WO2021088382A1 - 一种能够调节眼部肌肉的眼镜片 - Google Patents

一种能够调节眼部肌肉的眼镜片 Download PDF

Info

Publication number
WO2021088382A1
WO2021088382A1 PCT/CN2020/097605 CN2020097605W WO2021088382A1 WO 2021088382 A1 WO2021088382 A1 WO 2021088382A1 CN 2020097605 W CN2020097605 W CN 2020097605W WO 2021088382 A1 WO2021088382 A1 WO 2021088382A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectacle lens
annular
annular array
belts
conventional imaging
Prior art date
Application number
PCT/CN2020/097605
Other languages
English (en)
French (fr)
Inventor
包松养
Original Assignee
包松养
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 包松养 filed Critical 包松养
Priority to BR112021001235A priority Critical patent/BR112021001235A2/pt
Publication of WO2021088382A1 publication Critical patent/WO2021088382A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Definitions

  • the present invention relates to the technical field of spectacle lenses, in particular to a spectacle lens capable of regulating eye muscles.
  • Myopia lens is a kind of glasses to correct vision, so that people can see distant objects clearly.
  • the existing myopia lenses can only inhibit the development of myopia by adding a certain degree to the normal myopia degree.
  • the increase in the degree of myopia and the occurrence of myopia are caused by the excessive use of the eyes for too long or too close distance.
  • the muscles inside and outside the eyes are in a state of tension for a long time without rest. Over time, when looking at the distance, the muscles of the eyes cannot relax and are in a state of spasm. This will blur the distance and form myopia, which will increase the degree of the eye.
  • the purpose of the present invention is to provide a spectacle lens that can adjust the eye muscles to solve the above-mentioned problems in the prior art. While correcting vision, it can adjust the eye muscles, relax the ciliary muscles, and weaken the extraocular muscles that are used for a long time. Put pressure on the eyeball and intraocular pressure, thereby reducing and correcting the myopic refractive power of the eye.
  • the present invention provides the following solutions:
  • the present invention provides a spectacle lens capable of adjusting eye muscles, comprising a spectacle lens main body, a plurality of annular array belts are arranged on the spectacle lens main body, and a plurality of micro lenses are circumferentially arranged in each of the annular array belts.
  • Lens, the main body of the spectacle lens is also provided with a circular conventional imaging area and a circular conventional imaging area, the circular conventional imaging area, the circular conventional imaging area and the plurality of the circular array belts are all concentric, the circular The radius of the conventional imaging area is equal to the inner diameter of the annular array belt with the smallest annular diameter, and the refractive powers of several annular array belts are different from the refractive powers of the annular conventional imaging area.
  • the inner diameter of the annular conventional imaging area is the same as that of the annular normal imaging area.
  • the outer diameter of the annular array belt with the largest diameter is the same; the refractive power of the microlens is different from the refractive power of the main body of the spectacle lens, and the imaging position of the annular array belt is different for different.
  • the refractive power of the annular regular imaging area is the same as the refractive power of the circular regular imaging area, and the refractive power of different annular array belts is different.
  • the difference between the refractive power of the plurality of the annular array belts and the refractive power of the annular conventional imaging area is less than or equal to 2D, and the difference between the refractive power of the microlens and the refractive power of the spectacle lens body is 0-5D.
  • the refractive powers of the microlenses in different annular array belts are different, and the refractive power, size and shape of the microlenses in the same annular array belt are completely the same.
  • the shape of the microlens is a circle, a rectangle, a square, a hexagon or a sector.
  • the shapes of the microlenses in different annular array belts are different.
  • the microlens is made of the same material as the main body of the spectacle lens.
  • the ring width of the annular conventional imaging area is 20%-30% of the radius of the spectacle lens, and the radius of the circular conventional imaging area is 20%-30% of the radius of the spectacle lens.
  • the width of the microlenses in the annular array belt accounts for 40%-100% of the annular width of the corresponding annular array belt.
  • the spectacle lens capable of adjusting the eye muscles of the present invention has the following technical effects:
  • the spectacle lens capable of adjusting the eye muscles of the present invention can adjust the eye muscles while correcting vision, relax the ciliary muscles, weaken the pressure on the eyeball and intraocular pressure with the extraocular muscles for a long time, thereby reducing and correcting the eye Myopia diopter.
