WO2021090455A1 - Design assistance program, design assistance method, and design assistance device - Google Patents

Design assistance program, design assistance method, and design assistance device Download PDF

Info

Publication number
WO2021090455A1
WO2021090455A1 PCT/JP2019/043763 JP2019043763W WO2021090455A1 WO 2021090455 A1 WO2021090455 A1 WO 2021090455A1 JP 2019043763 W JP2019043763 W JP 2019043763W WO 2021090455 A1 WO2021090455 A1 WO 2021090455A1
Authority
WO
WIPO (PCT)
Prior art keywords
tolerance
design support
analysis
information
distribution
Prior art date
Application number
PCT/JP2019/043763
Other languages
French (fr)
Japanese (ja)
Inventor
秀久 酒井
一彦 濱添
賀一 市川
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/043763 priority Critical patent/WO2021090455A1/en
Publication of WO2021090455A1 publication Critical patent/WO2021090455A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • An embodiment of the present invention relates to a design support program, a design support method, and a design support device.
  • the tolerance using a computer is used to reduce the variation in the assembly position of each component constituting the product and to reduce the trouble due to the dimensional tolerance of the component in the manufacturing process such as the actual product assembly.
  • the analysis is being done.
  • each part is treated as a rigid body, and the influence of deformation due to warpage of each part is not reflected in the tolerance, and a discrepancy occurs between the design tolerance and the measured value. There is a problem that the design accuracy may not be sufficient.
  • the board is likely to bend due to the load when the connector or unit is inserted, and the assembly position of each component is likely to vary.
  • One aspect is to provide a design support program, design support method, and design support device that can support accurate product design.
  • the design support program causes the computer to execute the acquisition process, the correction process, and the output process.
  • deformation information indicating the displacement and deformation of each part is acquired by structural analysis based on the condition setting including at least the load of each part to be combined with the product.
  • the correction process corrects the tolerance information including the dimensional tolerance of each part based on the acquired deformation information of each part.
  • the output process outputs the corrected tolerance information.
  • FIG. 1 is a block diagram showing a functional configuration example of the design support device according to the embodiment.
  • FIG. 2 is an explanatory diagram for explaining the degree of freedom.
  • FIG. 3 is an explanatory diagram illustrating the condition setting of the tolerance analysis.
  • FIG. 4 is an explanatory diagram showing an example of detailed attribute information of the assembly location.
  • FIG. 5 is an explanatory diagram for explaining the determination of the assembly order.
  • FIG. 6 is an explanatory diagram for explaining the condition setting of the structural analysis.
  • FIG. 7 is an explanatory diagram showing an example of structural analysis data.
  • FIG. 8 is an explanatory diagram illustrating a setting screen for structural analysis.
  • FIG. 9 is an explanatory diagram illustrating a setting screen for structural analysis.
  • FIG. 10 is an explanatory diagram illustrating a setting screen for structural analysis.
  • FIG. 11-1 is an explanatory diagram showing an example of the structural analysis result.
  • FIG. 11-2 is an explanatory diagram showing an example of the structural analysis result.
  • FIG. 12-1 is a flowchart showing an operation example of the design support device according to the embodiment.
  • FIG. 12-2 is a flowchart showing an operation example of the design support device according to the embodiment.
  • FIG. 13 is an explanatory diagram illustrating the correction of the tolerance distribution.
  • FIG. 14 is an explanatory diagram showing an example of a result output screen relating to tolerance analysis.
  • FIG. 15 is an explanatory diagram showing an example of a result output screen relating to tolerance analysis.
  • FIG. 16 is an explanatory diagram illustrating a comparative example of result output.
  • FIG. 17 is a block diagram showing an example of a computer that executes a design support program.
  • FIG. 1 is a block diagram showing a functional configuration example of the design support device according to the embodiment.
  • the design support device 1 provides a 3D-CAD model 11 (CAD: Computer Aided Design) showing a three-dimensional shape, a member, a combination, etc. of a product to be designed and each component constituting the product. It is a device that analyzes the tolerance of the product based on it and outputs the analysis result.
  • CAD Computer Aided Design
  • the design support device 1 for example, a personal computer or the like can be applied.
  • the design support device 1 has an input unit 10, a tolerance analysis unit 20, a structural analysis unit 30, a cooperation unit 40, and an output unit 50.
  • the input unit 10 is a processing unit that receives operation input from an input device such as a keyboard or mouse and input by communication with another device.
  • the input unit 10 receives the input of the 3D-CAD model 11 for the product.
  • the input unit 10 outputs the received information of the 3D-CAD model 11 to the tolerance analysis unit 20 and the structural analysis unit 30.
  • the tolerance analysis unit 20 describes a product in which each part is assembled according to the tolerances (dimensional tolerances, geometrical tolerances, etc.) set at the time of design, based on the 3D-CAD model 11, in Japanese Patent Application Laid-Open No. 2015-11359.
  • a processing unit that performs known tolerance analysis.
  • the tolerance analysis unit 20 sets standards such as a reference plane and reference coordinates based on the 3D-CAD model 11, sets tolerances indicating conditions related to tolerances of each part, and assembly conditions for combining each part. Set the analysis conditions for tolerance analysis.
  • the tolerance analysis unit 20 obtains variations (tolerance distribution) of each dimension and the like in the product by tolerance analysis when each component of the product is combined according to the set analysis conditions.
  • the tolerance analysis unit 20 is a known tolerance analysis method such as a method of predicting the width of variation using the additivity of variance and a method of accumulating the worst values (upper limit / lower limit of tolerance distribution). Accumulate the tolerances of each part of the product when each part is combined using, and obtain the analysis result of the tolerance analysis.
  • the tolerance analysis unit 20 outputs the analysis result of the tolerance analysis to the output unit 50.
  • the structural analysis unit 30 is a processing unit that performs structural analysis of stress, strain, etc. generated in the product with the product as the analysis target based on the 3D-CAD model 11. Specifically, the structural analysis unit 30 sets the conditions for structural analysis of the product to be analyzed, including at least the force (load) applied to each component of the product, based on the 3D-CAD model 11.
  • the structural analysis condition setting includes, in addition to the load condition regarding the load applied to each component, the boundary condition regarding the boundary between the components, the physical property condition regarding the physical properties (Young's modulus, Poisson's ratio, etc.) of each component and the like.
  • the structural analysis unit 30 performs structural analysis of stress, strain, etc. generated in the product by using an analysis method such as finite element analysis known in JP-A-2006-313400, etc., based on the structural analysis condition setting. Do. Next, the structural analysis unit 30 outputs deformation information indicating displacement / deformation of each part of the product obtained by the structural analysis to the cooperation unit 40.
  • the cooperation unit 40 is a processing unit that reflects the result of the structural analysis by the structural analysis unit 30 in the analysis conditions related to the tolerance analysis. Specifically, the cooperation unit 40 reads the information required for setting the structural analysis conditions such as the tolerance standard and the assembly condition from the analysis conditions related to the tolerance analysis, and reflects the information in the boundary conditions of the structural analysis in the structural analysis unit 30.
  • the cooperation unit 40 reads the deformation information of each component obtained by the structural analysis after reflection, and reflects it in the tolerance condition (tolerance setting) regarding the tolerance of each component according to the displacement direction and displacement amount of each component.
  • the cooperation unit 40 converts the displacement direction and displacement amount of each component into displacements (movement in the XYZ axis direction and rotation in the XYZ axis direction) corresponding to 6 degrees of freedom of each component with respect to the reference indicated by the reference setting. To do.
  • FIG. 2 is an explanatory diagram for explaining the degree of freedom.
  • the 6 degrees of freedom means the degrees of freedom of the parts A1 and B1 in the 6 directions.
  • the translational degrees of freedom in the X-axis direction (TX) / rotational freedom around the X-axis (RX) the translational degrees of freedom in the Y-axis direction (TY) / rotational freedom around the Y-axis (RY), and the Z-axis direction.
  • 6 degrees of freedom means whether or not the parts are constrained or constrained at the combination portion in the 6 directions, or whether or not the parts are constrained.
  • the cooperation unit 40 adds the displacement corresponding to the converted 6 degrees of freedom for each part to the tolerance condition of each part corresponding to the direction of the 6 degrees of freedom.
  • the tolerance analysis unit 20 performs tolerance analysis on the product based on the analysis conditions including the tolerance conditions added to each component.
  • the cooperation unit 40 cooperates with the analysis result of the structural analysis of the structural analysis unit 30 (warp analysis-tolerance analysis cooperation) for the tolerance analysis of the product, so that the tolerance in consideration of the deformation due to the load of, for example, parts Realize the analysis.
  • the output unit 50 is a processing unit that outputs the results of various processes to a display, a file, or the like.
  • the output unit 50 outputs the analysis result of the tolerance analysis in the product executed by the tolerance analysis unit 20 to a display, a file, or the like.
  • the user (designer) of the design support device 1 can easily know the result of the tolerance analysis such as the dimensional tolerance at the design stage of the product.
  • the tolerance analysis unit 20 reads analysis conditions (reference setting, tolerance setting, assembly condition setting, etc.) related to the tolerance analysis based on the input 3D-CAD model 11. Alternatively, the designer sets the analysis conditions related to the tolerance analysis (S1).
  • FIG. 3 is an explanatory diagram illustrating the condition setting of the tolerance analysis. As shown in FIG. 3, in the tolerance analysis condition setting, the reference setting, the tolerance setting, and the assembly condition setting for the product in which the parts A and C are combined are performed based on the 3D-CAD model 11.
  • the corner portion of the part A is set as the reference coordinate K for tolerance analysis.
  • the dimensional tolerances in the X and Y directions with respect to the reference coordinates K (110.9 ⁇ 0.1, 72.0 ⁇ 0.1, etc. of the component C in the illustrated example) are set.
  • the assembly condition setting the assembly configuration (parent-child relationship) of the parts A and C constituting the product is set. Specifically, based on the component tree in which the parts A and C that make up the product, which are included in the 3D-CAD model 11 and the like, are arranged according to the assembly order, the mutual relationship between the parts included in the tree information is determined. Determine the assembly configuration from the indicated attribute information.
  • FIG. 4 is an explanatory diagram showing an example of detailed attribute information of the assembly location.
  • the tree information of the component tree includes attribute information 61, 62 and the like related to the assembly location.
  • the tolerance analysis unit 20 recognizes that the assembly location indicated by the attribute information 61 is in a state of contact with three high points, and identifies the datum of the corresponding component.
  • the attribute information 62 it can be seen that the attribute information 62 is perpendicular to the X direction and the TX and RZ are in the restrained state. As a result, the tolerance analysis unit 20 recognizes that the parts are in the state of contacting two high points at the assembly point indicated by the attribute information 62, and identifies the datum of the corresponding parts.
  • FIG. 5 is an explanatory diagram for explaining the determination of the assembly order. As shown in cases 71 to 73 of FIG. 5, the tolerance analysis unit 20 determines the assembly configuration based on the identification result of the assembly location based on the attribute information 61 and 62.
  • the case 71 has an assembly configuration in which the part C is assembled next to the part A, and then the part B is assembled.
  • the case 71 has an assembly configuration in which the part C is a child of the part A and the part B is a child of the part C.
  • the case 72 has an assembly configuration in which the part B and the part C are assembled next to the part A, and then the two parts B and C are assembled to the part A.
  • the case 72 has an assembly configuration in which the part C is a child of the part A and the part B is a child of the part A and the part C.
  • the case 73 has an assembly configuration in which the part B and the part C are assembled substantially at the same time after the part A.
  • the case 73 has an assembly configuration in which the part C is a child of the part A and the part B is a child of the part A. If there is no superiority in the mutual relationship, the parts may be arranged in ascending order.
  • the cooperation unit 40 reads the information required for setting the structural analysis conditions such as the tolerance standard and the assembly conditions from the analysis conditions related to the tolerance analysis. Next, the cooperation unit 40 reflects the read information in the boundary conditions of the structural analysis in the structural analysis unit 30 (S2).
  • the structural analysis unit 30 sets the conditions for structural analysis including at least the force (load) applied to each part of the product to be analyzed (S3).
  • FIG. 6 is an explanatory diagram for explaining the condition setting of the structural analysis.
  • the structural analysis unit 30 divides the mesh (triangles and quadrangles in two dimensions) based on the shape data of the product parts (parts A and B in the illustrated example) included in the 3D-CAD model 11. In three dimensions, division into elements such as tetrahedrons and hexahedrons) is performed. Next, the structural analysis unit 30 assigns consecutive numbers to the corner points (nodes) for each mesh (element), and defines materials 81 such as Young's modulus and Poisson's ratio corresponding to the physical properties of parts A and B.
  • the three-dimensional element representing the constrained / unconstrained displacement of each node has three degrees of freedom in each direction of XYZ (unlike the case of the three-dimensional rigid body in the tolerance analysis, the rotation direction). There is no degree of freedom).
  • the structural analysis unit 30 sets a load F applied to the component (a downward force applied to the end portion of the component A in the illustrated example) and a displacement constraint H that constrains the displacement in the structural analysis. Definition 82 is performed. Regarding the displacement constraint H in the load / constraint condition definition 82, the displacement is set to be constrained at the node corresponding to the reference coordinate K included in the tolerance standard.
  • the structural analysis unit 30 executes finite element analysis based on the structural analysis data in which these settings are made, and performs structural analysis of stress, strain, etc. generated in the product (S4).
  • FIG. 7 is an explanatory diagram showing an example of structural analysis data.
  • the structural analysis data 90 by setting conditions includes a node definition block 91, an element definition block 92, a material property definition block 93, and a displacement constraint condition block 94.
  • the node definition block 91 the node number, the XYZ coordinates of the node, and the like are shown.
  • the element definition block 92 for the element (each mesh), the element number, the element type, the number indicating the material property of the element, the connectivity of each element, and the like are shown.
  • the material property definition block 93 a material number that identifies the type of material used in the product and a physical property value (Young's modulus, Poisson's ratio, etc.) related to the material are shown.
  • the displacement constraint condition block 94 the node number of the node to be constrained, the degree of freedom to be constrained, the displacement, and the like are shown.
  • the structural analysis data 90 also includes load conditions such as node numbers of nodes to which the load is applied and vector components of the load (X component, Y component, Z component).
  • the input unit 10 may accept setting conditions from the user through the GUI (Graphical User Interface).
  • GUI Graphic User Interface
  • the input unit 10 in the setting of analysis conditions (S1) related to tolerance analysis, the input unit 10 also operates on the setting screen 101 including the setting window 102 that accepts various settings (setting of boundary conditions in the illustrated example). And, the analysis conditions for tolerance analysis are set.
  • the input unit 10 may display the parts A and C of the product in 3D based on the 3D-CAD model 11 on the setting screen 101, and may accept operations such as designation of the reference coordinate K.
  • the input unit 10 accepts the setting of the load F to be applied to the component C based on the operations on the components A and C displayed in 3D on the setting screen 101. You may.
  • the input unit 10 may display the mesh-divided parts A and C on the setting screen 101.
  • the structural analysis unit 30 outputs deformation information indicating displacement / deformation of each part of the product obtained by the structural analysis to the cooperation unit 40 (S5).
  • FIG. 11-1 and 11-2 are explanatory views showing an example of the structural analysis result.
  • the structural analysis unit 30 performs structural analysis to obtain the amount of displacement (displacement in the X direction in the illustrated example) at each node of parts A and C.
  • FIG. 11-2 illustrates the displacement amount of the displacement in the Y direction at each node of the parts A and C.
  • the structural analysis unit 30 outputs these displacement amounts to the cooperation unit 40 as deformation information.
  • the cooperation unit 40 reads the displacement information indicating the displacement / deformation of each part of the product obtained by the structural analysis of the structural analysis unit 30 (S6), and the displacement corresponding to the six degrees of freedom of each part. Convert to (S7). Next, the cooperation unit 40 reflects the converted displacement in the tolerance setting included in the analysis conditions of the tolerance analysis in the tolerance analysis unit 20 (S8).
  • the cooperation unit 40 adds the displacement amount of the parts A and C in the XYZ direction to the tolerance setting as the displacement in the corresponding direction in the six degrees of freedom of each part.
  • the maximum displacement amount of each part obtained from the result of finite element analysis is added to the tolerance setting.
  • the cooperation unit 40 sets the tolerance of the component C in the X direction to 110.9 ⁇ 0.1930 to 0.007 based on the maximum displacement amount of 0.0930 mm in the X direction. Further, the cooperation unit 40 sets the tolerance of the component C in the Y direction to 72.0 ⁇ 0.1339 to 0.0661 based on the maximum displacement amount of 0.0339 mm in the Y direction.
  • the tolerance analysis unit 20 executes the tolerance analysis of the product based on the analysis conditions including the tolerance conditions added to each component (S9).
  • the output unit 50 outputs the analysis result of the tolerance analysis by the tolerance analysis unit 20 to a display, a file, or the like (S10).
  • FIG. 12-1 and 12-2 are flowcharts showing an operation example of the design support device 1 according to the embodiment. Specifically, FIG. 12-1 shows the processes of S20 to S30 in the design support device 1, and FIG. 12-2 shows the processes of S31 to S37.
  • the input unit 10 reads the 3D-CAD model 11 (S20).
  • the tolerance analysis unit 20 sets analysis conditions (reference setting, tolerance setting, assembly condition setting, etc.) related to the tolerance analysis based on the 3D-CAD model 11 (S21).
  • the tolerance analysis unit 20 determines whether or not to execute a coupled analysis in which the tolerance analysis of the product is linked with the analysis result of the structural analysis of the structural analysis unit 30 (warp analysis-tolerance analysis cooperation) (S22). .. Whether or not the coupled analysis is executed may be set in advance, or may be determined based on an instruction obtained by the input unit 10 inquiring the user through the GUI.
  • the tolerance analysis unit 20 calculates the tolerance analysis based on the analysis conditions related to the tolerance analysis (S23).
  • the output unit 50 outputs the result of the tolerance analysis of the tolerance analysis unit 20 (tolerance distribution related to the product (mean ⁇ , standard deviation ⁇ , etc.)) to a display or the like (S24), and ends the process.
  • the tolerance analysis unit 20 calculates the tolerance analysis of each component (S25) and outputs the initial tolerance distribution of each component (S26).
  • the cooperation unit 40 converts the tolerance standard in the analysis conditions of the tolerance analysis into the standard of the structural analysis (constraining the displacement of the node corresponding to the reference coordinate K included in the tolerance standard) (S27).
  • the structural analysis unit 30 sets the conditions for structural analysis including at least the force (load) applied to each component of the product to be analyzed (S28).
  • the structural analysis unit 30 calculates the structural analysis based on the condition setting of S28 (S29), and outputs the calculation result of the structural analysis related to the product to the cooperation unit 40 (S30).
  • the maximum displacement amount of each component included in the calculation result of the structural analysis is referred to as the maximum displacement a in the following description.
  • the cooperation unit 40 reads the displacement information indicating the displacement / deformation of each part of the product from the calculation result of the structural analysis of the product, and converts it into the displacement corresponding to the 6 degrees of freedom of each part (see FIGS. 1, S6, S7). ..
  • the cooperation unit 40 reflects the converted displacement in the tolerance setting included in the analysis conditions of the tolerance analysis in the tolerance analysis unit 20.
  • the tolerance analysis unit 20 describes the method of adding to the tolerance condition based on the calculation result of the structural analysis based on the user's selection result (method 1), (method 1). It is determined which method of 2) is used (S31).
  • (method 1) is a method of shifting the tolerance distribution included in the tolerance condition of each component based on the maximum displacement amount (maximum displacement a) indicated by the deformation information of each component.
  • (Method 2) assumes a normal distribution based on the maximum displacement amount (maximum displacement a) of the parts, and based on the average and standard deviation of the assumed normal distribution, the average of the tolerance distributions included in the tolerance conditions of each part. And how to correct the standard deviation.
  • the user's selection result regarding (method 1) or (method 2) may be set in advance, or may be a selection instruction obtained by the input unit 10 inquiring the user through the GUI.
  • FIG. 13 is an explanatory diagram for explaining the correction of the tolerance distribution.
  • Graph 110 in FIG. 13 shows the initial tolerance distribution.
  • Graph 111 shows the tolerance distribution after correction by (Method 1).
  • the graph 112 shows the tolerance distribution after the correction by (Method 2).
  • the average is ⁇ + a
  • the standard deviation is ⁇
  • the graph 110 is offset according to the average value.
  • the tolerance analysis unit 20 outputs the corrected tolerance distribution as a tolerance condition (S37).
  • the tolerance analysis unit 20 performs tolerance analysis on the product based on the analysis conditions including the corrected tolerance condition (tolerance distribution).
  • the output unit 50 displays the analysis result of the tolerance analysis in the product on the result output screen 120.
  • tolerance information 121 and tolerance information 122 such as dimensional tolerances in the X and Y directions of the component C are displayed on the result output screen 120.
  • the output unit 50 was obtained in cooperation with the structural analysis unit 30 (warp analysis-tolerance analysis cooperation) in response to a selection instruction such as tolerance information 121 on the result output screen 120.
  • the tolerance distribution 130 with respect to the tolerance information 121 may be displayed.
  • the shaded portion 131 of the curve of the tolerance distribution 130 in FIG. 15 indicates the distribution range of the non-defective product of the component C in the X direction
  • the blank portion 132 indicates the distribution range of the defective product of the component C in the X direction.
  • the tolerance information 121 and 122 displayed on the result output screen 20 may be an average value, a standard deviation, a 3 ⁇ range, or the like.
  • the user (designer) of the design support device 1 can easily know the result of tolerance analysis such as dimensional tolerance at the product design stage.
  • the design support device 1 has a tolerance analysis unit 20, a structural analysis unit 30, a cooperation unit 40, and an output unit 50.
  • the tolerance analysis unit 20 sets analysis conditions for product tolerance analysis based on the 3D-CAD model 11 of each component to be combined with the product.
  • the structural analysis unit 30 acquires deformation information indicating the displacement and deformation of each part by structural analysis based on the condition setting including at least the load of each part.
  • the tolerance analysis unit 20 corrects the tolerance condition of each component included in the set analysis condition based on the acquired deformation information of each component.
  • the tolerance analysis unit 20 performs tolerance analysis on the product based on the analysis conditions including the tolerance conditions of each corrected component.
  • the output unit 50 outputs the result of the tolerance analysis in the product.
  • the design support device 1 corrects the tolerance conditions of each part based on the structural analysis result of each part to be combined with the product, and then performs the tolerance analysis of the product combining each part. It is possible to support accurate product design in consideration of deformation due to the load of.
  • FIG. 16 is an explanatory diagram illustrating a comparative example of result output.
  • the tolerance distribution 130 is the result of the tolerance analysis (warp analysis-tolerance analysis cooperation) linked with the analysis result by the structural analysis of the structural analysis unit 30.
  • the tolerance distribution 130a is a result when the tolerance analysis is performed independently without linking with the analysis result by the structural analysis of the structural analysis unit 30.
  • the tolerance distribution 130 in the tolerance distribution 130, the variation in the product considering the deformation due to the load of the parts and the like is obtained as a result.
  • the user attempts to increase or decrease the distribution range of non-defective products by changing the dimensions of the component C, or changes the tolerance distribution of the component C (that is, changes the dimensional accuracy and processing accuracy of the component C). Then, it is possible to try to increase or decrease the distribution range of non-defective products.
  • the tolerance analysis unit 20 shifts the tolerance distribution included in the tolerance condition of each component based on the maximum displacement amount indicated by the deformation information of each component.
  • the design support device 1 shifts the tolerance distribution of each component according to the worst value (maximum displacement amount) of deformation due to the load of the component or the like, so that the tolerance analysis assumes a case where the component or the like is distorted to the maximum. It can be performed.
  • the tolerance analysis assumes a case where the component or the like is distorted to the maximum. It can be performed.
  • the tolerance analysis unit 20 assumes a normal distribution based on the maximum displacement amount indicated by the deformation information of each part.
  • the cooperation unit 40 corrects the average and standard deviation of the tolerance distribution included in the tolerance condition of each component based on the assumed average and standard deviation of the normal distribution.
  • the design support device 1 assumes a normal distribution based on the maximum displacement amount indicated by the deformation information of each part (for example, the intermediate value is (maximum displacement amount) / 2), and the design support device 1 assumes a normal distribution of each part according to this normal distribution. By correcting the tolerance distribution, it is possible to make corrections that take into account the variation in displacement of each component.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution and integration of each device is not limited to the one shown in the figure. That is, all or a part thereof can be functionally or physically distributed / integrated in any unit according to various loads, usage conditions, and the like.
  • each processing function performed by each device is realized by a CPU (Central Processing Unit) and a program that is analyzed and executed by the CPU, or hardware by wired logic. Can be realized as.
  • CPU Central Processing Unit
  • the various processing functions performed by the design support device 1 may be executed in whole or in any part on the CPU (or a microcomputer such as an MPU or MCU (Micro Controller Unit)). Further, various processing functions may be executed in whole or in any part on a program analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or on hardware by wired logic. Needless to say, it's good. Further, various processing functions performed by the design support device 1 may be executed by a plurality of computers in cooperation by cloud computing.
  • FIG. 17 is a block diagram showing an example of a computer that executes a design support program.
  • the computer 200 has a CPU 201 that executes various arithmetic processes, an input device 202 that accepts data input, and a monitor 203. Further, the computer 200 includes a medium reading device 204 for reading a program or the like from a storage medium, an interface device 205 for connecting to various devices, and a communication device 206 for connecting to another information processing device or the like by wire or wirelessly. Has. Further, the computer 200 has a RAM 207 that temporarily stores various information and a hard disk device 208. Further, each of the devices 201 to 208 is connected to the bus 209.
  • the hard disk device 208 includes a design support program 208A for realizing the same functions as the processing units of the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50 shown in FIG. Be remembered. Further, the hard disk device 208 stores various data (for example, 3D-CAD model 11) related to the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50.
  • the input device 202 receives, for example, input of various information such as operation information from the user of the computer 200.
  • the monitor 203 displays various screens such as a display screen for the user of the computer 200, for example.
  • a printing device or the like is connected to the interface device 205.
  • the communication device 206 is connected to a network (not shown) and exchanges various information with other information processing devices.
  • the CPU 201 reads the design support program 208A stored in the hard disk device 208, expands it into the RAM 207, and executes it to operate the process of executing each function of the design support device 1. That is, this process executes the same function as each processing unit of the design support device 1. Specifically, the CPU 201 reads the design support program 208A for realizing the same functions as the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50 from the hard disk device 208. Then, the CPU 201 executes a process of executing the same processing as the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50.
  • the above design support program 208A does not have to be stored in the hard disk device 208.
  • the computer 200 may read and execute the design support program 208A stored in a storage medium that can be read by the computer 200.
  • the storage medium that can be read by the computer 200 is, for example, a portable recording medium such as a CD-ROM, a DVD (Digital Versatile Disc), or a USB (Universal Serial Bus) memory, a semiconductor memory such as a flash memory, a hard disk drive, or the like. ..
  • the design support program 208A may be stored in a device connected to a public line, the Internet, a LAN, or the like, and the computer 200 may read the design support program 208A from these and execute the design support program 208A.
  • Computer 201 ... CPU 202 ... Input device 203 ... Monitor 204 ... Media reader 205 ... Interface device 206 ... Communication device 207 ... RAM 208 ... Hard disk device 208A ... Design support program 209 ... Bus A, A1, B, B1, C ... Part F ... Load H ... Displacement constraint K ... Reference coordinates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A design assistance program of an embodiment causes a computer to execute an acquisition process, a correction process, and an output process. In the acquisition process, deformation information indicating the displacement and deformation of each part is acquired by structural analysis based on the condition setting including at least a load of each part to be combined with a product. In the correction process, tolerance information including the dimensional tolerance of each part is corrected on the basis of the acquired deformation information of each part. In the output process, the corrected tolerance information is output.

Description

設計支援プログラム、設計支援方法および設計支援装置Design support program, design support method and design support device
 本発明の実施形態は、設計支援プログラム、設計支援方法および設計支援装置に関する。 An embodiment of the present invention relates to a design support program, a design support method, and a design support device.
 従来、製品の設計現場では、製品を構成する各部品の組み付け位置のバラツキを小さくし、実際の製品組み立て等の製造工程において、部品の寸法公差によるトラブルを低減するために、コンピュータを用いた公差解析が行われている。 Conventionally, at the product design site, the tolerance using a computer is used to reduce the variation in the assembly position of each component constituting the product and to reduce the trouble due to the dimensional tolerance of the component in the manufacturing process such as the actual product assembly. The analysis is being done.
 コンピュータを用いた公差解析の従来技術としては、構造物を構成する各部品の組み付け位置のバラツキを解析可能とする設計プログラムが知られている。 As a conventional technique for tolerance analysis using a computer, a design program that enables analysis of variations in the assembly positions of each component constituting a structure is known.
特開2006-313400号公報Japanese Unexamined Patent Publication No. 2006-313400 特開2015-111359号公報Japanese Unexamined Patent Publication No. 2015-11359
 しかしながら、上記の従来技術では、各部品を剛体として扱っており、各部品の反り等による変形の影響を公差に反映しておらず、設計上の公差と実測値との間で乖離が発生するなど、設計精度が十分ではない場合があるという問題がある。 However, in the above-mentioned prior art, each part is treated as a rigid body, and the influence of deformation due to warpage of each part is not reflected in the tolerance, and a discrepancy occurs between the design tolerance and the measured value. There is a problem that the design accuracy may not be sufficient.
 例えば、基板にコネクタやユニットを差し込んで組み立てる大型計算機のような製品では、コネクタやユニットを差し込む際の荷重により基板が撓み易く、各部品の組み付け位置にバラツキが生じやすくなる。 For example, in a product such as a large computer that is assembled by inserting a connector or unit into a board, the board is likely to bend due to the load when the connector or unit is inserted, and the assembly position of each component is likely to vary.
 1つの側面では、精度のよい製品設計を支援することができる設計支援プログラム、設計支援方法および設計支援装置を提供することを目的とする。 One aspect is to provide a design support program, design support method, and design support device that can support accurate product design.
 1つの案では、設計支援プログラムは、取得する処理と、補正する処理と、出力する処理とをコンピュータに実行させる。取得する処理は、製品に組み合わせる各部品の少なくとも荷重を含む条件設定に基づく構造解析により各部品の変位および変形を示す変形情報を取得する。補正する処理は、取得した各部品の変形情報に基づき、各部品の寸法公差を含む公差情報を補正する。出力する処理は、補正した公差情報を出力する。 In one plan, the design support program causes the computer to execute the acquisition process, the correction process, and the output process. In the process of acquisition, deformation information indicating the displacement and deformation of each part is acquired by structural analysis based on the condition setting including at least the load of each part to be combined with the product. The correction process corrects the tolerance information including the dimensional tolerance of each part based on the acquired deformation information of each part. The output process outputs the corrected tolerance information.
 1つの実施態様によれば、精度のよい製品設計を支援できる。 According to one embodiment, it is possible to support accurate product design.
図1は、実施形態にかかる設計支援装置の機能構成例を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration example of the design support device according to the embodiment. 図2は、自由度を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the degree of freedom. 図3は、公差解析の条件設定を例示する説明図である。FIG. 3 is an explanatory diagram illustrating the condition setting of the tolerance analysis. 図4は、組立箇所の詳細属性情報の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of detailed attribute information of the assembly location. 図5は、組立順序の確定を説明する説明図である。FIG. 5 is an explanatory diagram for explaining the determination of the assembly order. 図6は、構造解析の条件設定を説明する説明図である。FIG. 6 is an explanatory diagram for explaining the condition setting of the structural analysis. 図7は、構造解析データの一例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of structural analysis data. 図8は、構造解析の設定画面を説明する説明図である。FIG. 8 is an explanatory diagram illustrating a setting screen for structural analysis. 図9は、構造解析の設定画面を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a setting screen for structural analysis. 図10は、構造解析の設定画面を説明する説明図である。FIG. 10 is an explanatory diagram illustrating a setting screen for structural analysis. 図11-1は、構造解析結果の一例を示す説明図である。FIG. 11-1 is an explanatory diagram showing an example of the structural analysis result. 図11-2は、構造解析結果の一例を示す説明図である。FIG. 11-2 is an explanatory diagram showing an example of the structural analysis result. 図12-1は、実施形態にかかる設計支援装置の動作例を示すフローチャートである。FIG. 12-1 is a flowchart showing an operation example of the design support device according to the embodiment. 図12-2は、実施形態にかかる設計支援装置の動作例を示すフローチャートである。FIG. 12-2 is a flowchart showing an operation example of the design support device according to the embodiment. 図13は、公差分布の補正を説明する説明図である。FIG. 13 is an explanatory diagram illustrating the correction of the tolerance distribution. 図14は、公差解析に関する結果出力画面の一例を示す説明図である。FIG. 14 is an explanatory diagram showing an example of a result output screen relating to tolerance analysis. 図15は、公差解析に関する結果出力画面の一例を示す説明図である。FIG. 15 is an explanatory diagram showing an example of a result output screen relating to tolerance analysis. 図16は、結果出力の比較例を説明する説明図である。FIG. 16 is an explanatory diagram illustrating a comparative example of result output. 図17は、設計支援プログラムを実行するコンピュータの一例を示すブロック図である。FIG. 17 is a block diagram showing an example of a computer that executes a design support program.
 以下、図面を参照して、実施形態にかかる設計支援プログラム、設計支援方法および設計支援装置を説明する。実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。なお、以下の実施形態で説明する設計支援プログラム、設計支援方法および設計支援装置は、一例を示すに過ぎず、実施形態を限定するものではない。また、以下の各実施形態は、矛盾しない範囲内で適宜組みあわせてもよい。 Hereinafter, the design support program, the design support method, and the design support device according to the embodiment will be described with reference to the drawings. Configurations having the same function in the embodiment are designated by the same reference numerals, and duplicate description will be omitted. The design support program, the design support method, and the design support device described in the following embodiments are merely examples, and the embodiments are not limited. In addition, the following embodiments may be appropriately combined within a consistent range.
[実施形態]
 図1は、実施形態にかかる設計支援装置の機能構成例を示すブロック図である。図1に示すように、設計支援装置1は、設計対象の製品と、製品を構成する各部品との3次元形状、部材、組み合わせ等を示す3D-CADモデル11(CAD:Computer Aided Design)をもとに製品についての公差解析を行い、解析結果を出力する装置である。設計支援装置1としては、例えば、パーソナルコンピュータなどを適用できる。
[Embodiment]
FIG. 1 is a block diagram showing a functional configuration example of the design support device according to the embodiment. As shown in FIG. 1, the design support device 1 provides a 3D-CAD model 11 (CAD: Computer Aided Design) showing a three-dimensional shape, a member, a combination, etc. of a product to be designed and each component constituting the product. It is a device that analyzes the tolerance of the product based on it and outputs the analysis result. As the design support device 1, for example, a personal computer or the like can be applied.
 具体的には、設計支援装置1は、入力部10と、公差解析部20と、構造解析部30と、連携部40と、出力部50とを有する。 Specifically, the design support device 1 has an input unit 10, a tolerance analysis unit 20, a structural analysis unit 30, a cooperation unit 40, and an output unit 50.
 入力部10は、キーボードやマウスなどの入力装置からの操作入力や他の装置との通信による入力を受け付ける処理部である。入力部10は、製品についての3D-CADモデル11の入力を受け付ける。入力部10は、受け付けた3D-CADモデル11の情報を公差解析部20、構造解析部30へ出力する。 The input unit 10 is a processing unit that receives operation input from an input device such as a keyboard or mouse and input by communication with another device. The input unit 10 receives the input of the 3D-CAD model 11 for the product. The input unit 10 outputs the received information of the 3D-CAD model 11 to the tolerance analysis unit 20 and the structural analysis unit 30.
 公差解析部20は、設計時に設定された公差(寸法公差、幾何公差等)によりバラツキのある各部品を組み立てた製品について、3D-CADモデル11をもとに特開2015-111359号公報などで公知の公差解析を行う処理部である。 The tolerance analysis unit 20 describes a product in which each part is assembled according to the tolerances (dimensional tolerances, geometrical tolerances, etc.) set at the time of design, based on the 3D-CAD model 11, in Japanese Patent Application Laid-Open No. 2015-11359. A processing unit that performs known tolerance analysis.
 具体的には、公差解析部20は、3D-CADモデル11をもとに、基準面、基準座標等の基準設定、各部品の公差に関する条件を示す公差設定、各部品を組み合わせる組立条件などの公差解析に関する解析条件を設定する。次いで、公差解析部20は、設定した解析条件に従って製品の各部品を組み合わせた場合の公差解析により、製品における各寸法等のバラツキ(公差分布)を求める。例えば、公差解析部20は、分散の加法性を用いてバラツキの幅を予測する手法や、最悪値(公差分布の上限値/下限値)の積み上げ計算を行う手法などの、公知の公差解析手法を用いて各部品を組み合わせた場合の製品の各部品の公差を累積し、公差解析の解析結果を得る。次いで、公差解析部20は、公差解析の解析結果を出力部50へ出力する。 Specifically, the tolerance analysis unit 20 sets standards such as a reference plane and reference coordinates based on the 3D-CAD model 11, sets tolerances indicating conditions related to tolerances of each part, and assembly conditions for combining each part. Set the analysis conditions for tolerance analysis. Next, the tolerance analysis unit 20 obtains variations (tolerance distribution) of each dimension and the like in the product by tolerance analysis when each component of the product is combined according to the set analysis conditions. For example, the tolerance analysis unit 20 is a known tolerance analysis method such as a method of predicting the width of variation using the additivity of variance and a method of accumulating the worst values (upper limit / lower limit of tolerance distribution). Accumulate the tolerances of each part of the product when each part is combined using, and obtain the analysis result of the tolerance analysis. Next, the tolerance analysis unit 20 outputs the analysis result of the tolerance analysis to the output unit 50.
 構造解析部30は、3D-CADモデル11をもとに、製品を解析対象として製品に生じる応力、ひずみ等の構造解析を行う処理部である。具体的には、構造解析部30は、解析対象である製品について、3D-CADモデル11に基づき、製品の各部品に加わる力(荷重)を少なくとも含む構造解析の条件設定を行う。例えば、構造解析の条件設定には、各部品に加わる荷重に関する荷重条件の他、部品同士の境界に関する境界条件、各部品の物性(ヤング率、ポアソン比など)に関する物性条件などが含まれる。 The structural analysis unit 30 is a processing unit that performs structural analysis of stress, strain, etc. generated in the product with the product as the analysis target based on the 3D-CAD model 11. Specifically, the structural analysis unit 30 sets the conditions for structural analysis of the product to be analyzed, including at least the force (load) applied to each component of the product, based on the 3D-CAD model 11. For example, the structural analysis condition setting includes, in addition to the load condition regarding the load applied to each component, the boundary condition regarding the boundary between the components, the physical property condition regarding the physical properties (Young's modulus, Poisson's ratio, etc.) of each component and the like.
 次いで、構造解析部30は、構造解析の条件設定をもとに、特開2006-313400号公報などで公知の有限要素解析などの解析手法を用いて製品に生じる応力、ひずみ等の構造解析を行う。次いで、構造解析部30は、構造解析により得られた製品の各部品における変位・変形を示す変形情報を連携部40へ出力する。 Next, the structural analysis unit 30 performs structural analysis of stress, strain, etc. generated in the product by using an analysis method such as finite element analysis known in JP-A-2006-313400, etc., based on the structural analysis condition setting. Do. Next, the structural analysis unit 30 outputs deformation information indicating displacement / deformation of each part of the product obtained by the structural analysis to the cooperation unit 40.
 連携部40は、構造解析部30による構造解析の結果を、公差解析に関する解析条件に反映する処理部である。具体的には、連携部40は、公差解析に関する解析条件より、公差基準、組立条件などの構造解析の条件設定に要する情報を読み取り、構造解析部30における構造解析の境界条件等に反映させる。 The cooperation unit 40 is a processing unit that reflects the result of the structural analysis by the structural analysis unit 30 in the analysis conditions related to the tolerance analysis. Specifically, the cooperation unit 40 reads the information required for setting the structural analysis conditions such as the tolerance standard and the assembly condition from the analysis conditions related to the tolerance analysis, and reflects the information in the boundary conditions of the structural analysis in the structural analysis unit 30.
 次いで、連携部40は、反映後の構造解析により得られた各部品における変形情報を読み取り、各部品の変位方向および変位量に応じて各部品の公差に関する公差条件(公差設定)に反映する。 Next, the cooperation unit 40 reads the deformation information of each component obtained by the structural analysis after reflection, and reflects it in the tolerance condition (tolerance setting) regarding the tolerance of each component according to the displacement direction and displacement amount of each component.
 例えば、連携部40は、各部品の変位方向および変位量について、基準設定が示す基準に対する各部品の6自由度に対応する変位(XYZ軸方向への移動およびXYZ軸方向への回転)に変換する。 For example, the cooperation unit 40 converts the displacement direction and displacement amount of each component into displacements (movement in the XYZ axis direction and rotation in the XYZ axis direction) corresponding to 6 degrees of freedom of each component with respect to the reference indicated by the reference setting. To do.
 図2は、自由度を説明する説明図である。図2に示すように、6自由度とは、6方向における部品A1、B1の自由度を言う。6方向については、X軸方向並進自由度(TX)/X軸周りの回転自由度(RX)、Y軸方向並進自由度(TY)/Y軸周りの回転自由度(RY)およびZ軸方向並進自由度(TZ)/Z軸周りの回転自由度(RZ)がある。例えば、6自由度とは、6方向において組み合わせ部分で部品が拘束されているか若しくは拘束されていないか、または、部品を拘束しているか若しくはしていないかのことを言う。 FIG. 2 is an explanatory diagram for explaining the degree of freedom. As shown in FIG. 2, the 6 degrees of freedom means the degrees of freedom of the parts A1 and B1 in the 6 directions. For the six directions, the translational degrees of freedom in the X-axis direction (TX) / rotational freedom around the X-axis (RX), the translational degrees of freedom in the Y-axis direction (TY) / rotational freedom around the Y-axis (RY), and the Z-axis direction. There are translational degrees of freedom (TZ) / rotational degrees of freedom around the Z axis (RZ). For example, 6 degrees of freedom means whether or not the parts are constrained or constrained at the combination portion in the 6 directions, or whether or not the parts are constrained.
 次いで、連携部40は、各部品について変換した6自由度に対応する変位を、6自由度の方向に対応する各部品の公差条件に付加する。 Next, the cooperation unit 40 adds the displacement corresponding to the converted 6 degrees of freedom for each part to the tolerance condition of each part corresponding to the direction of the 6 degrees of freedom.
