WO2021088470A1 - 一种空调的控制方法、装置、计算机可读存储介质及空调 - Google Patents

一种空调的控制方法、装置、计算机可读存储介质及空调 Download PDF

Info

Publication number
WO2021088470A1
WO2021088470A1 PCT/CN2020/110471 CN2020110471W WO2021088470A1 WO 2021088470 A1 WO2021088470 A1 WO 2021088470A1 CN 2020110471 W CN2020110471 W CN 2020110471W WO 2021088470 A1 WO2021088470 A1 WO 2021088470A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
air
air conditioner
rotation speed
air outlet
Prior art date
Application number
PCT/CN2020/110471
Other languages
English (en)
French (fr)
Inventor
董明珠
黄鑫
吴俊鸿
陈英强
李树云
李业强
田雅颂
刘江驰
张兴钰
翟振坤
向新贤
曹睿
熊绍森
肖洪力
何博
徐耿彬
张守信
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021088470A1 publication Critical patent/WO2021088470A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure belongs to the technical field of air conditioners, and specifically relates to an air conditioner control method, device, computer readable storage medium, and air conditioner, and more particularly to an air conditioner control method, device, computer readable storage medium, and air conditioner.
  • Most of the existing air-conditioning cabinets are centrifugal cabinets or through-flow cabinets. They have a single air supply method. Both cold and hot air are blown out from the same air outlet. Only the air guiding mechanism is used to deflect the wind direction. The air outlet is connected to the ground or roof. There is a long distance. In heating mode, most of the hot air starts to float before reaching the ground. In cooling mode, most of the cold air starts to sink before reaching the roof, causing uneven temperature distribution in the room, poor user comfort, and long heat exchange time.
  • the purpose of the present disclosure is to provide an air conditioner control method, device, computer readable storage medium, and air conditioner in view of the above-mentioned drawbacks, so as to solve the problem of uneven temperature distribution in the room caused by the single air supply mode of the air conditioner cabinet, so as to improve the room.
  • the effect of uniformity of temperature distribution is to provide an air conditioner control method, device, computer readable storage medium, and air conditioner in view of the above-mentioned drawbacks, so as to solve the problem of uneven temperature distribution in the room caused by the single air supply mode of the air conditioner cabinet, so as to improve the room.
  • the present disclosure provides a control method of an air conditioner, including: obtaining a target temperature of the air conditioner and an indoor environment temperature in an environment to which the air conditioner belongs, and/or obtaining a target humidity of the air conditioner and an indoor environment humidity in an environment to which the air conditioner belongs, and/or Get the location of the human body in the environment to which the air conditioner belongs; among them, at the upper end of the air duct of the air conditioner, there is more than one upper air outlet; at the lower end of the air duct of the air conditioner, there is more than one lower air outlet; and in the air of the air conditioner In the duct, there is a counter-rotating axial fan assembly that can supply air in the reverse direction; the counter-rotating axial fan assembly has a first motor and a second motor; according to the operating mode of the air conditioner, the temperature difference between the target temperature and the indoor ambient temperature, The humidity difference between the target humidity and the indoor ambient humidity, and/or the position of the human body, controls the air supply mode of the air conditioner by adjusting the fan rotation direction,
  • controlling the air supply mode of the air conditioner includes: in the cooling mode, controlling the air conditioner to output air in the upper air outlet mode, or controlling the air conditioner to output air in the air outlet mode, or controlling the air conditioner to air outlet in the upper air outlet mode and The air is discharged alternately under the air outlet mode; when the air conditioner is air outlet in the upper air outlet mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature.
  • adjust the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor environment temperature The temperature difference between the target temperature and the indoor ambient temperature performs a fourth setting adjustment on the rotation speeds of the first motor and the second motor.
  • the first setting adjustment of the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature includes: the temperature between the target temperature and the indoor ambient temperature When the difference is greater than or equal to the upper limit of the first set temperature range, control the rotation speed of the second motor to be equal to the rotation speed of the first motor, and control the rotation speed of the second motor to be in the first speed zone or the second speed zone; or, In the case where the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the second motor is controlled to be higher than that of the first motor Rotation speed, and control the rotation speed of the first motor and the second motor to be in the first speed zone or the second speed zone or the third speed zone; or, the temperature difference between the target temperature and the indoor ambient temperature is less than the first setting In the case of the lower limit of the temperature range, controlling the rotation speed of the second motor to be higher than the rotation speed
  • the rotation speed and the rotation speed of the second motor are in the first speed zone or the second speed zone or the third speed zone; or, when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, Control the rotation speed of the first motor to be higher than the rotation speed of the second motor, and control the rotation speed of the first motor and the rotation speed of the second motor to be in the second speed zone or the third speed zone; or, according to the difference between the target temperature and the indoor ambient temperature
  • the temperature difference performs the third setting adjustment on the rotation speeds of the first motor and the second motor, including: controlling the first motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range
  • the rotation speed of the second motor is equal to the rotation speed of the first motor, and the rotation speed of the second motor is controlled to be in the first speed zone or the second speed zone; or, the temperature difference between the target temperature and the indoor ambient temperature is less than the first set temperature
  • the upper limit of the range is greater than
  • the first setting adjustment of the rotation speed of the first motor and the second motor further includes: When the temperature difference is less than the lower limit of the first set temperature range, control the air conditioner to switch from the upper air outlet mode to the press air outlet mode; and/or, according to the temperature between the target temperature and the indoor ambient temperature
  • the fourth setting adjustment of the rotation speed of the second motor and the first motor also includes: in the case that the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first setting temperature range, controlling the air conditioner by pressing The air outlet from the downward air outlet mode is changed to the air outlet according to the upper air outlet mode.
  • controlling the air supply mode of the air conditioner further includes: in the dehumidification mode, controlling the air conditioner to output air in an upward air outlet mode; when the air conditioner emits air in an upward air outlet mode, controlling the rotation speed of the second motor In the first speed zone or the second speed zone or the third speed zone, and control the rotation speed of the first motor to 0; when the humidity difference between the target humidity and the indoor environment humidity is less than the set humidity threshold, the air conditioner is controlled by When the air is discharged according to the upper air outlet mode, the air is changed to the air outlet mode under the air conditioner; when the air conditioner discharges the air under the air outlet mode, the rotation speed of the first motor is controlled to be in the first speed zone or the second speed zone or the third speed Zone and control the speed of the second motor to 0.
  • controlling the air supply mode of the air conditioner further includes: in the air supply mode, controlling the air conditioner to output air in the upward air outlet mode, or controlling the air conditioner to output air in the downward air outlet mode, or controlling the air conditioner to output air in the upward air outlet mode.
  • the lower air outlet mode and the lower air outlet mode alternately air out; among them, in the case that the lower air outlet mode includes controlling the first motor and the second motor to supply air to a lower air outlet of the air conditioner, the lower air outlet movement mechanism of the air conditioner is controlled to direct the wind Guide to the location of the human body.
  • controlling the air supply mode of the air conditioner further includes: when the human perception mode is activated, if the human perception mode is the wind follower mode, standing on the human body and the distance between the position of the human body and the air conditioner
  • the air conditioner When the distance is less than or equal to the first set distance threshold, the air conditioner is controlled to discharge the air in the upper air outlet mode, and the upper air outlet movement mechanism of the air conditioner is controlled to guide the wind to the position of the human body; or when the human body is sitting and standing, and the position of the human body is
  • the distance between the air conditioners is less than or equal to the second set distance threshold
  • the air conditioner is controlled to press the air outlet mode to release the air
  • the air outlet movement mechanism of the air conditioner is controlled to guide the wind to the position of the human body; or, if the human body is in the mode In the wind avoidance mode, when the human body is standing and the distance between the human body and the air conditioner is less than or equal to the third set distance threshold, the air conditioner is controlled to press the air outlet mode to discharge
  • the upper air outlet mode includes: controlling the first motor and the second motor to supply air to at least one upper air outlet of the air conditioner;
  • the lower air outlet mode includes: controlling the first motor and the second motor to supply air to at least one upper air outlet of the air conditioner.
  • At least one lower air outlet of the air conditioner supplies air.
  • another aspect of the present disclosure provides a control device for an air conditioner, including: an acquiring unit configured to acquire the target temperature of the air conditioner, and the indoor ambient temperature in the environment to which the air conditioner belongs, and/or acquire the target temperature of the air conditioner Humidity, and indoor ambient humidity in the environment where the air conditioner belongs, and/or obtain the location of the human body in the environment where the air conditioner belongs; wherein, at the upper end of the air duct of the air conditioner, there is more than one upper air outlet; at the lower end of the air duct of the air conditioner, More than one lower air outlet is provided; and in the air duct of the air conditioner, a counter-rotating axial flow fan assembly that can supply air in the reverse direction is arranged; the counter-rotating axial flow fan assembly has a first motor and a second motor; a control unit, It is set to adjust the counter-rotating axial flow fan assembly of the air conditioner according to the operating mode of the air conditioner, the temperature difference between the target temperature and the indoor environment temperature, the humidity
  • control unit controls the air supply mode of the air conditioner, including: in the cooling mode, controlling the air conditioner to output air in the upward air outlet mode, or controlling the air conditioner to output air in the air outlet mode, or controlling the air conditioner to air output according to the upward air outlet mode.
  • the air outlet mode and the lower air outlet mode alternately emit air; in the case that the air conditioner emits air in the upper air outlet mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature.
  • the rotation speed of the first motor and the second motor is adjusted in a fourth setting according to the temperature difference between the target temperature and the indoor ambient temperature.
  • control unit performs the first setting adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, including: When the temperature difference between is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the second motor is controlled to be equal to the rotation speed of the first motor, and the rotation speed of the second motor is controlled to be in the first speed region or the second speed Area; or, in the case where the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the second motor is controlled to be higher than The rotation speed of the first motor, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed zone or the second speed zone or the third speed zone; or, the temperature difference between the target temperature and the indoor ambient temperature is less than In the case of the lower limit of the first set temperature range, controlling the rotation speed of the second motor to be higher
  • the control unit performs a third setting adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, including: the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the first
  • the rotation speed of the second motor is controlled to be equal to the rotation speed of the first motor, and the rotation speed of the second motor is controlled to be in the first speed zone or the second speed zone; or, in the target temperature and the indoor environment
  • the temperature difference between the temperatures is less than the upper limit
  • the rotation speed of the second motor is in the first speed zone or the second speed zone or the third speed zone; or, when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, control the first The rotation speed of the motor is higher than the rotation speed of the second motor, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the second speed region or the third speed region.
  • control unit performs the first setting adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor environment temperature, and further includes: In the case that the temperature difference between the temperatures is less than the lower limit of the first set temperature range, control the air conditioner to switch from the upper air outlet mode to the press air outlet mode; and/or, the control unit according to the target temperature
  • the temperature difference between the temperature and the indoor ambient temperature performs a fourth setting adjustment on the rotation speeds of the second motor and the first motor, and further includes: the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range
  • the air conditioner is controlled from the air outlet mode of pressing down to the air outlet mode of the upper air outlet.
  • control unit controlling the air supply mode of the air conditioner further includes: in the dehumidification mode, controlling the air conditioner to output air in the upper air outlet mode; in the case where the air conditioner is air outlet in the upper air outlet mode, controlling the second air conditioner.
  • the rotation speed of the second motor is in the first speed area or the second speed area or the third speed area, and the rotation speed of the first motor is controlled to be 0; when the humidity difference between the target humidity and the indoor environment humidity is less than the set humidity threshold , Control the air conditioner to change from the air outlet according to the upper air outlet mode to the air outlet mode under the air outlet; when the air conditioner air outlet under the air outlet mode, control the rotation speed of the first motor to be in the first speed zone or the second speed zone Or the third speed zone, and control the speed of the second motor to zero.
  • control unit controls the air supply mode of the air conditioner, and further includes: in the air supply mode, controlling the air conditioner to output air in the upward air outlet mode, or controlling the air conditioner to output air in the downward air outlet mode, or controlling the air conditioner The air is discharged alternately according to the upper air outlet mode and the lower air outlet mode; wherein the lower air outlet mode includes controlling the first motor and the second motor to supply air to a lower air outlet of the air conditioner, controlling the movement of the lower air outlet of the air conditioner The mechanism directs the wind to the position of the human body.
  • the control unit controls the air supply mode of the air conditioner, and further includes: in the case of starting the human-sensing mode, if the human-sensing mode is the wind-following mode, standing on the human body and the position of the human body is connected to the air-conditioning
  • the air conditioner is controlled to discharge the air in the upper air outlet mode, and the upper air outlet movement mechanism of the air conditioner is controlled to direct the wind to the position of the human body; or sit and stand on the human body
  • the air conditioner is controlled to press the air outlet mode to discharge air, and the air outlet movement mechanism of the air conditioner is controlled to direct the wind to the position of the human body; or, If the human-sensing mode is the wind-shielding mode, when the human body is standing and the distance between the human body and the air conditioner is less than or equal to the third set
  • control the air conditioner’ s upper air outlet movement mechanism to direct the wind to a position other than the human body; or, when the human body is sitting and standing, and the distance between the human body and the air conditioner is less than or equal to the fifth set distance threshold, and the human body
  • bias towards the first air outlet of the at least two lower air outlets of the air conditioner if the human-sensing mode is the wind-following mode, control the air from the first air outlet of the at least two lower air outlets of the air conditioner, and Control the second air outlet of the at least two air outlets of the air conditioner to close, and control the lower air outlet movement mechanism of the air conditioner to direct the wind to the position of the human body; or if the human-sensing mode is the wind-shielding mode, control at least two air-conditioning The second air outlet of the two lower air outlets discharges air, and controls the first air outlet of the at least two air outlets of the air conditioner to close, and controls the lower air outlet movement mechanism of the air conditioner to direct the wind to a location where the
  • the upper air outlet mode includes: controlling the first motor and the second motor to supply air to at least one upper air outlet of the air conditioner;
  • the lower air outlet mode includes: controlling the first motor and the second motor to supply air to at least one upper air outlet of the air conditioner.
  • At least one lower air outlet of the air conditioner supplies air.
  • an air conditioner including: the above-mentioned control device for the air conditioner.
  • another aspect of the present disclosure provides a computer-readable storage medium, including: a plurality of instructions are stored in the computer-readable storage medium; and the plurality of instructions are configured to be loaded and loaded by a processor.
  • the control method of the air conditioner described above is executed.
  • an air conditioner including: a processor configured to execute multiple instructions; a memory configured to store multiple instructions; wherein the multiple instructions are configured to It is stored by the memory, loaded by the processor and executed by the above-mentioned control method of the air conditioner.
  • the solution of the present disclosure realizes the sending of cold and hot air from different height positions by controlling the air supply direction of the rotary axial flow fan, speeds up the room heat exchange, makes the room temperature distribution more uniform, and is beneficial to improve the user's comfort experience.
  • the solution of the present disclosure controls the air supply direction of the counter-rotating axial flow fan through the multi-air ports of the counter-rotating axial flow fan, which can realize cooling, heating, temperature difference, humidity difference, and multi-directional air supply, increasing
  • the control function of the air conditioner can meet the comfort of users who do not need it.
  • the fan when the heating mode is used, the fan sends air to the lower end of the air duct, and the hot air blows out from the air outlet of the housing, close to the ground and fully exchanges heat with the cold air, quickly raises the room temperature, and distributes the room temperature. It is more uniform and enhances the user's comfort experience.
  • the fan when the cooling mode is adopted, the fan sends air to the upper end of the air duct, and the cold air is blown out from the upper air opening of the shell, close to the roof and fully exchanges heat with the hot air, rapidly lowering the room temperature, and distributing the room temperature. It is more uniform and improves user comfort.
  • a plurality of air openings are opened at the upper and lower ends of the air duct, and the counter-rotating axial flow fan assembly and the heat exchanger are arranged in the air duct. Both cooling and heating enhance the large circulating air flow in the room. , So as to make the room temperature distribution more uniform and improve user comfort.
  • the solution of the present disclosure by controlling the air supply direction of the counter-rotating axial flow fan, realizes that the cold and hot air are sent from different height positions, solves the problem of uneven temperature distribution in the room caused by the single air supply mode of the air conditioning cabinet, and achieves improvement.
  • the effect of the uniformity of the room temperature distribution is not limited.
