WO2021090051A1 - Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables - Google Patents

Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables Download PDF

Info

Publication number
WO2021090051A1
WO2021090051A1 PCT/IB2019/059633 IB2019059633W WO2021090051A1 WO 2021090051 A1 WO2021090051 A1 WO 2021090051A1 IB 2019059633 W IB2019059633 W IB 2019059633W WO 2021090051 A1 WO2021090051 A1 WO 2021090051A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
batteries
diagnostic
module
cell
Prior art date
Application number
PCT/IB2019/059633
Other languages
English (en)
French (fr)
Inventor
Alejandro CAMARGO JARAMILLO
Original Assignee
CASTELLANOS RAMELLI, Pablo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASTELLANOS RAMELLI, Pablo filed Critical CASTELLANOS RAMELLI, Pablo
Priority to PCT/IB2019/059633 priority Critical patent/WO2021090051A1/es
Publication of WO2021090051A1 publication Critical patent/WO2021090051A1/es
Priority to CONC2021/0016209A priority patent/CO2021016209A2/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a system and a process to carry out the diagnosis of the state of health (SoH) of cells, modules or batteries in order to reuse them in applications where their current SoH allows it, where the SoH corresponds to a series of dynamic characteristics and energy storage capacity.
  • SoH state of health
  • a classification is made that takes into account these variables, and using this classification it is finally decided how the cells, modules or batteries will be grouped again to manufacture the new ones. batteries.
  • the classification determines which will be the second life application where the battery will be used to make the best use of its remaining energy storage capacity.
  • This system is based on a conveyor belt that moves the cells, modules or batteries to an entry point where each one enters and is measured or analyzed by means of a diagnostic module that charges and discharges each battery several times. to determine its SoH and its storage capacity, and then move on to a classification module that groups them according to the measured variables.
  • Batteries as electrochemical energy storage devices, have particular operating characteristics that make possible their recovery and their use again in second-life applications. For example, batteries gradually lose their energy storage capacity and other dynamic operating characteristics according to their use, where dynamic characteristics are the main factor limiting the useful life of a battery. in most applications. Therefore, when the battery does not comply with the dynamic conditions, it does have a residual energy storage capacity that can be used in applications where the dynamic conditions are not relevant.
  • the foregoing represents, to a certain extent, an aid to the environmental issue, since these batteries that supposedly do not have any functionality, can be reused and should not be disposed of, considerably reducing the environmental impact and the generation of waste that is highly polluting and dangerous.
  • WO 2011102524 refers to a device to carry out a diagnostic process for rechargeable battery modules, where the device has a probe used to measure the value of status of a rechargeable battery, a diagnostic side connector connected to a CMU connector and a monitor, and a top plate that holds the diagnostic connector in a position so that the side connector can be connected to the CMU connector while holding the probe in a position that allows a status value to be measured.
  • the monitor determines if the status value of the measuring device and the status value of the CMU are within the same range, and thus can determine whether the battery is normal or needs to be replaced or recycled.
  • said priority has the drawback that, although it is based on the reuse of rechargeable batteries through an evaluation of their behavior or their state of health, it simply presents a series of experiences or experiences of a user (such as the inventor) in relation to the use of rechargeable batteries, but without specifying the way in which the reuse of batteries is carried out, the diagnosis and the disposal of other batteries that cannot be used.
  • the invention described in this foregoing defines a system to diagnose the useful life or health status of a battery, by means of a series of meters and by applying a current and voltage to it, measuring the charging time and discharge, and thus be able to determine if the battery is normal or should be discarded or recycled.
  • said system has the disadvantage that it does not allow a classification of the batteries for reuse in other applications, but is based on the diagnosis to reuse or dispose of them.
  • this priority is very limited and is simply based on performing a diagnostic process of a battery composed of a series of blocks, where a measurement is made and three final results are obtained, that is, it only determines if the battery can be It is used, it is new, or it is simply not useful for any application, but this process does not allow a second use of all batteries and, therefore, does not solve the environmental problem related to their disposal.
  • Figure 1 corresponds to a general perspective view of the system of the present invention in a covered configuration, that is, including all the protection covers of the elements that are part of it.
  • Figure 2 corresponds to a general perspective view of the system of Figure 1 without including the covers, that is, showing all the internal elements thereof.
  • Figure 3 corresponds to a flat side view of the system shown in Figures 1 and 2.
  • Figure 4 corresponds to a detailed perspective view of the battery diagnostic module of the system of the present invention, where the components that allow the charging, discharging and general diagnosis procedure for subsequent classification are shown.
  • Figure 5 corresponds to a flat side view of the diagnostic module shown in detail in Figure 4.
  • Figure 6 corresponds to a flow diagram of the process involved with the diagnosis of rechargeable batteries, where a charge and discharge process is carried out on said batteries.
  • Figure 7 corresponds to another flow chart that shows in a simpler and more convenient way the operation of the present system and how it is done. the diagnosis of the batteries, according to the elements defined and that are part of this system.
  • the present invention is directed to an automatic system to perform the diagnosis and classification of rechargeable batteries, wherein said system is based on a conveyor belt and a diagnostic module, the system is characterized in that it is composed of the following parts or components:
  • a battery input module (1) through which the modules, cells or batteries to be analyzed are input, where said input module (1) is in charge of controlling the supply of raw material to the system of the present invention, and has a rotating drum (11) driven by an actuator (12) which has a cell in its contour
  • a conveyor device (2) which is responsible for moving or transporting the batteries from the input module (1) to the diagnostic module (3), where said conveyor device (2) can be any element or device that allows moving the raw material from one point to another in the system, without limitation;
  • a diagnostic module or subsystem (3) located at the end of the conveyor device (2), where said diagnostic module (3) aims to carry out a series of loading and unloading tests on each of one of the the batteries in order to determine the SoH, the storage capacity and the internal resistance of each one of these;
  • the diagnostic module (3) in turn comprises one or more rotating drums (31) that have a series of cells (32) arranged along its contour to receive the batteries to be analyzed.
  • the present system aims to diagnose the state of health (SoH) of cells, modules or batteries in order to reuse them in applications where their current SoH allows it.
  • SoH corresponds to a series of dynamic characteristics, such as electrochemical dynamic response, the battery's ability to deliver power, and energy storage capacity.
  • the present system that carries out the present process and diagnoses the battery was designed to carry out this task automatically and without intervention or the need for an operator, unlike existing machines in the state of the art.
  • the design of this system is divided into a series of functional parts, where each of these functional parts carries out a specific task to carry out the diagnosis and classification of the batteries, as defined more detailed below. It is important to note that the voltage drop from the application of an electrical load reduces the battery's ability to deliver power considerably. In addition, this phenomenon becomes more evident as the battery ages, while also making it difficult to measure the state of charge (SoC), the variable that measures how much stored energy the battery has available.
  • SoC state of charge
  • the input module (1) is the first element of the system of the present invention and is in charge of supplying the raw material, that is, the batteries, cells or modules to be analyzed, to the entire system, and also is in charge of controlling said supply.
  • said input module (1) is composed of a dispensing drum (11), which may preferably correspond, but not limited to, a rotating drum, as illustrated in Figures 1 and 2, which presents in its contour a notch that represents the cell (13) in which the battery, cell or module that is going to be supplied to the system is located, or in other words, which is going to be delivered to the conveyor device (2) to be carried from the input module (1) to the diagnostic module (3).
  • a dispensing drum 11
  • a rotating drum as illustrated in Figures 1 and 2
  • Figures 1 and 2 which presents in its contour a notch that represents the cell (13) in which the battery, cell or module that is going to be supplied to the system is located, or in other words, which is going to be delivered to the conveyor device (2) to be carried from the input module (1) to the diagnostic module (3).
  • the supply of said batteries by means of the cell (13) is carried out thanks to the movement of the drum (11), where said movement is due to a actuator (12) arranged on the outside of the drum (11) and which is connected to it to make it rotate and allow the cell (13) to move and collect the raw material (i.e. batteries, cells or modules) from a warehouse or warehouse (not shown) and arrange it directly on the conveyor device (2) to continue on your way.
  • a actuator (12) arranged on the outside of the drum (11) and which is connected to it to it to make it rotate and allow the cell (13) to move and collect the raw material (i.e. batteries, cells or modules) from a warehouse or warehouse (not shown) and arrange it directly on the conveyor device (2) to continue on your way.
  • Said actuator (12) can be any device capable of moving the drum (11) and making it rotate so that it can bring the raw material from an input section into direct contact with the conveyor device (2) to continue in this way to the next diagnostic module (3), as previously indicated.
  • the conveyor device (2) corresponds to an inclined belt or inclined plane, which slopes from the input module (1) towards the diagnostic module (3), as illustrated in Figures 1 and 2, but it is not limited to this type of plane, where the geometry and arrangement of the device (2) correspond or depend directly on the geometry and the type of battery, module or cell to be analyzed, without limitation.
  • the conveyor device (2) may correspond to an inclined plane, but it is also contemplated within the scope of the present disclosure, that said conveyor device (2) may correspond to a conveyor belt, a light autonomous vehicle or any other transport device that allows fulfilling the function of moving the batteries, cells or modules from the input module (1) to the diagnostic module (3), without limitation.
  • the conveyor device (2) is present in all the stages of the present system, since it allows the transport of the raw material from the input module (1) to the diagnostic module (2) and then to the classification module (not shown) to obtain a final product.
  • the diagnostic module (3) which, as indicated above, is the device in charge of performing the diagnosis of the cell, module or battery applying the process as will be described later in relation to the process that forms part of the present disclosure.
  • the diagnostic module (3) obtains the SoH, the current storage capacity of the battery and its internal resistance to then proceed with its respective classification.
  • the diagnostic device (3) consists of a drum (31), preferably with, but not limited to, a cylindrical shape that rotates within a cavity.
  • the drum (31) is shaped to allow that, when rotating, the batteries, modules or cells enter the cells (32) arranged in the contour of the same and deposited there, being temporarily trapped inside the cavity and the drum (31).
  • the cavity in which the drum (31) is located has in its upper part an inlet opening (33) through which the battery to be analyzed will enter, where said inlet opening ( 33) is exposed as the cell (32) passes through it as the drum (31) rotates.
  • the inlet opening (33) is blocked when the cell (32) is out of phase with respect to it, exposing a portion of the drum (31) that is between cell (32) and cell (32), thus allowing the battery, cell or module to be analyzed to continue straight and enter a drum (31) that is further down the line.
  • the drum (31) rotates, moving the battery, cell or module within the cell (32) to position it in such a way that it comes into contact with some electrodes, preferably two, that connect the anode and the cathode of the battery with the electronic device that is responsible for performing the diagnosis.
  • the electronic device consists of a microprocessor that controls the actuator, the charging and discharging process, measures the temperature of the cell while it is charging and measures the voltage of the cell, module or battery throughout the process.
  • This device has three main parts: a circuit of discharge, a charging circuit and the microcontroller, where each part is in charge of carrying out the operation that its name describes.
  • this microcontroller communicates, either using cables or wirelessly (preferably wireless) with the other diagnostic devices and the central processing unit of the complete device that is responsible for coordinating the complete operation of this.
  • the charging circuit is responsible for establishing a reference point on which the battery is tested, that is, to know the storage capacity of the batteries, they must be brought to the same state from which they can be tested. In this case the benchmark is your full charge status.
  • an integrated circuit is implemented that is responsible for carrying out the complete process.
  • the discharge circuit consists of a constant current charge that is responsible for discharging the battery with a constant current to facilitate the calculation and measurement of its energy storage capacity.
  • this circuit consists of a fixed resistor and a MOSFET (transistor) connected in series and fed back with an operational amplifier in its comparator mode. In this way, the transistor is operated in its ohmic zone as a variable resistor.
  • the temperature sensor consists of a standard sensor, commercially available, that measures the cell temperature indirectly since it is not in contact with the cell, however, it is not limited to said design and may vary according to the requirements. requirements.
  • the drum (31) rotates once the characterization process is finished, depositing the battery on an inclined plane that makes it continue on its way through the system, where said deposition is done through an outlet opening (34 ) arranged opposite the inlet opening (33).
  • the system of the present invention also has a selector, which is the last device of the system that directly intervenes the battery, cell or module, and corresponds to a subsystem in charge of separating the batteries, cells or modules according to with the rating that was given to you during the rating process.
  • Said selector is the device that finally groups the cells that were diagnosed in the new modules that will be manufactured.
  • the system of the present invention has a central processing unit (not shown) that is in charge of coordinating the operation of all the modules or devices that are part of said system, and allows maintaining an updated database with the information. of the cells, modules or batteries analyzed.
  • This central processing unit preferably consists of a microcontroller connected to the other devices or modules of the system by means of an open communication protocol, either by means of wired or wireless connections.
  • This central processing unit is also in charge of receiving all the information from the diagnostic devices (3) and stores it in a database so that it can then be shown to an operator.
  • this central processing unit can also have a communications module that allows connection to a remote station where the information stored in the database can be viewed and analyzed in more detail, where everything related to the batteries or cells analyzed and diagnosed.
  • the present invention is also directed to a process to carry out the diagnosis and classification of rechargeable batteries, where said diagnosis process corresponds to the coulomb count, which consists of counting the charge carriers that it receives or delivers. the battery to know exactly its current energy storage capacity.
  • This process can be performed during battery charging or discharging, however, the system of the present invention focuses on performing the diagnosis during battery discharge. Discharging the battery measures how much energy it stored and this information is compared with the energy storage capacity when the battery was new, thus obtaining the SoH.
  • the process of the present invention is characterized in that it comprises the following steps or stages: a) Supply a series of batteries, modules or cells by means of a module or input system, with a conveyor element, which allows the transporting the battery, module or cell from the supply section to a diagnostic subsystem; b) When the battery enters the diagnostic subsystem, verify that the battery is connected to proceed; c) Charge the battery, simultaneously making a constant measurement of the battery temperature, in order to control said parameter and prevent the temperature of the battery from rising above a predetermined threshold value and thus avoiding inconvenience or possible damage caused by overheating of the battery; d) When the battery charging current is less than Afin, a defined value in a range of 10% to 2% of the battery capacity in question in ampere hours, the charging process stops for a period of time predetermined, preferably 5 minutes, in order to allow the battery to stabilize; e) Discharging the battery by simultaneously and constantly measuring the internal resistance of said battery, measuring its potential drop when the discharge process starts and an electric charge is applied to it
  • the internal resistance of the battery is also diagnosed, where this step is carried out by measuring the potential drop of the battery when the discharge process begins and an electrical charge is applied to it, as indicated above.
  • the internal resistance is information of vital importance to know the state of health "SoH" of the battery from another method, providing more information than the coulomb count alone.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

La presente invención se relaciona con un sistema y un proceso para llevar a cabo el diagnóstico del estado de salud (SoH) de celdas, módulos o baterías con el fin de reutilizarlas en aplicaciones donde su SoH actual lo permita, donde el SoH corresponde a una serie de características dinámicas y la capacidad de almacenamiento de energía. Así, a partir del SoH y la capacidad de almacenamiento de energía actual de cada batería, se realiza una clasificación que tiene en cuenta dichas variables, y utilizando esta clasificación se decide finalmente como se agruparán nuevamente las celdas, módulos o baterías para fabricar las nuevas baterías. Además, la clasificación determina cual será la aplicación de segunda vida donde se usará la batería para aprovechar de forma óptima su capacidad de almacenamiento de energía restante.

Description

SISTEMA Y PROCESO DE DIAGNOSTICO. CLASIFICACION Y REUSO DE
BATERIAS RECARGABLES
CAMPO TÉCNICO
La presente invención se relaciona con un sistema y un proceso para llevar a cabo el diagnóstico del estado de salud (SoH) de celdas, módulos o baterías con el fin de reutilizarlas en aplicaciones donde su SoH actual lo permita, donde el SoH corresponde a una serie de características dinámicas y la capacidad de almacenamiento de energía. Así, a partir del SoH y la capacidad de almacenamiento de energía actual de cada batería, se realiza una clasificación que tiene en cuenta dichas variables, y utilizando esta clasificación se decide finalmente como se agruparán nuevamente las celdas, módulos o baterías para fabricar las nuevas baterías. Además, la clasificación determina cual será la aplicación de segunda vida donde se usará la batería para aprovechar de forma óptima su capacidad de almacenamiento de energía restante. El presente sistema se basa en una banda transportadora que mueve las celdas, módulos o baterías hasta un punto de ingreso en el cual cada una de éstas ingresa y es medida o analizada por medio de un módulo de diagnóstico que carga y descarga varias veces cada batería para determinar su SoH y su capacidad de almacenamiento, para luego pasar a un módulo de clasificación que las agrupa de acuerdo con las variables medidas. ANTECEDENTES DE LA INVENCIÓN
Las baterías, como dispositivos de almacenamiento de energía electroquímicos, tienen unas características de funcionamiento particulares que hace posible su recuperación y su utilización nuevamente en aplicaciones de segunda vida. Por ejemplo, las baterías pierden su capacidad de almacenamiento de energía y otras características de funcionamiento dinámicas, de forma gradual, de acuerdo con el uso que se les da, en donde las características dinámicas son el factor principal que limita la vida útil de una batería en la mayoría de las aplicaciones. Por lo tanto, cuando la batería no cumple con las condiciones dinámicas, ésta sí cuenta con una capacidad de almacenamiento de energía residual que puede ser usada en aplicaciones donde las condiciones dinámicas no son relevantes. Lo anterior representa, en cierto grado, una ayuda al tema ambiental, toda vez que dichas baterías que supuestamente no tienen ninguna funcionalidad, pueden ser reutilizadas y no deben ser desechadas, reduciendo considerablemente el impacto ambiental y la generación de desperdicios que son altamente contaminantes y peligrosos.
En la actualidad, uno de los principales problemas que se están presentando a nivel global es la contaminación, la cual puede provenir de múltiples fuentes, una de las cuales corresponde a los materiales con los que se fabrican las baterías, tanto de las de uso simple como las recargables. Estas baterías son fabricadas en materiales que actualmente son considerados como peligrosos, debido a su gran impacto ambiental, ya que contaminan afluentes, suelos, etc. Sin embargo, el uso de baterías es necesario para el funcionamiento de la vida diaria, ya que la gran mayoría de aparatos o ayudas externas que se utilizan funcionan con una fuente de energía eléctrica portátil, la cual corresponde a una batería.
Por lo tanto, se han realizado múltiples esfuerzos para que las fuentes de energía para dichos aparatos se basen únicamente en baterías recargables, ya que pueden ser usadas varias veces y no son desechadas rápidamente. Sin embargo, estas baterías tienen una vida útil, la cual corresponde al desgaste normal de las celdas de las que se componen, y dicho desgaste se debe a la carga y descarga de las mismas, razón por la cual en muchos casos llega un punto en el que los usuarios consideran que las baterías no son adecuadas o no funcionan correctamente y, por ende, proceden a desecharlas, ayudando de esta forma con la contaminación, por lo cual se hace necesario hacer la recolección de dichas baterías para su diagnóstico y así determinar si es posible reutilizarlas o efectivamente se requiere desecharlas.
Así las cosas, en el estado del arte existe una pluralidad de divulgaciones relacionadas con sistemas o aparatos para reutilizar o determinar la vida útil de una batería recargable, dentro de las que se encuentra el documento WO 2011102524, el cual se refiere a un dispositivo para llevar a cabo un proceso de diagnóstico para módulos de baterías recargables, en donde el dispositivo cuenta con una sonda usada para medir el valor de estado de una batería recargable, un conector lateral de diagnóstico conectado a un conector CMU y a un monitor, y una placa superior que mantiene el conector de diagnóstico en una posición de modo que el conector lateral puede conectarse al conector CMU mientras mantiene la sonda en una posición que permite medir un valor de estado. Así, el monitor determina si el valor de estado del dispositivo de medición y el valor de estado del CMU están dentro del mismo rango, y así poder determinar si la batería es normal o debe ser reemplazada o reciclada.
Sin embargo, esta anterioridad presenta la desventaja que se enfoca en un dispositivo para hacer únicamente el diagnóstico sobre una batería recargable, pero está muy limitado a este proceso, el cual es ampliamente conocido y no permite obtener un sistema completo automático para reutilizar baterías y distribuirlas de acuerdo con su estado de salud (SoH) para un segundo uso.
De otra parte, se encuentra el documento CN 103035976 que divulga una técnica y un método para la recuperación y la utilización completa de baterías recargables de litio desechadas, en donde este método y técnica permiten que los recursos restantes sean desarrollados y utilizados completamente, ahorrando energía. La invención se basa entonces en el uso de baterías gastadas o desechadas para múltiples operaciones, separándolas independientemente y creando nuevos bancos o módulos recargables, creando un ahorro significativo de dinero a la hora de requerir una nueva fuente de energía portátil.
No obstante, dicha anterioridad presenta el inconveniente que, aunque se basa en la reutilización de baterías recargables mediante una evaluación de su comportamiento o de su estado de salud, simplemente presenta una serie de vivencias o experiencias de un usuario (tal como, el inventor) con relación al uso de baterías recargables, pero sin especificar la forma como se hace el reúso de baterías, el diagnóstico y la disposición de otras baterías que no pueden ser usadas.
Ahora bien, se tiene otro documento relacionado con este tipo de tecnologías, el cual corresponde a la solicitud de patente KR 20130039684, la cual enseña un sistema de carga con función de diagnóstico para medir la vida útil de baterías recargables, en donde el sistema permite diagnosticar el estado de una batería al determinar el voltaje y el tiempo de carga y descarga revisando un estado interno de la batería en un proceso de carga de batería sin conectar un BMS (Sistema de Manejo de Batería) separado a la batería y para simplemente reciclar la batería en caso que la vida útil determinada sea anormal. El sistema cuenta con una unidad de suministro de potencia, una unidad de detección que detecta una corriente de carga y un voltaje de una batería, y una unidad de diagnóstico que diagnostica la anormalidad de una batería.
Sin embargo, la invención descrita en esta anterioridad define un sistema para hacer diagnóstico de la vida útil o el estado de salud de una batería, mediante una serie de medidores y al aplicar una corriente y voltaje a la misma, midiendo el tiempo de carga y descarga, y así poder determinar si la batería es normal o debe ser desechada o reciclada. No obstante, dicho sistema presenta la desventaja que no permite realizar una clasificación de las baterías para su reutilización en otras aplicaciones, sino que se basa en el diagnóstico para reusarla o desecharla.
Finalmente, en el estado del arte se encuentra el documento US 20130132011 relacionado con un dispositivo para el diagnóstico de baterías de iones de litio que incluye una pluralidad de bloques de batería, en donde el dispositivo permite entonces descargar la batería, y después que cada bloque de batería tenga un voltaje disminuido a un voltaje de inicio de medición, el bloque descarga una cantidad de energía, con lo que el dispositivo de diagnóstico calcula la vida útil de cada bloque de batería. Así, si todos los bloques descargan energía en una cantidad mayor a un valor umbral de producto nuevo el dispositivo de diagnóstico determina que la batería está en una condición nueva. De lo contrario, si todos los bloques descargan energía en una cantidad mayor a un umbral útil, entonces el dispositivo determina que la batería puede ser usada en otras aplicaciones, es decir, es útil. Finalmente, si por lo menos un bloque descarga energía en una cantidad menor al valor útil, el dispositivo de diagnóstico determina que la batería no es útil.
No obstante, esta anterioridad es muy limitada y simplemente se basa en realizar un proceso de diagnóstico de una batería compuesta de una serie de bloques, donde se hace una medición y obtienen tres resultados finales, es decir, se únicamente determina si la batería puede ser usada, está nueva, o simplemente no es útil para ninguna aplicación, pero este proceso no permite darle un segundo uso a todas las baterías y, por ende, no resuelve el problema ambiental relacionado con el desecho de las mismas.
A partir de la información anterior, se puede ver claramente que en el estado del arte existe una pluralidad de divulgaciones relacionadas con dispositivos, aparatos, sistemas o métodos para realizar un diagnóstico de baterías recargables, tales como baterías de litio, en donde los sistemas permiten determinar si la batería se encuentra en buen estado o si, por el contrario, debe ser desechada, convirtiéndose en un problema para el medio ambiente y ayudando con la contaminación, tal como se explicó previamente. De acuerdo con lo anterior, es claro y evidente que en el estado del arte existe una necesidad por diseñar e implementar un sistema, dispositivo o aparato, el cual sea completo y automático para llevar a cabo un proceso de diagnóstico, clasificación y reutilización de baterías recargables, donde el resultado corresponda a módulos de baterías que puedan ser usados en múltiples aplicaciones dependiendo del valor de estado de salud (SoH) obtenido para la batería y así, crear bancos y reducir el impacto ambiental y los costos asociados a la generación de energía. BREVE DESCRIPCIÓN DE LAS FIGURAS
La presente invención se entiende de forma más clara a partir de las siguientes figuras donde se muestran los componentes y resultados asociados al presente dispositivo, aparato o sistema, así como los elementos novedosos con respecto al estado del arte, en donde, las figuras no pretenden limitar el alcance de la invención, el cual está únicamente dado por las reivindicaciones adjuntas, en donde:
La Figura 1 corresponde a una vista en perspectiva general del sistema de la presente invención en configuración tapado, es decir, incluyendo todas las tapas de protección de los elementos que forman parte del mismo. La Figura 2 corresponde a una vista en perspectiva general del sistema de la Figura 1 sin incluir las tapas, es decir, evidenciando todos los elementos internos del mismo. La Figura 3 corresponde a una vista lateral plana del sistema mostrado en las Figuras 1 y 2.
La Figura 4 corresponde a una vista en perspectiva en detalle del módulo de diagnóstico de baterías del sistema de la presente invención, donde se muestran los componentes que permiten hacer el procedimiento de carga, descarga y diagnóstico general para la posterior clasificación.
La Figura 5 corresponde a una vista lateral plana del módulo de diagnóstico mostrado en detalle en la Figura 4.
La Figura 6 corresponde a un diagrama de flujo del proceso involucrado con el diagnóstico de las baterías recargables, donde se hace un proceso de carga y descarga sobre dichas baterías. La Figura 7 corresponde a otro diagrama de flujo que muestra de forma más simple y conveniente la operación del presente sistema y la forma como se hace el diagnóstico de las baterías, de acuerdo con los elementos definidos y que forman parte del presente sistema.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención está dirigida a un sistema automático para realizar el diagnóstico y clasificación de baterías recargables, en donde dicho sistema se basa en una banda transportadora y un módulo de diagnóstico, el sistema se caracteriza porque está compuesto por las siguientes partes o componentes:
• Un módulo de ingreso de baterías (1 ) por el cual se ingresan los módulos, celdas o baterías que van a ser analizadas, en donde dicho módulo de ingreso (1) es el encargado de controlar el suministro de materia prima al sistema de la presente invención, y cuenta con un tambor giratorio (11) accionado por un actuador (12) el cual presenta en su contorno una celda
(13) donde se encuentra la batería a ser analizada;
• Un dispositivo transportador (2), que se encarga de mover o transportar las baterías desde el módulo de ingreso (1) al módulo de diagnóstico (3), en donde dicho dispositivo transportador (2) puede ser cualquier elemento o dispositivo que permita mover la materia prima de un punto a otro en el sistema, sin limitación; • Un módulo o subsistema de diagnóstico (3) ubicado en el extremo final del dispositivo transportador (2), en donde dicho módulo de diagnóstico (3) tiene como objetivo llevar a cabo una serie de pruebas de carga y descarga sobre cada de una de las baterías con el fin de determinar el SoH, la capacidad de almacenamiento y la resistencia interna de cada una de éstas; el módulo de diagnóstico (3) a su vez comprende uno o más tambores giratorios (31) que presenta una serie de celdas (32) dispuestas a lo largo de su contorno para recibir las baterías que van a ser analizadas.
Así las cosas, el presente sistema tiene como objetivo diagnosticar el estado de salud (SoH) de celdas, módulos o baterías con el fin de reutilizarlas en aplicaciones donde su SoH actual lo permita. De este modo, el SoH corresponde a una serie de características dinámicas, tal como la respuesta dinámica electroquímica, la capacidad de la batería para entregar potencia, y a la capacidad de almacenamiento de energía. El presente sistema que lleva a cabo el presente proceso y diagnostica la batería fue diseñado para llevar a cabo esta labor de forma automática y sin intervención o necesidad de un operario a diferencia de las maquinas existentes en el estado del arte. El diseño del presente sistema se divide en una serie de partes funcionales, donde cada una de estas partes funcionales lleva a cabo una labor específica para realizar el diagnóstico y la clasificación de las baterías, tal como se define de forma más detallada a continuación. Es importante tener en cuenta que la caída de voltaje por la aplicación de una carga eléctrica reduce la capacidad de entregar potencia por parte de la batería considerablemente. Además, este fenómeno se hace más evidente a medida que la batería envejece, al tiempo que además dificulta la medición del estado de carga (SoC), la variable que mide cuanta energía almacenada tiene disponible la batería.
Ahora bien, el módulo de ingreso (1) es el primer elemento del sistema de la presente invención y es el encargado de suministrar la materia prima, es decir, las baterías, celdas o módulos a ser analizados, a todo el sistema, y también se encarga de controlar dicho suministro.
En este sentido, dicho módulo de ingreso (1) está compuesto por un tambor dispensador (11), el cual puede corresponder preferiblemente, pero no limitado a, un tambor giratorio, tal como se ilustra en las figuras 1 y 2, el cual presenta en su contorno una muesca que representa la celda (13) en la cual se ubica la batería, celda o módulo que va a ser suministrada al sistema, o en otras palabras, la cual va a ser entregada al dispositivo transportador (2) para ser llevada desde el módulo de ingreso (1) al módulo de diagnóstico (3).
El suministro de dichas baterías por medio de la celda (13) se lleva a cabo gracias al movimiento del tambor (11), donde dicho movimiento se debe a un actuador (12) dispuesto en la parte externa del tambor (11) y que se conecta al mismo para hacerlo girar y permitir que la celda (13) se desplace y recoja la materia prima (es decir, baterías, celdas o módulos) desde un almacén o depósito (no mostrado) y lo disponga directamente sobre el dispositivo transportador (2) para continuar su camino.
Dicho actuador (12) puede ser cualquier dispositivo capaz de mover el tambor (11 ) y hacerlo girar de modo que pueda llevar la materia prima desde una sección de ingreso al contacto directo con el dispositivo transportador (2) para continuar de esta forma al siguiente módulo de diagnóstico (3), tal como se indicó previamente.
En una modalidad preferida, el dispositivo transportador (2) corresponde a una banda inclinada o plano inclinado, la cual se inclina desde el módulo de ingreso (1) hacia el módulo de diagnóstico (3), tal como se ilustra en las figuras 1 y 2, pero no se limita a este tipo de plano, donde la geometría y disposición del dispositivo (2) corresponde o depende directamente de a geometría y el tipo de batería, módulo o celda que se va a analizar, sin limitación. En una modalidad de la invención, el dispositivo transportador (2) puede corresponder a un plano inclinado, pero también se contempla dentro del alcance de la presente divulgación, que dicho dispositivo trasportador (2) puede corresponder a una banda transportadora, un vehículo autónomo liviano o cualquier otro dispositivo de transporte que permita cumplir con la función de mover las baterías, celdas o módulos desde el módulo de entrada (1) al módulo de diagnóstico (3), sin limitación.
Del mismo modo, el dispositivo transportador (2) está presente en todas las etapas del presente sistema, ya que permite el transporte de la materia prima del módulo de ingreso (1) al módulo de diagnóstico (2) y luego al módulo de clasificación (no mostrado) para obtener un producto final.
Ahora, una vez la materia prima pasa por el dispensador o módulo de ingreso (1), ésta se dirige al módulo de diagnóstico (3), el cual, como se indicó anteriormente, es el dispositivo que se encarga de realizar el diagnóstico de la celda, modulo o batería aplicando el proceso como se describirá más adelante con relación al proceso que forma parte de la presente divulgación. Así, a partir de este proceso, el módulo de diagnóstico (3) obtiene el SoH, la capacidad de almacenamiento actual de la batería y su resistencia interna para luego proceder con su respectiva clasificación. En este caso, el dispositivo de diagnóstico (3) consiste en un tambor (31), preferiblemente con, pero no limitado a, forma cilindrica que gira dentro de una cavidad. El tambor (31) tiene una forma para permitir que, al girar, las baterías, módulos o celdas ingresen en las celdas (32) dispuestas en el contorno del mismo y se depositen allí, quedando atrapadas temporalmente dentro de la cavidad y el tambor (31).
Para llevar a cabo este proceso, la cavidad en la que se encuentra el tambor (31 ) cuenta en su parte superior con una abertura de ingreso (33) por la cual va a ingresar la batería a ser analizada, donde dicha abertura de ingreso (33) queda expuesta cuando la celda (32) pasa por la misma a medida que el tambor (31) gira. Por el contrario, la abertura de ingreso (33) se bloquea cuando la celda (32) está desfasada con respecto a la misma, dejando expuesta una porción del tambor (31 ) que se encuentra entre celda (32) y celda (32), permitiendo de esta forma que la batería, celda o módulo a analizar siga derecho e ingrese en un tambor (31) que se encuentre más adelante en la línea.
Luego, el tambor (31) gira, moviendo la batería, celda o módulo dentro de la celda (32) para posicionarla de tal forma que entre en contacto con unos electrodos, preferiblemente dos, que conectan el ánodo y el cátodo de la batería con el dispositivo electrónico que se encarga de realizar el diagnóstico.
El dispositivo electrónico consiste de un microprocesador que controla el actuador, el proceso de carga y descarga, mide la temperatura de la celda mientras se está cargando y mide el voltaje de la celda, modulo o batería durante todo el proceso. Este dispositivo tiene tres partes principales: un circuito de descarga, un circuito de carga y el microcontrolador, en donde cada parte se encarga de realizar la operación que su nombre describe. Finalmente, este microcontrolador se comunica, ya sea usando cables o de forma inalámbrica (preferiblemente inalámbrica) con los demás dispositivos de diagnóstico y la unidad de procesamiento central del dispositivo completo que se encarga de coordinar la operación completa de este.
El circuito de carga se encarga de establecer un punto de referencia sobre el cual se prueba la batería, es decir, para conocer la capacidad de almacenamiento de las baterías, estas se deben llevar a un mismo estado desde el que se puedan probar. En este caso el punto de referencia es su estado de carga completo. Para llevarla a su punto de carga completo se implementa un circuito integrado que se encarga de realizar el proceso completo. En cuanto al circuito de descarga, este consiste en una carga de corriente constante que se encarga de descargar la batería con una corriente constante para facilitar el cálculo y la medición de su capacidad de almacenamiento de energía. En este caso, este circuito consiste de una resistencia fija y un MOSFET (transistor) conectado en serie y retroalimentado con un amplificador operacional en su modo comparador. De esta forma, se opera el transistor en su zona óhmica como una resistencia variable. Este diseño puede variar fácilmente. El sensor de temperatura se compone por un sensor estándar, comercialmente disponible, que mide la temperatura de la celda de forma indirecta pues no se encuentra en contacto con la celda, sin embargo, no se limita a dicho diseño y puede variar de acuerdo con los requerimientos.
Finalmente, el tambor (31 ) gira una vez se finalice el proceso de caracterización, depositando la batería en un plano inclinado que hace que la misma continúe su camino por el sistema, donde dicha deposición se hace por medio de una abertura de salida (34) dispuesta de forma opuesta a la abertura de ingreso (33).
De forma preferida, el sistema de la presente invención además cuenta con un seleccionador, el cual es el último dispositivo del sistema que interviene directamente la batería, celda o módulo, y corresponde a un subsistema encargado de separar las baterías, celdas o módulos de acuerdo con la clasificación que se le dio durante el proceso de clasificación. Dicho seleccionador es el dispositivo que finalmente agrupa las celdas que se diagnosticaron en los nuevos módulos que serán fabricados.
Finalmente, el sistema de la presente invención cuenta con una unidad central de procesamiento (no mostrada) que se encarga de coordinar la operación de todos los módulos o dispositivos que forman parte de dicho sistema, y permite mantener una base de datos actualizada con la información de las celdas, módulos o baterías analizadas. Esta unidad central de procesamiento consiste, preferiblemente, en un microcontrolador conectado a los demás dispositivos o módulos del sistema por medio de un protocolo de comunicación abierto, ya sea por medio de conexiones cableadas o inalámbricas. Esta unidad central de procesamiento es además la encargada de recibir toda la información de los dispositivos de diagnóstico (3) y la almacena en una base de datos para luego poder ser mostrada a un operario. Preferiblemente, esta unidad central de procesamiento también puede contar con un módulo de comunicaciones que permite realizar la conexión con una estación remota donde se pueden visualizar y analizar de forma más detallada la información almacenada en la base de datos, donde se encuentra todo lo relacionado con las baterías o celdas analizadas y diagnosticadas.
Ahora, a partir del SoH, la capacidad de almacenamiento de energía actual y la resistencia interna, se procede a realizar una clasificación que tiene en cuenta las variables: el SoH, la capacidad de almacenamiento de energía actual y la resistencia interna. Así, utilizando esta clasificación se decide finalmente como se agruparán nuevamente las celdas, módulos o baterías por parte del clasificador o de forma manual por parte de un operario, para fabricar las nuevas baterías. Además, la clasificación determina cual será la aplicación de segunda vida donde se usará la batería para aprovechar de forma óptima su capacidad de almacenamiento de energía restante. En otra modalidad, la presente invención también está dirigida a un proceso para llevar a cabo el diagnóstico y clasificación de baterías recargables, en donde dicho proceso de diagnóstico corresponde al conteo de coulomb, el cual consiste en contar los portadores de carga que recibe o entrega la batería para conocer con exactitud su capacidad de almacenamiento de energía actual. Este proceso se puede realizar durante la carga o la descarga de la batería, sin embargo, el sistema de la presente invención se enfoca en realizar el diagnostico durante la descarga de la batería. Al descargar la batería se mide cuanta energía almacenó y esta información se compara con la capacidad de almacenamiento de energía cuando la batería era nueva, obteniendo así el SoH.
En este sentido, el proceso de la presente invención se caracteriza porque comprende los siguientes pasos o etapas: a) Suministrar una serie de baterías, módulos o celdas por medio de un módulo o sistema de ingreso, con un elemento transportador, el cual permita el transporte de la batería, módulo o celda desde la sección de suministro a un subsistema de diagnóstico; b) Cuando la batería ingrese en el subsistema de diagnóstico, verificar que la batería quede conectada para proceder; c) Cargar la batería, realizando de forma simultánea una medición constante de la temperatura de la batería, con el fin de controlar dicho parámetro y evitar que la temperatura de la batería se eleve por encima de un valor umbral predeterminado y evitando de esta forma inconvenientes o posibles daños causados por sobrecalentamiento de la batería; d) Cuando la corriente de carga de la batería sea menor a Afin, un valor definido en un rango del 10% al 2% de la capacidad de la batería en cuestión en amperios hora, se detiene el proceso de carga por un lapso de tiempo predeterminado, preferiblemente 5 minutos, con el fin de permitir que la batería se estabilice; e) Descargar la batería realizando de forma simultánea y constante una medición de la resistencia interna de dicha batería midiendo la caída de potencial de la misma cuando se inicia el proceso de descarga y se le aplica una carga eléctrica; f) Cuando el voltaje de la batería sea menor a Vmin, un valor definido en un rango de 3 a 2.5 voltios, se detiene el proceso de carga, mostrar el resultado de la medición a un usuario o almacenar dicho resultado para poder determinar qué hacer con la batería; y g) Clasificar las baterías medidas de acuerdo con el valor determinado de la resistencia interna de cada batería, el SoH y su capacidad de almacenamiento actual, donde la clasificación corresponde a agrupar las baterías que tienen una resistencia interna similar para formar módulos de baterías para un segundo uso. Así las cosas, es importante tener en cuenta que al inicio de la descarga de la batería, se diagnostica además la resistencia interna de esta, en donde este paso se hace midiendo la caída de potencial de la batería cuando se inicia el proceso de descarga y se le aplica una carga eléctrica, tal como se indicó anteriormente. Así, la resistencia interna es información de vital importancia para conocer el estado de salud “SoH” de la batería desde otro método, brindando más información que el conteo de coulomb solo.
Adicionalmente, además de medir la capacidad de almacenamiento de energía de la batería y su resistencia interna, también es importante medir constantemente la temperatura de ésta durante todo el proceso de diagnóstico, dado que dicha variable puede indicar problemas en la batería y evitar inconvenientes posteriores y en la línea de producción. De acuerdo con lo anterior, también es importante tener en cuenta que a partir del SoH, la capacidad de almacenamiento de energía actual, la resistencia interna y la temperatura se procede a realizar una clasificación que tiene en cuenta todas las variables anteriores a partir de un algoritmo de selección. Utilizando esta clasificación otro algoritmo finalmente decide como se agruparán nuevamente las celdas, módulos o baterías para fabricar las nuevas baterías. Además, la clasificación determina cual será la aplicación de segunda vida donde se usará la batería para aprovechar de forma óptima su capacidad de almacenamiento de energía restante.
Aunque la anterior descripción define las modalidades preferidas de la presente invención, dicha invención no se encuentra limitada a éstas, sino que, por el contrario, también se pretende incluir dentro del alcance de la presente solicitud todas las variaciones o modificaciones que sean evidentes para los expertos en la materia y que no afectan y cambian el espíritu de la invención.

Claims

REIVINDICACIONES
1. Un sistema automático para el diagnóstico y clasificación de baterías recargables, caracterizado porque comprende: · un módulo de ingreso de baterías (1) que cuenta con un elemento dispensador (11) accionado por un actuador (12), el cual presenta en su contorno una celda (13) que contiene la batería a ser analizada;
• un dispositivo transportador (2) que mueve desde el módulo de ingreso (1) a un módulo de diagnóstico (3); · un módulo o subsistema de diagnóstico (3) de estado de salud (SoH) ubicado en el extremo final del dispositivo transportador (2), que comprende uno o más tambores giratorios (31) con unas celdas (32) de recepción de baterías dispuestas a lo largo de su contorno.
2. El sistema de acuerdo con la reivindicación 1 , caracterizado porque el elemento dispensador (11 ) es un tambor giratorio y la celda (13) corresponde a una muesca en el contorno del tambor (11).
3. El sistema de acuerdo con la reivindicación 1 , caracterizado porque el dispositivo transportador (2) es una banda inclinada o plano inclinado, la cual es inclinado desde el módulo de ingreso (1) hacia el módulo de diagnóstico (3).
4. El sistema de acuerdo con la reivindicación 1 , caracterizado porque el tambor (31) del módulo de diagnóstico (3) tiene forma cilindrica y está dispuesto dentro de una cavidad.
5. El sistema de acuerdo con la reivindicación 4, caracterizado porque la cavidad en la que se dispone el tambor (31) cuenta en su parte superior con una abertura de ingreso (33), la cual queda expuesta cuando la celda (32) pasa por la misma a medida que el tambor (31) gira; y se bloquea cuando la celda (32) está desfasada con respecto a la misma, exponiendo una porción del tambor (31) que se encuentra entre celda (32) y celda (32).
6. El sistema de acuerdo con cualquiera de las reivindicaciones 1 a 5, caracterizado porque cada celda (32) cuenta con dispositivo electrónico de diagnóstico que se conecta a los electrodos de la batería.
7. El sistema de acuerdo con la reivindicación 1 o 6, caracterizado porque el módulo de diagnóstico (3) además comprende una abertura de salida (34) de batería diagnosticada o analizada, dispuesta de forma opuesta a la abertura de ingreso (33).
8. El sistema de acuerdo con cualquiera de las reivindicaciones 1 a 7, caracterizado porque además comprende un seleccionador o agrupador de baterías, ubicado al final de la línea.
9. El sistema de acuerdo con cualquiera de las reivindicaciones 1 a 8, caracterizado porque además comprende una unidad central de procesamiento conectado a todos los módulos o dispositivos que forman parte del sistema y que controla su operación.
10. El sistema de acuerdo con la reivindicación 9, caracterizado porque la unidad central de procesamiento consiste en un microcontrolador conectado a los demás dispositivos o módulos del sistema por medio de un protocolo de comunicación abierto; cuenta con una base de datos de almacenamiento de diagnóstico; y cuenta con un módulo de comunicaciones de conexión a estación remota.
11. Un proceso el diagnóstico y clasificación de baterías recargables, caracterizado porque comprende los pasos de: a) suministrar baterías, módulos o celdas por medio de un módulo o sistema de ingreso, con un elemento transportador a un módulo o subsistema de diagnóstico; b) cuando la batería ingrese en el subsistema de diagnóstico, verificar que la batería quede conectada para proceder; c) cargar la batería, midiendo simultáneamente la temperatura de la batería; d) cuando la corriente de carga de la batería se encuentre en un rango del 10% al 2% de su capacidad en amperios hora detener el proceso por un lapso de tiempo predeterminado; e) descargar la batería midiendo simultánea y constantemente la resistencia interna de dicha batería, midiendo la caída de potencial de la misma cuando se inicia el proceso de descarga y se le aplica una carga eléctrica; f) cuando el voltaje de la batería sea igual a 3, mostrar el resultado de la medición a un usuario o almacenar dicho resultado en una base de datos; y g) clasificar las baterías medidas de acuerdo con el valor determinado de la resistencia interna de cada batería, el SoH y su capacidad de almacenamiento actual, donde la clasificación corresponde a agrupar las baterías que tienen una resistencia interna similar para formar módulos de baterías.
12. El proceso de acuerdo con la reivindicación 11, caracterizado porque el proceso de diagnóstico corresponde a conteo de coulomb, el cual consiste en contar los portadores de carga que recibe o entrega la batería y conocer con exactitud su capacidad de almacenamiento de energía actual.
PCT/IB2019/059633 2019-11-08 2019-11-08 Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables WO2021090051A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2019/059633 WO2021090051A1 (es) 2019-11-08 2019-11-08 Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables
CONC2021/0016209A CO2021016209A2 (es) 2019-11-08 2021-11-29 Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/059633 WO2021090051A1 (es) 2019-11-08 2019-11-08 Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables

Publications (1)

Publication Number Publication Date
WO2021090051A1 true WO2021090051A1 (es) 2021-05-14

Family

ID=75849793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/059633 WO2021090051A1 (es) 2019-11-08 2019-11-08 Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables

Country Status (2)

Country Link
CO (1) CO2021016209A2 (es)
WO (1) WO2021090051A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1832948A (en) * 1930-10-09 1931-11-24 Schmidt Alfred Battery cell testing machine
US20040155626A1 (en) * 2003-02-11 2004-08-12 Hedegor Erik W. Battery tester and sorting apparatus
US20110234232A1 (en) * 2010-03-24 2011-09-29 Samsung Sdi Co., Ltd. Sorting machine of battery cell and sorting method thereof
KR101160545B1 (ko) * 2011-01-31 2012-06-27 주식회사티움리서치 이차전지 건강상태 진단장치
CN103326076A (zh) * 2013-05-24 2013-09-25 国家电网公司 一种动力电池循环使用方法
CN208679861U (zh) * 2018-07-16 2019-04-02 广州市晨威电子科技有限公司 一种圆柱型充电电池托盘式分选设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1832948A (en) * 1930-10-09 1931-11-24 Schmidt Alfred Battery cell testing machine
US20040155626A1 (en) * 2003-02-11 2004-08-12 Hedegor Erik W. Battery tester and sorting apparatus
US20110234232A1 (en) * 2010-03-24 2011-09-29 Samsung Sdi Co., Ltd. Sorting machine of battery cell and sorting method thereof
KR101160545B1 (ko) * 2011-01-31 2012-06-27 주식회사티움리서치 이차전지 건강상태 진단장치
CN103326076A (zh) * 2013-05-24 2013-09-25 国家电网公司 一种动力电池循环使用方法
CN208679861U (zh) * 2018-07-16 2019-04-02 广州市晨威电子科技有限公司 一种圆柱型充电电池托盘式分选设备

Also Published As

Publication number Publication date
CO2021016209A2 (es) 2021-12-10

Similar Documents

Publication Publication Date Title
Kim et al. On dynamic reconfiguration of a large-scale battery system
US7785729B2 (en) Battery pack and battery pack producing method
KR101295467B1 (ko) 축전지 시스템, 축전지 감시 장치, 및 축전지 감시 방법
KR102028170B1 (ko) 셀 밸런싱 회로 및 이를 구비한 배터리 팩
US5780992A (en) Rechargeable battery system adaptable to a plurality of battery types
KR20110107070A (ko) 배터리 셀의 분류 장치 및 그 분류 방법
US20030096158A1 (en) Battery pack and cordless power tool using the same as power source
JP5519371B2 (ja) 二次電池の再利用方法
US8598848B2 (en) Battery end of life determination
US20080180061A1 (en) Cell balancing battery pack and method of balancing the cells of a battery
KR20090115689A (ko) 배터리 팩 및 제어 방법
JP2014020818A (ja) 組電池の制御装置及び組電池の再利用判定方法
US20200132782A1 (en) Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
US20230184815A1 (en) Battery management system, battery pack, energy storage system and battery management method
US20120259567A1 (en) Intelligent battery pack
KR20140056693A (ko) 배터리 관리 시스템, 및 배터리 관리 시스템을 이용하는 배터리 충전상태의 추정방법
KR20180005345A (ko) Cc/cv 비율을 이용한 이차전지의 가용 용량 추정 장치
CN108627770A (zh) 用于确定电池的健康状态的方法和装置
US9054551B2 (en) Battery charging method and battery pack using the same
WO2021090051A1 (es) Sistema y proceso de diagnostico, clasificacion y reuso de baterias recargables
JP3549402B2 (ja) 電池パック
CN108206311B (zh) 蓄电系统
CN107422274A (zh) 小型动力装置的电池包soc估算方法及系统
JP3997707B2 (ja) 監視装置、制御装置及び電池モジュール
JP3435613B2 (ja) 組電池の充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951452

Country of ref document: EP

Kind code of ref document: A1