 これにより、公差解析部20では、各部品について付加した公差条件を含む解析条件に基づいて製品における公差解析を行う。このように、連携部40は、製品の公差解析について、構造解析部30の構造解析による解析結果と連携(反り解析-公差解析連携)させることで、例えば部品等の荷重による変形を考慮した公差解析を実現する。 As a result, the tolerance analysis unit 20 performs tolerance analysis on the product based on the analysis conditions including the tolerance conditions added to each component. In this way, the cooperation unit 40 cooperates with the analysis result of the structural analysis of the structural analysis unit 30 (warp analysis-tolerance analysis cooperation) for the tolerance analysis of the product, so that the tolerance in consideration of the deformation due to the load of, for example, parts Realize the analysis.
 出力部50は、各種処理の結果をディスプレイやファイルなどに出力する処理部である。例えば、出力部50は、公差解析部20が実行した、製品における公差解析の解析結果をディスプレイやファイルなどに出力する。これにより、設計支援装置1のユーザ(設計者)は、製品の設計段階における寸法公差などの公差解析の結果を容易に知ることができる。 The output unit 50 is a processing unit that outputs the results of various processes to a display, a file, or the like. For example, the output unit 50 outputs the analysis result of the tolerance analysis in the product executed by the tolerance analysis unit 20 to a display, a file, or the like. As a result, the user (designer) of the design support device 1 can easily know the result of the tolerance analysis such as the dimensional tolerance at the design stage of the product.
 ここで、設計支援装置1の公差解析部20、構造解析部30、連携部40および出力部50における処理の詳細を説明する。先ず、公差解析部20では、入力された3D-CADモデル11をもとに、公差解析に関する解析条件(基準設定、公差設定、組立条件設定など)を読み込む。または、設計者が公差解析に関する解析条件を設定する(S1)。 Here, the details of the processing in the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50 of the design support device 1 will be described. First, the tolerance analysis unit 20 reads analysis conditions (reference setting, tolerance setting, assembly condition setting, etc.) related to the tolerance analysis based on the input 3D-CAD model 11. Alternatively, the designer sets the analysis conditions related to the tolerance analysis (S1).
 図3は、公差解析の条件設定を例示する説明図である。図3に示すように、公差解析の条件設定では、3D-CADモデル11に基づいて部品A、Cを組み合わせた製品についての基準設定、公差設定および組立条件設定を行う。 FIG. 3 is an explanatory diagram illustrating the condition setting of the tolerance analysis. As shown in FIG. 3, in the tolerance analysis condition setting, the reference setting, the tolerance setting, and the assembly condition setting for the product in which the parts A and C are combined are performed based on the 3D-CAD model 11.
 例えば、基準設定では、部品Aの角部分を公差解析の基準座標Kとして設定する。また、公差設定では、基準座標Kに関するX、Y方向の寸法公差(図示例における部品Cの110.9±0.1、72.0±0.1など)を設定する。また、組立条件設定では、製品を構成する部品A、Cの組立構成(親子関係)を設定する。具体的には、3D-CADモデル11などに含まれる、製品を構成する部品A、Cについて組立順序どおりに整理した構成部品ツリーをもとに、ツリー情報に含まれる部品間相互の関係性を示す属性情報より組立構成を確定する。 For example, in the reference setting, the corner portion of the part A is set as the reference coordinate K for tolerance analysis. Further, in the tolerance setting, the dimensional tolerances in the X and Y directions with respect to the reference coordinates K (110.9 ± 0.1, 72.0 ± 0.1, etc. of the component C in the illustrated example) are set. Further, in the assembly condition setting, the assembly configuration (parent-child relationship) of the parts A and C constituting the product is set. Specifically, based on the component tree in which the parts A and C that make up the product, which are included in the 3D-CAD model 11 and the like, are arranged according to the assembly order, the mutual relationship between the parts included in the tree information is determined. Determine the assembly configuration from the indicated attribute information.
 図4は、組立箇所の詳細属性情報の一例を示す説明図である。図4に示すように、構成部品ツリーのツリー情報には、組立箇所に関する属性情報61、62などが含まれる。 FIG. 4 is an explanatory diagram showing an example of detailed attribute information of the assembly location. As shown in FIG. 4, the tree information of the component tree includes attribute information 61, 62 and the like related to the assembly location.
 例えば、属性情報61では、Z方向に垂直であり、TZ、RX、RYが拘束状態であることがわかる。これにより、公差解析部20は、属性情報61が示す組立箇所については、3高点接触の状態であることを認識し、対応する部品のデータムを特定する。また、属性情報62では、X方向に垂直であり、TX、RZが拘束状態であることがわかる。これにより、公差解析部20は、属性情報62が示す組立箇所については、部品が2高点接触の状態であることを認識し、対応する部品のデータムを特定する。 For example, in the attribute information 61, it can be seen that the attribute information 61 is perpendicular to the Z direction and the TZ, RX, and RY are in the constrained state. As a result, the tolerance analysis unit 20 recognizes that the assembly location indicated by the attribute information 61 is in a state of contact with three high points, and identifies the datum of the corresponding component. Further, in the attribute information 62, it can be seen that the attribute information 62 is perpendicular to the X direction and the TX and RZ are in the restrained state. As a result, the tolerance analysis unit 20 recognizes that the parts are in the state of contacting two high points at the assembly point indicated by the attribute information 62, and identifies the datum of the corresponding parts.
 図5は、組立順序の確定を説明する説明図である。図5のケース71~73に示すように、公差解析部20は、属性情報61、62による組立箇所の特定結果をもとに組立構成を確定する。 FIG. 5 is an explanatory diagram for explaining the determination of the assembly order. As shown in cases 71 to 73 of FIG. 5, the tolerance analysis unit 20 determines the assembly configuration based on the identification result of the assembly location based on the attribute information 61 and 62.
 具体的には、ケース71は、部品Aの次に部品Cが組み立てられ、その次に、部品Bが組み立てられるという組立構成である。言い換えると、ケース71は、部品Cは部品Aの子であり、部品Bは部品Cの子であるという組立構成である。 Specifically, the case 71 has an assembly configuration in which the part C is assembled next to the part A, and then the part B is assembled. In other words, the case 71 has an assembly configuration in which the part C is a child of the part A and the part B is a child of the part C.
 また、ケース72は、部品Aの次には、部品Bと部品Cとが組み付けられた上で、2つの部品B、Cが部品Aに組み付けられるという組立構成である。言い換えると、ケース72は、部品Cは部品Aの子であり、部品Bは部品Aと部品Cの子であるという組立構成である。 Further, the case 72 has an assembly configuration in which the part B and the part C are assembled next to the part A, and then the two parts B and C are assembled to the part A. In other words, the case 72 has an assembly configuration in which the part C is a child of the part A and the part B is a child of the part A and the part C.
 また、ケース73は、部品Aの次に、部品Bおよび部品Cが略同時に組み付けられるという組立構成である。言い換えると、ケース73は、部品Cは部品Aの子であり、部品Bは部品Aの子であるという組立構成である。なお、相互関係に優位差がない場合は、部品名の昇順で並べてもよい。 Further, the case 73 has an assembly configuration in which the part B and the part C are assembled substantially at the same time after the part A. In other words, the case 73 has an assembly configuration in which the part C is a child of the part A and the part B is a child of the part A. If there is no superiority in the mutual relationship, the parts may be arranged in ascending order.
 図1に戻り、S1に次いで、連携部40は、公差解析に関する解析条件より、公差基準、組立条件などの構造解析の条件設定に要する情報を読み取る。次いで、連携部40は、読み取った情報を構造解析部30における構造解析の境界条件等に反映させる(S2)。 Returning to FIG. 1, following S1, the cooperation unit 40 reads the information required for setting the structural analysis conditions such as the tolerance standard and the assembly conditions from the analysis conditions related to the tolerance analysis. Next, the cooperation unit 40 reflects the read information in the boundary conditions of the structural analysis in the structural analysis unit 30 (S2).
 構造解析部30では、3D-CADモデル11に基づき、解析対象の製品の各部品に加わる力(荷重)を少なくとも含む構造解析の条件設定を行う(S3)。 Based on the 3D-CAD model 11, the structural analysis unit 30 sets the conditions for structural analysis including at least the force (load) applied to each part of the product to be analyzed (S3).
 図6は、構造解析の条件設定を説明する説明図である。図6に示すように、構造解析部30は、3D-CADモデル11に含まれる製品の部品(図示例では部品A、B)の形状データをもとに、メッシュ分割(2次元では三角形や四角形、3次元では4面体や6面体などの要素への分割)を行う。次いで、構造解析部30は、各メッシュ(要素)について、コーナ点(節点)に連続した番号を付与し、部品A、Bの物性に対応するヤング率、ポアソン比などの材料定義81を行う。なお、構造解析における各節点の自由度について、各節点の変位の拘束/非拘束をあらわす3次元要素では、XYZ各方向の3自由度ある(公差解析の3次元剛体の場合と異なり、回転方向自由度はない)。 FIG. 6 is an explanatory diagram for explaining the condition setting of the structural analysis. As shown in FIG. 6, the structural analysis unit 30 divides the mesh (triangles and quadrangles in two dimensions) based on the shape data of the product parts (parts A and B in the illustrated example) included in the 3D-CAD model 11. In three dimensions, division into elements such as tetrahedrons and hexahedrons) is performed. Next, the structural analysis unit 30 assigns consecutive numbers to the corner points (nodes) for each mesh (element), and defines materials 81 such as Young's modulus and Poisson's ratio corresponding to the physical properties of parts A and B. Regarding the degree of freedom of each node in the structural analysis, the three-dimensional element representing the constrained / unconstrained displacement of each node has three degrees of freedom in each direction of XYZ (unlike the case of the three-dimensional rigid body in the tolerance analysis, the rotation direction). There is no degree of freedom).
 次いで、構造解析部30は、部品に加えられる荷重Fと(図示例では部品Aの端部に加えられる下向きの力)、構造解析において変位を拘束する変位拘束Hとを設定する荷重・拘束条件定義82を行う。この荷重・拘束条件定義82における変位拘束Hについては、公差基準に含まれる基準座標Kに相当する節点について、変位を拘束するように設定する。 Next, the structural analysis unit 30 sets a load F applied to the component (a downward force applied to the end portion of the component A in the illustrated example) and a displacement constraint H that constrains the displacement in the structural analysis. Definition 82 is performed. Regarding the displacement constraint H in the load / constraint condition definition 82, the displacement is set to be constrained at the node corresponding to the reference coordinate K included in the tolerance standard.
 構造解析部30では、これらの設定を行った構造解析データをもとに、有限要素解析を実行して製品に生じる応力、ひずみ等の構造解析を行う(S4)。 The structural analysis unit 30 executes finite element analysis based on the structural analysis data in which these settings are made, and performs structural analysis of stress, strain, etc. generated in the product (S4).
 図7は、構造解析データの一例を示す説明図である。図7に示すように、条件設定による構造解析データ90には、節点定義ブロック91、要素定義ブロック92、材料物性定義ブロック93および変位拘束条件ブロック94が含まれる。 FIG. 7 is an explanatory diagram showing an example of structural analysis data. As shown in FIG. 7, the structural analysis data 90 by setting conditions includes a node definition block 91, an element definition block 92, a material property definition block 93, and a displacement constraint condition block 94.
 例えば、節点定義ブロック91では、節点番号、節点のXYZ座標などが示される。また、要素定義ブロック92では、要素(各メッシュ)について、要素の番号、要素の種類、要素の材料特性を示す番号、各要素のコネクティビティなどが示される。また、材料物性定義ブロック93では、製品で使用される材料の種類を識別する材料番号と、その材料に関する物性値(ヤング率、ポアソン比など)とが示される。また、変位拘束条件ブロック94では、拘束される節点の節点番号、拘束される自由度、変位などが示される。また、構造解析データ90では、荷重が加えられる節点の節点番号、荷重のベクトル成分(X成分、Y成分、Z成分)などの荷重条件も含まれる。 For example, in the node definition block 91, the node number, the XYZ coordinates of the node, and the like are shown. Further, in the element definition block 92, for the element (each mesh), the element number, the element type, the number indicating the material property of the element, the connectivity of each element, and the like are shown. Further, in the material property definition block 93, a material number that identifies the type of material used in the product and a physical property value (Young's modulus, Poisson's ratio, etc.) related to the material are shown. Further, in the displacement constraint condition block 94, the node number of the node to be constrained, the degree of freedom to be constrained, the displacement, and the like are shown. Further, the structural analysis data 90 also includes load conditions such as node numbers of nodes to which the load is applied and vector components of the load (X component, Y component, Z component).
 なお、S1、S3における設定については、入力部10がGUI(Graphical User Interface)を通じてユーザから設定条件を受け付けてもよい。 Regarding the settings in S1 and S3, the input unit 10 may accept setting conditions from the user through the GUI (Graphical User Interface).
 図8、図9、図10は、構造解析の設定画面を説明する説明図である。図8に示すように、公差解析に関する解析条件の設定(S1)において、入力部10は、各種設定(図示例では境界条件の設定)を受け付ける設定ウインドウ102を含む設定画面101での操作をもとに、公差解析に関する解析条件の設定を行う。例えば、入力部10は、設定画面101において、3D-CADモデル11に基づいて製品の部品A、Cを3D表示し、基準座標Kの指定などの操作を受け付けてもよい。 8, 9, and 10 are explanatory views for explaining the structural analysis setting screen. As shown in FIG. 8, in the setting of analysis conditions (S1) related to tolerance analysis, the input unit 10 also operates on the setting screen 101 including the setting window 102 that accepts various settings (setting of boundary conditions in the illustrated example). And, the analysis conditions for tolerance analysis are set. For example, the input unit 10 may display the parts A and C of the product in 3D based on the 3D-CAD model 11 on the setting screen 101, and may accept operations such as designation of the reference coordinate K.
 図9に示すように、構造解析の条件設定(S2)では、入力部10は、設定画面101に3D表示した部品A、Cに対する操作をもとに、部品Cに加える荷重Fの設定を受け付けてもよい。 As shown in FIG. 9, in the structural analysis condition setting (S2), the input unit 10 accepts the setting of the load F to be applied to the component C based on the operations on the components A and C displayed in 3D on the setting screen 101. You may.
 図10に示すように、構造解析の条件設定(S2)では、入力部10は、メッシュ分割した部品A、Cを設定画面101に表示してもよい。 As shown in FIG. 10, in the structural analysis condition setting (S2), the input unit 10 may display the mesh-divided parts A and C on the setting screen 101.
 図1に戻り、構造解析部30は、構造解析により得られた製品の各部品における変位・変形を示す変形情報を連携部40へ出力する(S5)。 Returning to FIG. 1, the structural analysis unit 30 outputs deformation information indicating displacement / deformation of each part of the product obtained by the structural analysis to the cooperation unit 40 (S5).
 図11-1、図11-2は、構造解析結果の一例を示す説明図である。図11-1に示すように、構造解析部30による構造解析を行うことで、部品A、Cの各節点における変位量(図示例ではX方向変位)を得る。なお、図11-2では、部品A、Cの各節点におけるY方向変位の変位量を例示している。構造解析部30では、これらの変位量を変形情報として連携部40へ出力する。 11-1 and 11-2 are explanatory views showing an example of the structural analysis result. As shown in FIG. 11-1, the structural analysis unit 30 performs structural analysis to obtain the amount of displacement (displacement in the X direction in the illustrated example) at each node of parts A and C. Note that FIG. 11-2 illustrates the displacement amount of the displacement in the Y direction at each node of the parts A and C. The structural analysis unit 30 outputs these displacement amounts to the cooperation unit 40 as deformation information.
 図1に戻り、連携部40は、構造解析部30の構造解析により得られた、製品の各部品における変位・変形を示す変位情報を読み取り(S6)、各部品の6自由度に対応する変位へ変換する(S7)。次いで、連携部40は、変換した変位を、公差解析部20における公差解析の解析条件に含まれる公差設定に反映させる(S8)。 Returning to FIG. 1, the cooperation unit 40 reads the displacement information indicating the displacement / deformation of each part of the product obtained by the structural analysis of the structural analysis unit 30 (S6), and the displacement corresponding to the six degrees of freedom of each part. Convert to (S7). Next, the cooperation unit 40 reflects the converted displacement in the tolerance setting included in the analysis conditions of the tolerance analysis in the tolerance analysis unit 20 (S8).
 具体的には、連携部40は、部品A、CのXYZ方向における変位量を、各部品の6自由度における対応方向の変位として公差設定に付加する。例えば、もっとも単純な変換アルゴリズムである部品の最大変位を用いる方法では、有限要素解析の結果より得られる各部品の最大変位量を公差設定に付加する。 Specifically, the cooperation unit 40 adds the displacement amount of the parts A and C in the XYZ direction to the tolerance setting as the displacement in the corresponding direction in the six degrees of freedom of each part. For example, in the method using the maximum displacement of parts, which is the simplest conversion algorithm, the maximum displacement amount of each part obtained from the result of finite element analysis is added to the tolerance setting.
 一例として、部品Cの各節点におけるX方向変位の変位量(図11-1参照)より、X方向の最大変位として、0.0930mmが得られているものとする。また、部品Cの各節点におけるY方向変位の変位量(図11-2参照)より、Y方向の最大変位として、0.0339mmが得られているものとする。また、基準座標Kに対する部品Cの公差設定は、X方向について110.9±0.1であり、Y方向について72.0±0.1であるものとする。 As an example, it is assumed that 0.0930 mm is obtained as the maximum displacement in the X direction from the displacement amount of the displacement in the X direction at each node of the component C (see FIG. 11-1). Further, it is assumed that 0.0339 mm is obtained as the maximum displacement in the Y direction from the displacement amount of the displacement in the Y direction at each node of the component C (see FIG. 11-2). Further, it is assumed that the tolerance setting of the component C with respect to the reference coordinate K is 110.9 ± 0.1 in the X direction and 72.0 ± 0.1 in the Y direction.
 この場合、連携部40は、部品CのX方向の公差設定については、X方向の最大変位量である0.0930mmをもとに、110.9±0.1930~0.007とする。また、連携部40は、部品CのY方向の公差設定については、Y方向の最大変位量である0.0339mmをもとに、72.0±0.1339~0.0661とする。 In this case, the cooperation unit 40 sets the tolerance of the component C in the X direction to 110.9 ± 0.1930 to 0.007 based on the maximum displacement amount of 0.0930 mm in the X direction. Further, the cooperation unit 40 sets the tolerance of the component C in the Y direction to 72.0 ± 0.1339 to 0.0661 based on the maximum displacement amount of 0.0339 mm in the Y direction.
 次いで、公差解析部20では、各部品について付加した公差条件を含む解析条件に基づいて製品における公差解析を実行する(S9)。次いで、出力部50は、公差解析部20による公差解析の解析結果をディスプレイやファイルなどに出力する(S10)。 Next, the tolerance analysis unit 20 executes the tolerance analysis of the product based on the analysis conditions including the tolerance conditions added to each component (S9). Next, the output unit 50 outputs the analysis result of the tolerance analysis by the tolerance analysis unit 20 to a display, a file, or the like (S10).
 図12-1、図12-2は、実施形態にかかる設計支援装置1の動作例を示すフローチャートである。具体的には、図12-1では、設計支援装置1におけるS20~S30の処理を示し、図12-2では、S31~S37の処理を示している。 12-1 and 12-2 are flowcharts showing an operation example of the design support device 1 according to the embodiment. Specifically, FIG. 12-1 shows the processes of S20 to S30 in the design support device 1, and FIG. 12-2 shows the processes of S31 to S37.
 図12-1に示すように、処理が開始されると、入力部10は、3D-CADモデル11を読み込む(S20)。次いで、公差解析部20は、3D-CADモデル11をもとに、公差解析に関する解析条件(基準設定、公差設定、組立条件設定など)を設定する(S21)。 As shown in FIG. 12-1, when the process is started, the input unit 10 reads the 3D-CAD model 11 (S20). Next, the tolerance analysis unit 20 sets analysis conditions (reference setting, tolerance setting, assembly condition setting, etc.) related to the tolerance analysis based on the 3D-CAD model 11 (S21).
 次いで、公差解析部20は、製品の公差解析について、構造解析部30の構造解析による解析結果と連携(反り解析-公差解析連携)する連成解析を実行するか否かを判定する(S22)。連成解析の実行の有無については、予め設定されていてもよいし、入力部10がGUIを通じてユーザに問い合わせて得られた指示に基づいて判定してもよい。 Next, the tolerance analysis unit 20 determines whether or not to execute a coupled analysis in which the tolerance analysis of the product is linked with the analysis result of the structural analysis of the structural analysis unit 30 (warp analysis-tolerance analysis cooperation) (S22). .. Whether or not the coupled analysis is executed may be set in advance, or may be determined based on an instruction obtained by the input unit 10 inquiring the user through the GUI.
 連成解析を実行しない場合(S22:No)、公差解析部20は、公差解析に関する解析条件をもとに公差解析の計算を行う(S23)。次いで、出力部50は、公差解析部20の公差解析の結果(製品に関する公差分布(平均μ、標準偏差σなど))をディスプレイなどに出力し(S24)、処理を終了する。 When the coupled analysis is not executed (S22: No), the tolerance analysis unit 20 calculates the tolerance analysis based on the analysis conditions related to the tolerance analysis (S23). Next, the output unit 50 outputs the result of the tolerance analysis of the tolerance analysis unit 20 (tolerance distribution related to the product (mean μ, standard deviation σ, etc.)) to a display or the like (S24), and ends the process.
 連成解析を実行する場合(S22:Yes)、公差解析部20は、各部品の公差解析を計算し(S25)、各部品の初期の公差分布を出力する(S26)。 When executing coupled analysis (S22: Yes), the tolerance analysis unit 20 calculates the tolerance analysis of each component (S25) and outputs the initial tolerance distribution of each component (S26).
 次いで、連携部40は、公差解析の解析条件における公差基準を構造解析の基準とする(公差基準に含まれる基準座標Kに相当する節点について、変位を拘束する)ように変換する(S27)。次いで、構造解析部30は、解析対象の製品の各部品に加わる力(荷重)を少なくとも含む構造解析の条件設定を行う(S28)。 Next, the cooperation unit 40 converts the tolerance standard in the analysis conditions of the tolerance analysis into the standard of the structural analysis (constraining the displacement of the node corresponding to the reference coordinate K included in the tolerance standard) (S27). Next, the structural analysis unit 30 sets the conditions for structural analysis including at least the force (load) applied to each component of the product to be analyzed (S28).
 次いで、構造解析部30は、S28の条件設定に基づく構造解析の計算を行い(S29)、製品に関する構造解析の計算結果を連携部40へ出力する(S30)。なお、構造解析の計算結果に含まれる、各部品における最大変位量については、以下の説明では最大変位aとする。連携部40では、製品に関する構造解析の計算結果より製品の各部品における変位・変形を示す変位情報を読み取り、各部品の6自由度に対応する変位へ変換する(図1、S6、S7参照)。次いで、連携部40は、変換した変位を、公差解析部20における公差解析の解析条件に含まれる公差設定に反映させる。 Next, the structural analysis unit 30 calculates the structural analysis based on the condition setting of S28 (S29), and outputs the calculation result of the structural analysis related to the product to the cooperation unit 40 (S30). The maximum displacement amount of each component included in the calculation result of the structural analysis is referred to as the maximum displacement a in the following description. The cooperation unit 40 reads the displacement information indicating the displacement / deformation of each part of the product from the calculation result of the structural analysis of the product, and converts it into the displacement corresponding to the 6 degrees of freedom of each part (see FIGS. 1, S6, S7). .. Next, the cooperation unit 40 reflects the converted displacement in the tolerance setting included in the analysis conditions of the tolerance analysis in the tolerance analysis unit 20.
 次いで、図12-2に示すように、公差解析部20は、構造解析の計算結果をもとに行う公差条件への付加方法について、ユーザの選択結果をもとに(方法1)、(方法2)のいずれの方法で行うかを判定する(S31)。 Next, as shown in FIG. 12-2, the tolerance analysis unit 20 describes the method of adding to the tolerance condition based on the calculation result of the structural analysis based on the user's selection result (method 1), (method 1). It is determined which method of 2) is used (S31).
 ここで、(方法1)は、各部品の変形情報が示す最大変位量(最大変位a)に基づいて各部品における公差条件に含まれる公差分布をシフトする方法である。また、(方法2)は、部品の最大変位量(最大変位a)に基づく正規分布を仮定し、仮定した正規分布の平均および標準偏差に基づいて各部品における公差条件に含まれる公差分布の平均および標準偏差を補正する方法である。 Here, (method 1) is a method of shifting the tolerance distribution included in the tolerance condition of each component based on the maximum displacement amount (maximum displacement a) indicated by the deformation information of each component. Further, (Method 2) assumes a normal distribution based on the maximum displacement amount (maximum displacement a) of the parts, and based on the average and standard deviation of the assumed normal distribution, the average of the tolerance distributions included in the tolerance conditions of each part. And how to correct the standard deviation.
 (方法1)または(方法2)に関するユーザの選択結果については、予め設定されていてもよいし、入力部10がGUIを通じてユーザに問い合わせて得られた選択指示であってもよい。 The user's selection result regarding (method 1) or (method 2) may be set in advance, or may be a selection instruction obtained by the input unit 10 inquiring the user through the GUI.
 S31において(方法1)と判定した場合、公差解析部20は、S26で求めた各部品の初期の公差分布について、平均値を最大変位aで修正する(S32)。具体的には、公差分布の平均値がμ’=μ+aとなるように、公差分布をシフトする。次いで、公差解析部20は、シフトした公差分布について、標準偏差σ’=σとして標準偏差を修正する(S33)。 When it is determined in S31 (method 1), the tolerance analysis unit 20 corrects the average value of the initial tolerance distribution of each component obtained in S26 with the maximum displacement a (S32). Specifically, the tolerance distribution is shifted so that the average value of the tolerance distribution is μ'= μ + a. Next, the tolerance analysis unit 20 corrects the standard deviation of the shifted tolerance distribution by setting the standard deviation σ'= σ (S33).
 また、S31において(方法2)と判定した場合、公差解析部20は、最大変位aに基づく変位の分布(変位分布)を設定する(S34)。例えば、連携部40は、最大変位aの中間値(a/2)を基準とし、最大変位aの半分(a/2)に分布の中心があるものとする正規分布を仮定する。例えば、公差解析部20は、変位分布について、平均:μ’=a/2、標準偏差σ’=a/6とする。 Further, when it is determined in S31 as (method 2), the tolerance analysis unit 20 sets the displacement distribution (displacement distribution) based on the maximum displacement a (S34). For example, the cooperation unit 40 assumes a normal distribution based on the median value (a / 2) of the maximum displacement a and assuming that the center of the distribution is at half (a / 2) of the maximum displacement a. For example, the tolerance analysis unit 20 sets the average: μ'= a / 2 and the standard deviation σ'= a / 6 for the displacement distribution.
 次いで、公差解析部20は、仮定した正規分布の平均をもとに、公差分布の平均値を修正する(S35)。具体的には、公差解析部20は、公差分布について、平均μ’’=μ+μ’となるようにする。 Next, the tolerance analysis unit 20 corrects the average value of the tolerance distribution based on the assumed normal distribution average (S35). Specifically, the tolerance analysis unit 20 makes the tolerance distribution mean μ ″ = μ + μ ′.
 次いで、公差解析部20は、仮定した正規分布の標準偏差をもとに、公差分布の標準偏差を修正する(S36)。具体的には、公差解析部20は、公差分布について、標準偏差σ’’=√(σ+σ2’)となるようにする。 Next, the tolerance analysis unit 20 corrects the standard deviation of the tolerance distribution based on the assumed standard deviation of the normal distribution (S36). Specifically, the tolerance analysis unit 20 sets the standard deviation σ'' = √ (σ 2 + σ 2' ) for the tolerance distribution.
 図13は、公差分布の補正を説明する説明図である。図13におけるグラフ110は、初期の公差分布を示している。また、グラフ111は、(方法1)による補正後の公差分布を示している。また、グラフ112は、(方法2)による補正後の公差分布を示している。 FIG. 13 is an explanatory diagram for explaining the correction of the tolerance distribution. Graph 110 in FIG. 13 shows the initial tolerance distribution. Further, Graph 111 shows the tolerance distribution after correction by (Method 1). Further, the graph 112 shows the tolerance distribution after the correction by (Method 2).
 図13に示すように、(方法1)のグラフ111では、平均:μ+a、標準偏差:σ、分散=V=σとし、平均値に応じてグラフ110をオフセットしている。 As shown in FIG. 13, in the graph 111 of (method 1), the average is μ + a, the standard deviation is σ, and the variance is V = σ 2, and the graph 110 is offset according to the average value.
 (方法2)のグラフ112では、グラフ111に対して、平均:μ+μ’(=a/2)、分散:V+V’=σ+σ’、標準偏差:√(V+V’)=√(σ+σ2’)としている。 In the graph 112 (Method 2), with respect to graph 111, the average: μ + μ '(= a / 2), the dispersion: V + V' = σ 2 + σ '2, standard deviation: √ (V + V') = √ (σ 2 + Σ 2' ).
 S33、S36に次いで、公差解析部20は、修正後の公差分布を公差条件として出力する(S37)。これにより、公差解析部20では、修正後の公差条件(公差分布)を含む解析条件に基づいて製品における公差解析を行う。 Following S33 and S36, the tolerance analysis unit 20 outputs the corrected tolerance distribution as a tolerance condition (S37). As a result, the tolerance analysis unit 20 performs tolerance analysis on the product based on the analysis conditions including the corrected tolerance condition (tolerance distribution).
 図14、図15は、公差解析に関する結果出力画面の一例を示す説明図である。図14に示すように、出力部50は、結果出力画面120において、製品における公差解析の解析結果を表示する。具体的には、部品CにおけるX方向およびY方向の寸法公差などの公差情報121、公差情報122を結果出力画面120上に表示する。 14 and 15 are explanatory views showing an example of a result output screen related to tolerance analysis. As shown in FIG. 14, the output unit 50 displays the analysis result of the tolerance analysis in the product on the result output screen 120. Specifically, tolerance information 121 and tolerance information 122 such as dimensional tolerances in the X and Y directions of the component C are displayed on the result output screen 120.
 また、出力部50は、図15に示すように、結果出力画面120における公差情報121等の選択指示に応じて、構造解析部30との連携(反り解析-公差解析連携)で得られた、公差情報121に関する公差分布130を表示してもよい。例えば、図15における公差分布130の曲線の斜線部分131はX方向における部品Cの良品の分布範囲を示し、空白部分132はX方向における部品Cの不良品の分布範囲を示している。また、結果出力画面20に表示する公差情報121、122は、平均値、標準偏差、3σ範囲などであってもよい。 Further, as shown in FIG. 15, the output unit 50 was obtained in cooperation with the structural analysis unit 30 (warp analysis-tolerance analysis cooperation) in response to a selection instruction such as tolerance information 121 on the result output screen 120. The tolerance distribution 130 with respect to the tolerance information 121 may be displayed. For example, the shaded portion 131 of the curve of the tolerance distribution 130 in FIG. 15 indicates the distribution range of the non-defective product of the component C in the X direction, and the blank portion 132 indicates the distribution range of the defective product of the component C in the X direction. Further, the tolerance information 121 and 122 displayed on the result output screen 20 may be an average value, a standard deviation, a 3σ range, or the like.
 これにより、設計支援装置1のユーザ(設計者)は、製品の設計段階における寸法公差などの公差解析の結果を容易に知ることができる。 As a result, the user (designer) of the design support device 1 can easily know the result of tolerance analysis such as dimensional tolerance at the product design stage.
[作用と効果]
 以上のように、設計支援装置1は、公差解析部20と、構造解析部30と、連携部40と、出力部50とを有する。公差解析部20は、製品に組み合わせる各部品の3D-CADモデル11に基づいて製品の公差解析に関する解析条件を設定する。構造解析部30は、各部品の少なくとも荷重を含む条件設定に基づく構造解析により各部品の変位および変形を示す変形情報を取得する。公差解析部20は、取得した各部品の変形情報に基づき、設定した解析条件に含まれる各部品における公差条件を補正する。公差解析部20は、補正した各部品の公差条件を含む解析条件に基づいて製品における公差解析を行う。出力部50は、製品における公差解析の結果を出力する。
[Action and effect]
As described above, the design support device 1 has a tolerance analysis unit 20, a structural analysis unit 30, a cooperation unit 40, and an output unit 50. The tolerance analysis unit 20 sets analysis conditions for product tolerance analysis based on the 3D-CAD model 11 of each component to be combined with the product. The structural analysis unit 30 acquires deformation information indicating the displacement and deformation of each part by structural analysis based on the condition setting including at least the load of each part. The tolerance analysis unit 20 corrects the tolerance condition of each component included in the set analysis condition based on the acquired deformation information of each component. The tolerance analysis unit 20 performs tolerance analysis on the product based on the analysis conditions including the tolerance conditions of each corrected component. The output unit 50 outputs the result of the tolerance analysis in the product.
 このように、設計支援装置1は、製品に組み合わせる各部品の構造解析結果をもとに各部品の公差条件を補正した上で、各部品を組み合わせた製品の公差解析を行うので、例えば部品等の荷重による変形を考慮した、精度のよい製品設計を支援できる。 In this way, the design support device 1 corrects the tolerance conditions of each part based on the structural analysis result of each part to be combined with the product, and then performs the tolerance analysis of the product combining each part. It is possible to support accurate product design in consideration of deformation due to the load of.
 図16は、結果出力の比較例を説明する説明図である。公差分布130は、構造解析部30の構造解析による解析結果と連携した公差解析(反り解析-公差解析連携)の結果である。公差分布130aは、構造解析部30の構造解析による解析結果と連携せずに、公差解析を単独で行った場合の結果である。公差分布130、130aを比較しても明らかなように、公差分布130では、部品等の荷重による変形を考慮した製品におけるバラツキが結果として得られている。そして、ユーザ(設計者)は、部品Cの寸法を変更して良品の分布範囲を増減させることを試みたり、部品Cの公差分布を変更して(つまり部品Cの寸法精度や加工精度を変更して)良品の分布範囲を増減させることを試みることができる。 FIG. 16 is an explanatory diagram illustrating a comparative example of result output. The tolerance distribution 130 is the result of the tolerance analysis (warp analysis-tolerance analysis cooperation) linked with the analysis result by the structural analysis of the structural analysis unit 30. The tolerance distribution 130a is a result when the tolerance analysis is performed independently without linking with the analysis result by the structural analysis of the structural analysis unit 30. As is clear from the comparison of the tolerance distributions 130 and 130a, in the tolerance distribution 130, the variation in the product considering the deformation due to the load of the parts and the like is obtained as a result. Then, the user (designer) attempts to increase or decrease the distribution range of non-defective products by changing the dimensions of the component C, or changes the tolerance distribution of the component C (that is, changes the dimensional accuracy and processing accuracy of the component C). Then, it is possible to try to increase or decrease the distribution range of non-defective products.
 このような、精度のよい製品設計により、例えば設計段階で良品と不良品の境界を変更するように、所定の部品の寸法精度や加工精度を変更するなどの公差配分の見直しを行うことが可能となる。このため、実際の製品組立等の製造工程では、部品の寸法公差によるトラブル(例えば部品の荷重による反りで生じる組み付け位置のバラツキなど)を低減することができる。 With such accurate product design, it is possible to review the tolerance distribution, such as changing the dimensional accuracy and processing accuracy of a predetermined part, for example, changing the boundary between a good product and a defective product at the design stage. It becomes. Therefore, in a manufacturing process such as actual product assembly, troubles due to dimensional tolerances of parts (for example, variations in assembly position caused by warpage due to load of parts) can be reduced.
 また、公差解析部20は、各部品の変形情報が示す最大変位量に基づいて各部品における公差条件に含まれる公差分布をシフトする。 Further, the tolerance analysis unit 20 shifts the tolerance distribution included in the tolerance condition of each component based on the maximum displacement amount indicated by the deformation information of each component.
 このように、設計支援装置1は、部品等の荷重による変形の最悪値(最大変位量)に合わせて各部品の公差分布をシフトすることで、部品等が最大に歪むケースを想定した公差解析を行うことができる。このような交差解析により、実際の製品組立等の製造工程では、各部品が荷重等で大きく歪むような場合でも、設計上の公差と実測値との間で乖離が発生するようなトラブルを低減することができる。 In this way, the design support device 1 shifts the tolerance distribution of each component according to the worst value (maximum displacement amount) of deformation due to the load of the component or the like, so that the tolerance analysis assumes a case where the component or the like is distorted to the maximum. It can be performed. By such cross-analysis, in the manufacturing process such as actual product assembly, even if each part is greatly distorted due to a load or the like, troubles such as a discrepancy between the design tolerance and the measured value are reduced. can do.
 また、公差解析部20は、各部品の変形情報が示す最大変位量に基づく正規分布を仮定する。次いで、連携部40は、仮定した正規分布の平均および標準偏差に基づいて各部品における公差条件に含まれる公差分布の平均および標準偏差を補正する。 Further, the tolerance analysis unit 20 assumes a normal distribution based on the maximum displacement amount indicated by the deformation information of each part. Next, the cooperation unit 40 corrects the average and standard deviation of the tolerance distribution included in the tolerance condition of each component based on the assumed average and standard deviation of the normal distribution.
 部品等の荷重による各部品の変形にはバラツキがあり、このバラツキ具合は正規分布に沿ったものとなる。したがって、設計支援装置1は、各部品の変形情報が示す最大変位量に基づく正規分布(例えば中間値を(最大変位量)/2とする)を仮定し、この正規分布に応じて各部品の公差分布を補正することで、各部品における変位のバラツキを加味した補正を行うことができる。 There are variations in the deformation of each part due to the load of the parts, etc., and the degree of this variation follows the normal distribution. Therefore, the design support device 1 assumes a normal distribution based on the maximum displacement amount indicated by the deformation information of each part (for example, the intermediate value is (maximum displacement amount) / 2), and the design support device 1 assumes a normal distribution of each part according to this normal distribution. By correcting the tolerance distribution, it is possible to make corrections that take into account the variation in displacement of each component.
[その他]
 上記の実施形態で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、任意に変更することができる。また、上記の実施形態で説明した具体例、分布、数値などは、あくまで一例であり、任意に変更することができる。
[Other]
The processing procedure, control procedure, specific name, and information including various data and parameters shown in the above embodiment can be arbitrarily changed. In addition, the specific examples, distributions, numerical values, and the like described in the above embodiments are merely examples and can be arbitrarily changed.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPU(Central Processing Unit)および当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウエアとして実現され得る。 Further, each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution and integration of each device is not limited to the one shown in the figure. That is, all or a part thereof can be functionally or physically distributed / integrated in any unit according to various loads, usage conditions, and the like. Further, each processing function performed by each device is realized by a CPU (Central Processing Unit) and a program that is analyzed and executed by the CPU, or hardware by wired logic. Can be realized as.
 例えば、設計支援装置1で行われる各種処理機能は、CPU(またはMPU、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部または任意の一部を実行するようにしてもよい。また、各種処理機能は、CPU(またはMPU、MCU等のマイクロ・コンピュータ)で解析実行されるプログラム上、またはワイヤードロジックによるハードウエア上で、その全部または任意の一部を実行するようにしてもよいことは言うまでもない。また、設計支援装置1で行われる各種処理機能は、クラウドコンピューティングにより、複数のコンピュータが協働して実行してもよい。 For example, the various processing functions performed by the design support device 1 may be executed in whole or in any part on the CPU (or a microcomputer such as an MPU or MCU (Micro Controller Unit)). Further, various processing functions may be executed in whole or in any part on a program analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or on hardware by wired logic. Needless to say, it's good. Further, various processing functions performed by the design support device 1 may be executed by a plurality of computers in cooperation by cloud computing.
 ところで、上記の実施形態で説明した各種の処理は、予め用意されたプログラムをコンピュータで実行することで実現できる。そこで、以下では、上記の実施形態と同様の機能を有するプログラムを実行するコンピュータの一例を説明する。図17は、設計支援プログラムを実行するコンピュータの一例を示すブロック図である。 By the way, various processes described in the above embodiment can be realized by executing a program prepared in advance on a computer. Therefore, an example of a computer that executes a program having the same function as that of the above embodiment will be described below. FIG. 17 is a block diagram showing an example of a computer that executes a design support program.
 図17に示すように、コンピュータ200は、各種演算処理を実行するCPU201と、データ入力を受け付ける入力装置202と、モニタ203とを有する。また、コンピュータ200は、記憶媒体からプログラム等を読み取る媒体読取装置204と、各種装置と接続するためのインタフェース装置205と、他の情報処理装置等と有線または無線により接続するための通信装置206とを有する。また、コンピュータ200は、各種情報を一時記憶するRAM207と、ハードディスク装置208とを有する。また、各装置201~208は、バス209に接続される。 As shown in FIG. 17, the computer 200 has a CPU 201 that executes various arithmetic processes, an input device 202 that accepts data input, and a monitor 203. Further, the computer 200 includes a medium reading device 204 for reading a program or the like from a storage medium, an interface device 205 for connecting to various devices, and a communication device 206 for connecting to another information processing device or the like by wire or wirelessly. Has. Further, the computer 200 has a RAM 207 that temporarily stores various information and a hard disk device 208. Further, each of the devices 201 to 208 is connected to the bus 209.
 ハードディスク装置208には、図1に示した入力部10、公差解析部20、構造解析部30、連携部40および出力部50の各処理部と同様の機能を実現するための設計支援プログラム208Aが記憶される。また、ハードディスク装置208には、入力部10、公差解析部20、構造解析部30、連携部40および出力部50に関連する各種データ(例えば3D-CADモデル11など)が記憶される。入力装置202は、例えば、コンピュータ200の利用者から操作情報等の各種情報の入力を受け付ける。モニタ203は、例えば、コンピュータ200の利用者に対して表示画面等の各種画面を表示する。インタフェース装置205は、例えば印刷装置等が接続される。通信装置206は、図示しないネットワークと接続され、他の情報処理装置と各種情報をやりとりする。 The hard disk device 208 includes a design support program 208A for realizing the same functions as the processing units of the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50 shown in FIG. Be remembered. Further, the hard disk device 208 stores various data (for example, 3D-CAD model 11) related to the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50. The input device 202 receives, for example, input of various information such as operation information from the user of the computer 200. The monitor 203 displays various screens such as a display screen for the user of the computer 200, for example. For example, a printing device or the like is connected to the interface device 205. The communication device 206 is connected to a network (not shown) and exchanges various information with other information processing devices.
 CPU201は、ハードディスク装置208に記憶された設計支援プログラム208Aを読み出して、RAM207に展開して実行することで、設計支援装置1の各機能を実行するプロセスを動作させる。すなわち、このプロセスは、設計支援装置1が有する各処理部と同様の機能を実行する。具体的には、CPU201は、入力部10、公差解析部20、構造解析部30、連携部40および出力部50と同様の機能を実現するための設計支援プログラム208Aをハードディスク装置208から読み出す。そして、CPU201は、入力部10、公差解析部20、構造解析部30、連携部40および出力部50と同様の処理を実行するプロセスを実行する。 The CPU 201 reads the design support program 208A stored in the hard disk device 208, expands it into the RAM 207, and executes it to operate the process of executing each function of the design support device 1. That is, this process executes the same function as each processing unit of the design support device 1. Specifically, the CPU 201 reads the design support program 208A for realizing the same functions as the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50 from the hard disk device 208. Then, the CPU 201 executes a process of executing the same processing as the input unit 10, the tolerance analysis unit 20, the structural analysis unit 30, the cooperation unit 40, and the output unit 50.
 なお、上記の設計支援プログラム208Aは、ハードディスク装置208に記憶されていなくてもよい。例えば、コンピュータ200が読み取り可能な記憶媒体に記憶された設計支援プログラム208Aを、コンピュータ200が読み出して実行するようにしてもよい。コンピュータ200が読み取り可能な記憶媒体は、例えば、CD-ROMやDVD(Digital Versatile Disc)、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN等に接続された装置に設計支援プログラム208Aを記憶させておき、コンピュータ200がこれらから設計支援プログラム208Aを読み出して実行するようにしてもよい。 The above design support program 208A does not have to be stored in the hard disk device 208. For example, the computer 200 may read and execute the design support program 208A stored in a storage medium that can be read by the computer 200. The storage medium that can be read by the computer 200 is, for example, a portable recording medium such as a CD-ROM, a DVD (Digital Versatile Disc), or a USB (Universal Serial Bus) memory, a semiconductor memory such as a flash memory, a hard disk drive, or the like. .. Further, the design support program 208A may be stored in a device connected to a public line, the Internet, a LAN, or the like, and the computer 200 may read the design support program 208A from these and execute the design support program 208A.
1…設計支援装置
10…入力部
11…3D-CADモデル
20…公差解析部
30…構造解析部
40…連携部
50…出力部
61…属性情報
62…属性情報
71~73…ケース
81…材料定義
82…荷重・拘束条件定義
90…構造解析データ
91…節点定義ブロック
92…要素定義ブロック
93…材料物性定義ブロック
94…変位拘束条件ブロック
101…設定画面
102…設定ウインドウ
110~112…グラフ
120…結果出力画面
121、122…公差情報
130、130a…公差分布
200…コンピュータ
201…CPU
202…入力装置
203…モニタ
204…媒体読取装置
205…インタフェース装置
206…通信装置
207…RAM
208…ハードディスク装置
208A…設計支援プログラム
209…バス
A、A1、B、B1、C…部品
F…荷重
H…変位拘束
K…基準座標
1 ... Design support device 10 ... Input unit 11 ... 3D-CAD model 20 ... Tolerance analysis unit 30 ... Structural analysis unit 40 ... Coordination unit 50 ... Output unit 61 ... Attribute information 62 ... Attribute information 71 to 73 ... Case 81 ... Material definition 82 ... Load / tolerance condition definition 90 ... Structural analysis data 91 ... Nodal definition block 92 ... Element definition block 93 ... Material property definition block 94 ... Displacement constraint condition block 101 ... Setting screen 102 ... Setting windows 110 to 112 ... Graph 120 ... Result Output screens 121, 122 ... Tolerance information 130, 130a ... Tolerance distribution 200 ... Computer 201 ... CPU
202 ... Input device 203 ... Monitor 204 ... Media reader 205 ... Interface device 206 ... Communication device 207 ... RAM
208 ... Hard disk device 208A ... Design support program 209 ... Bus A, A1, B, B1, C ... Part F ... Load H ... Displacement constraint K ... Reference coordinates

Claims (15)

  1.  製品に組み合わせる各部品の少なくとも荷重を含む条件設定に基づく構造解析により前記各部品の変位および変形を示す変形情報を取得し、
     取得した前記各部品の変形情報に基づき、前記各部品の寸法公差を含む公差情報を補正し、
     補正した前記公差情報を出力する、
     処理をコンピュータに実行させることを特徴とする設計支援プログラム。
    Deformation information indicating the displacement and deformation of each part is acquired by structural analysis based on the condition setting including at least the load of each part to be combined with the product.
    Based on the acquired deformation information of each part, the tolerance information including the dimensional tolerance of each part is corrected.
    Output the corrected tolerance information,
    A design support program characterized by having a computer execute processing.
  2.  前記各部品の公差情報は、前記各部品の公差分布を更に含み、
     前記補正する処理は、前記各部品の公差分布を更に補正する、
     ことを特徴とする請求項1に記載の設計支援プログラム。
    The tolerance information of each part further includes the tolerance distribution of each part.
    The correction process further corrects the tolerance distribution of each component.
    The design support program according to claim 1.
  3.  補正した前記各部品の公差情報に基づいて製品の公差解析を行い、公差解析の結果を出力する処理をさらにコンピュータに実行させる、
     ことを特徴とする請求項1に記載の設計支援プログラム。
    A product tolerance analysis is performed based on the corrected tolerance information of each part, and a computer is further executed to output the result of the tolerance analysis.
    The design support program according to claim 1.
  4.  前記補正する処理は、前記各部品の変形情報が示す最大変位量に基づいて前記各部品の公差分布をシフトする、
     ことを特徴とする請求項1に記載の設計支援プログラム。
    The correction process shifts the tolerance distribution of each part based on the maximum displacement amount indicated by the deformation information of each part.
    The design support program according to claim 1.
  5.  前記補正する処理は、前記各部品の変形情報が示す最大変位量に基づく正規分布を仮定し、当該正規分布の平均および標準偏差に基づいて前記各部品の公差分布の平均および標準偏差を補正する、
     ことを特徴とする請求項1に記載の設計支援プログラム。
    The correction process assumes a normal distribution based on the maximum displacement indicated by the deformation information of each part, and corrects the average and standard deviation of the tolerance distribution of each part based on the average and standard deviation of the normal distribution. ,
    The design support program according to claim 1.
  6.  製品に組み合わせる各部品の少なくとも荷重を含む条件設定に基づく構造解析により前記各部品の変位および変形を示す変形情報を取得し、
     取得した前記各部品の変形情報に基づき、前記各部品の寸法公差を含む公差情報を補正し、
     補正した前記公差情報を出力する、
     処理をコンピュータが実行することを特徴とする設計支援方法。
    Deformation information indicating the displacement and deformation of each part is acquired by structural analysis based on the condition setting including at least the load of each part to be combined with the product.
    Based on the acquired deformation information of each part, the tolerance information including the dimensional tolerance of each part is corrected.
    Output the corrected tolerance information,
    A design support method characterized in that a computer executes processing.
  7.  前記各部品の公差情報は、前記各部品の公差分布を更に含み、
     前記補正する処理は、前記各部品の公差分布を更に補正する、
     ことを特徴とする請求項6に記載の設計支援方法。
    The tolerance information of each part further includes the tolerance distribution of each part.
    The correction process further corrects the tolerance distribution of each component.
    The design support method according to claim 6, wherein the design support method is characterized in that.
  8.  補正した前記各部品の公差情報に基づいて製品の公差解析を行い、公差解析の結果を出力する処理をさらにコンピュータに実行させる、
     ことを特徴とする請求項6に記載の設計支援方法。
    A product tolerance analysis is performed based on the corrected tolerance information of each part, and a computer is further executed to output the result of the tolerance analysis.
    The design support method according to claim 6, wherein the design support method is characterized in that.
  9.  前記補正する処理は、前記各部品の変形情報が示す最大変位量に基づいて前記各部品の公差分布をシフトする、
     ことを特徴とする請求項6に記載の設計支援方法。
    The correction process shifts the tolerance distribution of each part based on the maximum displacement amount indicated by the deformation information of each part.
    The design support method according to claim 6, wherein the design support method is characterized in that.
  10.  前記補正する処理は、前記各部品の変形情報が示す最大変位量に基づく正規分布を仮定し、当該正規分布の平均および標準偏差に基づいて前記各部品の公差分布の平均および標準偏差を補正する、
     ことを特徴とする請求項6に記載の設計支援方法。
    The correction process assumes a normal distribution based on the maximum displacement indicated by the deformation information of each part, and corrects the average and standard deviation of the tolerance distribution of each part based on the average and standard deviation of the normal distribution. ,
    The design support method according to claim 6, wherein the design support method is characterized in that.
  11.  製品に組み合わせる各部品の少なくとも荷重を含む条件設定に基づく構造解析により前記各部品の変位および変形を示す変形情報を取得する構造解析部と、
     取得した前記各部品の変形情報に基づき、前記各部品の寸法公差を含む公差情報を補正する公差解析部と、
     補正した前記公差情報を出力する出力部と、
     を有することを特徴とする設計支援装置。
    A structural analysis unit that acquires deformation information indicating the displacement and deformation of each part by structural analysis based on the condition setting including at least the load of each part to be combined with the product.
    A tolerance analysis unit that corrects tolerance information including dimensional tolerances of each component based on the acquired deformation information of each component.
    An output unit that outputs the corrected tolerance information and
    A design support device characterized by having.
  12.  前記各部品の公差情報は、前記各部品の公差分布を更に含み、
     前記公差解析部は、前記各部品の公差分布を更に補正する、
     ことを特徴とする請求項11に記載の設計支援装置。
    The tolerance information of each part further includes the tolerance distribution of each part.
    The tolerance analysis unit further corrects the tolerance distribution of each component.
    The design support device according to claim 11.
  13.  前記公差解析部は、補正した前記各部品の公差情報に基づいて製品の公差解析を行い、
     前記出力部は、前記製品の公差解析の結果を出力する、
     ことを特徴とする請求項11に記載の設計支援装置。
    The tolerance analysis unit analyzes the tolerance of the product based on the corrected tolerance information of each part.
    The output unit outputs the result of the tolerance analysis of the product.
    The design support device according to claim 11.
  14.  前記公差解析部は、前記各部品の変形情報が示す最大変位量に基づいて前記各部品の公差分布をシフトする、
     ことを特徴とする請求項11に記載の設計支援装置。
    The tolerance analysis unit shifts the tolerance distribution of each component based on the maximum displacement amount indicated by the deformation information of each component.
    The design support device according to claim 11.
  15.  前記公差解析部は、前記各部品の変形情報が示す最大変位量に基づく正規分布を仮定し、当該正規分布の平均および標準偏差に基づいて前記各部品の公差分布の平均および標準偏差を補正する、
     ことを特徴とする請求項11に記載の設計支援装置。
    The tolerance analysis unit assumes a normal distribution based on the maximum displacement indicated by the deformation information of each part, and corrects the average and standard deviation of the tolerance distribution of each part based on the average and standard deviation of the normal distribution. ,
    The design support device according to claim 11.
PCT/JP2019/043763 2019-11-07 2019-11-07 Design assistance program, design assistance method, and design assistance device WO2021090455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043763 WO2021090455A1 (en) 2019-11-07 2019-11-07 Design assistance program, design assistance method, and design assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043763 WO2021090455A1 (en) 2019-11-07 2019-11-07 Design assistance program, design assistance method, and design assistance device

