. be able to.
 第8の観点によれば、ガイド壁と分離筒とを接続する接続部を備える。
 これによれば、ガイド壁と分離筒とを一体に構成することが可能である。そのため、ガイド壁と分離筒の組み付け工数を低減することができる。また、ガイド壁と分離筒の剛性を高めることができる。
According to the eighth aspect, a connecting portion for connecting the guide wall and the separation cylinder is provided.
According to this, it is possible to integrally configure the guide wall and the separation cylinder. Therefore, the man-hours for assembling the guide wall and the separation cylinder can be reduced. In addition, the rigidity of the guide wall and the separation cylinder can be increased.
 第9の観点によれば、ガイド壁は、筒状であるか、または、羽根車の回転軸方向から視て円弧状である。
 これによれば、羽根車の回転軸と分離筒の中心軸とが近い位置にある構成の場合、ガイド壁を筒状とすることで、分離筒より外側の流路における風速分布のばらつきを低減することができる。それに対し、羽根車の回転軸と分離筒の中心軸とがずれている構成の場合、ガイド壁を羽根車の回転軸方向から視て円弧状とすることで、分離筒とベルマウスとの距離が遠くなっている領域における風速分布のばらつきを低減することができる。
According to the ninth aspect, the guide wall has a tubular shape or an arc shape when viewed from the rotation axis direction of the impeller.
According to this, in the case where the rotation axis of the impeller and the central axis of the separation cylinder are close to each other, the guide wall has a tubular shape to reduce the variation in the wind speed distribution in the flow path outside the separation cylinder. can do. On the other hand, in the case where the rotation axis of the impeller and the central axis of the separation cylinder are deviated from each other, the distance between the separation cylinder and the bell mouth is formed by making the guide wall arcuate when viewed from the direction of the rotation axis of the impeller. It is possible to reduce the variation in the wind speed distribution in the region where is far away.

Claims (9)

  1.  第1空気と第2空気を同時に吸入し区分して吹き出すことが可能な送風機において、
     第1空気が導入される第1空気導入口(11)、および第2空気が導入される第2空気導入口(12、13)が形成された空気導入箱(10)と、
     前記空気導入箱の下流側に設けられるケーシング(20)と、
     前記ケーシングに収容される羽根車(30)であって、前記空気導入箱に導入される第1空気および第2空気の少なくとも一方を前記羽根車の回転軸(Ax)方向の一方側から吸い込み、回転軸から遠ざかる方向に向けて吹き出す前記羽根車と、
     前記空気導入箱と前記羽根車との間に設けられ、前記空気導入箱から前記羽根車に吸い込まれる空気の吸込口を形成する環状のベルマウス(50)と、
     前記羽根車に対して前記空気導入箱側に配置される空気入口部(61)から前記羽根車の内側を通って径方向外側に拡がる形状の分離筒(60)と、
     前記分離筒と前記ベルマウスとの間に形成される流路を、前記分離筒側の内側流路(72)と前記ベルマウス側の外側流路(73)とに仕切ると共に、前記内側流路を流れる空気と前記外側流路を流れる空気をそれぞれ前記羽根車へ案内するガイド壁(70、76、701、702)と、を備える送風機。
    In a blower capable of sucking in the first air and the second air at the same time and blowing them out separately.
    An air introduction box (10) in which a first air introduction port (11) into which the first air is introduced and a second air introduction port (12, 13) into which the second air is introduced are formed.
    A casing (20) provided on the downstream side of the air introduction box and
    An impeller (30) housed in the casing, at least one of the first air and the second air introduced into the air introduction box is sucked from one side in the rotation axis (Ax) direction of the impeller. The impeller that blows out in the direction away from the axis of rotation,
    An annular bell mouth (50) provided between the air introduction box and the impeller and forming a suction port for air sucked from the air introduction box into the impeller.
    A separation cylinder (60) having a shape that extends radially outward from the air inlet portion (61) arranged on the air introduction box side with respect to the impeller through the inside of the impeller.
    The flow path formed between the separation cylinder and the bell mouth is divided into an inner flow path (72) on the separation cylinder side and an outer flow path (73) on the bell mouth side, and the inner flow path is formed. A blower including guide walls (70, 76, 701, 702) for guiding the air flowing through the outer flow path and the air flowing through the outer flow path to the impeller, respectively.
  2.  前記空気導入箱から前記羽根車に向けて流れる空気に含まれる異物を捕集するフィルタ(40)をさらに備え、
     前記ガイド壁は、前記フィルタのうち前記羽根車側の面に当接または隣接し、前記羽根車の径方向内側の空間の途中まで延びている請求項1に記載の送風機。
    Further provided with a filter (40) for collecting foreign matter contained in the air flowing from the air introduction box toward the impeller.
    The blower according to claim 1, wherein the guide wall is in contact with or adjacent to the surface of the filter on the impeller side, and extends halfway in the space inside the impeller in the radial direction.
  3.  前記ガイド壁(701、702)は、前記分離筒と前記ベルマウスとの間で径方向に重なるように複数個配置される請求項1または2に記載の送風機。 The blower according to claim 1 or 2, wherein a plurality of the guide walls (701, 702) are arranged so as to overlap each other in the radial direction between the separation cylinder and the bell mouth.
  4.  前記ガイド壁は、前記分離筒と前記ベルマウスとの範囲内で、前記内側流路を流れる空気の流速と、前記外側流路を流れる空気の流速とが近くなる位置に設けられる請求項1ないし3のいずれか1つに記載の送風機。 The guide wall is provided at a position within the range of the separation cylinder and the bell mouth so that the flow velocity of the air flowing through the inner flow path and the flow velocity of the air flowing through the outer flow path are close to each other. The blower according to any one of 3.
  5.  前記ガイド壁のうち前記空気導入箱側の端部(71)と前記羽根車の回転軸との距離(L1)は、前記ガイド壁のうち前記空気導入箱とは反対側の端部(74)と前記羽根車の回転軸との距離(L2)よりも遠い請求項1ないし4のいずれか1つに記載の送風機。 The distance (L1) between the end portion (71) of the guide wall on the air introduction box side and the rotation axis of the impeller is the end portion (74) of the guide wall on the side opposite to the air introduction box. The blower according to any one of claims 1 to 4, which is farther than the distance (L2) between the impeller and the rotating shaft of the impeller.
  6.  前記ガイド壁は筒状に形成されており、前記ガイド壁のうち前記空気導入箱側の端部の径(D1)は、前記ガイド壁のうち前記空気導入箱とは反対側の端部の径(D2)より大きい請求項1ないし5のいずれか1つに記載の送風機。 The guide wall is formed in a tubular shape, and the diameter (D1) of the end portion of the guide wall on the air introduction box side is the diameter of the end portion of the guide wall on the side opposite to the air introduction box. (D2) The blower according to any one of claims 1 to 5, which is larger than (D2).
  7.  前記ガイド壁は、前記空気導入箱から遠ざかるに従って径が次第に小さくなるように形成されている請求項1ないし6のいずれか1つに記載の送風機。 The blower according to any one of claims 1 to 6, wherein the guide wall is formed so that the diameter gradually decreases as the distance from the air introduction box increases.
  8.  前記ガイド壁と前記分離筒とを接続する接続部(75)を備える請求項1ないし7のいずれか1つに記載の送風機。 The blower according to any one of claims 1 to 7, further comprising a connecting portion (75) for connecting the guide wall and the separation cylinder.
  9.  前記ガイド壁(70、76)は、筒状であるか、または、前記羽根車の回転軸方向から視て円弧状である請求項1ないし8のいずれか1つに記載の送風機。 The blower according to any one of claims 1 to 8, wherein the guide walls (70, 76) are tubular or arcuate when viewed from the rotation axis direction of the impeller.
PCT/JP2020/038688 2019-11-07 2020-10-14 Blower WO2021090648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019202569A JP2021076055A (en) 2019-11-07 2019-11-07 Air fan
JP2019-202569 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021090648A1 true WO2021090648A1 (en) 2021-05-14

Family

ID=75849932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038688 WO2021090648A1 (en) 2019-11-07 2020-10-14 Blower

Country Status (2)

Country Link
JP (1) JP2021076055A (en)
WO (1) WO2021090648A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS321889B1 (en) * 1954-10-14 1957-11-12
JPS60130114A (en) * 1983-12-17 1985-07-11 松下電工株式会社 Method of sealing electronic part
JP2015214903A (en) * 2014-05-08 2015-12-03 株式会社デンソー Air blower
JP2018109383A (en) * 2017-01-04 2018-07-12 株式会社ヴァレオジャパン Centrifugal blower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS321889B1 (en) * 1954-10-14 1957-11-12
JPS60130114A (en) * 1983-12-17 1985-07-11 松下電工株式会社 Method of sealing electronic part
JP2015214903A (en) * 2014-05-08 2015-12-03 株式会社デンソー Air blower
JP2018109383A (en) * 2017-01-04 2018-07-12 株式会社ヴァレオジャパン Centrifugal blower

Also Published As

Publication number Publication date
JP2021076055A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP3858744B2 (en) Centrifugal blower
WO2020230563A1 (en) Centrifugal blower
JP2019044739A (en) Centrifugal blower for air conditioner for vehicle
WO2018128143A1 (en) Centrifugal fan
JP2004132342A (en) Centrifugal blower
WO2019022115A1 (en) Centrifugal fan
WO2021106406A1 (en) Blower
WO2021090648A1 (en) Blower
WO2021111878A1 (en) Centrifugal blower
WO2020105294A1 (en) Blower
CN113056614B (en) Centrifugal blower
JP4273564B2 (en) Centrifugal blower
WO2020121729A1 (en) Centrifugal fan and centrifugal blower
JP2002019445A (en) Air conditioner for vehicle
CN113286715A (en) Centrifugal blower
WO2021106405A1 (en) Blower and filter device
WO2021079646A1 (en) Blower
WO2020105292A1 (en) Centrifugal blower
WO2021085086A1 (en) Blower
JP2021025510A (en) Centrifugal blower
JP6588052B2 (en) Centrifugal blower
WO2020162133A1 (en) Centrifugal blower
WO2020095563A1 (en) Centrifugal blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885743

Country of ref document: EP

Kind code of ref document: A1