JP2005267028A - Plate forming simulation and press forming method - Google Patents

Plate forming simulation and press forming method Download PDF

Info

Publication number
JP2005267028A
JP2005267028A JP2004076184A JP2004076184A JP2005267028A JP 2005267028 A JP2005267028 A JP 2005267028A JP 2004076184 A JP2004076184 A JP 2004076184A JP 2004076184 A JP2004076184 A JP 2004076184A JP 2005267028 A JP2005267028 A JP 2005267028A
Authority
JP
Japan
Prior art keywords
shell element
node
plate material
nodes
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004076184A
Other languages
Japanese (ja)
Other versions
JP4532143B2 (en
Inventor
Kouichi Ito
耿一 伊藤
Koichi Kazama
宏一 風間
Yasutomo Nagai
康友 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2004076184A priority Critical patent/JP4532143B2/en
Publication of JP2005267028A publication Critical patent/JP2005267028A/en
Application granted granted Critical
Publication of JP4532143B2 publication Critical patent/JP4532143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately find strain and stress in a thickness direction of a plate. <P>SOLUTION: In this plate forming simulation simulating bending deformation of the plate on the basis of a finite element method using a square shell element e, the plate is defined by the shell element e of six nodes wherein nodes n5, n6 of the centers of upper and lower faces are added to nodes n1-n4 of four corners of the shell element e, and displacement of the respective nodes n1-n6 is calculated on the basis of the shell element e. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シェル要素を用いた有限要素法に基づく板材成形シミュレーション及びプレス成形方法に関する。   The present invention relates to a plate forming simulation and a press forming method based on a finite element method using shell elements.

近年、板材のプレス成形分野において、有限要素法に基づく板材成形シミュレーションが普及してきた。有限要素法とは、解析対象となる板材を幾つかの要素に分割して考え、要素毎に方程式を作り、それを元に解析対象全体の方程式(全体方程式)を組み立てて解く解法である。   In recent years, plate material forming simulation based on the finite element method has been widely used in the press forming field of plate materials. The finite element method is a solution method in which a plate material to be analyzed is divided into several elements, an equation is created for each element, and an equation (overall equation) for the entire analysis object is assembled and solved.

現在、板材成形シミュレーションにおいて広く利用されているシェル要素としては、Mindlin-Reissnerの仮定を用いたものが知られている(非特許文献1等参照)。このシェル要素は、板材の厚さ方向の応力分布を常に一定とした平面応力状態を仮定している。   At present, as a shell element widely used in plate material forming simulation, one using Mindlin-Reissner's assumption is known (see Non-Patent Document 1, etc.). This shell element assumes a plane stress state in which the stress distribution in the thickness direction of the plate material is always constant.

O.C.ツェンキビッツ他、マトリックス有限要素法、科学技術出版社、1998年1月O. C. Zenkibitz et al., Matrix Finite Element Method, Science and Technology Publishers, January 1998

従来の板材成形シミュレーションでは、板材の厚さ方向の応力を常に「ゼロ」と仮定したシェル要素を用いているため、厚さ方向のひずみ及び応力を求めることはできない。従って、板厚方向の応力を無視した状態でのシミュレーションを行うため、応力精度に敏感なスプリングバック変形予測の精度を悪化させていた。   In the conventional plate material forming simulation, the shell element in which the stress in the thickness direction of the plate material is always assumed to be “zero” is used, and therefore strain and stress in the thickness direction cannot be obtained. Therefore, since the simulation is performed in a state where the stress in the thickness direction is ignored, the accuracy of the springback deformation prediction sensitive to the stress accuracy is deteriorated.

また、従来の板材成形シミュレーションでは、厚さ方向に節点及び要素が一層しか存在しないシェル要素を用いているため、シェル要素の上下面に異なる境界条件を与えることができない。従って、板材の下面を拘束して、板材の上面に荷重を加えるような曲げ変形をシミュレートすることができなかった。   Further, in the conventional plate material forming simulation, since a shell element having only one node and an element in the thickness direction is used, different boundary conditions cannot be given to the upper and lower surfaces of the shell element. Therefore, it has been impossible to simulate bending deformation that restrains the lower surface of the plate material and applies a load to the upper surface of the plate material.

ところで、板材成形シミュレーションに、シェル要素に代えて、ソリッド要素を用いれば、厚さ方向のひずみ及び応力を求めること、及びソリッド要素の上下面に異なる境界条件を与えることができるが、計算時間がシェル要素を用いた場合の数倍になってしまう。そのため、計算時間の制約から、板材成形シミュレーションにソリッド要素を用いることはほとんどない。   By the way, if the solid element is used instead of the shell element in the plate material forming simulation, the strain and stress in the thickness direction can be obtained and different boundary conditions can be given to the upper and lower surfaces of the solid element. This is several times higher than when shell elements are used. For this reason, solid elements are rarely used for plate material forming simulation due to the limitation of calculation time.

そこで、本発明の目的は、板材の厚さ方向のひずみ及び応力を精確に求めることができる、シェル要素を用いた有限要素法に基づく板材成形シミュレーション及びプレス成形方法を提供することにある。   Accordingly, an object of the present invention is to provide a plate material forming simulation and a press forming method based on a finite element method using a shell element, which can accurately determine the strain and stress in the thickness direction of the plate material.

上記目的を達成するために、請求項1の発明は、四角形のシェル要素を用いた有限要素法に基づいて板材の曲げ変形をシミュレートする板材成形シミュレーションにおいて、上記板材をシェル要素の四隅の節点に、上下面中央の節点を加えた六節点のシェル要素で定義し、該シェル要素に基づいて各節点の変位を算出することを特徴とする板材成形シミュレーションである。   In order to achieve the above object, the invention of claim 1 is a plate material forming simulation for simulating bending deformation of a plate material based on a finite element method using a square shell element. In addition, the present invention is a plate material forming simulation characterized in that it is defined by a six-node shell element including a node at the center of the upper and lower surfaces and the displacement of each node is calculated based on the shell element.

請求項2の発明は、四角形のシェル要素を用いた有限要素法に基づいて板材の曲げ変形をシミュレートする板材成形シミュレーションにおいて、上記板材をシェル要素の四隅の第一の節点に、上下面中央の第二の節点を加えた六節点のシェル要素で定義し、該シェル要素に基づいて各節点の変位を算出すると共に、第二の節点のひずみ及び応力を求め、その求めたひずみ及び応力から上記板材の曲げ変形に基づくスプリングバック量を算出することを特徴とする板材成形シミュレーションである。   According to a second aspect of the present invention, in the plate material forming simulation for simulating the bending deformation of the plate material based on the finite element method using a quadrangular shell element, the plate material is set at the first node at the four corners of the shell element, The 6-node shell element including the second node is defined, the displacement of each node is calculated based on the shell element, the strain and stress of the second node are obtained, and the obtained strain and stress are calculated from the obtained strain and stress. It is a board | plate material shaping | molding simulation characterized by calculating the springback amount based on the bending deformation of the said board | plate material.

請求項3の発明は、成形すべき板材の形状データをコンピュータに入力すると共に、これを有限要素法に基づく四角形のシェル要素の四隅の節点に、上下面中央の節点を加えた六節点のシェル要素で定義し、上記板材をプレス成形したときのスプリングバック量を求め、該スプリングバック量を考慮して上記板材をプレス成形することを特徴とするプレス成形方法である。   The invention of claim 3 inputs the shape data of the plate material to be formed into a computer, and adds this to the nodes of the four corners of the quadrangular shell element based on the finite element method, and adds a node at the center of the upper and lower surfaces to the six-node shell. This is a press molding method characterized in that the spring back amount when the plate material is press-molded is determined by elements, and the plate material is press-molded in consideration of the spring back amount.

本発明によれば、板材の厚さ方向のひずみ及び応力を精確に求めることができるという優れた効果を奏する。   According to the present invention, there is an excellent effect that the strain and stress in the thickness direction of the plate material can be accurately obtained.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、図1を用いて、本実施の形態において用いるシェル要素について説明する。   First, shell elements used in the present embodiment will be described with reference to FIG.

図1は、本実施の形態に用いるシェル要素の概略図である。図1において、図中の横方向をx方向、図中の斜め方向をy方向、図中の上方向をz方向(板材の厚さ方向)とそれぞれ定義する。   FIG. 1 is a schematic view of a shell element used in the present embodiment. In FIG. 1, the horizontal direction in the figure is defined as the x direction, the diagonal direction in the figure is defined as the y direction, and the upward direction in the figure is defined as the z direction (thickness direction of the plate material).

図1に示すように、本実施の形態に用いるシェル要素eは、四角形の平面要素である。このシェル要素eのx方向の長さ、y方向の長さ、及びz方向の長さは、それぞれL1、L2、及びtであるとする。   As shown in FIG. 1, the shell element e used in the present embodiment is a square planar element. It is assumed that the length in the x direction, the length in the y direction, and the length in the z direction of the shell element e are L1, L2, and t, respectively.