  • the circular conventional imaging area and the circular conventional imaging area in the spectacle lens capable of adjusting the eye muscles of the present invention constitute the conventional myopia correction area, which has the function of correcting the refractive error of the eye; several circular array belts can be placed in front of the retina of the eye Form progressive multi-gradient imaging, stretch the imaging depth, adjust the eye muscles, relax the ciliary muscles, weaken the pressure on the eyeball and intraocular pressure with the extraocular muscles for a long time, thereby reducing and correcting the myopia of the eyes.
  • Fig. 1 is a schematic structural diagram of a spectacle lens capable of regulating eye muscles according to the present invention
  • FIG. 2 is a schematic diagram of imaging of spectacle lenses capable of adjusting eye muscles according to the present invention.
  • FIG. 3 is a schematic diagram of a part of the structure of the spectacle lens capable of adjusting eye muscles according to the present invention.
  • 1-spectacle lens body 101-circular conventional imaging area
  • 102-circular conventional imaging area 2- circular array belt
  • 3- microlens 3- microlens
  • 4- retina 5- pre-retinal imaging position.
  • the purpose of the present invention is to provide a spectacle lens that can adjust the eye muscles to solve the above-mentioned problems in the prior art. While correcting vision, it can adjust the eye muscles, relax the ciliary muscles, and weaken the extraocular muscles that are used for a long time. Put pressure on the eyeball and intraocular pressure, thereby reducing and correcting the myopic refractive power of the eye.
  • the spectacle lens capable of adjusting the eye muscles of this embodiment includes a spectacle lens main body 1.
  • Four annular array belts 2 are provided on the spectacle lens main body 1, between two adjacent circular array belts 2 Closely connected, the diopter of the ring-shaped conventional imaging area 102 is the same as that of the circular conventional imaging area 101, the diopters of the four ring-shaped array belts 21 are different from that of the ring-shaped conventional imaging area 102, and the diopters of the four ring-shaped array belts 21 are the same as those of the ring-shaped conventional imaging area.
  • the dioptric difference of the conventional imaging area 102 is less than or equal to 2D, which can compensate the imaging aberration of the microlens array, so that the object can be clearly imaged at the imaging position 5 in front of the retina, and the diopters of different annular array belts 21 are different. There are continuous changes between the two annular array belts 21 and the other parts of the spectacle lens body 1, and there is no sudden shape change.
  • Each annular array belt 2 is provided with a number of microlenses 3 in the circumferential direction.
  • the width of the microlenses 3 in the annular array belt 2 accounts for 40%-100% of the ring width of the corresponding annular array belt 2;
  • the refractive power is different from the refractive power of the spectacle lens body 1.
  • the difference between the refractive power of the microlens 3 and the refractive power of the spectacle lens body 1 is 0 ⁇ 5D.
  • the refractive power of the microlenses 3 in different annular array belts 2 is different.
  • the refractive power, size and shape of the microlenses 3 are exactly the same.
  • the shape of the microlens 3 is round, rectangular, square, hexagonal or fan-shaped, and is not limited to the above shapes.
  • the microlenses 3 in the same annular array belt 2 can be freely combined under the condition of clear imaging requirements.
  • the splicing wearers like The shapes of the microlenses 3 in different annular array belts 2 are different, and the material of the microlenses 3 is the same as that of the spectacle lens body 1, and the difference in refractive power is realized by changing the shape.
  • the main body 1 of the spectacle lens is also provided with a circular conventional imaging area 101 and a circular conventional imaging area 102.
  • the circular conventional imaging area 101, the circular conventional imaging area 102 and the four circular array belts 2 are all concentric, and the circular conventional imaging area 101 is The inner diameter of the annular array belt 2 with the smallest radius is the same, and the inner diameter of the annular regular imaging area 102 is equal to the outer diameter of the annular array belt 2 with the largest annular diameter.
  • the ring width of the ring-shaped conventional imaging area 102 is 20%-30% of the radius of the spectacle lens.
  • the specific value of the ring width of the ring-shaped conventional imaging area 102 is determined according to the imaging stretching depth required by the wearer and the required pattern.
  • the radius of the imaging area 101 is 20%-30% of the radius of the spectacle lens, and the specific value of the radius of the circular conventional imaging area 101 is determined according to the condition of the wearer's pupil.
  • the four annular array bands 2 in the spectacle lens capable of adjusting eye muscles in this embodiment can form progressive multi-gradient imaging at the pre-retinal imaging position 5 shown in FIG. 2, stretch the imaging depth, adjust eye muscles, and relieve eyelashes. Shape muscles, weaken long-term use of extraocular muscles to exert pressure on the eyeball and intraocular pressure, thereby reducing and correcting the myopic refractive power of the eye.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Prostheses (AREA)

Abstract

一种能够调节眼部肌肉的眼镜片,包括眼镜片主体(1),眼镜片主体(1)上设置有若干个环形阵列带(2),每个环形阵列带(2)中均周向设置有若干个微透镜(3),眼镜片主体(1)上还设置有用于矫正屈光不正的圆形常规成像区(101)和环形常规成像区(102),圆形常规成像区(101)、环形常规成像区(102)及若干个环形阵列带(2)均同心,圆形常规成像区(101)的半径与环径最小的环形阵列带(2)的内径相等,环形常规成像区(102)的内径与环径最大的环形阵列带(2)的外径相等;微透镜(3)的屈光度与眼镜片的屈光度不同,不同环形阵列带(2)的成像位置不同。这种能够调节眼部肌肉的眼镜片能够在矫正视力的同时调节眼部肌肉、舒缓睫状肌、减弱长时间用眼眼外肌对眼球施压以及眼内压,从而降低以及矫正眼睛的近视屈光度。

Description

一种能够调节眼部肌肉的眼镜片 技术领域
本发明涉及眼镜片技术领域,特别是涉及一种能够调节眼部肌肉的眼镜片。
背景技术
目前,由于人们看电脑和手机屏幕或其它原因,用眼时间过长或距离过近使得眼睛负担过重,久而久之,形成近视。近视镜片是一种为了矫正视力,让人们可以清晰看到远距离的物体的眼镜。
现有的近视镜片只能通过在正常近视度数基础上增加一定度数,来抑制近视发展,但是近视眼度数增大以及近视眼产生的原因是由于用眼时间过长或距离过近使眼睛负担过重,眼内外肌肉长时间处于紧张状态而得不到休息,久而久之,当看远处时,眼睛的肌肉不能放松而呈痉挛状态,这样看远处就感到模糊而形成近视,会增加眼睛度数。
发明内容
本发明的目的是提供一种能够调节眼部肌肉的眼镜片,以解决上述现有技术存在的问题,在矫正视力的同时调节眼部肌肉、舒缓睫状肌、减弱长时间用眼眼外肌对眼球施压以及眼内压,从而降低以及矫正眼睛的近视屈光度。
为实现上述目的,本发明提供了如下方案:
本发明提供了一种能够调节眼部肌肉的眼镜片,包括眼镜片主体,所述眼镜片主体上设置有若干个环形阵列带,每个所述环形阵列带中均周向设置有若干个微透镜,所述眼镜片主体上还设置有圆形常规成像区和环形常规成像区,所述圆形常规成像区、所述环形常规成像区及若干个所述环形阵列带均同心,所述圆形常规成像区的半径与环径最小的所述环形阵列带的内径相等,若干个所述环形阵列带的屈光度与所述环形常规成像区的屈光度不同,所述环形常规成像区的内径与环径最大的所述环形阵列带的外径相等;所述微透镜的屈光度与所述眼镜片主体的屈光度不同,不同所述环形阵列带的成像位置不同。
优选地,相邻的两个所述环形阵列带之间紧密连接,所述环形常规成像区的屈光度与所述圆形常规成像区的屈光度相同,不同所述环形阵列带的屈光度不同。
优选地,若干个所述环形阵列带的屈光度与所述环形常规成像区的屈光度的差值小于等于2D,所述微透镜的屈光度与所述眼镜片主体的屈光度的差值为0~5D。
优选地,不同所述环形阵列带中的所述微透镜的屈光度不同,同一所述环形阵列带中的所述微透镜的屈光度、大小及形状完全相同。
优选地,所述微透镜的形状为圆形、矩形、方形、六边形或扇形。
优选地,不同所述环形阵列带中的所述微透镜的形状不同。
优选地,所述微透镜与所述眼镜片主体的材料相同。
优选地,所述环形常规成像区的环宽为所述眼镜片的半径的20%-30%,所述圆形常规成像区的半径为所述眼镜片的半径的20%-30%。
优选地,所述环形阵列带中的所述微透镜的宽度占对应的所述环形阵列带的环宽的40%-100%。
本发明能够调节眼部肌肉的眼镜片相对于现有技术取得了以下技术效果:
本发明能够调节眼部肌肉的眼镜片的能够在矫正视力的同时调节眼部肌肉、舒缓睫状肌、减弱长时间用眼眼外肌对眼球施压以及眼内压,从而降低以及矫正眼睛的近视屈光度。本发明能够调节眼部肌肉的眼镜片中的圆形常规成像区和环形常规成像区构成常规近视眼镜矫正区域,该区域具有矫正眼睛屈光不正的功能;若干个环形阵列带能够在眼睛视网膜前形成渐进多梯度范围内成像,拉伸成像深度,调节眼部肌肉,舒缓睫状肌、减弱长时间用眼眼外肌对眼球施压以及眼内压,从而降低以及矫正眼睛的近视屈光度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明能够调节眼部肌肉的眼镜片的结构示意图;
图2为本发明能够调节眼部肌肉的眼镜片的成像示意图;
图3为本发明能够调节眼部肌肉的眼镜片的部分结构示意图;
其中:1-眼镜片主体,101-圆形常规成像区,102-环形常规成像区,2-环形阵列带,3-微透镜,4-视网膜,5-视网膜前成像位置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种能够调节眼部肌肉的眼镜片,以解决上述现有技术存在的问题,在矫正视力的同时调节眼部肌肉、舒缓睫状肌、减弱长时间用眼眼外肌对眼球施压以及眼内压,从而降低以及矫正眼睛的近视屈光度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1-3所示:本实施例能够调节眼部肌肉的眼镜片包括眼镜片主体1,眼镜片主体1上设置有四个环形阵列带2,相邻的两个环形阵列带2之间紧密连接,环形常规成像区102的屈光度与圆形常规成像区101的屈光度相同,四个环形阵列带21的屈光度与环形常规成像区102的屈光度不同,且四个环形阵列带21的屈光度与环形常规成像区102的屈光度的差值小于等于2D,该屈光度差能够补偿微透镜阵列的成像像差,使物体能够清晰成像在视网膜前成像位置5,且不同的环形阵列带21的屈光度不同,四个环形阵列带21与眼镜片主体1其它部分之间连续变化,不存在突变形状。
每个环形阵列带2中均周向设置有若干个微透镜3,环形阵列带2中的微透镜3的宽度占对应的环形阵列带2的环宽的40%-100%;微透镜3的屈光度与眼镜片主体1的屈光度不同,微透镜3的屈光度与眼镜片主体1的屈光度的差值为0~5D,不同环形阵列带2中的微透镜3的屈光度不 同,同一环形阵列带2中的微透镜3的屈光度、大小及形状完全相同。微透镜3的形状为圆形、矩形、方形、六边形或扇形,且不局限于上述形状,满足成像清晰要求情况下同一环形阵列带2中的微透镜3可以自由组合,拼接佩戴者喜欢的图案;不同环形阵列带2中的微透镜3的形状不同,微透镜3与眼镜片主体1的材料相同,屈光度的不同通过形状的改变实现。
眼镜片主体1上还设置有圆形常规成像区101和环形常规成像区102,圆形常规成像区101、环形常规成像区102及四个环形阵列带2均同心,圆形常规成像区101的半径与环径最小的环形阵列带2的内径相等,环形常规成像区102的内径与环径最大的环形阵列带2的外径相等。环形常规成像区102的环宽为眼镜片的半径的20%-30%,环形常规成像区102的环宽的具体数值根据佩戴者所需成像拉伸深度和所需要的图案确定,圆形常规成像区101的半径为眼镜片的半径的20%-30%,圆形常规成像区101的半径的具体数值根据佩戴者的眼瞳情况确定。
本实施例能够调节眼部肌肉的眼镜片中的四个环形阵列带2能够在图2所示视网膜前成像位置5处形成渐进多梯度的成像,拉伸成像深度,调节眼部肌肉,舒缓睫状肌、减弱长时间用眼眼外肌对眼球施压以及眼内压,从而降低以及矫正眼睛的近视屈光度。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种能够调节眼部肌肉的眼镜片,其特征在于:包括眼镜片主体,所述眼镜片主体上设置有若干个环形阵列带,每个所述环形阵列带中均周向设置有若干个微透镜,所述眼镜片主体上还设置有圆形常规成像区和环形常规成像区,所述圆形常规成像区、所述环形常规成像区及若干个所述环形阵列带均同心,所述圆形常规成像区的半径与环径最小的所述环形阵列带的内径相等,若干个所述环形阵列带的屈光度与所述环形常规成像区的屈光度不同,所述环形常规成像区的内径与环径最大的所述环形阵列带的外径相等;任意一个所述环形阵列带的成像位置与所述圆形常规成像区或所述环形常规成像区的成像位置不同。
  2. 根据权利要求1所述的能够调节眼部肌肉的眼镜片,其特征在于:所述微透镜的屈光度与所述眼镜片主体的屈光度不同,不同所述环形阵列带的成像位置不同。
  3. 根据权利要求2所述的能够调节眼部肌肉的眼镜片,其特征在于:相邻的两个所述环形阵列带之间紧密连接,所述环形常规成像区的屈光度与所述圆形常规成像区的屈光度相同,不同所述环形阵列带的屈光度不同。
  4. 根据权利要求3所述的能够调节眼部肌肉的眼镜片,其特征在于:若干个所述环形阵列带的屈光度与所述环形常规成像区的屈光度的差值小于等于2D,所述微透镜的屈光度与所述眼镜片主体的屈光度的差值为0~5D。
  5. 根据权利要求1所述的能够调节眼部肌肉的眼镜片,其特征在于:不同所述环形阵列带中的所述微透镜的屈光度不同,同一所述环形阵列带中的所述微透镜的屈光度、大小及形状完全相同。
  6. 根据权利要求1所述的能够调节眼部肌肉的眼镜片,其特征在于:所述微透镜的形状为圆形、矩形、方形、六边形或扇形。
  7. 根据权利要求6所述的能够调节眼部肌肉的眼镜片,其特征在于:不同所述环形阵列带中的所述微透镜的形状不同。
  8. 根据权利要求1所述的能够调节眼部肌肉的眼镜片,其特征在于: 所述微透镜与所述眼镜片主体的材料相同。
  9. 根据权利要求1所述的能够调节眼部肌肉的眼镜片,其特征在于:所述环形常规成像区的环宽为所述眼镜片的半径的20%-30%,所述圆形常规成像区的半径为所述眼镜片的半径的20%-30%。
  10. 根据权利要求1所述的能够调节眼部肌肉的眼镜片,其特征在于:所述环形阵列带中的所述微透镜的宽度占对应的所述环形阵列带的环宽的40%-100%。
PCT/CN2020/097605 2019-11-05 2020-06-23 一种能够调节眼部肌肉的眼镜片 WO2021088382A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112021001235A BR112021001235A2 (pt) 2019-11-05 2020-06-23 Lente de óculos capaz de regular os músculos oculares

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911068693.7 2019-11-05
CN201911068693.7A CN110618542A (zh) 2019-11-05 2019-11-05 一种能够调节眼部肌肉的眼镜片

Publications (1)

Publication Number Publication Date
WO2021088382A1 true WO2021088382A1 (zh) 2021-05-14

Family

ID=68927486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097605 WO2021088382A1 (zh) 2019-11-05 2020-06-23 一种能够调节眼部肌肉的眼镜片

Country Status (3)

Country Link
CN (1) CN110618542A (zh)
BR (1) BR112021001235A2 (zh)
WO (1) WO2021088382A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608362A (zh) * 2021-07-23 2021-11-05 深圳市浓华生物电子科技有限公司 一种眼镜片及制备方法、眼镜

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618542A (zh) * 2019-11-05 2019-12-27 包松养 一种能够调节眼部肌肉的眼镜片
CN113189790B (zh) * 2021-05-20 2023-07-18 维哲视光科技有限公司 球棒结构环型多点微透镜离焦镜片以及其设计方法
CN115202070A (zh) * 2022-07-15 2022-10-18 阿尔玻科技有限公司 新型复合近视防控眼镜片及成型方法
CN115793280A (zh) * 2022-11-24 2023-03-14 苏州亮宇模具科技有限公司 一种周边离焦近视防控镜片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002149A1 (en) * 2006-06-29 2008-01-03 Fritsch Michael H Contact lens materials, designs, substances, and methods
CN108227236A (zh) * 2016-12-10 2018-06-29 鸿富锦精密工业(深圳)有限公司 隐形眼镜及其制备方法
CN109031696A (zh) * 2018-08-20 2018-12-18 赵佩韬 基于周边微透镜的视力控制镜片及眼镜
CN109633925A (zh) * 2019-01-14 2019-04-16 温州医科大学 一种带有微结构的柔性的屈光薄膜贴片
CN209388064U (zh) * 2018-03-01 2019-09-13 依视路国际公司 光学装置和眼镜设备
CN110618542A (zh) * 2019-11-05 2019-12-27 包松养 一种能够调节眼部肌肉的眼镜片
CN210514838U (zh) * 2019-11-05 2020-05-12 包松养 一种能够调节眼部肌肉的眼镜片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002149A1 (en) * 2006-06-29 2008-01-03 Fritsch Michael H Contact lens materials, designs, substances, and methods
CN108227236A (zh) * 2016-12-10 2018-06-29 鸿富锦精密工业(深圳)有限公司 隐形眼镜及其制备方法
CN209388064U (zh) * 2018-03-01 2019-09-13 依视路国际公司 光学装置和眼镜设备
CN109031696A (zh) * 2018-08-20 2018-12-18 赵佩韬 基于周边微透镜的视力控制镜片及眼镜
CN109633925A (zh) * 2019-01-14 2019-04-16 温州医科大学 一种带有微结构的柔性的屈光薄膜贴片
CN110618542A (zh) * 2019-11-05 2019-12-27 包松养 一种能够调节眼部肌肉的眼镜片
CN210514838U (zh) * 2019-11-05 2020-05-12 包松养 一种能够调节眼部肌肉的眼镜片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608362A (zh) * 2021-07-23 2021-11-05 深圳市浓华生物电子科技有限公司 一种眼镜片及制备方法、眼镜
CN113608362B (zh) * 2021-07-23 2023-05-12 深圳市浓华生物电子科技有限公司 一种眼镜片及制备方法、眼镜

Also Published As

Publication number Publication date
CN110618542A (zh) 2019-12-27
BR112021001235A2 (pt) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2021088382A1 (zh) 一种能够调节眼部肌肉的眼镜片
CN106291978B (zh) 用于预防和/或减慢近视发展的包括非同轴小透镜的接触镜片
CN107219640B (zh) 用于预防和/或减慢近视发展的多焦点镜片设计和方法
AU2017202382B2 (en) Asymmetric lens design and method for preventing and/or slowing myopia progression
CN110554515A (zh) 包括用于预防和/或减慢近视发展的小透镜的眼科镜片
US11662606B2 (en) Orthokeratology lens and method for making orthokeratology lenses
CN210514838U (zh) 一种能够调节眼部肌肉的眼镜片
CN216434562U (zh) 眼镜片及光学眼镜
TWI595286B (zh) Continuous zoom contact lenses
CN215067574U (zh) 一种基于透镜阵列的近视防控镜
CN107765448B (zh) 连续变焦隐形眼镜
CN218524972U (zh) 眼科镜片和具有其的框架眼镜
CN216434569U (zh) 眼镜片及光学眼镜
TWM640823U (zh) 串聯微透鏡的抑制近視發展鏡片
US11822153B2 (en) Optical lens design for flattening a through-focus curve
CN114994948B (zh) 一种框架眼镜片
CN219778056U (zh) 一种中心清晰成像、周边模糊成像的镜片
CN113625470B (zh) 一种多维屈光力设计镜片
CN210038366U (zh) 角膜塑形镜
TW202309609A (zh) 用於預防或減緩近視之發展或惡化之隱形眼鏡及相關方法
CN116482875A (zh) 一种用于调节青少年眼轴生长趋势的眼镜片
CN117389067A (zh) 一种点扩散离焦双效视力延缓镜片及眼镜
CN115032816A (zh) 一种延缓远视发展的复合多焦点和全焦镜片
CN115903268A (zh) 基于自由曲面的微球阵列结合菲涅尔透镜的渐进离焦镜片

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001235

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112021001235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210122

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885742

Country of ref document: EP

Kind code of ref document: A1