  • FIG. 1 is a schematic flowchart of an embodiment of a control method of an air conditioner of the present disclosure
  • FIG. 2 is a schematic flowchart of an embodiment of controlling the air supply mode of the air conditioner in the cooling mode in the method of the present disclosure
  • FIG. 3 is a schematic flowchart of an embodiment of controlling the air supply mode of the air conditioner in the heating mode in the method of the present disclosure
  • FIG. 4 is a schematic flowchart of an embodiment of controlling the air supply mode of the air conditioner in the dehumidification mode in the method of the present disclosure
  • FIG. 5 is a schematic structural diagram of an embodiment of a control device for an air conditioner of the present disclosure
  • FIG. 6 is a schematic structural diagram of an embodiment of the air conditioner (that is, the air conditioner) of the present disclosure
  • FIG. 7 is a schematic diagram of the internal structure of an embodiment of the air conditioner (ie, the air conditioner) of the present disclosure, and is an axial cross-sectional view;
  • FIG. 8 is a schematic diagram of the operation structure of an embodiment of the air conditioner (that is, the air conditioner) of the present disclosure in a cooling working state;
  • FIG. 9 is a schematic diagram of the operation structure of an embodiment of the air conditioner (that is, the air conditioner) of the present disclosure in a heating working state;
  • FIG. 10 is a schematic diagram of the control flow of an embodiment of the air conditioner (that is, the air conditioner) of the present disclosure under a cooling condition;
  • FIG. 11 is a schematic diagram of the control flow of an embodiment of the air conditioner (that is, the air conditioner) of the present disclosure under dehumidification working conditions;
  • FIG. 12 is a schematic diagram of the control flow in the human-sensing mode of an embodiment of the air conditioner (ie, the air conditioner) of the present disclosure.
  • 1-air conditioner 1a-front panel; 1c-side panel; 1d-side panel; 2-shell; 21-upflow port; 21a-upflow port filter assembly; 21b-upflow port air guide mechanism; 22a-first Down vent; 22b-second down vent; 22c-first down vent filter assembly; 22d-second down vent filter assembly; 22e-second down vent air guide mechanism; 22f-second down vent air guide mechanism; 23-top cover; 24-base; 3-internal air duct; 4a-first axial flow fan; 4b-second axial flow fan; 4c-first motor; 4d-second motor; 5-heat exchanger ; 6-Diversion circle; 102-acquisition unit; 104-control unit.
  • a method for controlling an air conditioner is provided. As shown in FIG. 1, a schematic flowchart of an embodiment of the method of the present disclosure is shown.
  • the control method of the air conditioner can be applied to an air conditioner with multiple air outlets at the upper and lower ends and a counter-rotating axial fan assembly with reversible air supply is arranged in the air duct.
  • the control method of the air conditioner may include: step S110 and step S120 .
  • step S110 obtain the target temperature of the air conditioner and the indoor ambient temperature in the environment where the air conditioner belongs, and/or obtain the target humidity of the air conditioner and the indoor environment humidity in the environment where the air conditioner belongs, and/or obtain the location of the human body in the environment where the air conditioner belongs position.
  • the target temperature of the air conditioner can be the expected temperature set by the user.
  • the location of the human body is the location of the user in the room where the air conditioner is located.
  • the upper and lower ends of the air duct of the air conditioner are respectively provided with more than one air outlet, specifically, it may be provided with more than one upper air outlet at the upper end of the air duct of the air conditioner. At the lower end of the air duct of the air conditioner, more than one lower air outlet is opened.
  • a counter-rotating axial flow fan assembly capable of blowing air in the reverse direction. Specifically, at the upper and lower ends of the air duct of the air conditioner, more than one air outlet is respectively opened. And in the air duct of the air conditioner, a counter-rotating axial flow fan assembly and a heat exchanger are arranged. The counter-rotating axial fan assembly can supply air in the opposite direction.
  • the counter-rotating axial flow fan assembly has a first motor and a second motor.
  • the set speed area of the rotation speed of the first motor and/or the rotation speed of the second motor may include: a first speed area, a second speed area, and a third speed area. Wherein, the lower limit of the first speed zone is greater than or equal to the upper limit of the second speed zone.
  • the lower limit of the second speed zone is greater than or equal to the upper limit of the third speed zone.
  • step S120 according to the operating mode of the air conditioner, the temperature difference between the target temperature and the indoor ambient temperature, the humidity difference between the target humidity and the indoor ambient humidity, and/or the position of the human body, the counter-rotating axial flow of the air conditioner is adjusted.
  • the operation mode of the air conditioner may include: a corresponding single mode or a combined mode among the cooling mode, the heating mode, the dehumidification mode, the air supply mode, and the human-sensing mode.
  • a new type of cabinet machine can be used, with multiple air openings at the upper and lower ends of the air duct, and the counter-rotating axial flow fan assembly and heat exchanger are arranged in the air duct.
  • heating mode the fan sends air to the lower end of the air duct, and the hot air flows from the shell.
  • the underbody air vent blows out, close to the ground and fully exchanges heat with cold air, quickly raising the room temperature.
  • cooling mode the fan sends air to the upper end of the air duct, and the cold air blows out from the upper air port of the shell, close to the roof and fully exchanges heat with the hot air, quickly lowering the room temperature.
  • both cooling and heating enhance the large circulating air flow in the room, thereby making the room temperature distribution more uniform and improving user comfort.
  • the air conditioner has a variety of air supply methods to meet the different needs of room cooling and heating modes.
  • the air supply direction of the rotary axial fan By controlling the air supply direction of the rotary axial fan, the cold and hot air can be sent out from different heights to speed up the heat exchange in the room.
  • the temperature distribution in the room is more even, which improves user comfort. In this way, through the multi-vents of the counter-rotating axial flow fan, cooling, heating, temperature difference, humidity difference, and multi-directional air supply can be achieved.
  • the air conditioner's counter-rotating axial fan assembly is adjusted.
  • the fan rotation direction, the number of fan openings, and/or the fan speed can realize flexible control of the air supply mode of the air conditioner, and the air supply uniformity is good, which can meet the comfort experience of users with different comfort requirements.
  • the air supply mode of controlling the air conditioner in step S120 may include any of the following control processes, for example, may include any of the following control processes from the first control process to the fifth control process.
  • the first control process the cooling control process that controls the air supply mode of the air conditioner in the cooling mode.
  • step S210 and step S220 .
  • step S210 in the cooling mode, the air conditioner is controlled to output air according to the upper air outlet mode, or the air conditioner is controlled to output air according to the air outlet mode, or the air conditioner is controlled to output air alternately according to the upper air outlet and the lower air outlet.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • step S220 in the case where the air conditioner discharges the air in the upper air discharge mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature. Or, in the case that the air conditioner discharges the air in the air outlet mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature.
  • the first setting adjustment is performed when the air conditioner is air outlet according to the upper air outlet mode, and the air conditioner presses the air outlet mode.
  • the second setting adjustment is carried out when the mode is out of wind. For example: Regularly adjust the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly, and the counter-rotating fan regularly alternates up and down the air outlet, the motor speed control and the upper air outlet and the down air outlet
  • the control mode in the air supply mode is the same.
  • the rotation speed of the first motor and the second motor are adjusted according to the different air outlet modes of the air conditioner and the temperature difference between the target temperature and the indoor ambient temperature, so as to realize the air supply mode of the air conditioner in the cooling mode.
  • the flexible adjustment of the system can quickly and evenly realize the refrigeration control, and the user's book practice experience is better.
  • step S220 the first setting adjustment is performed on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, which may include any of the following adjustment situations.
  • the first adjustment situation in the case that the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the second motor is controlled to be equal to the rotation speed of the first motor, and the second motor is controlled to be equal to the rotation speed of the first motor.
  • the rotation speed of the second motor is in the first speed zone or the second speed zone.
  • the second adjustment situation when the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the second motor is controlled
  • the rotation speed of the first motor is higher than the rotation speed of the first motor and the rotation speed of the second motor is controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation in the case that the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, control the rotation speed of the second motor to be higher than the rotation speed of the first motor, and control the first motor
  • the rotation speed of and the rotation speed of the second motor are in the second speed zone or the third speed zone.
  • controlling the air supply mode of the air conditioner may include: the first control process: the first cooling control process of controlling the air supply mode of the air conditioner in the cooling mode, specifically may include: controlling the first motor and the second motor in the cooling mode
  • the air is sent to at least one upper air outlet of the air conditioner, that is, the first motor and the second motor in the counter-rotating axial flow fan assembly of the air conditioner are controlled to send air to the upper air outlet of the air conditioner.
  • at least one upper air outlet may include: the upper air outlet 21.
  • the rotation speed of the second motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the second motor is controlled to be equal to the rotation speed of the first motor, and the second motor is controlled to be equal to the rotation speed of the first motor.
  • the rotation speed of the second motor is in the first speed zone or the second speed zone.
  • the rotation speed of the second motor when the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the second motor is controlled to be higher than that of the first set temperature range.
  • the rotation speed of the motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region. Or, when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, the rotation speed of the second motor is controlled to be higher than the rotation speed of the first motor, and the rotation speed of the first motor and the first motor are controlled.
  • the rotation speed of the second motor is in the second speed zone or the third speed zone.
  • the motor rotation speed is set to 3 speed zones, namely the high-speed zone S1, the medium-speed zone S2 and the low-speed zone S3, and the counter-rotating fan (ie The counter-rotating axial flow fan assembly) sends air to the upper air opening 21.
  • the rotation speed of the second motor 4d can be controlled to be equal to the rotation speed of the first motor 4c, and the motor rotation speed is at S1 or S2.
  • the speed of the second motor 4d can be controlled to be higher than the speed of the first motor 4c, and the motor speed is at S1 or S2 or S3.
  • the speed of the second motor 4d can be controlled to be higher than the speed of the first motor 4c, and the motor speed is at S2 or S3.
  • the rotation speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and accurate Realize refrigeration adjustment more efficiently and accurately to meet users’ refrigeration needs.
  • the first setting adjustment of the rotation speeds of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature may also include: between the target temperature and the indoor ambient temperature In the case where the temperature difference between the two is smaller than the lower limit of the first set temperature range, the control air conditioner is switched from the air outlet mode in the upper air outlet mode to the air outlet mode in the lower air outlet mode.
  • the motor can be controlled to make the counter-rotating fan send air to the downward air outlet, changing the direction of airflow in the room, and making the temperature in the room more uniform.
  • the fan sends air to the upper end of the air duct, and the cold air blows out from the upper air opening of the shell, close to the roof and fully exchanges heat with the hot air, quickly lowering the room temperature.
  • the air outlet mode can be switched when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, which can be realized more quickly Refrigeration makes the user's comfort experience better.
  • step S220 the second setting adjustment is performed on the rotation speeds of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, which may include any of the following adjustment situations.
  • the first adjustment situation In the case that the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the first motor is controlled to be equal to the rotation speed of the second motor, and the second motor is controlled to be equal.
  • the rotation speed of a motor is in the first speed zone or the second speed zone.
  • the second adjustment situation when the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the first motor is controlled It is higher than the rotation speed of the second motor, and the rotation speed of the first motor and the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation in the case that the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, the rotation speed of the first motor is controlled to be higher than the rotation speed of the second motor, and the first motor is controlled
  • the rotation speed of and the rotation speed of the second motor are in the second speed zone or the third speed zone.
  • controlling the air supply mode of the air conditioner may include: the first control process: the second cooling control process of controlling the air supply mode of the air conditioner in the cooling mode, which may specifically include: controlling the first motor and the second motor in the cooling mode Air is sent to at least one lower air outlet of the air conditioner, that is, the first motor and the second motor in the counter-rotating axial flow fan assembly of the air conditioner are controlled to send air to the upper air outlet of the air conditioner.
  • at least two lower air outlets may include: a first lower air outlet 22a and a second lower air outlet 22b.
  • the rotation speed of the first motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the first motor is controlled to be equal to the rotation speed of the second motor, and the first motor is controlled to be equal to the rotation speed of the second motor.
  • the rotation speed of a motor is in the first speed zone or the second speed zone.
  • the rotation speed of the first motor is controlled to be higher than the second The rotation speed of the motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the rotation speed of the first motor is controlled to be higher than the rotation speed of the second motor, and the rotation speed of the first motor and the second motor are controlled.
  • the rotation speed of the second motor is in the second speed zone or the third speed zone.
  • the first motor can be controlled.
  • the rotation speed of the motor 4c is equal to the rotation speed of the second motor 4d, and the rotation speed of the motor is located at S1 or S2.
  • the rotation speed of the first motor 4c can be controlled to be higher than the rotation speed of the second motor 4d, and the motor rotation speed is at S1 or S2 or S3.
  • the speed of the first motor 4c can be controlled to be higher than the speed of the second motor 4d, and the motor speed is at S2 or S3.
  • the speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and accurate Realize refrigeration adjustment more efficiently and accurately to meet users’ refrigeration needs.
  • the second control process the heating control process that controls the air supply mode of the air conditioner in the heating mode.
  • step S310 in the heating mode, the air conditioner is controlled to output air according to the upper air outlet mode, or the air conditioner is controlled to output air according to the air outlet mode, or the air conditioner is controlled to output air alternately according to the upper air outlet and the lower air outlet.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • step S320 in the case where the air conditioner discharges the air in the upper air discharge mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature. Or, in the case that the air conditioner discharges the air in the air outlet mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature.
  • the rotation speed of the first motor and the second motor are adjusted according to the different air outlet modes of the air conditioner and the temperature difference between the target temperature and the indoor ambient temperature, so as to realize the air conditioner in the heating mode.
  • the flexible adjustment of the wind mode can quickly and evenly realize the heating control, and the user's book practice experience is better.
  • the third setting adjustment is performed on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature in step S320, which may include any of the following adjustment situations.
  • the first adjustment situation in the case that the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the second motor is controlled to be equal to the rotation speed of the first motor, and the second motor is controlled to be equal to the rotation speed of the first motor.
  • the rotation speed of the second motor is in the first speed zone or the second speed zone.
  • the second adjustment situation when the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the second motor is controlled
  • the rotation speed of the first motor is higher than the rotation speed of the first motor and the rotation speed of the second motor is controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation in the case that the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, control the rotation speed of the second motor to be higher than the rotation speed of the first motor, and control the first motor
  • the rotation speed of and the rotation speed of the second motor are in the second speed zone or the third speed zone.
  • the rotation speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and Accurately realize heating regulation, more efficiently and accurately meet the heating needs of users.
  • the fourth setting adjustment is performed on the rotation speeds of the second motor and the first motor according to the temperature difference between the target temperature and the indoor ambient temperature in step S320, which may include any of the following adjustment situations.
  • the first adjustment situation In the case that the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the first motor is controlled to be equal to the rotation speed of the second motor, and the second motor is controlled to be equal.
  • the rotation speed of a motor is in the first speed zone or the second speed zone.
  • the second adjustment situation when the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the first motor is controlled The speed is higher than the speed of the second motor, and the speed of the first motor and the speed of the second motor are controlled to be in the first speed zone or the second speed zone or the third speed zone.
  • the third adjustment situation In the case that the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, the rotation speed of the first motor is controlled to be higher than the rotation speed of the second motor, and the first motor is controlled to be controlled.
  • the rotation speed of the motor and the rotation speed of the second motor are in the second speed region or the third speed region.
  • the CPU when the user is set to heating mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory.
  • the wind direction and motor speed are similar to those in the cooling mode. Reverse the air outlet and reverse the motor.
  • the rotation speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and Accurately realize heating regulation, more efficiently and accurately meet the heating needs of users.
  • the fourth setting adjustment is performed on the rotation speeds of the second motor and the first motor according to the temperature difference between the target temperature and the indoor ambient temperature. It may also include: setting the speed between the target temperature and the indoor ambient temperature. In the case that the temperature difference between the two is smaller than the lower limit of the first set temperature range, the control air conditioner is switched from the air outlet mode of pressing down to the air outlet mode of up air. In this way, in the heating mode, the fan sends air to the lower end of the air duct, and the hot air blows out from the lower air outlet of the shell, close to the ground and fully exchanges heat with the cold air, quickly raising the room temperature.
  • the air conditioner when the air conditioner is in the heating mode, the air conditioner can be switched to the air outlet mode when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range when the air conditioner is in the air outlet mode. To achieve heating, the user's comfort experience is better.
  • the third control process the dehumidification control process that controls the air supply mode of the air conditioner in the dehumidification mode.
  • step S410 the specific process of controlling the air supply mode of the air conditioner in the dehumidification mode is further described, which may include: step S410 and step S420 .
  • step S410 in the dehumidification mode, the air conditioner is controlled to output air in an upward air outlet mode.
  • the rotation speed of the second motor is controlled to be in the first speed region or the second speed region or the third speed region, and the rotation speed of the first motor is controlled to be zero.
  • step S420 when the humidity difference between the target humidity and the indoor environment humidity is less than the set humidity threshold, the air conditioner is controlled to switch from the air outlet mode in the upper air outlet mode to the air outlet mode in the lower air outlet mode.
  • the rotation speed of the first motor is controlled to be in the first speed region or the second speed region or the third speed region, and the rotation speed of the second motor is controlled to be zero.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • the rotation speed of the second motor is controlled to be higher than the rotation speed of the first motor, that is, the rotation speed of the second motor is continuously controlled to be at the first motor speed.
  • a speed zone or a second speed zone or a third speed zone, and the rotation speed of the first motor is controlled to be zero.
  • the CPU when the user is set to dehumidification mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory to adjust the first motor 4c and the second motor in the counter-rotating axial fan assembly
  • the rotation speed of 4d is used to blow air to the upper tuyere 21 of the cyclone
  • the rotation speed of the second motor 4d is controlled to be S1 or S2 or S3
  • the rotation speed of the first motor 4c is controlled to be 0.
  • the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly can be adjusted, and the counter-rotating fan is directed to the first down vent 22a and the second down vent 22b
  • the rotation speed of the first motor 4c is controlled to be S1 or S2 or S3
  • the rotation speed of the second motor 4d is controlled to be zero.
  • the flexible adjustment of the air supply mode of the air conditioner in the dehumidification mode can be realized, which can be efficiently and accurately Improve user experience.
  • the fourth control process the air supply control process for controlling the air supply mode of the air conditioner in the air supply mode, which can specifically include: in the air supply mode, controlling the air conditioner to output air according to the upper air outlet mode, or controlling the air conditioner to output air according to the air outlet mode Wind, or control the air conditioner to blow out alternately according to the upper and lower outlet modes.
  • the wind blowing alternately according to the upper wind mode and the lower wind mode may be periodically or non-periodically.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • the lower air outlet mode may include controlling the first motor and the second motor to send air to a lower air outlet of the air conditioner, controlling the lower air outlet movement mechanism of the air conditioner to direct the wind to the position of the human body.
  • the CPU when the user is set to the air supply mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's position, and calls the control program in the memory to adjust the rotation direction and the number of openings of the motor in the counter-rotating axial flow fan assembly .
  • the air supply mode since the air supply mode does not need to undergo heat exchange, in the air supply mode, the air can be blown up or down, or it can be operated alternately between up and down air.
  • the upper air outlet mode is preferred. You can refer to The control of the first motor and the second motor in each air outlet mode in the cooling mode. And when it is the downward air outlet, the movement mechanism of the downward air outlet can be controlled, so that the downward air outlet can be classified into double air outlet air outlet and single air outlet air outlet. When the single air outlet air outlet, the directional air supply effect can be realized.
  • the fifth control process the human-sensing control process of controlling the air supply mode of the air conditioner in human-sensing mode.
  • the human-sensing function relies on the cooperation of the sensor, the CPU and the memory, and the sensor is not limited to various types of sensors.
  • the human-sensing mode in the cooling mode, heating mode, or air supply mode, and when the human-sensing mode is activated, if the human-sensing mode is the wind-following mode, the human body is standing and between the position of the human body and the air conditioner.
  • the air conditioner In the case that the distance is less than or equal to the first set distance threshold, the air conditioner is controlled to discharge air in an upward air outlet mode, and the upward air outlet movement mechanism of the air conditioner is controlled to guide the wind to the position of the human body.
  • the air conditioner is controlled to press the air outlet mode to discharge the air, and the air outlet movement mechanism of the air conditioner is controlled to guide the wind Where the human body is located.
  • the CPU obtains the current ambient temperature, the user's location, and calls the control program in the memory. If the user selects the wind follower
  • the upwind vent air supply mode is turned on, and the upwind vent movement mechanism directs the wind to the user.
  • the lower air outlet air supply mode is turned on, and the upper air outlet movement mechanism directs the wind to the user.
  • the human-sensing mode in the cooling mode, heating mode, or air supply mode, and when the human-sensing mode is activated, if the human-sensing mode is the wind-shielding mode, the human body is standing and the distance between the human body and the air conditioner When the distance is less than or equal to the third set distance threshold, the air conditioner is controlled to release air in the air outlet mode, and the air outlet movement mechanism of the air conditioner is controlled to direct the wind to a location where the human body is not located.
  • the air conditioner is controlled to discharge air according to the upper air outlet mode, and the air conditioner's upper air outlet movement mechanism is controlled to guide the wind At a location other than the human body.
  • the down vent air supply mode is turned on, and the down vent movement mechanism directs the wind to the non-user side.
  • the upwind vent air supply mode is turned on, and the upwind vent movement mechanism directs the wind to the non-user side.
  • the first motor and the second motor are controlled by combining the specific wind-sensing mode, the human body posture, the distance between the human body position and the air conditioner, etc., so that the air conditioner can be sent in the human-sensing mode.
  • the flexible adjustment of the wind mode can efficiently and accurately enhance the user experience.
  • the human body when the human body is sitting and the distance between the position of the human body and the air conditioner is less than or equal to the fifth set distance threshold, and the human body is biased toward the first air outlet of the at least two lower air outlets of the air conditioner
  • the human-sensing mode is the wind-following mode
  • the first air outlet of the at least two lower air outlets of the air conditioner is controlled to discharge air
  • the second air outlet of the at least two air outlets of the air conditioner is controlled to close (the second outlet The air outlet is far away from the human body)
  • the movement mechanism of the lower air outlet of the air conditioner is controlled to guide the wind to the position of the human body.
  • the human body when the human body is sitting and the distance between the position of the human body and the air conditioner is less than or equal to the fifth set distance threshold, and the human body is biased toward the first air outlet of the at least two lower air outlets of the air conditioner, if the human
  • the sensing mode is the wind avoidance mode
  • the second air outlet of the at least two lower air outlets of the air conditioner is controlled to discharge air (the second air outlet is away from the human body), and the first air outlet of the at least two air outlets of the air conditioner is controlled It is closed, and the movement mechanism of the lower air outlet of the air conditioner is controlled to guide the wind to a location where the human body is not located.
  • the movement mechanism of the air outlet guides the wind to the user. If the user chooses to avoid people from the wind, the air outlet close to the user does not emit wind, and the other air outlet far away from the user emits wind, and the movement mechanism of the air outlet guides the wind to the non-user side. For example, when the wind is directed to the user through the movement mechanism of the air outlet, for example, the down outlet is divided into a first down outlet 22a and a second down outlet 22b.
  • the first down vent 22a When the user approaches the first down vent 22a, the first down vent 22a is opened, and the second down vent 22b is closed.
  • the specific movement is executed by the motion mechanism, and the opening and closing can be formed by the panel or the wind deflector.
  • the wind guide mechanism starts to move, and the wind guide plate or other wind guide mechanism adjusts the angle to guide the wind to the user, so that the wind blows to the user.
  • the first motor and the second motor are controlled by combining the specific wind-sensing mode, the lower air outlet of the human body, the human body posture, the distance between the human body position and the air conditioner, etc., so that the human
  • the flexible adjustment of the air supply mode of the air conditioner in the sensor mode can efficiently and accurately enhance the user experience.
  • the technical scheme of this embodiment is adopted to control the air supply direction of the counter-rotating axial flow fan to realize the sending of cold and hot air from different height positions, speed up the room heat exchange, and make the room temperature distribution more uniform, which is beneficial to Improve user comfort.
  • an air conditioner control device corresponding to the air conditioner control method. See FIG. 5 for a schematic structural diagram of an embodiment of the device of the present disclosure.
  • the control device of the air conditioner can be applied to an air conditioner with multiple air outlets on the upper and lower ends, and a counter-rotating axial fan assembly with reversible air supply is arranged in the air duct.
  • the control device of the air conditioner can include: an acquisition unit 102 and a control Unit 104.
  • the acquiring unit 102 may be configured to acquire the target temperature of the air conditioner and the indoor ambient temperature in the environment where the air conditioner belongs, and/or acquire the target humidity of the air conditioner and the indoor ambient humidity in the environment where the air conditioner belongs. And/or get the location of the human body in the environment where the air conditioner belongs.
  • the target temperature of the air conditioner can be the expected temperature set by the user.
  • the location of the human body is the location of the user in the room where the air conditioner is located.
  • the upper and lower ends of the air duct of the air conditioner are respectively provided with more than one air outlet, specifically, it may be provided with more than one upper air outlet at the upper end of the air duct of the air conditioner.
  • At the lower end of the air duct of the air conditioner more than one lower air outlet is opened.
  • a counter-rotating axial flow fan assembly capable of blowing air in the reverse direction is arranged.
  • at the upper and lower ends of the air duct of the air conditioner more than one air outlet is respectively opened.
  • a counter-rotating axial flow fan assembly and a heat exchanger are arranged. The counter-rotating axial fan assembly can supply air in the opposite direction.
  • the counter-rotating axial flow fan assembly has a first motor and a second motor.
  • the set speed area of the rotation speed of the first motor and/or the rotation speed of the second motor may include: a first speed area, a second speed area, and a third speed area.
  • the lower limit of the first speed zone is greater than or equal to the upper limit of the second speed zone.
  • the lower limit of the second speed zone is greater than or equal to the upper limit of the third speed zone.
  • control unit 104 may be configured to operate according to the operating mode of the air conditioner, the temperature difference between the target temperature and the indoor ambient temperature, the humidity difference between the target humidity and the indoor ambient humidity, and/or where the human body is located. Position, control the air supply mode of the air conditioner by adjusting the fan rotation direction of the counter-rotating axial flow fan assembly of the air conditioner, the number of fans on and/or the fan speed. For specific functions and processing of the control unit 104, refer to step S120.
  • the operation mode of the air conditioner may include: a corresponding single mode or a combined mode among the cooling mode, the heating mode, the dehumidification mode, the air supply mode, and the human-sensing mode.
  • a new type of cabinet machine can be used, with multiple air openings at the upper and lower ends of the air duct, and the counter-rotating axial flow fan assembly and heat exchanger are arranged in the air duct.
  • heating mode the fan sends air to the lower end of the air duct, and the hot air flows from the shell.
  • the underbody air vent blows out, close to the ground and fully exchanges heat with cold air, quickly raising the room temperature.
  • cooling mode the fan sends air to the upper end of the air duct, and the cold air blows out from the upper air port of the shell, close to the roof and fully exchanges heat with the hot air, quickly lowering the room temperature.
  • both cooling and heating enhance the large circulating air flow in the room, thereby making the room temperature distribution more uniform and improving user comfort.
  • the air conditioner has a variety of air supply methods to meet the different needs of room cooling and heating modes.
  • the air supply direction of the rotary axial fan By controlling the air supply direction of the rotary axial fan, the cold and hot air can be sent out from different heights to speed up the heat exchange in the room.
  • the temperature distribution in the room is more even, which improves user comfort. In this way, through the multi-vents of the counter-rotating axial flow fan, cooling, heating, temperature difference, humidity difference, and multi-directional air supply can be achieved.
  • the air conditioner's counter-rotating axial fan assembly is adjusted.
  • the fan rotation direction, the number of fan openings, and/or the fan speed can realize flexible control of the air supply mode of the air conditioner, and the air supply uniformity is good, which can meet the comfort experience of users with different comfort requirements.
  • control unit 104 controlling the air supply mode of the air conditioner may include or may include any of the following control processes, for example, may include any of the following control processes from the first control process to the fifth control process.
  • the first control process the cooling control process that controls the air supply mode of the air conditioner in the cooling mode.
  • the control unit 104 can also be specifically set to control the air conditioner to output air in the upper air outlet mode in the cooling mode, or control the air conditioner to output air according to the upper air outlet mode, or control the air conditioner to output air in the upper air outlet mode and the lower air outlet mode.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • the control unit 104 may also be specifically configured to perform the first motor and second motor rotation speed according to the temperature difference between the target temperature and the indoor ambient temperature when the air conditioner discharges the air in the upper air outlet mode. Setting adjustment. Or, in the case that the air conditioner discharges the air in the air outlet mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature. Refer to step S220 for specific functions and processing of the control unit 104.
  • the first setting adjustment is performed when the air conditioner is air outlet according to the upper air outlet mode, and the air conditioner presses the air outlet mode.
  • the second setting adjustment is carried out when the mode is out of wind. For example: Regularly adjust the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly, and the counter-rotating fan regularly alternates up and down the air outlet, the motor speed control and the upper air outlet and the down air outlet
  • the control mode in the air supply mode is the same.
  • the rotation speed of the first motor and the second motor are adjusted according to the different air outlet modes of the air conditioner and the temperature difference between the target temperature and the indoor ambient temperature, so as to realize the air supply mode of the air conditioner in the cooling mode.
  • the flexible adjustment of the system can quickly and evenly realize the refrigeration control, and the user's book practice experience is better.
  • control unit 104 performs the first setting adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, which may include any of the following adjustment situations.
  • the control unit 104 can be specifically set to control the second motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range.
  • the rotation speed is equal to the rotation speed of the first motor, and the rotation speed of the second motor is controlled to be in the first speed region or the second speed region.
  • the second adjustment situation the control unit 104 can also be specifically set so that the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the first set temperature range
  • the rotation speed of the second motor is controlled to be higher than the rotation speed of the first motor, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation the control unit 104 may be specifically set to control the rotation speed of the second motor to be high when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range
  • the rotation speed of the first motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the second speed region or the third speed region.
  • controlling the air supply mode of the air conditioner may include: the first control process: the first cooling control process of controlling the air supply mode of the air conditioner in the cooling mode, specifically may include: controlling the first motor and the second motor in the cooling mode
  • the air is sent to at least one upper air outlet of the air conditioner, that is, the first motor and the second motor in the counter-rotating axial flow fan assembly of the air conditioner are controlled to send air to the upper air outlet of the air conditioner.
  • at least one upper air outlet may include: the upper air outlet 21.
  • the rotation speed of the second motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the second motor is controlled to be equal to the rotation speed of the first motor, and the second motor is controlled to be equal to the rotation speed of the first motor.
  • the rotation speed of the second motor is in the first speed zone or the second speed zone.
  • the rotation speed of the second motor when the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the lower limit of the first set temperature range, the rotation speed of the second motor is controlled to be higher than that of the first set temperature range.
  • the rotation speed of the motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region. Or, when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, the rotation speed of the second motor is controlled to be higher than the rotation speed of the first motor, and the rotation speed of the first motor and the first motor are controlled.
  • the rotation speed of the second motor is in the second speed zone or the third speed zone.
  • the motor rotation speed is set to 3 speed zones, namely the high-speed zone S1, the medium-speed zone S2 and the low-speed zone S3, and the counter-rotating fan (ie The counter-rotating axial flow fan assembly) sends air to the upper air opening 21.
  • the rotation speed of the second motor 4d can be controlled to be equal to the rotation speed of the first motor 4c, and the motor rotation speed is at S1 or S2.
  • the speed of the second motor 4d can be controlled to be higher than the speed of the first motor 4c, and the motor speed is at S1 or S2 or S3.
  • the speed of the second motor 4d can be controlled to be higher than the speed of the first motor 4c, and the motor speed is at S2 or S3.
  • the rotation speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and accurate Realize refrigeration adjustment more efficiently and accurately to meet users’ refrigeration needs.
  • control unit 104 adjusts the rotation speeds of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, and may further include: the control unit 104, Specifically, it can also be set to control the air conditioner to switch from the upper air outlet mode to the press air outlet mode when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range. .
  • the motor can be controlled to make the counter-rotating fan send air to the downward air outlet, changing the direction of airflow in the room, and making the temperature in the room more uniform.
  • the fan sends air to the upper end of the air duct, and the cold air blows out from the upper air opening of the shell, close to the roof and fully exchanges heat with the hot air, quickly lowering the room temperature.
  • the air outlet mode can be switched when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range, which can be realized more quickly Refrigeration makes the user's comfort experience better.
  • control unit 104 performs the second setting adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, which may include any of the following adjustment situations.
  • the first adjustment situation the control unit 104 can be specifically set to control the first motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range.
  • the rotation speed is equal to the rotation speed of the second motor, and the rotation speed of the first motor is controlled to be in the first speed region or the second speed region.
  • the second adjustment situation the control unit 104 can also be specifically set so that the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the first set temperature range
  • the rotation speed of the first motor is controlled to be higher than the rotation speed of the second motor, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation the control unit 104 can be specifically configured to control the rotation speed of the first motor to be high when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range
  • the rotation speed of the second motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the second speed region or the third speed region.
  • controlling the air supply mode of the air conditioner may include: the first control process: the second cooling control process of controlling the air supply mode of the air conditioner in the cooling mode, which may specifically include: controlling the first motor and the second motor in the cooling mode Air is sent to at least one lower air outlet of the air conditioner, that is, the first motor and the second motor in the counter-rotating axial flow fan assembly of the air conditioner are controlled to send air to the upper air outlet of the air conditioner.
  • at least two lower air outlets may include: a first lower air outlet 22a and a second lower air outlet 22b.
  • the rotation speed of the first motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range, the rotation speed of the first motor is controlled to be equal to the rotation speed of the second motor, and the first motor is controlled to be equal to the rotation speed of the second motor.
  • the rotation speed of a motor is in the first speed zone or the second speed zone.
  • the rotation speed of the first motor is controlled to be higher than the second The rotation speed of the motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the rotation speed of the first motor is controlled to be higher than the rotation speed of the second motor, and the rotation speed of the first motor and the second motor are controlled.
  • the rotation speed of the second motor is in the second speed zone or the third speed zone.
  • the first motor can be controlled.
  • the rotation speed of the motor 4c is equal to the rotation speed of the second motor 4d, and the rotation speed of the motor is located at S1 or S2.
  • the rotation speed of the first motor 4c can be controlled to be higher than the rotation speed of the second motor 4d, and the motor rotation speed is at S1 or S2 or S3.
  • the speed of the first motor 4c can be controlled to be higher than the speed of the second motor 4d, and the motor speed is at S2 or S3.
  • the speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and accurate Realize refrigeration adjustment more efficiently and accurately to meet users’ refrigeration needs.
  • the second control process the heating control process that controls the air supply mode of the air conditioner in the heating mode.
  • the control unit 104 can also be specifically set to control the air conditioner to output air in the upper air outlet mode in the heating mode, or to control the air conditioner to output air according to the upper air outlet mode, or to control the air conditioner to output air according to the upper air outlet mode and the lower air outlet mode.
  • the wind blows out alternately For specific functions and processing of the control unit 104, refer to step S310.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • the control unit 104 may also be specifically configured to perform a third adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature when the air conditioner discharges the air in the upper air outlet mode. Setting adjustment. Or, in the case that the air conditioner discharges the air in the air outlet mode, the rotation speed of the first motor and the second motor is adjusted according to the temperature difference between the target temperature and the indoor ambient temperature. For specific functions and processing of the control unit 104, refer to step S320.
  • the rotation speed of the first motor and the second motor are adjusted according to the different air outlet modes of the air conditioner and the temperature difference between the target temperature and the indoor ambient temperature, so as to realize the air conditioner in the heating mode.
  • the flexible adjustment of the wind mode can quickly and evenly realize the heating control, and the user's book practice experience is better.
  • control unit 104 performs a third setting adjustment on the rotation speed of the first motor and the second motor according to the temperature difference between the target temperature and the indoor ambient temperature, which may include any of the following adjustment situations.
  • the control unit 104 can be specifically set to control the second motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range.
  • the rotation speed is equal to the rotation speed of the first motor, and the rotation speed of the second motor is controlled to be in the first speed region or the second speed region.
  • the second adjustment situation the control unit 104 can also be specifically set so that the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the first set temperature range
  • the rotation speed of the second motor is controlled to be higher than the rotation speed of the first motor, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation the control unit 104 may be specifically set to control the rotation speed of the second motor to be high when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range
  • the rotation speed of the first motor is controlled, and the rotation speed of the first motor and the rotation speed of the second motor are controlled to be in the second speed region or the third speed region.
  • the rotation speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and Accurately realize heating regulation, more efficiently and accurately meet the heating needs of users.
  • control unit 104 performs the fourth setting adjustment on the rotation speed of the second motor and the first motor according to the temperature difference between the target temperature and the indoor ambient temperature, which may include any of the following adjustment situations.
  • the first adjustment situation the control unit 104 can be specifically set to control the first motor when the temperature difference between the target temperature and the indoor ambient temperature is greater than or equal to the upper limit of the first set temperature range.
  • the rotation speed is equal to the rotation speed of the second motor, and the rotation speed of the first motor is controlled to be in the first speed region or the second speed region.
  • the second adjustment situation the control unit 104 can also be specifically set so that the temperature difference between the target temperature and the indoor ambient temperature is less than the upper limit of the first set temperature range and greater than or equal to the first set temperature range
  • the rotation speed of the first motor is controlled to be higher than the rotation speed of the second motor, and the rotation speed of the first motor and the second motor are controlled to be in the first speed region or the second speed region or the third speed region.
  • the third adjustment situation the control unit 104 can be specifically configured to control the rotation speed of the first motor to be high when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range
  • the rotation speed of the second motor is controlled and the rotation speed of the first motor and the rotation speed of the second motor are in the second speed region or the third speed region.
  • the CPU when the user is set to heating mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory.
  • the wind direction and motor speed are similar to those in the cooling mode. Reverse the air outlet and reverse the motor.
  • the rotation speed of the first motor and the second motor can be flexibly adjusted according to the temperature difference between the target temperature and the indoor ambient temperature, which can be timely and Accurately realize heating regulation, more efficiently and accurately meet the heating needs of users.
  • control unit 104 adjusts the rotation speed of the second motor and the first motor according to the temperature difference between the target temperature and the indoor ambient temperature.
  • the control unit 104 may further include: the control unit 104, Specifically, it can also be set to control the air conditioner to switch from the air outlet mode of pressing down to the air outlet mode of upper air when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range. . In this way, in the heating mode, the fan blows air to the lower end of the air duct, and the hot air blows out from the lower air outlet of the housing, close to the ground and fully exchanges heat with the cold air, quickly raising the room temperature.
  • the air conditioner when the air conditioner is in the heating mode, the air conditioner can be switched to the air outlet mode when the temperature difference between the target temperature and the indoor ambient temperature is less than the lower limit of the first set temperature range when the air conditioner is in the air outlet mode. To achieve heating, the user's comfort experience is better.
  • the third control process the dehumidification control process that controls the air supply mode of the air conditioner in the dehumidification mode.
  • the control unit 104 may also be specifically configured to control the air conditioner to discharge air in an upward air discharge mode in the dehumidification mode.
  • the rotation speed of the second motor is controlled to be in the first speed region or the second speed region or the third speed region, and the rotation speed of the first motor is controlled to be zero.
  • the control unit 104 may also be specifically configured to control the air conditioner to switch from a top-vent mode to a press-mode mode when the humidity difference between the target humidity and the indoor ambient humidity is less than the set humidity threshold. Out of the wind.
  • the air conditioner discharges air in an air outlet mode
  • the rotation speed of the first motor is controlled to be in the first speed region or the second speed region or the third speed region, and the rotation speed of the second motor is controlled to be zero.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner. Or, in the case that the humidity difference between the target humidity and the indoor environment humidity is greater than or equal to the set humidity threshold, the rotation speed of the second motor is controlled to be higher than the rotation speed of the first motor, that is, the rotation speed of the second motor is continuously controlled to be at the first motor speed. A speed zone or a second speed zone or a third speed zone, and the rotation speed of the first motor is controlled to be zero.
  • the CPU when the user is set to dehumidification mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory to adjust the first motor 4c and the second motor in the counter-rotating axial fan assembly
  • the rotation speed of 4d is used to blow air to the upper tuyere 21 of the cyclone
  • the rotation speed of the second motor 4d is controlled to be S1 or S2 or S3
  • the rotation speed of the first motor 4c is controlled to be 0.
  • the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly can be adjusted, and the counter-rotating fan is directed to the first down vent 22a and the second down vent 22b
  • the rotation speed of the first motor 4c is controlled to be S1 or S2 or S3
  • the rotation speed of the second motor 4d is controlled to be zero.
  • the flexible adjustment of the air supply mode of the air conditioner in the dehumidification mode can be realized, which can be efficiently and accurately Improve user experience.
  • the fourth control process the air supply control process for controlling the air supply mode of the air conditioner in the air supply mode, which may specifically include: the control unit 104, which may be specifically set to control the air conditioner in the air supply mode in the upper air supply mode.
  • Air outlet or control the air conditioner to output air according to the air outlet mode, or control the air conditioner to output air alternately according to the upper air outlet and the lower air outlet.
  • the wind blowing alternately according to the upper wind mode and the lower wind mode may be periodically or non-periodically.
  • the upper air outlet mode may include: controlling the first motor and the second motor to send air to at least one upper air outlet of the air conditioner.
  • the downward air outlet mode may include: controlling the first motor and the second motor to send air to at least one lower air outlet of the air conditioner.
  • the lower air outlet mode may include controlling the first motor and the second motor to send air to a lower air outlet of the air conditioner, controlling the lower air outlet movement mechanism of the air conditioner to direct the wind to the position of the human body.
  • the CPU when the user is set to the air supply mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's position, and calls the control program in the memory to adjust the rotation direction and the number of openings of the motor in the counter-rotating axial flow fan assembly .
  • the air supply mode since the air supply mode does not need to undergo heat exchange, in the air supply mode, the air can be blown up or down, or it can be operated alternately between up and down air.
  • the upper air outlet mode is preferred. You can refer to The control of the first motor and the second motor in each air outlet mode in the cooling mode. And when it is the downward air outlet, the movement mechanism of the downward air outlet can be controlled, so that the downward air outlet can be classified into double air outlet air outlet and single air outlet air outlet. When the single air outlet air outlet, the directional air supply effect can be realized.
  • the fifth control process the human-sensing control process of controlling the air supply mode of the air conditioner in human-sensing mode.
  • the human-sensing function relies on the cooperation of the sensor, the CPU and the memory, and the sensor is not limited to various types of sensors.
  • control unit 104 can also be specifically set to be in the cooling mode, heating mode, or air supply mode, and when the human perception mode is activated, if the human perception mode is the wind follow people mode,
  • the air conditioner is controlled to discharge the air in the upper air outlet mode, and the upper air outlet movement mechanism of the air conditioner is controlled to direct the wind to the human body location Place.
  • the air conditioner is controlled to press the air outlet mode to discharge the air, and the air outlet movement mechanism of the air conditioner is controlled to guide the wind Where the human body is located.
  • the CPU obtains the current ambient temperature, the user's location, and calls the control program in the memory. If the user selects the wind follower
  • the upwind vent air supply mode is turned on, and the upwind vent movement mechanism directs the wind to the user.
  • the lower air outlet air supply mode is turned on, and the upper air outlet movement mechanism directs the wind to the user.
  • control unit 104 may be specifically set to be in the cooling mode, heating mode, or air supply mode, and when the human-sensing mode is activated, in the cooling mode, heating mode, or air supply mode, And when the human-sensing mode is activated, if the human-sensing mode is the wind avoidance mode, the air conditioner is controlled when the human body is standing and the distance between the human body and the air conditioner is less than or equal to the third set distance threshold Press the air outlet mode to release the air, and control the air-conditioner's downward air outlet movement mechanism to direct the wind to the location where the human body is not.
  • the air conditioner is controlled to discharge air according to the upper air outlet mode, and the air conditioner's upper air outlet movement mechanism is controlled to guide the wind At a location other than the human body.
  • the down vent air supply mode is turned on, and the down vent movement mechanism directs the wind to the non-user side.
  • the upwind vent air supply mode is turned on, and the upwind vent movement mechanism directs the wind to the non-user side.
  • the first motor and the second motor are controlled by combining the specific wind-sensing mode, the human body posture, the distance between the human body position and the air conditioner, etc., so that the air conditioner can be sent in the human-sensing mode.
  • the flexible adjustment of the wind mode can efficiently and accurately enhance the user experience.
  • control unit 104 can be specifically set to sit on the human body, and the distance between the human body and the air conditioner is less than or equal to the fifth set distance threshold, and the human body is biased towards at least two of the air conditioners.
  • the first air outlet in the lower air outlet if the human-sensing mode is the wind follower mode, the first air outlet of the at least two lower air outlets of the air conditioner is controlled to discharge air, and at least two air outlets of the air conditioner are controlled.
  • the second air outlet in the air outlet is closed (the second air outlet is far away from the human body), and the lower air outlet movement mechanism of the air conditioner is controlled to guide the wind to the position of the human body.
  • the human body when the human body is sitting and the distance between the position of the human body and the air conditioner is less than or equal to the fifth set distance threshold, and the human body is biased toward the first air outlet of the at least two lower air outlets of the air conditioner, if the human
  • the sensing mode is the wind avoidance mode
  • the second air outlet of the at least two lower air outlets of the air conditioner is controlled to discharge air (the second air outlet is away from the human body), and the first air outlet of the at least two air outlets of the air conditioner is controlled It is closed, and the movement mechanism of the lower air outlet of the air conditioner is controlled to guide the wind to a location where the human body is not located.
  • the movement mechanism of the air outlet guides the wind to the user. If the user chooses to avoid people from the wind, the air outlet close to the user does not emit wind, and the other air outlet far away from the user emits wind, and the movement mechanism of the air outlet guides the wind to the non-user side. For example, when the wind is directed to the user through the movement mechanism of the air outlet, for example, the down outlet is divided into a first lower outlet 22a and a second lower outlet 22b.
  • the first down vent 22a When the user approaches the first down vent 22a, the first down vent 22a is opened, and the second down vent 22b is closed.
  • the specific movement is executed by the motion mechanism, and the opening and closing can be formed by the panel or the wind deflector.
  • the wind guide mechanism starts to move, and the wind guide plate or other wind guide mechanism adjusts the angle to guide the wind to the user, so that the wind blows to the user.
  • the first motor and the second motor are controlled by combining the specific wind-sensing mode, the lower air outlet of the human body, the human body posture, the distance between the human body position and the air conditioner, etc., so that the human
  • the flexible adjustment of the air supply mode of the air conditioner in the sensor mode can efficiently and accurately enhance the user experience.
  • the technical solution of the present disclosure is used to control the air supply direction of the counter-rotating axial-flow fan through the multi-air port of the counter-rotating axial-flow fan, which can realize cooling, heating, temperature difference, humidity difference, and multi-directional air supply.
  • the control function of the air conditioner is increased, which can meet the comfort of users who do not need it.
  • an air conditioner corresponding to a control device of the air conditioner is also provided.
  • the air conditioner may include the above-mentioned control device of the air conditioner.
  • the solution of the present disclosure provides a control method of an air conditioner, especially an air outlet control method, and a novel cabinet with the air outlet control method, which can For the air-conditioning cabinet with multiple air outlets and a counter-rotating fan system that can supply air up and down, it can form an air outlet effect that can be up and down, and has the function of reversible air supply.
  • the new cabinet machine has multiple air outlets at the upper and lower ends, and a counter-rotating axial flow fan assembly with reversible air supply is installed inside the air duct.
  • a counter-rotating axial flow fan assembly with reversible air supply is installed inside the air duct.
  • Circulating airflow improves user comfort; and the multi-vent design also brings various forms of air outlet methods to enhance user comfort.
  • the solution of the present disclosure aims at a new cabinet with a reversible air duct.
  • the control method is: obtaining the user's working condition setting, obtaining the temperature in the room, and obtaining the user's location , By adjusting the rotation direction and speed of the counter-rotating axial flow fan.
  • the effect of alternating up and down blowing and up and down blowing can be achieved, forming a large air flow inside the room, accelerating the air heat exchange in the room, and slowing down the temperature stratification of the room up and down. Phenomenon, enhance the comfort of users.
  • a low-speed fan is used for cooling, and the upper air outlet is turned on first.
  • the lower air outlet can be turned on to change the airflow direction of the room to fully dehumidify.
  • various air outlet effects can be controlled and selected, including upper air outlet, double lower air outlet, and single lower air outlet, to enhance comfort.
  • the human-sensing mode can control that when a user approaches and a temperature change is required, the temperature change can be quickly obtained at a short distance to enhance the user's comfort.
  • Traditional indoor cabinet air conditioners are mostly centrifugal and tubular air conditioners. They are characterized by only one air outlet. The air is supplied from the same air outlet regardless of heating or cooling mode. Because of the physical characteristics of cold and hot air, hot air is required for heating. Heat exchange is carried out on the floor and near the room. When cooling, the cold air needs to be heat exchanged on the roof and nearby. The air supply from the same air outlet will cause the air supply distance to be too large, and the heat and cold exchange will be uneven, which will increase the temperature difference in the room area. The comfort is poor.
  • the solution of the present disclosure adopts a new type of cabinet machine, with multiple air openings at the upper and lower ends of the air duct, the counter-rotating axial flow fan assembly and the heat exchanger are arranged in the air duct, and the fan sends air to the lower end of the air duct in the heating mode.
  • the hot air blows out from the lower air vent of the shell, close to the ground and fully exchanges heat with the cold air, quickly raising the room temperature; in the cooling mode, the fan sends air to the upper end of the air duct, and the cold air blows out from the upper air vent of the shell, close to the roof and fully exchanges the hot air. Heat and quickly lower the room temperature. Both cooling and heating enhance the large circulating air flow in the room, thereby making the room temperature distribution more uniform and improving user comfort.
  • 1 is the complete air conditioner indoor unit
  • 1a is the front panel
  • 1c, 1d are the side panels
  • 2 is the shell, the radial cross-sectional shape of which is pentagonal
  • the upper end of the shell is opened with an upwind vent 21, an upwind vent 21 is located on the two adjacent sides of the front panel and the front panel
  • 21a is the upper air outlet filter assembly
  • 21b is the upper air guide mechanism, located at the upper air outlet
  • at the lower end of the shell is opened a first down outlet 22a, a second down
  • the air outlet 22b, the first down outlet 22a and the second down outlet 22b are located on the two adjacent sides of the front panel
  • 22c and 22d are the first down outlet and the second down outlet filter assembly respectively
  • 22e and 22f are the first down outlet respectively.
  • the air outlet and the second air outlet air guide mechanism are placed at the air outlet
  • 24 is the shell base.
  • FIG 7 23 is the top cover, which contains the flow guide components; 4a, 4b are the first axial flow fan and the second axial flow fan, respectively, driven by the first motor 4c and the second motor 4d of the fan assembly; 3 is the internal air duct; 5 is the heat exchanger, as shown in Figure 8, located between the second axial flow fan 4b and the first down vent 22a, the second down vent 22b; in Figure 9, 6 is the diversion ring , Located between the second axial flow fan 4b and the heat exchanger 5.
  • the CPU when the user is set to the cooling mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory.
  • the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory.
  • Example 1 Adjust the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial fan assembly.
  • the motor rotation speed is set to 3 speed zones, namely the high-speed zone S1, the medium-speed zone S2 and the low-speed zone S3, and the counter-rotating fan Air is supplied to the upward air inlet 21.
  • the speed of the second motor 4d can be controlled to be equal to the speed of the first motor 4c, and the motor speed is at S1 or S2; when the temperature difference is less than 10 degrees Celsius and greater than 3 degrees Celsius, the second motor can be controlled The speed of 4d is higher than the speed of the first motor 4c, and the speed of the motor is at S1 or S2 or S3; when the temperature difference is less than 3 degrees Celsius, the speed of the second motor 4d can be controlled to be higher than the speed of the first motor 4c, and the speed of the motor is at S2 Or S3.
  • the temperature difference is the difference between the user set temperature and the indoor ambient temperature.
  • the second embodiment adjust the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly, and the counter-rotating fan sends air to the first down-air outlet 22a and the second down-air outlet 22b, which can be controlled when the temperature difference is greater than 10 degrees Celsius
  • the speed of the first motor 4c is equal to the speed of the second motor 4d, and the speed of the motor is at S1 or S2; when the temperature difference is less than 10 degrees Celsius and greater than 3 degrees Celsius, the speed of the first motor 4c can be controlled to be higher than the speed of the second motor 4d, and the motor The speed is at S1 or S2 or S3; when the temperature difference is less than 3 degrees Celsius, the speed of the first motor 4c can be controlled to be higher than the speed of the second motor 4d, and the motor speed is at S2 or S3.
  • Embodiment 3 Regularly adjust the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly, and the counter-rotating fan regularly sends air to the upper and lower air outlets alternately.
  • the motor speed control is the same as in the previous embodiments.
  • the control method is the same, please refer to the first and second embodiments.
  • Embodiment 4 When the temperature difference is less than 3 degrees Celsius, the motor can be controlled to make the counter-rotating fan send air to the downward air outlet, and the flow direction of the airflow in the room can be changed, so that the temperature in the room tends to be more uniform.
  • the CPU when the user is set to the heating mode, the CPU obtains the current ambient temperature and the user's location after receiving the instruction, and calls the control program in the memory.
  • the wind direction and motor speed are similar to the cooling mode , You only need to reverse the upper and lower air outlets, and reverse the motor.
  • the CPU when the user is set to the dehumidification mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory to adjust the first in the counter-rotating axial fan assembly.
  • the rotation speeds of the motors 4c and the second motor 4d are used to blow air to the upper tuyere 21 by the rotary fan, the rotation speed of the second motor 4d is controlled to be S1 or S2 or S3, and the rotation speed of the first motor 4c is controlled to be zero.
  • the rotation speed of the first motor 4c and the second motor 4d in the counter-rotating axial flow fan assembly can be adjusted, and the counter-rotating fan is directed to the first down vent 22a and the second down vent 22b
  • the rotation speed of the first motor 4c is controlled to be S1 or S2 or S3
  • the rotation speed of the second motor 4d is controlled to be zero.
  • the CPU when the user is set to the air supply mode, after receiving the instruction, the CPU obtains the current ambient temperature and the user's location, and calls the control program in the memory to adjust the motor in the counter-rotating axial fan assembly The direction of rotation and the number of openings.
  • the air supply mode does not need to undergo heat exchange
  • either the upper air or the lower air can be used, or the upper and lower air can be alternately operated periodically.
  • the upper air exit mode is preferred (refer to Example 1, Example 2, and Example 3 in the cooling mode).
  • the movement mechanism of the downward air outlet can be controlled, so that the downward air outlet can be classified into double air outlet air outlet and single air outlet air outlet.
  • the single air outlet air outlet the directional air supply effect can be realized.
  • the CPU obtains the current ambient temperature, the user's location, and calls the control program in the memory If the user chooses the wind to follow the person, when the user stands close to the cabinet, regardless of cooling, heating, or air supply, the uptake air supply mode will be turned on, and the uptake movement mechanism will guide the wind to the user; when the user sits on the cabinet When nearby, regardless of cooling, heating, or air supply, the down vent air supply mode is turned on, and the down vent movement mechanism directs the wind to the user.
  • the down vent air supply mode is turned on, and the down vent movement mechanism directs the wind to the non-user side.
  • the upwind vent air supply mode is turned on, and the upwind vent movement mechanism directs the wind to the non-user side.
  • the human-sensing function relies on the cooperation of the sensor, the CPU and the memory, and the sensor is not limited to various types of sensors.
  • the leeward close to the user will give out the wind, and the other vent far away from the user will not be closed.
  • the movement mechanism of the air outlet will guide the wind to the user. If the user chooses to avoid people from the wind, the air outlet close to the user will not emit the wind, and the other air outlet far away from the user will emit the wind, and the movement mechanism of the air outlet will The wind is directed to the non-user side.
  • the down outlet is divided into the first down outlet 22a and the second down outlet 22b; when the user approaches the first down outlet 22a, the first down outlet 22a is opened , The second down vent 22b is closed, the specific movement is executed by the movement mechanism, and the opening and closing can be formed by the panel or the wind deflector.
  • the first down vent 22a is opened, the wind guide mechanism starts to move, and the wind guide plate or other wind guide mechanism adjusts the angle to guide the wind to the user, so that the wind blows to the user.
  • the air conditioner has a variety of air supply methods to meet the different requirements of room cooling and heating modes.
  • the air supply direction of the rotary axial flow fan By controlling the air supply direction of the rotary axial flow fan, the cold and hot air can be sent from different heights to speed up Heat exchange in the room makes the temperature distribution in the room more even and improves user comfort.
  • the multi-air port of the counter-rotating axial flow fan can be used for cooling, heating, temperature difference, humidity difference, and multi-directional air supply.
  • the fan sends air to the lower end of the air duct when the heating mode is passed, and the hot air blows out from the air outlet under the shell, close to the ground and fully exchanges heat with the cold air, and quickly raises the room temperature.
  • the temperature distribution is more uniform, and the user's comfort is improved.
  • a computer-readable storage medium corresponding to a control method of an air conditioner.
  • the computer-readable storage medium may include: a plurality of instructions are stored in the computer-readable storage medium; and the plurality of instructions are configured to be loaded by a processor and execute the above-mentioned control method of the air conditioner.
  • the technical solution of the present disclosure is adopted.
  • the fan sends air to the upper end of the air duct, and the cold air is blown out from the upper air port of the shell, which is close to the roof and fully exchanges heat with the hot air, and quickly reduces the room temperature.
  • the temperature distribution is more even, which improves user comfort.
  • an air conditioner corresponding to a control method of the air conditioner may include: a processor configured to execute a plurality of instructions; a memory configured to store a plurality of instructions; wherein the plurality of instructions are configured to be stored by the memory and executed by the processor Load and execute the above-mentioned air conditioning control method.
  • the technical solution of the present disclosure is adopted, through the opening of multiple air ports at the upper and lower ends of the air duct, the counter-rotating axial flow fan assembly and the heat exchanger are arranged in the air duct, and both cooling and heating enhance the room size. Circulate the airflow, so that the room temperature distribution is more even, and the user comfort is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开公开了一种空调的控制方法、装置、计算机可读存储介质及空调,该方法包括:获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置;根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和/或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。本公开的方案,可以解决空调柜机的送风方式单一造成房间温度分布不均匀的问题,达到提升房间温度分布的均匀性的效果。

Description

一种空调的控制方法、装置、计算机可读存储介质及空调
本公开要求于2019年11月8日提交中国专利局、申请号为201911085820.4、发明名称为“一种空调的控制方法、装置、计算机可读存储介质及空调”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于空调技术领域,具体涉及一种空调的控制方法、装置、计算机可读存储介质及空调,尤其涉及空调器的控制方法、装置、计算机可读存储介质及空调。
背景技术
现有的空调柜机多为离心柜机或者贯流柜机,其送风方式单一,冷、热风均从相同风口吹出,只依靠导风机构进行风向的偏转,由于出风口与地面或者房顶有较远的距离,制热模式时多数热风还未到达地面就开始上浮,制冷模式时多数冷风未到达房顶就开始下沉,造成房间温度分布不均匀,用户舒适性差,换热时间长。
上述内容仅用于辅助理解本公开的技术方案,并不代表承认上述内容是现有技术。
发明内容
本公开的目的在于,针对上述缺陷,提供一种空调的控制方法、装置、计算机可读存储介质及空调,以解决空调柜机的送风方式单一造成房间温度分布不均匀的问题,达到提升房间温度分布的均匀性的效果。
本公开提供一种空调的控制方法,包括:获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置;其中,在空调的风道上端,开设有一个以上的上出风口;在该空调的风道下端,开设有一个以上的下出风口;且在该空调的风道内,布置有能够逆向送风的对旋轴流风机组件;对旋轴流风机组件,具有第一电机和第二电机;根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和 /或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。
在一些实施方式中,控制空调的送风方式,包括:在制冷模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节;或者,在制热模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第四设定调节。
在一些实施方式中,其中,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域;和/或,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第 一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域;或者,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域;和/或,根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
在一些实施方式中,其中,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,还包括:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按上出风方式出风转为按下出风方式出风;和/或,根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,还包括:在目标 温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按下出风方式出风转为按上出风方式出风。
在一些实施方式中,控制空调的送风方式,还包括:在除湿模式下,控制空调按上出风方式出风;在空调按上出风方式出风的情况下,控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0;在目标湿度与室内环境湿度之间的湿度差小于设定湿度阈值的情况下,控制空调由按上出风方式出风转为按下出风方式出风;在空调按下出风方式出风的情况下,控制第一电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第二电机的转速为0。
在一些实施方式中,控制空调的送风方式,还包括:在送风模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;其中,在下出风方式包括控制第一电机和第二电机向空调的一个下出风口送风的情况下,控制空调的下出风口运动机构将风定向导向人体所在位置处。
在一些实施方式中,控制空调的送风方式,还包括:在启动人感模式的情况下,若人感模式为风跟人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第一设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第二设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向人体所在位置处;或者,若人感模式为风避人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第三设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向非人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第四设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向非人体所在位置处;或者,在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风跟人模式,则控制空调的至少两个下出风口中的第一出风口出风,并控制空调的至少两个出风口中的第二出风口关闭,且控制空调的下出风口运动机构将风导向人体所在位置处;或若人感模式为风避人模式,则控 制空调的至少两个下出风口中的第二出风口出风,并控制空调的至少两个出风口中的第一出风口关闭,且控制空调的下出风口运动机构将风导向非人体所在位置处。
在一些实施方式中,其中,上出风方式,包括:控制第一电机和第二电机向空调的至少一个上出风口送风;下出风方式,包括:控制第一电机和第二电机向空调的至少一个下出风口送风。
与上述方法相匹配,本公开另一方面提供一种空调的控制装置,包括:获取单元,被设置为获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置;其中,在空调的风道上端,开设有一个以上的上出风口;在该空调的风道下端,开设有一个以上的下出风口;且在该空调的风道内,布置有能够逆向送风的对旋轴流风机组件;对旋轴流风机组件,具有第一电机和第二电机;控制单元,被设置为根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和/或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。
在一些实施方式中,所述控制单元控制空调的送风方式,包括:在制冷模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节;或者,在制热模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第四设定调节。
在一些实施方式中,其中,所述控制单元根据目标温度与室内环境温度之 间的温度差对第一电机和第二电机的转速进行第一设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域;和/或,所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域;或者,所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区 域;和/或,所述控制单元根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,包括:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
在一些实施方式中,其中,所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,还包括:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按上出风方式出风转为按下出风方式出风;和/或,所述控制单元根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,还包括:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按下出风方式出风转为按上出风方式出风。
在一些实施方式中,所述控制单元控制空调的送风方式,还包括:在除湿模式下,控制空调按上出风方式出风;在空调按上出风方式出风的情况下,控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0;在目标湿度与室内环境湿度之间的湿度差小于设定湿度阈值的情况下,控制空调由按上出风方式出风转为按下出风方式出风;在空调按下出风方式出风的情况下,控制第一电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第二电机的转速为0。
在一些实施方式中,所述控制单元控制空调的送风方式,还包括:在送风模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;其中,在下出风方式包括控制第一电机和第二电机向空调的一个下出风口送风的情况下,控制空调的下出风口 运动机构将风定向导向人体所在位置处。
在一些实施方式中,所述控制单元控制空调的送风方式,还包括:在启动人感模式的情况下,若人感模式为风跟人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第一设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第二设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向人体所在位置处;或者,若人感模式为风避人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第三设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向非人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第四设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向非人体所在位置处;或者,在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风跟人模式,则控制空调的至少两个下出风口中的第一出风口出风,并控制空调的至少两个出风口中的第二出风口关闭,且控制空调的下出风口运动机构将风导向人体所在位置处;或若人感模式为风避人模式,则控制空调的至少两个下出风口中的第二出风口出风,并控制空调的至少两个出风口中的第一出风口关闭,且控制空调的下出风口运动机构将风导向非人体所在位置处。
在一些实施方式中,其中,上出风方式,包括:控制第一电机和第二电机向空调的至少一个上出风口送风;下出风方式,包括:控制第一电机和第二电机向空调的至少一个下出风口送风。
与上述装置相匹配,本公开再一方面提供一种空调,包括:以上所述的空调的控制装置。
与上述方法相匹配,本公开再一方面提供一种计算机可读存储介质,包括:所述计算机可读存储介质中存储有多条指令;所述多条指令,被设置为由处理器加载并执行以上所述的空调的控制方法。
与上述方法相匹配,本公开再一方面提供一种空调,包括:处理器,被设置为执行多条指令;存储器,被设置为存储多条指令;其中,所述多条指令,被设置为由所述存储器存储,并由所述处理器加载并执行以上所述的空调的控制方法。
本公开的方案,通过控制对旋轴流风机的送风方向,实现冷、热风从不同高度位置送出,加快房间热交换,使房间温度分布更均匀,有利于提升用户的舒适性感受。
在一些实施方式中,本公开的方案,通过对旋轴流风机的多风口,控制对旋轴流风机的送风方向,可以实现制冷、制热、温差、湿度差、多方向送风,增加了空调的控制功能,可以满足不用需求用户的舒适性感受。
在一些实施方式中,本公开的方案,通过制热模式时风机向风道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温,使房间温度分布更均匀,提升用户的舒适性感受。
在一些实施方式中,本公开的方案,通过制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温,使房间温度分布更均匀,提升用户舒适性。
在一些实施方式中,本公开的方案,通过在风道上下两端开有多个风口,对旋轴流风机组件以及换热器布置于风道内,制冷与制热均增强了房间大循环气流,从而使房间温度分布更均匀,提升用户舒适性。
由此,本公开的方案,通过控制对旋轴流风机的送风方向,实现冷、热风从不同高度位置送出,解决空调柜机的送风方式单一造成房间温度分布不均匀的问题,达到提升房间温度分布的均匀性的效果。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。
下面通过附图和实施例,对本公开的技术方案做进一步的详细描述。
附图说明
图1为本公开的空调的控制方法的一实施例的流程示意图;
图2为本公开的方法中制冷模式下控制空调的送风方式的一实施例的流程示意图;
图3为本公开的方法中制热模式下控制空调的送风方式的一实施例的流程示意图;
图4为本公开的方法中除湿模式下控制空调的送风方式的一实施例的流程示意图;
图5为本公开的空调的控制装置的一实施例的结构示意图;
图6为本公开的空调(即空调器)的一实施例的结构示意图;
图7为本公开的空调(即空调器)的一实施例的内部结构示意图,为轴向剖视图;
图8为本公开的空调(即空调器)的一实施例的制冷工作状态下的运行结构示意图;
图9为本公开的空调(即空调器)的一实施例的制热工作状态下的运行结构示意图;
图10为本公开的空调(即空调器)的一实施例的制冷工况下的控制流程示意图;
图11为本公开的空调(即空调器)的一实施例的除湿工况下的控制流程示意图;
图12为本公开的空调(即空调器)的一实施例的人感模式下的控制流程示意图。
结合附图,本公开实施例中附图标记如下:
1-空调器;1a-前面板;1c-侧面板;1d-侧面板;2-壳体;21-上风口;21a-上风口过滤网组件;21b-上风口导风机构;22a-第一下风口;22b-第二下风口;22c-第一下风口过滤网组件;22d-第二下风口过滤网组件;22e-第二下风口导风机构;22f-第二下风口导风机构;23-顶盖;24-底座;3-内部风道;4a-第一轴流风叶;4b-第二轴流风叶;4c-第一电机;4d-第二电机;5-换热器;6-导流圈;102-获取单元;104-控制单元。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的 实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
根据本公开的实施例,提供了一种空调的控制方法,如图1所示本公开的方法的一实施例的流程示意图。该空调的控制方法可以应用于上下两端具有多个出风口、且风道内部设置有可逆向送风的对旋轴流风机组件的空调,该空调的控制方法可以包括:步骤S110和步骤S120。
在步骤S110处,获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置。例如:空调的目标温度,可以是用户设定的预期温度。人体所在位置,即空调所在房间中用户的位置。其中,在该空调的风道的上下两端,分别开设有一个以上出风口,具体可以是在空调的风道上端,开设有一个以上的上出风口。在该空调的风道下端,开设有一个以上的下出风口。且在该空调的风道内,布置有能够逆向送风的对旋轴流风机组件。具体地,在该空调的风道的上下两端,分别开设有一个以上出风口。且在该空调的风道内,布置有对旋轴流风机组件和换热器。对旋轴流风机组件能够逆向送风。对旋轴流风机组件,具有第一电机和第二电机。第一电机的转速和/或第二电机的转速的设定速度区域,可以包括:第一速度区域、第二速度区域和第三速度区域。其中,第一速度区域的下限,大于或等于第二速度区域的上限。第二速度区域的下限,大于或等于第三速度区域的上限。
在步骤S120处,根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和/或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。具体地,可以是根据空调的运行模式、目标温度与室内环境温度之间的温度差、和/或人体所在位置,控制空调的对旋轴流风机组件的旋转方向和/或转速,即,通过调节空调的对旋轴流风机组件的旋转方向和/或转速,实现对空调的送风方式的控制。其中,空调的运行模式,可以包括:制冷模式、制热模式、除湿模式、送风模式、人感模式中的相应单一模式或组合模式。
例如:可以采用新型柜机,在风道上下两端开有多个风口,对旋轴流风机 组件以及换热器布置于风道内,制热模式时风机向风道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温。制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温。这样,制冷与制热均增强了房间大循环气流,从而使房间温度分布更均匀,提升用户舒适性。
例如:空调器有多种送风方式可以满足房间制冷、制热模式的不同需求,通过控制对旋轴流风机的送风方向,实现冷、热风从不同高度位置送出,加快房间热交换,使房间温度分布更均匀,提升用户舒适性。这样,通过对旋轴流风机的多风口,可以制冷、制热、温差、湿度差、多方向送风。
由此,通过根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、人体所在位置等参数,调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,实现对空调的送风方式的灵活控制,送风均匀性好,可以满足不同舒适性需求的用户的舒适性感受。
在一些实施方式中,步骤S120中的控制空调的送风方式,可以包括以下任一控制过程,如可以包括以下第一控制过程至第五控制过程中的任一控制过程。
第一控制过程:制冷模式下控制空调的送风方式的制冷控制过程。
下面结合图2所示本公开的方法中制冷模式下控制空调的送风方式的一实施例流程示意图,进一步说明制冷模式下控制空调的送风方式的具体过程,可以包括:步骤S210和步骤S220。
步骤S210,在制冷模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风。其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。通过灵活设置上出风方式和下出风方式,可以针对具有上下出风口的空调选择符合自身需求的出风方式,灵活且可靠。
步骤S220,在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节。或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度 差对第一电机和第二电机的转速进行第二设定调节。
当然,在制冷模式下,在空调按上出风方式和下出风方式交替地出风的情况下,在空调按上出风方式出风时进行第一设定调节,在空调按下出风方式出风时进行第二设定调节。例如:规律性地调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机规律性地交替向上、下风口送风,电机转速调控与上风口送风和下风口送风方式中的控制方式一样。
由此,通过制冷模式下,根据空调的不同出风方式、结合目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行调节,实现制冷模式下空调的送风方式的灵活调节,可以快速且均匀地实现制冷控制,用户的书实习感受更佳。
在一些实施方式中,步骤S220中根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,可以包括以下任一种调节情形。
第一种调节情形:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:控制空调的送风方式,可以包括:第一控制过程:制冷模式下控制空调的送风方式的第一制冷控制过程,具体可以包括:在制冷模式下,控制第一电机和第二电机向空调的至少一个上出风口送风,即,控制空调的对旋轴流风机组件中的第一电机和第二电机向空调的上出风口送风。例如:至少一个上出风口,可以包括:上风口21。在一些实施方式中,在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第 二速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,电机转速设3个速度区域,分别为高速区S1、中速区S2、低速区S3,对旋风机(即对旋轴流风机组件)向上风口21送风,当温差大于10摄氏度时可以控制第二电机4d的转速等于第一电机4c的转速,并且电机转速位于S1或S2。当温差小于10摄氏度大于3摄氏度时可以控制第二电机4d的转速高于第一电机4c的转速,并且电机转速位于S1或S2或S3。当温差小于3摄氏度时可以控制第二电机4d的转速高于第一电机4c的转速,并且电机转速位于S2或S3。
由此,通过在制冷模式下空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制冷调节,更高效且精准地满足用户的制冷需求。
在一些实施方式中,步骤S220中根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,还可以包括:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按上出风方式出风转为按下出风方式出风。
例如:当温差小于3摄氏度时,可以控制电机使对旋风机向下风口送风,改变房间内气流的流动方向,使得房间内温度更趋于均匀。这样,制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温。
由此,通过在制冷模式下空调按上出风方式出风的情况下,目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限时转换出风方式,可以更快速实现制冷,用户的舒适性体验更好。
在一些实施方式中,步骤S220中根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节,可以包括以下任一种调 节情形。
第一种调节情形:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。例如:控制空调的送风方式,可以包括:第一控制过程:制冷模式下控制空调的送风方式的第二制冷控制过程,具体可以包括:在制冷模式下,控制第一电机和第二电机向空调的至少一个下出风口送风,即,控制空调的对旋轴流风机组件中的第一电机和第二电机向空调的上出风口送风。例如:至少两个下出风口,可以包括:第一下风口22a、第二下风口22b。在一些实施方式中,在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向第一下风口22a、第二下风口22b送风,当温差大于10摄氏度时可以控制第一电机4c的转速等于第二电机4d的转速,并且电机转速位于S1或S2。当温差小于10摄氏度大于3摄氏度时可以控制第一电机4c的转速高于第二电机4d的转速,并且电机转速位于S1或S2或S3。当温差小于3摄氏度时可以 控制第一电机4c的转速高于第二电机4d的转速,并且电机转速位于S2或S3。
由此,通过在制冷模式下空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制冷调节,更高效且精准地满足用户的制冷需求。
第二控制过程:制热模式下控制空调的送风方式的制热控制过程。
下面结合图3所示本公开的方法中制热模式下控制空调的送风方式的一实施例流程示意图,进一步说明制热模式下控制空调的送风方式的具体过程,可以包括:步骤S310和步骤S320。
步骤S310,在制热模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风。其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。
步骤S320,在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节。或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第四设定调节。
由此,通过制热模式下,根据空调的不同出风方式、结合目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行调节,实现制热模式下空调的送风方式的灵活调节,可以快速且均匀地实现制热控制,用户的书实习感受更佳。
在一些实施方式中,步骤S320中根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节,可以包括以下任一种调节情形。
第一种调节情形:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处 于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
由此,通过在制热模式下空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制热调节,更高效且精准地满足用户的制热需求。
在一些实施方式中,步骤S320中根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,可以包括以下任一种调节情形。
第一种调节情形:在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:当用户设定为制热模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,其风向及电机转速与制冷模式类似,只需将上、下风口对调,并且对调电机即可。
由此,通过在制热模式下空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制热调节,更高效且精准地满足用户的制热需求。
在一些实施方式中,步骤S330中根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,还可以包括:在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按下出风方式出风转为按上出风方式出风。这样,制热模式时风机向风 道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温。
由此,通过在制热模式下空调按下出风方式出风的情况下,目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限时转换出风方式,可以更快速实现制热,用户的舒适性体验更好。
第三控制过程:除湿模式下控制空调的送风方式的除湿控制过程。
下面结合图4所示本公开的方法中除湿模式下控制空调的送风方式的一实施例流程示意图,进一步说明除湿模式下控制空调的送风方式的具体过程,可以包括:步骤S410和步骤S420。
步骤S410,在除湿模式下,控制空调按上出风方式出风。在空调按上出风方式出风的情况下,控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0。
步骤S420,在目标湿度与室内环境湿度之间的湿度差小于设定湿度阈值的情况下,控制空调由按上出风方式出风转为按下出风方式出风。在空调按下出风方式出风的情况下,控制第一电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第二电机的转速为0。其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。或者,在目标湿度与室内环境湿度之间的湿度差大于或等于设定湿度阈值的情况下,控制第二电机的转速高于第一电机的转速,即继续控制控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0。
例如:当用户设定为除湿模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向上风口21送风,控制第二电机4d的转速为S1或S2或S3,控制第一电机4c的转速为0。当室内湿度接近设定湿度时湿度差20%时,可调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向第一下风口22a、第二下风口22b送风,控制第一电机4c的转速为S1或S2或S3,控制第二电机4d的转速为0。
由此,通过在除湿模式下,结合目标湿度与室内环境湿度之间的湿度差控制第一电机和第二电机,实现在除湿模式下对空调的送风方式的灵活调整,可 以高效且精准地提升用户体验。
第四控制过程:送风模式下控制空调的送风方式的送风控制过程,具体可以包括:在送风模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风。其中,按上出风方式和下出风方式交替地出风,可以是周期性地,也可以是非周期性地。
其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。在下出风方式可以包括控制第一电机和第二电机向空调的一个下出风口送风的情况下,控制空调的下出风口运动机构将风定向导向人体所在位置处。
例如:当用户设定为送风模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,调节对旋轴流风机组件里电机的旋转方向及开启数量。其中,由于送风模式不需经过换热,所以送风模式时,既可以上出风,也可以下出风,也可以周期性上、下出风交替运行,优选上出风模式,可以参考制冷模式下各出风方式下对第一电机和第二电机的控制。并且为下出风时,可以控制下风口的运动机构,使得下出风可分类为双风口下出风与单风口下出风,单风口下出风时,可实现定向送风效果。
由此,通过在送风模式下,灵活设置送风方式,可以满足不同送风需求的用户的送风舒适性体验。
第五控制过程:人感模式下控制空调的送风方式的人感控制过程。其中,人感功能靠传感器与CPU及存储器的协作产生作用,传感器不限于各种类型的传感器。
具体地,在制冷模式或制热模式或送风模式下,且在启动人感模式的情况下,若人感模式为风跟人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第一设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向人体所在位置处。或在人体坐立、且人体所在位置与空调之间的距离小于或等于第二设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向人体所在位置处。
例如:当用户设定为制冷或者制热、送风,并启动人感模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,若 用户选择风跟人,则当用户站立靠近柜机时,不管制冷或者制热、送风,均开启上风口送风模式,并且上风口运动机构将风向导向用户。当用户坐立于柜附近时,不管制冷或者制热、送风,均开启下风口送风模式,并且上风口运动机构将风向导向用户。
或者,在制冷模式或制热模式或送风模式下,且在启动人感模式的情况下,若人感模式为风避人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第三设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向非人体所在位置处。或在人体坐立、且人体所在位置与空调之间的距离小于或等于第四设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向非人体所在位置处。
例如:若用户选择风避人,则当用户站立靠近柜机时,不管制冷或者制热、送风,均开启下风口送风模式,并且下风口运动机构将风向导向非用户侧。当用户坐立于柜机附近时,不管制冷或者制热、送风,均开启上风口送风模式,并且上风口运动机构将风向导向非用户侧。
由此,通过在人感模式下,结合具体的风感模式、人体姿势、人体所在位置与空调之间的距离等参数控制第一电机和第二电机,实现在人感模式下对空调的送风方式的灵活调整,可以高效且精准地提升用户体验。
可替代地,在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风跟人模式,则控制空调的至少两个下出风口中的第一出风口出风,并控制空调的至少两个出风口中的第二出风口关闭(第二出风口远离人体),且控制空调的下出风口运动机构将风导向人体所在位置处。或在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风避人模式,则控制空调的至少两个下出风口中的第二出风口出风(第二出风口远离人体),并控制空调的至少两个出风口中的第一出风口关闭,且控制空调的下出风口运动机构将风导向非人体所在位置处。
例如:若用户坐立于柜机附近,并偏向于某一个下风口,则当用户选择风跟人时,靠近用户的下风口出风,远离用户的另一个风口关闭不出风,并且出风风口的运动机构将风导向用户,若当用户选择风避人时,靠近用户的下风口 不出风,远离用户的另一个风口出风,并且出风风口的运动机构将风导向非用户侧。如:在通过出风风口的运动机构将风导向用户时,例如:下风口分为第一下风口22a,第二下风口22b。当用户靠近第一下风口22a,则第一下风口22a打开,第二下风口22b关闭,具体的运动由运动机构执行,可由面板或者导风板来形成开合。当第一下风口22a打开时,导风机构开始运动,导风板或者其他的导风机构调整角度将风导向用户,从而使风吹向用户。
由此,通过在人感模式下,结合具体的风感模式、人体偏向的下出风口、人体姿势、人体所在位置与空调之间的距离等参数控制第一电机和第二电机,实现在人感模式下对空调的送风方式的灵活调整,可以高效且精准地提升用户体验。
经大量的试验验证,采用本实施例的技术方案,通过控制对旋轴流风机的送风方向,实现冷、热风从不同高度位置送出,加快房间热交换,使房间温度分布更均匀,有利于提升用户的舒适性感受。
根据本公开的实施例,还提供了对应于空调的控制方法的一种空调的控制装置。参见图5所示本公开的装置的一实施例的结构示意图。该空调的控制装置可以应用于上下两端具有多个出风口、且风道内部设置有可逆向送风的对旋轴流风机组件的空调,该空调的控制装置可以包括:获取单元102和控制单元104。
在一个可选例子中,获取单元102,可以被设置为获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置。该获取单元102的具体功能及处理参见步骤S110。例如:空调的目标温度,可以是用户设定的预期温度。人体所在位置,即空调所在房间中用户的位置。其中,在该空调的风道的上下两端,分别开设有一个以上出风口,具体可以是在空调的风道上端,开设有一个以上的上出风口。在该空调的风道下端,开设有一个以上的下出风口。且在该空调的风道内,布置有能够逆向送风的对旋轴流风机组件。具体地,在该空调的风道的上下两端,分别开设有一个以上出风口。且在该空调的风道内,布置有对旋轴流风机组件和换热器。对旋轴流风机组件能够逆向送风。对旋轴流风机组件,具有第一电机和第二电机。第一电机的转速和/或第 二电机的转速的设定速度区域,可以包括:第一速度区域、第二速度区域和第三速度区域。其中,第一速度区域的下限,大于或等于第二速度区域的上限。第二速度区域的下限,大于或等于第三速度区域的上限。
在一个可选例子中,控制单元104,可以被设置为根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和/或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。该控制单元104的具体功能及处理参见步骤S120。具体地,可以是根据空调的运行模式、目标温度与室内环境温度之间的温度差、和/或人体所在位置,控制空调的对旋轴流风机组件的旋转方向和/或转速,即,通过调节空调的对旋轴流风机组件的旋转方向和/或转速,实现对空调的送风方式的控制。其中,空调的运行模式,可以包括:制冷模式、制热模式、除湿模式、送风模式、人感模式中的相应单一模式或组合模式。
例如:可以采用新型柜机,在风道上下两端开有多个风口,对旋轴流风机组件以及换热器布置于风道内,制热模式时风机向风道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温。制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温。这样,制冷与制热均增强了房间大循环气流,从而使房间温度分布更均匀,提升用户舒适性。
例如:空调器有多种送风方式可以满足房间制冷、制热模式的不同需求,通过控制对旋轴流风机的送风方向,实现冷、热风从不同高度位置送出,加快房间热交换,使房间温度分布更均匀,提升用户舒适性。这样,通过对旋轴流风机的多风口,可以制冷、制热、温差、湿度差、多方向送风。
由此,通过根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、人体所在位置等参数,调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,实现对空调的送风方式的灵活控制,送风均匀性好,可以满足不同舒适性需求的用户的舒适性感受。
在一些实施方式中,所述控制单元104控制空调的送风方式,可以包括,可以包括以下任一控制过程,如可以包括以下第一控制过程至第五控制过程中 的任一控制过程。
第一控制过程:制冷模式下控制空调的送风方式的制冷控制过程。
所述控制单元104,具体还可以被设置为在制冷模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风。该控制单元104的具体功能及处理还参见步骤S210。其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。通过灵活设置上出风方式和下出风方式,可以针对具有上下出风口的空调选择符合自身需求的出风方式,灵活且可靠。
所述控制单元104,具体还可以被设置为在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节。或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节。该控制单元104的具体功能及处理还参见步骤S220。
当然,在制冷模式下,在空调按上出风方式和下出风方式交替地出风的情况下,在空调按上出风方式出风时进行第一设定调节,在空调按下出风方式出风时进行第二设定调节。例如:规律性地调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机规律性地交替向上、下风口送风,电机转速调控与上风口送风和下风口送风方式中的控制方式一样。
由此,通过制冷模式下,根据空调的不同出风方式、结合目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行调节,实现制冷模式下空调的送风方式的灵活调节,可以快速且均匀地实现制冷控制,用户的书实习感受更佳。
在一些实施方式中,所述控制单元104根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,可以包括以下任一种调节情形。
第一种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:控制空调的送风方式,可以包括:第一控制过程:制冷模式下控制空调的送风方式的第一制冷控制过程,具体可以包括:在制冷模式下,控制第一电机和第二电机向空调的至少一个上出风口送风,即,控制空调的对旋轴流风机组件中的第一电机和第二电机向空调的上出风口送风。例如:至少一个上出风口,可以包括:上风口21。在一些实施方式中,在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,电机转速设3个速度区域,分别为高速区S1、中速区S2、低速区S3,对旋风机(即对旋轴流风机组件)向上风口21送风,当温差大于10摄氏度时可以控制第二电机4d的转速等于第一电机4c的转速,并且电机转速位于S1或S2。当温差小于10摄氏度大于3摄氏度时可以控制第二电机4d的转速高于第一电机4c的转速,并且电机转速位于S1或S2或S3。当温差小于3摄氏度时可以控制第二电机4d的转速高于第一电机4c的转速,并且电机转速位于S2或S3。
由此,通过在制冷模式下空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制冷调节,更高效且精准地满足用户的制冷需求。
在一些实施方式中,所述控制单元104根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,还可以包括:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按上出风方式出风转为按下出风方式出风。
例如:当温差小于3摄氏度时,可以控制电机使对旋风机向下风口送风,改变房间内气流的流动方向,使得房间内温度更趋于均匀。这样,制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温。
由此,通过在制冷模式下空调按上出风方式出风的情况下,目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限时转换出风方式,可以更快速实现制冷,用户的舒适性体验更好。
在一些实施方式中,所述控制单元104根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节,可以包括以下任一种调节情形。
第一种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处 于第二速度区域或第三速度区域。例如:控制空调的送风方式,可以包括:第一控制过程:制冷模式下控制空调的送风方式的第二制冷控制过程,具体可以包括:在制冷模式下,控制第一电机和第二电机向空调的至少一个下出风口送风,即,控制空调的对旋轴流风机组件中的第一电机和第二电机向空调的上出风口送风。例如:至少两个下出风口,可以包括:第一下风口22a、第二下风口22b。在一些实施方式中,在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向第一下风口22a、第二下风口22b送风,当温差大于10摄氏度时可以控制第一电机4c的转速等于第二电机4d的转速,并且电机转速位于S1或S2。当温差小于10摄氏度大于3摄氏度时可以控制第一电机4c的转速高于第二电机4d的转速,并且电机转速位于S1或S2或S3。当温差小于3摄氏度时可以控制第一电机4c的转速高于第二电机4d的转速,并且电机转速位于S2或S3。
由此,通过在制冷模式下空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制冷调节,更高效且精准地满足用户的制冷需求。
第二控制过程:制热模式下控制空调的送风方式的制热控制过程。
所述控制单元104,具体还可以被设置为在制热模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风。该控制单元104的具体功能及处理还参见步骤S310。其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。
所述控制单元104,具体还可以被设置为在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节。或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第四设定调节。该控制单元104的具体功能及处理还参见步骤S320。
由此,通过制热模式下,根据空调的不同出风方式、结合目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行调节,实现制热模式下空调的送风方式的灵活调节,可以快速且均匀地实现制热控制,用户的书实习感受更佳。
在一些实施方式中,所述控制单元104根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节,可以包括以下任一种调节情形。
第一种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
由此,通过在制热模式下空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制热调节,更高效且精准地满足用户的制热需求。
在一些实施方式中,所述控制单元104根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,可以包括以下任一 种调节情形。
第一种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域。
第二种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域。
第三种调节情形:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
例如:当用户设定为制热模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,其风向及电机转速与制冷模式类似,只需将上、下风口对调,并且对调电机即可。
由此,通过在制热模式下空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行灵活调节,可以及时且准确地实现制热调节,更高效且精准地满足用户的制热需求。
在一些实施方式中,所述控制单元104根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,还可以包括:所述控制单元104,具体还可以被设置为在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按下出风方式出风转为按上出风方式出风。这样,制热模式时风机向风道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温。
由此,通过在制热模式下空调按下出风方式出风的情况下,目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限时转换出风方式,可以更快速实现制热,用户的舒适性体验更好。
第三控制过程:除湿模式下控制空调的送风方式的除湿控制过程。
所述控制单元104,具体还可以被设置为在除湿模式下,控制空调按上出风方式出风。在空调按上出风方式出风的情况下,控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0。该控制单元104的具体功能及处理还参见步骤S410。
所述控制单元104,具体还可以被设置为在目标湿度与室内环境湿度之间的湿度差小于设定湿度阈值的情况下,控制空调由按上出风方式出风转为按下出风方式出风。在空调按下出风方式出风的情况下,控制第一电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第二电机的转速为0。该控制单元104的具体功能及处理还参见步骤S420。其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。或者,在目标湿度与室内环境湿度之间的湿度差大于或等于设定湿度阈值的情况下,控制第二电机的转速高于第一电机的转速,即继续控制控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0。
例如:当用户设定为除湿模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向上风口21送风,控制第二电机4d的转速为S1或S2或S3,控制第一电机4c的转速为0。当室内湿度接近设定湿度时湿度差20%时,可调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向第一下风口22a、第二下风口22b送风,控制第一电机4c的转速为S1或S2或S3,控制第二电机4d的转速为0。
由此,通过在除湿模式下,结合目标湿度与室内环境湿度之间的湿度差控制第一电机和第二电机,实现在除湿模式下对空调的送风方式的灵活调整,可以高效且精准地提升用户体验。
第四控制过程:送风模式下控制空调的送风方式的送风控制过程,具体可以包括:所述控制单元104,具体还可以被设置为在送风模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风。其中,按上出风方式和下出风方式交替地出风,可以是周期性地,也可以是非周期性地。
其中,上出风方式,可以包括:控制第一电机和第二电机向空调的至少一 个上出风口送风。下出风方式,可以包括:控制第一电机和第二电机向空调的至少一个下出风口送风。在下出风方式可以包括控制第一电机和第二电机向空调的一个下出风口送风的情况下,控制空调的下出风口运动机构将风定向导向人体所在位置处。
例如:当用户设定为送风模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,调节对旋轴流风机组件里电机的旋转方向及开启数量。其中,由于送风模式不需经过换热,所以送风模式时,既可以上出风,也可以下出风,也可以周期性上、下出风交替运行,优选上出风模式,可以参考制冷模式下各出风方式下对第一电机和第二电机的控制。并且为下出风时,可以控制下风口的运动机构,使得下出风可分类为双风口下出风与单风口下出风,单风口下出风时,可实现定向送风效果。
由此,通过在送风模式下,灵活设置送风方式,可以满足不同送风需求的用户的送风舒适性体验。
第五控制过程:人感模式下控制空调的送风方式的人感控制过程。其中,人感功能靠传感器与CPU及存储器的协作产生作用,传感器不限于各种类型的传感器。
具体地,所述控制单元104,具体还可以被设置为在制冷模式或制热模式或送风模式下,且在启动人感模式的情况下,若人感模式为风跟人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第一设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向人体所在位置处。或在人体坐立、且人体所在位置与空调之间的距离小于或等于第二设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向人体所在位置处。
例如:当用户设定为制冷或者制热、送风,并启动人感模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,若用户选择风跟人,则当用户站立靠近柜机时,不管制冷或者制热、送风,均开启上风口送风模式,并且上风口运动机构将风向导向用户。当用户坐立于柜附近时,不管制冷或者制热、送风,均开启下风口送风模式,并且上风口运动机构将风向导向用户。
或者,所述控制单元104,具体还可以被设置为在制冷模式或制热模式或 送风模式下,且在启动人感模式的情况下,在制冷模式或制热模式或送风模式下,且在启动人感模式的情况下,若人感模式为风避人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第三设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向非人体所在位置处。或在人体坐立、且人体所在位置与空调之间的距离小于或等于第四设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向非人体所在位置处。
例如:若用户选择风避人,则当用户站立靠近柜机时,不管制冷或者制热、送风,均开启下风口送风模式,并且下风口运动机构将风向导向非用户侧。当用户坐立于柜机附近时,不管制冷或者制热、送风,均开启上风口送风模式,并且上风口运动机构将风向导向非用户侧。
由此,通过在人感模式下,结合具体的风感模式、人体姿势、人体所在位置与空调之间的距离等参数控制第一电机和第二电机,实现在人感模式下对空调的送风方式的灵活调整,可以高效且精准地提升用户体验。
可替代地,所述控制单元104,具体还可以被设置为在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风跟人模式,则控制空调的至少两个下出风口中的第一出风口出风,并控制空调的至少两个出风口中的第二出风口关闭(第二出风口远离人体),且控制空调的下出风口运动机构将风导向人体所在位置处。或在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风避人模式,则控制空调的至少两个下出风口中的第二出风口出风(第二出风口远离人体),并控制空调的至少两个出风口中的第一出风口关闭,且控制空调的下出风口运动机构将风导向非人体所在位置处。
例如:若用户坐立于柜机附近,并偏向于某一个下风口,则当用户选择风跟人时,靠近用户的下风口出风,远离用户的另一个风口关闭不出风,并且出风风口的运动机构将风导向用户,若当用户选择风避人时,靠近用户的下风口不出风,远离用户的另一个风口出风,并且出风风口的运动机构将风导向非用户侧。如:在通过出风风口的运动机构将风导向用户时,例如:下风口分为第 一下风口22a,第二下风口22b。当用户靠近第一下风口22a,则第一下风口22a打开,第二下风口22b关闭,具体的运动由运动机构执行,可由面板或者导风板来形成开合。当第一下风口22a打开时,导风机构开始运动,导风板或者其他的导风机构调整角度将风导向用户,从而使风吹向用户。
由此,通过在人感模式下,结合具体的风感模式、人体偏向的下出风口、人体姿势、人体所在位置与空调之间的距离等参数控制第一电机和第二电机,实现在人感模式下对空调的送风方式的灵活调整,可以高效且精准地提升用户体验。
由于本实施例的装置所实现的处理及功能基本相应于前述图1至图4所示的方法的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本公开的技术方案,通过对旋轴流风机的多风口,控制对旋轴流风机的送风方向,可以实现制冷、制热、温差、湿度差、多方向送风,增加了空调的控制功能,可以满足不用需求用户的舒适性感受。
根据本公开的实施例,还提供了对应于空调的控制装置的一种空调。该空调可以包括:以上所述的空调的控制装置。
在一个可选实施方式中,考虑到一些柜机的单出风口出风形式导致房间内热交换不均匀,形成上下较明显的温度分层,并且难以形成房间内的一个均匀循环气流,最终导致用户的舒适性体验感较差。针对这种单风口出风效果单一,功能简单不丰富的问题;本公开的方案,提供一种空调器的控制方法尤其是出风控制方法、以及具有该出风控制方式的新型柜机,可以针对空调柜机具有多个风口以及可以上下送风的对旋风机系统,能形成可上可下的出风效果,具有可逆向送风的功能。
其中,新型柜机在上下两端开有多个风口,在风道内部设置可逆向送风的对旋轴流风机组件,通过用户设定的制热或制冷工作状态,可以实现制冷时,冷空气从空调器上部吹出,于房间上层进行快速的热交换降温;制热时热空气从空调器下端吹出,于房间下层进行快速的热交换升温,并且制冷与制热均可以形成房间内的大循环气流,提升用户舒适性;并且多风口的设计也带来形式多样的出风方式,增强用户的舒适性。
在一个可选例子中,本公开的方案,针对具有可逆风道的新型柜机,实现空调开启后,其控制方式为:获取用户的工况设定,获取房间内的温度以及获取用户的位置,通过调节对旋轴流风机的旋向及转速。
在一些实施方式中,制冷、制热时,可实现上吹、下吹、上下出风交替的出风效果,形成房间内部的气流大循环,加快房间气流热交换,减缓房间上下的温度分层现象,提升用户的舒适性。
在一些实施方式中,除湿模式开启时,配合低转速的风机进行制冷,先开启上出风,在湿度接近设定湿度时可开启下出风,改变房间气流流向,充分除湿。
在一些实施方式中,单送风模式时,可以控制选择多样的出风效果,包括上出风、双下出风与单下出风,增强舒适性。
在一些实施方式中,人感模式可以控制当用户靠近,并且需要温度的变化时,可以快速的近距离的得到温度变化,增强用户舒适性。
在一个可选具体实施方式中,可以参见图6至图12所示的例子,对本公开的方案的具体实现过程进行示例性说明。
传统室内柜机空调器多为离心式与贯流式,其特点为出风口只有一个,无论制热或制冷模式均从同一风口送风,而冷、热空气由于物理特性,制热时热风需要在房间地面及附近进行热交换,制冷时冷风需要在房顶及附近进行热交换,同一风口送风会导致送风需要的距离过大,冷热交换不均匀,使房间区域温差增大,用户舒适性差。而本公开的方案,采用新型柜机,在风道上下两端开有多个风口,对旋轴流风机组件以及换热器布置于风道内,制热模式时风机向风道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温;制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温。制冷与制热均增强了房间大循环气流,从而使房间温度分布更均匀,提升用户舒适性。
图6中,1为空调室内整机,1a为前面板,1c、1d为侧面板;2为壳体,其径向剖面形状为五边形;在壳体上端开有上风口21,上风口21位于前面板及前面板相邻的两个侧面;21a为上风口过滤网组件,21b为上风口导风机构,位于上风口处;在壳体下端开有第一下风口22a、第二下风口22b,第一下风口22a、第二下风口22b位于前面板相邻的两个侧面;22c、22d分别为第一下 风口、第二下风口过滤网组件,22e、22f分别为第一下风口、第二下风口导风机构,放置于下风口处;24为壳体底座。
图7中,23为顶盖,包含有导流部件;4a、4b分别为第一轴流风叶、第二轴流风叶,分别由风机组件的第一电机4c、第二电机4d驱动;3为内部风道;5为换热器,如图8所示,位于第二轴流风叶4b与第一下风口22a、第二下风口22b之间;图9中,6为导流圈,位于第二轴流风叶4b与换热器5之间。
在一个可选具体例子中,当用户设定为制冷模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,具体可以参见以下说明。
实施例一、调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,电机转速设3个速度区域,分别为高速区S1、中速区S2、低速区S3,对旋风机向上风口21送风,当温差大于10摄氏度时可以控制第二电机4d的转速等于第一电机4c的转速,并且电机转速位于S1或S2;当温差小于10摄氏度大于3摄氏度时可以控制第二电机4d的转速高于第一电机4c的转速,并且电机转速位于S1或S2或S3;当温差小于3摄氏度时可以控制第二电机4d的转速高于第一电机4c的转速,并且电机转速位于S2或S3。
其中,温差,是用户设定温度与室内环境温度之间的差值。
实施例二、调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向第一下风口22a、第二下风口22b送风,当温差大于10摄氏度时可以控制第一电机4c的转速等于第二电机4d的转速,并且电机转速位于S1或S2;当温差小于10摄氏度大于3摄氏度时可以控制第一电机4c的转速高于第二电机4d的转速,并且电机转速位于S1或S2或S3;当温差小于3摄氏度时可以控制第一电机4c的转速高于第二电机4d的转速,并且电机转速位于S2或S3。
实施例三、规律性地调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机规律性地交替向上、下风口送风,电机转速调控与上数实施例中的控制方式一样,可以参考实施例一、实施例二。
实施例四、当温差小于3摄氏度时,可以控制电机使对旋风机向下风口送风,改变房间内气流的流动方向,使得房间内温度更趋于均匀。
在一个可选具体例子中,当用户设定为制热模式时,CPU收到指令后,获 取当前环境温度、用户的位置,并且调用存储器中的控制程序,其风向及电机转速与制冷模式类似,只需将上、下风口对调,并且对调电机即可。
在一个可选具体例子中,当用户设定为除湿模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向上风口21送风,控制第二电机4d的转速为S1或S2或S3,控制第一电机4c的转速为0。当室内湿度接近设定湿度时湿度差20%时,可调节对旋轴流风机组件里第一电机4c、第二电机4d的转速,对旋风机向第一下风口22a、第二下风口22b送风,控制第一电机4c的转速为S1或S2或S3,控制第二电机4d的转速为0。
在一个可选具体例子中,当用户设定为送风模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,调节对旋轴流风机组件里电机的旋转方向及开启数量。
其中,由于送风模式不需经过换热,所以送风模式时,既可以上出风,也可以下出风,也可以周期性上、下出风交替运行,优选上出风模式(可以参考制冷模式下的实施例一、实施例二、实施例三)。并且为下出风时,可以控制下风口的运动机构,使得下出风可分类为双风口下出风与单风口下出风,单风口下出风时,可实现定向送风效果。
在一个可选具体例子中,当用户设定为制冷或者制热、送风,并启动人感模式时,CPU收到指令后,获取当前环境温度、用户的位置,并且调用存储器中的控制程序,若用户选择风跟人,则当用户站立靠近柜机时,不管制冷或者制热、送风,均开启上风口送风模式,并且上风口运动机构将风向导向用户;当用户坐立于柜附近时,不管制冷或者制热、送风,均开启下风口送风模式,并且下风口运动机构将风向导向用户。
在一些实施方式中,若用户选择风避人,则当用户站立靠近柜机时,不管制冷或者制热、送风,均开启下风口送风模式,并且下风口运动机构将风向导向非用户侧。当用户坐立于柜机附近时,不管制冷或者制热、送风,均开启上风口送风模式,并且上风口运动机构将风向导向非用户侧。人感功能靠传感器与CPU及存储器的协作产生作用,传感器不限于各种类型的传感器。
在一个可替代具体例子中,若用户坐立于柜机附近,并偏向于某一个下风口,则当用户选择风跟人时,靠近用户的下风口出风,远离用户的另一个风口 关闭不出风,并且出风风口的运动机构将风导向用户,若当用户选择风避人时,靠近用户的下风口不出风,远离用户的另一个风口出风,并且出风风口的运动机构将风导向非用户侧。
例如:在通过出风风口的运动机构将风导向用户时,例如:下风口分为第一下风口22a,第二下风口22b;当用户靠近第一下风口22a,则第一下风口22a打开,第二下风口22b关闭,具体的运动由运动机构执行,可由面板或者导风板来形成开合。当第一下风口22a打开时,导风机构开始运动,导风板或者其他的导风机构调整角度将风导向用户,从而使风吹向用户。
需要说明的是,以上为本公开的方案中较优选之实施方式,但不代表本公开的方案中被以上方式所限定,在本领域普通技术人员应当理解,在没有做出创造性劳动前提下,通过对本实施例进行的修改所获得的其他实施例,都属于本公开的方案中的保护范围。本公开的方案中的保护范围包括但不限于壳体风道的多种形状以及各种形状间的组合方式,风口与壳体风道的组合方式,不同换热器形式与对旋轴流风机的组合方式等。
在本公开的方案中,空调器有多种送风方式可以满足房间制冷、制热模式的不同需求,通过控制对旋轴流风机的送风方向,实现冷、热风从不同高度位置送出,加快房间热交换,使房间温度分布更均匀,提升用户舒适性。也就是说,本公开的方案中,通过对旋轴流风机的多风口,可以制冷、制热、温差、湿度差、多方向送风。
由于本实施例的空调所实现的处理及功能基本相应于前述图5所示的装置的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本公开的技术方案,通过制热模式时风机向风道下端送风,热风从壳体下风口吹出,贴近于地面与冷空气充分换热,快速提升室温,使房间温度分布更均匀,提升用户的舒适性感受。
根据本公开的实施例,还提供了对应于空调的控制方法的一种计算机可读存储介质。该计算机可读存储介质,可以包括:所述计算机可读存储介质中存储有多条指令;所述多条指令,被设置为由处理器加载并执行以上所述的空调的控制方法。
由于本实施例的计算机可读存储介质所实现的处理及功能基本相应于前述图1至图4所示的方法的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本公开的技术方案,通过制冷模式时风机向风道上端送风,冷风从壳体上风口吹出,接近于房顶与热空气充分换热,快速降低室温,使房间温度分布更均匀,提升用户舒适性。
根据本公开的实施例,还提供了对应于空调的控制方法的一种空调。该空调,可以包括:处理器,被设置为执行多条指令;存储器,被设置为存储多条指令;其中,所述多条指令,被设置为由所述存储器存储,并由所述处理器加载并执行以上所述的空调的控制方法。
由于本实施例的空调所实现的处理及功能基本相应于前述图1至图4所示的方法的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本公开的技术方案,通过在风道上下两端开有多个风口,对旋轴流风机组件以及换热器布置于风道内,制冷与制热均增强了房间大循环气流,从而使房间温度分布更均匀,提升用户舒适性。
综上,本领域技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (27)

  1. 一种空调的控制方法,包括:
    获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置;其中,在空调的风道上端,开设有一个以上的上出风口;在该空调的风道下端,开设有一个以上的下出风口;且在该空调的风道内,布置有能够逆向送风的对旋轴流风机组件;对旋轴流风机组件,具有第一电机和第二电机;
    根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和/或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。
  2. 根据权利要求1所述的方法,其中,控制空调的送风方式,包括:
    在制冷模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;
    在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节;
    或者,
    在制热模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;
    在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第四设定调节。
  3. 根据权利要求2所述的方法,其中,
    根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  4. 根据权利要求2所述的方法,其中,
    根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  5. 根据权利要求2所述的方法,其中,
    根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的 上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  6. 根据权利要求2所述的方法,其中,
    根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  7. 根据权利要求3所述的方法,其中,
    根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,还包括:
    在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按上出风方式出风转为按下出风方式出风。
  8. 根据权利要求6所述的方法,其中,
    根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,还包括:
    在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按下出风方式出风转为按上出风方式出风。
  9. 根据权利要求1所述的方法,其中,控制空调的送风方式,还包括:
    在除湿模式下,控制空调按上出风方式出风;在空调按上出风方式出风的情况下,控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0;
    在目标湿度与室内环境湿度之间的湿度差小于设定湿度阈值的情况下,控制空调由按上出风方式出风转为按下出风方式出风;在空调按下出风方式出风的情况下,控制第一电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第二电机的转速为0。
  10. 根据权利要求1所述的方法,其中,控制空调的送风方式,还包括:
    在送风模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;
    其中,在下出风方式包括控制第一电机和第二电机向空调的一个下出风口送风的情况下,控制空调的下出风口运动机构将风定向导向人体所在位置处。
  11. 根据权利要求1所述的方法,其中,控制空调的送风方式,还包括:
    在启动人感模式的情况下,若人感模式为风跟人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第一设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第二设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向人体所在位置处;
    或者,若人感模式为风避人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第三设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向非人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第四设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向非人体所在位置处;
    或者,
    在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风跟人模式,则控制空调的至少两个下出风口中的第一出风口出风,并控制空调的至少两个出风口中的第二出风口关闭,且控制空调的下出风口运 动机构将风导向人体所在位置处;或若人感模式为风避人模式,则控制空调的至少两个下出风口中的第二出风口出风,并控制空调的至少两个出风口中的第一出风口关闭,且控制空调的下出风口运动机构将风导向非人体所在位置处。
  12. 根据权利要求2至11中任一项所述的方法,其中,上出风方式,包括:控制第一电机和第二电机向空调的至少一个上出风口送风;下出风方式,包括:控制第一电机和第二电机向空调的至少一个下出风口送风。
  13. 一种空调的控制装置,包括:
    获取单元,被设置为获取空调的目标温度、以及空调所属环境中的室内环境温度,和/或获取空调的目标湿度、以及空调所属环境中的室内环境湿度,和/或获取空调所属环境中人体所在位置;其中,在空调的风道上端,开设有一个以上的上出风口;在该空调的风道下端,开设有一个以上的下出风口;且在该空调的风道内,布置有能够逆向送风的对旋轴流风机组件;对旋轴流风机组件,具有第一电机和第二电机;
    控制单元,被设置为根据空调的运行模式、目标温度与室内环境温度之间的温度差、目标湿度与室内环境湿度之间的湿度差、和/或人体所在位置,通过调节空调的对旋轴流风机组件的风机旋转方向、风机开启数量和/或风机转速,控制空调的送风方式。
  14. 根据权利要求13所述的装置,其中,所述控制单元控制空调的送风方式,包括:
    在制冷模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;
    在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节;
    或者,
    在制热模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;
    在空调按上出风方式出风的情况下,根据目标温度与室内环境温度之间的 温度差对第一电机和第二电机的转速进行第三设定调节;或者,在空调按下出风方式出风的情况下,根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第四设定调节。
  15. 根据权利要求14所述的装置,其中,
    所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  16. 根据权利要求14所述的装置,其中,
    所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第二设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  17. 根据权利要求14所述的装置,其中,
    所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第三设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第二电机的转速与第一电机的转速相等,且控制第二电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第二电机的转速高于第一电机的转速,且控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  18. 根据权利要求14所述的装置,其中,
    所述控制单元根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,包括:
    在目标温度与室内环境温度之间的温度差大于或等于第一设定温度范围的上限的情况下,控制第一电机的转速与第二电机的转速相等,且控制第一电机的转速处于第一速度区域或第二速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的上限、且大于或等于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第一速度区域或第二速度区域或第三速度区域;
    或者,在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制第一电机的转速高于第二电机的转速,且控制控制第一电机的转速和第二电机的转速处于第二速度区域或第三速度区域。
  19. 根据权利要求15所述的装置,其中,
    所述控制单元根据目标温度与室内环境温度之间的温度差对第一电机和第二电机的转速进行第一设定调节,还包括:
    在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按上出风方式出风转为按下出风方式出风。
  20. 根据权利要求18所述的装置,其中,
    所述控制单元根据目标温度与室内环境温度之间的温度差对第二电机和第一电机的转速进行第四设定调节,还包括:
    在目标温度与室内环境温度之间的温度差小于第一设定温度范围的下限的情况下,控制空调由按下出风方式出风转为按上出风方式出风。
  21. 根据权利要求13所述的装置,其中,所述控制单元控制空调的送风方式,还包括:
    在除湿模式下,控制空调按上出风方式出风;在空调按上出风方式出风的情况下,控制第二电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第一电机的转速为0;
    在目标湿度与室内环境湿度之间的湿度差小于设定湿度阈值的情况下,控制空调由按上出风方式出风转为按下出风方式出风;在空调按下出风方式出风的情况下,控制第一电机的转速处于第一速度区域或第二速度区域或第三速度区域,并控制第二电机的转速为0。
  22. 根据权利要求13所述的装置,其中,所述控制单元控制空调的送风方式,还包括:
    在送风模式下,控制空调按上出风方式出风,或控制空调按下出风方式出风,或控制空调按上出风方式和下出风方式交替地出风;
    其中,在下出风方式包括控制第一电机和第二电机向空调的一个下出风口送风的情况下,控制空调的下出风口运动机构将风定向导向人体所在位置处。
  23. 根据权利要求13所述的装置,其中,所述控制单元控制空调的送风方式,还包括:
    在启动人感模式的情况下,若人感模式为风跟人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第一设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第二设定距离阈值的情况下,控制空调按下出风方式出风,并控制空调的下风口运动机构将风导向人体所在位置处;
    或者,若人感模式为风避人模式,则在人体站立、且人体所在位置与空调之间的距离小于或等于第三设定距离阈值的情况下,控制空调按下出风方式出 风,并控制空调的下风口运动机构将风导向非人体所在位置处;或在人体坐立、且人体所在位置与空调之间的距离小于或等于第四设定距离阈值的情况下,控制空调按上出风方式出风,并控制空调的上风口运动机构将风导向非人体所在位置处;
    或者,
    在人体坐立、且人体所在位置与空调之间的距离小于或等于第五设定距离阈值,且人体偏向于空调的至少两个下出风口中的第一出风口的情况下,若人感模式为风跟人模式,则控制空调的至少两个下出风口中的第一出风口出风,并控制空调的至少两个出风口中的第二出风口关闭,且控制空调的下出风口运动机构将风导向人体所在位置处;或若人感模式为风避人模式,则控制空调的至少两个下出风口中的第二出风口出风,并控制空调的至少两个出风口中的第一出风口关闭,且控制空调的下出风口运动机构将风导向非人体所在位置处。
  24. 根据权利要求14至23中任一项所述的装置,其中,上出风方式,包括:控制第一电机和第二电机向空调的至少一个上出风口送风;下出风方式,包括:控制第一电机和第二电机向空调的至少一个下出风口送风。
  25. 一种空调,包括:如权利要求13-24任一所述的空调的控制装置。
  26. 一种空调,包括:
    处理器,被设置为执行多条指令;
    存储器,被设置为存储多条指令;
    其中,所述多条指令,被设置为由所述存储器存储,并由所述处理器加载并执行如权利要求1-12任一所述的空调的控制方法。
  27. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有多条指令;所述多条指令,被设置为由处理器加载并执行如权利要求1-12任一所述的空调的控制方法。
PCT/CN2020/110471 2019-11-08 2020-08-21 一种空调的控制方法、装置、计算机可读存储介质及空调 WO2021088470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911085820.4A CN110887197B (zh) 2019-11-08 2019-11-08 一种空调的控制方法、装置、计算机可读存储介质及空调
CN201911085820.4 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021088470A1 true WO2021088470A1 (zh) 2021-05-14

Family

ID=69747040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110471 WO2021088470A1 (zh) 2019-11-08 2020-08-21 一种空调的控制方法、装置、计算机可读存储介质及空调

Country Status (2)

Country Link
CN (1) CN110887197B (zh)
WO (1) WO2021088470A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887197B (zh) * 2019-11-08 2021-02-26 珠海格力电器股份有限公司 一种空调的控制方法、装置、计算机可读存储介质及空调
CN112229042B (zh) * 2020-10-15 2022-02-11 珠海格力电器股份有限公司 空调新风的出风方法、装置、电子设备和计算机可读介质
CN112984723B (zh) * 2021-02-07 2022-04-19 青岛海尔空调器有限总公司 一种水洗下出风空调的控制方法和水洗下出风空调
CN112984727B (zh) * 2021-02-09 2022-07-19 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN112984728B (zh) * 2021-02-09 2022-07-19 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN112984731B (zh) * 2021-02-18 2022-07-19 青岛海尔空调器有限总公司 一种水洗下出风空调的控制方法和水洗下出风空调
CN112984746B (zh) * 2021-03-12 2022-07-05 青岛海尔空调器有限总公司 一种下出风空调的风速控制方法和下出风空调
CN113048617A (zh) * 2021-04-25 2021-06-29 珠海格力电器股份有限公司 风机控制方法、装置、系统及空调器
CN113669865B (zh) * 2021-08-17 2022-11-11 珠海格力电器股份有限公司 一种空调器的控制方法及空调器
CN114183826A (zh) * 2021-12-16 2022-03-15 珠海格力电器股份有限公司 出风组件、空调器及送风方法
CN116792861A (zh) * 2022-03-18 2023-09-22 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调
CN115574442A (zh) * 2022-09-28 2023-01-06 珠海格力电器股份有限公司 空调系统控制方法和空调系统
CN115823711A (zh) * 2022-12-06 2023-03-21 宁波奥克斯电气股份有限公司 一种空调器及其控制方法、装置和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249328A (ja) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp 天井埋込型空気調和機
CN201129802Y (zh) * 2007-11-15 2008-10-08 珠海格力电器股份有限公司 一种进风口和出风口可互换的分体落地式空调器
CN106500240A (zh) * 2016-09-30 2017-03-15 广东美的制冷设备有限公司 送风控制方法、送风控制装置以及空调
CN109668255A (zh) * 2018-12-20 2019-04-23 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质
CN110887197A (zh) * 2019-11-08 2020-03-17 珠海格力电器股份有限公司 一种空调的控制方法、装置、计算机可读存储介质及空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634708C2 (de) * 1996-08-28 2001-02-15 Rimu Lueftungstechnik Philipp Verfahren zum Belüften eines Stalles und Belüftungsanlage zur Durchführung des Verfahrens
CN107477746A (zh) * 2017-09-21 2017-12-15 柳州环山科技有限公司 一种空调器设备
CN108253542B (zh) * 2018-03-21 2024-05-31 广东美的制冷设备有限公司 立式空调设备
CN208238192U (zh) * 2018-05-11 2018-12-14 广东美的制冷设备有限公司 电器壳体以及家用电器
CN109751665A (zh) * 2018-12-20 2019-05-14 珠海格力电器股份有限公司 一种双贯流空调器的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249328A (ja) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp 天井埋込型空気調和機
CN201129802Y (zh) * 2007-11-15 2008-10-08 珠海格力电器股份有限公司 一种进风口和出风口可互换的分体落地式空调器
CN106500240A (zh) * 2016-09-30 2017-03-15 广东美的制冷设备有限公司 送风控制方法、送风控制装置以及空调
CN109668255A (zh) * 2018-12-20 2019-04-23 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质
CN110887197A (zh) * 2019-11-08 2020-03-17 珠海格力电器股份有限公司 一种空调的控制方法、装置、计算机可读存储介质及空调

Also Published As

Publication number Publication date
CN110887197A (zh) 2020-03-17
CN110887197B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021088470A1 (zh) 一种空调的控制方法、装置、计算机可读存储介质及空调
CN107255307B (zh) 空调
CN107255337B (zh) 空调的送风方法
JP6932009B2 (ja) 空気調和機の室内ユニット
CN110887181A (zh) 一种空调的控制方法、装置、计算机可读存储介质及空调
CN106642310B (zh) 空调器及其控制方法
WO2019011178A1 (zh) 立式空调的控制方法
CN106287944A (zh) 空调器
CN106152282B (zh) 空调器
CN109595691B (zh) 一种双贯流空调器的控制方法
CN108426315B (zh) 一种空调壁挂机和空调器以及壁挂机的出风控制方法
CN102954537A (zh) 壁挂式空调室内机
CN106287963B (zh) 空调器及其送风方法
CN106594867A (zh) 空调器
CN110762616A (zh) 一种可逆送风的空调室内机和空调器
CN107013982A (zh) 空调室内壁挂机和其控制方法
CN114046564A (zh) 空调室内机、空调器及空调室内机的送风控制方法
CN106196301A (zh) 低位空调室内机、空调器及其控制方法
CN206018817U (zh) 空调器
WO2023246591A1 (zh) 立式空调室内机
CN202973367U (zh) 空调器室内机
CN205957321U (zh) 低位空调室内机及空调器
WO2021000595A1 (zh) 壁挂式空调器室内机
CN210118836U (zh) 空调器
CN110762617A (zh) 一种可逆送风的空调室内机和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885152

Country of ref document: EP

Kind code of ref document: A1