シェル要素eの各隅には、四つの第一の節点n1〜n4が配置されている。シェル要素eの上下面中央には、二つの第二の節点n5、n6が配置されている。第二の節点n5は、解析対象となる板材の下面に相当する。第二の節点n6は、解析対象となる板材の上面に相当する。   Four first nodes n1 to n4 are arranged at each corner of the shell element e. Two second nodes n5 and n6 are arranged at the center of the upper and lower surfaces of the shell element e. The second node n5 corresponds to the lower surface of the plate material to be analyzed. The second node n6 corresponds to the upper surface of the plate material to be analyzed.

シェル要素eの形状関数を数1〜数3に示す。   The shape functions of the shell element e are shown in Equations 1 to 3.

Figure 2005267028
Figure 2005267028

Figure 2005267028
Figure 2005267028

Figure 2005267028
Figure 2005267028

数1〜数3において、u、v及びwは、それぞれx、y、及びz方向の変位である。θx及びθyは、それぞれx軸、及びy軸回りの回転角度である。また、これらの記号に付された下付数字は、各節点n1〜n6の番号と対応している(例えば、u1は、第一の節点n1のx方向の変位である)。ξ、η、及びζは、それぞれx、y、及びz方向に対応した、局所座標系により表される座標を示す。 In Equations 1 to 3, u, v, and w are displacements in the x, y, and z directions, respectively. θ x and θ y are rotation angles around the x axis and the y axis, respectively. Further, the number subscript attached to these symbols, which correspond to the numbers of each node n1 to n6 (e.g., u 1 is the displacement in the x direction of the first node n1). ξ, η, and ζ indicate coordinates represented by the local coordinate system corresponding to the x, y, and z directions, respectively.

数1〜数3に示すように、節点n1〜n4は、x、y、z方向の変位、及びx軸、y軸回りの回転角度が定義されている。これら節点n1〜n4は、背景技術の欄で説明した平面応力状態を仮定している。また、節点n5、n6は、それぞれ、z方向(板材の厚さ方向)の変位のみが定義された一自由度の節点である。   As shown in Equations 1 to 3, the nodes n1 to n4 define displacements in the x, y, and z directions and rotation angles around the x and y axes. These nodes n1 to n4 assume the plane stress state described in the background art section. The nodes n5 and n6 are nodes having one degree of freedom in which only displacement in the z direction (the thickness direction of the plate material) is defined.

つまり、本実施の形態に用いるシェル要素eは、四角形のシェル要素eの四隅の第一の節点n1〜n4に、上下面中央の第二の節点n5、n6を加えた六節点のシェル要素eである。   That is, the shell element e used in the present embodiment is a six-node shell element e obtained by adding the second nodes n5 and n6 at the center of the upper and lower surfaces to the first nodes n1 to n4 at the four corners of the square shell element e. It is.

ここで、シェル要素eに、z方向(板材の厚さ方向)の変位が定義された第二の節点n5、n6を、板材の上下面に相当する位置にそれぞれ配置している。そのため、シェル要素eの上下面に異なる境界条件を与えることができると共に、第二の節点n5、n6の変位に基づいて、厚さ方向のひずみ及び応力を求めることができる。   Here, in the shell element e, second nodes n5 and n6 in which displacement in the z direction (thickness direction of the plate material) is defined are respectively arranged at positions corresponding to the upper and lower surfaces of the plate material. Therefore, different boundary conditions can be given to the upper and lower surfaces of the shell element e, and strain and stress in the thickness direction can be obtained based on the displacement of the second nodes n5 and n6.

また、シェル要素eは、従来のシェル要素に、一節点につき一自由度を有する節点(n5、n6)を二個加えたものである。そのため、従来のシェル要素に比べて計算時間が若干増加する程度であると共に、ソリッド要素に比べて計算時間が短いことを維持できる。   The shell element e is obtained by adding two nodes (n5, n6) each having one degree of freedom to a conventional shell element. Therefore, the calculation time is slightly increased as compared with the conventional shell element, and the calculation time can be maintained shorter than that of the solid element.

次に、数4及び数5に、シェル要素eの応力を定義する。   Next, the stress of the shell element e is defined in Equations 4 and 5.

Figure 2005267028
Figure 2005267028

Figure 2005267028
Figure 2005267028

数4において、σxx、σyy、及びσzzは、それぞれ、シェル要素e内のx、y、及びz方向の垂直応力である。σxy、σyz、及びσxzは、それぞれ、xy平面、yz平面、及びxz平面のせん断応力である。 In Equation 4, σ xx , σ yy , and σ zz are vertical stresses in the x, y, and z directions in the shell element e, respectively. σ xy , σ yz , and σ xz are shear stresses in the xy plane, the yz plane, and the xz plane, respectively.

従来のシェル要素では、z方向の垂直応力σzzを、常にゼロと仮定していた。本実施の形態の一例として、z方向の垂直応力σzzを、数5のように定義した。数5において、Pは、各節点n1〜n6に付与する荷重を示す。 In the conventional shell element, the normal stress σ zz in the z direction is always assumed to be zero. As an example of the present embodiment, the vertical stress σ zz in the z direction is defined as in Equation 5. In Formula 5, P shows the load provided to each node n1-n6.

これら数1〜数5を、予めコンピュータの記録媒体に記憶させておく。また、有限要素法に基づく板材成形シミュレーションに用いる数1〜数5以外の関数(剛性関数等)は、従来と同様のものが使用可能であるので、説明を省略する。これらもコンピュータの記憶媒体に予め記憶させておく。   These numbers 1 to 5 are stored in advance in a computer recording medium. Moreover, since functions (rigidity functions, etc.) other than Equations (1) to (5) used in the plate material forming simulation based on the finite element method can be used, explanations thereof will be omitted. These are also stored in advance in a computer storage medium.

次に、図2を用いて、本実施の形態の板材成形シミュレーションの手順について説明する。   Next, the procedure of the plate material forming simulation according to the present embodiment will be described with reference to FIG.

まず、ステップS1において、コンピュータに解析対象となる板材の形状データ(板材の大きさ)、板材の物性値(ヤング率、ポアソン比等)、及び解析モデルの定義に使用するシェル要素eの数(分割数)等を入力する。次に、ステップS2において、板材の形状データ等に基づいて、解析モデルをシェル要素eで定義する。つまり、シェル要素eの形状関数を元に全体方程式を構築する。   First, in step S1, the shape data (size of the plate material) of the plate material to be analyzed by the computer, the physical property values of the plate material (Young's modulus, Poisson's ratio, etc.), and the number of shell elements e used to define the analysis model ( Enter the number of divisions). Next, in step S2, an analysis model is defined by the shell element e based on the shape data of the plate material. That is, an overall equation is constructed based on the shape function of the shell element e.

その後、ステップS3において、コンピュータに境界条件及び荷重条件等を入力する。次に、ステップS4において、全体方程式を解くことにより、各節点n1〜n6の変位を算出すると共に、ステップS5において、第二の節点n5、n6のひずみ及び応力を求め、その求めた第二の節点n5、n6のひずみ及び応力から、板材の曲げ変形に基づくスプリングバック量を算出する。そして、ステップS6において、ステップ5で求めたスプリングバック量を出力する。   Thereafter, in step S3, boundary conditions and load conditions are input to the computer. Next, in step S4, the displacement of each of the nodes n1 to n6 is calculated by solving the whole equation, and in step S5, the strain and stress of the second nodes n5 and n6 are obtained, and the obtained second The springback amount based on the bending deformation of the plate material is calculated from the strain and stress at the nodes n5 and n6. In step S6, the springback amount obtained in step 5 is output.

ここで、本実施の形態では、ステップS4において算出した各節点n1〜n6の変位に基づいて、境界条件及び荷重条件等を変更して再度シミュレートすることができる。この場合、ステップS2に戻り、ステップS4で算出した変位に基づいて、変形後の全体方程式を構築する。   Here, in this embodiment, based on the displacements of the nodes n1 to n6 calculated in step S4, the boundary condition and the load condition can be changed and simulated again. In this case, the process returns to step S2, and the overall equation after deformation is constructed based on the displacement calculated in step S4.

次に、図3を用いて、本実施の形態の板材成形シミュレーションの一例について説明する。   Next, an example of the plate material forming simulation according to the present embodiment will be described with reference to FIG.

図3(a)は、解析モデルの一例を示す概略図である。図3(b)は、図3(a)の解析モデルを下方へたわませた状態を示す概略図である。   FIG. 3A is a schematic diagram illustrating an example of an analysis model. FIG. 3B is a schematic diagram showing a state where the analysis model of FIG. 3A is bent downward.

まず、図3(a)に示すように、成形すべき板材の解析モデルを、任意数(ここでは、二個)のシェル要素e1、e2で定義する。これらは、図2に示すステップS1「形状データの入力」、及びステップS2「全体方程式の構築」に相当する。ここで、節点m1、m2が板材の一端を構成し、節点m7、m8が板材の他端を構成する。節点m3、m4は、板材の長手方向の中央部を構成する。この節点m3、m4は、シェル要素e1とシェル要素e2とで共有される。また、節点m5、m9は、板材の下面を構成する。節点m6、m10は、板材の上面を構成する。   First, as shown in FIG. 3A, an analysis model of a plate material to be formed is defined by an arbitrary number (here, two) of shell elements e1 and e2. These correspond to step S1 “input shape data” and step S2 “construct whole equation” shown in FIG. Here, the nodes m1 and m2 constitute one end of the plate material, and the nodes m7 and m8 constitute the other end of the plate material. The nodes m3 and m4 constitute a central portion in the longitudinal direction of the plate material. The nodes m3 and m4 are shared by the shell element e1 and the shell element e2. The nodes m5 and m9 constitute the lower surface of the plate material. The nodes m6 and m10 constitute the upper surface of the plate material.

これら二つのシェル要素e1、e2は、図1に示すシェル要素eと同様のものである。シェル要素e1については、節点m1〜m4がシェル要素eの第一の節点n1〜n4、節点m5、m6がシェル要素eの第二の節点n5、n6にそれぞれ相当する。シェル要素e2については、節点m3、m4、m7、m8がシェル要素eの第一の節点n1〜n4、節点m9、m10がシェル要素eの第二の節点n5、n6にそれぞれ相当する。   These two shell elements e1 and e2 are the same as the shell element e shown in FIG. Regarding the shell element e1, the nodes m1 to m4 correspond to the first nodes n1 to n4 of the shell element e, and the nodes m5 and m6 correspond to the second nodes n5 and n6 of the shell element e, respectively. Regarding the shell element e2, the nodes m3, m4, m7, and m8 correspond to the first nodes n1 to n4 of the shell element e, and the nodes m9 and m10 correspond to the second nodes n5 and n6 of the shell element e, respectively.

次に、節点m1、m2、及び節点m7、m8にx、z方向への変位を拘束する境界条件を与えた後、節点m1、m2、及び節点m7、m8に回転増分Aを与え、解析モデルを下方へたわませる。これは、図2に示すステップS3「境界条件の入力」に相当する。回転増分Aの付与は、節点m1、m2、及び節点m7、m8をy軸回りにθ度だけ回転させることによって行われる。   Next, after giving boundary conditions that restrain displacement in the x and z directions to the nodes m1 and m2 and the nodes m7 and m8, the rotation increment A is given to the nodes m1 and m2 and the nodes m7 and m8, and the analysis model Bend down. This corresponds to step S3 “input of boundary conditions” shown in FIG. The addition of the rotation increment A is performed by rotating the nodes m1 and m2 and the nodes m7 and m8 by θ degrees around the y axis.

このときの各節点m1〜m10の変位を算出し、図3(b)に示す解析モデルを構築する。これは、図2に示すステップS4「変位の算出」、及びステップS2「全体方程式の構築」に相当する。   The displacement of each node m1-m10 at this time is calculated, and the analysis model shown in FIG.3 (b) is constructed. This corresponds to Step S4 “Calculation of Displacement” and Step S2 “Construction of Overall Equation” shown in FIG.

次に、図3(b)に示す解析モデルの節点m6、m10にz方向に垂直に荷重Pを付与する。図4に示すものは、板材の下面に相当する節点m5、m9にz方向への変位を拘束する境界条件を与えないものであり、図5に示すものは、板材の下面に相当する節点m5、m9にz方向への変位を拘束する境界条件を与えたものである。   Next, a load P is applied to the nodes m6 and m10 of the analysis model shown in FIG. 4 does not give a boundary condition for restraining displacement in the z direction to the nodes m5 and m9 corresponding to the lower surface of the plate, and FIG. 5 shows the node m5 corresponding to the lower surface of the plate. , M9 is given a boundary condition that restrains displacement in the z direction.

このときの各節点m1〜m10の変位を算出すると共に、第二の節点m5、m6、m9、m10のひずみ及び応力を求める。これは、図2に示すステップS4「変位の算出」に相当する。   While calculating the displacement of each node m1-m10 at this time, the distortion and stress of 2nd node m5, m6, m9, m10 are calculated | required. This corresponds to step S4 “calculation of displacement” shown in FIG.

図6に、図4及び図5の解析モデルにおけるz方向(板材の厚さ方向)の応力分布を示す。図6において、横軸は、z方向の応力σzzを示し、縦軸は、z方向の座標ζを表す。ζ=1のときの応力σzzは、板材の上面、即ち節点m6(m10)の応力を示す。ζ=−1のときの応力σzzは、板材の下面、即ち節点m5(m9)の応力を示す。これらを繋いで、板材の厚さ方向の応力分布とする。 FIG. 6 shows the stress distribution in the z direction (the thickness direction of the plate material) in the analysis models of FIGS. In FIG. 6, the horizontal axis represents the stress σ zz in the z direction, and the vertical axis represents the coordinate ζ in the z direction. The stress σ zz when ζ = 1 indicates the stress of the upper surface of the plate material, that is, the node m6 (m10). The stress σ zz when ζ = −1 indicates the stress of the lower surface of the plate material, that is, the node m5 (m9). These are connected to obtain a stress distribution in the thickness direction of the plate material.

実線r1及び破線r2は、それぞれ、図4の解析モデルの応力分布、及びその理論的な応力分布を示す。実線r3及び破線r4は、それぞれ、図5の解析モデルの応力分布、及びその理論的な応力分布を示す。   A solid line r1 and a broken line r2 indicate the stress distribution of the analytical model in FIG. 4 and the theoretical stress distribution, respectively. A solid line r3 and a broken line r4 indicate the stress distribution of the analytical model in FIG. 5 and the theoretical stress distribution, respectively.

ここで、図6に示すように、算出した応力分布r1、r3と理論的な応力分布r2、r4とでは、それぞれ若干の誤差が生じている。これは、節点m5、m6、m9、m10(シェル要素eの第二の節点n5、n6)がz方向(板材の厚さ方向)の変位のみが定義されているためである。シェル要素eの第二の節点n5、n6に第一の節点n1〜n4と同様の自由度を付与すれば、算出した応力分布r1、r3と理論的な応力分布r2、r4とは完全に一致するが、当然、計算時間が数倍に増加する。   Here, as shown in FIG. 6, there is a slight error between the calculated stress distributions r1 and r3 and the theoretical stress distributions r2 and r4. This is because the nodes m5, m6, m9, and m10 (second nodes n5 and n6 of the shell element e) are defined only in the z direction (the thickness direction of the plate). If the same degrees of freedom as the first nodes n1 to n4 are given to the second nodes n5 and n6 of the shell element e, the calculated stress distributions r1 and r3 and the theoretical stress distributions r2 and r4 are completely the same. However, of course, the calculation time increases several times.

次に、算出した応力分布に基づいて、図5の解析モデルにおけるスプリングバック量の予測をする。   Next, based on the calculated stress distribution, the amount of springback in the analysis model of FIG. 5 is predicted.

図7において、横軸は、荷重Pを示し、横軸は、解析モデルの長手方向端部のy軸回りの回転モーメント(曲げモーメント)M(図5参照)を示す。この曲げモーメントMは、図6で示した応力分布より求めるものとする。   In FIG. 7, the horizontal axis represents the load P, and the horizontal axis represents the rotational moment (bending moment) M (see FIG. 5) around the y-axis of the longitudinal end portion of the analysis model. This bending moment M is obtained from the stress distribution shown in FIG.

図7に示すように、荷重Pが増加すると、解析モデルの長手方向端部の曲げモーメントMが低下している。この曲げモーメントMは、板材成形におけるスプリングバックの原因となり、成形後の板材をスプリングバックさせる。本実施の形態においては、プレス成形時のスプリングバック量を、曲げモーメントMの大きさから予測するものとする。   As shown in FIG. 7, when the load P increases, the bending moment M at the longitudinal end of the analysis model decreases. This bending moment M causes a springback in forming the plate material and causes the formed plate material to spring back. In the present embodiment, the amount of spring back during press molding is predicted from the magnitude of the bending moment M.

本実施の形態のプレス成形方法は、上述の板材成形シミュレーションにより求めたスプリングバック量を考慮して、実際に板材をプレス成形するものである。詳しくは、スプリングバック量を考慮して、成形圧力(荷重)及び金型の形状等を決定するものとする。   The press molding method according to the present embodiment actually press-molds a plate material in consideration of the springback amount obtained by the above-described plate material molding simulation. Specifically, the molding pressure (load), the shape of the mold, and the like are determined in consideration of the amount of springback.

以上、本実施の形態の板材成形シミュレーションは、板材を、従来のシェル要素の上下面中央に節点n5、n6を加えた六節点のシェル要素で定義している。そのため、本実施の形態の板材成形シミュレーションによれば、ソリッド要素を用いることなく、板材の厚さ方向の応力分布を精確に求めることができる。これにより、板材の厚さ方向の応力分布から、板材の曲げ変形に基づくスプリングバック量を予測することができる。   As described above, in the plate material forming simulation of the present embodiment, the plate material is defined by a six-node shell element in which the nodes n5 and n6 are added to the center of the upper and lower surfaces of the conventional shell element. Therefore, according to the plate material forming simulation of the present embodiment, the stress distribution in the thickness direction of the plate material can be accurately obtained without using a solid element. Thereby, the springback amount based on the bending deformation of the plate material can be predicted from the stress distribution in the thickness direction of the plate material.

また、本実施の形態のプレス成形方法は、上述の板材成形シミュレーションにより得られたスプリングバック量を考慮してプレス成形を行う。そのため、本実施の形態のプレス成形方法によれば、スプリングバック量を考慮した板材の変形を予測することができ、従来行っていた「決め押し」等の工程を行う必要がなくなる。これにより、従来に比べて加工時間(成形時間)を大幅に短縮することが可能となる。   Moreover, the press molding method of this Embodiment performs press molding in consideration of the springback amount obtained by the above-described plate material molding simulation. Therefore, according to the press molding method of the present embodiment, it is possible to predict the deformation of the plate material in consideration of the amount of springback, and it is not necessary to perform a process such as “decision pushing” that has been performed conventionally. Thereby, it becomes possible to shorten processing time (molding time) significantly compared with the past.

本実施の形態に用いるシェル要素の概略図である。It is the schematic of the shell element used for this Embodiment. 板材成形シミュレーションのステップ図である。It is a step figure of board material fabrication simulation. (a)は、解析モデルの一例を示す概略図である。(b)は、図3(a)の解析モデルを下方へたわませた状態を示す概略図である。(A) is the schematic which shows an example of an analysis model. (B) is the schematic which shows the state which bent the analysis model of Fig.3 (a) below. 図3(b)の解析モデルに荷重を付加した状態を示す概略図である。It is the schematic which shows the state which added the load to the analysis model of FIG.3 (b). 図3(b)の解析モデルに荷重を付加した状態を示す概略図である。It is the schematic which shows the state which added the load to the analysis model of FIG.3 (b). z方向の応力分布を示すグラフである。It is a graph which shows the stress distribution of az direction. 荷重と解析モデルの長手方向端部の曲げモーメントとの関係を示すグラフである。It is a graph which shows the relationship between a load and the bending moment of the longitudinal direction edge part of an analysis model.

符号の説明Explanation of symbols

e シェル要素
n1、n2、n3、n4 第一の節点
n5、n6 第二の節点
u、v、w 変位
θ 回転角度
σ 応力
P 荷重
M 曲げモーメント
e Shell element n1, n2, n3, n4 First node n5, n6 Second node
u, v, w displacement θ rotation angle σ stress P load M bending moment

Claims (3)

四角形のシェル要素を用いた有限要素法に基づいて板材の曲げ変形をシミュレートする板材成形シミュレーションにおいて、上記板材をシェル要素の四隅の節点に、上下面中央の節点を加えた六節点のシェル要素で定義し、該シェル要素に基づいて各節点の変位を算出することを特徴とする板材成形シミュレーション。   In a plate forming simulation that simulates bending deformation of a plate based on a finite element method using a square shell element, the above-mentioned plate is added to the four corner nodes of the shell element, and the six-node shell element is added at the center of the top and bottom surfaces. A sheet material forming simulation characterized in that the displacement of each node is calculated based on the shell element. 四角形のシェル要素を用いた有限要素法に基づいて板材の曲げ変形をシミュレートする板材成形シミュレーションにおいて、上記板材をシェル要素の四隅の第一の節点に、上下面中央の第二の節点を加えた六節点のシェル要素で定義し、該シェル要素に基づいて各節点の変位を算出すると共に、第二の節点のひずみ及び応力を求め、その求めたひずみ及び応力から上記板材の曲げ変形に基づくスプリングバック量を算出することを特徴とする板材成形シミュレーション。   In the plate forming simulation that simulates the bending deformation of a plate based on the finite element method using a quadrangular shell element, the plate is added to the first node at the four corners of the shell element and the second node at the center of the top and bottom surfaces. The six-node shell element is defined, and the displacement of each node is calculated based on the shell element, and the strain and stress of the second node are obtained. A plate forming simulation characterized by calculating a springback amount. 成形すべき板材の形状データをコンピュータに入力すると共に、これを有限要素法に基づく四角形のシェル要素の四隅の節点に、上下面中央の節点を加えた六節点のシェル要素で定義し、上記板材をプレス成形したときのスプリングバック量を求め、該スプリングバック量を考慮して上記板材をプレス成形することを特徴とするプレス成形方法。
The shape data of the plate material to be formed is input to the computer, and this is defined by a six-node shell element obtained by adding the node at the center of the upper and lower surfaces to the four corner nodes of the square shell element based on the finite element method. A press forming method characterized in that a spring back amount when press forming is obtained, and the plate material is press formed in consideration of the spring back amount.
JP2004076184A 2004-03-17 2004-03-17 Plate material forming simulation and press forming method Expired - Fee Related JP4532143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076184A JP4532143B2 (en) 2004-03-17 2004-03-17 Plate material forming simulation and press forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076184A JP4532143B2 (en) 2004-03-17 2004-03-17 Plate material forming simulation and press forming method

Publications (2)

Publication Number Publication Date
JP2005267028A true JP2005267028A (en) 2005-09-29
JP4532143B2 JP4532143B2 (en) 2010-08-25

Family

ID=35091538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076184A Expired - Fee Related JP4532143B2 (en) 2004-03-17 2004-03-17 Plate material forming simulation and press forming method

Country Status (1)

Country Link
JP (1) JP4532143B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494553B2 (en) * 2002-02-08 2009-02-24 Norsk Hydro Asa Method of determining a heat treatment and member so treated
JP2012022603A (en) * 2010-07-16 2012-02-02 Toyota Central R&D Labs Inc Final pressing analyzing method, program, storage medium, and final pressing analyzing apparatus
CN102855356A (en) * 2012-08-27 2013-01-02 华北水利水电学院 Hard alloy densification pressing simulation method
JP2013045119A (en) * 2011-08-22 2013-03-04 Jfe Steel Corp Method and device for press molding simulation analysis
CN104318609A (en) * 2014-10-24 2015-01-28 上海通用金属结构工程有限公司 Stainless steel landscape sculpture construction analogue simulation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042098A (en) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc Forming simulation analysis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042098A (en) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc Forming simulation analysis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494553B2 (en) * 2002-02-08 2009-02-24 Norsk Hydro Asa Method of determining a heat treatment and member so treated
JP2012022603A (en) * 2010-07-16 2012-02-02 Toyota Central R&D Labs Inc Final pressing analyzing method, program, storage medium, and final pressing analyzing apparatus
JP2013045119A (en) * 2011-08-22 2013-03-04 Jfe Steel Corp Method and device for press molding simulation analysis
CN102855356A (en) * 2012-08-27 2013-01-02 华北水利水电学院 Hard alloy densification pressing simulation method
CN104318609A (en) * 2014-10-24 2015-01-28 上海通用金属结构工程有限公司 Stainless steel landscape sculpture construction analogue simulation method

Also Published As

Publication number Publication date
JP4532143B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
Baraldi et al. In plane loaded masonry walls: DEM and FEM/DEM models. A critical review
Meguro et al. Applied element method for structural analysis theory and application for linear materials
CN1211748C (en) Apparatus and method for structural analysis
Lu et al. A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees
Naves et al. Building block-based spatial topology synthesis method for large-stroke flexure hinges
Chandra et al. A robust composite time integration scheme for snap-through problems
US7702490B1 (en) Method and system for adaptive mesh-free shell structures
Senjanović et al. Modified Mindlin plate theory and shear locking-free finite element formulation
WO2019062727A1 (en) Method and device for calculating equivalent mechanical parameters of film layer etching region
CN103544335A (en) Systems and methods of determining structural failure in a computer simulation of manufacturing a sheet metal part
JP4532143B2 (en) Plate material forming simulation and press forming method
JP2011159288A (en) Method of reducing shearing locking of 8-node hexahedron element in finite element method
Rama et al. A three-node shell element based on the discrete shear gap and assumed natural deviatoric strain approaches
JP4583145B2 (en) Plate material forming simulation system and plate material forming simulation program
JP2006185228A (en) Multistage forming simulation system, and program for multistage forming simulation
Park et al. A four-node shell element with enhanced bending performance for springback analysis
JP4221589B2 (en) Simulation method of mold deflection distribution during press molding
Takeoka et al. Non-parametric design of free-form shells with curved boundaries and specified reaction forces
JP2006278803A (en) Method, system, and program for analyzing warpage of board
Selvanayagam et al. Global optimization of surface warpage for inverse design of ultra-thin electronic packages using tensor train decomposition
Giang et al. New finite modelling of the nonlinear static bending analysis of piezoelectric FG sandwich plates resting on nonlinear elastic foundations
JP6285793B2 (en) Method and system for including the effect of sheet metal blank contact with guide pins in the gravity loading phase of deep drawing simulation
Sansalone et al. A new shell formulation using complete 3D constitutive laws
JP6809941B2 (en) Press bending analysis model generation system and program
JP2004148381A (en) Press forming simulation system, program for press forming simulation, and recording medium of the program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Ref document number: 4532143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees