WO2021088969A1 - Method and apparatus for uplink cancellation indication - Google Patents

Method and apparatus for uplink cancellation indication Download PDF

Info

Publication number
WO2021088969A1
WO2021088969A1 PCT/CN2020/127040 CN2020127040W WO2021088969A1 WO 2021088969 A1 WO2021088969 A1 WO 2021088969A1 CN 2020127040 W CN2020127040 W CN 2020127040W WO 2021088969 A1 WO2021088969 A1 WO 2021088969A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pusch
bwp
scs
symbol
Prior art date
Application number
PCT/CN2020/127040
Other languages
English (en)
French (fr)
Inventor
Haihan Wang
Original Assignee
FG Innovation Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Company Limited filed Critical FG Innovation Company Limited
Priority to CN202080077463.1A priority Critical patent/CN114651512A/zh
Priority to KR1020227018567A priority patent/KR20220092950A/ko
Priority to JP2022526186A priority patent/JP7270110B2/ja
Priority to EP20885294.7A priority patent/EP4046448A4/en
Publication of WO2021088969A1 publication Critical patent/WO2021088969A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • a new radio (NR) system multiple types of services may be supported in a cell, each with different latency and reliability requirements.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communication
  • PI downlink pre-emption indication
  • the downlink (DL) PI is transmitted to the eMBB user equipment (UE) , indicating that part of the resources of the scheduled transport blocks (TB) are used for transmission of another TB for URLLC, so that the eMBB UE can avoid using the “corrupted” bits for decoding the TB.
  • UE eMBB user equipment
  • references to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • various features are described which can be exhibited by some embodiments and not by others.
  • FIG. 1 shows an illustrative example of an environment in which starting symbols in the RUR are not cancelled by the UE as a result of the PUSCH having already been transmitted according to various embodiments;
  • FIG. 2 shows an illustrative example of an environment in which a reference time region is not aligned between multiple UEs as a result of the timing advance (TA) of the multiple UEs being different according to various embodiments;
  • TA timing advance
  • FIG. 3 shows an illustrative example of an environment in which the UCI is transmitted on a physical uplink shared channel (PUSCH) as a result of the time duration from the end of the UL CI to the earliest symbol of the overlapping PUSCH and physical uplink control channel (PUCCH) is equal or larger than according to various embodiments;
  • PUSCH physical uplink shared channel
  • FIG. 4 shows an illustrative example of an environment in which PDCCH decoding time is defined as symbols for subcarrier spacing (SCS) according to various embodiments;
  • SCS subcarrier spacing
  • FIG. 5A illustrates a block diagram of a node for wireless communication, in accordance with various aspects of the present application
  • FIG. 5B illustrates a block diagram of a basic network including a UE and a gNB
  • FIG. 6 illustrates an example method according to an aspect of this disclosure.
  • downlink pre-emption indication (PI) was specified for this purpose.
  • the downlink (DL) pre-emption indication (PI) is transmitted to the eMBB user equipment (UE) to indicate that part of the resources of the scheduled transport blocks (TB) are to be used for transmission of another TB for URLLC.
  • a gNodeB gNB
  • an uplink (UL) PI or an uplink cancellation indication (CI) may be transmitted to the eMBB UE.
  • the eMBB UE can then cancel the scheduled transmission according to the uplink CI.
  • the fundamental differences between the DL case and UL case are, in the DL case, the DL PI may be transmitted after preemption of eMBB resources happens, since it is the gNB that is in charge of mapping URLLC traffic to the preempted eMBB resource.
  • the cancellation indication (CI) needs to be transmitted before preemption happens, since it is the eMBB UE’s job to cancel the uplink transmission. Therefore, issues related to UE behavior for monitoring UL CI, determination of reference time, and frequency resource, need to be considered.
  • the improved process should take into account the nature of uplink cancellation. That is, the UE needs to decode the uplink CI successfully before cancellation of uplink transmission happens. In addition, there are some issues that do not occur in the downlink case.
  • uplink control information (UCI) is multiplexed into a Physical Uplink Shared Channel (PUSCH) which is cancelled by an uplink CI
  • PUSCH Physical Uplink Shared Channel
  • PUCCH physical uplink control channel
  • the eMBB UE may only monitor UL CI after decoding a UL grant addressed to the eMBB UE.
  • the first issue is when a UE has both eMBB and URLLC traffic, the monitoring behavior needs to be defined so that UL CI only cancels resources scheduled for eMBB traffic.
  • the second issue is that, if an eMBB UE starts to monitor UL CI after decoding a UL grant addressed to it, the gNB may not be able to preempt the scheduled transmission if the time offset from the UL grant and the scheduled transmission is relatively small.
  • the third issue is related to the stopping condition for monitoring UL CI.
  • the UE should not monitor a search space for UL CI if the resources that will potentially be preempted by the UL CI do not overlap with the scheduled UL resources for the UE.
  • Indication of a preempted resource in UL CI will be based on a configured reference UL resource (RUR) .
  • the bits in UL CI will indicate which part of the resources in the RUR are to be preempted.
  • the starting symbol may be defined as the earliest symbol on which a UE can cancel its transmission after receiving the UL CI.
  • TA timing advance
  • Another issue to be addressed is which kinds of symbols are considered as valid symbols for RUR.
  • RRC radio resource control
  • the system should address whether the configured number of symbols takes into account only UL symbols or other kinds of symbols are also taken into account.
  • the system can determine, for the reference frequency region of RUR, whether to follow the Rel-15 method for DL PI, i.e., the reference frequency region is the active bandwidth part (BWP) . It may be straightforward to reuse the same method. Other methods can be applied as well. The fundamental difference between DL and UL can be considered.
  • a PUSCH may be scheduled to be overlapped in time with a PUCCH, according to current specification, e.g., TS 38.213 v. 15.7.0, the UCI of the PUCCH will be multiplexed in the PUSCH.
  • UE needs to decide whether the UCI can be transmitted on the PUCCH.
  • a rule should be defined for UE to transmit or drop the PUCCH according to the timeline condition of the UL CI, PUSCH and PUCCH, so that UCI can be transmitted without increasing UE complexity.
  • An example method includes receiving at a user equipment (UE) an uplink (UL) grant, wherein the UL grant schedules a Physical Uplink Shared Channel (PUSCH) .
  • PUSCH Physical Uplink Shared Channel
  • a frequency resource for the PUSCH can be allocated within an active UL Bandwidth Part (BWP) of the UE.
  • the frequency resource is allocated using a physical resource block (PRB) index of the active UL BWP.
  • PRB physical resource block
  • the method includes receiving an UL cancellation indication (CI) , wherein the UL CI indicates a UL resource in a reference UL resource, and wherein the reference UL resource is allocated within a carrier including at least the active UL BWP.
  • the frequency resource is allocated using a common resource block (CRB) index of the carrier.
  • the method further includes determining whether the UL resource overlaps with the PUSCH to yield a determination and cancelling the PUSCH when the determination indicates that the UL resource overlaps with the PUSCH.
  • Another aspect from the standpoint for the gNB can include transmitting to a user equipment (UE) an uplink (UL) grant, wherein the UL grant schedules a Physical Uplink Shared Channel (PUSCH) .
  • a frequency resource for the PUSCH can be allocated within an active UL Bandwidth Part (BWP) of the UE.
  • the frequency resource is allocated using a physical resource block (PRB) index of the active UL BWP.
  • the method can include transmitting to the UE an UL cancellation indication (CI) , wherein the UL CI indicates a UL resource in a reference UL resource, and wherein the reference UL resource is allocated within a carrier including at least the active UL BWP.
  • CI UL cancellation indication
  • the frequency resource is allocated using a common resource block (CRB) index of the carrier.
  • the method further includes receiving data from the UE in which the UE determined whether the UL resource overlaps with the PUSCH to yield a determination and cancelling the PUSCH when the determination indicates that the UL resource overlaps with the PUSCH.
  • the data received at the gNB can represent the data transmitted, if at all, from the UE in view of the cancellation of the PUSCH.
  • a UE starts to monitor UL CI after decoding a UL grant with “low priority” indication.
  • a UE For a configured grant (CG) , a UE only monitors the monitoring occasions of the search space for a UL CI with associated RUR overlapping with the CG resource.
  • CG configured grant
  • a UE monitors a search space for UL CI if the associated RUR overlaps with potentially scheduled PUSCH for the UE. For this method, UE may determine whether there may be PUSCH overlapping with the RUR based on the time domain resource allocation table used by the UE. If it is determined that the associated RUR of a search space for UL CI overlaps with potentially scheduled PUSCH, it is monitored before decoding UL grant.
  • a UE stops monitoring UL CI if it receives a UL grant with “high priority” indication.
  • a UE stops monitoring UL CI after selecting an UL CG configured as high priority by a RRC parameter.
  • the starting symbol of the RUR of an UL CI is the first symbol after a time duration of minimum processing time (denoted by X as shown in the framework 200 of FIG. 2) of UL CI and a timing advance (TA, also shown in FIG. 2) , counting from the end of the search space of the corresponding UL CI.
  • the minimum processing time is the time duration the UE needs for decoding the UL CI, and prepare for cancelling the UL transmission.
  • the timing advance (TA) can be taken into account for determining the RUR can make sure all the resources in RUR may be cancelled by the UE.
  • the starting symbols in the RUR may not be cancelled by the UE since by the time UE finished decoding of UL CI and prepared for UL cancelation, the PUSCH may have already been transmitted (see FIG. 1) . Since there may be multiple UEs configured with the same bits in UL CI, if the effect of the TA is implicitly taken into account by the UE when determining the starting symbol of RUR, the reference time region may not be aligned between multiple UEs if the TA of multiple UEs are different (see FIG. 2, the RUR of UE1 is the leftmost white coloured region and the middle gray colored region, and the RUR of UE2 is middle gray colored region and the rightmost dark gray coloured region) .
  • a reference TA may be configured for the multiple UEs for determining the starting symbol of the RUR.
  • the reference TA is configured to be larger than the TA of the multiple UEs, so that the RUR is aligned for the multiple UEs.
  • the reference time region is defined as the UL symbols and the semi-static flexible symbols within the configured time duration, e.g., 2 symbols, 4 symbols, etc., starting from the starting symbol of the RUR.
  • the semi-static downlink symbols are excluded from the RUR so that the actual reference time region will be smaller than the RRC configured duration of reference time region.
  • finer granularity of UL CI may be achieved as the following.
  • the configured number of bits for indicating time domain resources in UL CI can be divided into two parts, each bit in the first part may indicate less number of symbols than the RRC configured number of symbols, while each bit in the second part may indicate a number of symbols that is RRC configured.
  • the method for determining the number of bits in each part may be based on the number of bits for indicating time domain resource in UL CI and the number of symbols in the RUR after excluding semi-static downlink symbols.
  • the RRC configured granularity is 2 symbols
  • the number of bits for time resource indication in UL CI is 7 bits
  • the number of symbols in the RUR after excluding semi-static DL symbols is 10 (denoted as N RUR )
  • the first bits are divided into the first part, with each bit indicating symbols.
  • the last bits are divided into the second part, with each bit indicating symbols.
  • the finer granularity may be beneficial for resource utilization, since unnecessary preemption may be avoided.
  • the bits with finer granularity are used to indicate the symbols closer to the UL CI, while the bits with coarser granularity are used to indicate the symbols more far from the UL CI, since the gNB may have better picture of how to perform scheduling on the more recent symbols.
  • the semi-static downlink, flexible, and uplink symbols are the symbols configured as downlink, flexible, and uplink respectively in TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigurationDedicated, if provided by the gNB.
  • the reference frequency region of the RUR is determined as the active UL BWP of the UE.
  • the gNB may need to configure the same size of UL BWP for the UEs configured with the same bits for the serving cell in UL CI.
  • the UE does not switch DL BWP. Therefore, the same UL CI search space is monitored after the UE switched UL BWP.
  • the gNB Since the UE determines the reference frequency region as the active UL BWP, the gNB will need to switch all the UEs configured with the same bits for the serving cell in UL CI to the same BWP. Otherwise, the UE will misinterpret the UL CI if the gNB sets the UL CI based on active UL BWP of the other UEs. To resolve this issue, UL CI should be able to be configured with specific bits for different UL BWPs. That is, a BWP-Id may be configured with a corresponding positionInDCI in the UL CI configuration.
  • the UE may monitor the same UL CI search space after UL BWP switching, and the UE can use the bits configured for the new UL BWP for UL CI interpretation, and the reference frequency region is the new active UL BWP.
  • the UE switches to an UL BWP without corresponding bits in UL CI
  • the UE still uses the bits configured for the UL BWP before BWP switching for UL CI interpretation, and the reference frequency region is the UL BWP before BWP switching.
  • the granularity of frequency resource indication it may be determined based on the configured number of bits for frequency resource indication and the size of reference frequency region.
  • a timeline condition can be defined for the UE to determine whether to drop the PUCCH or transmit the PUCCH.
  • the Rel-15 timeline requirement for UCI multiplexing may be used. As shown in an example framework 300 shown in FIG. 3, if the time duration from the end of UL CI to the earliest symbol of the overlapping PUSCH and PUCCH is equal or larger than then the UCI can be transmitted on PUCCH.
  • the UE For a UE with both eMBB and URLLC traffic, the UE should not expect a scheduled PUSCH for URLLC traffic to be preempted.
  • the following method may be used to avoid unnecessary UL CI monitoring.
  • the UE For this first method, the UE should start to monitor UL CI after decoded an UL grant with “low priority” indication.
  • the priority indication for dynamic grant (DG) PUSCH may be in the form of the following options:
  • DCI downlink control information
  • Option 2 By radio network temporary identifier (RNTI)
  • a configured grant For a configured grant (CG) , the UE only monitors the monitoring occasions of the search space for UL CI with associated RUR overlapping with the CG resource having a CG configuration of low priority.
  • a configured grant Type 1 an uplink grant is provided by the RRC, and stored as a configured uplink grant.
  • a configured grant Type 2 is where an uplink grant is provided by the physical downlink control channel (PDCCH) and stored or cleared as a configured uplink grant based on a physical layer signaling indicating configured grant activation or deactivation.
  • the priority may be configured by an explicit RRC information element (IE) .
  • IE explicit RRC information element
  • Type 2 CG the priority may be configured by an explicit RRC IE.
  • the priority of a Type 2 CG may also be indicated by the activation DCI of the Type 2 CG.
  • the priority of a Type 2 CG may be configured by an explicit RRC IE, and the priority indication in the activation DCI may overwrite the priority configured by the RRC IE.
  • the UE when a CG resource is not allowed to be used for transmission of a new TB, i.e., when configuredGrantTimer of the corresponding Hybrid Automatic Repeat Request (HARQ) process of the resource is running, the UE does not monitor search spaces for UL CI with associated RUR overlapping with the CG resource regardless of the priority of the CG resource.
  • HARQ Hybrid Automatic Repeat Request
  • the gNB may not be able to preempt the scheduled PUSCH if the UE only starts to monitor UL CI after decoding the UL grant.
  • the following method may be used to resolve the issue.
  • a UE monitors monitoring occasions of the search space for UL CI if the associated RUR overlaps with potentially scheduled PUSCH for the UE.
  • the UE may determine whether there may be a PUSCH overlapping with the RUR based on one or more of the following: time domain resource allocation (TDRA) table used by the UE, processingType2Enabled in PUSCH-ServingCellConfig, and minimum applicable K2.
  • TDRA time domain resource allocation
  • K2 is a time domain resource assignment and various values are shown below in Table 1. If it is determined that the associated RUR of a search space for UL CI overlaps with potentially scheduled PUSCH, it is monitored before decoding UL grant.
  • a TDRA table may be configured by pusch-TimeDomainAllocationList.
  • a UE uses default TDRA table if pusch-TimeDomainAllocationList is configured neither in pusch-ConfigCommon nor in pusch-Config. If pusch-TimeDomainAllocationList is configured both in pusch-ConfigCommon and in pusch-Config, the pusch-TimeDomainAllocationList in pusch-Config is used.
  • the TDRA table is configured in pusch-Config as shown below in Table 1, processingType2Enabled in PUSCH-ServingCellConfig is configured, SCS is 30kHz, and minimum applicable K2 is 0.
  • the search space for UL grant is configured to be associated with a 2-symbol CORESET and periodicity of one slot.
  • the search space configuration for UL CI is configured to be associated with a 2-symbol CORESET, periodicity of one slot, and 7 monitoring occasions in one slot.
  • the duration of RUR is assumed to be 4 symbols. Since processingType2Enabled in PUSCH-ServingCellConfig is configured, the minimum processing time for PUSCH preparation is 5.5 symbols. Therefore, a PUSCH may be scheduled to start at symbol 8 in the same slot as the UL grant, assuming TA is negligible.
  • all rows in the TDRA table may be used for scheduling a PUSCH. Since the processing time of UL grant may be assumed to be not larger than N2 symbols (capability 2) , whether to monitor the fifth, sixth, and seventh monitoring occasions of the search space for UL CI in a slot may be based on whether the associated RUR is overlapped with a scheduled PUSCH after determining if there is UL grant in the slot.
  • the UE may skip the following monitoring occasions of the search space for UL CI until the next monitoring occasion of the search space for UL grant, if the UE determines there is no UL grant in a search space, or an UL grant is decoded and the associated RUR of the monitoring occasions of the search spaces for UL CI do not overlap with the PUSCH scheduled by the UL grant.
  • whether to do monitoring may be based on whether there may be potential PUSCH overlapping with the associated RUR.
  • the first monitoring occasion of the search space for UL CI in a slot can have an associated RUR overlapping with PUSCH scheduled by an UL grant in the slot, using either row 1, row 2, and row 3.
  • the second monitoring occasion of the search space for UL CI in a slot has associated RUR overlapping with PUSCH scheduled by an UL grant in the slot, using either row 1, row 2, and row 3.
  • the third monitoring occasion of the search space for UL CI in a slot has associated RUR overlapping with PUSCH scheduled by an UL grant in the slot, using either row 2, row 3, row 4, row 5, and row 6.
  • the fourth monitoring occasion of the search space for UL CI in a slot has associated RUR overlapping with PUSCH scheduled by an UL grant in the slot, using either row 4, row 5, and row 6. Therefore, the first 4 monitoring occasions of the search space for the UL CI in a slot should be monitored if UE attempts to monitor the search space for UL grant in the slot.
  • the first monitoring occasion of the search space for UL CI in a slot starts at the same time as the search space for UL grant. Since it does not make sense for gNB to schedule a PUSCH and preempt a PUSCH at the same time, the UE may not need to monitor the first monitoring occasion of the search space for UL CI. Therefore, the UE may not monitor a monitoring occasion of the search space for UL CI if it has the same starting symbol as the search space for UL grant.
  • the UE starts UL CI monitoring upon attempting to decode UL grant, if processingType2Enabled in PUSCH-ServingCellConfig is configured. Otherwise, the UE starts UL CI monitoring after decoding an UL grant with “low priority” indication.
  • a PDCCH decoding time duration is defined.
  • the search space for UL CI can be monitored by the UE, if the search space for UL CI is with starting symbol after the starting symbol of the search space for UL grant and with starting symbol starting within the PDCCH decoding time duration counting from the end of the search space for UL grant.
  • the PDCCH decoding time may be defined in number of symbols, e.g., PDCCH decoding time may be defined as 2, 4, 8 symbols for SCS of 15kHz, 30kHz, and 60kHz, respectively. An example is shown in the framework 400 of FIG.
  • the monitoring occasion 0 of the search space for UL CI and monitoring occasion 1 of the search space for UL CI is within the PDCCH decoding time, it is monitored by the UE. Otherwise, the eMBB PUSCH may not be able to be preempted by the gNB.
  • the UE does not monitor the monitoring occasions of the search space for UL CI starting within the PDCCH decoding time.
  • whether the UE monitors the monitoring occasions of the search space for UL CI starting within the PDCCH decoding time is based on the reported UE capability.
  • the UE capability may explicitly indicate whether the UE is able to monitor the monitoring occasions of the search space for UL CI within PDCCH decoding time of UL grants or not.
  • the determination of whether the UE monitors the monitoring occasions of the search space for UL CI starting within the PDCCH decoding time can also be determined based on one or more other factors as well.
  • the UE may not need to keep monitoring UL CI if one or more conditions are met.
  • the following method may be used to determine whether to keep or stop monitoring UL CI. After the UE received a UL CI, it determines if the preempted resource indicated in UL CI overlaps with the PUSCH scheduled by an UL grant. Since the PUSCH will be cancelled by the UE if the PUSCH overlaps with the indicated resource, the UE may stop monitoring UL CI.
  • the UE can keep monitoring UL CI.
  • the indicated resource in UL CI overlaps with part of the symbols of a sounding reference signal (SRS) transmission, and there are monitoring occasions of the search space for UL CI with associated RUR overlapping with the other symbols of the SRS transmission that are not preempted, the UE keeps monitoring UL CI.
  • SRS sounding reference signal
  • a UE stops monitoring UL CI if it receives an UL grant with “high priority” indication.
  • a UE stops monitoring UL CI if it receives an UL grant scheduling a PUSCH with starting symbol earlier than the starting symbol of another PUSCH scheduled by another UL grant with starting symbol earlier than the starting symbol of the UL grant.
  • a UE stops monitoring UL CI if it receives an UL grant with “high priority” indication.
  • a UE stops monitoring UL CI if random access procedure is initiated. For CG, a UE stops monitoring UL CI after selecting an UL CG configured as high priority by a RRC parameter.
  • the combination of the above methods may be used to determine whether to start UL CI monitoring or stop UL CI monitoring.
  • a PUSCH with “high priority” is scheduled and UL CI is received, indicating preemption of part of the PUSCH resource.
  • the following method may be used to determine whether to apply the UL CI.
  • the UL CI only applies to PUSCH with “low priority” indication, or some other indicator or label.
  • the UL CI applies to PUSCH scheduled by an UL grant with earlier starting symbol than that of the UL CI.
  • the physical layer can pass the UL CI to the MAC layer after decoding of UL CI.
  • the MAC layer can take into account the UL CI when selecting the CG.
  • the starting symbol of the RUR of an UL CI can be the first symbol after a time duration of minimum processing time of UL CI and timing advance, counting from the end of the search space of the corresponding UL CI.
  • the minimum processing time is the time duration the UE needs for decoding the UL CI, and prepare for cancelling the UL transmission.
  • the starting symbol of the RUR of an UL CI is the first symbol after a time duration of minimum processing time of UL CI and timing advance, counting from the end of the search space of the corresponding UL CI.
  • the minimum processing time is the time duration the UE needs for decoding the UL CI, and preparing for cancelling the UL transmission.
  • the time duration of minimum processing time could be other values as well.
  • the starting symbol of the RUR is determined as the next symbol with its cyclic prefix (CP) starting T proc, 2 +TA ref after the end of the reception of the last symbol of the PDCCH carrying the UL CI cancelling the PUSCH.
  • CP cyclic prefix
  • the symbol timing is before applying TA.
  • the subcarrier spacing (SCS) for symbol timing determination may be based on the following methods. In an embodiment, the SCS for symbol timing determination is based on the SCS of the active BWP.
  • the active UL BWP for a UL CI is the UL BWP indicated in an UL grant with starting symbol earlier than the starting symbols of UL CI.
  • the active UL BWP for a UL CI is the UL BWP in which the last PUSCH is transmitted or the UL BWP indicated by a received RRC message or the UL BWP UE switches to after BWPInactivityTimer expires, whichever occurs last.
  • the PUSCH or RRC message can end before the start of the UL CI.
  • the SCS for a UL carrier is determined as a specific configured SCS, which may be configured together with RUR configuration.
  • the SCS is determined as the SCS of the UL BWP with same BWP-Id as the DL BWP, where the UE receives UL CI.
  • the UE uses the latest TA which is adjusted based on the last received TA command. For this alternative, it is up to the gNB to ensure the UEs configured with the same bits in UL CI has the same starting symbol of RUR. As another example, in an embodiment, the UE assumes TA ref is 0. In this case, it is up to the gNB to ensure the reliability of other UE’s URLLC PUSCH if the UL CI indicates UL symbols that cannot be cancelled by UE.
  • the system may determine not to schedule eMBB PUSCH for a UE with large TA if there is no proper UL CI monitoring occasion that can be used to preempt the PUSCH. If a UE receives an UL CI indicating UL symbols in which PUSCH has already been transmitted, the UE does not cancel those symbols, and cancels the PUSCH in the UL symbols indicated to be cancelled that are not yet transmitted.
  • the gNB configures TA ref for the UEs.
  • the TA ref is configured with the UL CI configuration.
  • the gNB may group the UEs with similar range of TA to the same bits in UL CI and with the same TA ref .
  • the gNB configures TA ref for each timing advance group (TAG) .
  • the TA ref is configured with the UL CI configuration.
  • the UE uses the TA ref configured for the TAG containing the UL carrier.
  • the UE uses the largest TA ref configured for the TAGs containing the UL carriers configured with associated bits in UL CI.
  • the gNB may group the UEs with the same TA ref to the same bits in UL CI.
  • the gNB may configure a specific value of TA ref to be associated with a specific positionInDCI in UL CI configuration.
  • TA ref may be determined implicitly based on its TA. The UE will only apply the bits starting from the positionInDCI associated with the determined TA ref . Note that the TA ref is only for the purpose of determining the starting symbol of the RUR, and it is not used for uplink transmission.
  • Cross carrier indication may be used for UL CI.
  • the content of UL CI may include indication of pre-empted resources on multiple carriers, each uplink carrier is configured with associated bits by configuring the servingCellId of an uplink carrier and the starting position (by positionInDCI) of the bits for the carrier in UL CI under the same IE, e.g., CI-ConfigurationPerServingCell.
  • a CI-ConfigurationPerServingCell may include two positionInDCI for the same serving cell: one for normal UL (NUL) carrier and one for supplementary UL (SUL) carrier.
  • a UL CI includes information bits for multiple UL carriers, it is possible that the UL carriers have different SCS for the active UL BWPs or configured UL BWPs.
  • the following method may be used.
  • minimum processing time for a UL carrier is determined from the ⁇ corresponding to one of ( ⁇ DL, ⁇ UL) that results in the largest T proc, 2 , where the ⁇ DL corresponds to the subcarrier spacing of the downlink with which the PDCCH carrying the UL CI was transmitted and ⁇ UL corresponds to the subcarrier spacing of the active UL BWP of the uplink carrier to which a number of bits starting from positionInDCI in UL CI is applied.
  • the minimum processing time for a UL carrier is determined based on the smallest ⁇ from ( ⁇ DL, ⁇ UL) .
  • the minimum processing time for a UL carrier is determined from the ⁇ corresponding to one of ( ⁇ DL, ⁇ UL) resulting in the largest T proc, 2 , where the ⁇ DL corresponds to the subcarrier spacing of the downlink with which the PDCCH carrying the UL CI was transmitted and ⁇ UL corresponds to the smallest subcarrier spacing of the configured UL BWPs of the uplink carrier to which a number of bits starting from positionInDCI in UL CI is applied.
  • the minimum processing time for a UL carrier is determined based on the smallest ⁇ from ( ⁇ DL, ⁇ UL) .
  • minimum processing time for a UL carrier is determined from the ⁇ corresponds to one of ( ⁇ DL, ⁇ UL) resulting in the largest T proc, 2 , where the ⁇ DL corresponds to the subcarrier spacing of the downlink with which the PDCCH carrying the UL CI was transmitted and ⁇ UL corresponds to the smallest subcarrier spacing of the active UL BWP of the UL carriers configured with associated bits in UL CI for the UE.
  • the minimum processing time for a UL carrier is determined based on the smallest ⁇ from ( ⁇ DL, ⁇ UL) .
  • minimum processing time for a UL carrier is determined from the ⁇ corresponds to the one of ( ⁇ DL, ⁇ UL) resulting with the largest T proc, 2 , where the ⁇ DL corresponds to the subcarrier spacing of the downlink with which the PDCCH carrying the UL CI was transmitted and ⁇ UL corresponds to the smallest subcarrier spacing of the configured UL BWPs of the UL carriers configured with associated bits in UL CI for the UE.
  • the minimum processing time for a UL carrier is determined based on the smallest ⁇ from ( ⁇ DL, ⁇ UL) .
  • the active UL BWP for a UL CI is the UL BWP indicated in a UL grant with a starting symbol earlier than the starting symbols of UL CI.
  • the active UL BWP for a UL CI is the last occurring of the UL BWP in which the last PUSCH is transmitted, the UL BWP indicated by a received RRC message indicating UL BWP switching, and the UL BWP UE switches to after BWPInactivityTimer expires.
  • the PUSCH or RRC message ends before the start of the UL CI.
  • the SCS for a UL carrier is determined as a specific configured SCS, which may be configured together with RUR configuration.
  • the SCS for a UL carrier is determined as the SCS of the DL BWP in which the UL CI is transmitted.
  • the SCS is determined as the SCS of the UL BWP with same BWP-Id as the DL BWP where the UE receives UL CI.
  • the number of bits for cancellation indication for time domain resource for a UL carrier is configured by a RRC parameter together with positionInDCI in CI-ConfigurationPerServingCell.
  • the reference time region is defined as the UL symbols and the semi-static flexible symbols within the configured time duration, e.g., 2 symbols, 4 symbols, etc., counting from the starting symbol of the RUR.
  • the semi-static downlink symbols are excluded from the RUR so that the actual number of symbols in the RUR may be smaller than the RRC configured number of symbols for the RUR.
  • the granularity of each bit for time domain indication in UL CI is configured by a RRC parameter (e.g., 1 symbol, 2 symbols, 4 symbols, etc. ) .
  • the SCS of the symbol is determined as the SCS of active UL BWP.
  • the active UL BWP for a UL CI is the UL BWP indicated in an UL grant with starting symbol earlier than the starting symbols of the UL CI.
  • the active UL BWP for a UL CI is the UL BWP in which the last PUSCH is transmitted or the UL BWP indicated by a received RRC message indicating UL BWP switching or the UL BWP UE switches to after BWPInactivityTimer expires, whichever occurs last.
  • the PUSCH or RRC message ends before the start of the UL CI.
  • the SCS for determination of symbol duration of symbols in reference UL resource of a UL carrier is determined as a specific configured SCS, which may be configured together with RUR configuration.
  • the SCS for a UL carrier is determined as the SCS of the DL BWP in which the UL CI is transmitted.
  • the SCS is determined as the SCS of the UL BWP with same BWP-Id as the DL BWP where UE receives the UL CI.
  • the configured number of bits for indicating time domain resources in the UL CI is divided into two parts, each bit in the first part may indicate less number of symbols than the RRC configured number of symbols, while each bit in the second part may indicate a number of symbols that is RRC configured.
  • the method for determining the number of bits in each part may be based on the number of bits for indicating time domain resource in the UL CI and the number of symbols in the RUR after excluding semi-static downlink symbols.
  • the first bits are divided into the first part, with each bit indicating symbols.
  • the last bits are divided into the second part, with each bit indicating symbols. Note that the first part can indicate with finer granularity than the configured granularity.
  • the finer granularity may be beneficial for resource utilization, since unnecessary preemption may be avoided.
  • the bits with finer granularity are used to indicate the symbols closer to the UL CI, while the bits with coarser granularity are used to indicate the symbols more far from the UL CI, since the gNB may have better picture of how to perform scheduling on the more recent symbols.
  • the semi-static downlink, flexible, and uplink symbols are the symbols configured as downlink, flexible, and uplink respectively in TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigurationDedicated, if provided by the gNB.
  • the duration of RUR may be longer than the monitoring periodicity or longer than the time offset between the start times of two consecutive monitoring occasions of the search space for the UL CI.
  • a UE may receive more than one UL CI with associated RUR overlapping with a PUSCH. If a symbol is indicated by more than one UL CI, how the UE will interpret the more than one UL CI needs to be defined. The following embodiments may be used. In one embodiment, when a resource element is indicated by more than one UL CI, the UE follows the last UL CI for determining whether the resource element should be cancelled or not.
  • the UE expects consistent indication in multiple CIs for a resource element, and the UE determines whether to cancel a PUSCH based on the union of the pre-empted resource indicated by the multiple CIs.
  • the UE follows the UL CI with finer granularity for determining whether the resource element should be cancelled or not.
  • the granularity of time domain indication may result in indicated resource to overlap with part of a symbol of a scheduled UL transmission.
  • the symbol is cancelled, which result in cancelling the whole UL transmission in case of PUSCH or cancelling the UL transmission on the symbol in case of SRS.
  • the reference frequency region is explicitly configured by RRC parameters.
  • the starting resource block (RB) may be configured based on common resource block indexing, and configured with specific SCS and type of CP.
  • the reference frequency region is determined as the initial UL BWP.
  • the reference frequency region is configured as a specific UL BWP.
  • the reference frequency region is the UL BWP with same BWP-Id as the DL BWP where UE receives UL CI.
  • the reference frequency region is determined as the active UL BWP.
  • the active UL BWP for a UL CI is the UL BWP indicated in an UL grant with starting symbol earlier than the starting symbols of the UL CI.
  • the active UL BWP for UL CI may be determined to be the new UL BWP indicated in UL grant before the scheduled PUSCH. Therefore, the PUSCH scheduled by BWP switching UL grant may be pre-empted.
  • the active UL BWP for a UL CI is the UL BWP in which the last PUSCH is transmitted or the UL BWP indicated by a received RRC message indicating UL BWP switching or the UL BWP UE switches to after BWPInactivityTimer expires, whichever occurs last.
  • the PUSCH or RRC message ends before the start of the UL CI.
  • the RUR is determined based on the UL BWP before BWP switching for the UL CI received before the end of the PUSCH. Therefore, a PUSCH scheduled by BWP switching UL grant may not be pre-empted if the PUSCH does not overlap with the UL BWP before BWP switching.
  • UL CI may be configured with a specific number of bits for different UL BWPs. That is, a BWP-Id may be configured with a corresponding positionInDCI in the UL CI configuration.
  • UE may monitor the same UL CI search space after UL BWP switching, and UE will use the bits configured for the new UL BWP for UL CI interpretation, and the reference frequency region is the new active UL BWP.
  • the UE switches to an UL BWP without corresponding bits in UL CI
  • UE still uses the bits configured for the UL BWP before BWP switching for UL CI interpretation, and the reference frequency region is the UL BWP before BWP switching.
  • the granularity of frequency domain indication may result in indicated resource to overlap with part of a subcarrier of a scheduled UL transmission. In this case, the UL transmission is cancelled by UE.
  • the number of bits for cancellation indication for frequency domain resource for a UL carrier may be configured by a RRC parameter together with positionInDCI in CI-ConfigurationPerServingCell.
  • the granularity of frequency domain resource indication is determined by the number of bits configured for frequency domain resource indication. For example, assuming number of bits configured for frequency domain resource indication in UL CI for the UL carrier is 7 bits, and the number of PRBs in the RUR is 51 (denoted as F RUR ) , then the first bits has granularity of PRBs. The last bits has granularity of PRBs.
  • the number of bits for cancellation indication for time domain resource and frequency domain resource for a UL carrier is configured by a RRC parameter together with positionInDCI in CI-ConfigurationPerServingCell.
  • the granularity of each bit for time domain indication in UL CI is configured by a RRC parameter.
  • T RUR semi-static DL symbols
  • the preempted resource is the union of the indicated time domain resource and the indicated frequency domain resource.
  • the number of bits for cancellation indication for time domain resource and frequency domain resource for a UL carrier is configured by a RRC parameter together with positionInDCI in CI-ConfigurationPerServingCell.
  • the granularity of each bit for time domain indication in UL CI is configured by a RRC parameter. To determine the number of bits used for indicating time domain resource, it may be calculated based on the number of symbols in the configured time duration of RUR after excluding semi-static DL symbols, denoted as T RUR , and the granularity of time domain resource indication, e.g. Then each bit of the first bits indicates symbols, and each bits of the last bits indicates symbols.
  • the rest of the bits may be used for indicating frequency domain resource, and the number of bits used for indicating the frequency domain resource is integer multiple times of the number used for indicating the time domain resource, i.e., For each bit in bits is used to indicate the preempted resource corresponding to the indicated time domain resource.
  • the indication of frequency domain resource may be done in the same way as the above methods, by replacing the F CI by
  • the number of bits for cancellation indication for time domain resource and frequency domain resource for a UL carrier is configured by a RRC parameter in CI-ConfigurationPerServingCell.
  • the same number of bits is applied to all carriers.
  • the granularity of each bit for time domain indication in UL CI is configured by a RRC parameter and a reference SCS.
  • the configured time duration of RUR for each carrier is the same. For example, the time duration is configured as a number of symbols based on a reference SCS, then the configured time duration of RUR for each carrier is determined based on scaling the number of symbols in reference SCS by For determination of the granularity of time domain indication, the same number of symbols may be used for each carrier with different SCS.
  • the number of symbols may be scaled by the ratio of the SCS of the carrier and a reference SCS.
  • the number of bits used for time domain resource allocation, granularity and number of bits for frequency resource indication for each carrier may be determined as the same way in above methods.
  • the number of PRBs of reference frequency resource for each carrier may be configured explicitly by RRC parameters.
  • a timeline condition is defined for UE to determine whether to drop the PUCCH or transmit the PUCCH.
  • a UE would transmit multiple overlapping PUCCHs in a slot or overlapping PUCCH (s) and PUSCH (s) in a slot
  • the UE is configured to multiplex different UCI types in one PUCCH (when applicable, as described in Subclauses 9.2.5.1 and 9.2.5.2 in TS 38.214 V15.7.0) , and at least one of the multiple overlapping PUCCHs or PUSCHs is in response to a DCI format detection by the UE, the UE multiplexes all corresponding UCI types if the following conditions are met.
  • the PUSCHs satisfying the following conditions are considered.
  • CP cyclic prefix
  • N 2 is selected based on the UE PUSCH processing capability 2 and SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH carrying UL CI, PDCCH scheduling the i-th PUSCH, the PDCCHs scheduling the PDSCHs with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs/PUSCHs, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • the UE If one of the PUCCH transmissions or PUSCH transmissions is in response to a DCI format detection by the UE, the UE expects that the first symbol S 0 of the earliest PUCCH or PUSCH, among a group overlapping PUCCHs and PUSCHs in the slot, satisfies the following timeline conditions.
  • S 0 is not before a symbol with the CP starting after after a last symbol of any corresponding PDSCH, is given by maximum of where for the i-th PDSCH with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs and PUSCHs, d 1, 1 is selected for the i-th PDSCH following [6, TS 38.214] , N 1 is selected based on the UE PDSCH processing capability of the i-th PDSCH and SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH scheduling the i-th PDSCH (if any) , the i-th PDSCH, the PUCCH with corresponding HARQ-ACK transmission for i-th PDSCH, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • S 0 is not before a symbol with the CP starting after after a last symbol of any corresponding SPS PDSCH release. is given by maximum of where for the i-th PDCCH providing the SPS PDSCH release with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs and PUSCHs, N is described in Subclause 10.2 of TS 38.213 V15.7.0 and is selected based on the UE PDSCH processing capability of the i-th SPS PDSCH release and SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH providing the i-th SPS PDSCH release, the PUCCH with corresponding HARQ-ACK transmission for i-th SPS PDSCH release, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • S 0 is not before a symbol with the CP starting after after a last symbol of any PDCCH with the DCI format scheduling an overlapping PUSCH, and any PDCCH scheduling a PDSCH or SPS PDSCH release with corresponding HARQ-ACK information in an overlapping PUCCH in the slot.
  • CSI channel state information
  • N 2 is selected based on the UE PUSCH processing capability of the i-th PUSCH and the SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH scheduling the i-th PUSCH (if any) , the PDCCHs scheduling the PDSCHs with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs/PUSCHs, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • N 2 is selected based on the UE PUSCH processing capability of the PUCCH serving cell if configured. N 2 is selected based on the UE PUSCH processing capability 1, if PUSCH processing capability is not configured for the PUCCH serving cell.
  • is selected based on the smallest SCS configuration between the SCS configuration used for the PDCCH scheduling the i-th PDSCH (if any) with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs, and the SCS configuration for the PUCCH serving cell.
  • N 1 , N 2 , d 1, 1 , d 2, 1 , d 2, 2 , and Z are defined in [6, TS 38.214]
  • ⁇ and T C are defined in [4, TS 38.211] .
  • the PUCCH may be multiplexed on another PUSCH if timeline requirements are satisfied.
  • the UE cancels the whole PUSCH.
  • the gNB may schedule another PUSCH on the resource not indicated by the UL CI in the cancelled PUSCH.
  • UE restarts drx-RetransmissionTimerUL when the UL CI is received.
  • a Medium Access Control (MAC) entity can setup one or more timers for individual purposes, for example, triggering some uplink signaling retransmission or limiting some uplink signaling retransmission period.
  • a timer is running once it is started, until it is stopped or until it expires; otherwise it is not running.
  • a timer can be started if it is not running or restarted if it is running.
  • a timer is always started or restarted from its initial value. The initial value can be but is not limited to be configured by the gNB via downlink RRC signaling.
  • BWP Bandwidth Part
  • BeWP BeWP: A subset of the total cell bandwidth of a cell is referred to as a Bandwidth Part (BWP) and beamwidth part adaptation is achieved by configuring the UE with BWP (s) and telling the UE which of the configured BWPs is currently the active one.
  • BA Bandwidth Adaptation
  • SCells secondary cells
  • the gNB configures the UE with DL BWP (s) at least (i.e. there may be none in the UL) .
  • the initial BWP is the BWP used for initial access.
  • the initial BWP is the BWP configured for the UE to first operate at SCell activation.
  • the UE may be configured with a first active uplink BWP by a firstActiveUplinkBWP IE. If the first active uplink BWP is configured for special cell (SpCell) , the firstActiveUplinkBWP IE field contains the ID of the UL BWP to be activated upon performing the RRC (re-) configuration. If the field is absent, the RRC (re-) configuration does not impose a BWP switch. If the first active uplink BWP is configured for an SCell, the firstActiveUplinkBWP IE field contains the ID of the uplink bandwidth part to be used upon MAC-activation of an SCell.
  • Rel-15 timeline requirements for UCI multiplexing If a UE would transmit multiple overlapping PUCCHs in a slot or overlapping PUCCH (s) and PUSCH (s) in a slot and, when applicable as described in Subclauses 9.2.5.1 and 9.2.5.2 in TS 38.214 V15.7.0, the UE is configured to multiplex different UCI types in one PUCCH, and at least one of the multiple overlapping PUCCHs or PUSCHs is in response to a DCI format detection by the UE, the UE multiplexes all corresponding UCI types if the following conditions are met.
  • the UE If one of the PUCCH transmissions or PUSCH transmissions is in response to a DCI format detection by the UE, the UE expects that the first symbol S 0 of the earliest PUCCH or PUSCH, among a group overlapping PUCCHs and PUSCHs in the slot, satisfies the following timeline conditions.
  • S 0 is not before a symbol with the CP starting after after a last symbol of any corresponding PDSCH, is given by maximum of where for the i-th PDSCH with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs and PUSCHs, d 1, 1 is selected for the i-th PDSCH following [6, TS 38.214] , N 1 is selected based on the UE PDSCH processing capability of the i-th PDSCH and SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH scheduling the i-th PDSCH (if any) , the i-th PDSCH, the PUCCH with corresponding HARQ-ACK transmission for i-th PDSCH, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • S 0 is not before a symbol with the CP starting after after a last symbol of any corresponding SPS PDSCH release. is given by maximum of where for the i-th PDCCH providing the SPS PDSCH release with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs and PUSCHs, N is described in Subclause 10.2 of TS 38.213 V15.7.0 and is selected based on the UE PDSCH processing capability of the i-th SPS PDSCH release and SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH providing the i-th SPS PDSCH release, the PUCCH with corresponding HARQ-ACK transmission for i-th SPS PDSCH release, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • S 0 is not before a symbol with the CP starting after after a last symbol of any PDCCH with the DCI format scheduling an overlapping PUSCH, and any PDCCH scheduling a PDSCH or SPS PDSCH release with corresponding HARQ-ACK information in an overlapping PUCCH in the slot.
  • N 2 is selected based on the UE PUSCH processing capability of the i-th PUSCH and SCS configuration ⁇ , where ⁇ corresponds to the smallest SCS configuration among the SCS configurations used for the PDCCH scheduling the i-th PUSCH (if any) , the PDCCHs scheduling the PDSCHs with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs/PUSCHs, and all PUSCHs in the group of overlapping PUCCHs and PUSCHs.
  • N 2 is selected based on the UE PUSCH processing capability of the PUCCH serving cell if configured. N 2 is selected based on the UE PUSCH processing capability 1, if PUSCH processing capability is not configured for the PUCCH serving cell.
  • is selected based on the smallest SCS configuration between the SCS configuration used for the PDCCH scheduling the i-th PDSCH (if any) with corresponding HARQ-ACK transmission on a PUCCH which is in the group of overlapping PUCCHs, and the SCS configuration for the PUCCH serving cell.
  • N 1 , N 2 , d 1, 1 , d 2, 1 , d 2, 2 , and Z are defined in
  • T proc, 2 max ( (N 2 +d 2, 1 ) (2048+144) ⁇ 2 - ⁇ ⁇ T C , d 2, 2 ) .
  • N 2 is based on ⁇ of Table 6.4-1 and Table 6.4-2 of TS 38.214 for UE processing capability 1 and 2 respectively, where ⁇ corresponds to the one of ( ⁇ DL , ⁇ UL ) resulting with the largest T proc, 2 , where the ⁇ DL corresponds to the subcarrier spacing of the downlink with which the PDCCH carrying the DCI scheduling the PUSCH was transmitted and ⁇ UL corresponds to the subcarrier spacing of the uplink channel with which the PUSCH is to be transmitted, and ⁇ is defined in subclause 4.1 of [4, TS 38.211] .
  • CCE Control Channel Element
  • PDCCH candidates For all search space sets within a slot n, denote by S CSS a set of CSS sets with cardinality of I CSS and by S USS a set of UE-specific SS (USS) sets with cardinality of J USS .
  • S CSS a set of CSS sets with cardinality of I CSS
  • S USS a set of UE-specific SS (USS) sets with cardinality of J USS .
  • the location of USS sets S j , 0 ⁇ j ⁇ J USS , in S USS is according to an ascending order of the search space set index.
  • the UE allocates PDCCH candidates for monitoring to USS sets for the primary cell having an active DL BWP with SCS configuration ⁇ in slot n according to the following pseudocode.
  • a UE does not expect to monitor PDCCH in a USS set without allocated PDCCH candidates for monitoring.
  • V CCE (S USS (j) ) the set of non-overlapping CCEs for search space set S USS (j) and by the cardinality of V CCE (S USS (j) ) where the non-overlapping CCEs for search space set S USS (j) are determined considering the allocated PDCCH candidates for monitoring for the CSS sets and the allocated PDCCH candidates for monitoring for all search space sets S USS (k) , 0 ⁇ k ⁇ j.
  • references to “one implementation, ” “an implementation, ” “example implementation, ” “various implementations, ” “some implementations, ” “implementations of the present application, ” etc., may indicate that the implementation (s) of the present application so described may include a particular feature, structure, or characteristic, but not every possible implementation of the present application necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one implementation, ” or “in an example implementation, ” “an implementation, ” do not necessarily refer to the same implementation, although they may.
  • any use of phrases like “implementations” in connection with “the present application” are never meant to characterize that all implementations of the present application must include the particular feature, structure, or characteristic, and should instead be understood to mean “at least some implementations of the present application” includes the stated particular feature, structure, or characteristic.
  • the term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections.
  • the term “comprising, ” when utilized, means “including, but not necessarily limited to” ; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the equivalent.
  • any network function (s) or algorithm (s) described in the present disclosure may be implemented by hardware, software or a combination of software and hardware. Described functions may correspond to modules which may be software, hardware, firmware, or any combination thereof.
  • the software implementation may comprise computer executable instructions stored on computer readable medium such as memory or other type of storage devices.
  • one or more microprocessors or general purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the described network function (s) or algorithm (s) .
  • the microprocessors or general purpose computers may be formed of Applications Specific Integrated Circuitry (ASIC) , programmable logic arrays, and/or using one or more Digital Signal Processor (DSPs) .
  • ASIC Application Specific Integrated Circuitry
  • DSPs Digital Signal Processor
  • the computer readable medium includes but is not limited to Random Access Memory (RAM) , Read Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc Read Only Memory (CD ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory Compact Disc Read Only Memory (CD ROM)
  • CD ROM Compact Disc Read Only Memory
  • magnetic cassettes magnetic tape
  • magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
  • a radio communication network architecture typically includes at least one base station, at least one User Equipment (UE) , and one or more optional network elements that provide connection towards a network.
  • the UE communicates with the network (e.g., a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) , a Next-Generation Core (NGC) , or an internet) through a Radio Access Network (RAN) established by the base station.
  • the network e.g., a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) , a Next-Generation Core (NGC) , or an internet
  • RAN Radio Access Network
  • a UE may include, but is not limited to, a mobile station, a mobile terminal or device, a user communication radio terminal, etc.
  • a UE may be a portable radio equipment, which includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, or a Personal Digital Assistant (PDA) with wireless communication capability.
  • PDA Personal Digital Assistant
  • the UE is configured to receive/transmit signals over an air interface from/to one or more cells in a radio access network.
  • a base station may include, but is not limited to, a Node B (NB) as in the UMTS, an evolved Node B (eNB) as in the LTE-A, a Radio Network Controller (RNC) as in the UMTS, a Base Station Controller (BSC) as in the GSM/GERAN, an NG-eNB as in an E-UTRA base station in connection with the 5GC, a next generation Node B (gNB) as in the 5G-AN, and any other apparatus capable of controlling radio communication and managing radio resources within a cell.
  • the base station may connect to serve the one or more UEs through a radio interface to the network.
  • a base station may be configured to provide communication services according to at least one of the following Radio Access Technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM, often referred to as 2G) , GSM EDGE radio access Network (GERAN) , General Packet Radio Service (GPRS) , Universal Mobile Telecommunication System (UMTS, often referred to as 3G) based on basic Wideband-Code Division Multiple Access (W-CDMA) , High-Speed Packet Access (HSPA) , LTE, LTE-A, eLTE (evolved LTE) , New Radio (NR, often referred to as 5G) , and/or LTE-A Pro.
  • RATs Radio Access Technologies
  • the base station is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the radio access network.
  • the base station supports the operations of the cells.
  • Each cell is operable to provide services to at least one UE within its radio coverage. More specifically, each cell (often referred to as a serving cell) provides services to serve one or more UEs within its radio coverage, (e.g., each cell schedules the downlink and optionally uplink resources to at least one UE within its radio coverage for downlink and optionally uplink packet transmissions) .
  • the base station can communicate with one or more UEs in the radio communication system through the plurality of cells.
  • a cell may allocate SideLink (SL) resources for supporting Proximity Service (ProSe) .
  • Each cell may have overlapped coverage areas with other cells.
  • SL SideLink
  • the frame structure for NR is to support flexible configurations for accommodating various next generation (e.g., 5G) communication requirements, such as enhanced Mobile BroadBand (eMBB) , massive Machine Type Communication (mMTC) , Ultra-Reliable communication and Low Latency Communication (URLLC) , while fulfilling high reliability, high data rate and low latency requirements.
  • 5G next generation
  • eMBB enhanced Mobile BroadBand
  • mMTC massive Machine Type Communication
  • URLLC Ultra-Reliable communication and Low Latency Communication
  • OFDM Orthogonal Frequency-Division Multiplexing
  • the scalable OFDM numerology such as the adaptive sub-carrier spacing, the channel bandwidth, and the Cyclic Prefix (CP) , may also be used.
  • two coding schemes are considered for NR: (1) Low-Density Parity-Check (LDPC) code and (2) polar code.
  • the coding scheme adaption may be configured based on the channel conditions and/or the service
  • DL transmission data DownLink
  • UL transmission data UpLink
  • the respective portions of the DL transmission data, the guard period, and the UL transmission data should also be configurable, for example, based on the network dynamics of NR.
  • SL resource may also be provided in an NR frame to support ProSe services.
  • system and “network” herein may be used interchangeably.
  • the term “and/or” herein is only an association relationship for describing associated objects, and represents that three relationships may exist. For example, A and/or B may indicate that: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” herein generally represents that the former and latter associated objects are in an “or” relationship.
  • a node 500 may include a transceiver 520, a processor 528, a memory 534, one or more presentation components 538, and at least one antenna 536.
  • the node 500 may also include an RF spectrum band module, a base station communications module, a network communications module, and a system communications management module, Input/Output (I/O) ports, I/O components, and power supply (not explicitly shown in FIG. 5) .
  • I/O Input/Output
  • I/O components I/O components
  • power supply not explicitly shown in FIG. 5
  • the node 500 may be a UE or a base station that performs various functions described herein, for example, with reference to Figs. 1 through 4.
  • the transceiver 520 having a transmitter 522 (e.g., transmitting/transmission circuitry) and a receiver 524 (e.g., receiving/reception circuitry) may be configured to transmit and/or receive time and/or frequency resource partitioning information.
  • the transceiver 520 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats.
  • the transceiver 520 may be configured to receive data and control channels.
  • the node 500 may include a variety of computer-readable media.
  • Computer-readable media can be any available media that can be accessed by the node 500 and include both volatile and non-volatile media, removable and non-removable media.
  • Computer-readable media may comprise computer storage media and communication media.
  • Computer storage media includes both volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable.
  • Computer storage media includes RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • Computer storage media does not comprise a propagated data signal.
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
  • the memory 534 may include computer-storage media in the form of volatile and/or non-volatile memory.
  • the memory 534 may be removable, non-removable, or a combination thereof.
  • Exemplary memory includes solid-state memory, hard drives, optical-disc drives, and etc.
  • the memory 534 may store computer-readable, computer-executable instructions 532 (e.g., software codes) that are configured to, when executed, cause the processor 528 to perform various functions described herein, for example, with reference to Figs. 1 through 4.
  • the instructions 532 may not be directly executable by the processor 528 but be configured to cause the node 500 (e.g., when compiled and executed) to perform various functions described herein.
  • the processor 528 may include an intelligent hardware device, e.g., a Central Processing Unit (CPU) , a microcontroller, an ASIC, and etc.
  • the processor 528 may include memory.
  • the processor 528 may process the data 530 and the instructions 532 received from the memory 534, and information through the transceiver 520, the base band communications module, and/or the network communications module.
  • the processor 528 may also process information to be sent to the transceiver 520 for transmission through the antenna 536, to the network communications module for transmission to a core network.
  • One or more presentation components 538 presents data indications to a person or other device.
  • Exemplary presentation components 538 include a display device, speaker, printing component, vibrating component, and etc.
  • FIG. 5B illustrates a network 550 including a device such as a UE 552 that communicates through a network or an air interface 556 with a cellular node such as a gNB 554.
  • FIG. 5B shows the UE 552 receiving the UL grant and the UL CI transmitted from the gNB 554.
  • the steps of determining whether the UL resource overlaps with the PUSCH to yield a determination and, when the determination indicates that the UL resource overlaps with the PUSCH, cancelling the PUSCH can be practiced on the UE 552.
  • any one or more steps disclosed herein can be performed by one or more of the UE 552 and/or the gNB or cellular node 554.
  • FIG. 6 illustrates a method embodiment 600 of this disclosure.
  • the method includes one or more of steps including receiving an uplink (UL) grant, wherein the UL grant schedules a Physical Uplink Shared Channel (PUSCH) , wherein a frequency resource for the PUSCH is allocated within an active UL Bandwidth Part (BWP) of a user equipment (UE) , and wherein the frequency resource is allocated using a physical resource block (PRB) index of the active UL BWP (602) .
  • UL uplink
  • PUSCH Physical Uplink Shared Channel
  • BWP Bandwidth Part
  • PRB physical resource block
  • the method further includes receiving an UL cancellation indication (CI) , wherein the UL CI indicates a UL resource in a reference UL resource, wherein the reference UL resource is allocated within a carrier including at least the active UL BWP, and wherein the frequency resource is allocated using a common resource block (CRB) index of the carrier (604) , determining whether the UL resource overlaps with the PUSCH to yield a determination (606) and, when the determination indicates that the UL resource overlaps with the PUSCH, cancelling the PUSCH (608) .
  • CI UL cancellation indication
  • the method can further include defining a starting symbol of the reference UL resource.
  • the starting symbol can be defined as a first symbol after a time duration from an end of the UL CI and the time duration can be defined based on a first time duration of minimum processing for decoding the UL grant and preparing the PUSCH and a second time duration configured by gNB.
  • the first time duration can be determined based on a smallest subcarrier spacing (SCS) of the SCS of a downlink with which a Physical Downlink Control Channel (PDCCH) carrying the UL CI was transmitted and a smallest SCS of configured UL BWPs of the carrier.
  • the method can further include determining symbol durations of one or more symbols of the UL resource, wherein the symbol durations are based on a subcarrier spacing (SCS) of a downlink (DL) BWP in which the UL CI was received.
  • SCS subcarrier spacing
  • a method, system or computer-readable storage medium or device can cover any device or component described herein and the steps or operations performed by the device.
  • embodiments can be claimed from the standpoint of the user equipment (UE) described herein, which can receive signals (UL Grant/UL CI) and perform certain steps.
  • operations can be claimed from the standpoint of a cellular node such as a gNB or other cellular (or other network protocol) wireless component that communicates with UEs.
  • the steps can include features performed by the gNB such as transmitting a UL Grant signal and transmitting a UL CI signal for use by the UE in determining whether to cancel the PUSCH or to perform some other action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
PCT/CN2020/127040 2019-11-08 2020-11-06 Method and apparatus for uplink cancellation indication WO2021088969A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080077463.1A CN114651512A (zh) 2019-11-08 2020-11-06 用于上行链路取消指示的方法和设备
KR1020227018567A KR20220092950A (ko) 2019-11-08 2020-11-06 업링크 취소 표시를 위한 방법 및 사용자 장비
JP2022526186A JP7270110B2 (ja) 2019-11-08 2020-11-06 上りリンクキャンセルインディケーションの方法及びユーザ機器
EP20885294.7A EP4046448A4 (en) 2019-11-08 2020-11-06 METHOD AND APPARATUS FOR INDICATING CANCELLATION OF A UPLINK CONNECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962932881P 2019-11-08 2019-11-08
US62/932,881 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021088969A1 true WO2021088969A1 (en) 2021-05-14

Family

ID=75847689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127040 WO2021088969A1 (en) 2019-11-08 2020-11-06 Method and apparatus for uplink cancellation indication

Country Status (6)

Country Link
US (1) US11540282B2 (ja)
EP (1) EP4046448A4 (ja)
JP (1) JP7270110B2 (ja)
KR (1) KR20220092950A (ja)
CN (1) CN114651512A (ja)
WO (1) WO2021088969A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523414B2 (en) 2018-01-13 2022-12-06 Wilus Institute Of Standards And Technology Inc. Channel multiplexing method and multiplexed channel transmission method for wireless communication system and device using same
US11601966B2 (en) 2019-10-07 2023-03-07 Wilus Institute Of Standards And Technology Inc. Method, device, and system for cancelling uplink transmission in wireless communication system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424868B2 (en) * 2019-01-24 2022-08-23 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment processing timeline enhancement in mobile communications
CN113330793A (zh) * 2019-12-31 2021-08-31 中兴通讯股份有限公司 用于确定指示取消的信息的系统和方法
US11792856B2 (en) * 2020-02-13 2023-10-17 Qualcomm Incorporated Uplink collision handling
US11665732B2 (en) * 2020-02-14 2023-05-30 Qualcomm Incorporated Uplink transmission interruption
US11490414B2 (en) * 2020-02-14 2022-11-01 Qualcomm Incorporated Techniques for intra-user equipment and inter-user equipment cancelation of overlapping communications
US11825468B2 (en) * 2020-04-03 2023-11-21 Qualcomm Incorporated Scheduling restrictions for canceled or conflicting resources
US11758551B2 (en) * 2020-04-24 2023-09-12 Qualcomm Incorporated Cancellation of transmission occasions
US20210360686A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Alternative communication resources for configured grants
US11595983B2 (en) 2020-11-13 2023-02-28 Qualcomm Incorporated Application of an uplink (UL) cancellation indication in a wireless communications network
US20220322408A1 (en) * 2021-04-06 2022-10-06 Qualcomm Incorporated Urllc indications with multi-transmission grants
WO2024009328A1 (en) * 2022-07-08 2024-01-11 Centre Of Excellence In Wireless Technology Methods of bandwidth adaptation in a cellular network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139446A1 (ko) 2018-01-13 2019-07-18 주식회사 윌러스표준기술연구소 무선 통신 시스템의 채널 다중화 방법, 다중화된 채널 전송 방법 및 이를 이용하는 장치
EP3537810A1 (en) 2018-01-11 2019-09-11 LG Electronics Inc. -1- Method for receiving downlink signal by terminal in wireless communication system, and terminal using same method
WO2019184691A1 (zh) * 2018-03-28 2019-10-03 维沃移动通信有限公司 上行传输取消指令的监听方法及终端
WO2019191977A1 (en) * 2018-04-04 2019-10-10 Zte Corporation Methods, apparatus and systems for preempting uplink transmission resource in a wireless communication
US20190327755A1 (en) * 2018-02-15 2019-10-24 Intel Corporation Simultaneous harq-ack feedback and uplink transmission without dynamic grant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328213B1 (ko) * 2010-02-12 2013-11-14 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
JP6437554B2 (ja) * 2013-12-03 2018-12-12 エルジー エレクトロニクス インコーポレイティド 機械タイプ通信を支援する無線接続システムにおいて上りリンク送信方法及び装置
EP3512287B1 (en) * 2016-09-06 2023-08-02 LG Electronics Inc. Uplink data transmission method in wireless communication system supporting non-licensed band and device supporting same
US20190364558A1 (en) * 2016-11-04 2019-11-28 Lg Electronics Inc. Physical uplink control channel transmission/reception method between terminal and base station in wireless communication system and device supporting same
WO2018231728A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Reliable control signaling
US10813118B2 (en) * 2017-07-10 2020-10-20 Lg Electronics Inc. Method for transmitting and receiving uplink control information and devices supporting the same
CN110035531B (zh) * 2018-01-12 2021-12-03 华为技术有限公司 上行控制信息传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537810A1 (en) 2018-01-11 2019-09-11 LG Electronics Inc. -1- Method for receiving downlink signal by terminal in wireless communication system, and terminal using same method
WO2019139446A1 (ko) 2018-01-13 2019-07-18 주식회사 윌러스표준기술연구소 무선 통신 시스템의 채널 다중화 방법, 다중화된 채널 전송 방법 및 이를 이용하는 장치
US20190327755A1 (en) * 2018-02-15 2019-10-24 Intel Corporation Simultaneous harq-ack feedback and uplink transmission without dynamic grant
WO2019184691A1 (zh) * 2018-03-28 2019-10-03 维沃移动通信有限公司 上行传输取消指令的监听方法及终端
WO2019191977A1 (en) * 2018-04-04 2019-10-10 Zte Corporation Methods, apparatus and systems for preempting uplink transmission resource in a wireless communication

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "eMBB and URLLC dynamic multiplexing and preemption indication on the uplink", 3GPP DRAFT; R1-1802854 EMBB AND URLLC DYNAMIC MULTIPLEXING AND PREEMPTION INDICATION ON THE UPLINK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 17 February 2018 (2018-02-17), Athens, Greece, XP051398267 *
See also references of EP4046448A4
VIVO: "Multiplexing data with different transmission durations", 3GPP DRAFT; R1-1800205_MULTIPLEXING DATA WITH DIFFERENT TRANSMISSION DURATIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 13 January 2018 (2018-01-13), Vancouver, Canada, XP051384694 *
ZTE: "On Inter-UE multiplexing between eMBB and URLLC", 3GPP DRAFT; R1-1808212 ON INTER-UE MULTIPLEXING BETWEEN EMBB AND URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 11 August 2018 (2018-08-11), Gothenburg, Sweden, XP051515597 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523414B2 (en) 2018-01-13 2022-12-06 Wilus Institute Of Standards And Technology Inc. Channel multiplexing method and multiplexed channel transmission method for wireless communication system and device using same
US11950226B2 (en) 2018-01-13 2024-04-02 Wilus Institute Of Standards And Technology Inc. Channel multiplexing method and multiplexed channel transmission method for wireless communication system and device using same
US11956774B2 (en) 2018-01-13 2024-04-09 Wilus Institute Of Standards And Technology Inc. Channel multiplexing method and multiplexed channel transmission method for wireless communication system and device using same
US11601966B2 (en) 2019-10-07 2023-03-07 Wilus Institute Of Standards And Technology Inc. Method, device, and system for cancelling uplink transmission in wireless communication system

Also Published As

Publication number Publication date
CN114651512A (zh) 2022-06-21
EP4046448A4 (en) 2023-11-15
KR20220092950A (ko) 2022-07-04
EP4046448A1 (en) 2022-08-24
US20210144708A1 (en) 2021-05-13
US20230039964A1 (en) 2023-02-09
US11540282B2 (en) 2022-12-27
JP7270110B2 (ja) 2023-05-09
JP2023500346A (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
US11540282B2 (en) Method and apparatus for uplink cancellation indication
US11219013B2 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
US10368336B2 (en) Evolved multimedia broadcast multicast service on enhanced component carriers
AU2015339822B2 (en) Two-stage PDCCH with DCI flag and DCI format size indicator
JP6661648B2 (ja) 拡張キャリアアグリゲーションのためのジョイント制御
US10750494B2 (en) Management of dynamic transmission time interval scheduling for low latency communications
US11678328B2 (en) Method of multiplexing uplink control information and related device
JP2023126291A (ja) ワイヤレス通信におけるレイテンシ低減技法
US20220132342A1 (en) Method for transmitting and receiving signal in wireless communication system and apparatus for supporting same
US20180132245A1 (en) Power control, reporting techniques, and control channel configuration in unlicensed spectrum and licensed assisted access
CN113574948A (zh) 用于复用uci的方法和装备
CN114144984A (zh) 用于处理混合自动重传请求反馈传输的方法和设备
WO2021035502A1 (en) Pdcch transmission in ue-initiated cot
WO2023011562A1 (en) Method related to physical uplink control channel cell switching and user equipment
WO2021228140A1 (en) Method of performing transmission and reception in half-duplex frequency-division duplexing operation and related device
US12004139B2 (en) Method and apparatus for uplink implementation
CN116250203A (zh) 调度用于取消上行链路传输的时间线的用户设备和方法
WO2024067833A1 (en) Method, user equipment, and base station for cg pusch transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526186

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020885294

Country of ref document: EP

Effective date: 20220519

ENP Entry into the national phase

Ref document number: 20227018567

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE