WO2021085086A1 - Blower - Google Patents

Blower Download PDF

Info

Publication number
WO2021085086A1
WO2021085086A1 PCT/JP2020/038311 JP2020038311W WO2021085086A1 WO 2021085086 A1 WO2021085086 A1 WO 2021085086A1 JP 2020038311 W JP2020038311 W JP 2020038311W WO 2021085086 A1 WO2021085086 A1 WO 2021085086A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
partition plate
trailing edge
plate
Prior art date
Application number
PCT/JP2020/038311
Other languages
French (fr)
Japanese (ja)
Inventor
翔 小坂
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021085086A1 publication Critical patent/WO2021085086A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • This disclosure relates to a blower.
  • a one-sided suction type centrifugal blower capable of distinguishing between vehicle interior air (hereinafter, also referred to as inside air) and vehicle interior outside air (hereinafter, also referred to as outside air) and simultaneously inhaling is known (for example, a patent).
  • inside air vehicle interior air
  • outside air vehicle interior outside air
  • the impeller of the centrifugal blower described in Patent Document 1 is divided into a space between a plurality of first blades located on one side in the axial direction and a space between a plurality of second blades located on the other side in the axial direction. It is divided by members. Further, in the scroll casing accommodating the impeller, the air flow path formed on the outer side in the radial direction of the impeller is formed by a partition wall with one first air flow path in the axial direction of the impeller and the other first air flow path in the axial direction. It is partitioned into two air flow paths. Further, inside the impeller in the radial direction, a separation cylinder is arranged to separate and flow the air taken in from the outside into the first air flow path and the second air flow path.
  • the centrifugal blower can flow the outside air to the first air flow path through the outside of the separation cylinder and the impeller, while allowing the inside air to flow to the second air flow path through the inside of the separation cylinder and the impeller. It has become.
  • the inner edge portion of the dividing member in the radial direction is located on one side of the partition wall in the axial direction from the wall edge portion facing the impeller, and the outer edge portion of the dividing member in the radial direction is located.
  • the edge of the wall is outside the wall edge and is located on the other side in the axial direction from the wall edge.
  • Patent Document 1 does not examine the relationship between the pressure on the downstream side of the first blade and the pressure on the downstream side of the second blade. Therefore, if for some reason the pressure on the downstream side of the second blade becomes larger than the pressure on the downstream side of the first blade, the inside air flowing through the second air flow path passes through the gap between the dividing member and the partition wall. Therefore, it becomes easy to flow into the first air flow path.
  • An object of the present disclosure is to provide a centrifugal blower capable of suppressing the mixing of the vehicle interior air with the vehicle interior air sucked from the outside.
  • the blower It is possible to distinguish between the outside air and the inside air and inhale at the same time.
  • a fan that blows out air sucked from one side of the fan axis in the direction away from the fan axis,
  • a casing that accommodates the fan and has a suction port for air that is sucked into the fan on one side in the axial direction with respect to the fan.
  • the tubular part arranged inside in the radial direction of the fan the outside air of the passenger compartment and the air inside the passenger compartment are allowed to flow outside the tubular portion and the air inside the passenger compartment is allowed to flow inside the tubular portion.
  • a split plate that suppresses mixing with the vehicle interior air flowing through the second wing passage, Inside the casing, a ventilation path for the air blown out from the fan is formed on the outside in the radial direction with respect to the fan, and the first ventilation path through which the air outside the passenger compartment flows and the air inside the passenger compartment flow into the ventilation passage.
  • a partition plate is provided to separate it from the second ventilation passage.
  • the split plate has a trailing edge plate portion located on the outer side in the radial direction with respect to the first blade. The trailing edge plate portion is positioned so that the radial outer end portion of the trailing edge plate portion is radially outside the upstream edge portion facing the fan in the partition plate and is axially opposite to the upstream edge portion.
  • the partition plate is provided with an airflow diversion portion that diverts the direction of the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate in the direction away from the partition plate on the outer side in the radial direction from the trailing edge plate portion.
  • the direction of the air inside the vehicle toward the gap between the trailing edge plate and the partition plate is changed by the airflow turning portion in the direction away from the partition plate, so that the air inside the vehicle is separated from the trailing edge plate and the partition plate. It becomes difficult to flow into the gap of.
  • the inflow of the vehicle interior air into the first ventilation path through the gap between the trailing edge plate portion and the partition plate is suppressed. That is, it is possible to prevent the vehicle interior air from being mixed with the vehicle interior air sucked from the outside.
  • the vehicle air conditioner has a defroster outlet, a vent outlet, and a foot outlet, and blows air from each outlet toward the front window of the vehicle, the upper body of the occupant, and the feet of the occupant.
  • the blower 1 includes an inside / outside air box 10, a filter 20, a fan 30, an electric motor 40, a scroll casing 50, and a separation cylinder 70.
  • the blower 1 is arranged so that the direction of the fan axis CL coincides with the vertical direction. It should be noted that the direction of the fan axis CL is not limited to the vertical direction when the vehicle air conditioner is actually mounted on the vehicle.
  • the direction along the fan axis CL which is the center of rotation of the fan 30, is referred to as the axial DRa.
  • the radial direction of the radius of a circle drawn on a plane orthogonal to the fan axis CL with an arbitrary point on the fan axis CL as the center is referred to as the radial DRr.
  • the circumferential direction of the circle is called the circumferential direction.
  • the inside / outside air box 10 is arranged on the upper side of the blower 1.
  • a first outside air introduction port 11, a second outside air introduction port 12, a first inside air introduction port 13, and a second inside air introduction port 14 are formed on the upper surface of the inside / outside air box 10.
  • the first outside air introduction port 11 and the second outside air introduction port 12 are openings for introducing outside air inside the inside / outside air box 10.
  • the first inside air introduction port 13 and the second inside air introduction port 14 are openings for introducing inside air inside the inside / outside air box 10.
  • the outside air door 15 is a door that opens and closes the first outside air introduction port 11.
  • the inside / outside air door 16 is a door that selectively opens and closes the second outside air introduction port 12 and the first inside air introduction port 13.
  • the inside air door 17 is a door that opens and closes the second inside air introduction port 14.
  • the outside air door 15 and the inside air door 17 are composed of butterfly doors.
  • the inside / outside air door 16 is composed of a rotary door.
  • the outside air door 15 and the inside air door 17 may be composed of doors other than the butterfly door (for example, a rotary door). Further, the inside / outside air door 16 may be composed of a door other than the rotary door (for example, a butterfly door).
  • the filter 20 is arranged below the inside / outside air box 10.
  • the filters 20 are arranged in a posture that is substantially parallel in the horizontal direction.
  • the filter 20 filters the air introduced from the inside / outside air box 10 to remove contaminants such as particles.
  • the fan 30 is a centrifugal fan that sucks air from one side of the axial DRa of the fan axis CL and blows out the sucked air in a direction away from the fan axis CL.
  • the fan 30 is composed of a sirocco fan.
  • the fan 30 is not limited to a sirocco fan, and may be composed of a radial fan, a turbo fan, or the like.
  • the fan 30 has a plurality of first blades 31, a plurality of second blades 32, a main plate 33, and a split plate 34.
  • the plurality of first blades 31 are arranged side by side around the fan axis CL.
  • a first wing passage 310 through which air flows is formed between the plurality of first blades 31.
  • the plurality of second blades 32 are arranged side by side around the fan axis CL.
  • the plurality of second blades 32 are positioned on the other side of the axial DRa with respect to the plurality of first blades 31.
  • a second wing passage 320 through which air flows is formed between the plurality of second blades 32.
  • the main plate 33 is composed of a disk-shaped member centered on the fan axis CL.
  • the main plate 33 is provided with a boss portion 331 at the center thereof, to which the shaft 42 of the electric motor 40 is connected so as not to rotate relative to each other.
  • the lower ends of a plurality of second blades 32 are fixed to a portion outside the radial DRr of the fan 30.
  • the dividing plate 34 is a member that connects the plurality of first blades 31 and the plurality of second blades 32.
  • the dividing plate 34 includes air flowing through the first wing passage 310 formed between the plurality of first blades 31 and air flowing through the second wing passage 320 formed between the plurality of second blades 32. It is also a member that suppresses the mixing of air.
  • the dividing plate 34 is composed of a ring-shaped member centered on the fan axis CL.
  • the lower ends of the plurality of first blades 31 are fixed to the plate surface on one side of the axial DRa, and the upper ends of the plurality of second blades 32 are fixed to the plate surface on the other side of the axial DRa. Has been done.
  • the fan 30 configured in this way is configured as an integrally molded product in which a plurality of first blades 31, a plurality of second blades 32, a main plate 33, and a split plate 34 are integrally molded by a molding technique such as injection molding. Has been done.
  • the electric motor 40 is an electric motor that rotates the fan 30.
  • the electric motor 40 has a main body 41 that generates power for rotating the fan 30, and a shaft 42 that is rotated by the power of the main body 41.
  • the shaft 42 extends from the main body 41 toward one side of the axial DRa.
  • the shaft 42 is fixed to the main plate 33 by the motor cap 43. As a result, when the shaft 42 rotates, the fan 30 rotates.
  • the scroll casing 50 is a casing in which the fan 30 is housed.
  • the scroll casing 50 functions to rectify the airflow radiating from the fan 30 into a flow in the circumferential direction of the fan 30.
  • the scroll casing 50 forms a spiral ventilation path 53 on the outer side of the radial DRr with respect to the fan 30.
  • the scroll casing 50 is formed with a discharge path for blowing air toward the air conditioning unit of the vehicle air conditioner. As a result, the air flowing inside the scroll casing 50 is introduced into the air conditioning unit.
  • the air conditioning unit (not shown) adjusts the air introduced from the blower 1 to a desired temperature and blows it out into the vehicle interior.
  • the air conditioning unit adjusts the air introduced from the blower 1 to a desired temperature by a heat exchanger such as an evaporator or a heater core.
  • the scroll casing 50 is provided with a suction port forming portion 60 on one side of the axial DRa with respect to the fan 30.
  • the suction port forming portion 60 is a portion of the scroll casing 50 that forms an upper end surface.
  • An air suction port 61 for the fan 30 is formed in a substantially central portion of the suction port forming portion 60.
  • the suction port forming portion 60 is provided with a bell mouth 62 that guides air toward the suction port 61 at the peripheral edge of the suction port 61.
  • the bell mouth 62 has an arcuate cross-sectional shape so that air can flow smoothly through the suction port 61. As a result, the air that has passed through the filter 20 is sucked into the fan 30 from the bell mouth 62.
  • the suction port forming portion 60 is provided with a mounting frame 63 for mounting the above-mentioned inside / outside air box 10 and the filter 20.
  • the inside / outside air box 10 and the filter 20 are attached to the attachment frame 63.
  • a partition plate 57 for partitioning the ventilation passage 53 into the upper and lower first ventilation passages 531 and the second ventilation passage 532 is provided inside the scroll casing 50.
  • the partition plate 57 is provided at a position corresponding to the division plate 34 of the fan 30.
  • the partition plate 57 is provided so as to overlap the dividing plate 34 in the radial DRr of the fan 30, for example.
  • a separation cylinder 70 is inserted inside the scroll casing 50 via a suction port 61.
  • the separation cylinder 70 is a tubular member that extends in the axial direction DRa.
  • the separation cylinder 70 has openings located at both ends of the axial DRa.
  • the air passing through the suction port 61 is separated by the separation cylinder 70 into inner air passing through the inside of the separation cylinder 70 and outer air passing through the outside of the separation cylinder 70.
  • the separation cylinder 70 has a tubular portion 72 whose at least a part is arranged inside the fan 30, and a tubular upper end portion 71 located on one side of the axial DRa with respect to the fan 30 in the tubular portion 72.
  • the upper end portion 71 of the cylinder and the tubular portion 72 are configured as an integrally molded product that is integrally molded.
  • the upper end portion 71 of the cylinder and the tubular portion 72 formed separately may be connected to each other.
  • the cross-sectional shape of the separation cylinder 70 smoothly changes from a rectangle to a circle or a substantially circular shape as it approaches the tubular portion 72 from the upper end portion 71 of the cylinder.
  • the separation cylinder 70 has a flare shape that increases in diameter as it approaches the lower end of the tubular portion 72.
  • the upper end portion 71 of the cylinder is formed with an air inlet 710 for introducing air inside the tubular portion 72.
  • the air inlet 710 opens below the second outside air introduction port 12 and the first inside air introduction port 13 so that the air introduced into the second outside air introduction port 12 and the first inside air introduction port 13 of the inside / outside air box 10 flows into the air inlet 710. doing.
  • the upper end portion 71 of the cylinder is arranged between the suction port forming portion 60 and the inside / outside air box 10 at a position where it overlaps with a part of the suction port 61 and the suction port forming portion 60.
  • the upper end portion 71 of the cylinder covers substantially half of the suction port 61 and the bell mouth 62.
  • the upper end portion 71 of the cylinder has a substantially rectangular outer shape when viewed from one side of the axial DRa with respect to the fan 30. Further, at least a part of the upper end portion 71 of the cylinder is formed in a plate shape having a thickness in the axial direction DRa when viewed from the radial direction DRr with respect to the fan 30.
  • an upper portion 721 connected to the upper end portion 71 of the cylinder extends along the fan axis CL.
  • the lower portion 722 of the tubular portion 72 has a shape that expands in the radial direction DRr toward the other side of the axial DRa.
  • an air outlet 720 that allows air to flow out from the inside of the separation cylinder 70 is formed.
  • the lower end of the lower portion 722 is provided at a position corresponding to the dividing plate 34 of the fan 30.
  • the lower end of the lower portion 722 is provided so as to overlap the dividing plate 34 in the radial DRr, for example.
  • the blower 1 configured in this way can be set as an air suction mode: an outside air mode that sucks in outside air, an inside air mode that sucks in inside air, and an inside / outside air mode that separates outside air and inside air and sucks them in at the same time.
  • the outside air mode is a mode in which only the outside air is introduced inside the inside / outside air box 10.
  • the outside air door 15 is displaced to a position where the first outside air introduction port 11 is opened, and the inside / outside air door 16 is displaced to a position where the second outside air introduction port 12 is opened in the outside air mode.
  • the inside air door 17 is configured to be displaced to a position where the 14 is closed.
  • the inside air mode is a mode in which only the inside air is introduced inside the inside / outside air box 10.
  • the outside air door 15 is displaced to a position where the first outside air introduction port 11 is closed, and the inside / outside air door 16 is displaced to a position where the first inside air introduction port 13 is opened in the inside air mode.
  • the inside air door 17 is configured to be displaced to a position where the 14 is opened.
  • the inside / outside air mode is a mode in which outside air and inside air are introduced inside the inside / outside air box 10.
  • the outside air door 15 is displaced to the position where the first outside air introduction port 11 is opened
  • the inside / outside air door 16 is displaced to the position where the first inside air introduction port 13 is opened
  • the second inside air is introduced.
  • the inside air door 17 is configured to be displaced at a position where the mouth 14 is closed.
  • the blower 1 when the fan 30 is rotated by the output from the electric motor 40 in the inside / outside air mode, the outside air is introduced from the first outside air introduction port 11 and the inside air is introduced from the first inside air introduction port 13.
  • the outside air introduced from the first outside air introduction port 11 passes through a region of the filter 20 that does not overlap the upper end portion 71 of the cylinder and the axial DRa, and then passes through the outside of the separation cylinder 70. It is sucked into the first wing passage 310 of the fan 30 through the fan 30. The outside air sucked into the first wing passage 310 is blown out to the first ventilation passage 531.
  • the inside air introduced from the first inside air introduction port 13 is sucked into the second wing passage 320 of the fan 30 through the inside of the separation cylinder 70 as shown by the arrow Fai in FIG.
  • the inside air sucked into the second wing passage 320 is blown out to the second ventilation passage 532.
  • the outside air flowing through the first ventilation passage 531 and the inside air flowing through the second ventilation passage 532 are introduced into the air conditioning unit from the scroll casing 50, adjusted to a desired temperature inside the air conditioning unit, and then different outlets. Is blown into the passenger compartment.
  • the blower 1 is configured to be able to prevent the inside air from being mixed into the outside air. This will be described below with reference to FIGS. 2 and 3.
  • the fan 30 has a chord length from the front edge 321 to the trailing edge 322 of the second blade 32 from the chord length from the front edge 311 to the trailing edge 312 of the first blade 31. Is also getting bigger.
  • the trailing edge 322 of the second blade 32 is located outside the radial DRr of the trailing edge 312 of the first blade 31.
  • the portion outside the radial DRr is located outside the radial DRr from the upstream edge portion 571 of the partition plate 57, and the other side of the axial DRa from the upstream edge portion 571. Is located in.
  • the upstream edge portion 571 of the partition plate 57 is a portion of the partition plate 57 facing the fan 30. That is, the upstream edge portion 571 is an inner end portion of the partition plate 57 in the radial direction DRr.
  • the split plate 34 includes a front edge plate portion 341 which is an inner portion of the radial DRr, a trailing edge plate portion 342 which is a portion outside the radial DRr, and a front edge plate portion 341 and a trailing edge plate. It has an intermediate plate portion 343 that connects the portions 342.
  • the front edge plate portion 341 is a portion of the split plate 34 that extends from the front edge 311 of the first blade 31 to the trailing edge 312.
  • the front edge plate portion 341 extends along the radial DRr.
  • the front edge plate portion 341 is located on one side of the axial DRa with respect to the upstream edge portion 571.
  • the intermediate plate portion 343 extends along the axial DRa so as to overlap the trailing edge 312 of the first blade 31 and the axial DRa.
  • one end of the axial DRa is connected to the front edge plate portion 341, and the other end of the axial DRa is connected to the trailing edge plate portion 342.
  • a part of the intermediate plate portion 343 faces the upstream edge portion 571 in the radial DRr.
  • the trailing edge plate portion 342 is a portion located outside the radial DRr with respect to the first blade 31.
  • the trailing edge plate portion 342 extends from the trailing edge 312 of the first blade 31 to the trailing edge 322 of the second blade 32 along the radial DRr.
  • the trailing edge plate portion 342 is located outside the radial DRr from the upstream edge portion 571 and on the other side of the axial DRa from the upstream edge portion 571.
  • the trailing edge 322 of the second blade 32 is located outside the radial DRr of the trailing edge 312 of the first blade 31.
  • the distance S2 between the second blade 32 and the side wall portion 51 of the scroll casing 50 is smaller than the distance S1 between the first blade 31 and the side wall portion 51. Therefore, the passage area of the second ventilation passage 532 is smaller than that of the first ventilation passage 531, and the pressure of the second ventilation passage 532 may be higher than the pressure of the first ventilation passage 531.
  • the front edge plate portion 341 of the dividing plate 34 is located on one side of the axial DRa with respect to the upstream edge portion 571 of the partition plate 57.
  • the air blown out from the first wing passage 310 is unlikely to collide with the partition plate 57.
  • noise can be suppressed, but the flow rate of air increases downstream of the plurality of first blades 31 and the static pressure downstream of the plurality of first blades 31 decreases.
  • the pressure on the downstream side of the second blade 32 tends to be larger than the pressure on the downstream side of the first blade 31.
  • the blower 1 of the present embodiment is provided with an airflow turning portion 80 with respect to the partition plate 57.
  • the airflow turning portion 80 diverts the direction of the inside air toward the gap between the trailing edge plate portion 342 and the partition plate 57 in a direction away from the partition plate 57.
  • the airflow turning portion 80 is provided outside the radial DRr of the partition plate 57 with respect to the trailing edge plate portion 342.
  • the airflow turning portion 80 is configured to include a recessed portion 81 recessed from the other side to one side in the axial direction DRa.
  • the recess 81 is composed of a substantially arc-shaped recess formed on the inner surface of the partition plate 57 that forms the second ventilation passage 532. Further, on the inner surface of the partition plate 57 forming the first ventilation passage 531, the portion where the recess 81 is formed protrudes in a substantially arc shape from one side of the axial DRa toward the other side.
  • the recess 81 is formed over the entire area without interruption in the circumferential direction centered on the fan axis CL. According to this, the direction of the inside air toward the gap between the trailing edge plate portion 342 and the partition plate 57 can be changed by the airflow turning portion 80 in the direction away from the partition plate 57 over the entire circumferential direction.
  • the recess 81 may have a portion that is partially interrupted in the circumferential direction centered on the fan axis CL.
  • the recess 81 is provided in a range from a portion of the partition plate 57 located outside the radial DRr of the trailing edge plate portion 342 to a connection portion with the side wall portion 51. Specifically, in the recess 81, the width dimension Lv1 of the radial DRr is smaller than the width dimension Lv2 of the portion of the partition plate 57 located outside the radial DRr than the trailing edge plate portion 342. Further, in the recess 81, the height dimension Lh1 of the axial DRa is smaller than the height dimension Lh2 of the axial DRa of the dividing plate 34.
  • the partition plate 57 has an upstream portion 570 extending from the upstream edge portion 571 to the airflow turning portion 80. As shown in FIG. 3, there is a change point CP whose shape changes between the upstream portion 570 and the airflow turning portion 80.
  • the change point CP is a portion of the airflow turning portion 80 located most inside the radial DRr.
  • the inclination angle ⁇ s1 with respect to the upstream portion 570 at the change point CP is compared with the inclination angle ⁇ v1 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the downstream end of the trailing edge plate portion 342. Is getting bigger.
  • the inclination angle ⁇ s1 is an angle formed by the tangent TL at the change point CP of the recess 81 constituting the airflow turning portion 80 and the upstream portion 570 extending along the radial DRr.
  • the tangent TL extends along the axial DRa. Therefore, the inclination angle ⁇ s1 is approximately 90 °.
  • the tilt angle ⁇ v1 of this example is about 15 ° to 30 °, which is sufficiently smaller than the tilt angle ⁇ s1.
  • the straight line passing through the change point CP and the upper end of the radial DRr of the trailing edge plate portion 342 is defined as a virtual line VL.
  • the blower 1 described above is provided with a recess 81 forming an airflow turning portion 80 outside the radial DRr of the partition plate 57 from the trailing edge plate portion 342. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr1, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 flows in an arc shape along the inner surface of the recessed portion 81 and is converted in a direction away from the partition plate 57.
  • the inclination angle ⁇ s1 with respect to the upstream portion 570 of the airflow turning portion 80 at the shape change point CP of the partition plate 57 is the inclination of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342 with respect to the upstream portion 570. It is larger than the angle ⁇ v1.
  • the direction of the inside air toward the gap between the trailing edge plate portion 342 and the partition plate 57 is turned by the airflow turning portion 80 in a direction not facing the gap between the trailing edge plate portion 342 and the partition plate 57.
  • the inflow of the inside air into the first ventilation passage 531 through the gap between the trailing edge plate portion 342 and the partition plate 57 is sufficiently suppressed.
  • the recess 81 having a substantially arc-shaped recess is illustrated, but the recess 81 is not limited to this, and may be composed of a recess having an inner surface other than the arc. Further, the recess 81 may be formed of, for example, a groove formed in the partition plate 57. In this case, the partition plate 57 may have a flat inner surface that forms the first ventilation passage 531. In the recess 81, the height dimension Lh1 in the axial direction DRa may be equal to or greater than the height dimension Lh2 in the axial direction DRa of the dividing plate 34.
  • the recess 81 provided in the range from the portion of the partition plate 57 located outside the radial DRr from the trailing edge plate portion 342 to the connection portion with the side wall portion 51 is exemplified.
  • the recess 81 is not limited to this.
  • the recessed portion 81 may be provided, for example, in a range from a portion of the partition plate 57 located outside the trailing edge plate portion 342 in the radial direction DRr to just before the connecting portion with the side wall portion 51.
  • the airflow turning portion 80 is not a recess 81, but an offset portion 82 offset to one side of the axial DRa with respect to the upstream portion 570, and the offset portion 82 and the upstream portion 570. It is configured to include a connection unit 83 for connecting to and.
  • the partition plate 57 is provided with an offset portion 82 and a connecting portion 83 of the airflow turning portion 80, so that the partition plate 57 has a shape recessed upward as a whole.
  • the offset portion 82 and the connecting portion 83 are formed over the entire area without interruption in the circumferential direction centered on the fan axis CL.
  • the offset portion 82 and the connecting portion 83 may be partially interrupted in the circumferential direction centered on the fan axis CL.
  • the offset portion 82 extends along the radial DRr.
  • the offset portion 82 has a flat inner surface forming the first ventilation passage 531 and an inner surface forming the second ventilation passage 532.
  • the outer side of the radial DRr is connected to the side wall portion 51.
  • the connecting portion 83 extends along the axial DRa.
  • the other side of the axial DRa is connected to the outside of the radial DRr of the upstream portion 570, and one side of the axial DRa is connected to the inside of the radial DRr of the offset portion 82.
  • the height dimension Lh3 in the axial direction DRa is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is flush with the upper surface of the front edge plate portion 341. ..
  • the outside air flowing through the first ventilation passage 531 along the front edge plate portion 341 is formed at the corner portion 831 formed by the intersection of the inner surface forming the first ventilation passage 531 in the offset portion 82 and the connection portion 83. It is possible to prevent a collision.
  • the corner portion formed by intersecting the upstream portion 570 and the connecting portion 83 is the change point CP.
  • the inclination angle ⁇ s2 with respect to the upstream portion 570 at the change point CP is compared with the inclination angle ⁇ v2 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342, as in the first embodiment. Is getting bigger.
  • the inclination angle ⁇ s2 is an angle formed by the tangent line TL at the above-mentioned change point CP and the upstream portion 570 extending along the radial DRr.
  • the inclination angle ⁇ s2 is approximately 90 °.
  • the tilt angle ⁇ v2 of this example is about 15 ° to 30 °, which is sufficiently smaller than the tilt angle ⁇ s2.
  • the configuration other than the airflow turning portion 80 is the same as that of the first embodiment.
  • the airflow turning portion 80 of the present embodiment includes an offset portion 82 and a connecting portion 83. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr2, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 along the offset portion 82 is turned away from the partition plate 57 by colliding with the connection portion 83.
  • the offset portion 82 extends along the radial DRr, but the offset portion 82 is not limited to this.
  • the offset portion 82 may extend in a direction intersecting the radial DRr, for example. Further, the offset portion 82 may not be flat and may be at least partially curved.
  • connection portion 83 extends along the axial DRa, but the connection portion 83 is not limited to this.
  • the connecting portion 83 may extend in a direction intersecting the axial DRa, for example.
  • the height dimension Lh3 of the axial DRa of the connecting portion 83 is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is flush with the upper surface of the front edge plate portion 341.
  • the present invention is not limited to this.
  • the height dimension Lh3 of the axial DRa of the connecting portion 83 is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is located on the other side of the axial DRa from the upper surface of the front edge plate portion 341. You may be. In this case, it is possible to prevent the outside air flowing through the first ventilation passage 531 along the front edge plate portion 341 from colliding with the corner portion 831.
  • the height dimension Lh3 of the axial DRa of the connecting portion 83 is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is located on one side of the axial DRa with respect to the upper surface of the front edge plate portion 341. It may be set.
  • the airflow turning portion 80 is not a recess 81, but is inclined so that the outside of the radial DRr is located on one side of the axial DRa as compared with the inside of the radial DRr. It is configured to include part 84.
  • the partition plate 57 is provided with an inclined portion 84 of the airflow turning portion 80, so that the partition plate 57 has a shape recessed upward as a whole.
  • the inclined portion 84 is formed over the entire area without interruption in the circumferential direction centered on the fan axis CL.
  • the inclined portion 84 may have a portion that is partially interrupted in the circumferential direction centered on the fan axis CL.
  • the inclined portion 84 extends along a direction intersecting each of the radial DRr and the axial DRa.
  • the inclined portion 84 has a flat inner surface forming the first ventilation passage 531 and an inner surface forming the second ventilation passage 532.
  • the outer side of the radial DRr is connected to the side wall portion 51.
  • the corner portion formed by intersecting the upstream portion 570 and the inclined portion 84 is the change point CP.
  • the inclination angle ⁇ s3 with respect to the upstream portion 570 at the change point CP is larger than the inclination angle ⁇ v3 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342.
  • the inclination angle ⁇ s3 is an angle formed by the tangent line TL at the above-mentioned change point CP and the upstream portion 570 extending along the radial DRr.
  • the tilt angle ⁇ s3 is approximately 45 to 60 °.
  • the inclination angle ⁇ v3 of this example is about 15 ° to 30 °, which is smaller than the inclination angle ⁇ s3.
  • the configuration other than the airflow turning portion 80 is the same as that of the first embodiment.
  • the airflow turning portion 80 of the present embodiment includes an inclined portion 84. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr3, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 is turned away from the partition plate 57 by flowing along the inclined portion 84.
  • the inclined portion 84 extending linearly is illustrated, but the present invention is not limited to this.
  • the inclined portion 84 may extend in a curved shape, or may have a straight portion and a curved portion, respectively.
  • the airflow turning portion 80 is configured to include a rib 85 protruding from one side to the other side in the axial direction DRa instead of the recess 81.
  • the rib 85 extends along the axial DRa.
  • the rib 85 has a rectangular cross section.
  • the rib 85 is formed over the entire area without interruption in the circumferential direction centered on the fan axis CL.
  • the rib 85 may be partially interrupted in the circumferential direction centered on the fan axis CL.
  • the rib 85 is formed in a portion of the partition plate 57 located outside the radial DRr with respect to the trailing edge plate portion 342. Specifically, the rib 85 is provided at a position closer to the trailing edge plate portion 342 than the side wall portion 51 in the radial DRr.
  • the rib 85 has a rib height La as a dimension in the axial direction DRa on the opposite side of the surface 542 of the partition plate 57 facing the trailing edge plate portion 342 and the facing surface 342a of the trailing edge plate portion 342 facing the partition plate 57. It is smaller than the distance Lb of the axial DRa from the surface 342b.
  • the rib height La is the distance Lc of the axial DRa between the surface 572 of the partition plate 57 facing the trailing edge plate portion 342 and the facing surface 342a of the trailing edge plate portion 342 facing the partition plate 57. Is bigger than.
  • the corner portion formed by intersecting the upstream portion 570 and the rib 85 is the change point CP.
  • the inclination angle ⁇ s4 with respect to the upstream portion 570 at the change point CP is larger than the inclination angle ⁇ v4 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. ..
  • the inclination angle ⁇ s4 is an angle formed by the tangent line TL at the above-mentioned change point CP and the upstream portion 570 extending along the radial DRr.
  • the inclination angle ⁇ s4 is approximately 90 °.
  • the tilt angle ⁇ v4 of this example is about 15 ° to 30 °, which is smaller than the tilt angle ⁇ s4.
  • the configuration other than the airflow turning portion 80 is the same as that of the first embodiment.
  • the airflow turning portion 80 of the present embodiment includes a rib 85. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr4, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 is turned away from the partition plate 57 by colliding with the rib 85.
  • the rib height La of the rib 85 is the axis of the surface 542 of the partition plate 57 facing the trailing edge plate portion 342 and the surface 342b of the trailing edge plate portion 342 opposite to the facing surface 342a facing the partition plate 57. It is smaller than the interval Lb of the direction DRa. According to this, since the rib 85 does not overlap with the second wing passage 320 in the radial DRr, it is possible to prevent the airflow blown out from the second wing passage 320 from colliding with the rib 85.
  • the rib height La of the rib 85 is from the distance Lc of the axial DRa between the surface 542 of the partition plate 57 facing the trailing edge plate portion 342 and the facing surface 342a of the trailing edge plate portion 342 facing the partition plate 57. Is also getting bigger. According to this, since the rib 85 overlaps the gap between the trailing edge plate portion 342 and the partition plate 57 in the radial DRr, it becomes difficult for the inside air to flow into the gap between the trailing edge plate portion 342 and the partition plate 57.
  • the rib 85 is exemplified as the rib 85 extending along the axial direction DRa and having a rectangular cross-sectional shape, but the rib 85 is not limited to this.
  • the rib 85 may extend in a direction intersecting the axial DRa, for example. Further, the rib 85 may have a triangular or arcuate cross-sectional shape, for example.
  • the rib height La of the rib 85 may be equal to or greater than the distance Lb between one surface 572 of the partition plate 57 and the opposite surface 342b of the trailing edge plate portion 342, or one of the partition plates 57.
  • the distance between the surface 572 and the facing surface 342a of the trailing edge plate portion 342 may be Lc or less.
  • a split plate 34A that extends as a whole along the radial DRr is adopted. That is, the dividing plate 34A is located not only on the outer portion of the radial DRr but also on the inner portion of the radial DRr on the other side of the axial DRa than the upstream edge portion 571.
  • the front edge plate portion 341, the trailing edge plate portion 342, and the intermediate plate portion 343 are lined up in a row along the radial DRr, and the whole thereof is more axial than the upstream edge portion 571. It is located on the other side of the direction DRa.
  • blower 1 of the present embodiment has a configuration common to or equal to that of the first embodiment, and the action and effect produced from the configuration can be obtained in the same manner as in the first embodiment.
  • the blower 1 in which the airflow turning portion 80 is composed of the recess 81 described in the first embodiment is illustrated, but the blower 1 is not limited to this.
  • the airflow turning portion 80 may be configured as described in the second to fourth embodiments.
  • the split plate 34A if at least the trailing edge plate portion 342 is located on the other side of the axial DRa from the upstream edge portion 571, what kind of form is the portion inside the trailing edge plate portion 342? You may be.
  • the blower 1 is illustrated in which the air suction mode can be switched by the inside / outside air box 10, but the blower 1 is not limited to this.
  • the blower 1 may be configured so that at least the inside / outside air mode can be realized. That is, the inside / outside air box 10 is not indispensable in the blower 1 of the present disclosure.
  • the filter 20 is arranged between the inside / outside air box 10 and the suction port forming portion 60, but the blower 1 is not limited to this.
  • the filter 20 may be arranged inside the inside / outside air box 10, or the filter 20 may be omitted.
  • the chord length of the second blade 32 is larger than the chord length of the first blade 31, but the fan 30 is not limited to this.
  • the chord length of the second blade 32 may be equal to the chord length of the first blade 31.
  • the scroll casing 50 is exemplified as the casing for accommodating the fan 30, but the casing may be composed of a casing other than the scroll casing 50.
  • the airflow turning section 80 may be configured by combining these plurality of forms to the extent possible.
  • the airflow turning portion 80 has an inclination angle with respect to the upstream portion 570 at the change point CP and an inclination angle with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. It is desirable, but not limited to, larger than.
  • the inclination angle of the change point CP with respect to the upstream portion 570 is smaller than the inclination angle of the virtual line VL connecting the change point CP and the end of the trailing edge plate portion 342 with respect to the upstream portion 570. You may.
  • blower 1 of the present disclosure is applied to an air conditioner for a vehicle having two layers of inside and outside air capable of separating the outside air and the inside air and blowing them into the vehicle interior.
  • the applicable target can be applied to devices other than vehicle air conditioners.
  • the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle.
  • the fan of the blower includes a plurality of first blades, a plurality of second blades, and a split plate.
  • a partition plate is provided that divides the air ventilation path into a first ventilation path into which the air outside the vehicle interior flows in and a second ventilation passage through which the air inside the vehicle interior flows.
  • the trailing edge plate portion located on the outer side in the radial direction with respect to the first blade is radially outside the upstream edge portion facing the fan in the partition plate and axially from the upstream edge portion. It is positioned on the other side.
  • the partition plate is provided with an airflow diversion portion that diverts the direction of the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate in the direction away from the partition plate on the outer side in the radial direction from the trailing edge plate portion.
  • the partition plate has an upstream portion from the upstream edge portion to the airflow turning portion.
  • the direction of the air inside the vehicle toward the gap between the trailing edge plate and the partition plate is changed by the airflow diversion part so as not to face the gap between the trailing edge plate and the partition plate.
  • the inflow of vehicle interior air into the first ventilation path through the gap between the trailing edge plate portion and the partition plate is sufficiently suppressed.
  • the airflow turning portion includes a recessed portion that is recessed from the other side in the axial direction toward one side. According to this, the direction of the vehicle interior air is partitioned by flowing the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate along the recess before reaching the gap. It is turned away from the board.
  • the airflow turning portion includes an offset portion offset to one side in the axial direction with respect to the upstream portion and a connecting portion connecting the offset portion and the upstream portion. According to this, when the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate flows along the offset portion and the connection portion, the air is turned away from the partition plate.
  • the airflow turning portion includes an inclined portion inclined so that the outer side in the radial direction is located on one side in the axial direction as compared with the inner side in the radial direction. According to this, when the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate flows along the inclined portion, the air is turned away from the partition plate.
  • the airflow turning portion includes a rib protruding toward the other side in the axial direction. According to this, the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate collides with the rib and is turned away from the partition plate.
  • the rib height as an axial dimension is opposite to the surface of the partition plate facing the trailing edge plate portion and the surface of the trailing edge plate portion facing the partition plate. It is smaller than the axial distance from the surface. According to this, since the ribs do not overlap with the second wing passage in the radial direction, it is possible to prevent the airflow blown out from the second wing passage from colliding with the ribs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A fan (30) of a blower (1) comprises a dividing plate (34) for suppressing mixing of cabin-outside air flowing in a first vane passageway (310) and cabin-inside air flowing in a second vane passageway (320). A partition plate (57) is provided inside a casing to partition a ventilating path (53) for the air blown out from the fan into a first ventilating path (531) into which the cabin-outside air flows and a second ventilating path (532) into which the cabin-inside air flows. The dividing plate includes a rear-edge plate portion (342) positioned radially outside with respect to a first blade. The rear-edge plate portion has an end portion radially outside the rear-edge plate portion which is located radially outside of an upstream edge portion (571) of the partition plate opposite the fan and on the other side axially with respect to the upstream edge portion. The partition plate has an airflow turnaround portion (80) radially outside the rear-edge plate portion for causing the direction of the cabin-inside air moving toward a gap between the rear-edge plate portion and the partition plate to be turned around in a direction away from the partition plate.

Description

送風機Blower 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年10月31日に出願された日本特許出願番号2019-199051号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-199051 filed on October 31, 2019, the contents of which are incorporated herein by reference.
 本開示は、送風機に関する。 This disclosure relates to a blower.
 従来、車室内空気(以下、内気とも呼ぶ。)および車室外空気(以下、外気とも呼ぶ。)を区別して同時に吸入することが可能な片側吸込式の遠心送風機が知られている(例えば、特許文献1参照)。 Conventionally, a one-sided suction type centrifugal blower capable of distinguishing between vehicle interior air (hereinafter, also referred to as inside air) and vehicle interior outside air (hereinafter, also referred to as outside air) and simultaneously inhaling is known (for example, a patent). Reference 1).
 特許文献1記載の遠心送風機の羽根車は、軸方向の一方側に位置する複数の第1翼の間の空間と軸方向の他方側に位置する複数の第2翼の間の空間とが分割部材によって分割されている。また、羽根車を収容するスクロールケーシングは、羽根車の径方向の外側に形成される空気流路が、仕切壁により羽根車の軸方向の一方の第1空気流路と軸方向の他方の第2空気流路とに仕切られている。さらに、羽根車の径方向の内側には、外部から取り入れられた空気を第1空気流路と第2空気流路に分離して流す分離筒が配置されている。これにより、遠心送風機は、外気を分離筒の外側および羽根車を介して第1空気流路に流しつつ、内気を分離筒の内側および羽根車を介して第2空気流路に流すことが可能になっている。 The impeller of the centrifugal blower described in Patent Document 1 is divided into a space between a plurality of first blades located on one side in the axial direction and a space between a plurality of second blades located on the other side in the axial direction. It is divided by members. Further, in the scroll casing accommodating the impeller, the air flow path formed on the outer side in the radial direction of the impeller is formed by a partition wall with one first air flow path in the axial direction of the impeller and the other first air flow path in the axial direction. It is partitioned into two air flow paths. Further, inside the impeller in the radial direction, a separation cylinder is arranged to separate and flow the air taken in from the outside into the first air flow path and the second air flow path. As a result, the centrifugal blower can flow the outside air to the first air flow path through the outside of the separation cylinder and the impeller, while allowing the inside air to flow to the second air flow path through the inside of the separation cylinder and the impeller. It has become.
 特許文献1には、分割部材のうち半径方向の内側の縁部が仕切壁のうち羽根車に対向する壁縁部より軸方向の一方側に位置し、且つ、分割部材のうち半径方向の外側の縁部が壁縁部よりも外側であって壁縁部よりも軸方向の他方側に位置するものが例示されている。 In Patent Document 1, the inner edge portion of the dividing member in the radial direction is located on one side of the partition wall in the axial direction from the wall edge portion facing the impeller, and the outer edge portion of the dividing member in the radial direction is located. The edge of the wall is outside the wall edge and is located on the other side in the axial direction from the wall edge.
特開2019-44739号公報Japanese Unexamined Patent Publication No. 2019-44739
 ところで、特許文献1には、第1翼の下流側での圧力と第2翼の下流側での圧力との関係について何ら検討されていない。このため、何らかの要因によって、第1翼の下流側での圧力よりも第2翼の下流側での圧力が大きくなると、第2空気流路を流れる内気が分割部材と仕切壁との隙間を介して第1空気流路に流入し易くなる。
 本開示は、外部から吸い込んだ車室外空気に車室内空気が混入してしまうことを抑制可能な遠心送風機を提供することを目的とする。
By the way, Patent Document 1 does not examine the relationship between the pressure on the downstream side of the first blade and the pressure on the downstream side of the second blade. Therefore, if for some reason the pressure on the downstream side of the second blade becomes larger than the pressure on the downstream side of the first blade, the inside air flowing through the second air flow path passes through the gap between the dividing member and the partition wall. Therefore, it becomes easy to flow into the first air flow path.
An object of the present disclosure is to provide a centrifugal blower capable of suppressing the mixing of the vehicle interior air with the vehicle interior air sucked from the outside.
 本開示の1つの観点によれば、送風機は、
 車室外空気および車室内空気を区別して同時に吸入することが可能なものであって、
 ファン軸心の軸方向の一方側から吸い込んだ空気をファン軸心から遠ざかる方向に向けて吹き出すファンと、
 ファンを収容し、ファンに対して軸方向の一方側にファンへ吸い込まれる空気の吸込口が形成されたケーシングと、
 ファンの径方向の内側に配置される筒状部を含み、車室外空気を筒状部の外側に流し、且つ、車室内空気を筒状部の内側に流すことで、車室外空気と車室内空気とを分離する分離筒と、を備え、
 ファンは、
 ファン軸心の周りに配置された複数の第1ブレードと、
 ファン軸心の周りに配置されて複数の第1ブレードに対して軸方向の他方側に位置する複数の第2ブレードと、
 複数の第1ブレードと複数の第2ブレードとを接続するとともに複数の第1ブレードの相互間に形成される第1翼通路を流れる車室外空気と複数の第2ブレードの相互間に形成される第2翼通路を流れる車室内空気との混合を抑える分割板と、を含み、
 ケーシングの内側には、ファンを基準として径方向の外側にファンから吹き出された空気の通風路が形成されるとともに、通風路を車室外空気が流入する第1通風路と車室内空気が流入する第2通風路とに仕切る仕切板が設けられ、
 分割板は、第1ブレードに対して径方向の外側に位置する後縁板部を有し、
 後縁板部は、後縁板部における径方向の外側の端部が仕切板におけるファンに対向する上流縁部よりも径方向の外側であって上流縁部よりも軸方向の他方側に位置付けられており、
 仕切板には、後縁板部よりも径方向の外側に、後縁板部と仕切板との隙間に向かう車室内空気の向きを仕切板から離れる方向に転向させる気流転向部が設けられている、送風機。
According to one aspect of the present disclosure, the blower
It is possible to distinguish between the outside air and the inside air and inhale at the same time.
A fan that blows out air sucked from one side of the fan axis in the direction away from the fan axis,
A casing that accommodates the fan and has a suction port for air that is sucked into the fan on one side in the axial direction with respect to the fan.
Including the tubular part arranged inside in the radial direction of the fan, the outside air of the passenger compartment and the air inside the passenger compartment are allowed to flow outside the tubular portion and the air inside the passenger compartment is allowed to flow inside the tubular portion. Equipped with a separation cylinder that separates from air,
Fans
With multiple first blades placed around the fan axis,
A plurality of second blades arranged around the fan axis and located on the other side in the axial direction with respect to the plurality of first blades.
A plurality of first blades and a plurality of second blades are connected, and the outside air flowing through the first wing passage formed between the plurality of first blades is formed between the plurality of second blades. Includes a split plate that suppresses mixing with the vehicle interior air flowing through the second wing passage,
Inside the casing, a ventilation path for the air blown out from the fan is formed on the outside in the radial direction with respect to the fan, and the first ventilation path through which the air outside the passenger compartment flows and the air inside the passenger compartment flow into the ventilation passage. A partition plate is provided to separate it from the second ventilation passage.
The split plate has a trailing edge plate portion located on the outer side in the radial direction with respect to the first blade.
The trailing edge plate portion is positioned so that the radial outer end portion of the trailing edge plate portion is radially outside the upstream edge portion facing the fan in the partition plate and is axially opposite to the upstream edge portion. Has been
The partition plate is provided with an airflow diversion portion that diverts the direction of the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate in the direction away from the partition plate on the outer side in the radial direction from the trailing edge plate portion. There is a blower.
 これによると、後縁板部と仕切板との隙間に向かう車室内空気の向きが気流転向部によって仕切板から離れる方向に転向されることで、車室内空気が後縁板部と仕切板との隙間に流入し難くなる。これにより、後縁板部と仕切板との隙間を介した車室内空気の第1通風路への流入が抑えられる。すなわち、外部から吸い込んだ車室外空気に車室内空気が混入してしまうことを抑制することができる。 According to this, the direction of the air inside the vehicle toward the gap between the trailing edge plate and the partition plate is changed by the airflow turning portion in the direction away from the partition plate, so that the air inside the vehicle is separated from the trailing edge plate and the partition plate. It becomes difficult to flow into the gap of. As a result, the inflow of the vehicle interior air into the first ventilation path through the gap between the trailing edge plate portion and the partition plate is suppressed. That is, it is possible to prevent the vehicle interior air from being mixed with the vehicle interior air sucked from the outside.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference symbols in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態に係る遠心送風機の概略構成図である。It is a schematic block diagram of the centrifugal blower which concerns on 1st Embodiment. 第1実施形態に係る遠心送風機の一部を示す模式図である。It is a schematic diagram which shows a part of the centrifugal blower which concerns on 1st Embodiment. 図2のIII部分の拡大図である。It is an enlarged view of the part III of FIG. 第2実施形態に係る遠心送風機の一部を示す模式図である。It is a schematic diagram which shows a part of the centrifugal blower which concerns on 2nd Embodiment. 図4のV部分の拡大図である。It is an enlarged view of the V part of FIG. 第3実施形態に係る遠心送風機の一部を示す模式図である。It is a schematic diagram which shows a part of the centrifugal blower which concerns on 3rd Embodiment. 図6のVII部分の拡大図である。It is an enlarged view of the VII part of FIG. 第4実施形態に係る遠心送風機の一部を示す模式図である。It is a schematic diagram which shows a part of the centrifugal blower which concerns on 4th Embodiment. 図8のIX部分の拡大図である。It is an enlarged view of the IX part of FIG. 第5実施形態に係る遠心送風機の一部を示す模式図である。It is a schematic diagram which shows a part of the centrifugal blower which concerns on 5th Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same reference numerals may be assigned to parts that are the same as or equivalent to those described in the preceding embodiments, and the description thereof may be omitted. Further, when only a part of the component is described in the embodiment, the component described in the preceding embodiment can be applied to the other part of the component. The following embodiments can be partially combined with each other as long as the combination does not cause any trouble, even if not explicitly stated.
 (第1実施形態)
 本実施形態について、図1~図3を参照しつつ説明する。本実施形態では、本開示の送風機1を、外気および内気を区分して車室内へ吹き出すことが可能な内外気二層式の車両用空調装置に適用した例について説明する。
(First Embodiment)
This embodiment will be described with reference to FIGS. 1 to 3. In the present embodiment, an example will be described in which the blower 1 of the present disclosure is applied to an air conditioner for a vehicle having two layers of inside and outside air capable of separating the outside air and the inside air and blowing them into the vehicle interior.
 車両用空調装置は、図示しないが、デフロスタ吹出口とベント吹出口とフット吹出口とを有し、それぞれの吹出口から車両のフロントウインドウ、乗員の上半身および乗員の足元に向けて送風する。 Although not shown, the vehicle air conditioner has a defroster outlet, a vent outlet, and a foot outlet, and blows air from each outlet toward the front window of the vehicle, the upper body of the occupant, and the feet of the occupant.
 図1に示すように、送風機1は、内外気箱10、フィルタ20、ファン30、電動モータ40、スクロールケーシング50、分離筒70を含んで構成されている。送風機1は、ファン軸心CLの方向が鉛直方向に一致するように配置されている。なお、車両用空調装置が実際に車両に搭載された場合にファン軸心CLの方向が鉛直方向に一致するものと限定されるわけではない。 As shown in FIG. 1, the blower 1 includes an inside / outside air box 10, a filter 20, a fan 30, an electric motor 40, a scroll casing 50, and a separation cylinder 70. The blower 1 is arranged so that the direction of the fan axis CL coincides with the vertical direction. It should be noted that the direction of the fan axis CL is not limited to the vertical direction when the vehicle air conditioner is actually mounted on the vehicle.
 ここで、本明細書では、説明の便宜上、ファン30の回転中心となるファン軸心CLに沿う方向を軸方向DRaと呼ぶ。また、本明細書においては、特別な注記がない限り、ファン軸心CL上の任意の点を中心としてファン軸心CLと直交する平面上に描かれた円の半径の方向を径方向DRrと呼び、当該円の円周方向を周方向と呼ぶ。 Here, in the present specification, for convenience of explanation, the direction along the fan axis CL, which is the center of rotation of the fan 30, is referred to as the axial DRa. Further, in the present specification, unless otherwise specified, the radial direction of the radius of a circle drawn on a plane orthogonal to the fan axis CL with an arbitrary point on the fan axis CL as the center is referred to as the radial DRr. The circumferential direction of the circle is called the circumferential direction.
 内外気箱10は、送風機1において上方側に配置されている。内外気箱10の上面には、第1外気導入口11、第2外気導入口12、第1内気導入口13、および第2内気導入口14が形成されている。第1外気導入口11および第2外気導入口12は、内外気箱10の内側に外気を導入するための開口である。第1内気導入口13および第2内気導入口14は、内外気箱10の内側に内気を導入するための開口である。 The inside / outside air box 10 is arranged on the upper side of the blower 1. A first outside air introduction port 11, a second outside air introduction port 12, a first inside air introduction port 13, and a second inside air introduction port 14 are formed on the upper surface of the inside / outside air box 10. The first outside air introduction port 11 and the second outside air introduction port 12 are openings for introducing outside air inside the inside / outside air box 10. The first inside air introduction port 13 and the second inside air introduction port 14 are openings for introducing inside air inside the inside / outside air box 10.
 内外気箱10の内側には、外気ドア15、内外気ドア16、および内気ドア17が設けられている。外気ドア15は、第1外気導入口11を開閉するドアである。内外気ドア16は、第2外気導入口12および第1内気導入口13を選択的に開閉するドアである。内気ドア17は、第2内気導入口14を開閉するドアである。外気ドア15および内気ドア17はバタフライドアで構成されている。内外気ドア16は、ロータリドアで構成されている。 Inside the inside / outside air box 10, an outside air door 15, an inside / outside air door 16, and an inside air door 17 are provided. The outside air door 15 is a door that opens and closes the first outside air introduction port 11. The inside / outside air door 16 is a door that selectively opens and closes the second outside air introduction port 12 and the first inside air introduction port 13. The inside air door 17 is a door that opens and closes the second inside air introduction port 14. The outside air door 15 and the inside air door 17 are composed of butterfly doors. The inside / outside air door 16 is composed of a rotary door.
 送風機1は、内外気箱10を備えることで、内気と外気とを区別して同時に吸入することが可能になっている。なお、外気ドア15および内気ドア17は、バタフライドア以外のドア(例えば、ロータリドア)で構成されていてもよい。また、内外気ドア16は、ロータリドア以外のドア(例えば、バタフライドア)で構成されていてもよい。 By providing the inside / outside air box 10, the blower 1 can distinguish between the inside air and the outside air and inhale them at the same time. The outside air door 15 and the inside air door 17 may be composed of doors other than the butterfly door (for example, a rotary door). Further, the inside / outside air door 16 may be composed of a door other than the rotary door (for example, a butterfly door).
 フィルタ20は、内外気箱10の下方に配置されている。フィルタ20は、水平方向に略平行となる姿勢で配置されている。フィルタ20は、内外気箱10から導入された空気を濾過してパーティクル等の汚染物質を除去するものである。 The filter 20 is arranged below the inside / outside air box 10. The filters 20 are arranged in a posture that is substantially parallel in the horizontal direction. The filter 20 filters the air introduced from the inside / outside air box 10 to remove contaminants such as particles.
 ファン30は、ファン軸心CLの軸方向DRaの一方側から空気を吸い込み、吸い込んだ空気をファン軸心CLから遠ざかる方向に向けて吹き出す遠心ファンである。ファン30は、シロッコファンで構成されている。なお、ファン30は、シロッコファンに限らず、ラジアルファン、ターボファン等で構成されていてもよい。 The fan 30 is a centrifugal fan that sucks air from one side of the axial DRa of the fan axis CL and blows out the sucked air in a direction away from the fan axis CL. The fan 30 is composed of a sirocco fan. The fan 30 is not limited to a sirocco fan, and may be composed of a radial fan, a turbo fan, or the like.
 ファン30は、複数の第1ブレード31、複数の第2ブレード32、主板33、および分割板34を有している。複数の第1ブレード31は、ファン軸心CLの周りに並んで配置されている。複数の第1ブレード31の相互間には、空気が流れる第1翼通路310が形成される。 The fan 30 has a plurality of first blades 31, a plurality of second blades 32, a main plate 33, and a split plate 34. The plurality of first blades 31 are arranged side by side around the fan axis CL. A first wing passage 310 through which air flows is formed between the plurality of first blades 31.
 複数の第2ブレード32は、ファン軸心CLの周りに並んで配置されている。複数の第2ブレード32は、複数の第1ブレード31に対して軸方向DRaの他方側に位置付けられている。複数の第2ブレード32の相互間には、空気が流れる第2翼通路320が形成される。 The plurality of second blades 32 are arranged side by side around the fan axis CL. The plurality of second blades 32 are positioned on the other side of the axial DRa with respect to the plurality of first blades 31. A second wing passage 320 through which air flows is formed between the plurality of second blades 32.
 主板33は、ファン軸心CLを中心とする円盤状の部材で構成されている。主板33は、その中心部に電動モータ40のシャフト42が相対回転不能に連結されるボス部331が設けられている。主板33は、ファン30の径方向DRrの外側の部位に複数の第2ブレード32の下端部が固定されている。 The main plate 33 is composed of a disk-shaped member centered on the fan axis CL. The main plate 33 is provided with a boss portion 331 at the center thereof, to which the shaft 42 of the electric motor 40 is connected so as not to rotate relative to each other. In the main plate 33, the lower ends of a plurality of second blades 32 are fixed to a portion outside the radial DRr of the fan 30.
 分割板34は、複数の第1ブレード31と複数の第2ブレード32とを接続する部材である。分割板34は、複数の第1ブレード31の相互間に形成される第1翼通路310を流れる空気と、複数の第2ブレード32の相互間に形成される第2翼通路320を流れる空気との混合を抑える部材でもある。分割板34は、ファン軸心CLを中心とするリング状の部材で構成されている。分割板34には、軸方向DRaの一方側の板面に複数の第1ブレード31の下端部が固定され、軸方向DRaの他方側の板面に複数の第2ブレード32の上端部が固定されている。 The dividing plate 34 is a member that connects the plurality of first blades 31 and the plurality of second blades 32. The dividing plate 34 includes air flowing through the first wing passage 310 formed between the plurality of first blades 31 and air flowing through the second wing passage 320 formed between the plurality of second blades 32. It is also a member that suppresses the mixing of air. The dividing plate 34 is composed of a ring-shaped member centered on the fan axis CL. The lower ends of the plurality of first blades 31 are fixed to the plate surface on one side of the axial DRa, and the upper ends of the plurality of second blades 32 are fixed to the plate surface on the other side of the axial DRa. Has been done.
 このように構成されるファン30は、複数の第1ブレード31、複数の第2ブレード32、主板33、および分割板34が、射出成形等の成形技術によって一体に成形された一体成形物として構成されている。 The fan 30 configured in this way is configured as an integrally molded product in which a plurality of first blades 31, a plurality of second blades 32, a main plate 33, and a split plate 34 are integrally molded by a molding technique such as injection molding. Has been done.
 電動モータ40は、ファン30を回転させる電動機である。電動モータ40は、ファン30を回転させるための動力を発生させる本体部41、本体部41の動力によって回転するシャフト42を有している。 The electric motor 40 is an electric motor that rotates the fan 30. The electric motor 40 has a main body 41 that generates power for rotating the fan 30, and a shaft 42 that is rotated by the power of the main body 41.
 シャフト42は、本体部41から軸方向DRaの一方側に向かって延伸している。シャフト42は、モータキャップ43によって主板33に固定されている。これにより、シャフト42が回転すると、ファン30が回転する。 The shaft 42 extends from the main body 41 toward one side of the axial DRa. The shaft 42 is fixed to the main plate 33 by the motor cap 43. As a result, when the shaft 42 rotates, the fan 30 rotates.
 スクロールケーシング50は、内部にファン30が収容されるケーシングである。スクロールケーシング50は、ファン30から放射状に吹き出される気流をファン30の周方向への流れに整流する働きをする。スクロールケーシング50は、ファン30に対して径方向DRrの外側に渦巻き状の通風路53を形成する。 The scroll casing 50 is a casing in which the fan 30 is housed. The scroll casing 50 functions to rectify the airflow radiating from the fan 30 into a flow in the circumferential direction of the fan 30. The scroll casing 50 forms a spiral ventilation path 53 on the outer side of the radial DRr with respect to the fan 30.
 スクロールケーシング50は、図示しないが、車両用空調装置の空調ユニットに向けて空気を吹き出す吐出路が形成されている。これにより、スクロールケーシング50の内側を流れる空気は、空調ユニットに導入される。図示しない空調ユニットは、送風機1から導入された空気を所望の温度に調整して車室内へ吹き出すものである。空調ユニットは、蒸発器、ヒータコア等の熱交換器によって送風機1から導入された空気を所望の温度に調整する。 Although not shown, the scroll casing 50 is formed with a discharge path for blowing air toward the air conditioning unit of the vehicle air conditioner. As a result, the air flowing inside the scroll casing 50 is introduced into the air conditioning unit. The air conditioning unit (not shown) adjusts the air introduced from the blower 1 to a desired temperature and blows it out into the vehicle interior. The air conditioning unit adjusts the air introduced from the blower 1 to a desired temperature by a heat exchanger such as an evaporator or a heater core.
 スクロールケーシング50は、ファン30に対して軸方向DRaの一方側となる上方に吸込口形成部60が設けられている。吸込口形成部60は、スクロールケーシング50において上方側の端面を形成する部位である。吸込口形成部60の略中央部分には、ファン30への空気の吸込口61が形成されている。 The scroll casing 50 is provided with a suction port forming portion 60 on one side of the axial DRa with respect to the fan 30. The suction port forming portion 60 is a portion of the scroll casing 50 that forms an upper end surface. An air suction port 61 for the fan 30 is formed in a substantially central portion of the suction port forming portion 60.
 吸込口形成部60は、吸込口61の周縁部に吸込口61に向けて空気を案内するベルマウス62が設けられている。ベルマウス62は、吸込口61に空気が円滑に流れるように、断面形状が円弧状に湾曲している。これにより、フィルタ20を通過した空気は、ベルマウス62からファン30に吸い込まれる。 The suction port forming portion 60 is provided with a bell mouth 62 that guides air toward the suction port 61 at the peripheral edge of the suction port 61. The bell mouth 62 has an arcuate cross-sectional shape so that air can flow smoothly through the suction port 61. As a result, the air that has passed through the filter 20 is sucked into the fan 30 from the bell mouth 62.
 吸込口形成部60には、前述の内外気箱10およびフィルタ20を取り付けるための取付枠63が設けられている。取付枠63に対して内外気箱10およびフィルタ20が取り付けられている。 The suction port forming portion 60 is provided with a mounting frame 63 for mounting the above-mentioned inside / outside air box 10 and the filter 20. The inside / outside air box 10 and the filter 20 are attached to the attachment frame 63.
 スクロールケーシング50の内側には、通風路53を上下の第1通風路531と第2通風路532に仕切る仕切板57が設けられている。仕切板57は、ファン30の分割板34に対応する位置に設けられている。仕切板57は、例えば、ファン30の径方向DRrにおいて分割板34と重なり合うように設けられている。これにより、ファン30の第1翼通路310を通過する空気が第1通風路531に流れる。また、ファン30の第2翼通路320を通過する空気が第2通風路532に流れる。 Inside the scroll casing 50, a partition plate 57 for partitioning the ventilation passage 53 into the upper and lower first ventilation passages 531 and the second ventilation passage 532 is provided. The partition plate 57 is provided at a position corresponding to the division plate 34 of the fan 30. The partition plate 57 is provided so as to overlap the dividing plate 34 in the radial DRr of the fan 30, for example. As a result, the air passing through the first wing passage 310 of the fan 30 flows into the first ventilation passage 531. Further, the air passing through the second wing passage 320 of the fan 30 flows into the second ventilation passage 532.
 スクロールケーシング50の内側には、吸込口61を介して、分離筒70が挿入されている。分離筒70は、軸方向DRaに延伸する筒状の部材である。分離筒70は、軸方向DRaの両端に位置する部位が開口している。吸込口61を通過する空気は、分離筒70によって、分離筒70の内側を通る内側空気と分離筒70の外側を通る外側空気とに分離される。分離筒70は、少なくとも一部がファン30の内側に配置される筒状部72、筒状部72におけるファン30に対して軸方向DRaの一方側に位置する筒上端部71を有する。筒上端部71および筒状部72は、一体に成形される一体成形物として構成されている。なお、分離筒70は、別体に形成された筒上端部71と筒状部72とが連結されていてもよい。 A separation cylinder 70 is inserted inside the scroll casing 50 via a suction port 61. The separation cylinder 70 is a tubular member that extends in the axial direction DRa. The separation cylinder 70 has openings located at both ends of the axial DRa. The air passing through the suction port 61 is separated by the separation cylinder 70 into inner air passing through the inside of the separation cylinder 70 and outer air passing through the outside of the separation cylinder 70. The separation cylinder 70 has a tubular portion 72 whose at least a part is arranged inside the fan 30, and a tubular upper end portion 71 located on one side of the axial DRa with respect to the fan 30 in the tubular portion 72. The upper end portion 71 of the cylinder and the tubular portion 72 are configured as an integrally molded product that is integrally molded. In the separation cylinder 70, the upper end portion 71 of the cylinder and the tubular portion 72 formed separately may be connected to each other.
 分離筒70の断面形状は、筒上端部71から筒状部72に近づくにつれて、矩形から円形または概ね円形に滑らかに推移する。分離筒70は、筒状部72の下端に近づくに従って拡径するフレア形状になっている。 The cross-sectional shape of the separation cylinder 70 smoothly changes from a rectangle to a circle or a substantially circular shape as it approaches the tubular portion 72 from the upper end portion 71 of the cylinder. The separation cylinder 70 has a flare shape that increases in diameter as it approaches the lower end of the tubular portion 72.
 具体的には、筒上端部71には、筒状部72の内側に空気を導入するための空気入口710が形成されている。空気入口710は、内外気箱10の第2外気導入口12および第1内気導入口13に導入された空気が流れ込むように、第2外気導入口12および第1内気導入口13の下方に開口している。 Specifically, the upper end portion 71 of the cylinder is formed with an air inlet 710 for introducing air inside the tubular portion 72. The air inlet 710 opens below the second outside air introduction port 12 and the first inside air introduction port 13 so that the air introduced into the second outside air introduction port 12 and the first inside air introduction port 13 of the inside / outside air box 10 flows into the air inlet 710. doing.
 筒上端部71は、吸込口形成部60と内外気箱10との間であって、吸込口61および吸込口形成部60の一部と重なり合う位置に配置されている。筒上端部71は、吸込口61およびベルマウス62の略半分を覆っている。 The upper end portion 71 of the cylinder is arranged between the suction port forming portion 60 and the inside / outside air box 10 at a position where it overlaps with a part of the suction port 61 and the suction port forming portion 60. The upper end portion 71 of the cylinder covers substantially half of the suction port 61 and the bell mouth 62.
 筒上端部71は、ファン30に対して軸方向DRaの一方側から見た際の外形が略矩形状に形成されている。また、筒上端部71は、少なくとも一部が、ファン30に対して径方向DRrから見た際の外形が軸方向DRaに厚みを有する板状に形成されている。 The upper end portion 71 of the cylinder has a substantially rectangular outer shape when viewed from one side of the axial DRa with respect to the fan 30. Further, at least a part of the upper end portion 71 of the cylinder is formed in a plate shape having a thickness in the axial direction DRa when viewed from the radial direction DRr with respect to the fan 30.
 筒状部72は、筒上端部71に連なる上方部位721がファン軸心CLに沿って延びている。また、筒状部72の下方部位722は、軸方向DRaの他方側ほど径方向DRrへ拡がった形状になっている。下方部位722の下端部には、分離筒70の内側から空気を流出させる空気出口720が形成されている。 In the tubular portion 72, an upper portion 721 connected to the upper end portion 71 of the cylinder extends along the fan axis CL. Further, the lower portion 722 of the tubular portion 72 has a shape that expands in the radial direction DRr toward the other side of the axial DRa. At the lower end of the lower portion 722, an air outlet 720 that allows air to flow out from the inside of the separation cylinder 70 is formed.
 下方部位722の下端部は、ファン30の分割板34に対応する位置に設けられている。下方部位722の下端部は、例えば、径方向DRrにおいて分割板34と重なり合うように設けられている。これにより、分離筒70の内側を通る内側空気は、ファン30の第2翼通路320に流れる。また、分離筒70の外側を通る外側空気は、ファン30の第1翼通路310に流れる。 The lower end of the lower portion 722 is provided at a position corresponding to the dividing plate 34 of the fan 30. The lower end of the lower portion 722 is provided so as to overlap the dividing plate 34 in the radial DRr, for example. As a result, the inside air passing through the inside of the separation cylinder 70 flows into the second wing passage 320 of the fan 30. Further, the outside air passing through the outside of the separation cylinder 70 flows into the first wing passage 310 of the fan 30.
 このように構成される送風機1は、空気の吸込モードとして、外気を吸い込む外気モード、内気を吸い込む内気モード、および外気と内気とを区分して同時に吸い込む内外気モードに設定可能になっている。 The blower 1 configured in this way can be set as an air suction mode: an outside air mode that sucks in outside air, an inside air mode that sucks in inside air, and an inside / outside air mode that separates outside air and inside air and sucks them in at the same time.
 外気モードは、内外気箱10の内側に外気だけを導入するモードである。送風機1は、外気モード時に、第1外気導入口11を開放する位置に外気ドア15が変位し、第2外気導入口12を開放する位置に内外気ドア16が変位し、第2内気導入口14を閉塞する位置に内気ドア17が変位するように構成されている。 The outside air mode is a mode in which only the outside air is introduced inside the inside / outside air box 10. In the blower 1, the outside air door 15 is displaced to a position where the first outside air introduction port 11 is opened, and the inside / outside air door 16 is displaced to a position where the second outside air introduction port 12 is opened in the outside air mode. The inside air door 17 is configured to be displaced to a position where the 14 is closed.
 内気モードは、内外気箱10の内側に内気だけを導入するモードである。送風機1は、内気モード時に、第1外気導入口11を閉塞する位置に外気ドア15が変位し、第1内気導入口13を開放する位置に内外気ドア16が変位し、第2内気導入口14を開放する位置に内気ドア17が変位するように構成されている。 The inside air mode is a mode in which only the inside air is introduced inside the inside / outside air box 10. In the blower 1, the outside air door 15 is displaced to a position where the first outside air introduction port 11 is closed, and the inside / outside air door 16 is displaced to a position where the first inside air introduction port 13 is opened in the inside air mode. The inside air door 17 is configured to be displaced to a position where the 14 is opened.
 内外気モードは、内外気箱10の内側に外気および内気を導入するモードである。送風機1は、内外気モード時に、第1外気導入口11を開放する位置に外気ドア15が変位し、第1内気導入口13を開放する位置に内外気ドア16が変位し、第2内気導入口14を閉塞する位置に内気ドア17が変位するように構成されている。 The inside / outside air mode is a mode in which outside air and inside air are introduced inside the inside / outside air box 10. In the blower 1, in the inside / outside air mode, the outside air door 15 is displaced to the position where the first outside air introduction port 11 is opened, the inside / outside air door 16 is displaced to the position where the first inside air introduction port 13 is opened, and the second inside air is introduced. The inside air door 17 is configured to be displaced at a position where the mouth 14 is closed.
 送風機1は、内外気モード時に電動モータ40からの出力によってファン30が回転すると、第1外気導入口11から外気が導入されるとともに、第1内気導入口13から内気が導入される。 In the blower 1, when the fan 30 is rotated by the output from the electric motor 40 in the inside / outside air mode, the outside air is introduced from the first outside air introduction port 11 and the inside air is introduced from the first inside air introduction port 13.
 第1外気導入口11から導入された外気は、図1の矢印Faoで示すように、フィルタ20のうち筒上端部71と軸方向DRaに重ならない領域を通過した後、分離筒70の外側を介してファン30の第1翼通路310に吸い込まれる。第1翼通路310に吸い込まれた外気は、第1通風路531に吹き出される。 As shown by the arrow Fao in FIG. 1, the outside air introduced from the first outside air introduction port 11 passes through a region of the filter 20 that does not overlap the upper end portion 71 of the cylinder and the axial DRa, and then passes through the outside of the separation cylinder 70. It is sucked into the first wing passage 310 of the fan 30 through the fan 30. The outside air sucked into the first wing passage 310 is blown out to the first ventilation passage 531.
 一方、第1内気導入口13から導入された内気は、図1の矢印Faiで示すように、分離筒70の内側を介してファン30の第2翼通路320に吸い込まれる。第2翼通路320に吸い込まれた内気は、第2通風路532に吹き出される。 On the other hand, the inside air introduced from the first inside air introduction port 13 is sucked into the second wing passage 320 of the fan 30 through the inside of the separation cylinder 70 as shown by the arrow Fai in FIG. The inside air sucked into the second wing passage 320 is blown out to the second ventilation passage 532.
 図示しないが、第1通風路531を流れる外気および第2通風路532を流れる内気は、スクロールケーシング50から空調ユニットに導入され、空調ユニットの内部で所望の温度に調整された後、異なる吹出口から車室内へ吹出される。 Although not shown, the outside air flowing through the first ventilation passage 531 and the inside air flowing through the second ventilation passage 532 are introduced into the air conditioning unit from the scroll casing 50, adjusted to a desired temperature inside the air conditioning unit, and then different outlets. Is blown into the passenger compartment.
 ここで、車両用空調装置は、内外気モードで運転される際、フロントガラスの曇りを防止するよう、乾燥した外気をフロントガラスに当てる。しかしながら、フロントガラスに当てる外気に湿潤な内気が混入すると、車両用空調装置のフロントガラス曇り防止の効果が低減される虞がある。 Here, when the vehicle air conditioner is operated in the inside / outside air mode, dry outside air is applied to the windshield to prevent fogging of the windshield. However, if the outside air that hits the windshield is mixed with moist inside air, the effect of preventing the windshield of the vehicle air conditioner from fogging may be reduced.
 このような事情を考慮して、送風機1は、外気に内気が混入してしまうことを抑制可能に構成されている。このことについては、以下、図2および図3を参照しつつ説明する。 In consideration of such circumstances, the blower 1 is configured to be able to prevent the inside air from being mixed into the outside air. This will be described below with reference to FIGS. 2 and 3.
 図2および図3に示すように、ファン30は、第2ブレード32の前縁321から後縁322までの翼弦長が第1ブレード31の前縁311から後縁312までの翼弦長よりも大きくなっている。そして、第2ブレード32の後縁322が第1ブレード31の後縁312よりも径方向DRrの外側に位置している。 As shown in FIGS. 2 and 3, the fan 30 has a chord length from the front edge 321 to the trailing edge 322 of the second blade 32 from the chord length from the front edge 311 to the trailing edge 312 of the first blade 31. Is also getting bigger. The trailing edge 322 of the second blade 32 is located outside the radial DRr of the trailing edge 312 of the first blade 31.
 ファン30の分割板34は、径方向DRrの外側の部位が、仕切板57の上流縁部571よりも径方向DRrの外側に位置するとともに、当該上流縁部571よりも軸方向DRaの他方側に位置している。 In the dividing plate 34 of the fan 30, the portion outside the radial DRr is located outside the radial DRr from the upstream edge portion 571 of the partition plate 57, and the other side of the axial DRa from the upstream edge portion 571. Is located in.
 ここで、仕切板57の上流縁部571は、仕切板57のうちファン30に対向する部位である。すなわち、上流縁部571は、仕切板57における径方向DRrの内側の端部である。 Here, the upstream edge portion 571 of the partition plate 57 is a portion of the partition plate 57 facing the fan 30. That is, the upstream edge portion 571 is an inner end portion of the partition plate 57 in the radial direction DRr.
 具体的には、分割板34は、径方向DRrの内側の部位である前縁板部341、径方向DRrの外側の部位である後縁板部342、および前縁板部341と後縁板部342を接続する中間板部343を有する。 Specifically, the split plate 34 includes a front edge plate portion 341 which is an inner portion of the radial DRr, a trailing edge plate portion 342 which is a portion outside the radial DRr, and a front edge plate portion 341 and a trailing edge plate. It has an intermediate plate portion 343 that connects the portions 342.
 前縁板部341は、分割板34において、第1ブレード31の前縁311から後縁312まで延びる部位である。前縁板部341は、径方向DRrに沿って延びている。前縁板部341は、上流縁部571よりも軸方向DRaの一方側に位置している。 The front edge plate portion 341 is a portion of the split plate 34 that extends from the front edge 311 of the first blade 31 to the trailing edge 312. The front edge plate portion 341 extends along the radial DRr. The front edge plate portion 341 is located on one side of the axial DRa with respect to the upstream edge portion 571.
 中間板部343は、第1ブレード31の後縁312と軸方向DRaに重なり合うように、軸方向DRaに沿って延びている。中間板部343は、軸方向DRaの一方側の端部が前縁板部341に接続され、軸方向DRaの他方側の端部が後縁板部342に接続されている。中間板部343の一部は、径方向DRrにおいて上流縁部571に対向している。 The intermediate plate portion 343 extends along the axial DRa so as to overlap the trailing edge 312 of the first blade 31 and the axial DRa. In the intermediate plate portion 343, one end of the axial DRa is connected to the front edge plate portion 341, and the other end of the axial DRa is connected to the trailing edge plate portion 342. A part of the intermediate plate portion 343 faces the upstream edge portion 571 in the radial DRr.
 後縁板部342は、第1ブレード31に対して径方向DRrの外側に位置する部位である。後縁板部342は、径方向DRrに沿って、第1ブレード31の後縁312から第2ブレード32の後縁322まで延びている。具体的には、後縁板部342は、上流縁部571よりも径方向DRrの外側であって、上流縁部571よりも軸方向DRaの他方側に位置している。 The trailing edge plate portion 342 is a portion located outside the radial DRr with respect to the first blade 31. The trailing edge plate portion 342 extends from the trailing edge 312 of the first blade 31 to the trailing edge 322 of the second blade 32 along the radial DRr. Specifically, the trailing edge plate portion 342 is located outside the radial DRr from the upstream edge portion 571 and on the other side of the axial DRa from the upstream edge portion 571.
 ここで、本実施形態の送風機1は、第2ブレード32の後縁322が第1ブレード31の後縁312よりも径方向DRrの外側に位置している。このような構造では、第2ブレード32とスクロールケーシング50の側壁部51との間隔S2が第1ブレード31と側壁部51との間隔S1に比べて小さくなる。このため、第2通風路532は、第1通風路531に比べて通路面積が小さくなり、第2通風路532の圧力が第1通風路531の圧力よりも高くなる場合がある。 Here, in the blower 1 of the present embodiment, the trailing edge 322 of the second blade 32 is located outside the radial DRr of the trailing edge 312 of the first blade 31. In such a structure, the distance S2 between the second blade 32 and the side wall portion 51 of the scroll casing 50 is smaller than the distance S1 between the first blade 31 and the side wall portion 51. Therefore, the passage area of the second ventilation passage 532 is smaller than that of the first ventilation passage 531, and the pressure of the second ventilation passage 532 may be higher than the pressure of the first ventilation passage 531.
 また、本実施形態の送風機1は、分割板34の前縁板部341が仕切板57の上流縁部571よりも軸方向DRaの一方側に位置している。このような構造では、第1翼通路310から吹き出される空気が仕切板57に衝突し難い。この場合、騒音を抑えることが可能になるが、複数の第1ブレード31の下流において空気の流量が増えて複数の第1ブレード31の下流における静圧が低下する。 Further, in the blower 1 of the present embodiment, the front edge plate portion 341 of the dividing plate 34 is located on one side of the axial DRa with respect to the upstream edge portion 571 of the partition plate 57. In such a structure, the air blown out from the first wing passage 310 is unlikely to collide with the partition plate 57. In this case, noise can be suppressed, but the flow rate of air increases downstream of the plurality of first blades 31 and the static pressure downstream of the plurality of first blades 31 decreases.
 これらにより、本実施形態の送風機1は、第1ブレード31の下流側での圧力よりも第2ブレード32の下流側での圧力が大きくなり易い。 As a result, in the blower 1 of the present embodiment, the pressure on the downstream side of the second blade 32 tends to be larger than the pressure on the downstream side of the first blade 31.
 第1ブレード31の下流側での圧力よりも第2ブレード32の下流側での圧力が大きくなり易いと、第2翼通路320から吹き出された空気が分割板34と仕切板57との隙間を介して第1通風路531に流入してしまう虞がある。 When the pressure on the downstream side of the second blade 32 tends to be larger than the pressure on the downstream side of the first blade 31, the air blown out from the second blade passage 320 creates a gap between the dividing plate 34 and the partition plate 57. There is a risk that it will flow into the first ventilation passage 531 through the air passage.
 これらを考慮し、本実施形態の送風機1は、仕切板57に対して気流転向部80が設けられている。気流転向部80は、後縁板部342と仕切板57との隙間に向かう内気の向きを仕切板57から離れる方向に転向させるものである。気流転向部80は、仕切板57のうち、後縁板部342よりも径方向DRrの外側に設けられている。 In consideration of these, the blower 1 of the present embodiment is provided with an airflow turning portion 80 with respect to the partition plate 57. The airflow turning portion 80 diverts the direction of the inside air toward the gap between the trailing edge plate portion 342 and the partition plate 57 in a direction away from the partition plate 57. The airflow turning portion 80 is provided outside the radial DRr of the partition plate 57 with respect to the trailing edge plate portion 342.
 気流転向部80は、軸方向DRaの他方側から一方側に向けて窪んだ窪部81を含んで構成されている。具体的には、窪部81は、仕切板57における第2通風路532を形成する内面に形成された略円弧状の凹部で構成されている。また、仕切板57における第1通風路531を形成する内面は、窪部81が形成されている部位が、軸方向DRaの一方側から他方側に向けて略円弧状に突き出ている。 The airflow turning portion 80 is configured to include a recessed portion 81 recessed from the other side to one side in the axial direction DRa. Specifically, the recess 81 is composed of a substantially arc-shaped recess formed on the inner surface of the partition plate 57 that forms the second ventilation passage 532. Further, on the inner surface of the partition plate 57 forming the first ventilation passage 531, the portion where the recess 81 is formed protrudes in a substantially arc shape from one side of the axial DRa toward the other side.
 窪部81は、ファン軸心CLを中心とする周方向において途切れることなく全域に形成されている。これによると、周方向の全域で、後縁板部342と仕切板57との隙間に向かう内気の向きを気流転向部80によって仕切板57から離れる方向に転向させることができる。なお、窪部81は、ファン軸心CLを中心とする周方向において一部途切れる箇所があってもよい。 The recess 81 is formed over the entire area without interruption in the circumferential direction centered on the fan axis CL. According to this, the direction of the inside air toward the gap between the trailing edge plate portion 342 and the partition plate 57 can be changed by the airflow turning portion 80 in the direction away from the partition plate 57 over the entire circumferential direction. The recess 81 may have a portion that is partially interrupted in the circumferential direction centered on the fan axis CL.
 窪部81は、仕切板57のうち後縁板部342よりも径方向DRrの外側に位置する部分から側壁部51との接続部位までの範囲に設けられている。具体的には、窪部81は、径方向DRrの幅寸法Lv1が、仕切板57のうち後縁板部342よりも径方向DRrの外側に位置する部位の幅寸法Lv2よりも小さい。また、窪部81は、軸方向DRaの高さ寸法Lh1が、分割板34の軸方向DRaの高さ寸法Lh2よりも小さい。 The recess 81 is provided in a range from a portion of the partition plate 57 located outside the radial DRr of the trailing edge plate portion 342 to a connection portion with the side wall portion 51. Specifically, in the recess 81, the width dimension Lv1 of the radial DRr is smaller than the width dimension Lv2 of the portion of the partition plate 57 located outside the radial DRr than the trailing edge plate portion 342. Further, in the recess 81, the height dimension Lh1 of the axial DRa is smaller than the height dimension Lh2 of the axial DRa of the dividing plate 34.
 ここで、仕切板57は、上流縁部571から気流転向部80に至る上流部位570を有する。この上流部位570と気流転向部80との間には、図3に示すように、形状が変化する変化点CPがある。変化点CPは、気流転向部80のうち最も径方向DRrの内側に位置する部分である。 Here, the partition plate 57 has an upstream portion 570 extending from the upstream edge portion 571 to the airflow turning portion 80. As shown in FIG. 3, there is a change point CP whose shape changes between the upstream portion 570 and the airflow turning portion 80. The change point CP is a portion of the airflow turning portion 80 located most inside the radial DRr.
 気流転向部80は、変化点CPにおける上流部位570に対する傾き角度θs1が、変化点CPと後縁板部342の下流側の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv1に比べて大きくなっている。 In the airflow turning portion 80, the inclination angle θs1 with respect to the upstream portion 570 at the change point CP is compared with the inclination angle θv1 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the downstream end of the trailing edge plate portion 342. Is getting bigger.
 傾き角度θs1は、気流転向部80を構成する窪部81の変化点CPでの接線TLと径方向DRrに沿って延びる上流部位570とのなす角度である。本例では、接線TLが軸方向DRaに沿って延びている。このため、傾き角度θs1は、略90°となる。 The inclination angle θs1 is an angle formed by the tangent TL at the change point CP of the recess 81 constituting the airflow turning portion 80 and the upstream portion 570 extending along the radial DRr. In this example, the tangent TL extends along the axial DRa. Therefore, the inclination angle θs1 is approximately 90 °.
 一方、本例の傾き角度θv1は、15°~30°程度となり、傾き角度θs1に比べて充分に小さい。なお、本例では、変化点CPと後縁板部342の径方向DRrの端面における上端とを通る直線を仮想線VLとしている。 On the other hand, the tilt angle θv1 of this example is about 15 ° to 30 °, which is sufficiently smaller than the tilt angle θs1. In this example, the straight line passing through the change point CP and the upper end of the radial DRr of the trailing edge plate portion 342 is defined as a virtual line VL.
 以上説明した送風機1は、仕切板57のうち後縁板部342よりも径方向DRrの外側に気流転向部80を構成する窪部81が設けられている。このため、第2翼通路320から第2通風路532に吹き出された内気が、後縁板部342と仕切板57との隙間に向かって流れたとしても、当該内気の向きが、図2の矢印Fr1に示すように、気流転向部80によって仕切板57から離れる方向に転向される。具体的には、後縁板部342と仕切板57との隙間に向かって流れる内気は、窪部81の内面に沿って円弧状に流れることで仕切板57から離れる方向に転向される。 The blower 1 described above is provided with a recess 81 forming an airflow turning portion 80 outside the radial DRr of the partition plate 57 from the trailing edge plate portion 342. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr1, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 flows in an arc shape along the inner surface of the recessed portion 81 and is converted in a direction away from the partition plate 57.
 これにより、内気が後縁板部342と仕切板57との隙間に流入し難くなるので、後縁板部342と仕切板57との隙間を介した内気の第1通風路531への流入が抑えられる。すなわち、外部から吸い込んだ外気に内気が混入してしまうことを抑制することができる。 As a result, it becomes difficult for the inside air to flow into the gap between the trailing edge plate portion 342 and the partition plate 57, so that the inside air flows into the first ventilation passage 531 through the gap between the trailing edge plate portion 342 and the partition plate 57. It can be suppressed. That is, it is possible to prevent the inside air from being mixed in with the outside air sucked from the outside.
 特に、仕切板57における形状の変化点CPにおける気流転向部80の上流部位570に対する傾き角度θs1が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv1に比べて大きくなっている。 In particular, the inclination angle θs1 with respect to the upstream portion 570 of the airflow turning portion 80 at the shape change point CP of the partition plate 57 is the inclination of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342 with respect to the upstream portion 570. It is larger than the angle θv1.
 これによると、後縁板部342と仕切板57との隙間に向かう内気の向きが、気流転向部80によって後縁板部342と仕切板57との隙間に向かない向きに転向される。これにより、後縁板部342と仕切板57との隙間を介した内気の第1通風路531への流入が充分に抑えられる。 According to this, the direction of the inside air toward the gap between the trailing edge plate portion 342 and the partition plate 57 is turned by the airflow turning portion 80 in a direction not facing the gap between the trailing edge plate portion 342 and the partition plate 57. As a result, the inflow of the inside air into the first ventilation passage 531 through the gap between the trailing edge plate portion 342 and the partition plate 57 is sufficiently suppressed.
 (第1実施形態の変形例)
 第1実施形態では、窪部81として略円弧状の凹部で構成されているものを例示したが、窪部81はこれに限らず、円弧以外の内面を有する凹部で構成されていてもよい。また、窪部81は、例えば、仕切板57に形成された溝で構成されていてもよい。この場合、仕切板57は、第1通風路531を形成する内面の全体が平坦になっていてもよい。なお、窪部81は、軸方向DRaの高さ寸法Lh1が、分割板34の軸方向DRaの高さ寸法Lh2以上になっていてもよい。
(Modified example of the first embodiment)
In the first embodiment, the recess 81 having a substantially arc-shaped recess is illustrated, but the recess 81 is not limited to this, and may be composed of a recess having an inner surface other than the arc. Further, the recess 81 may be formed of, for example, a groove formed in the partition plate 57. In this case, the partition plate 57 may have a flat inner surface that forms the first ventilation passage 531. In the recess 81, the height dimension Lh1 in the axial direction DRa may be equal to or greater than the height dimension Lh2 in the axial direction DRa of the dividing plate 34.
 第1実施形態では、窪部81として仕切板57のうち後縁板部342よりも径方向DRrの外側に位置する部分から側壁部51との接続部位までの範囲に設けられているものを例示したが、窪部81はこれに限定されない。窪部81は、例えば、仕切板57のうち後縁板部342よりも径方向DRrの外側に位置する部分から側壁部51との接続部位の手前までの範囲に設けられていてもよい。 In the first embodiment, the recess 81 provided in the range from the portion of the partition plate 57 located outside the radial DRr from the trailing edge plate portion 342 to the connection portion with the side wall portion 51 is exemplified. However, the recess 81 is not limited to this. The recessed portion 81 may be provided, for example, in a range from a portion of the partition plate 57 located outside the trailing edge plate portion 342 in the radial direction DRr to just before the connecting portion with the side wall portion 51.
 (第2実施形態)
 次に、第2実施形態について、図4、図5を参照しつつ説明する。本実施形態は、第1実施形態と異なる部分について主に説明する。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIGS. 4 and 5. The present embodiment mainly describes the parts different from the first embodiment.
 図4および図5に示すように、気流転向部80は、窪部81ではなく、上流部位570に対して軸方向DRaの一方側にオフセットされたオフセット部82および当該オフセット部82と上流部位570とを接続する接続部83を含んで構成されている。仕切板57は、気流転向部80のオフセット部82および接続部83が設けられていることで、全体として上方側に凹んだ形状になっている。 As shown in FIGS. 4 and 5, the airflow turning portion 80 is not a recess 81, but an offset portion 82 offset to one side of the axial DRa with respect to the upstream portion 570, and the offset portion 82 and the upstream portion 570. It is configured to include a connection unit 83 for connecting to and. The partition plate 57 is provided with an offset portion 82 and a connecting portion 83 of the airflow turning portion 80, so that the partition plate 57 has a shape recessed upward as a whole.
 オフセット部82および接続部83は、ファン軸心CLを中心とする周方向において途切れることなく全域に形成されている。なお、オフセット部82および接続部83は、ファン軸心CLを中心とする周方向において一部途切れる箇所があってもよい。 The offset portion 82 and the connecting portion 83 are formed over the entire area without interruption in the circumferential direction centered on the fan axis CL. The offset portion 82 and the connecting portion 83 may be partially interrupted in the circumferential direction centered on the fan axis CL.
 オフセット部82は、径方向DRrに沿って延びている。オフセット部82は、第1通風路531を形成する内面および第2通風路532を形成する内面それぞれが平坦になっている。オフセット部82は、径方向DRrの外側が側壁部51に接続されている。 The offset portion 82 extends along the radial DRr. The offset portion 82 has a flat inner surface forming the first ventilation passage 531 and an inner surface forming the second ventilation passage 532. In the offset portion 82, the outer side of the radial DRr is connected to the side wall portion 51.
 接続部83は、軸方向DRaに沿って延びている。接続部83は、軸方向DRaの他方側が上流部位570の径方向DRrの外側に接続され、軸方向DRaの一方側がオフセット部82の径方向DRrの内側に接続されている。 The connecting portion 83 extends along the axial DRa. In the connecting portion 83, the other side of the axial DRa is connected to the outside of the radial DRr of the upstream portion 570, and one side of the axial DRa is connected to the inside of the radial DRr of the offset portion 82.
 ここで、接続部83は、オフセット部82における第1通風路531を形成する内面が、前縁板部341の上面と面一となるように軸方向DRaの高さ寸法Lh3が設定されている。これにより、前縁板部341に沿って第1通風路531に流れる外気が、オフセット部82における第1通風路531を形成する内面と接続部83とが交差して形成される角部831に衝突してしまうことを抑制することができる。 Here, in the connecting portion 83, the height dimension Lh3 in the axial direction DRa is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is flush with the upper surface of the front edge plate portion 341. .. As a result, the outside air flowing through the first ventilation passage 531 along the front edge plate portion 341 is formed at the corner portion 831 formed by the intersection of the inner surface forming the first ventilation passage 531 in the offset portion 82 and the connection portion 83. It is possible to prevent a collision.
 本実施形態の仕切板57は、上流部位570と接続部83とが交差して形成される角部が変化点CPになっている。この変化点CPにおける上流部位570に対する傾き角度θs2は、第1実施形態と同様に、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv2に比べて大きくなっている。 In the partition plate 57 of the present embodiment, the corner portion formed by intersecting the upstream portion 570 and the connecting portion 83 is the change point CP. The inclination angle θs2 with respect to the upstream portion 570 at the change point CP is compared with the inclination angle θv2 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342, as in the first embodiment. Is getting bigger.
 傾き角度θs2は、上述の変化点CPでの接線TLと径方向DRrに沿って延びる上流部位570とのなす角度である。本例では、接線TLが軸方向DRaに沿って延びているため、傾き角度θs2は、略90°となる。また、本例の傾き角度θv2は、15°~30°程度となり、傾き角度θs2に比べて充分に小さい。 The inclination angle θs2 is an angle formed by the tangent line TL at the above-mentioned change point CP and the upstream portion 570 extending along the radial DRr. In this example, since the tangent line TL extends along the axial direction DRa, the inclination angle θs2 is approximately 90 °. Further, the tilt angle θv2 of this example is about 15 ° to 30 °, which is sufficiently smaller than the tilt angle θs2.
 気流転向部80以外の他の構成は、第1実施形態と同様である。本実施形態の気流転向部80は、オフセット部82および接続部83を含んでいる。このため、第2翼通路320から第2通風路532に吹き出された内気が、後縁板部342と仕切板57との隙間に向かって流れたとしても、当該内気の向きが、図4の矢印Fr2に示すように、気流転向部80によって仕切板57から離れる方向に転向される。具体的には、オフセット部82に沿って後縁板部342と仕切板57との隙間に向かって流れる内気は、接続部83に衝突することで仕切板57から離れる方向に転向される。 The configuration other than the airflow turning portion 80 is the same as that of the first embodiment. The airflow turning portion 80 of the present embodiment includes an offset portion 82 and a connecting portion 83. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr2, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 along the offset portion 82 is turned away from the partition plate 57 by colliding with the connection portion 83.
 これにより、内気が後縁板部342と仕切板57との隙間に流入し難くなるので、後縁板部342と仕切板57との隙間を介した内気の第1通風路531への流入が抑えられる。すなわち、外部から吸い込んだ外気に内気が混入してしまうことを抑制することができる。 As a result, it becomes difficult for the inside air to flow into the gap between the trailing edge plate portion 342 and the partition plate 57, so that the inside air flows into the first ventilation passage 531 through the gap between the trailing edge plate portion 342 and the partition plate 57. It can be suppressed. That is, it is possible to prevent the inside air from being mixed in with the outside air sucked from the outside.
 加えて、仕切板57における形状の変化点CPにおける気流転向部80の上流部位570に対する傾き角度θs2が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv2に比べて大きくなっている。このため、第1実施形態と同様に、内気の第1通風路531への流入が充分に抑えられる。 In addition, the inclination angle θs2 with respect to the upstream portion 570 of the airflow turning portion 80 at the shape change point CP of the partition plate 57 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. It is larger than the tilt angle θv2. Therefore, as in the first embodiment, the inflow of the inside air into the first ventilation passage 531 is sufficiently suppressed.
 (第2実施形態の変形例)
 第2実施形態では、オフセット部82が径方向DRrに沿って延びているものを例示したが、オフセット部82はこれに限定されない。オフセット部82は、例えば、径方向DRrに交差する方向に延びていてもよい。また、オフセット部82は、平坦ではなく少なくとも一部が湾曲していてもよい。
(Modified example of the second embodiment)
In the second embodiment, the offset portion 82 extends along the radial DRr, but the offset portion 82 is not limited to this. The offset portion 82 may extend in a direction intersecting the radial DRr, for example. Further, the offset portion 82 may not be flat and may be at least partially curved.
 第2実施形態では、接続部83が軸方向DRaに沿って延びているものを例示したが、接続部83はこれに限定されない。接続部83は、例えば、軸方向DRaに交差する方向に延びていてもよい。 In the second embodiment, the connection portion 83 extends along the axial DRa, but the connection portion 83 is not limited to this. The connecting portion 83 may extend in a direction intersecting the axial DRa, for example.
 第2実施形態では、オフセット部82における第1通風路531を形成する内面が、前縁板部341の上面と面一となるように接続部83の軸方向DRaの高さ寸法Lh3が設定されているものを例示したが、これに限定されない。 In the second embodiment, the height dimension Lh3 of the axial DRa of the connecting portion 83 is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is flush with the upper surface of the front edge plate portion 341. However, the present invention is not limited to this.
 オフセット部82における第1通風路531を形成する内面が、前縁板部341の上面よりも軸方向DRaの他方側に位置するように接続部83の軸方向DRaの高さ寸法Lh3が設定されていてもよい。この場合、前縁板部341に沿って第1通風路531に流れる外気が角部831に衝突してしまうことを抑制することができる。 The height dimension Lh3 of the axial DRa of the connecting portion 83 is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is located on the other side of the axial DRa from the upper surface of the front edge plate portion 341. You may be. In this case, it is possible to prevent the outside air flowing through the first ventilation passage 531 along the front edge plate portion 341 from colliding with the corner portion 831.
 また、オフセット部82における第1通風路531を形成する内面が、前縁板部341の上面よりも軸方向DRaの一方側に位置するように接続部83の軸方向DRaの高さ寸法Lh3が設定されていてもよい。 Further, the height dimension Lh3 of the axial DRa of the connecting portion 83 is set so that the inner surface of the offset portion 82 forming the first ventilation passage 531 is located on one side of the axial DRa with respect to the upper surface of the front edge plate portion 341. It may be set.
 (第3実施形態)
 次に、第3実施形態について、図6、図7を参照しつつ説明する。本実施形態は、第1実施形態と異なる部分について主に説明する。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIGS. 6 and 7. The present embodiment mainly describes the parts different from the first embodiment.
 図6および図7に示すように、気流転向部80は、窪部81ではなく、径方向DRrの内側に比べて径方向DRrの外側が軸方向DRaの一方側に位置するように傾斜した傾斜部84を含んで構成されている。仕切板57は、気流転向部80の傾斜部84が設けられていることで、全体として上方側に凹んだ形状になっている。 As shown in FIGS. 6 and 7, the airflow turning portion 80 is not a recess 81, but is inclined so that the outside of the radial DRr is located on one side of the axial DRa as compared with the inside of the radial DRr. It is configured to include part 84. The partition plate 57 is provided with an inclined portion 84 of the airflow turning portion 80, so that the partition plate 57 has a shape recessed upward as a whole.
 傾斜部84は、ファン軸心CLを中心とする周方向において途切れることなく全域に形成されている。なお、傾斜部84は、ファン軸心CLを中心とする周方向において一部途切れる箇所があってもよい。 The inclined portion 84 is formed over the entire area without interruption in the circumferential direction centered on the fan axis CL. The inclined portion 84 may have a portion that is partially interrupted in the circumferential direction centered on the fan axis CL.
 傾斜部84は、径方向DRrおよび軸方向DRaそれぞれに対して交差する方向に沿って延びている。傾斜部84は、第1通風路531を形成する内面および第2通風路532を形成する内面それぞれが平坦になっている。傾斜部84は、径方向DRrの外側が側壁部51に接続されている。 The inclined portion 84 extends along a direction intersecting each of the radial DRr and the axial DRa. The inclined portion 84 has a flat inner surface forming the first ventilation passage 531 and an inner surface forming the second ventilation passage 532. In the inclined portion 84, the outer side of the radial DRr is connected to the side wall portion 51.
 本実施形態の仕切板57は、上流部位570と傾斜部84とが交差して形成される角部が変化点CPになっている。傾斜部84は、変化点CPにおける上流部位570に対する傾き角度θs3が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv3に比べて大きくなっている。 In the partition plate 57 of the present embodiment, the corner portion formed by intersecting the upstream portion 570 and the inclined portion 84 is the change point CP. In the inclined portion 84, the inclination angle θs3 with respect to the upstream portion 570 at the change point CP is larger than the inclination angle θv3 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. There is.
 傾き角度θs3は、上述の変化点CPでの接線TLと径方向DRrに沿って延びる上流部位570とのなす角度である。本例では、傾き角度θs3は、略45~60°となる。また、本例の傾き角度θv3は、15°~30°程度となり、傾き角度θs3に比べて小さい。 The inclination angle θs3 is an angle formed by the tangent line TL at the above-mentioned change point CP and the upstream portion 570 extending along the radial DRr. In this example, the tilt angle θs3 is approximately 45 to 60 °. Further, the inclination angle θv3 of this example is about 15 ° to 30 °, which is smaller than the inclination angle θs3.
 気流転向部80以外の他の構成は、第1実施形態と同様である。本実施形態の気流転向部80は、傾斜部84を含んでいる。このため、第2翼通路320から第2通風路532に吹き出された内気が、後縁板部342と仕切板57との隙間に向かって流れたとしても、当該内気の向きが、図6の矢印Fr3に示すように、気流転向部80によって仕切板57から離れる方向に転向される。具体的には、後縁板部342と仕切板57との隙間に向かって流れる内気は、傾斜部84に沿って流れることで仕切板57から離れる方向に転向される。 The configuration other than the airflow turning portion 80 is the same as that of the first embodiment. The airflow turning portion 80 of the present embodiment includes an inclined portion 84. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr3, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 is turned away from the partition plate 57 by flowing along the inclined portion 84.
 これにより、内気が後縁板部342と仕切板57との隙間に流入し難くなるので、後縁板部342と仕切板57との隙間を介した内気の第1通風路531への流入が抑えられる。すなわち、外部から吸い込んだ外気に内気が混入してしまうことを抑制することができる。 As a result, it becomes difficult for the inside air to flow into the gap between the trailing edge plate portion 342 and the partition plate 57, so that the inside air flows into the first ventilation passage 531 through the gap between the trailing edge plate portion 342 and the partition plate 57. It can be suppressed. That is, it is possible to prevent the inside air from being mixed in with the outside air sucked from the outside.
 加えて、仕切板57における形状の変化点CPにおける気流転向部80の上流部位570に対する傾き角度θs3が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv3に比べて大きくなっている。このため、第1実施形態と同様に、内気の第1通風路531への流入が充分に抑えられる。 In addition, the inclination angle θs3 with respect to the upstream portion 570 of the airflow turning portion 80 at the shape change point CP of the partition plate 57 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. It is larger than the tilt angle θv3. Therefore, as in the first embodiment, the inflow of the inside air into the first ventilation passage 531 is sufficiently suppressed.
 (第3実施形態の変形例)
 第3実施形態では、傾斜部84として直線状に延びるものを例示したが、これに限定されない。傾斜部84は、曲線状に延びていたり、直線部分および曲線部分それぞれを有していたりしてもよい。
(Modified example of the third embodiment)
In the third embodiment, the inclined portion 84 extending linearly is illustrated, but the present invention is not limited to this. The inclined portion 84 may extend in a curved shape, or may have a straight portion and a curved portion, respectively.
 (第4実施形態)
 次に、第4実施形態について、図8、図9を参照しつつ説明する。本実施形態は、第1実施形態と異なる部分について主に説明する。
(Fourth Embodiment)
Next, the fourth embodiment will be described with reference to FIGS. 8 and 9. The present embodiment mainly describes the parts different from the first embodiment.
 図8および図9に示すように、気流転向部80は、窪部81ではなく、軸方向DRaの一方側から他方側に突き出るリブ85を含んで構成されている。リブ85は、軸方向DRaに沿って延びている。リブ85は断面形状が矩形状になっている。 As shown in FIGS. 8 and 9, the airflow turning portion 80 is configured to include a rib 85 protruding from one side to the other side in the axial direction DRa instead of the recess 81. The rib 85 extends along the axial DRa. The rib 85 has a rectangular cross section.
 リブ85は、ファン軸心CLを中心とする周方向において途切れることなく全域に形成されている。なお、リブ85は、ファン軸心CLを中心とする周方向において一部途切れる箇所があってもよい。 The rib 85 is formed over the entire area without interruption in the circumferential direction centered on the fan axis CL. The rib 85 may be partially interrupted in the circumferential direction centered on the fan axis CL.
 リブ85は、仕切板57のうち後縁板部342よりも径方向DRrの外側に位置する部位に形成されている。具体的には、リブ85は、径方向DRrにおいて、側壁部51よりも後縁板部342に近い位置に設けられている。 The rib 85 is formed in a portion of the partition plate 57 located outside the radial DRr with respect to the trailing edge plate portion 342. Specifically, the rib 85 is provided at a position closer to the trailing edge plate portion 342 than the side wall portion 51 in the radial DRr.
 リブ85は、軸方向DRaの寸法としてのリブ高さLaが、仕切板57における後縁板部342に対向する面572と後縁板部342における仕切板57に対向する対向面342aの反対側の面342bとの軸方向DRaの間隔Lbよりも小さくなっている。 The rib 85 has a rib height La as a dimension in the axial direction DRa on the opposite side of the surface 542 of the partition plate 57 facing the trailing edge plate portion 342 and the facing surface 342a of the trailing edge plate portion 342 facing the partition plate 57. It is smaller than the distance Lb of the axial DRa from the surface 342b.
 また、リブ85は、リブ高さLaが、仕切板57における後縁板部342に対向する面572と後縁板部342における仕切板57に対向する対向面342aとの軸方向DRaの間隔Lcよりも大きくなっている。 Further, in the rib 85, the rib height La is the distance Lc of the axial DRa between the surface 572 of the partition plate 57 facing the trailing edge plate portion 342 and the facing surface 342a of the trailing edge plate portion 342 facing the partition plate 57. Is bigger than.
 本実施形態の仕切板57は、上流部位570とリブ85とが交差して形成される角部が変化点CPになっている。リブ85は、変化点CPにおける上流部位570に対する傾き角度θs4が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv4に比べて大きくなっている。 In the partition plate 57 of the present embodiment, the corner portion formed by intersecting the upstream portion 570 and the rib 85 is the change point CP. In the rib 85, the inclination angle θs4 with respect to the upstream portion 570 at the change point CP is larger than the inclination angle θv4 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. ..
 傾き角度θs4は、上述の変化点CPでの接線TLと径方向DRrに沿って延びる上流部位570とのなす角度である。本例では、接線TLが軸方向DRaに沿って延びているため、傾き角度θs4は、略90°となる。また、本例の傾き角度θv4は、15°~30°程度となり、傾き角度θs4に比べて小さい。 The inclination angle θs4 is an angle formed by the tangent line TL at the above-mentioned change point CP and the upstream portion 570 extending along the radial DRr. In this example, since the tangent line TL extends along the axial direction DRa, the inclination angle θs4 is approximately 90 °. Further, the tilt angle θv4 of this example is about 15 ° to 30 °, which is smaller than the tilt angle θs4.
 気流転向部80以外の他の構成は、第1実施形態と同様である。本実施形態の気流転向部80は、リブ85を含んでいる。このため、第2翼通路320から第2通風路532に吹き出された内気が、後縁板部342と仕切板57との隙間に向かって流れたとしても、当該内気の向きが、図8の矢印Fr4に示すように、気流転向部80によって仕切板57から離れる方向に転向される。具体的には、後縁板部342と仕切板57との隙間に向かって流れる内気は、リブ85に衝突することで仕切板57から離れる方向に転向される。 The configuration other than the airflow turning portion 80 is the same as that of the first embodiment. The airflow turning portion 80 of the present embodiment includes a rib 85. Therefore, even if the inside air blown from the second wing passage 320 to the second ventilation passage 532 flows toward the gap between the trailing edge plate portion 342 and the partition plate 57, the direction of the inside air is shown in FIG. As shown by the arrow Fr4, the airflow turning portion 80 is turned away from the partition plate 57. Specifically, the inside air flowing toward the gap between the trailing edge plate portion 342 and the partition plate 57 is turned away from the partition plate 57 by colliding with the rib 85.
 これにより、内気が後縁板部342と仕切板57との隙間に流入し難くなるので、後縁板部342と仕切板57との隙間を介した内気の第1通風路531への流入が抑えられる。すなわち、外部から吸い込んだ外気に内気が混入してしまうことを抑制することができる。 As a result, it becomes difficult for the inside air to flow into the gap between the trailing edge plate portion 342 and the partition plate 57, so that the inside air flows into the first ventilation passage 531 through the gap between the trailing edge plate portion 342 and the partition plate 57. It can be suppressed. That is, it is possible to prevent the inside air from being mixed in with the outside air sucked from the outside.
 加えて、仕切板57における形状の変化点CPにおける気流転向部80の上流部位570に対する傾き角度θs4が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度θv4に比べて大きくなっている。このため、第1実施形態と同様に、内気の第1通風路531への流入が充分に抑えられる。 In addition, the inclination angle θs4 with respect to the upstream portion 570 of the airflow turning portion 80 at the shape change point CP of the partition plate 57 with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. It is larger than the tilt angle θv4. Therefore, as in the first embodiment, the inflow of the inside air into the first ventilation passage 531 is sufficiently suppressed.
 また、リブ85のリブ高さLaは、仕切板57における後縁板部342に対向する面572と後縁板部342における仕切板57に対向する対向面342aの反対側の面342bとの軸方向DRaの間隔Lbよりも小さくなっている。これによれば、リブ85が径方向DRrにおいて第2翼通路320と重なり合わないので、第2翼通路320から吹き出された気流がリブ85に衝突してしまうことを抑制することができる。 Further, the rib height La of the rib 85 is the axis of the surface 542 of the partition plate 57 facing the trailing edge plate portion 342 and the surface 342b of the trailing edge plate portion 342 opposite to the facing surface 342a facing the partition plate 57. It is smaller than the interval Lb of the direction DRa. According to this, since the rib 85 does not overlap with the second wing passage 320 in the radial DRr, it is possible to prevent the airflow blown out from the second wing passage 320 from colliding with the rib 85.
 さらに、リブ85のリブ高さLaは、仕切板57における後縁板部342に対向する面572と後縁板部342における仕切板57に対向する対向面342aとの軸方向DRaの間隔Lcよりも大きくなっている。これによれば、リブ85が径方向DRrにおいて後縁板部342と仕切板57との隙間と重なり合うので、内気が後縁板部342と仕切板57との隙間に流入し難くなる。 Further, the rib height La of the rib 85 is from the distance Lc of the axial DRa between the surface 542 of the partition plate 57 facing the trailing edge plate portion 342 and the facing surface 342a of the trailing edge plate portion 342 facing the partition plate 57. Is also getting bigger. According to this, since the rib 85 overlaps the gap between the trailing edge plate portion 342 and the partition plate 57 in the radial DRr, it becomes difficult for the inside air to flow into the gap between the trailing edge plate portion 342 and the partition plate 57.
 (第4実施形態の変形例)
 第4実施形態では、リブ85として、軸方向DRaに沿って延びるとともに断面形状が矩形状になっているものを例示したが、リブ85はこれに限定されない。リブ85は、例えば、軸方向DRaに対して交差する方向に延びていてもよい。また、リブ85は、例えば、断面形状が三角形状や円弧状になっていてもよい。
(Modified example of the fourth embodiment)
In the fourth embodiment, the rib 85 is exemplified as the rib 85 extending along the axial direction DRa and having a rectangular cross-sectional shape, but the rib 85 is not limited to this. The rib 85 may extend in a direction intersecting the axial DRa, for example. Further, the rib 85 may have a triangular or arcuate cross-sectional shape, for example.
 また、リブ85のリブ高さLaは、仕切板57の一方の面572と後縁板部342の反対側の面342bとの間隔Lb以上になっていてもよいし、仕切板57の一方の面572と後縁板部342の対向面342aとの間隔Lc以下になっていてもよい。 Further, the rib height La of the rib 85 may be equal to or greater than the distance Lb between one surface 572 of the partition plate 57 and the opposite surface 342b of the trailing edge plate portion 342, or one of the partition plates 57. The distance between the surface 572 and the facing surface 342a of the trailing edge plate portion 342 may be Lc or less.
 (第5実施形態)
 次に、第5実施形態について、図10を参照しつつ説明する。本実施形態は、第1実施形態と異なる部分について主に説明する。
(Fifth Embodiment)
Next, the fifth embodiment will be described with reference to FIG. The present embodiment mainly describes the parts different from the first embodiment.
 図10に示すように、本実施形態のファン30は、分割板34Aとして、全体が径方向DRrに沿って延びるものが採用されている。すなわち、分割板34Aは、径方向DRrの外側の部位だけでなく、径方向DRrの内側の部位についても、当該上流縁部571よりも軸方向DRaの他方側に位置している。 As shown in FIG. 10, as the fan 30 of the present embodiment, a split plate 34A that extends as a whole along the radial DRr is adopted. That is, the dividing plate 34A is located not only on the outer portion of the radial DRr but also on the inner portion of the radial DRr on the other side of the axial DRa than the upstream edge portion 571.
 具体的には、分割板34Aは、前縁板部341、後縁板部342、および中間板部343が径方向DRrに沿って一列に並ぶとともに、その全体が、上流縁部571よりも軸方向DRaの他方側に位置している。 Specifically, in the split plate 34A, the front edge plate portion 341, the trailing edge plate portion 342, and the intermediate plate portion 343 are lined up in a row along the radial DRr, and the whole thereof is more axial than the upstream edge portion 571. It is located on the other side of the direction DRa.
 その他の構成は、第1実施形態と同様である。本実施形態の送風機1は、第1実施形態と共通した構成または均等な構成を備えており、当該構成から奏させる作用効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The blower 1 of the present embodiment has a configuration common to or equal to that of the first embodiment, and the action and effect produced from the configuration can be obtained in the same manner as in the first embodiment.
 (第5実施形態の変形例)
 第5実施形態では、気流転向部80が第1実施形態で説明した窪部81で構成されている送風機1を例示したが、送風機1はこれに限定されない。第5実施形態の送風機1は、例えば、気流転向部80が第2~第4実施形態で説明したもので構成されていてもよい。
(Modified example of the fifth embodiment)
In the fifth embodiment, the blower 1 in which the airflow turning portion 80 is composed of the recess 81 described in the first embodiment is illustrated, but the blower 1 is not limited to this. In the blower 1 of the fifth embodiment, for example, the airflow turning portion 80 may be configured as described in the second to fourth embodiments.
 また、分割板34Aは、少なくとも後縁板部342が上流縁部571よりも軸方向DRaの他方側に位置していれば、後縁板部342よりも内側の部分がどのような形態になっていてもよい。 Further, in the split plate 34A, if at least the trailing edge plate portion 342 is located on the other side of the axial DRa from the upstream edge portion 571, what kind of form is the portion inside the trailing edge plate portion 342? You may be.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
Although the typical embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be variously modified as follows, for example.
 上述の実施形態では、送風機1として、内外気箱10により空気の吸込モードが切り替えられるものを例示したが、送風機1はこれに限定されない。送風機1は、少なくとも内外気モードが実現可能に構成されていればよい。すなわち、本開示の送風機1において内外気箱10は必須となるわけではない。 In the above-described embodiment, the blower 1 is illustrated in which the air suction mode can be switched by the inside / outside air box 10, but the blower 1 is not limited to this. The blower 1 may be configured so that at least the inside / outside air mode can be realized. That is, the inside / outside air box 10 is not indispensable in the blower 1 of the present disclosure.
 上述の実施形態では、内外気箱10と吸込口形成部60との間にフィルタ20が配置されたものを例示したが、送風機1はこれに限定されない。送風機1は、例えば、内外気箱10の内側にフィルタ20が配置されていたり、フィルタ20が省略されていたりしてもよい。 In the above-described embodiment, the filter 20 is arranged between the inside / outside air box 10 and the suction port forming portion 60, but the blower 1 is not limited to this. In the blower 1, for example, the filter 20 may be arranged inside the inside / outside air box 10, or the filter 20 may be omitted.
 上述の実施形態では、ファン30として、第2ブレード32の翼弦長が第1ブレード31の翼弦長よりも大きくなっているものを例示したが、ファン30はこれに限定されない。ファン30は、例えば、第2ブレード32の翼弦長が第1ブレード31の翼弦長と同等になっていてもよい。 In the above-described embodiment, as the fan 30, the chord length of the second blade 32 is larger than the chord length of the first blade 31, but the fan 30 is not limited to this. In the fan 30, for example, the chord length of the second blade 32 may be equal to the chord length of the first blade 31.
 上述の実施形態では、ファン30を収容するケーシングとしてスクロールケーシング50を例示したが、当該ケーシングは、スクロールケーシング50以外のケーシングで構成されていてもよい。 In the above-described embodiment, the scroll casing 50 is exemplified as the casing for accommodating the fan 30, but the casing may be composed of a casing other than the scroll casing 50.
 上述の実施形態では、気流転向部80として複数の形態を説明したが、気流転向部80は、これら複数の形態を可能な範囲で組み合せたもので構成されていてもよい。 In the above-described embodiment, a plurality of forms have been described as the airflow turning section 80, but the airflow turning section 80 may be configured by combining these plurality of forms to the extent possible.
 上述の実施形態の如く、気流転向部80は、変化点CPにおける上流部位570に対する傾き角度が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度に比べて大きいことが望ましいが、これに限定されない。気流転向部80は、例えば、変化点CPにおける上流部位570に対する傾き角度が、変化点CPと後縁板部342の端部とを結ぶ仮想線VLの上流部位570に対する傾き角度よりも小さくなっていてもよい。 As described in the above-described embodiment, the airflow turning portion 80 has an inclination angle with respect to the upstream portion 570 at the change point CP and an inclination angle with respect to the upstream portion 570 of the virtual line VL connecting the change point CP and the end portion of the trailing edge plate portion 342. It is desirable, but not limited to, larger than. In the airflow turning portion 80, for example, the inclination angle of the change point CP with respect to the upstream portion 570 is smaller than the inclination angle of the virtual line VL connecting the change point CP and the end of the trailing edge plate portion 342 with respect to the upstream portion 570. You may.
 上述の実施形態では、本開示の送風機1を、外気および内気を区分して車室内へ吹き出すことが可能な内外気二層式の車両用空調装置に適用した例について説明したが、送風機1の適用対象は、車両用空調装置以外の装置にも適用可能である。 In the above-described embodiment, an example in which the blower 1 of the present disclosure is applied to an air conditioner for a vehicle having two layers of inside and outside air capable of separating the outside air and the inside air and blowing them into the vehicle interior has been described. The applicable target can be applied to devices other than vehicle air conditioners.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Needless to say, in the above-described embodiment, the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, amount, range, etc. of the components of the embodiment are mentioned, when it is clearly stated that it is particularly essential, and in principle, it is clearly limited to a specific number. Except as the case, it is not limited to the specific number.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above-described embodiment, when referring to the shape, positional relationship, etc. of a component or the like, the shape, positional relationship, etc., unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. Etc. are not limited.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、送風機のファンは、複数の第1ブレードと、複数の第2ブレードと、分割板と、を含む。ケーシングの内側には、空気の通風路を車室外空気が流入する第1通風路と車室内空気が流入する第2通風路とに仕切る仕切板が設けられている。分割板は、第1ブレードに対して径方向の外側に位置する後縁板部が、仕切板におけるファンに対向する上流縁部よりも径方向の外側であって上流縁部よりも軸方向の他方側に位置付けられている。仕切板には、後縁板部よりも径方向の外側に、後縁板部と仕切板との隙間に向かう車室内空気の向きを仕切板から離れる方向に転向させる気流転向部が設けられている。
(Summary)
According to the first aspect shown in part or all of the above embodiments, the fan of the blower includes a plurality of first blades, a plurality of second blades, and a split plate. Inside the casing, a partition plate is provided that divides the air ventilation path into a first ventilation path into which the air outside the vehicle interior flows in and a second ventilation passage through which the air inside the vehicle interior flows. In the split plate, the trailing edge plate portion located on the outer side in the radial direction with respect to the first blade is radially outside the upstream edge portion facing the fan in the partition plate and axially from the upstream edge portion. It is positioned on the other side. The partition plate is provided with an airflow diversion portion that diverts the direction of the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate in the direction away from the partition plate on the outer side in the radial direction from the trailing edge plate portion. There is.
 第2の観点によれば、仕切板は、上流縁部から気流転向部に至る上流部位を有する。上流部位と気流転向部との間に形状が変化する変化点があり、変化点における気流転向部の上流部位に対する傾き角度が、変化点と後縁板部の端部とを結ぶ仮想線の上流部位に対する傾き角度に比べて大きくなっている。 According to the second viewpoint, the partition plate has an upstream portion from the upstream edge portion to the airflow turning portion. There is a change point where the shape changes between the upstream part and the airflow turning part, and the inclination angle of the airflow turning part at the change point with respect to the upstream part is upstream of the virtual line connecting the change point and the end of the trailing edge plate part. It is larger than the tilt angle with respect to the part.
 これによると、後縁板部と仕切板との隙間に向かう車室内空気の向きが、気流転向部によって後縁板部と仕切板との隙間に向かない向きに転向される。これにより、後縁板部と仕切板との隙間を介した車室内空気の第1通風路への流入が充分に抑えられる。 According to this, the direction of the air inside the vehicle toward the gap between the trailing edge plate and the partition plate is changed by the airflow diversion part so as not to face the gap between the trailing edge plate and the partition plate. As a result, the inflow of vehicle interior air into the first ventilation path through the gap between the trailing edge plate portion and the partition plate is sufficiently suppressed.
 第3の観点によれば、気流転向部は、軸方向の他方側から一方側に向けて窪んだ窪部を含んでいる。これによれば、仕切板に沿って後縁板部と仕切板との隙間に向かう車室内空気が、当該隙間に到達する前に窪部に沿って流れることで、車室内空気の向きが仕切板から離れる方向に転向される。 According to the third viewpoint, the airflow turning portion includes a recessed portion that is recessed from the other side in the axial direction toward one side. According to this, the direction of the vehicle interior air is partitioned by flowing the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate along the recess before reaching the gap. It is turned away from the board.
 第4の観点によれば、気流転向部は、上流部位に対して軸方向の一方側にオフセットされたオフセット部およびオフセット部と上流部位とを接続する接続部を含んでいる。これによれば、仕切板に沿って後縁板部と仕切板との隙間に向かう車室内空気がオフセット部および接続部に沿って流れる際に仕切板から離れる方向に転向される。 According to the fourth viewpoint, the airflow turning portion includes an offset portion offset to one side in the axial direction with respect to the upstream portion and a connecting portion connecting the offset portion and the upstream portion. According to this, when the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate flows along the offset portion and the connection portion, the air is turned away from the partition plate.
 第5の観点によれば、気流転向部は、径方向の内側に比べて径方向の外側が軸方向の一方側に位置するように傾斜した傾斜部を含んでいる。これによれば、仕切板に沿って後縁板部と仕切板との隙間に向かう車室内空気が傾斜部に沿って流れる際に仕切板から離れる方向に転向される。 According to the fifth viewpoint, the airflow turning portion includes an inclined portion inclined so that the outer side in the radial direction is located on one side in the axial direction as compared with the inner side in the radial direction. According to this, when the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate flows along the inclined portion, the air is turned away from the partition plate.
 第6の観点によれば、気流転向部は、軸方向の他方側に向けて突き出るリブを含んでいる。これによれば、仕切板に沿って後縁板部と仕切板との隙間に向かう車室内空気がリブに衝突して仕切板から離れる方向に転向される。 According to the sixth viewpoint, the airflow turning portion includes a rib protruding toward the other side in the axial direction. According to this, the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate along the partition plate collides with the rib and is turned away from the partition plate.
 第7の観点によれば、リブは、軸方向の寸法としてのリブ高さが、仕切板における後縁板部に対向する面と後縁板部における仕切板に対向する対向面の反対側の面との軸方向の間隔よりも小さくなっている。これによれば、リブが径方向において第2翼通路と重なり合わないので、第2翼通路から吹き出された気流がリブに衝突してしまうことを抑制することができる。 According to the seventh aspect, the rib height as an axial dimension is opposite to the surface of the partition plate facing the trailing edge plate portion and the surface of the trailing edge plate portion facing the partition plate. It is smaller than the axial distance from the surface. According to this, since the ribs do not overlap with the second wing passage in the radial direction, it is possible to prevent the airflow blown out from the second wing passage from colliding with the ribs.

Claims (7)

  1.  車室外空気および車室内空気を区別して同時に吸入することが可能な送風機であって、
     ファン軸心(CL)の軸方向(DRa)の一方側から吸い込んだ空気を前記ファン軸心から遠ざかる方向に向けて吹き出すファン(30)と、
     前記ファンを収容し、前記ファンに対して前記軸方向の一方側に前記ファンへ吸い込まれる空気の吸込口(31)が形成されたケーシング(50)と、
     前記ファンの径方向の内側に配置される筒状部(72)を含み、前記車室外空気を前記筒状部の外側に流し、且つ、前記車室内空気を前記筒状部の内側に流すことで、前記車室外空気と前記車室内空気とを分離する分離筒(70)と、を備え、
     前記ファンは、
     前記ファン軸心の周りに配置された複数の第1ブレード(31)と、
     前記ファン軸心の周りに配置されて複数の前記第1ブレードに対して前記軸方向の他方側に位置する複数の第2ブレード(32)と、
     複数の前記第1ブレードと複数の前記第2ブレードとを接続するとともに複数の前記第1ブレードの相互間に形成される第1翼通路(310)を流れる前記車室外空気と複数の前記第2ブレードの相互間に形成される第2翼通路(320)を流れる前記車室内空気との混合を抑える分割板(34)と、を含み、
     前記ケーシングの内側には、前記ファンを基準として前記径方向の外側に前記ファンから吹き出された空気の通風路が形成されるとともに、前記通風路(53)を前記車室外空気が流入する第1通風路(531)と前記車室内空気が流入する第2通風路(532)とに仕切る仕切板(57)が設けられ、
     前記分割板は、前記第1ブレードに対して前記径方向の外側に位置する後縁板部(342)を有し、
     前記後縁板部は、前記後縁板部における前記径方向の外側の端部が前記仕切板における前記ファンに対向する上流縁部(571)よりも前記径方向の外側であって前記上流縁部よりも前記軸方向の他方側に位置付けられており、
     前記仕切板には、前記後縁板部よりも前記径方向の外側に、前記後縁板部と前記仕切板との隙間に向かう前記車室内空気の向きを前記仕切板から離れる方向に転向させる気流転向部(80)が設けられている、送風機。
    It is a blower that can distinguish between the outside air and the inside air and inhale them at the same time.
    A fan (30) that blows out air sucked from one side of the fan axis (CL) in the axial direction (DRa) in a direction away from the fan axis (30).
    A casing (50) accommodating the fan and having a suction port (31) for air sucked into the fan on one side in the axial direction with respect to the fan.
    Including a tubular portion (72) arranged inside the fan in the radial direction, the outside air of the vehicle interior is allowed to flow outside the tubular portion, and the air inside the vehicle interior is allowed to flow inside the tubular portion. A separation cylinder (70) for separating the outside air of the vehicle and the air inside the vehicle is provided.
    The fan
    A plurality of first blades (31) arranged around the fan axis,
    A plurality of second blades (32) arranged around the fan axis and located on the other side in the axial direction with respect to the plurality of first blades.
    The outdoor air and the plurality of second blades that connect the plurality of first blades and the plurality of second blades and flow through the first wing passage (310) formed between the plurality of first blades. Includes a split plate (34) that suppresses mixing with the vehicle interior air flowing through the second wing passage (320) formed between the blades.
    On the inside of the casing, a ventilation path for air blown from the fan is formed on the outside in the radial direction with reference to the fan, and the first ventilation path (53) is used by the outside air to flow into the vehicle interior. A partition plate (57) is provided to partition the ventilation passage (531) and the second ventilation passage (532) into which the vehicle interior air flows.
    The split plate has a trailing edge plate portion (342) located on the outer side in the radial direction with respect to the first blade.
    The trailing edge plate portion has the radial outer end portion of the trailing edge plate portion outside the upstream edge portion (571) of the partition plate facing the fan, and the upstream edge portion. It is positioned on the other side in the axial direction from the portion, and is positioned on the other side in the axial direction.
    The partition plate is directed to the outside of the trailing edge plate portion in the radial direction so that the direction of the vehicle interior air toward the gap between the trailing edge plate portion and the partition plate is directed away from the partition plate. A blower provided with an airflow turning portion (80).
  2.  前記仕切板は、前記上流縁部から前記気流転向部に至る上流部位(570)を有し、前記上流部位と前記気流転向部との間に形状が変化する変化点があり、前記変化点における前記気流転向部の前記上流部位に対する傾き角度(θs)が、前記変化点と前記後縁板部の下流側の端部とを結ぶ仮想線の前記上流部位に対する傾き角度(θv)に比べて大きくなっている、請求項1に記載の送風機。 The partition plate has an upstream portion (570) extending from the upstream edge portion to the airflow turning portion, and there is a change point where the shape changes between the upstream portion and the airflow turning portion, and at the change point. The inclination angle (θs) of the airflow turning portion with respect to the upstream portion is larger than the inclination angle (θv) of the virtual line connecting the change point and the downstream end portion of the trailing edge plate portion with respect to the upstream portion. The blower according to claim 1.
  3.  前記気流転向部は、前記軸方向の他方側から一方側に向けて窪んだ窪部(81)を含んでいる、請求項1または2に記載の送風機。 The blower according to claim 1 or 2, wherein the airflow turning portion includes a recessed portion (81) recessed from the other side in the axial direction toward one side.
  4.  前記気流転向部は、前記上流部位に対して前記軸方向の一方側にオフセットされたオフセット部(82)および前記オフセット部と前記上流部位とを接続する接続部(83)を含んでいる、請求項2に記載の送風機。 The airflow turning portion includes an offset portion (82) offset to one side in the axial direction with respect to the upstream portion and a connecting portion (83) connecting the offset portion and the upstream portion. Item 2. The blower according to item 2.
  5.  前記気流転向部は、前記径方向の内側に比べて前記径方向の外側が前記軸方向の一方側に位置するように傾斜した傾斜部(84)を含んでいる、請求項1または2に記載の送風機。 The first or second aspect of the present invention, wherein the airflow turning portion includes an inclined portion (84) inclined so that the outer side in the radial direction is located on one side in the axial direction as compared with the inner side in the radial direction. Blower.
  6.  前記気流転向部は、前記軸方向の他方側に向けて突き出るリブ(85)を含んでいる、請求項1または2に記載の送風機。 The blower according to claim 1 or 2, wherein the airflow turning portion includes a rib (85) protruding toward the other side in the axial direction.
  7.  前記リブは、前記軸方向の寸法としてのリブ高さが、前記仕切板における前記後縁板部に対向する面と前記後縁板部における前記仕切板に対向する対向面の反対側の面との前記軸方向の間隔よりも小さくなっている、請求項6に記載の送風機。 The rib has a rib height as an axial dimension, which is opposite to the surface of the partition plate facing the trailing edge plate portion and the surface of the trailing edge plate portion facing the partition plate. The blower according to claim 6, which is smaller than the axial distance of the above.
PCT/JP2020/038311 2019-10-31 2020-10-09 Blower WO2021085086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-199051 2019-10-31
JP2019199051A JP2021071097A (en) 2019-10-31 2019-10-31 Blower

Publications (1)

Publication Number Publication Date
WO2021085086A1 true WO2021085086A1 (en) 2021-05-06

Family

ID=75714002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038311 WO2021085086A1 (en) 2019-10-31 2020-10-09 Blower

Country Status (2)

Country Link
JP (1) JP2021071097A (en)
WO (1) WO2021085086A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203235A (en) * 1998-12-30 2000-07-25 Valeo Climatisation Heating, ventilating and/or air conditioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044739A (en) * 2017-09-06 2019-03-22 株式会社ヴァレオジャパン Centrifugal blower for air conditioner for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203235A (en) * 1998-12-30 2000-07-25 Valeo Climatisation Heating, ventilating and/or air conditioning device

Also Published As

Publication number Publication date
JP2021071097A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2020230563A1 (en) Centrifugal blower
CN111032384B (en) Air blower
WO2018128143A1 (en) Centrifugal fan
JP2019044739A (en) Centrifugal blower for air conditioner for vehicle
JP2019027430A (en) Centrifugal fan
EP3578826B1 (en) Blower
WO2021085086A1 (en) Blower
US11852163B2 (en) Single suction centrifugal blower
WO2021111878A1 (en) Centrifugal blower
WO2021106406A1 (en) Blower
US11499568B2 (en) Centrifugal fan and centrifugal blower
JP6685249B2 (en) Centrifugal blower
WO2020105294A1 (en) Blower
WO2021079646A1 (en) Blower
CN113286715A (en) Centrifugal blower
WO2021187175A1 (en) Centrifugal blower
CN113056613B (en) Centrifugal blower
JP6588052B2 (en) Centrifugal blower
WO2021090648A1 (en) Blower
WO2020218143A1 (en) Centrifugal blower
JP2021025510A (en) Centrifugal blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880760

Country of ref document: EP

Kind code of ref document: A1