Publications (1)

Publication Number Publication Date
WO2021090455A1 true WO2021090455A1 (en) 2021-05-14

Family

ID=75848253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043763 WO2021090455A1 (en) 2019-11-07 2019-11-07 Design assistance program, design assistance method, and design assistance device

Country Status (1)

Country Link
WO (1) WO2021090455A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233592A (en) * 1991-11-18 1993-09-10 Internatl Business Mach Corp <Ibm> Monte carlo simulation designing method
JP2008204059A (en) * 2007-02-19 2008-09-04 Nissan Motor Co Ltd Workpiece deformation computing device and workpiece deformation computing method
CN107688671A (en) * 2016-08-03 2018-02-13 北京机电工程研究所 The method for facing the line error of perpendicularity for extracting valve partses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233592A (en) * 1991-11-18 1993-09-10 Internatl Business Mach Corp <Ibm> Monte carlo simulation designing method
JP2008204059A (en) * 2007-02-19 2008-09-04 Nissan Motor Co Ltd Workpiece deformation computing device and workpiece deformation computing method
CN107688671A (en) * 2016-08-03 2018-02-13 北京机电工程研究所 The method for facing the line error of perpendicularity for extracting valve partses

Similar Documents

Publication Publication Date Title
JP7222803B2 (en) Trajectory planning device, trajectory planning method and program
Garaigordobil et al. Overhang constraint for topology optimization of self-supported compliant mechanisms considering additive manufacturing
US20200043231A1 (en) Method for constructing three-dimensional solid model with geometric error and computer-readable storage medium
US6618694B1 (en) Method, apparatus and computer program product for forming data to be analyzed by finite element method and calculation method based on finite element method
Kim et al. A new technique for optimum cutting pattern generation of membrane structures
Ibrahimbegovic et al. Thick shell and solid finite elements with independent rotation fields
US20060139348A1 (en) Method for approximating and displaying three-dimensional cad data, and method thereof
JP2019070597A (en) Fluid simulation program, fluid simulation method and fluid simulation device
WO2021090455A1 (en) Design assistance program, design assistance method, and design assistance device
US11017133B2 (en) Methods and systems for manufacturing products/parts made of carbon fiber reinforced composite based on numerical simulations
JP2008287520A (en) Analysis method, program, recording medium and analysis device
CN109906472B (en) System and method for cell quality improvement in three-dimensional quadrilateral dominant surface grid
US11403445B2 (en) Methods and systems for manufacturing products/parts made of carbon fiber reinforced composite based on numerical simulations
JP4526596B2 (en) Signal delay evaluation program, signal delay evaluation method, and signal delay evaluation apparatus
JP6876640B2 (en) Contact judgment device and contact judgment method for CAE analysis
JP5888013B2 (en) Neural network design method, program, and digital analog fitting method
US20170004237A1 (en) Simulation method and simulation apparatus
JP4532143B2 (en) Plate material forming simulation and press forming method
JP2000331063A (en) Analyzer for finite element structure
JP2570954B2 (en) Straight line shape judgment method at the time of three-dimensional spline dimension conversion
JP2013097684A (en) Analysis model generation method
US7702494B1 (en) Method and system for prescribing rigid body orientations in finite element analysis
JP6438251B2 (en) Calculation method, program, information processing apparatus, and measurement apparatus
CN102065788B (en) Create the system describing artificial tooth parts data record, artificial tooth parts manufacturing system and method
KR101927844B1 (en) Apparatus and method for analysing deflection of beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP