WO2021088313A1 - 激光雷达的状态检测装置、激光雷达以及状态检测方法 - Google Patents

激光雷达的状态检测装置、激光雷达以及状态检测方法 Download PDF

Info

Publication number
WO2021088313A1
WO2021088313A1 PCT/CN2020/084031 CN2020084031W WO2021088313A1 WO 2021088313 A1 WO2021088313 A1 WO 2021088313A1 CN 2020084031 W CN2020084031 W CN 2020084031W WO 2021088313 A1 WO2021088313 A1 WO 2021088313A1
Authority
WO
WIPO (PCT)
Prior art keywords
lidar
unit
fault
state
fault diagnosis
Prior art date
Application number
PCT/CN2020/084031
Other languages
English (en)
French (fr)
Inventor
赵鑫
向少卿
于庆国
毕云天
杨松
王力威
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911084360.3A external-priority patent/CN112782673A/zh
Priority claimed from CN201911084372.6A external-priority patent/CN112782674A/zh
Priority claimed from CN201911084281.2A external-priority patent/CN110794383A/zh
Priority claimed from CN201911083826.8A external-priority patent/CN112782672A/zh
Priority claimed from CN201911121480.6A external-priority patent/CN110940965A/zh
Priority claimed from CN201911250924.6A external-priority patent/CN113030881A/zh
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Publication of WO2021088313A1 publication Critical patent/WO2021088313A1/zh
Priority to US17/738,236 priority Critical patent/US20220268904A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present disclosure relates to the field of optoelectronic technology, and in particular to a state detection device that can be used for lidar, a lidar including the same, and a state detection method of lidar.
  • LiDAR LiDAR is a general term for laser active detection sensor equipment. Its working principle is roughly as follows: The transmitter of the lidar emits a laser beam. After the laser beam encounters an object, it is diffusely reflected and returned to the laser receiver and radar module. Multiply the time interval between sending and receiving signals by the speed of light, and then dividing by 2, you can calculate the distance between the transmitter and the object. According to the number of laser beams emitted by the lidar, there are usually single-line lidar, 4-line lidar, 8/16/32/64-line lidar and so on. One or more laser beams are emitted along different angles in the vertical direction and scanned in the horizontal direction to realize the detection of the three-dimensional contour of the target area. Multiple measurement channels (lines) correspond to multiple inclination scanning planes. Therefore, the more laser beams emitted in the vertical field of view, the higher the vertical angular resolution and the greater the density of the laser point cloud.
  • Lidar products include optical, mechanical, and electronic components, as well as software algorithms. These may be the part that failed. When the lidar fails, the cause of the failure is usually difficult to determine. There may be a failure of the device itself (for example, a certain electrical component burns out under high pressure), and an offset between the components (for example, under high temperature, component a and component b are deformed) , And can no longer be locked).
  • lidar is used as the eyes of unmanned driving and a sensor for active real-time detection. If the lidar is malfunctioning or whether it is working normally cannot be discovered and confirmed in time, the vehicle cannot be controlled to perform corresponding driving operations to deal with it. Possible failures or abnormalities, as a result, there are many hidden safety hazards. In addition, after discovering that the lidar is malfunctioning, the lidar needs to be disassembled or tested to investigate the possible causes of the malfunction one by one. The detection process is cumbersome, time-consuming and laborious.
  • the present invention provides a state detection device that can be used for lidar, a lidar including the same, and a state detection method for lidar.
  • a state detection device that can be used for lidar, including:
  • the fault diagnosis unit is configured to perform fault diagnosis on the components of the lidar, and output a fault diagnosis signal when the fault is diagnosed;
  • a diagnosis management unit that communicates with the fault diagnosis unit to receive the fault diagnosis signal, and is configured to determine the state of the lidar according to the fault diagnosis signal.
  • the lidar includes an upper bin board and a lower bin board
  • the fault diagnosis unit includes:
  • the first fault diagnosis unit is configured to perform fault diagnosis on the parts installed on the lidar or connected to the upper compartment board, and output a first fault diagnosis signal when the fault is diagnosed;
  • the second fault diagnosis unit is configured to perform fault diagnosis on the components installed in the lidar or connected to the lower compartment board, and output a second fault diagnosis signal when the fault is diagnosed;
  • the diagnosis management unit communicates with the first fault diagnosis unit and the second fault diagnosis unit to receive the first fault diagnosis signal and the second fault diagnosis signal, and is configured to be configured according to the first fault diagnosis signal and the second fault diagnosis signal. 2.
  • a fault diagnosis signal to determine the status of the lidar.
  • the lidar includes a transmitting unit, a receiving unit, and a point cloud generating unit arranged on the upper bin plate, wherein the transmitting unit is configured to emit a detection laser beam to the outside of the lidar, so The receiving unit is configured to receive the echoes of the detection laser beam reflected on the target and convert them into electrical signals, and the point cloud generating unit is configured to generate lidar point cloud data according to the electrical signals, wherein the The diagnosis management unit is coupled to the point cloud generating unit, and is configured to receive point cloud data corresponding to the first fault diagnosis signal when the first fault diagnosis signal is received.
  • the lidar includes a motor, a power supply, an encoder, and a communication component arranged on the lower compartment board, and the states of the lidar include: an initialization state, a normal state, a degraded state, and a shutdown state ,
  • the lidar performs a self-check operation and a motor start operation
  • the first fault diagnosis unit and the second fault diagnosis unit perform periodic inspections
  • the first fault diagnosis unit and the second fault diagnosis unit perform periodic detection, and record at least part of the lidar data
  • the lidar In the shutdown state, the lidar is powered off, and at least part of the data of the lidar is recorded.
  • the failure of the lidar includes a preset first-level failure and a second-level failure; wherein when the first failure diagnosis unit or the second failure diagnosis unit detects a first-level failure, the diagnosis The management unit switches the state of the lidar to a degraded state; when the first fault diagnosis unit or the second fault diagnosis unit detects a secondary fault, the diagnosis management unit switches the state of the lidar to shutdown status
  • the diagnosis management unit switches the state of the lidar from the deterioration state to the normal state.
  • the self-checking operation includes: self-checking of the power supply and clock of the lidar; self-checking of the upper and lower bin boards; self-checking of internal power supply; self-checking of the transmitting unit and the receiving unit Check,
  • the diagnosis management unit switches the state of the lidar from the initialization state to the normal state
  • the diagnosis management unit switches the state of the lidar from the initialization state to the shutdown state
  • the diagnosis management unit switches the state of the lidar from the initialization state to the shutdown state.
  • the state detection device further includes a first buffer, a second buffer, and a fault memory, wherein the first fault diagnosis unit triggers the buffering of fault data to the first when it determines that a fault exists.
  • a cache ;
  • the second fault diagnosis unit determines that a fault exists, triggering the buffering of the at least fault data to the second buffer;
  • the fault memory is coupled to the first buffer and the second buffer, and is configured to receive the fault data.
  • the diagnosis management unit communicates with the fault memory, and can output the fault data stored in the fault memory according to an external request.
  • the state detection device further includes a point cloud rationality diagnosis unit configured to receive the point cloud data and output a result of whether the point cloud data is reasonable or not Information, the diagnosis management unit communicates with the point cloud rationality diagnosis unit, and receives result information from the point cloud rationality diagnosis unit on whether the point cloud data is reasonable.
  • a point cloud rationality diagnosis unit configured to receive the point cloud data and output a result of whether the point cloud data is reasonable or not Information
  • the diagnosis management unit communicates with the point cloud rationality diagnosis unit, and receives result information from the point cloud rationality diagnosis unit on whether the point cloud data is reasonable.
  • the present invention also relates to a laser radar, including: the state detection device as described above.
  • the lidar further includes an upper silo board and a lower silo board, the upper silo board and the lower silo board are respectively installed or connected with lidar components, wherein the upper silo board and the lower silo board
  • the warehouse board is realized by FPGA and/or microcontroller.
  • the present invention also relates to a state detection method of lidar, including:
  • the fault diagnosis signal is received by the diagnosis management unit, and the state of the lidar is determined according to the fault diagnosis signal.
  • the lidar includes an upper bin board and a lower bin board
  • the fault diagnosis unit includes a first fault diagnosis unit and a second fault diagnosis unit, wherein the fault diagnosis unit is used to compare the components of the lidar
  • the steps to perform fault diagnosis and output a fault diagnosis signal when the fault is diagnosed include:
  • the step of receiving the fault diagnosis signal through the diagnosis management unit and determining the state of the lidar according to the fault diagnosis signal includes: receiving the first fault diagnosis signal and the second fault diagnosis through the diagnosis management unit Signal, and determine the state of the lidar according to the first fault diagnosis signal and the second fault diagnosis signal.
  • the lidar includes a transmitting unit, a receiving unit, and a point cloud generating unit arranged on the upper bin plate, wherein the transmitting unit is configured to emit a detection laser beam to the outside of the lidar, so The receiving unit is configured to receive the echoes of the detection laser beam reflected on the target and convert them into electrical signals, and the point cloud generating unit is configured to generate lidar point cloud data according to the electrical signals, wherein the The state detection method further includes: when the first fault diagnosis signal is received, receiving point cloud data corresponding to the first fault diagnosis signal.
  • the lidar includes a motor, a power supply, an encoder, and a communication component arranged on the lower compartment board, and the states of the lidar include: an initialization state, a normal state, a degraded state, and a shutdown state ,
  • the state detection method includes:
  • the lidar In the shutdown state, the lidar is powered off, and at least part of the data of the lidar is recorded.
  • the failure of the lidar includes a first-level failure and a second-level failure; wherein the state detection method further includes:
  • the first fault diagnosis unit or the second fault diagnosis unit detects a primary fault, switch the state of the lidar to a degraded state through the diagnosis management unit;
  • the state of the lidar is switched to the shutdown state through the diagnosis management unit
  • the state detection method further includes: when the first fault diagnosis unit and the second fault diagnosis unit do not detect a fault in the degradation stage, the diagnosis management unit will The state is switched from the degraded state to the normal state.
  • the self-checking operation includes: self-checking of the power supply and clock of the lidar; self-checking of the upper and lower bin boards; self-checking of internal power supply; self-checking of the transmitting unit and the receiving unit Inspection, wherein when the self-inspection operation is successful, the motor starting operation is performed,
  • the state detection method further includes:
  • the state of the lidar is switched from the initialization state to the normal state through the diagnosis management unit;
  • the state of the lidar is switched from the initialization state to the shutdown state through the diagnosis management unit;
  • the state of the lidar is switched from the initialization state to the shutdown state through the diagnosis management unit.
  • the state detection method further includes: when the first fault diagnosis unit determines that the fault exists, buffering the fault data in the first buffer;
  • the fault data is received from the first buffer and the second buffer through a fault memory.
  • the state detection method further includes: when an external request is received, outputting the fault data stored in the fault memory through the diagnosis management unit.
  • the state detection method further includes: judging whether the point cloud data is reasonable by a point cloud rationality diagnosis unit and outputting result information;
  • the result information of whether the point cloud data is reasonable is received from the point cloud rationality diagnostic unit through the diagnosis management unit.
  • Fig. 1A shows a schematic diagram of a state detection device according to an embodiment of the present invention
  • Figure 1B shows a schematic diagram of a state detection device according to a preferred embodiment of the present invention
  • FIG. 1C shows a schematic diagram of a lidar according to an embodiment of the present invention, in which the state detection device shown in FIG. 1A is integrated;
  • Figure 2A shows multiple states of a lidar according to an embodiment of the present invention
  • Figure 2B shows multiple states of a lidar according to a preferred embodiment of the present invention
  • Figure 2C shows the working mode of the lidar power supply when switched to shutdown according to a preferred embodiment of the present invention
  • Figure 3 shows the initialization phase of the lidar according to an embodiment of the present invention
  • FIG. 4 shows the interaction mode of the upper warehouse board and the lower warehouse board according to an embodiment of the present invention
  • Figure 5 shows a schematic diagram of a lidar according to a preferred embodiment of the present invention
  • Figure 6 shows a state detection method according to an embodiment of the present invention
  • Figure 7 shows an example of lidar
  • Figure 8 shows a schematic diagram of the internal structure of the lidar
  • Fig. 9 shows a schematic diagram of a transmitting unit of a lidar according to an embodiment of the present invention.
  • Figure 10 shows a schematic diagram of a detection circuit according to an embodiment of the present invention.
  • Figure 11 shows the arrangement of a photodetector according to another embodiment of the present invention.
  • Fig. 12 shows a detection method of a laser radar transmitting unit according to an embodiment of the present invention.
  • Fig. 13 shows a schematic diagram of a laser radar transmitting end assembly according to an embodiment of the present invention
  • Fig. 14 shows a schematic diagram of a preferred circuit structure of the laser radar transmitting end assembly according to Fig. 1;
  • Figure 15 shows a fault diagnosis method according to an embodiment of the present invention
  • 16A-16E respectively show preset waveforms of various faults according to an embodiment of the present invention.
  • Figure 17 shows a laser radar transmitting end assembly according to an embodiment of the present invention
  • Figure 18 shows a laser radar according to an embodiment of the present invention
  • Fig. 19 shows an exploded view of a receiving unit of a lidar according to an embodiment of the present invention
  • Fig. 20 shows a schematic diagram of an LED light source according to an embodiment of the present invention.
  • Figure 21 shows a schematic diagram of testing according to an embodiment of the present invention.
  • Fig. 22 shows a control method of lidar according to an embodiment of the present invention.
  • Figure 23 shows a schematic diagram of the Lidar receiving end components
  • Fig. 24 shows a fault diagnosis method that can be used at the receiving end of a lidar according to an embodiment of the present invention
  • Figure 25 shows a schematic diagram of testing according to an embodiment of the present invention.
  • FIG. 26 shows the waveform of the test signal and the waveform of the output signal according to an embodiment of the present invention
  • Figure 27 shows an embodiment of the lidar receiving end
  • Figure 28 shows a lidar receiving end assembly according to an embodiment of the present invention.
  • Fig. 29 shows a lidar receiving end assembly according to an embodiment of the present invention.
  • FIG. 30 shows a point cloud rationality diagnosis method that can be used for lidar according to an embodiment of the present invention.
  • Figure 31 shows a lidar according to an embodiment of the invention.
  • FIG. 32 shows a power supply abnormality monitoring system for LIDAR according to an embodiment of the present disclosure
  • FIG. 33 shows a LIDAR system according to an embodiment of the present disclosure
  • FIG. 34 shows a power supply abnormality monitoring method for LIDAR according to an embodiment of the present disclosure
  • Figure 35 shows a prior art encoding disc
  • Figure 36 shows a schematic diagram of an encoding disc according to an embodiment of the present invention.
  • Fig. 37 shows a schematic diagram of the pulse at the first zero degree position
  • Figure 38 shows a schematic diagram of the pulse at the second zero degree position
  • Figure 39 shows a schematic diagram of an encoding disc according to another embodiment of the present invention.
  • Fig. 40 shows a schematic diagram of a photoelectric encoding device according to an embodiment of the present invention
  • Figure 41 shows a schematic diagram of a photoelectric encoding device according to an embodiment of the present invention.
  • Figure 42 shows a schematic diagram of a lidar according to an embodiment of the present invention.
  • Figure 43 shows a method of angular orientation using the encoder disc of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relationship.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relationship.
  • the first feature "on” or “under” the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 1A shows a state detection device 10 that can be used for lidar according to an embodiment of the present invention, which includes a fault diagnosis unit and a diagnosis management unit.
  • the fault diagnosis unit is configured to perform fault diagnosis on the components of the lidar, and output a fault diagnosis signal when the fault is diagnosed.
  • the diagnosis management unit communicates with the fault diagnosis unit to receive the fault diagnosis signal, and is configured to determine the state of the lidar according to the fault diagnosis signal.
  • the components of the lidar include, but are not limited to, the transmitting unit, receiving unit, point cloud generating unit, motor, power supply, encoder, and communication components of the lidar.
  • the fault diagnosis unit can perform state monitoring on one or more components, and when an abnormality is found, it outputs a diagnosis signal S to the diagnosis management unit, and the diagnosis management unit determines the state of the lidar based on the fault diagnosis signal.
  • Lidar integrates a number of electronic, mechanical, and optical devices, which are functionally classified, including power supply modules, control units (such as upper and lower warehouse boards), transmitting units, receiving units, storage units, communication units and other functional modules .
  • the invention adds a fault diagnosis unit and a diagnosis management unit.
  • Each functional module of the lidar may include, for example, a controller (for example, an integrated circuit board) and a controlled device. The controller allows the controlled device to perform a predetermined function.
  • a corresponding fault diagnosis unit is respectively provided to perform fault diagnosis of the functional module.
  • the fault diagnosis unit may be separate from the controller, or integrated in the controller, as long as it can complete the preset diagnosis function.
  • the fault detection device of the present invention can run independently of other functional modules of the lidar, and determine the diagnosis timing and cycle according to the specific conditions of the object to be diagnosed.
  • the diagnosis system does not start normally, it can output the corresponding indication signal to the sensing system in time.
  • the condition monitoring device of the present invention has universal applicability and can be added to the existing laser radar as an independent system.
  • FIG. 1B and 1C show a state detection device 10 according to a preferred embodiment of the present invention.
  • the state detection device 10 is, for example, installed in a laser radar 1 and can be used to detect the working state of the laser radar 1. This will be described in detail below with reference to the drawings.
  • the lidar 1 includes an upper warehouse board 11 and a lower warehouse board 13.
  • the upper warehouse board 11 and the lower warehouse board 13 may be circuit boards, for example, the upper warehouse board 11 may be implemented by FPGA, and the lower warehouse board 13 may be implemented by partial FPGAs. And some CPU cores (such as microprocessors or microcontrollers) are implemented. Or alternatively, the upper warehouse board 11 and the lower warehouse board 13 may also be implemented by a DSP or an FPGA with a CPU.
  • the upper warehouse board 11 and the lower warehouse board 13 can be connected with multiple optical, electronic and mechanical components of the lidar to provide corresponding circuit connection control and/or mechanical support for them.
  • the upper bin board 11 can be installed above the lower bin board 13.
  • the transmitting unit, receiving unit and point cloud generating unit of the lidar can be connected to the upper warehouse board 11, for example, carried on the upper surface or the lower surface of the upper warehouse board 11.
  • the transmitting unit includes one or more optical components such as lasers, laser drive circuits, and lenses, which are configured to emit detection laser beams to the outside of the lidar;
  • the receiving unit includes photodetectors such as APD, SiPM, SPAD, etc.
  • the point cloud generating unit After receiving the echo of the detection laser beam reflected on the target, and converting the echo into an electrical signal; the point cloud generating unit is configured to calculate the flight time of the detection laser beam according to the electrical signal to obtain Relevant information such as the distance and reflectivity of the target is generated to generate the point cloud data of the lidar, which will be described in detail below.
  • the motor, power supply, encoder and communication components of the laser radar can be connected to the lower compartment board 13 of the laser radar 1. Taking a mechanical lidar as an example, it usually includes an opto-mechanical rotor (the transmitting unit and the receiving unit are usually located in the opto-mechanical rotor, and are used to emit detection laser beams and receive echoes in different directions).
  • the motor provides the power required for the rotation of the optical machine rotor of the laser radar, so that the optical machine rotor can rotate at a preset speed, and the rotation frequency is, for example, 10 Hz or 20 Hz.
  • Lidar usually does not have an independent power supply inside, but obtains the power supply input from the outside, for example, the power supply input is obtained from the vehicle power supply.
  • the power module of the lidar usually includes a boost circuit and a power management module.
  • the boost circuit is used to boost the input voltage (usually 5V or 15V) to the operating voltage (such as 60V) required by the lidar.
  • the power management module uses To distribute electrical energy to the various components on the lidar that need to be powered.
  • Encoders and code discs are usually used to encode and measure the rotation of the optical rotor of the lidar, so as to obtain the rotational speed and the current angular orientation of the optical rotor of the lidar.
  • the communication part is used for the communication between the fixed part and the turning part inside the lidar and the communication between the lidar and the external sensing system.
  • the state detection device 10 includes a first fault diagnosis unit FDU 111 (Fault Diagnostic Unit), a second fault diagnosis unit FDU 131, and a diagnosis management unit DMU 132 (Diagnostic Management Unit).
  • the first fault diagnosis unit FDU 111 is configured to perform fault diagnosis on the components installed on the lidar 1 or connected to the upper compartment board 11, and output the first fault diagnosis signal S1 when the fault is diagnosed; second;
  • the fault diagnosis unit FDU 131 is configured to perform fault diagnosis on components installed on the lidar or connected to the lower compartment board 13, and output a second fault diagnosis signal S2 when the fault is diagnosed.
  • first fault diagnosis signal S1 and the second fault diagnosis signal S2 may include one or more of the fault type, the name or number of the faulty component, and specific fault information.
  • the diagnosis management unit DMU 132 communicates with the first fault diagnosis unit FDU 111 and the second fault diagnosis unit 131 to receive the first fault diagnosis signal S1 and the second fault diagnosis signal S2, and is configured to be configured according to the first fault diagnosis signal S1 and the second fault diagnosis signal S2.
  • a fault diagnosis signal S1 and a second fault diagnosis signal S2 determine the state of the lidar.
  • the first fault diagnosis signal S1 in order to preferentially transmit point cloud data, after the first fault diagnosis signal S1 is generated, it can be temporarily stored in the random access memory provided on the upper warehouse board 11, and a certain timing is selected It is transmitted to the random access memory of the lower warehouse board 13 through wireless communication, and after the second fault diagnosis signal S2 is generated, it can be stored in the memory.
  • the external sensing system or diagnostic equipment can obtain all or Part of the fault storage data will be described in detail below.
  • the diagnosis management unit DMU 132 is coupled to the point cloud generation unit PCO 112, and is configured to receive the first fault diagnosis signal S1 when the first fault diagnosis signal S1 is received.
  • the point cloud data (D_Cloud) corresponding to the diagnosis signal that is, the point cloud data at the time of the failure is transmitted to the diagnosis management unit. For example, when one or two of the lasers or detectors fail, the point cloud data corresponding to the lasers or detectors will be erroneous data, which can be eliminated in the future as required.
  • the diagnostic system of the present invention can perform corresponding detection on the radar system according to the working state of the radar.
  • the content, methods, parameters, and algorithms of the diagnosis can be adjusted accordingly according to the working status.
  • the state of the lidar includes: an initialization state, a normal state, a degraded state, and a shutdown state. Wherein in the initialization state, the lidar performs a self-check operation and a motor start operation.
  • the lidar is in the initialization phase ; Or during the normal operation of the lidar, it can also be actively triggered to re-initialize, or according to the received external request, make the lidar go through the initialization state again, perform the self-check operation and the motor start operation.
  • the above-mentioned self-check operation can be started or triggered in a variety of ways. For example, the self-check can be triggered by an external perception system (other than the lidar itself).
  • the lidar self-check can be requested by sending an external signal.
  • the internal (lidar itself) system can also trigger a self-check, that is, the self-check triggered when the LiDAR meets certain conditions (such as a certain period of time or when the lidar is in a certain working state); and
  • maintenance self-inspection is a self-inspection performed by diagnostic tools (equipment/program) during the after-sales process of lidar.
  • the content of the self-check detection may include, but is not limited to, one or more combinations of the following diagnosis: transmitter fault diagnosis, receiver fault diagnosis, voltage state diagnosis (which may include high voltage and/or low voltage), communication state diagnosis (including The communication between the internal upper and lower warehouse boards and/or the communication between the lidar and the external perception system), clock status diagnosis, point cloud rationality judgment, power supply abnormality detection, control chip diagnosis, motors or other rotating parts Status diagnosis, fault diagnosis of optical/mechanical parts.
  • diagnosis transmitter fault diagnosis, receiver fault diagnosis, voltage state diagnosis (which may include high voltage and/or low voltage), communication state diagnosis (including The communication between the internal upper and lower warehouse boards and/or the communication between the lidar and the external perception system), clock status diagnosis, point cloud rationality judgment, power supply abnormality detection, control chip diagnosis, motors or other rotating parts Status diagnosis, fault diagnosis of optical/mechanical parts.
  • the self-check operation may also be independent of the initialization state, and constitute a self-check state separately.
  • the state of the lidar will include: initialization state, self-check state, normal state, degraded state, and shutdown state.
  • the normal state indicates that the lidar is in a normal working state, and no failure of the lidar components is detected, and the lidar operates in the highest performance or preset performance mode.
  • the first fault diagnosis unit FDU 111 and the second fault diagnosis unit FDU 131 can perform periodic fault detection on components of the lidar.
  • Periodic fault detection is a device state diagnosis operation performed at fixed time intervals. At this time, the lidar is in a normal working state, and the execution process of the periodic fault detection operation will not affect the normal operation of the radar, for example, it will not affect the output of the radar point cloud and the rotation of the motor.
  • the content of the periodic fault detection may include, but is not limited to, one or more combinations of the following diagnosis: transmitter fault diagnosis, receiver fault diagnosis, voltage status diagnosis (which may include high voltage and/or low voltage), Communication status diagnosis (including the communication between the internal upper warehouse board and the lower warehouse board and/or the communication between the lidar and the external perception system), clock status diagnosis, point cloud rationality judgment, power supply abnormality detection, and the use of additional installations LED detects whether the photodetector is working normally, the additional photodetector is used to detect whether the laser is working normally, the control chip diagnosis, the state diagnosis of the motor or other rotating parts, the fault diagnosis of the optical/mechanical parts.
  • the deterioration state usually indicates that the whole lidar is still working continuously, and some performance or parameters have been attenuated, but it is still within an acceptable range.
  • the first fault diagnosis unit FDU 111 and the second fault diagnosis unit FDU 131 perform periodic fault detection on the lidar, and record at least part of the lidar data, for example, the fault The status of the components is continuously monitored and recorded.
  • the shutdown state the lidar is powered off and stops working, and at least part of the data of the lidar is recorded. For example, when the lidar is shut down due to insufficient power supply or forced power outage, the relevant information of the component that has a serious failure is recorded. information.
  • a delay time of a certain period of time is set before the lidar is powered off and stops working, as shown in Delay-2 in FIG. 2B, and corresponding operations are performed within the delay time.
  • the vehicle may Activating other sensors such as cameras, or reminding the operator that the lidar is about to be powered off and shutting down, requiring the operator to take over and control the vehicle in time.
  • a certain period of delay time can also be set, as shown in Delay-1 in Figure 2B, during which time corresponding actions can be performed.
  • the vehicle can activate other sensors such as a camera, or alert the operator that the lidar is about to enter a degraded state, and the operator can choose to take over and control the vehicle.
  • the diagnosis system can pre-categorize the common faults of lidar, and divide them into primary faults and secondary faults according to their severity and consequences, and can provide different types of faults for different types of faults. Processing options. For example, for some low-impact faults, when these faults occur, the whole lidar can still work, and the performance/parameters will be attenuated to a certain extent, but this attenuation is still within the acceptable range. These faults can be eliminated. It is classified as a first-level fault, and correspondingly, the lidar is in the above-mentioned deterioration state.
  • the first-level faults include but are not limited to the following types of faults.
  • multi-beam laser radars such as 64 lines
  • a small number of lasers and/or receivers cannot work normally, for example, 4 lasers and/or receivers cannot work normally.
  • the remaining 60 laser radars The laser and receiver can still work normally, but the density and number of point clouds they generate have decreased, but they are still within an acceptable range.
  • the lidar may not work, or the performance/parameter attenuation condition is beyond the acceptable range, these faults can be classified as secondary faults.
  • the lidar is in The above-mentioned shutdown state.
  • a secondary fault such as a failure to start the motor during the initialization phase of the laser radar (for example, no start at all, or the rotation speed after starting does not reach the base speed), or a considerable part of the lasers and lasers in the multi-beam laser radar / Or the receiver (for example, 10, 20 or more lasers or receivers) cannot work normally, etc.
  • the first fault diagnosis unit FDU 111 can complete the following detection and diagnosis processes: fault diagnosis at the transmitting end; fault diagnosis at the receiving end; using an additional LED to detect the photodetector; using an additional photodetector The detector detects the light source.
  • the second fault diagnosis unit FDU 131 can complete the following detection and diagnosis process: point cloud rationality judgment; power supply abnormality detection; motor abnormality detection.
  • the transmitting unit and receiving unit of the lidar are carried by or connected to the upper warehouse board 11, so the first fault diagnosis unit FDU 111 is configured to perform the fault diagnosis of the transmitting end ,
  • the power supply of the lidar is carried by the lower warehouse board 13 or connected to the lower warehouse board 13, so the second fault diagnosis unit FDU 131 is configured to perform the power supply abnormality detection and point cloud rationality judgment.
  • the diagnosis management unit DMU 132 switches the state of the lidar to a degraded state; when the first fault diagnosis unit FDU 111 or the second fault diagnosis unit 131 detects a secondary fault, the diagnosis management unit DMU 132 switches the state of the lidar to a shutdown state.
  • the lidar when switching to the shutdown state, the lidar can close the communication function between the upper and lower bins, or the power supply of the upper bin of the laser, or both the communication function and the upper bin. Power supply for the board.
  • the laser By cutting off the power supply of the upper bin of the lidar, the laser can be guaranteed to stop emitting light and avoid causing eye safety problems.
  • the power supply of the upper warehouse can be directly supplied from the outside or with the help of the driver chip of the lidar lower warehouse, because when the power supply of the upper warehouse is cut off, the power supply link between the driver chip and the upper warehouse board can be cut off, or the external power supply can be cut off. Circuit. By turning off the communication function between the upper and lower bins, the point cloud transmission can be stopped.
  • the power supply to the communication drive chip when switching to the shutdown state, is turned off, thereby turning off the communication function.
  • the power supply to the upper compartment board is also turned off.
  • the power supply of the upper warehouse board can come from the lower warehouse board, or it can directly come from an external power supply.
  • the power supply to the laser By turning off the power supply to the upper bin board, the power supply to the laser can be turned off, so as to ensure that the laser will not emit light and cause eye safety problems.
  • the diagnosis management unit DMU 132 determines the status of the lidar Switch from the degraded state back to the normal state.
  • the first fault diagnosis unit FDU 111 and the second fault diagnosis unit 131 may mistakenly detect some faults, or some faults may be automatically eliminated after a certain period of time. Therefore, if there is no detection after a certain period of time, When it fails, the state of the lidar can be switched back to the normal state.
  • one of the lidar detectors when one of the lidar detectors is detected to be unable to output a normal electrical signal, it may cause the state of the lidar to be switched to a degraded state.
  • the detector did not malfunction, but failed to output a normal signal due to the problem of ambient light. Then in the next cycle detection, the ambient light becomes normal, then the detector will show the ability to work normally, eliminating the fault state. In this case, the state of the lidar can be switched back to the normal state.
  • the self-check operation may include, but is not limited to: self-check of the power supply and clock of the lidar; self-check of the upper and lower compartment boards; Inspection; self-inspection of transmitting unit and receiving unit; voltage diagnosis (including low voltage and high voltage); communication diagnosis (including internal and external); control chip diagnosis.
  • the self-check of the power supply and the clock includes, for example, whether the power module of the lidar can output the specified power and/or voltage and/or power, and whether the clock circuit can output a stable clock pulse; the self-check of the upper and lower compartment boards For example, it includes the self-check of the power supply of the upper and lower board circuit boards; the internal power supply self-check includes the detection of the lidar power module that can supply power to various parts of the lidar, including but not limited to lasers, detectors, motors, and laser drives Circuit modules, etc.
  • the self-inspection of the transmitting unit and the receiving unit includes detecting whether the transmitting unit such as a laser and the receiving unit such as SiPM and Spad(s) can normally emit detection laser beams and receive radar echoes. This will be described in detail below.
  • the self-check operation can be performed in the following order: the self-check of the power and clock of the lidar (ST-1); the self-check of the lower board and the upper board (ST-2) ; Internal power supply self-test (ST-3); self-test of the transmitting unit and receiving unit (ST-4).
  • the first step is to self-check the power supply/clock to confirm whether the power supply is short or insufficient, and the timing of the clock Whether it is consistent with expectations, for example, the expected power supply voltage is 60V, and the current power supply is 50V, which can be understood as a low power supply voltage.
  • Step 3 Internal power supply self-check, that is, check whether the power supply of the upper and lower warehouse boards to other components inside the lidar is normal.
  • Components include but are not limited to motors, light source drive circuits, echo processing circuits, etc. .
  • the fourth step can be performed.
  • the fourth step the detection of the functions of the transmitting end device and the receiving end device. In order, the detection of the transmitting end device can be performed first, and then the detection of the receiving end device.
  • the emitting device includes but is not limited to a light source and a light source driving circuit.
  • the receiving end devices include, but are not limited to, photodetector devices such as APD, SPAD, SiPM, etc., and echo electrical signal processing devices.
  • APD photodetector devices
  • a bidirectional parallel interaction mode or a serial interaction mode can be adopted between the upper and lower bin plates of the lidar.
  • the left side of Fig. 4 shows a two-way parallel interaction mode between the upper and lower bin plates of the lidar.
  • the upper silo board and the lower silo board carry out self-inspection independently. After the upper silo board receives the light-emitting request from the lower silo board, it starts the self-inspection, and the laser emits light and performs detection. Inspection result.
  • the point cloud data (D_Cloud) sent from the upper warehouse board to the lower warehouse board is accompanied by a handshake agreement or data indicating a successful handshake; otherwise, if the self-check fails or a corresponding failure occurs, then the upper The point cloud data sent by the warehouse board to the next warehouse board does not include a handshake protocol or data indicating that the handshake fails. After the lower warehouse board receives the point cloud data, if there is no handshake protocol or data indicating that the handshake fails, it can be judged that the point cloud data is wrong.
  • Fig. 4 shows the serial interaction mode between the upper and lower warehouse boards of the lidar. Among them, after the self-checking of the upper warehouse board of the lidar is completed, the self-check result information is sent to the lower warehouse board, including information about the success or failure of the self-check. Only when the self-check is successful, the lower board will send a light-emitting request to the upper board, and the laser on the upper board will emit light and perform detection.
  • the motor starting operation includes the start of the motor drive circuit, the start of the motor, and the start of the encoder (and the code disc).
  • the encoder and the code disc are diagnosed as faults, which can be executed by the second fault diagnosis unit FDU 131, for example.
  • a double-zero code disk is used in the laser radar (see the fifth aspect below).
  • diagnosis is performed according to the pulse information, for example, the code disk is rotated at a certain angle , Output the detection pulse of the encoder, and compare the detection pulse with the preset template.
  • the detection of the encoder (and the code disc) can be carried out during the self-inspection process of the lidar and the periodic inspection process.
  • the diagnosis management unit DMU 132 switches the state of the lidar 1 from the initialization state to the normal state. If the self-check operation and/or the motor start operation fail, so that the lidar cannot work or the working performance is degraded to unacceptable (the specific situation will be related to the current use scenario, and the unacceptable situation is that the current performance of the lidar affects The realization of the functions of the current usage scenarios, such as being applied to unmanned driving scenarios, if the current performance of lidar cannot assist in safe unmanned driving, it is unacceptable; if applied to logistics vehicles, if the current radar performance cannot be supported It is unacceptable to deliver the goods correctly to the shopper), the diagnosis management unit switches the state of the lidar from the initialization state to the shutdown state; if the failure in the self-check operation appears as a first-level failure, the diagnosis management unit switches the state of the lidar from the initialization state to the shutdown state; The diagnosis management unit switches the state of the lidar from the initialization state to the degraded state;
  • the state detection device 10 further includes a first buffer BUFF-1, a second buffer BUFF-2 and a fault memory MEM, wherein when the first fault diagnosis unit When the FDU 111 detects the existence of a fault, it triggers the buffering of the fault data to the first buffer BUFF-1; when the second fault diagnosis unit FDU 131 detects the existence of the fault, it triggers the buffering of the fault data to the second buffer BUFF- 2.
  • the fault memory MEM is coupled to the first buffer BUFF-1, and can receive the fault data.
  • the diagnosis management unit DMU 132 may receive the fault data stored in the second buffer BUFF-2 through the second fault diagnosis unit FDU 131, and optionally store the fault data in the fault memory MEM in.
  • the second buffer BUFF-2 may be coupled to the fault memory MEM, so that the fault data stored therein can be directly sent to the fault memory MEM.
  • the first buffer BUFF-1 and the second buffer BUFF-2 may be volatile memories, which are only used to temporarily buffer fault data during the operation of the lidar.
  • the fault memory MEM is a non-volatile memory. The internal fault data is still valid.
  • the first buffer BUFF-1 is set or connected to the upper bin board 11, and the second buffer BUFF-2 and the fault memory MEM are set or connected to the lower bin board 13.
  • the fault memory MEM can be various types of memory, such as EMMC or EEPROM, but not limited to EMMC or EEPROM.
  • the diagnosis management unit DMU 132 communicates with the fault memory MEM, and can output part or all of the fault data stored in the fault memory MEM according to an externally requested authority. For example, when the external perception system of the vehicle sends a request to the diagnosis management unit DMU 132, the diagnosis management unit DMU 132 may retrieve part of the fault data and send it to the external perception system. For example, when the failure analysis personnel of the radar sends a request to the diagnosis management unit DMU 132, the diagnosis management unit DMU 132 may retrieve all the fault data and send it to the failure analysis personnel.
  • diagnosis management unit DMU 132 may actively send the fault information to the sensing system when it learns that the lidar has a fault, for example, it may be sent in the form of a fault message, or it may be presented in the form of a fault.
  • the diagnosis management unit DMU 132 switches the state of the lidar to a degraded state, and when a secondary fault is detected, the diagnosis management unit DMU 132 switches the state of the lidar to In the shutdown state, preferably, as shown in Figure 2B, a certain delay time can be set before the above-mentioned state switching, as shown in Delay-1 and Delay-2 in Figure 2B, and this delay time is sent to all
  • the sensing system is described and presented to the user of the vehicle to make processing as soon as possible to determine the next vehicle operation.
  • the vehicle can choose a sensor transition (such as switching to a camera, or millimeter wave radar), or the vehicle can choose to drive to safety area.
  • the information about the interaction between the lidar and the external sensing system may include, but is not limited to: the working status of the lidar and the jump between states, the type of fault of the lidar, and the health of each channel of the lidar Degree/confidence degree, the trigger period and presentation form of this information can be different.
  • the health/confidence of each channel of the lidar is the information for evaluating the working status of each channel of the lidar.
  • the lidar has 32 lines, and the preset optical power of the laser of the second channel is 5w According to the actual diagnosis result, the laser of the second channel can emit light, but the optical power is only 4w.
  • the degree of health and the degree of confidence can also be expressed as a percentage, or the degree of health and the degree of confidence can also include only two states of "normal” and "abnormal", which are all within the protection scope of the present invention.
  • the diagnosis management unit DMU 132 switches the state of the lidar to a degraded state; when the first fault diagnosis unit FDU 111 or the second fault diagnosis unit 131 detects a secondary fault, the diagnosis management unit DMU 132 switches the state of the lidar to a shutdown state.
  • the state detection device further includes a point cloud rationality diagnosis unit PCR 133, which is, for example, arranged or connected to the lower warehouse board 13, as shown in FIG. 1C.
  • the point cloud rationality diagnosis unit PCR 133 is configured to receive the point cloud data (D_Cloud) and output result information on whether the point cloud data is reasonable, and the diagnosis management unit DMU 132 and the point cloud rationality diagnosis
  • the unit PCR 133 communicates, and receives the result information of whether the point cloud data is reasonable or not from the point cloud rationality diagnosis unit PCR 133.
  • the point cloud rationality diagnosis unit PCR 133 will be described in detail below.
  • the present invention also relates to a laser radar, including the state detection device as described above.
  • the lidar also includes an upper warehouse board and a lower warehouse board.
  • the upper warehouse board and the lower warehouse board are respectively installed with or connected with lidar components, wherein the upper warehouse board and the lower warehouse board pass FPGA and/or micro Controller implementation.
  • the present invention also provides a state detection method of lidar, including:
  • the fault diagnosis signal is received by the diagnosis management unit, and the state of the lidar is determined according to the fault diagnosis signal.
  • Fig. 6 shows a state detection method 20 of lidar according to a preferred embodiment of the present invention, wherein the lidar includes an upper bin board and a lower bin board, and the state detection method includes:
  • step S21 the first fault diagnosis unit performs fault diagnosis on the components installed on the lidar or connected to the upper compartment board, and outputs a first fault diagnosis signal when the fault is diagnosed;
  • step S22 perform fault diagnosis on the components installed or connected to the lower compartment board of the lidar through the second fault diagnosis unit, and output a second fault diagnosis signal when the fault is diagnosed;
  • step S23 the first fault diagnosis signal and the second fault diagnosis signal are received by the diagnosis management unit, and the state of the lidar is determined according to the first fault diagnosis signal and the second fault diagnosis signal.
  • the lidar includes a transmitting unit, a receiving unit, and a point cloud generating unit arranged on the upper warehouse board, wherein the transmitting unit is configured to emit a detection laser beam to the outside of the lidar
  • the receiving unit is configured to receive the echoes of the detection laser beam reflected on the target and convert them into electrical signals
  • the point cloud generating unit is configured to generate lidar point cloud data according to the electrical signals
  • the state detection method further includes: when the first fault diagnosis signal is received, receiving point cloud data corresponding to the first fault diagnosis signal, that is, transmitting the point cloud data at the moment of failure to the diagnosis management unit.
  • the lidar includes a motor, a power supply, an encoder, and a communication component arranged on the lower compartment board, and the states of the lidar include: initialization state, normal state, degraded state, In a shutdown state, the state detection method includes:
  • the lidar In the shutdown state, the lidar is powered off, and at least part of the data of the lidar is recorded.
  • the faults of the lidar include primary faults and secondary faults
  • the state detection method also includes:
  • the first fault diagnosis unit or the second fault diagnosis unit detects a primary fault, switch the state of the lidar to a degraded state through the diagnosis management unit;
  • the state of the lidar is switched to the shutdown state through the diagnosis management unit
  • the state detection method 20 further includes: when the first fault diagnosis unit and the second fault diagnosis unit do not detect a fault in the deterioration stage, the diagnosis management unit The state of the lidar is switched from the degraded state to the normal state.
  • the self-checking operation includes: self-checking of the power supply and clock of the lidar; self-checking of the upper and lower compartment boards; internal power supply self-checking; transmitting unit and receiving Unit self-check, wherein when the self-check operation is successful, the motor start operation is performed,
  • the state detection method further includes:
  • the state of the lidar is switched from the initialization state to the normal state through the diagnosis management unit;
  • the state of the lidar is switched from the initialization state to the shutdown state through the diagnosis management unit;
  • the state of the lidar is switched from the initialization state to the shutdown state through the diagnosis management unit.
  • the state detection method 20 further includes: when the first fault diagnosis unit determines that the fault exists, buffering the fault data in the first buffer;
  • the fault data is received from the first buffer and the second buffer through a fault memory.
  • the state detection method 20 further includes: when an external request is received, outputting the fault data stored in the fault memory through the diagnosis management unit.
  • the state detection method 20 further includes: judging by the point cloud rationality diagnosis unit whether the point cloud data is reasonable and outputting result information;
  • the result information of whether the point cloud data is reasonable is received from the point cloud rationality diagnostic unit through the diagnosis management unit.
  • the first aspect fault diagnosis of the transmitter
  • the inventor of the present application conceived that in order to monitor the failure of the laser radar transmitting end in time, one or more photoelectric sensors can be added to the transmitting unit of the laser radar, or the electric signal of each node in the transmitting unit can be collected to determine the laser radar emission. Whether there is a fault at the end, and optionally determine what kind of fault exists. This is described in detail below.
  • Example 1 PD (Photon Detection) small board
  • the detection of the transmitting unit of this embodiment may constitute a part of the above periodic fault detection and initialization self-check.
  • a photoelectric sensor for detection can be set in the launch bin of the lidar to detect and judge whether each launch channel or laser of the lidar is working normally. This will be described in detail below with reference to the drawings.
  • the transmitting unit of the laser radar usually includes a plurality of lasers, and the plurality of lasers can be respectively driven to emit a detection beam, and each laser corresponds to a certain detection angle or a detection field of view, for example.
  • the normal operation of the laser and related optoelectronic components is very necessary to ensure the high-precision detection of the lidar.
  • the inventor conceived that a photoelectric sensor for detection can be set in the launch bin of the lidar to detect and judge whether each launch channel or laser of the lidar is working normally. This will be described in detail below with reference to the drawings.
  • FIG. 7 shows an embodiment of the lidar 1.
  • the lidar 1 includes a transmitting unit and a receiving unit.
  • the transmitting unit is used to generate and emit a detection laser beam.
  • the detection laser beam is diffusely reflected on objects outside the lidar. Part of the reflected beam returns to the lidar and is received and combined by the receiving unit. deal with.
  • Figure 7 schematically shows a 16-line laser radar, that is, a total of 16 laser beams L1, L2,..., L15, L16 can be emitted along the vertical direction in the figure (each line laser beam corresponds to one of the laser radar Channels, 16 channels in total), used to detect the surrounding environment.
  • the lidar 100 can rotate along its vertical axis.
  • each channel of the lidar sequentially emits laser beams and performs detection according to a certain time interval (for example, 1 microsecond) to complete a vertical axis.
  • a certain time interval for example, 1 microsecond
  • Line scan on the field of view and then perform the next line scan of the vertical field of view at a certain angle (for example, 0.1 degree or 0.2 degree) in the horizontal field of view, so as to perform multiple detections during the rotation to form a point cloud.
  • a certain angle for example, 0.1 degree or 0.2 degree
  • the lidar 1 includes a housing 210 for accommodating or supporting the mechanical, optical and electronic components of the lidar 1.
  • the housing has a transmitting bin 211 and a receiving bin 212, as shown in FIG. 8, where the transmitting bin 211 is used to accommodate the laser radar transmitting unit 213 (see FIG. 9), such as a laser assembly 2131, a mirror, a laser drive circuit, etc.
  • the receiving bin 212 is used to accommodate the receiving unit of the lidar, such as a mirror, a detector array, a signal processing circuit, and the like.
  • the transmitting bin 211 and the receiving bin 212 are separated from each other to avoid mutual interference between the laser beam emitted by the laser and the echo received by the lidar.
  • the transmitting chamber and the receiving chamber can be physically separated by one or more partitions, so as to better isolate the transmitting unit and the receiving unit and avoid light crosstalk between the two.
  • the present invention is not limited to this, and the transmitting bin and the receiving bin may not be physically separated, but can be roughly distinguished by the transmitting unit and the receiving unit contained therein, which are all within the protection scope of the present invention.
  • the present invention mainly relates to the launching bin and the launching unit of the lidar. Therefore, for the sake of simplification, the receiving unit and the receiving bin are not described too much.
  • FIG. 9 shows the arrangement of the transmitting unit 213 in the lidar transmitting bin 211.
  • the transmitting unit 213 provided in the transmitting bin 211 of the laser radar includes a laser assembly 2131 and a transmitting lens 2132, and if necessary, a reflector can be arranged between the laser assembly 2131 and the transmitting lens 2132, thereby The laser beam emitted by the emitting component 2131 is incident on the emitting lens 2132 after being reflected one or more times.
  • the laser assembly 2131 includes multiple lasers. Each laser can be driven separately and emit a laser beam.
  • the laser assembly 2131 is located on the focal plane of the emitting lens 2132. Therefore, after the laser beam passes through the emitting lens 2132, it will be modulated and shaped into a parallel beam. In the three-dimensional space around the lidar, it is used to detect targets.
  • a photodetector 214 is provided in the launching bin 211 of the laser radar, which is installed on the inner top wall of the launching bin. As shown in FIG. 9, it is mounted on a substrate 215, for example, the substrate 215 is, for example, a PCB circuit board, and the two together constitute a detection circuit.
  • the substrate 215 is connected to the upper compartment board of the lidar through a flexible flat cable 216, and is used to provide voltage for the substrate 215 and the photodetector 214 and transmit data signals in one or two directions.
  • the launching compartment 211 has an upper cover (the top wall of the launching compartment 211) 217, and a positioning hole 2171 is provided on it.
  • the base plate 215 also has a positioning hole corresponding to the position of the positioning hole 2171 of the upper cover plate 217, so that it can be fixedly connected with the upper cover plate 217 of the launching chamber through the positioning hole, so that the mounting plane of the photodetector 215 and The light-emitting optical paths of the laser assembly 2131 are basically parallel to each other, and the photosensitive surface of the photodetector 215 and the light-emitting optical path of the laser assembly 2131 are parallel or slightly inclined.
  • the photodetector 214 is disposed on the substrate 215 and is further connected to the upper compartment board of the lidar 1. Those skilled in the art can easily understand that the present invention is not limited to this, and the photodetector 214 may be directly installed on the upper chamber plate of the lidar 1 without the substrate 215, and these are all within the protection scope of the present invention.
  • the direction of its main optical path is roughly toward the direction of the emitting lens 2132, as shown by the arrow of the main optical path in FIG. 9.
  • the laser does not have strict directivity. Therefore, some stray light will be generated outside the main optical path.
  • the light spot shown in a circle in Figure 9 has a large diffusion area or direction. The degree of deviation from the direction of the main optical path is relatively large.
  • the photodetector 214 is installed outside the main optical path of the laser assembly 2131 and at a position where stray light can be irradiated, so as not to interfere with the normal light emission of the laser assembly 2131. At the same time, it can continuously measure the stray light of the laser assembly 2131, and the detector is working. For example, when the laser emits light, the photodetector 214 on the substrate 215 can collect stray light outside the main optical path emitted by the laser. For the laser, there is a certain corresponding relationship between the stray light and the beam of the main optical path.
  • This preset relationship can be obtained through experiments and is related to the type of the laser, the driving voltage, and the specific position of the photodetector 214.
  • the stray light and the beam of the main optical path meet the corresponding relationship; and when the laser or the drive circuit fails, the relationship between the stray light and the beam of the main optical path will deviate from the corresponding relationship under normal working conditions At this time, the stray light waveform detected by the photodetector 214 will also produce abnormalities.
  • the stray light waveform detected by the photodetector 214 it can be identified whether the laser is malfunctioning, and optionally, when a malfunction occurs When the time, identify the specific fault type, such as the laser open circuit, the laser light intensity is too large or the light intensity is too small and other fault conditions.
  • the light intensity range of the stray light can be preset when the laser is working normally. During the operation of the lidar, the stray light intensity is continuously detected.
  • the detected light intensity When the detected light intensity is zero, it can be judged that the laser has an open circuit; when the detected light intensity is higher than the preset light intensity range, It can be judged that the laser light intensity is too high (for example, caused by too high driving voltage); when the detected light intensity is lower than the preset light intensity range, it can be judged that the laser light intensity is too low (for example, because the driving voltage is too low) ).
  • detection based on intensity is only an embodiment of the present invention, and fault detection can also be performed based on other characteristic parameters of the waveform obtained by detecting stray light, which are all within the protection scope of the present invention.
  • the photodetector 214 is, for example, an avalanche diode APD for receiving stray light from the transmitting system.
  • Fig. 10 shows a schematic diagram of a detection circuit according to an embodiment of the present invention. As shown in the figure, in addition to the substrate 215, the detection circuit also includes a data acquisition board on which a high-voltage generating circuit is provided for providing a bias voltage for the photodetector 214.
  • the photodetector 214 senses the stray light of the laser and generates an electrical signal.
  • the output electrical signal is usually relatively weak.
  • an amplifier can be provided on the substrate 215 to amplify the electrical signal output by the photodetector 214, and then
  • the receiving circuit (or reading and sampling circuit) provided on the data acquisition board is provided to the detection control unit (or called the diagnosis unit).
  • the detection control unit can determine whether the signal sensed by the photodetector 214 is within the normal range according to a preset method, and if it is not within the normal range, what kind of failure may occur to the laser component 2131 of the lidar.
  • a temperature sensor may be provided on the substrate 215 to measure the temperature of the substrate 215. The temperature sensor is also coupled to the detection control unit, so as to send the temperature measurement value of the substrate 215 to the detection control unit.
  • the avalanche diode APD Take the avalanche diode APD as an example. Its photosensitive effect (amplification of photocurrent) as a photodetector is affected by temperature and negative high voltage. By collecting the temperature of the environment where the APD is located, and adjusting the negative high voltage, the APD can affect the photocurrent. The magnification of APD remains basically the same at different temperatures. In this way, the influence of its own temperature on the photosensitive waveform is eliminated during the diagnosis process. The change in the APD output waveform viewed at this time is only the abnormal waveform caused by the fault.
  • the photodetector when using the photodetector to diagnose the transmitting end, you can first diagnose from the following two aspects: whether the connector is firm; the output voltage status of the photodetector when no stray light is detected (such as normal In the case of inputting a bias voltage of 1.65V, the theoretical output is also about 1.65V when it is not photosensitive) to check whether the photodetector itself is faulty and avoid potential faults.
  • the detection control unit can read the electrical signal output by the photodetector 214 and analyze it to determine whether the emitting unit is working normally according to the analysis result.
  • the detection control unit can be integrated into the lidar 1, or can be implemented as a separate device. Under the teaching of the present invention, these are easy to implement, and they are all protected by the present invention. Within range.
  • the detection control unit may be a part of the lidar 1 or a unit module integrated on the upper or lower lid of the lidar, or may be a separate device provided outside the lidar, which can receive the amplified, The output of the photodetector 214 is converted and the diagnosis operation is performed.
  • the entire link of the transmitting unit can be diagnosed.
  • the transmitting unit includes multiple transmitting channels, and each receiving channel includes a corresponding laser and a driving circuit.
  • each receiving channel includes a corresponding laser and a driving circuit.
  • by diagnosing whether each channel has output it can be judged whether the channel is working normally. For example, when the photodetector 214 receives stray light, the laser of the corresponding channel is emitting a detection laser beam. Then if there is no output in one of the channels, it can be concluded that the receiving channel is faulty.
  • one or more of the pulse width, amplitude, and phase of the electrical signal of the photodetector 214 can be compared with the pulse width, amplitude, and phase of the normal output signal to identify the emission caused by the failure.
  • the pulse width, amplitude and phase of the output signal of the end laser are abnormal.
  • the waveform of the pulse emitted by the laser can be preset or known. After the photodetector detects the stray light, the detection control unit will combine the waveform after signal collection and processing with the waveform emitted by the laser. The pulse waveforms are compared, and if the two are the same or roughly the same, it is judged that the receiving unit is working normally; otherwise, it is judged that the receiving unit is working abnormally and an alarm is issued.
  • the photodetector 214 continuously or periodically measures the parameters of stray light, and the detection control unit continuously or periodically based on the The output of the detector 214 performs fault detection and diagnosis.
  • Fig. 11 shows another preferred embodiment according to the present invention, in which the photodetectors are arranged at different positions, which will be described in detail with reference to Fig. 11 below.
  • the base plate 215 is fixed on the inner side wall 219 above the emitting lens 2132 by a corner connecting piece 218.
  • the side surface of the corner connecting piece 218 is opposite to the inner side above the emitting lens 2132.
  • the side surface of the wall 219 is flush-fitted, and the top surface of the corner connector 218 is flush-fitted with the top surface of the inner side wall 219.
  • the side surface of the corner connector 218 has an opening 2181, and the base plate 215 also has an opening. The positions of the two are corresponding, so that the base plate 215 can be connected to the base plate 215 by screws.
  • the corner connecting piece 218 is fixed on the inner side wall 219.
  • An opening 2182 is provided on the upper surface of the corner connector 218, and a corresponding opening is provided on the top surface of the inner side wall 219, so that the corner connector 218 can be fixed to the inner portion by screws.
  • the photodetector 214 can be made to face the laser assembly 2131 as far as possible.
  • the longitudinal center axis of the photodetector 214 is approximately Align with the longitudinal bisector of the laser assembly.
  • the lidar includes an upper bin board (not shown) on which a power interface may be provided.
  • a slot is provided on the upper warehouse board near the outer edge of the receiving warehouse, the substrate 215 is connected to the upper warehouse board by a flexible flat cable 216, one end of the flexible flat cable 216 is connected to the substrate 215, and the other One end is connected to the slot of the upper warehouse board through a connector, that is, connected to the power interface on the upper warehouse board for transmitting power and signals.
  • the flexible flat cable and the PCB board can be processed in one piece, and the connection is reliable; the flexible flat cable occupies a small space, and is convenient for sealing at the receiving bin; easy to install.
  • the present invention also relates to a detection method of a laser radar transmitting unit, for example, it can be implemented on the above-mentioned laser radar, which will be described in detail below with reference to FIG. 12.
  • the detection method 200 of the transmitting unit includes:
  • Step S201 Receive stray light emitted from the laser component of the laser radar through a photodetector located inside the laser radar;
  • Step S202 Determine whether the laser assembly is working normally according to the electrical signal output by the photodetector.
  • the step S202 includes: when the light intensity of the stray light detected by the photodetector is zero, determining that the laser has an open circuit; when the light intensity of the detected stray light is higher than a preset When the light intensity range is within the range, the laser light intensity is judged to be too large; when the detected stray light intensity is lower than the preset light intensity range, it is judged that the laser light intensity is too small.
  • the photodetector is configured to receive stray light from the laser every time the laser is driven to emit light.
  • the step of judging whether the laser assembly is working normally includes: if the waveform of the electrical signal corresponds to a preset waveform, judging that the laser assembly is working normally; otherwise judging that the laser assembly is not working normally . For example, it can be compared with the preset pulse width, amplitude and phase of the normal output signal to determine whether the laser assembly is working normally.
  • the technical solution of the embodiment of the present invention has a high diagnostic coverage rate and can cover failure detection of the laser radar transmitting end.
  • the implementation complexity is low, and the solution cost is low: the solution does not add a dedicated detection chip and complex circuit, so the cost is low.
  • the scheme is reasonably high, the diagnostic logic circuit does not affect the normal working circuit, even if the diagnostic circuit is damaged, it can be identified by FPGA logic, and the robustness is high.
  • This embodiment provides a laser radar, including:
  • a housing with a launching compartment in the housing
  • a laser assembly which is arranged in the emission chamber, and the laser assembly includes a plurality of lasers configured to emit a detection laser beam;
  • a photodetector which is arranged in the emission chamber and is configured to receive the stray light of the laser and convert it into an electrical signal
  • a detection control unit which is coupled with the photodetector, is configured to collect and analyze the electrical signal of the photodetector, and determine whether the laser assembly is working normally according to the analysis result.
  • the photodetector is arranged on the inner top wall of the emission chamber.
  • the lidar further includes a transmitting lens on the surface of the housing for converging the detection laser beam, wherein the photodetector is located inside the transmitting lens On the side wall.
  • the photodetector is fixed on the inner side wall above the emitting lens through a corner connector, and the side surface of the corner connector is connected to the inner side wall above the emitting lens.
  • the side surfaces are attached to each other, and the top surface of the corner connector is attached to the top surface of the side wall.
  • the lidar further includes a substrate for carrying the photodetector.
  • the lidar includes an upper bin board, the upper bin board is provided with a slot near the outer edge of the receiving bin, and the base plate and the upper bin board are connected by a flexible cable, One end of the flexible flat cable is connected to the substrate, and the other end is connected to the slot of the upper warehouse board.
  • the photodetector is arranged above the main optical path of the laser module, and the installation plane of the photodetector is parallel to the direction of the main optical path.
  • the lidar further includes a temperature sensor disposed on the substrate, the temperature sensor is configured to sense the temperature of the substrate, the temperature sensor and the control unit Coupling, so that the temperature of the substrate can be transmitted to the control unit.
  • This embodiment also provides a lidar control method as described above, including:
  • the photodetector According to the electrical signal output by the photodetector, it is determined whether the laser assembly is working normally.
  • the step of judging whether the laser assembly is working normally includes: when the light intensity of the stray light detected by the photodetector is zero, judging that the laser has an open circuit; When the light intensity is higher than the preset light intensity range, the laser light intensity is judged to be too large; when the detected stray light intensity is lower than the preset light intensity range, it is judged that the laser light intensity is too small.
  • the photodetector is configured to receive stray light from the laser every time the laser is driven to emit light.
  • the step of judging whether the laser assembly is working normally includes: if the waveform of the electrical signal corresponds to a preset waveform, judging that the laser assembly is working normally; otherwise judging that the laser assembly is not working normal.
  • This embodiment also provides a laser radar transmitting unit, including:
  • the laser assembly is arranged in the launching bin of the lidar, and the laser assembly includes a plurality of lasers configured to emit a detection laser beam;
  • a photodetector which is arranged in the emission chamber and is configured to receive the stray light of the laser and convert it into an electrical signal
  • a detection control unit which is coupled with the photodetector, is configured to collect and analyze the electrical signal of the photodetector, and determine whether the laser assembly is working normally according to the analysis result.
  • the photodetector is arranged on the inner top wall of the emission chamber.
  • the emitting unit further includes an emitting lens for converging the detection laser beam, wherein the photodetector is located on an inner side wall above the emitting lens.
  • the photodetector is fixed on the inner side wall above the emitting lens through a corner connector, and the side surface of the corner connector is connected to the inner side wall above the emitting lens.
  • the side surfaces are attached to each other, and the top surface of the corner connector is attached to the top surface of the side wall.
  • Embodiment 2 relates to the detection of the transmitting unit of the lidar, which can be performed by the first fault diagnosis unit FDU111, for example, which will be described in detail below.
  • the detection of the transmitting unit in this embodiment may be a part of the above periodic fault detection or self-check operation.
  • FIG. 13 shows an embodiment of the laser radar transmitting end assembly 300.
  • the laser radar transmitting end assembly 300 includes a power supply unit 301, an energy storage unit 302, a laser 303 and a switching device 304.
  • the power supply unit 301 can generally receive a lower voltage input, such as 12V, and then boost the output voltage through a boost circuit to provide a high-voltage HV, for example, to 60V.
  • the energy storage unit 302 is used to receive the high-voltage HV output from the power supply unit 301, and perform electrical energy storage and accumulation.
  • the laser 303 is, for example, a laser diode LD, one end of which is coupled to the switching device 304, and the other end is coupled to the energy storage unit 302.
  • the power supply unit 301 supplies power to the energy storage unit 302, and the energy storage unit 302 stores electric energy.
  • the switching device 304 is controlled to close, the energy storage unit 302 drives the laser 303, which is performed through a loop formed by the switching device 304. Discharge, current flows through the laser 303, and the laser 303 emits a laser beam.
  • the switching device 304 may be a GaN switch, for example.
  • the laser radar transmitting end assembly 300 further includes a driving unit 305, which is coupled to the control end of the switching device 304, so as to output a control signal to control the conduction of the switching device 304.
  • the on-off and on-off duration can affect the pulse width of the laser beam emitted by the laser 303.
  • the driving unit 305 controls the switching device 304 to be in a conducting state
  • the switching device 304 provides a discharge circuit for the laser 303, so that the energy storage unit 302 drives the laser 303, and the current flows through the laser 303, and the laser 303 emits laser light. bundle.
  • the driving unit 305 controls the switching device 304 to be in the off state, the discharge circuit is disconnected, and the laser 303 stops emitting light. Therefore, by controlling the on-off duration of the switching device 304, the light-emitting duration of the laser 303 can be controlled.
  • FIG. 14 shows a schematic diagram of a preferred circuit structure of the laser radar transmitting end assembly 300 according to FIG. 13. This will be described in detail below in conjunction with FIG. 14 and FIG. 13.
  • the power supply unit 301 includes a charging inductor 3011, a diode 3012, and a switch 3013 (for example, a field effect transistor).
  • One end of the charging inductor 3011 is connected to the input voltage PSV, for example, an input voltage of 12V, and the other end is connected to the drain of the switch 3013 and the diode 3012 respectively.
  • the gate of the switch 3013 receives the control voltage pulse Vpulse, and the source of the switch 3013 is grounded.
  • the power supply unit 301 is coupled to the capacitor 302 (energy storage unit) so that a high voltage HV can be established thereon, and is coupled to the laser 303.
  • the other end of the laser 303 is coupled to the drain of the switching device 304 (a field effect tube or GaN switch shown in the figure), the source of the switching device 304 is grounded, and the gate is coupled to the FPGA as the driving unit 305.
  • the switching device 304 a field effect tube or GaN switch shown in the figure
  • the gate is coupled to the FPGA as the driving unit 305. It is easy for those skilled in the art to understand that in addition to using FPGA to implement the drive unit 305, DSP and ASIC can also be used to implement the drive unit, which are all within the protection scope of the present invention.
  • the working process of the circuit is as follows: the energy storage unit 302 performs charging and energy storage.
  • the switching device 304 When the switching device 304 is turned on, the laser is driven by the high voltage HV to emit light and discharge, and the cycle continues throughout the laser detection process.
  • the input voltage PSV for example, 12v or 5v
  • the control voltage pulse Vpulse controls whether the switch 3013 is turned on and the on time.
  • the switch 3013 When the switch 3013 is turned on, its source is grounded to form a loop, so that the charging inductor 3011 is charged under the drive of the input voltage PSV; when the switch 3013 is turned off, the inductor 3011 needs to maintain the current thereon, Therefore, discharge occurs, the diode 3012 is turned on, and the capacitor 302 is charged. After the capacitor 302 is charged, the voltage across the capacitor 302 is the high voltage HV.
  • the FPGA as the driving unit 305 provides the driving signal VDRV to the switching device 304 to turn it on, so that The light-emitting path is turned on, the current flows through the laser 303, and the laser emits measurement light.
  • the control of the high-voltage HV level is achieved.
  • the duty cycle of the driving signal VDRV output by the FPGA 305 the light-emitting time of the laser 303 can be controlled.
  • FPGA 305 can also collect the electrical signals of one or more nodes in the lidar transmitting end, and compare the waveform of the electrical signal with a preset waveform, so as to determine whether the lidar transmitting end exists Faults and possible fault types, such as whether the specific fault is laser short circuit, laser open circuit, power unit open circuit, or energy storage element open circuit.
  • FIG. 15 shows a fault diagnosis method 30 according to an embodiment of the present invention.
  • it can be used for fault diagnosis of the laser radar transmitting end assembly 300 of FIG. 13 and FIG. 14. This will be described in detail below with reference to FIG. 15.
  • step S31 electrical signals of one or more nodes in the laser radar transmitting end are collected.
  • the inventor of the present application found that the electrical signal at the output end of the power supply unit 301 (ie, high voltage HV), that is, the voltage waveform at the output end of the power supply unit (or the voltage waveform on the energy storage unit) can be collected, because the voltage at the output end of the power supply unit The waveform can characterize and identify a variety of faults.
  • the node further includes an output terminal of the driving unit 305, and the collected electrical signal includes a voltage waveform of the output terminal of the driving unit 305.
  • step S32 it is determined whether there is a fault in the laser radar transmitting end according to the electrical signal.
  • the amplitude and/or waveform of the collected electrical signal after certain processing is performed, it can be determined whether there is a fault in the laser radar transmitting end assembly 300.
  • the failure of the lidar transmitter component may include one or more of the following failures: short-circuit of the laser, open-circuit of the laser, open-circuit of the power supply unit, and open-circuit of the energy storage element.
  • Each failure will be reflected in the electrical signals of one or more nodes. Therefore, a preset failure waveform or judgment condition can be stored in the memory, and the electrical signal can be compared with the preset waveform or judgment condition to judge whether there is a fault in the laser radar transmitter and the type of the fault.
  • the waveform Q1 represents the waveform of the laser short circuit.
  • the output voltage waveform of the power supply unit 301 will quickly drop to zero. Therefore, it can be judged whether a laser short-circuit fault has occurred by the slope of the electrical signal at the output end of the power supply unit 301. .
  • the waveform Q2 represents the waveform of the open circuit of the laser.
  • the electric energy stored in the energy storage unit 302 cannot be discharged through the laser 303. Therefore, the voltage signal at the output terminal of the power supply unit 301 will be relatively stable or drop at a very small speed, which is reflected in the waveform On the graph, the slope of its decline is relatively small.
  • the waveform Q3 represents the waveform of the open circuit of the power supply unit.
  • the output of the power supply unit 301 will always remain at a lower level, as shown by the waveform Q3.
  • the power supply unit includes a charging inductor, and the fault further includes an open circuit of the charging inductor.
  • the waveform Q5 represents the waveform of the open circuit of the charging inductor. A pulse to establish a high voltage is completely missing from the waveform Q5, indicating that an open circuit of the charging inductance may occur.
  • calculations can be performed based on the output of the power supply unit 301, such as calculating its amplitude, falling slope, etc., and then comparing it with a preset threshold to determine whether there is a fault and the specific fault type.
  • the voltage waveform output by the power supply unit 301 can be compared with a preset waveform.
  • an image classification algorithm is used to obtain one of the preset waveforms that is closest to the voltage waveform, so as to determine whether there is a fault and the specific The type of failure.
  • the energy storage unit includes a charging capacitor or a charging capacitor group
  • the waveform Q4 represents an open-circuit waveform of the charging capacitor. After the charging capacitor is open, the high-voltage HV will always remain high, and the laser cannot be driven and the charge on it will be discharged.
  • the waveform is shown as the waveform Q4 in Figure 16D.
  • FIG. 17 shows a laser radar transmitting end assembly 300' according to an embodiment of the present invention, which also includes a power supply unit 301, an energy storage unit 302, a laser 303, a switching device 304, and a driving unit 305, which are similar to the laser radar shown in FIG.
  • the radar transmitting terminal assembly 300 is basically the same, and will not be repeated here.
  • the various components and their connection relationship and other features in the embodiment shown in FIG. 14 can also be combined with FIG. 17 without creative labor. The following focuses on the differences from the lidar transmitting end assembly 300 of FIG. 13.
  • the lidar transmitting end assembly 300' further includes a fault diagnosis unit 106 configured to collect electrical signals of one or more nodes in the lidar transmitting end 300', and According to the electrical signal, it is determined whether there is a fault in the laser radar transmitting end.
  • a fault diagnosis unit 106 configured to collect electrical signals of one or more nodes in the lidar transmitting end 300', and According to the electrical signal, it is determined whether there is a fault in the laser radar transmitting end.
  • the one or more nodes may include the output terminal of the power supply unit 301, and the electrical signal includes the voltage waveform of the output terminal of the power supply unit.
  • the fault diagnosis unit 106 can be used to implement the fault diagnosis method 30 as shown in FIG. 15, for example, compare the waveform of the electrical signal with a preset waveform to determine whether there is a fault in the laser radar transmitter and whether the fault occurs.
  • the fault includes, for example, a short circuit of the laser, an open circuit of the laser, an open circuit of the power supply unit, and an open circuit of the energy storage element.
  • the energy storage element 302 includes, for example, a charging capacitor or a charging capacitor group, the power supply unit includes a charging inductor, and the fault also includes an open circuit of the charging inductor.
  • the present invention also relates to a laser radar, including: the above-mentioned laser radar transmitting end assembly 300 or 300' and receiving end assembly.
  • the laser radar transmitting end assembly 300 or 300' is configured to emit a probe beam.
  • the probe beam will be diffusely reflected on obstacles outside the lidar, and part of the reflected beam will be incident on the receiving end component as a radar echo.
  • the receiving end component includes, for example, an optical lens and a photo sensor. Among them, the optical lens converges the radar echo and makes it incident on the photoelectric sensor.
  • the photoelectric sensor can be an avalanche photodiode APD or SiPM, which generates an electrical signal according to the received light intensity or the number of photons.
  • the electrical signal is processed by subsequent circuits and signal processing, amplification and filtering, etc., to generate the point cloud data of the lidar. It can characterize the distance, azimuth, reflectivity and other information of obstacles.
  • the coverage rate of the fault diagnosis is relatively high, which can satisfy the detection and diagnosis of the failure of multiple devices at the laser receiving end.
  • the implementation complexity is low.
  • signal collection can be performed on the output end of the power supply unit. Taking a 64-line lidar as an example, usually only 5 points need to be collected (depending on the architecture, but for multi-line lidar pins) The number can be reduced by more than 30%), and the implementation complexity is relatively low compared to traditional solutions. The implementation cost of the program is low.
  • the real-time requirement of the circuit acquisition logic is very high, even at the nanosecond level, but the high-speed ADC at the laser receiving end can be reused for acquisition without additional ADC chips.
  • the diagnostic logic circuit does not affect the normal working circuit, even if the diagnostic circuit is damaged, it can be identified by the FPGA logic, with high robustness
  • a fault diagnosis method applicable to a laser radar transmitting end, wherein the laser radar transmitting end includes a laser, a switching device coupled to one end of the laser, an energy storage unit coupled to the other end of the laser, and A power supply unit for supplying power to the energy storage unit, and wherein the fault diagnosis method includes:
  • the electrical signal it is determined whether there is a fault in the laser radar transmitting end.
  • the one or more nodes include an output terminal of the power supply unit, and the electrical signal includes a voltage waveform of the output terminal of the power supply unit.
  • the lidar transmitting end further includes a driving unit coupled to the control end of the switching device, and the driving unit is configured to control the on-off and on-off duration of the switching device ,
  • the node further includes an output terminal of the driving unit, and the electrical signal further includes a voltage waveform of the output terminal of the driving unit.
  • the step of judging whether there is a fault in the laser radar transmitting terminal based on the electric signal includes: comparing the waveform of the electric signal with a preset waveform to determine whether the laser radar transmitting terminal is present Failure and the type of failure.
  • the fault includes one or more of the following: short-circuit of the laser, open-circuit of the laser, open-circuit of the power supply unit, and open-circuit of the energy storage element.
  • the energy storage element includes a charging capacitor group and a charging inductor
  • the open circuit of the energy storage element includes an open circuit of the charging capacitor and an open circuit of the charging inductance
  • the present invention also provides a laser radar transmitting end assembly, including:
  • a switching device coupled to one end of the laser
  • An energy storage unit coupled to the other end of the laser
  • a power supply unit coupled to the energy storage unit and supplying power to the energy storage unit
  • the fault diagnosis unit is configured to collect electrical signals of one or more nodes in the laser radar transmitting end, and determine whether the laser radar transmitting end has a fault according to the electrical signals.
  • the one or more nodes include an output terminal of the power supply unit, and the electrical signal includes a voltage waveform of the output terminal of the power supply unit.
  • the lidar transmitting end further includes a driving unit coupled to the control end of the switching device, and the driving unit is configured to control the on-off and on-off duration of the switching device ,
  • the node further includes an output terminal of the driving unit, and the electrical signal further includes a voltage waveform of the output terminal of the driving unit.
  • the fault diagnosis unit is configured to compare the waveform of the electrical signal with a preset waveform to determine whether there is a fault in the laser radar transmitting end and the type of the fault.
  • the fault includes one or more of the following: short-circuit of the laser, open-circuit of the laser, open-circuit of the power supply unit, and open-circuit of the energy storage element.
  • the energy storage element includes a charging capacitor group and a charging inductor
  • the open circuit of the energy storage element includes an open circuit of the charging capacitor and an open circuit of the charging inductance
  • the present invention also provides a laser radar, including:
  • the lidar transmitting end assembly as described above is configured to emit a probe beam
  • the receiving end component is configured to receive the radar echo formed after the detection beam is reflected on the obstacle.
  • the coverage rate of the fault diagnosis is relatively high, can cover all failure scenarios of the Lidar receiving end circuit, and the implementation complexity is low.
  • the traditional diagnosis solution requires separate detection of the front-end demultiplexer and transimpedance amplifier unit, the back-end two-stage multiplexer, the driver of the analog-to-digital converter, etc., and the circuit is complicated.
  • the transimpedance amplification unit by providing a test signal to the transimpedance amplification unit, it is possible to detect whether each channel of the laser radar receiving end is working normally, and through the output of the analog-to-digital converter, it is possible to diagnose the components and locations that may be malfunctioning.
  • no special detection chip and complicated circuit are added, so the cost is low.
  • the diagnostic logic circuit does not affect the normal working circuit, even if the diagnostic circuit is damaged, it can be identified by the logic of the controller (such as FPGA, DSP, or ASIC), with high robustness
  • the second aspect fault diagnosis at the receiving end
  • the embodiments of the second aspect may form part of the above periodic inspection or self-inspection.
  • a detection light source can be added to the receiving unit of the lidar, or the electric signal of each node in the receiving unit can be collected to determine whether the lidar receiving end exists Failure, and optionally determine what kind of failure exists. This is described in detail below.
  • Embodiment 1 relates to the detection of the receiving unit of the lidar, which can be performed by the first fault diagnosis unit FDU111, for example, which will be described in detail below.
  • the detection of the receiving unit in this embodiment may be a part of the periodic fault detection described above.
  • Fig. 18 shows a laser radar 1 according to an embodiment of the present invention. This will be described in detail below with reference to FIG. 18.
  • the lidar 1 mainly includes a transmitting unit 4200 and a receiving unit 4300.
  • the transmitting unit 4200 is used to generate and emit a detection laser beam.
  • the detection laser beam is diffusely reflected on objects outside the lidar, and part of the reflected beam returns to the lidar 1.
  • the receiving unit 4300 receives and processes, converts the light signal of the radar echo into an electrical signal, and performs further signal processing operations such as amplification, analog-to-digital conversion, and filtering, and finally forms a point cloud of the lidar, which can identify and characterize external objects The distance, bearing and other parameters.
  • the lidar 1 includes a housing (not shown) for accommodating or supporting the mechanical, optical and electronic components of the lidar 1.
  • the housing has a transmitting compartment and a receiving compartment, which are used to receive the transmitting unit 4200 and the receiving unit 4300 of the lidar 1 therein, respectively.
  • the transmitting compartment and the receiving compartment are not shown in FIG. 18, those skilled in the art can easily understand that the transmitting compartment and the receiving compartment can be physically separated by one or more partitions, so as to better isolate the transmitting unit and the receiving unit. , To avoid the crosstalk of light between the two.
  • the present invention is not limited to this, and the transmitting bin and the receiving bin need not be separated, but roughly distinguished by the transmitting unit 4200 and the receiving unit 4300 contained therein, which are all within the protection scope of the present invention.
  • the transmitting unit 4200 and the receiving unit 4300 are described below with reference to FIG. 18.
  • the transmitting unit 4200 includes a laser driving circuit 4201, a laser component 4203, a transmitting end mirror component 4208, and a transmitting lens 4209.
  • the laser assembly 4203 includes one or more lasers, each of which can be individually controlled to emit detection pulses.
  • the laser component 4203 is coupled to the laser driving circuit 4201, and the laser driving circuit 4201 provides a driving voltage and emits a pulse signal for it. When the transmit pulse signal is received, one of the lasers in the laser assembly 4203 will be driven to emit a probe beam.
  • the transmitting end mirror assembly 4208 and the transmitting lens 4209 are sequentially arranged downstream of the optical path of the laser assembly 4203, where the transmitting end mirror assembly 4208 is used to change the direction of the probe beam through one or more reflections, and reflect the probe beam to the transmitter.
  • FIG. 18 shows that the emitter mirror assembly 4208 includes two mirrors.
  • the present invention is not limited to this, and one or more mirrors can also be provided, which are all within the scope of the present invention.
  • the transmitting lens 4209 is usually located on the surface of the housing of the lidar 1, and is configured to collimate the probe beam incident on it or perform other types of shaping, and emit it to the outside of the lidar for detecting surroundings. Obstacles. This is easy to understand for those skilled in the art, and will not be described in detail here.
  • a receiving lens 4301 In the receiving unit 4300, a receiving lens 4301, a receiving end mirror assembly 4302, and a detection assembly 4303 are sequentially arranged along the direction of the optical path.
  • the receiving lens 4301 is usually located on the surface of the housing of the lidar 1, for example, juxtaposed with the transmitting lens 4209 in the horizontal direction, for receiving the reflected light beam (or radar echo) from external obstacles, and reflecting the light beam After converging, the converged beam passes through the receiving end reflector assembly 4302 to change its direction, and after one or more reflections, it is incident on the detection assembly 4303.
  • the detection component may include a photo sensor 43031 (as shown in FIG. 21), an amplifying circuit, an analog-to-digital converter, and other signal processing circuits.
  • the photosensor may include, for example, photodiodes, avalanche photodiodes APD, SiPM, etc., which can output electrical signals (such as current signals) according to the intensity of the light beam incident thereon or the number of photons.
  • the electrical signal is usually relatively weak, so an amplifying circuit is needed to amplify it before subsequent signal processing operations can be performed.
  • the amplifying circuit may be, for example, a transimpedance amplifier TIA, which is coupled to the output terminal of the photo sensor 43031, receives the current signal output by the photo sensor 43031, amplifies and converts the output voltage signal.
  • the analog-to-digital converter is connected to the amplifying circuit for sampling and converting the amplified analog signal and outputting a digital signal to facilitate subsequent operations such as filtering and storage. I won't repeat them here.
  • the detection component 4303 includes a substrate and an APD array detector, and the APD array detector is arranged on one side of the substrate, substantially facing the receiving lens 4301 or the receiving end mirror assembly 4302 .
  • the APD array detector is an APD area array detector, which is composed of N ⁇ N array avalanche photodiodes, where M ⁇ 2 and N ⁇ 2. For example, 4 ⁇ 4, 4 ⁇ 8, 8 ⁇ 8, etc., specifically, the N ⁇ N arrangement depends on the laser arrangement mode of the lidar.
  • the transmitting lens 4209 and the receiving lens 4301 are located on the surface of the housing of the lidar 1, and a light isolation sheet 4127 can be arranged between the two to further isolate the transmitting lens 4209 and the receiving lens. 4301, to reduce the light crosstalk between the two.
  • the lidar 1 further includes a detection light source 416 and a control unit 43032 (as shown in FIG. 21, or called a diagnosis unit).
  • the detection light source 416 is arranged in the receiving bin and is configured to emit a detection beam, which can be received by the photodetector 43031.
  • the detection light beam emitted by the detection light source 416 can be directly incident on the photodetector 43031, or can be incident on the photodetector 43031 after being reflected by the receiving end reflector assembly 4302. All of these are within the protection scope of the present invention.
  • the lidar 1 further includes a control unit 43032, which is coupled to the photodetector 43031 and is configured to collect the photodetector 43031 when the detection light source 416 emits a detection light beam. The electrical signal is analyzed to determine whether the receiving unit 4300 is working normally according to the analysis result.
  • the control unit 43032 can be integrated into the detection component 4303 of the lidar 1, or can be implemented as a separate device. Under the teaching of the present invention, these are easy to implement.
  • the control unit 43032 may be a part of the processing circuit of the detection component 4303 or a unit module, which may receive the amplified and converted output of the photodetector 43031 and perform diagnostic operations.
  • the receiving unit includes, for example, a plurality of receiving channels, and each receiving channel includes a corresponding photodetector.
  • each receiving channel includes a corresponding photodetector.
  • by diagnosing whether each channel has output it can be judged whether the channel is working normally. For example, when the detection beam emitted by the detection light source 416 should theoretically be received by all photodetectors, then each receiving channel should have a corresponding output. Then if there is no output in one of the channels, it can be concluded that the receiving channel is faulty.
  • one or more of the pulse width, amplitude, and phase of the output signal at the receiving end can be compared with the pulse width, amplitude, and phase of the normal output signal to identify the output signal at the receiving end due to a fault.
  • the pulse width, amplitude and phase are abnormal.
  • the waveform of the pulse emitted by the detection light source 416 can be preset or known. After the photodetector detects the light beam emitted by the detection light source 416, the control unit 43032 will collect and process the signal. The waveform is compared with the waveform of the pulse emitted by the detection light source 416. If the two are the same or roughly the same, it is judged that the receiving unit is working normally; otherwise, it is judged that the receiving unit is working abnormally and an alarm is issued.
  • control unit 43032 is coupled with the detection light source 416, and is configured to control the detection light source 416 to emit light when the lidar is turned on, perform self-checking of the lidar, and collect The electrical signals of one or more nodes in the receiving unit are used to determine whether the receiving unit is working normally. And when one or more of the receiving channels fails, an alarm is issued to the user.
  • the receiving unit includes a plurality of receiving channels, and each receiving channel includes a corresponding photodetector.
  • the detection light source may be one or more. In the case of setting a detection light source, the detection light source is set at a preset position where the detection light beam of the detection light source can be detected by a photodetector corresponding to each receiving channel. In this case, the detection light beam emitted by one detection light source can cover the photodetectors of all receiving channels, so the light emitted by one detection light source can be received by all the photoelectric sensors, and the effect of simulating multiple lasers simultaneously emitting light is realized.
  • the receiving end has multiple sampling channels, and each sampling channel can work at the same time. Each sampling channel is responsible for a certain number of photoelectric sensors. Therefore, the detection light source can be continuously driven in a certain period. The photoelectric sensor on each sampling channel can be switched in a certain period. It can realize the identification of the output of all sampling channels.
  • the detection light beams emitted by the multiple detection light sources can cover the photodetectors of all receiving channels.
  • the number of the detection light sources should be determined according to the layout of the photodetectors, the intensity of the detection light sources, and the relative positional relationship between the two.
  • the detection light beams emitted by multiple detection light sources can cover the photodetectors of all receiving channels.
  • the receiving unit includes a plurality of receiving channels, each receiving channel includes a corresponding photodetector, and the control unit is configured to sequentially determine whether each receiving channel is working normally.
  • the detection light source 416 is disposed on the relatively upper part of the inner side wall 412 of the receiving bin.
  • the detection light source 416 includes an LED light source 4162 and a PCB driving board 4161.
  • the PCB driving board 4161 is connected to the LED light source 4162 to provide driving voltage and current for the LED light source 4162.
  • the detection light source 416 may be disposed on the side surface of the inner side wall 412 above the receiving lens 301.
  • the detection light source 416 includes a light emitting device that can make the photodetector 43031 feel sufficient light radiation within the operating temperature range of the lidar.
  • the LED light source is small in size, low in power consumption, and low in heat generation, and thus has a small effect on the temperature of the receiving bin.
  • the driving voltage is low, and the driving circuit is simple and reliable, so it is a preferred implementation method.
  • the detection light source 416 is located on the inner side wall above the receiving lens 4301, and the receiving lens is located on the surface of the housing for concentrating the radar echo.
  • the detection light source 416 is fixed on the inner side wall 412 above the receiving lens 4301 through a corner connector 417, and the side surface of the corner connector 417 It is flush with the side surface of the inner side wall 412 above the receiving lens 4301, and the top surface of the corner connector 417 is flush with the top surface of the inner side wall 412.
  • the PCB driving board 4161 of the light source 416 has a perforation 41611. The positions of the two correspond to each other, so that they can be connected by screws.
  • the PCB driving board 4161 and the corner connector 417 are fixed on the inner side wall 412.
  • An opening 4171 is provided on the upper surface of the corner connector 417, and a corresponding opening is provided on the top surface of the inner side wall 412, so that the corner connector 417 can be fixed to the interior by screws.
  • the LED and the photodetector can be made to face as far as possible, so that the position of the maximum radiation energy of the light emitted by the LED is irradiated on the photodetector.
  • the longitudinal center axis of the LED is approximately aligned with the longitudinal bisector of the photodetector array.
  • the lidar includes an upper bin board (not shown) on which a power interface may be provided.
  • a slot is provided on the upper warehouse board near the outer edge of the receiving warehouse, the PCB driver board 4161 is connected to the upper warehouse board by a flexible cable 418, and one end of the flexible row 418 is connected to the PCB driver board 4161, the other end is connected to the slot of the upper warehouse board through a connector 419, that is, connected to the power interface on the upper warehouse board, for transmitting power and signals.
  • the flexible flat cable and the PCB board can be processed in one piece, and the connection is reliable; the flexible flat cable occupies a small space, and is convenient for sealing at the receiving bin; easy to install.
  • the LED can also be placed at the position of the upper cover plate of the receiving bin, which is convenient for installation.
  • control unit is configured to determine whether the receiving unit is working normally in the following manner:
  • the present invention also relates to a method 4100 for controlling the lidar as described above, which can be implemented on the lidar 1 as described above, for example.
  • the control method 4100 includes:
  • Step S4101 when the photoelectric detection unit does not receive the radar echo used for ranging, the detection light source of the laser radar transmits a detection beam to the photodetector of the laser radar;
  • Step S4102 Collect electrical signals of one or more nodes in the receiving unit of the lidar to determine whether the receiving unit is working normally.
  • the multiple nodes may be located at multiple locations in the receiving unit, such as the output terminal of the photodetector, the output terminal of the amplifier, the output terminal of the analog-to-digital converter, etc.
  • the present invention is not limited to Specific location.
  • step S4101 includes: controlling the detection light source to emit a detection light beam every preset time interval.
  • the step S4101 includes: controlling the detection light source to emit a detection beam when the lidar is turned on.
  • the receiving unit includes a plurality of receiving channels, each receiving channel includes a corresponding photodetector, and the control method includes: performing the steps S4101 and S4101 for each receiving channel. Step S4102.
  • the step of judging whether the receiving unit is working normally includes:
  • the technical solution of the embodiment of the present invention has a high diagnostic coverage rate, and can cover all failures of the laser radar receiving end circuit.
  • the implementation complexity is low, and the solution cost is low: the solution does not add a dedicated detection chip and complex circuit, so the cost is low.
  • the scheme is reasonably high, the diagnostic logic circuit does not affect the normal working circuit, even if the diagnostic circuit is damaged, it can be identified by FPGA logic, and the robustness is high.
  • control unit is coupled with the detection light source, and is configured to control the detection light source to emit light when the lidar is turned on, and collect the electrical power of one or more nodes in the receiving unit. Signal to determine whether the receiving unit is working normally.
  • the receiving unit includes a plurality of receiving channels, each receiving channel includes a corresponding photodetector, and the control unit is configured to sequentially determine whether each receiving channel is working normally.
  • the photodetector is an avalanche photodiode
  • the detection light source is arranged on the upper part of the side wall of the receiving bin.
  • the detection light source includes an LED located on the surface of the side wall and a PCB driving board located inside the side wall, and the PCB driving board is connected to the LED.
  • the lidar further includes a receiving lens on the surface of the housing for concentrating the radar echo, wherein the detection light source is located above the receiving lens.
  • the detection light source is fixed to the receiving bin through a corner connector, the side surface of the corner connector is flush with the side surface of the receiving bin, and the top of the corner connector The surface is flush with the top surface of the side wall.
  • control unit is configured to determine whether the receiving unit is working normally in the following manner:
  • the present invention also relates to a method for controlling the lidar as described above, including:
  • Step S101 Transmit a detection beam to the photodetector of the lidar through the detection light source of the lidar;
  • Step S102 Collect electrical signals of one or more nodes in the receiving unit of the lidar to determine whether the receiving unit is working normally.
  • the step S101 includes: controlling the detection light source to emit a detection beam when the lidar is turned on.
  • the receiving unit includes a plurality of receiving channels, each receiving channel includes a corresponding photodetector, and the control method includes: performing step S101 and step S102 for each receiving channel. .
  • the step of judging whether the receiving unit is working normally includes:
  • the technical solution of the embodiment of the present invention has a high diagnostic coverage rate, and can cover all failures of the laser radar receiving end circuit. Its implementation complexity is low, and the cost of the solution is low: the solution does not add special detection chips and complex circuits, so the cost is low.
  • the scheme is reasonably high, the diagnostic logic circuit does not affect the normal working circuit, even if the diagnostic circuit is damaged, it can be identified by FPGA logic, and the robustness is high.
  • the second embodiment relates to the detection of the receiving unit of the lidar, which can be performed by the first fault diagnosis unit FDU111, for example, which will be described in detail below.
  • the detection of the receiving unit in this embodiment may be a part of the periodic fault detection described above.
  • FIG 23 shows a schematic diagram of the Lidar receiving end components.
  • the Lidar receiving end components include a photoelectric sensor (such as an avalanche photodiode APD), a transimpedance amplification unit TIA, and an analog-to-digital converter ADC.
  • the photoelectric sensor receives the echo signal of the lidar and converts the optical signal into an electrical signal.
  • the electrical signal is a current signal and is relatively weak. Therefore, the transimpedance amplifying unit TIA can amplify the signal and convert it into a voltage signal at the same time.
  • the analog-to-digital converter ADC is used to perform analog-to-digital conversion to generate digital signals for subsequent signal processing of the lidar, such as generating point cloud data to characterize one or more of the distance, angle, and reflectivity of the obstacle.
  • FIG. 24 shows a fault diagnosis method 50 applicable to the receiving end of a lidar according to an embodiment of the present invention, which is described in detail below with reference to the accompanying drawings.
  • the fault diagnosis method 50 includes:
  • step S51 a test signal is input to the transimpedance amplifying unit.
  • the input signal of the transimpedance amplification unit TIA comes from the photoelectric sensor.
  • a test is separately input to the transimpedance amplifier unit. Signal, used to test whether the link at the receiving end of the lidar can work normally.
  • the photoelectric sensor when the test signal is input, the photoelectric sensor is shielded so that it does not generate a signal output, or the signal generated on the photoelectric sensor cannot be provided to the transimpedance amplifying unit TIA, so that the test signal is
  • the signals of the photoelectric sensors will not interfere with each other.
  • step S52 according to the output of the analog-to-digital converter, it is judged whether there is a fault at the receiving end of the lidar.
  • the transimpedance amplification unit After the test signal is input in step S51, the transimpedance amplification unit amplifies it as an input signal, and then performs analog-to-digital conversion and output through the analog-to-digital converter ADC. By collecting the output of the analog-to-digital converter and analyzing it, it can be judged whether the link at the receiving end of the lidar is working normally.
  • the output of the analog-to-digital converter ADC can be compared with a preset waveform to determine whether there is a fault in the lidar receiving end and the type of the fault.
  • Common faults at the receiving end of the lidar include, for example: open circuit of the transimpedance amplification unit, short circuit of the power supply, abnormal ratio amplification of the transimpedance amplification unit, etc.
  • the test signal includes a high-low alternating pulse signal.
  • the PWM waveform in FIG. 26 shows the waveform of the test signal according to this embodiment.
  • the test signal includes a plurality of continuous square wave pulses, and the amplitudes of adjacent pulses are different, so that the pulses can be distinguished between odd and even, which can further improve the accuracy of fault diagnosis.
  • the waveforms of Q1, Q2, Q3, and Q4 in FIG. 26 respectively show the waveforms output by the analog-to-digital converter ADC when multiple possible faults occur.
  • the lack of corresponding output pulses in the waveform Q1 indicates that there is a fault in the receiving end of the lidar.
  • a possible fault is, for example, an open circuit of the transimpedance amplifier unit. .
  • the amplitude of the first pulse is too high, and the amplitude of the third pulse is clamped to be basically equal to the second pulse, which also indicates that there is a fault in the receiving end of the lidar.
  • Possible faults such as It is the bias voltage failure (for example, the APD bias voltage is unstable), which causes the output to shift.
  • each pulse is abnormally amplified compared with the test signal PWM.
  • the normal amplitudes of the high and low pulses output by the analog-to-digital converter ADC are 1 and 0.8, but the amplitudes of the current output high and low pulses are 2 and 1.6 respectively, which are amplified by 2 on the basis of the normal amplitude. Times, it also indicates that there is a fault at the receiving end of the lidar, a possible fault is, for example, a possible fault in the transimpedance amplifier unit.
  • the pulse will change proportionally, so there is a maximum value Max and a minimum value Min.
  • Figure 27 shows an embodiment of the lidar receiving end, which includes a demultiplexer De-Mux, multiple photoelectric sensors APD 1, APD 2,..., APD N, and multiple photoelectric sensors corresponding and coupled to the multiple photoelectric sensors.
  • One of the transimpedance amplification units can be selectively gated, and the plurality of transimpedance amplification units are coupled to the analog-to-digital converter through the multiplexer.
  • Each photoelectric sensor and the transimpedance amplifying unit connected to it constitute a channel.
  • the demultiplexer De-Mux may, for example, sequentially output an enable signal to each transimpedance amplifying unit, thereby sequentially activating each transimpedance amplifying unit.
  • the demultiplexer De-Mux may, for example, sequentially output an enable signal to each transimpedance amplifying unit, thereby sequentially activating each transimpedance amplifying unit.
  • a test signal is provided to the activated transimpedance amplifying unit to test whether the channel and the downstream analog-to-digital converter work normally.
  • FIG. 28 shows a lidar receiving end assembly 500 according to an embodiment of the present invention, which will be described in detail below with reference to FIG. 28.
  • the lidar receiving end component 500 includes a photoelectric sensor 501, a transimpedance amplification unit 502, an analog-to-digital converter 503, a test signal generation unit 504, and a fault diagnosis unit 505.
  • the photoelectric sensor 501 can convert the incident light signal into an electrical signal
  • the transimpedance amplifying unit 502 is coupled to the photoelectric sensor 501 and configured to amplify the electrical signal output by the photoelectric sensor 501.
  • the analog-to-digital converter 503 is coupled to the transimpedance amplifying unit 502, and can receive the output of the transimpedance amplifying unit and perform analog-to-digital conversion.
  • the test signal generating unit 504 is configured to generate a test signal, which is coupled to the transimpedance amplifying unit 502 and configured to provide a test signal to the transimpedance amplifying unit.
  • the photoelectric sensor 501 and the test signal generating unit 504 can be coupled to the transimpedance amplifying unit 502 through a selection switch 506.
  • the selection switch 506 can have a first position and a second position, for example. When in the first position, it can couple the output signal of the photoelectric sensor 501 to the transimpedance amplifying unit 502; when in the second position, it can The test signal generated by the test signal generating unit 504 is coupled to the transimpedance amplifying unit 502.
  • the selection switch 506 allows only the output signal of one of the test signal generating unit 504 and the photoelectric sensor 501 to be coupled to the transimpedance amplifying unit at the same time. Therefore, interference between the test signal and the output signal of the photoelectric sensor 501 is avoided.
  • the fault diagnosis unit 505 is coupled to the output terminal of the analog-to-digital converter, and is configured to be able to determine whether there is a fault in the lidar receiving terminal according to the output of the analog-to-digital converter in response to the test signal .
  • the fault diagnosis unit 505 can, for example, execute the fault diagnosis method 50 described above to determine whether there is a fault and the location and type of the specific fault. It is easy for those skilled in the art to understand that the features described above with reference to FIGS. 23-27 can all be incorporated into the technical solution of FIG. 28 without creative work, and these are all within the protection scope of the present invention.
  • the fault diagnosis unit 505 is configured to compare the output of the analog-to-digital converter 503 with a preset waveform to determine whether there is a fault and the type of the fault at the receiving end of the lidar, such as the above It is described in detail with reference to FIG. 25 and will not be repeated here.
  • Common faults may include one or more of the following: open circuit of the transimpedance amplifying unit, short circuit of the power supply, and abnormal ratio of the transimpedance amplifying unit.
  • the test signal may include alternating high and low pulse signals, so as to more accurately perform fault diagnosis of the laser radar receiving end link.
  • the lidar receiving end component may include multiple channels, each channel includes a photoelectric sensor and a corresponding and coupled transimpedance amplifying unit, the lidar receiving end component and includes a demultiplexer and a multiplexer
  • the demultiplexer is coupled to the multiple transimpedance amplifying units and can selectively gate one of the transimpedance amplifying units, and the multiple transimpedance amplifying units are coupled to the mode through the multiplexer.
  • the structure diagram of the digital converter is shown in Figure 27. In this case, the test signal generating unit 504 may sequentially input test signals to the multiple transimpedance amplification units.
  • test signal generation unit 504 and the fault diagnosis unit 505 are integrated together to form an integrated controller, for example, implemented by FPGA, DSP or ASIC, as shown in FIG. 29,
  • the test signal generating unit 504 may be integrated with a fault diagnosis module, which may be implemented by software, hardware, or a combination of software and hardware.
  • the output of the analog-to-digital converter 503 is directly coupled to the test signal generating unit 504, and fault diagnosis is performed through the integrated fault diagnosis module. This method is conducive to making the entire lidar receiving end components more compact and with lower power consumption.
  • the present invention also relates to a lidar, which includes a transmitting end assembly and the above-mentioned lidar receiving end assembly, wherein the transmitting end assembly can emit a detection beam, and the lidar receiving end assembly can receive the detection beam after being reflected on an obstacle. Radar echo.
  • the present invention provides a fault diagnosis method that can be used for a lidar receiving end, wherein the lidar receiving end includes a photoelectric sensor, a transimpedance amplifying unit, and an analog-to-digital converter, wherein the transimpedance amplifying unit can amplify the photoelectric sensor Output, the analog-to-digital converter can perform analog-to-digital conversion on the output of the transimpedance amplifying unit, wherein the fault diagnosis method includes:
  • the step of judging whether there is a fault in the laser radar receiving end according to the output of the analog-to-digital converter includes: comparing the output of the analog-to-digital converter with a preset waveform to determine the laser Whether there is a fault at the receiving end of the radar and the type of the fault.
  • the fault includes one or more of the following: open circuit of the transimpedance amplifying unit, short circuit of the power supply, and abnormal ratio amplification of the transimpedance amplifying unit.
  • the test signal includes a high and low alternating pulse signal.
  • the lidar receiving end includes a demultiplexer, a plurality of photoelectric sensors, a plurality of the transimpedance amplification units corresponding to and coupled to the plurality of photoelectric sensors, and a multiplexer, so
  • the demultiplexer is coupled to the plurality of transimpedance amplifying units and can selectively gate one of the transimpedance amplifying units, and the plurality of transimpedance amplifying units are coupled to the analog-to-digital conversion through the multiplexer Device,
  • the step of inputting a test signal to the transimpedance amplifying unit includes: sequentially inputting a test signal to a plurality of the transimpedance amplifying units.
  • the present invention also relates to a lidar receiving end assembly, including:
  • Photoelectric sensor configured to convert incident light signals into electrical signals
  • a transimpedance amplifying unit coupled to the photoelectric sensor and configured to amplify the electrical signal output by the photoelectric sensor
  • An analog-to-digital converter coupled to the transimpedance amplifying unit, can receive the output of the transimpedance amplifying unit and perform analog-to-digital conversion;
  • a test signal generating unit coupled to the transimpedance amplifying unit, and configured to provide a test signal to the transimpedance amplifying unit
  • a fault diagnosis unit which is configured to: in response to the test signal, determine whether there is a fault in the lidar receiving end according to the output of the analog-to-digital converter.
  • the fault diagnosis unit is configured to compare the output of the analog-to-digital converter with a preset waveform to determine whether there is a fault in the lidar receiving end and the type of the fault.
  • the fault includes one or more of the following: open circuit of the transimpedance amplifying unit, short circuit of the power supply, and abnormal ratio amplification of the transimpedance amplifying unit.
  • the test signal includes a high and low alternating pulse signal.
  • the lidar receiving end component includes a demultiplexer, a plurality of photoelectric sensors, a plurality of the transimpedance amplifying units corresponding to and coupled to the plurality of photoelectric sensors, and a multiplexer
  • the demultiplexer is coupled to the plurality of transimpedance amplifying units and can selectively gate one of the transimpedance amplifying units, and the plurality of transimpedance amplifying units are coupled to the modulus through the multiplexer converter,
  • the test signal generating unit is configured to sequentially input test signals to the plurality of transimpedance amplification units.
  • the lidar receiving end assembly further includes a selection switch, and the test signal generation unit and the photoelectric sensor are both coupled to the transimpedance amplification unit through the selection switch, wherein the selection The switch is configured to allow only the output signal of one of the test signal generating unit and the photoelectric sensor to be coupled to the transimpedance amplifying unit at the same time.
  • test signal generation unit and the fault diagnosis unit are integrated.
  • the present invention also relates to a laser radar, including:
  • the transmitting end assembly is configured to emit a probe beam
  • the lidar receiving end assembly as described above is configured to receive the radar echo after the probe beam is reflected on the obstacle.
  • the coverage rate of the fault diagnosis is relatively high, can cover all failure scenarios of the Lidar receiving end circuit, and the implementation complexity is low.
  • Traditional diagnostic schemes need to separate the front-end demultiplexer and transimpedance amplifier unit, as well as the back-end two-stage multiplexer, the driver of the analog-to-digital converter, etc., and the circuit is complicated.
  • the transimpedance amplification unit by providing a test signal to the transimpedance amplification unit, it is possible to detect whether each channel of the laser radar receiving end is working normally, and through the output of the analog-to-digital converter, it is possible to diagnose the components and locations that may be malfunctioning.
  • the diagnostic logic circuit does not affect the normal working circuit, even if the diagnostic circuit is damaged, it can be identified by the FPGA logic, with high robustness
  • the third aspect Judgment of the rationality of the point cloud
  • This embodiment relates to the detection of the point cloud data of the lidar. For example, it may be performed by the point cloud rationality diagnosis unit PCR 133 shown in FIG. 1B, which will be described in detail below.
  • the point cloud rationality diagnosis in this embodiment may be a part of the above periodic fault detection or self-check.
  • FIG. 30 shows a point cloud rationality diagnosis method 60 applicable to lidar according to an embodiment of the present invention, which is described in detail below with reference to the accompanying drawings.
  • step S61 receiving the point cloud data of the lidar and the corresponding working parameters of the lidar when the point cloud data is generated.
  • Lidar can generally rotate around a vertical axis to collect point cloud data within a 360-degree range in the horizontal plane. Take 16-line lidar as an example, it can emit a total of 16 lines of laser beams L1, L2,..., L15, L16 in the vertical direction (each line of laser beam corresponds to a channel of the lidar, a total of 16 channels) , Used to detect the surrounding environment.
  • the lidar can rotate along its vertical axis.
  • each channel of the lidar emits laser beams in turn according to a certain time interval (for example, 1 microsecond) and performs detection, thereby completing a vertical viewing Line scan on the field, and then perform the next line scan of the vertical field of view at a certain angle (for example, 0.1 degree or 0.2 degree) in the horizontal field of view, so that multiple detections are performed during the rotation to form a point cloud, which can be sensed The condition of the surrounding environment.
  • the lidar When the lidar is working, a number of operating parameters can be adjusted. For example, if you only want to detect obstacles at a relatively short distance (such as 100m), you can relatively reduce the transmitter's requirements (in terms of the expected detection distance of 200m) Power or pulse intensity. For another example, if the detection resolution of the lidar is expected to be high, the lidar can be controlled to rotate 360 degrees at 20HZ, and if the detection resolution is not very demanding, the laser can be controlled to scan the horizontal field of view at 10HZ. .
  • lidars are multi-line lidars (the so-called multi-line, that is, there are multiple transmitters in the vertical field of view or devices that can divide a single beam of light into multiple beams), If the lidar itself has 64 lines, that is, up to 64 lines of point cloud on the vertical field of view can be realized, but according to the detection requirements, the lidar can also be controlled to only use 32 lines of the scan. In addition, lidar can perform 360-degree scanning of surrounding obstacles through a 360-degree rotation. However, in some application scenarios, such as when lidar is used as a forward-looking radar, users may only expect Lidar provides forward scanning (the direction in which the vehicle is traveling) within ⁇ 70 degrees. At this time, the lidar can be controlled to detect obstacles only within ⁇ 70 degrees.
  • step S62 the point cloud data and working parameters are input into a neural network, and the neural network is configured to output a judgment result of whether the point cloud data is reasonable or not according to at least the point cloud data and working parameters of the lidar.
  • the point cloud here is unreasonable or point cloud abnormality means that the point cloud data generated after lidar detection does not specifically correspond to the current working parameters, indicating that the point cloud data has a certain unreasonable state.
  • the neural network can also determine whether the lidar is malfunctioning or working abnormally based on the judgment result of whether the point cloud data is reasonable.
  • the neural network is, for example, a pre-trained neural network or a deep learning module, and its input terminal receives the point cloud data and working parameters of the lidar, and can at least identify whether the point cloud data is reasonable or normal.
  • the neural network includes one or more of a BP network, a multilayer neural network, a fuzzy neural network, and a wavelet neural network, and the present invention is not limited to a specific type of neural network.
  • the point cloud data detected by the lidar may undergo certain preprocessing, and then input into the neural network for subsequent recognition processing.
  • step S63 it is determined whether the point cloud data is reasonable according to the output of the neural network.
  • the neural network or the deep learning module can output an indication of whether the point cloud data is reasonable according to the point cloud data and working parameters of the lidar.
  • the lidar itself is a 64-line radar, but its working parameter is 40 lines.
  • the neural network receives the 40-line point cloud data obtained by the lidar, it is judged that the point cloud data is reasonable; but if the neural network The point cloud data received by the network at this time is 38 lines, it can be judged that the point cloud data is unreasonable or abnormal, at least there is a certain unreasonable situation.
  • the lidar can scan the surrounding obstacles in 360 degrees, but within a certain period of time, the working parameters of the lidar are controlled to provide only forward scanning within ⁇ 50 degrees. At this time, if After the lidar is detected, no matter whether the input to the neural network is forward ⁇ 90 or forward ⁇ 30 or backward (the reverse of the vehicle driving direction), the point cloud data obtained by scanning within ⁇ 50 degrees is constant To a certain extent, the point cloud that characterizes the lidar is unreasonable, and the entire lidar may be faulty or work abnormally.
  • the fault type of the lidar and the specific location of the fault can also be judged.
  • the failure includes one or more of optical component failure, mechanical structure failure, and circuit failure.
  • the point cloud rationality diagnosis method 100 further includes training the neural network to identify abnormal point cloud data, specifically, for example, including: combining the abnormal point cloud data and generating the abnormal point cloud data.
  • the point cloud data of is the working parameters of the corresponding lidar, which are input into the neural network to train the neural network to recognize the abnormal point cloud data.
  • the parameters of the lidar include, for example, the number of effective lines of the lidar at a certain moment. Take a 64-line laser radar as an example. Under normal operating conditions, 64 lines need to work at the same time for obstacle detection. Therefore, if the number of lines in the generated point cloud is less than 64 lines, it indicates that the point cloud is abnormal or some kind of failure of the lidar has occurred.
  • the neural network provides a certain margin for judging the rationality of the point cloud data. For example, when the 64-line lidar is working in the 64-line state, but one of the lasers fails, resulting in only 63-line data in the point cloud. Although this is also a lidar failure, because the deviation between the current state and the normal state is small, the point cloud of the lidar is still credible and can be used as an abnormality, and it can also be used as a reliable sensor for unmanned driving.
  • the neural network is configured to determine whether the point cloud data of one or more subsequent frames is reasonable based on the point cloud data of one or more previous frames. For example, if the point cloud of frame 20 shows that there is an object in a certain place, the point cloud of frame 21 also shows the object. According to the time interval of 20 frames to 21 frames, the speed and direction of the object can be derived, so the first frame can be predicted. The object should be somewhere in frame 22 or 23, but the point cloud detected in frame 22 or 23 is very different from the prediction, which means that the point cloud is abnormal.
  • the fault corresponding to the abnormal point cloud data can be input into the neural network to train the neural network to recognize the corresponding fault.
  • the various faults of the lidar and the abnormal state of the corresponding point cloud can be calculated in advance, and the abnormal point cloud data and the corresponding lidar parameters when the abnormal point cloud data is generated are input into the While in the neural network, the corresponding fault is input into the neural network for the neural network to learn and judge the fault status of the lidar.
  • the failure includes, for example, one or more of optical component failure, mechanical structure failure, and circuit failure.
  • the output of the neural network includes one or more of whether the point cloud is abnormal, the name of the possible failure of the lidar, and the probability.
  • the neural network is configured to output multiple faults and corresponding probabilities. For example, first train the neural network model, so that it can recognize the corresponding point cloud diagram forms of different fault 1, fault 2... fault n (build a mapping relationship between an abnormal point cloud diagram and the cause of the fault, etc.), and then In the actual scenario, the neural network is reused to analyze the point cloud output by a lidar to reversely infer the possible fault types, faulty components or fault causes of the lidar. For example, in the current point cloud data, the fault 1 The probability is 90%, the probability of failure 2 is 40%, and the probability of failure 3 is 10%. All failures with a probability higher than the preset value are output for user reference.
  • the lidar is installed on the vehicle, and the control unit of the lidar is coupled with the electronic control unit ECU of the vehicle. Therefore, when it is judged that the lidar is malfunctioning or working abnormally, the lidar's The control unit may send the information of the failure to the electronic control unit of the vehicle on which the lidar is installed.
  • the fault information may include an indication that the lidar has a fault, and/or a specific fault type and fault location.
  • the electronic control unit can make decisions based on the fault information, such as sound and light prompts to the vehicle driver, or stop the auto-driving state of the vehicle, and prompt the vehicle driver to take over the driving operation of the vehicle.
  • the fault information mentioned above can be whether the point cloud is abnormal, whether the radar is working abnormally, whether the radar is malfunctioning, the type of possible malfunction, and the approximate probability.
  • the electronic control unit when the electronic control unit receives the fault information, it can decide whether to continue to trust the lidar and continue the automatic driving state according to the severity of the fault. For example, as mentioned earlier, when the 64-line lidar is working in the 64-line state, but one of the lasers fails, resulting in only 63-line data in the point cloud. Although this is also a laser radar failure, because the deviation between the current state and the normal state is small, the point cloud of the laser radar is still credible, and it can also be used as a reliable sensor for unmanned driving. The electronic control unit can continue to automatically Driving status, but can prompt the operator of the current status.
  • FIG. 31 shows a lidar 600 according to an embodiment of the present invention. This will be described in detail with reference to FIG. 24 below.
  • the lidar 600 includes a transmitting unit 601, a receiving unit 602, a signal processing unit 603, and a point cloud rationality diagnosis unit 604.
  • the emitting unit 601 usually includes a plurality of lasers and emitting lenses, where the lasers are configured to emit laser beams, the laser beams are incident on the emitting lens, and after shaping, a detection beam is formed and emitted into the three-dimensional space around the lidar.
  • the receiving unit 602 usually includes a receiving lens and a detector.
  • the receiving lens receives the reflected light beam (or called the lidar echo) from the outside of the lidar and converges it on the detector.
  • the detector may include APD or SiPM, for example.
  • the optical signal incident on it is converted into an electrical signal.
  • the signal processing unit 603 is coupled to the receiving unit 602 and is configured to generate point cloud data of the lidar according to the electrical signal.
  • the signal processing unit 603 may generally include various levels of signal processing circuits, including but not limited to an amplifying circuit (such as a transimpedance amplifier), a filter circuit, and an analog-to-digital conversion circuit, etc., and can calculate based on the optical signal and other related information. Obstacle distance, azimuth and other parameters, and produce point cloud data.
  • the point cloud rationality diagnosis unit 604 is coupled to the signal processing unit 603, can receive the point cloud data, and is configured to execute the point cloud rationality diagnosis method 60 as described above, and output whether the point cloud data is Reasonable result information.
  • the point cloud rationality diagnosis unit 604 is further configured to output failure information of the lidar. On the basis of determining that the point cloud data is unreasonable, the point cloud rationality diagnosis unit 604 may also determine specific fault information of the lidar based on the point cloud data.
  • the signal processing unit 603 and the point cloud rationality diagnosis unit 604 can be integrated together.
  • a diagnosis module is integrated in the FPGA or ASIC of the signal processing unit 603 at the same time.
  • Signal processing can also determine whether there is a problem with the lidar hardware. If there is a problem, output an error message. If there is no problem, through the neural network, input the point cloud to the neural network, and the output is whether there is a fault.
  • the signal processing unit 603 and the point cloud rationality diagnosis unit 604 are integrated on the lower deck of the lidar.
  • the invention also relates to a vehicle on which the lidar as described above is installed.
  • the electronic control unit ECU of the vehicle may be coupled to the lidar, and may receive the fault information output by the point cloud rationality diagnosis unit of the lidar.
  • a reminder unit such as a sound reminder unit or a light reminder unit, may be installed on the vehicle.
  • the reminder unit is coupled to the electronic control unit ECU and can be triggered by the electronic control unit ECU.
  • the reminding unit is triggered to issue an alarm to the driver.
  • a neural network is used to analyze the point cloud output by a lidar to further infer the possible failures of the lidar.
  • the neural network module can be integrated into the lidar. After the user purchases the lidar, the lidar can be combined with the lidar.
  • the neural network module inside the lidar can detect the point cloud output by the lidar at any time. When an abnormal point cloud is found, the customer will be alerted.
  • the present invention provides a point cloud rationality diagnosis method that can be used for lidar, including:
  • the neural network is configured to at least output whether the point cloud data is reasonable according to the point cloud data and working parameters of the lidar
  • the point cloud rationality diagnosis method further includes: judging whether the lidar has a fault or working abnormally according to the output of the neural network.
  • the point cloud rationality diagnosis method further includes: training the neural network to identify abnormal point cloud data, including:
  • the abnormal point cloud data and the corresponding lidar parameters when generating the abnormal point cloud data are input into the neural network to train the neural network to recognize the abnormal point cloud data.
  • the point cloud rationality diagnosis method further includes: inputting the fault corresponding to the abnormal point cloud data into the neural network to train the neural network to recognize the corresponding fault.
  • the point cloud rationality diagnosis method further includes: when it is determined that the lidar has a fault or an abnormal operation, sending the information of the fault to the electronic control of the vehicle equipped with the lidar unit.
  • the failure includes one or more of an optical component failure, a mechanical structure failure, and a circuit failure.
  • the output of the neural network includes whether the point cloud is abnormal, the name and probability of the possible failure of the lidar.
  • the present invention also relates to a laser radar, including:
  • a transmitting unit configured to emit a detection beam to the outside of the lidar
  • a receiving unit configured to receive the reflected light beam from the outside of the lidar and convert it into an electric signal
  • a signal processing unit which is coupled to the receiving unit and configured to generate point cloud data of the lidar according to the electrical signal
  • a point cloud rationality diagnosis unit configured to execute the point cloud rationality diagnosis method as described above, and configured to receive the point cloud data and output whether the point cloud data is reasonable Result information.
  • the point cloud rationality diagnosis unit is further configured to output failure information of the lidar.
  • the signal processing unit and the point cloud rationality diagnosis unit are integrated.
  • the failure information includes at least one of the following information: whether the point cloud is abnormal, the name and probability of the possible failure of the lidar.
  • the present invention also relates to a vehicle including the lidar as described above.
  • the vehicle further includes an electronic control unit that is coupled to the lidar and can receive the fault information output by the point cloud rationality diagnosis unit of the lidar.
  • the vehicle further includes a reminder unit coupled to the electronic control unit, and the electronic control unit is configured to, when the failure information output by the point cloud rationality diagnosis unit is received, Trigger the reminder unit.
  • the electronic control unit is further adapted to control the vehicle to perform a corresponding driving operation according to the fault information.
  • a neural network is used to analyze the point cloud output by a lidar to further infer the possible failures of the lidar.
  • the neural network module can be integrated into the lidar. After the customer purchases the lidar, the lidar and the vehicle When using the lidar, the neural network module inside the lidar can detect the point cloud output by the lidar at any time. When the point cloud is found to be abnormal, the customer will be reminded, and then the vehicle can be controlled to execute the corresponding In order to deal with possible failures or abnormalities, the safety performance of lidar can be improved.
  • This embodiment relates to the detection of the power supply abnormality of the lidar, which can be performed by the second fault diagnosis unit, for example, as described in detail below.
  • the detection of power supply abnormality in this embodiment may be a part of the above periodic fault detection or self-inspection.
  • ADAS advanced assisted driving system
  • L3 level of autonomous driving that is, conditional autonomous driving
  • the vehicle will be equipped with a variety of sensors, including millimeter wave radar (RADAR), laser radar (LIDAR), camera (Camera), inertial measurement unit ( IMU) and Global Navigation Satellite System (GNSS), etc.
  • RADAR millimeter wave radar
  • LIDAR laser radar
  • IMU inertial measurement unit
  • GNSS Global Navigation Satellite System
  • LIDAR emits laser pulses rapidly (usually up to 150,000 pulses per second), and the laser signal is reflected back to the LIDAR sensor after reaching the obstacle. LIDAR accurately calculates and determines the distance between the sensor and the obstacle by measuring the time interval from launch to return of the laser signal. It can also detect the exact size of the target object. In addition, LIDAR can usually be used to draw high-resolution maps.
  • the LIDAR is usually supplied with power via a vehicle (for example, an on-board power supply).
  • a vehicle for example, an on-board power supply
  • abnormalities in the power supply of the vehicle as an external power supply for LIDAR often occur, resulting in poor user experience.
  • users in the event of a power supply abnormality, users generally think that LIDAR is malfunctioning, rather than that the external power supply is abnormal.
  • FIG. 32 shows a power supply abnormality monitoring system 700 for LIDAR according to an embodiment of the present invention.
  • the power supply abnormality monitoring system 700 for LIDAR of the embodiment of the present invention can be integrated with the LIDAR system or constructed as an independent system, which is within the scope of the present invention.
  • the power supply abnormality monitoring system 700 includes a storage unit 710, a power supply monitoring unit 720, and a control unit 730.
  • the power supply monitoring unit 720 is coupled to the power supply input of the LIDAR and monitors whether the power supply input is normal.
  • the power input of LIDAR comes from an external power supply source of LIDAR, which can provide power for functions such as LIDAR operation and communication with external devices.
  • the power input of the LIDAR provides a voltage of 12V or 48V.
  • the power input of LIDAR comes from the on-board power supply, for example, the vehicle provides 5V or 12V power input for LIDAR .
  • the LIDAR itself has a battery to provide power input for the components on the LIDAR.
  • the power supply monitoring unit 720 can detect whether the power supply input from the battery is normal.
  • the power supply monitoring unit 720 in the present invention is coupled to the power supply input of the LIDAR and monitors whether the power supply input is normal, where “monitoring whether the power supply input is normal” refers to monitoring/judging/determining whether a certain physical characteristic of the power supply input meets (or is not) Meet) the predetermined requirements.
  • the physical characteristic refers to voltage.
  • “monitoring whether the power supply input is normal” refers to monitoring/judging/determining whether the voltage of the power supply input meets (or does not meet) predetermined requirements.
  • “monitoring whether the power supply input is normal” refers to monitoring whether the voltage of the power supply input is lower than a predetermined threshold.
  • the power supply monitoring unit 710 may be implemented or implemented as including a voltage comparator , To monitor/judge/determine whether the voltage of the power supply input is lower than a predetermined threshold.
  • the embodiment of the present invention may monitor other physical characteristics (for example, current) of the power supply input to determine whether the power supply input is normal.
  • other physical characteristics for example, current
  • a certain physical characteristic (voltage, current, etc.) of the power supply input is less than a predetermined threshold, it is determined that the power supply input is abnormal (or an abnormal event of the power supply input is monitored) .
  • a certain physical characteristic (voltage, current, etc.) of the power supply input is greater than a predetermined threshold, the monitoring power supply input is abnormal (or an abnormal event of the power supply input is monitored).
  • a certain physical characteristic of the power supply input not only includes voltage, current, etc., but also includes derivative characteristics that characterize these physical characteristics, such as voltage jitter, frequency fluctuation, and so on. For example, when the fluctuation range of the voltage or current of the power supply input exceeds a certain threshold, it is determined that the power supply input is abnormal.
  • the present invention covers monitoring any physical characteristics of the power supply input and characterizing specific derived characteristics of that physics.
  • the present invention covers other devices/mechanisms/modules provided in the power supply monitoring unit 720 for monitoring/comparing corresponding characteristics.
  • the power supply monitoring unit 720 is coupled to the control unit 730, and the control unit 730 is configured to record information related to the abnormal event in the storage unit 710 in response to the power supply monitoring unit 720 detecting an abnormal event of the power supply input.
  • control unit 730 is implemented as part of a LIDAR module (such as an FPGA). In other embodiments, the control unit 730 is implemented as a separate unit/module. In general, the control unit 730 can be implemented as any control unit that performs control functions, for example, a processor, a microprocessor, a controller, a microcontroller, a logic device (for example, a programmable logic device, such as FPGA), a dedicated Integrated circuit (ASIC), etc.
  • a processor for example, a microprocessor, a controller, a microcontroller, a logic device (for example, a programmable logic device, such as FPGA), a dedicated Integrated circuit (ASIC), etc.
  • ASIC dedicated Integrated circuit
  • the "abnormal event" of the power supply input may refer to a certain/or certain physical specificity of the power supply input that meets/does not meet a predetermined requirement.
  • the control unit 730 is configured to record information related to the abnormal event to the storage unit 710 in response to the power supply monitoring unit 720 detecting an abnormal event of the power supply input.
  • Information related to an abnormal event may include information indicating that an abnormal event has occurred (for example, an abnormal event flag), information about what kind of abnormal event has occurred (for example, the category of the abnormal event), and the attribute of the abnormal event (for example, physical quantities (voltage, current)) One or more of the time (e.g., timestamp) when the abnormal event occurred.
  • the storage unit 710 may include any non-volatile memory/device (for example, various types of memory and flash memory, etc.) that records/stores information related to abnormal events.
  • FIG. 33 shows a LIDAR system 70 according to an embodiment of the present invention, which includes the aforementioned power supply abnormality monitoring system 700 (shown in the dashed box in FIG. 33), which will be described in detail below with reference to FIG. 33.
  • the LIDAR system 70 includes a boost circuit 71, a LIDAR power management module 72, and an FPGA.
  • the boost circuit 71 can be connected to an external power source, for example, to the on-board power source of a vehicle. Outside of itself.
  • the on-board power supply automatically provides a power supply input to the boost circuit 71, such as a 5V voltage input.
  • the booster circuit 71 includes, for example, an LTO booster, which accepts a power supply input and converts it into a high voltage that can be used to drive the lidar, such as a voltage of 60V.
  • the LIDAR power management module 72 is coupled to the boost circuit 71 and receives the high voltage for providing electrical power to the components in the LIDAR system 70 that require electrical energy, for example, as shown in FIG. 33, to the power supply abnormality detection system 700 Each unit component in and provides electrical power to the external network/peripheral 73 (described below).
  • the LIDAR system 70 may also include an Ethernet/peripheral interface 73, such as an Ethernet interface/peripheral interface, for sending the point cloud data of the lidar to an external controller (not shown), or accepting an external controller Control signal input.
  • an Ethernet/peripheral interface 73 such as an Ethernet interface/peripheral interface, for sending the point cloud data of the lidar to an external controller (not shown), or accepting an external controller Control signal input.
  • the LIDAR system 70 includes a central controller, for example, implemented by FPGA, which integrates the power supply monitoring unit 720 and the control unit 730 in the aforementioned power supply abnormality monitoring system 700.
  • the FPGA is also coupled to the power supply input side, that is, to the input terminal of the boost circuit 71, thereby It is possible to monitor whether the power supply input is normal (for example, whether it is equal to 12V or whether it is lower than 12V, in particular, lower than 12V indicates the occurrence of undervoltage, and more particularly, when the power supply input voltage is 0V, indicates the occurrence of power failure/power failure).
  • the control unit 730 integrated in the FPGA records information related to the abnormal event to the storage unit 710.
  • the central controller shown in FIG. 33 can also be implemented by other types of electronic devices, such as a digital signal processor DSP or an application-specific integrated circuit ASIC, which are all within the protection scope of the present invention.
  • the power supply abnormality monitoring system 700 may further include an energy storage device 740 (or an auxiliary power supply unit).
  • the energy storage device 740 is coupled to the FPGA and the LIDAR power management module 72, and is The FPGA control.
  • the FPGA may enable the energy storage device 740 to power the LIDAR in response to the abnormal event of the power input being monitored by the FPGA. For example, when the FPGA detects an abnormal event of the power supply input, the FPGA will issue a start instruction to the energy storage device 740 at this time, start the energy storage device 740, and provide backup power to the LIDAR power management module 72.
  • the FPGA also controls the power management module of the LIDAR to stop supplying power to the Ethernet/peripheral 73 of the LIDAR system in response to the abnormal event of the power supply input being detected by the FPGA. That is to say, in this case, the control unit 730 also controls the power management module (not shown) of LIDAR to only supply power to the core modules/units of LIDAR in response to the abnormal event of the power supply input being monitored by the power supply monitoring unit 720 to ensure Its basic function is to stop supplying power to non-core modules/units of LIDAR (for example, network communication modules and/or peripherals).
  • FIG. 33 also shows that the inertial measurement unit IMU is connected to the FPGA of the LIDAR system 70 to assist in implementing the functions of the advanced driving assistance system.
  • the schematic diagrams of the LIDAR power supply abnormality monitoring system 700 and the LIDAR system shown in FIG. 32 and FIG. 33 are only block diagrams of part of the structure related to the solution of the present application, and do not constitute an impact on the solution of the present application.
  • the definition of the device/unit/module applied to it, the device/unit/module of a specific system may include more or less devices/units/modules than shown in the figure, or a combination of some devices/units/modules , Or have a different arrangement of devices/units/modules.
  • the energy storage device shown in FIG. 33 can be any type of energy storage device, such as capacitors, batteries (such as button batteries), battery packs, and so on.
  • the auxiliary power supply unit may be another external power supply source. "Enable the auxiliary power supply unit to power the LIDAR” may include disabling the power supply input of the LIDAR and using the auxiliary power supply unit to power the LIDAR, or not deactivating the power supply input of the LIDAR and using the auxiliary power supply unit as an auxiliary power supply for the LIDAR.
  • the auxiliary power supply unit/energy storage device it can be located outside the LIDAR, such as the energy storage device (such as a button battery) that uses the vehicle itself or the driving assistance device provided in the vehicle.
  • the energy storage device can be a capacitor, which can be used as an energy storage device by adding a capacitor to provide electric power to the LIDAR system when the power supply input is abnormal.
  • the power supply abnormality monitoring system 700 for LIDAR further includes a diagnosis unit (not shown).
  • the diagnosis unit may be configured to provide a diagnosis report based on the information related to the abnormal event recorded by the storage unit 710.
  • the diagnosis unit can be provided as an independent unit or as part of the control unit 730.
  • the diagnosis unit can derive a diagnosis report including the recorded information related to the abnormal event in response to a user request, so that the user can review the diagnosis report to eliminate/determine the cause of the failure.
  • the present invention also provides a power supply abnormality monitoring method 800 for LIDAR.
  • the power supply abnormality monitoring method 800 includes:
  • S820 In response to detecting an abnormal event of the power supply input, record information related to the abnormal event.
  • the power supply abnormality monitoring method 800 can be implemented, for example, by the power supply abnormality monitoring system 700 described above.
  • Abnormal events of the power supply input may include undervoltage or power failure in the voltage of the power supply input.
  • the method may further include: setting an auxiliary power supply unit, and activating the auxiliary power supply unit to supply power to the LIDAR in response to the abnormal event of the power supply input being monitored.
  • the method may further include controlling the power management module of the LIDAR to stop supplying power to the network communication module and/or peripherals of the LIDAR in response to the abnormal event of the power supply input being monitored.
  • the auxiliary power supply unit can be arranged inside and/or outside the LIDAR.
  • the auxiliary power supply unit may include a battery and/or a capacitor.
  • the method may further include: providing a diagnosis report based on the information related to the abnormal event recorded by the storage unit.
  • the diagnostic system of the present invention can store and record all data related to faults or abnormal events, so that each item of data (such as continuous detection data of the same component) can be statistically analyzed, and the results of the statistical analysis can be used to adjust the threshold. Or predict the failure time of a certain component or the time of system failure through the change trend of the test data.
  • Another aspect of the present invention also provides a computer-readable storage medium having a computer program stored thereon, and the computer program, when executed by a processor, implements any of the above-mentioned methods.
  • the processor and/or the corresponding components can be instructed to implement the following steps: monitor whether the power input of the LIDAR is normal; and in response to monitoring the abnormal event of the power input, record the abnormal event related information.
  • each unit in the above-mentioned power supply abnormality monitoring system 700 for LIDAR can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned units may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned units.
  • a computer device including a memory and a processor.
  • the memory stores a computer program that can run on the processor.
  • the processor executes the computer program to implement the method in any of the above embodiments.
  • the computer equipment can be a server or a vehicle-mounted terminal.
  • the computer equipment includes a processor, a memory, a network interface, and a database connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize the vehicle driving assistance method of the present invention.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • the present invention proposes a power supply abnormality monitoring system for LIDAR, the power supply abnormality monitoring system includes: a storage unit; a power supply monitoring unit, the power supply monitoring unit is coupled to the power supply input of LIDAR and configured In order to monitor whether the power supply input is normal; and a control unit, in response to the power supply monitoring unit detecting an abnormal event of the power supply input, the control unit records information related to the abnormal event to the storage unit.
  • the abnormal event of the power supply input includes an undervoltage or power failure of the voltage of the power supply input.
  • the system further includes an auxiliary power supply unit, and wherein the control unit further activates the auxiliary power supply in response to the power supply monitoring unit detecting an abnormal event of the power supply input
  • the unit powers the LIDAR.
  • control unit further controls the power management module of LIDAR to stop communicating to the network communication module and/or external network of LIDAR in response to the abnormal event of the power supply input being monitored by the power supply monitoring unit. Set up power supply.
  • the auxiliary power supply unit is located inside and/or outside the LIDAR.
  • the auxiliary power supply unit includes a battery and/or a capacitor.
  • system further includes a diagnosis unit configured to provide a diagnosis report based on the information related to the abnormal event recorded by the storage unit.
  • the present invention proposes a LIDAR system including the power supply abnormality monitoring system according to the first aspect of the present invention.
  • the power supply input is from an on-board power supply.
  • the present invention proposes a power supply abnormality monitoring method for LIDAR.
  • the power supply abnormality monitoring method includes: monitoring whether the power supply input of LIDAR is normal; and in response to monitoring the abnormal event of the power supply input, recording Information related to the abnormal event.
  • the abnormal event of the power supply input includes an undervoltage or power failure of the voltage of the power supply input.
  • the method further includes: setting an auxiliary power supply unit, and in response to detecting an abnormal event of the power supply input, enabling the auxiliary power supply unit to supply power to the LIDAR.
  • the method further includes controlling the power management module of the LIDAR to stop supplying power to the network communication module and/or peripherals of the LIDAR in response to the abnormal event of the power supply input being monitored.
  • the auxiliary power supply unit is arranged inside and/or outside the LIDAR.
  • the auxiliary power supply unit includes a battery and/or a capacitor.
  • the method further includes: providing a diagnosis report based on the information related to the abnormal event recorded by the storage unit.
  • a computer-readable storage medium having a computer program stored thereon, and the computer program, when executed by a processor, implements the method according to the third aspect of the present invention.
  • the solution of the present invention it is possible to monitor the abnormal event of the power supply input of the LIDAR and record the information related to the abnormal event, so as to provide an objective basis for the subsequent fault finding.
  • countermeasures are also initiated to ensure that the LIDAR works normally (or performs basic functions).
  • the present invention provides objective reference information for finding system faults, which helps to quickly determine the source of the fault; and the present invention also improves user experience.
  • the photoelectric encoder usually includes a light source (such as a light-emitting diode), an encoder disk, and a photoelectric sensor.
  • the code disk usually has evenly arranged small holes. The light beam emitted by the light source passes through the small hole on the encoder disc and irradiates the photoelectric sensor to generate an electric pulse signal. According to the pulse signal of the photoelectric sensor, the data processing device can determine the speed of the encoder disc and the current angular orientation.
  • the encoder disk usually has a zero degree position, as shown in Figure 35, as a reference for the angular orientation of the encoder disk. However, if oil stains or abrasion damage appear at the zero degree position, that is, it cannot serve as a mark, it will lead to inaccurate angle measurement.
  • Lidar systems are currently widely used in the field of unmanned driving, including laser emission systems and detection receiving systems.
  • the emitted laser light is reflected after encountering the target and is received by the detection system.
  • the distance to the corresponding target point can be measured by measuring the round-trip time of the laser. (Such as the time-of-flight method), when the entire target area is scanned and detected, three-dimensional imaging can finally be realized.
  • Mechanical lidar refers to products with motors or other components that can drive rotation, which can detect surrounding objects through 360-degree rotation. In order to locate the rotation angle of the lidar in real time, it is necessary to use an encoder disk to measure the angle to determine the direction of laser emission and reception.
  • Figure 35 shows a code disc, which usually has a zero degree position for determining the angular orientation of the code disc.
  • the quality of the point cloud of the lidar will drop sharply, and the safety performance of the lidar will be reduced.
  • the present invention provides an improved code disc, which has a first zero degree mark and a second zero degree mark separated by a preset angle.
  • the appearance of the mark is different from the appearance of the second zero degree mark, so that the first zero degree mark can be supplemented or replaced to read the rotation angle of the encoder disc for positioning. This will be described in detail below with reference to the drawings.
  • the encoding disk 91 includes a substantially circular disk body 911, and a plurality of coding holes 912 are evenly distributed on the edge of the disk body 911.
  • the number, interval, and width of the code holes 912 can be set according to actual conditions, such as the diameter of the code disc, the required measurement accuracy and other parameters, and are not used to limit the protection scope of the present invention.
  • the disc body 911 additionally has a first zero degree mark 913 and a second zero degree mark 914, which are separated by a preset angle, and the preset angle is known.
  • the first zero-degree mark 913 is used as a starting point or reference point of the measurement in angle measurement, and is used to measure the angle of other code holes and the current angular orientation of the code disc 91.
  • the appearance of the first zero-degree mark 913 is different from the appearance of the second zero-degree mark 914, so that when the first zero-degree mark 913 is, for example, defaced or worn, the first zero-degree mark 914 can be used to obtain the first zero-degree mark 914.
  • the position of the zero-degree mark 913, and/or can be directly used to obtain the angular orientation of the encoder disc 91.
  • the code hole 912 can be used to transmit the light beam, but the part between the adjacent code holes 912 does not allow the light beam to pass through.
  • the light source and the photoelectric sensor are, for example, placed on both sides of the code disk 91, respectively, on the circumference of the code hole 912.
  • the photoelectric sensor will generate pulses. Therefore, when the code disc 91 rotates around the axis of its center, the light beam emitted by the light source will be continuously blocked, transmitted, blocked, and transmitted by the code disc, thereby generating a pulse sequence on the photoelectric sensor. According to the pulse sequence, the data processing device can obtain the rotation speed of the encoder disk 91 and the current angular positioning parameters, which will not be repeated here.
  • the first zero-degree mark 913 includes, for example, a wide shielding area located between two coding holes 912.
  • wide shielding area means that the width of the unopened area exceeds the interval between the normal coding holes 912, so this area can be used to identify the zero-degree position.
  • the first zero-degree mark 913 is located between the two code holes 912. Compared with the spaced area between the code holes 912 in other positions, the wide shielding area of the first zero-degree mark 913 is significantly wider.
  • P1, P2, P3, P4, and P5 represent pulse sequences generated by the code hole 912.
  • the period of the pulse sequence is T, and the period T depends on the rotation speed of the encoder disk 91 and the distribution density of the encoder holes 912, and can be predetermined.
  • the pulse generated on the photoelectric sensor is not detected at time t1-t2, and the length of t1-t2 is greater than the period T, it can be determined that the first zero-degree mark 913 is detected.
  • the position of the encoder disc is the zero-degree position. That is its initial position.
  • the positioning can be performed according to the second zero degree indicator 914.
  • the second identifier 914 includes a first point a and a second point b, where the first point a and the second point b respectively have wide occlusion areas, and the two wide occlusion areas can be divided by One coding hole 912 is spaced apart.
  • the wide shielding area at the first point a and the second point b is, for example, the same as the wide shielding area of the first zero degree indicator.
  • the protection scope of the present invention is not limited to this, and may be different.
  • P1, P2 and P4, P5 are all pulse sequences generated by the normal coding hole 912.
  • the pulse P3 has a significantly longer period of time (t1-t2 and t3-t4) on both sides of the pulse P3, and the pulse generated on the photoelectric sensor is not detected in this period of time, and the period of time is greater than the period T, At this time, it can be determined that the current position of the encoder disc 91 is the second zero degree position. Or more accurately, the position of the encoder disk corresponding to the pulse P3 is regarded as the second zero degree position.
  • first zero-degree mark 913 and the second zero-degree mark 914 are separated by a preset angle, by identifying the second zero-degree mark 914, the position of the first zero-degree mark 913 can be obtained, or the second zero-degree mark 913 can be obtained directly.
  • the degree mark 914 is used to position the encoder disc 91 at an angle.
  • code hole 912 between the first point a and the second point b shown in FIG. 36 There is a code hole 912 between the first point a and the second point b shown in FIG. 36.
  • the present invention is not limited to this.
  • this embodiment also adds a second zero degree position, which specifically includes point a and point b.
  • the angle between point a and point b is ⁇ , which is generally a relatively small value.
  • Point a and point b together constitute zero degree position 2, which serves as another identification position.
  • the second zero-degree mark 914 and the first zero-degree mark 913 may be separated by 90 degrees, for example, the second point b and the first zero-degree mark 913 may be separated by 90 degrees, that is, The angle formed by the line connecting the second point b and the first zero degree mark with the center of the circle is 90 degrees.
  • FIG. 39 shows another embodiment according to the present invention, wherein the first zero-degree mark 913 includes a first zero-degree opening, and the width of the first zero-degree opening is different from the width of the coding hole 912;
  • the second zero-degree mark 914 includes a second zero-degree opening, and the width of the second zero-degree opening is different from the width of the coding hole 912 and also different from the width of the first zero-degree opening.
  • the width of the first zero-degree opening is greater than the width of the second zero-degree opening
  • the width of the second zero-degree opening is greater than the width of the coding hole 13. Therefore, when the maximum pulse width is detected during the rotation of the encoder disk 91, it can be determined that the encoder disk 91 is currently rotated to the zero degree position.
  • the first zero-degree mark cannot be identified, then by identifying the second zero-degree opening of the second zero-degree mark 914, the position of the first zero-degree mark 913 can be obtained, and/or the position of the first zero-degree mark 913 can be obtained directly.
  • the angular orientation of the encoder disc 91 is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the first zero-degree mark 913.
  • both the first zero-degree mark 913 and the second zero-degree mark 914 may include a wide shielding area located between two coding holes, wherein the width of the wide shielding area of the second zero-degree marking The width of the wide shielding area different from the first zero-degree mark. Therefore, the positions of the first zero-degree indicator and the second zero-degree indicator can be identified according to the length of the time period during which no pulse is generated.
  • first zero-degree mark and the second zero degree mark are arranged on the same circumference as the coding hole.
  • first zero-degree mark and the second zero-degree mark are It is arranged on a circumference different from the coding hole.
  • FIG. 40 Another aspect of the present invention also relates to a photoelectric encoder, as shown in FIG. 40. This will be described in detail below with reference to FIG. 40.
  • FIG. 40 shows a transmissive photoelectric encoding device 920, where the photoelectric encoding device 920 includes an encoding disc 91 and an encoder.
  • the encoder includes a light source 922 and a photoelectric code reader 923, which are respectively arranged in the above-mentioned Encoding disc 91 on both sides.
  • the light source 922 emits a light beam toward the code disk 91, for example, a light beam with high collimation and directivity.
  • the code disc 91 rotates around the axis of its center, and the light source 922 is located on the circumference of the code hole 912 of the code disc 91, so that as the code disc 91 rotates, the light beam emitted by the light source 922 periodically passes through the code hole 912 and It is blocked by the area between the coding holes 912.
  • the photoelectric code reader 923 is located on the opposite side of the code disc 91 from the light source 922, and includes a photo sensor, such as a photodiode or an avalanche photodiode.
  • the photoelectric code reader 923 may, for example, further include a signal processing circuit, which receives pulses from the photoelectric sensor, so as to determine the angular orientation of the encoder disk 91.
  • the signal processing circuit and the photoelectric sensor may be integrated together, or may be separate circuit components, and these are all within the protection scope of the present invention.
  • the photoelectric code reader 923 is configured to: when the first zero-degree mark is detected, determine that the code disc is at the zero-degree position; when the first zero-degree mark cannot be detected When detecting the second zero-degree mark, and determine the position of the first zero-degree mark according to the preset angle between the first zero-degree mark and the second zero-degree mark, and/or determine the position of the first zero-degree mark The angular orientation of the encoder disc.
  • FIG. 40 shows that the light source 922 and the photoelectric code reader 923 are respectively located on both sides of the code disc 91.
  • the present invention is not limited to this. Those skilled in the art can also conceive of placing them on the code On the same side of the disk 91.
  • a reflective photoelectric encoding device 930 according to an embodiment of the present invention is shown.
  • the photoelectric encoding device 930 includes an encoding disc 91 and a first encoder and a second encoder.
  • the first encoder and the second encoder are, for example, reflective encoders.
  • the first encoder includes a light source 932 and a photoelectric code reader 933, which are respectively arranged on the same side of the code disc 91 as described above, such as the lower side of the code disc 91 shown in FIG. 41.
  • the photoelectric code reader 933 cannot receive the light beam, so no pulse is generated; and when the pulse emitted by the light source 932 is encoded When the part between the holes 912 is reflected, the reflected beam can irradiate the photoelectric code reader 933 to generate pulses.
  • the photoelectric encoding device also includes a second encoder.
  • the second encoder and the first encoder are, for example, the same in structure, and also include a similar light source 932' and a photoelectric code reader 933', but The second encoders are arranged at different positions of the code disc.
  • the first encoder and the second encoder may be opposite along the diameter of the code disc.
  • the second encoder may also be arranged on the other side of the encoder disc, that is, the upper side in FIG. 35.
  • the first encoder and the second encoder may be different types of encoders, for example, one of them is a transmissive encoder and the other is a reflective encoder. These are all protected by the present invention. Within range.
  • the present invention also relates to a laser radar, including the above-mentioned code disc photoelectric coding device 920 or 930.
  • a laser radar including the above-mentioned code disc photoelectric coding device 920 or 930.
  • the lidar may be a rotary mechanical radar, for example, the rotor rotates around the axis of the lidar, the axis of the center of the encoder disk coincides with the axis of the lidar, and the photoelectric encoder is arranged at the bottom of the lidar. The rotors rotate together to detect the rotation angle of the lidar.
  • FIG. 42 shows that the laser radar 910 includes the photoelectric encoding device 930 as shown in FIG. 41, that is, it includes an encoder disc 91, a first encoder, and a second encoder.
  • the lidar also includes a control unit 92, which is coupled with the first encoder and the second encoder, so as to receive the first encoding signal output by the first encoder and the second encoding output by the second encoder. Signal, and then perform various diagnoses and operations based on the first coded signal and the second coded signal.
  • the control unit 92 can determine whether the first encoder and the second encoder are malfunctioning according to the first encoded signal and the second encoded signal, respectively. For example, when the encoder disc 91 including two zero-degree identifiers of the present invention is used, both the first encoded signal and the second encoded signal should include signals corresponding to the two zero-degree identifiers. If the control unit finds a signal corresponding to two zero-degree identifiers in the first coded signal, but does not find a signal corresponding to two zero-degree identifiers in the second coded signal, it can determine that it is in the first coded signal. A malfunction has occurred in the second encoder. vice versa.
  • the control unit 92 can perform the diagnosis of the code disc.
  • the encoder disc 91 of the present invention includes two zero-degree identifiers, then if the control unit does not find a signal corresponding to the two zero-degree identifiers in the first encoded signal and the second encoded signal, or If only one signal corresponding to the zero mark is found, it means that the encoder disc 91 may be malfunctioning.
  • the control unit 92 can perform rotation speed diagnosis.
  • the control unit 92 can calculate the rotation speed of the encoder disk based on the first encoding signal or the second encoding signal.
  • the encoder disk usually has a preset rotational speed, and the preset rotational speed is compared with the calculated rotational speed to determine whether the encoder disk has been rotated at the preset rotational speed. When there is a deviation between the two, or the deviation is higher than a certain range, an alarm is issued.
  • control unit 92 may perform the fault detection of the code disc after diagnosing and confirming that the encoder has no fault, and after confirming that the code disc has no fault, then perform the motor speed diagnosis.
  • lidar adopts a code disc with a double zero position and a dual encoder. From the perspective of a single device, whether it is a code disc or an encoder, a certain abnormality occurs in one of them. At that time, there can also be alternative devices. In addition, it cooperates with the control unit to perform fault detection according to the output signals of the dual encoders and the code disc, so that lidar in this application can provide a safe and reliable solution for angle testing and speed measurement.
  • the present invention also relates to a method 940 for angular orientation using the encoder disc as described above. As shown in FIG. 43, the method 940 includes:
  • step S941 detecting the first zero-degree indicator to determine the zero-degree position of the code disc
  • step S942 when the first zero degree indicator cannot be detected, the second zero degree indicator is detected.
  • step S943 Determine the position of the first zero degree indicator and/or determine the angular orientation of the encoder disc according to the preset angle between the first zero degree indicator and the second zero degree indicator.
  • the code wheel can be used to accurately measure the angle; the zero-degree dirt does not affect the start-up work; the non-zero-degree dirt causes When the signal is disturbed, the signal measurement system of the rotor can still continue to work, so it has strong robustness.
  • the present invention provides an encoding disc, comprising a substantially circular disc body, wherein a plurality of evenly distributed encoding holes are provided on the edge of the disc body, and the disc body is additionally provided with first zeros separated by a predetermined angle. Degree mark and second zero degree mark, wherein the appearance of the first zero degree mark is different from the appearance of the second zero degree mark.
  • the first zero-degree mark and the second zero-degree mark are arranged on the same circumference as the coding hole.
  • the first zero-degree mark includes a wide shielding area located between two coding holes
  • the second zero-degree mark includes a first point and a second point, wherein the first point and the second point
  • the circumferences corresponding to the two points respectively have the same wide shielding area as the first zero degree mark.
  • the first point and the second point are separated by 1-5 of the coding holes, and the second point and the first zero degree mark are separated by 90 degrees.
  • the first zero-degree mark includes a first zero-degree opening, and the width of the first zero-degree opening is different from the width of the coding hole;
  • the second zero-degree mark includes a second zero-degree opening.
  • the width of the second zero-degree opening is different from the width of the coding hole and also different from the width of the first zero-degree opening.
  • the first zero-degree mark and the second zero-degree mark each include a wide shielding area located between two coding holes, wherein the width of the wide shielding area of the second zero-degree mark The width of the wide shielding area different from the first zero-degree mark.
  • the present invention also provides a photoelectric coding device, including:
  • a first encoder, the first encoder includes:
  • a first light source the light beam emitted by the first light source can pass through the code hole on the code disc, or be blocked by the part between the code holes;
  • the first photoelectric code reader is configured to receive the light beam from the first light source to determine the angular orientation of the code disc.
  • the first photoelectric code reader is configured to determine that the encoder disc is at a zero-degree position when the first zero-degree mark is detected; when the first zero-degree mark cannot be detected , Detect the second zero degree mark, and determine the position of the first zero degree mark according to the preset angle between the first zero degree mark and the second zero degree mark, and/or code the code The disc is angularly positioned.
  • the photoelectric encoding device further includes a second encoder, and the second encoder includes:
  • a second light source the light beam emitted by the second light source can pass through the code holes on the code disc, or be partially blocked by the code holes;
  • the second photoelectric code reader is configured to receive the light beam from the second light source to determine the angular orientation of the code disk.
  • the present invention also provides a method for angular orientation using the encoder disc as described above, which includes:
  • the position of the first zero degree mark is determined, and/or the encoder disc is angularly positioned.
  • the present invention also provides a laser radar, including the photoelectric coding device as described above, the axis of the center of the coding disk coincides with the axis of the laser radar, and the photoelectric coding device is arranged at the bottom of the laser radar.
  • the rotors of the radar rotate together to detect the rotation angle of the lidar.
  • the first photoelectric code reader is configured to determine that the code disc is at a zero-degree position when the first zero-degree mark is detected; when the first zero-degree mark cannot be detected When detecting the second zero-degree mark, and determine the position of the first zero-degree mark according to the preset angle between the first zero-degree mark and the second zero-degree mark, and/or determine the position of the first zero-degree mark
  • the encoder disc performs angular positioning.
  • the photoelectric encoding device further includes a second encoder, and the second encoder includes:
  • a second light source the light beam emitted by the second light source can pass through the code holes on the code disc, or be partially blocked by the code holes;
  • the second photoelectric code reader is configured to receive the light beam from the second light source to determine the angular orientation of the code disc.
  • the lidar further includes a control unit, which is coupled to the first encoder and the second encoder, and is based on the first encoded signal output by the first encoder and The second encoding signal output by the second encoder is used for encoder diagnosis.
  • control unit is further adapted to perform a code disc diagnosis after confirming that the encoder has no fault.
  • control unit is further adapted to perform a rotation speed diagnosis after confirming that the code wheel is free of faults.
  • the code wheel can be used to accurately measure the angle; the zero-degree dirt does not affect the start-up work; the non-zero-degree dirt causes When the signal is disturbed, the signal measurement system of the rotor can still continue to work, so it has strong robustness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明提供一种可用于激光雷达的状态检测装置,包括:故障诊断单元,配置成可对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号;诊断管理单元,所述诊断管理单元与所述故障诊断单元通讯以接收所述故障诊断信号,并配置成根据所述故障诊断信号,确定所述激光雷达的状态。本发明还提供一种激光雷达以及激光雷达的状态检测方法。

Description

激光雷达的状态检测装置、激光雷达以及状态检测方法 技术领域
本公开涉及光电技术领域,尤其涉及可用于激光雷达的状态检测装置、包括其的激光雷达以及激光雷达的状态检测方法。
背景技术
激光雷达LiDAR是激光主动探测传感器设备的一种统称,其工作原理大致如下:激光雷达的发射器发射出一束激光,激光光束遇到物体后,经过漫反射,返回至激光接收器,雷达模块根据发送和接收信号的时间间隔乘以光速,再除以2,即可计算出发射器与物体的距离。根据激光雷达发射激光线束的多少,通常有单线激光雷达、4线激光雷达、8/16/32/64线激光雷达等。一个或多个激光束在竖直方向沿着不同的角度发射,经水平方向扫描,实现对目标区域三维轮廓的探测。多个测量通道(线)对应多个倾角的扫描平面,因此垂直视场内发射的激光线束越多,其竖直方向的角分辨率就越高,激光点云的密度就越大。
激光雷达的整机产品包括了光学、机械、电子部件,另外还包括软件算法部分。这些都可能是发生故障的部分。激光雷达出现故障时,故障的原因通常难以判断,可能有器件本身的故障(比如某个电学部件高压下烧坏)、器件之间的配合偏移(比如高温下,部件a与部件b发生变形,进而无法再锁紧)。现有技术中,激光雷达作为无人驾驶的眼睛和主动实时探测的传感器,如果激光雷达是否发生故障或者是否正常工作不能及时地被发现和确认,则无法控制车辆执行相对应的行驶操作以应对可能的故障或者异常,这样一来,是存在很多安全隐患的。另外,在发现激光雷达出现故障之后,需要对激光雷达进行拆机或者检测,来逐个排查可能的故障原因。检测过程繁琐,费时费力。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术的至少一个问题,本发明提供一种可用于激光雷达的状态检测装置、包括其的激光雷达以及激光雷达的状态检测方法。
根据本发明的一个方面,提供一种可用于激光雷达的状态检测装置,包括:
故障诊断单元,配置成可对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号;
诊断管理单元,所述诊断管理单元与所述故障诊断单元通讯以接收所述故障诊断信号,并配置成根据所述故障诊断信号,确定所述激光雷达的状态。
根据本发明的一个方面,所述激光雷达包括上仓板和下仓板,所述故障诊断单元包括:
第一故障诊断单元,配置成可对激光雷达的安装或连接到所述上仓板的部件进行故障诊断,并且当诊断到故障存在时输出第一故障诊断信号;和
第二故障诊断单元,配置成可对激光雷达的安装或连接到所述下仓板的部件进行故障诊断,并且当诊断到故障存在时输出第二故障诊断信号;
其中所述诊断管理单元与所述第一故障诊断单元和第二故障诊断单元通讯以接收所述第一故障诊断信号和第二故障诊断信号,并配置成根据所述第一故障诊断信号和第二故障诊断信号,确定所述激光雷达的状态。
根据本发明的一个方面,所述激光雷达包括设置在所述上仓板上的发射单元、接收单元和点云生成单元,其中所述发射单元配置成可向激光雷达外部发射探测激光束,所述接收单元配置成接收所述探测激光束在目标物上反射后的回波并转换为电信号,所述点云生成单元配置成根据所述电信号生成激光雷达的点云数据,其中所述诊断管理单元与所述点云生成单元耦接,并且配置成当接收到所述第一故障诊断信号时,接收与所述第一故障诊断信号相对应的点云数据。
根据本发明的一个方面,所述激光雷达包括设置在所述下仓板上的电机、电源、编码器和通信部件,所述激光雷达的状态包括:初始化状态、正常状态、劣化状态、停机状态,
其中在所述初始化状态,所述激光雷达进行自检操作和电机启动操作;
在所述正常状态,所述第一故障诊断单元和第二故障诊断单元进行周期性检 测;
在所述劣化状态,所述第一故障诊断单元和第二故障诊断单元进行周期性检测,并且对所述激光雷达的至少部分数据进行记录;
在所述停机状态,所述激光雷达断电,并对所述激光雷达的至少部分数据进行记录。
根据本发明的一个方面,所述激光雷达的故障包括预设的一级故障和二级故障;其中当所述第一故障诊断单元或第二故障诊断单元检测到一级故障时,所述诊断管理单元将所述激光雷达的状态切换到劣化状态;当所述第一故障诊断单元或第二故障诊断单元检测到二级故障时,所述诊断管理单元将所述激光雷达的状态切换到停机状态
根据本发明的一个方面,当在所述劣化状态所述第一故障诊断单元和第二故障诊断单元未检测到故障时,所述诊断管理单元将激光雷达的状态从劣化状态切换为正常状态。
根据本发明的一个方面,所述自检操作包括:所述激光雷达的电源和时钟的自检;所述上仓板和下仓板的自检;内部供电自检;发射单元和接收单元自检,
其中当所述自检操作成功后进行所述电机启动操作,
其中当在所述初始化阶段自检成功并且电机启动成功后,所述诊断管理单元将激光雷达的状态从初始化状态切换为正常状态;
如果所述电源和时钟的自检失败,或所述上仓板和下仓板的自检失败,所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态;
如果所述电机启动操作失败,所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态。
根据本发明的一个方面,所述的状态检测装置还包括第一缓存、第二缓存和故障存储器,其中所述第一故障诊断单元当判断出故障存在时,触发将故障数据缓存至所述第一缓存;
所述第二故障诊断单元当判断出故障存在时,触发将所述至少故障数据缓存至所述第二缓存;
所述故障存储器与所述第一缓存和第二缓存耦接,并配置成可接收所述故障数据。
根据本发明的一个方面,所述诊断管理单元与所述故障存储器通讯,并且可根据外部请求输出所述故障存储器中存储的故障数据。
根据本发明的一个方面,所述的状态检测装置还包括点云合理性诊断单元,所述点云合理性诊断单元配置成可接收所述点云数据并输出所述点云数据是否合理的结果信息,所述诊断管理单元与所述点云合理性诊断单元通讯,并从所述点云合理性诊断单元接收所述点云数据是否合理的结果信息。
本发明还涉及一种激光雷达,包括:如上所述的状态检测装置。
根据本发明的一个方面,所述的激光雷达还包括上仓板和下仓板,所述上仓板和下仓板上分别安装或连接有激光雷达的部件,其中所述上仓板和下仓板通过FPGA和/或微控制器实现。
本发明还涉及一种激光雷达的状态检测方法,包括:
通过故障诊断单元对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号;和
通过诊断管理单元接收所述故障诊断信号,并根据所述故障诊断信号,确定所述激光雷达的状态。
根据本发明的一个方面,所述激光雷达包括上仓板和下仓板,所述故障诊断单元包括第一故障诊断单元和第二故障诊断单元,其中所述通过故障诊断单元对激光雷达的部件进行故障诊断并且当诊断到故障存在时输出故障诊断信号的步骤包括:
通过第一故障诊断单元对激光雷达的安装或连接到所述上仓板上的部件进行故障诊断,并且当诊断到故障存在时输出第一故障诊断信号;和
通过第二故障诊断单元对激光雷达的安装或连接到所述下仓板上的部件进行故障诊断,并且当诊断到故障存在时输出第二故障诊断信号;
其中所述通过诊断管理单元接收所述故障诊断信号、并根据所述故障诊断信号、确定所述激光雷达的状态的步骤包括:通过诊断管理单元接收所述第一故障 诊断信号和第二故障诊断信号,并根据所述第一故障诊断信号和第二故障诊断信号,确定所述激光雷达的状态。
根据本发明的一个方面,所述激光雷达包括设置在所述上仓板上的发射单元、接收单元和点云生成单元,其中所述发射单元配置成可向激光雷达外部发射探测激光束,所述接收单元配置成接收所述探测激光束在目标物上反射后的回波并转换为电信号,所述点云生成单元配置成根据所述电信号生成激光雷达的点云数据,其中所述状态检测方法还包括:当接收到所述第一故障诊断信号时,接收与所述第一故障诊断信号相对应的点云数据。
根据本发明的一个方面,所述激光雷达包括设置在所述下仓板上的电机、电源、编码器和通信部件,所述激光雷达的状态包括:初始化状态、正常状态、劣化状态、停机状态,所述状态检测方法包括:
在所述初始化状态,对所述激光雷达进行自检操作和电机启动操作;
在所述正常状态,通过所述第一故障诊断单元和第二故障诊断单元进行周期性检测;
在所述劣化状态,通过所述第一故障诊断单元和第二故障诊断单元进行周期性检测,并且对所述激光雷达的至少部分数据进行记录;
在所述停机状态,对所述激光雷达断电,并对所述激光雷达的至少部分数据进行记录。
根据本发明的一个方面,所述激光雷达的故障包括一级故障和二级故障;其中所述状态检测方法还包括:
当所述第一故障诊断单元或第二故障诊断单元检测到一级故障时,通过所述诊断管理单元将所述激光雷达的状态切换到劣化状态;
当所述第一故障诊断单元或第二故障诊断单元检测到二级故障时,通过所述诊断管理单元将所述激光雷达的状态切换到停机状态
根据本发明的一个方面,所述的状态检测方法还包括:当在所述劣化阶段所述第一故障诊断单元和第二故障诊断单元未检测到故障时,所述诊断管理单元将激光雷达的状态从劣化状态切换为正常状态。
根据本发明的一个方面,所述自检操作包括:所述激光雷达的电源和时钟的自检;所述上仓板和下仓板的自检;内部供电自检;发射单元和接收单元自检,其中当所述自检操作成功后进行所述电机启动操作,
所述状态检测方法还包括:
其中当在所述初始化阶段自检成功并且电机启动成功后,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为正常状态;
如果所述电源和时钟的自检失败,或所述上仓板和下仓板的自检失败,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态;
如果所述电机启动操作失败,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态。
根据本发明的一个方面,所述的状态检测方法还包括:当所述第一故障诊断单元判断出故障存在时,将故障数据缓存至第一缓存;
当所述第二故障诊断单元判断出故障存在时,将故障数据缓存至第二缓存;
通过故障存储器从所述第一缓存和第二缓存接收所述故障数据。
根据本发明的一个方面,所述的状态检测方法还包括:当接收到外部请求时,通过所述诊断管理单元输出所述故障存储器中存储的故障数据。
根据本发明的一个方面,所述的状态检测方法还包括:通过点云合理性诊断单元判断所述点云数据是否合理并输出结果信息;
通过所述诊断管理单元从所述点云合理性诊断单元接收所述点云数据是否合理的结果信息。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1A示出了根据本发明一个实施例的状态检测装置的示意图;
图1B示出了根据本发明一个优选实施例的状态检测装置的示意图;
图1C示出了根据本发明一个实施例的激光雷达的示意图,其中集成了图1A 所示的状态检测装置;
图2A示出了根据本发明一个实施例的激光雷达的多个状态;
图2B示出了根据本发明一个优选实施例的激光雷达的多个状态;
图2C示出了根据本发明一个优选实施例的当切换到停机时激光雷达电源的工作方式;
图3示出了根据本发明一个实施例的激光雷达的初始化阶段;
图4示出了根据本发明实施例的上仓板和下仓板的交互方式;
图5示出了根据本发明一个优选实施例的激光雷达的示意图;
图6示出了根据本发明一个实施例的状态检测方法;
图7示出了激光雷达的一个实例;
图8示出了激光雷达内部的结构示意图;
图9示出了根据本发明一个实施例的激光雷达的发射单元示意图;
图10示出了根据本发明一个实施例的探测电路的示意图;
图11示出了根据本发明另一个实施例的光电探测器的布置方式;
图12示出了根据本发明一个实施例的激光雷达的发射单元的检测方法。
图13示出了根据本发明一个实施例的激光雷达发射端组件的示意图;
图14示出了根据图1激光雷达发射端组件的一种优选的电路结构的示意图;
图15示出了根据本发明一个实施例的一种的故障诊断方法;
图16A-16E分别示出了根据本发明一个实施例的多种故障的预设波形;
图17示出了根据本发明一个实施例的激光雷达发射端组件;
图18示出了根据本发明一个实施例的一种激光雷达;
图19示出了根据本发明一个实施例的一种激光雷达的接收单元的分解图;
图20示出了根据本发明一个实施例的LED光源的示意图;
图21示出了根据本发明一个实施例测试示意图;和
图22示出了根据本发明一个实施例的激光雷达的控制方法。
图23示出了激光雷达接收端组件的示意图;
图24示出了根据本发明一个实施例的一种可用于激光雷达接收端的故障诊 断方法;
图25示出了根据本发明一个实施例的进行测试的示意图;
图26示出了根据本发明一个实施例的测试信号的波形以及输出信号的波形;
图27示出了激光雷达接收端的一个实施例;
图28示出了根据本发明一个实施例的一种激光雷达接收端组件;和
图29示出了根据本发明一个实施例的一种激光雷达接收端组件。
图30示出了根据本发明一个实施例的可用于激光雷达的点云合理性诊断方法;和
图31示出了根据本发明一个实施例的激光雷达。
图32示出根据本公开实施例的用于LIDAR的供电异常监测系统;
图33示出根据本公开一个实施例的LIDAR系统;
图34示出根据本公开实施例的用于LIDAR的供电异常监测方法;
图35示出了一种现有技术的编码盘;
图36示出了根据本发明一个实施例的编码盘的示意图;
图37示出了第一零度位置的脉冲示意图;
图38示出了第二零度位置的脉冲示意图;
图39示出了根据本发明另一个实施例的编码盘的示意图;
图40示出了根据本发明一个实施例的光电编码装置的示意图;
图41示出了根据本发明一个实施例的光电编码装置的示意图;
图42示出了根据本发明一个实施例的激光雷达的示意图;和
图43示出了使用本发明编码盘进行角度定向的方法。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、 "宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图1A示出了根据本发明一个实施例的一种可用于激光雷达的状态检测装置10,包括故障诊断单元和诊断管理单元。其中故障诊断单元配置成可对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号。所述诊断管理单元与所述故障诊断单元通讯以接收所述故障诊断信号,并配置成根据所述故障诊断信号,确定所述激光雷达的状态。所述激光雷达的部件包括但不限于激光雷达的发射单元、接收单元和点云生成单元、电机、电源、编码器和通信部件等。所述故障诊断单元可对一个或多个部件进行状态监测,当发现异常时,输出诊断信号S给诊断管理单元,诊断管理单元根据该故障诊断信号,确定激光雷达的状态。
激光雷达中集成了多个电子、机械、光学器件,从功能上分类,包括供电模块、控制单元(例如上仓板和下仓板)、发射单元、接收单元、存储单元、通信单元等功能模块。本发明中增设了故障诊断单元和诊断管理单元。激光雷达的每一个功能模块例如可包括控制器(例如集成电路板)和受控器件,通过控制器,使得受控器件执行预定的功能。针对所述功能模块中的一个或多个(或者针对每一个功能模块),分别设置相应的故障诊断单元,来执行该功能模块的故障诊断。本领域技术人员容易理解,故障诊断单元可以相对于控制器是分立的,也可以集成在控制器中,只要能够完成预设的诊断功能即可。通过这样的整体架构,随着激光雷达的功能模块的扩充,可以同步增设相应的故障诊断单元,实现同步扩展。
本发明的故障检测装置可以独立于激光雷达的其他功能模块而独立运行,根据所诊断的对象的具体情况,决定其诊断时机和周期。当激光雷达启动时,如果诊断系统未正常启动,可以及时向感知系统输出相应的指示信号。另外,本发明的状态监测装置具有普便适用性,可以作为独立的系统增加在已有的激光雷达中。
图1B和1C示出了根据本发明一个优选实施例的一种状态检测装置10,该状态检测装置10例如安装于激光雷达1中,可用于检测激光雷达1的工作状态。下面参考附图详细描述。
所述激光雷达1包括上仓板11和下仓板13,上仓板11和下仓板13例如可以为电路板,上仓板11具体可以采用FPGA实现,下仓板13具体可以采用部分FPGA以及部分CPU内核(例如微处理器或微控制器)实现。或者可替换的,上仓板11和下仓板13也可以通过DSP或者带有CPU的FPGA来实现。作为激光雷达的大脑,上仓板11以及下仓板13可以与激光雷达的多个光学、电子和机械部件相连接,为其提供相应的电路连接控制和/或机械支撑。在激光雷达的壳体中,相对而言,上仓板11可以安装在下仓板13的上方。根据本发明的一个实施例,激光雷达的发射单元、接收单元和点云生成单元可与所述上仓板11相连接,例如被承载在所述上仓板11的上表面或下表面上。其中所述发射单元包括一个或多个激光器、激光器驱动电路以及透镜等光学组件,配置成可向激光雷达外部发射探测激光束;所述接收单元包括诸如APD、SiPM、SPAD等光电探测器,用于接收所述探测激光束在目标物上反射后的回波,并将回波转换为电信号;所述点云生成单元配置成根据所述电信号,计算探测激光束的飞行时间,从而获得目标物的距离以及反射率等相关信息,生成激光雷达的点云数据,下面将详细描述。激光雷达的电机、电源、编码器和通信部件等可与激光雷达1的下仓板13相连。以机械式激光雷达为例,其通常包括光机转子(发射单元和接收单元通常位于所述光机转子中,用于朝着不同的方向发射探测激光束以及接收回波)。电机提供了激光雷达的光机转子进行旋转所需要的动力,从而使得光机转子能够以预设的转速旋转,旋转频率例如为10Hz或20Hz。激光雷达内部通常不带有独立的电源,而是从外部获得供电输入,例如从车载电源获得供电输入。激光雷达的电源模块通常包括升压电路和电力管理模块,其中升压电路用于将输入电压(通常为5V或15V)升压至激光雷达所需的工作电压(例如60V),电力管理模块用于向激光雷达上需要供电的各个部件分配电能。编码器以及码盘通常用于对激光雷达的光机转子的旋转进行编码测量,从而获得激光雷达的光机转子的转速以及当前角度方位。通信部件用于激光雷达内部的定部件与转部件之间的通讯以及激光雷达与外部感知系统之间的通讯。
如图1B所示,所述状态检测装置10包括第一故障诊断单元FDU 111(Fault  Diagnostic Unit)、第二故障诊断单元FDU 131和诊断管理单元DMU 132(Diagnostic Management Unit)。其中第一故障诊断单元FDU 111配置成可对激光雷达1的安装或连接在所述上仓板11上的部件进行故障诊断,并且当诊断到故障存在时输出第一故障诊断信号S1;第二故障诊断单元FDU 131配置成可对激光雷达的安装或连接在所述下仓板13上的部件进行故障诊断,并且当诊断到故障存在时输出第二故障诊断信号S2。本领域技术人员容易理解,所述第一故障诊断信号S1和第二故障诊断信号S2可包括故障类型、故障部件名称或编号、具体故障信息等中的一个或多个。所述诊断管理单元DMU 132与所述第一故障诊断单元FDU 111和第二故障诊断单元131通讯以接收所述第一故障诊断信号S1和第二故障诊断信号S2,并配置成根据所述第一故障诊断信号S1和第二故障诊断信号S2,确定所述激光雷达的状态。在具体实施中,基于工程实施的考虑,为了优先地传输点云数据,在第一故障诊断信号S1产生后,可以被暂存于设置于上仓板11上的随机存储器中,选择一定的时机通过无线通讯传输至下仓板13的随机存储器,而第二故障诊断信号S2在产生后,则可以存储于存储器中,相对激光雷达而言外部的感知系统或者诊断设备则可以通过请求获取全部或者部分的故障存储数据,下面将详细描述。
根据本发明的一个实施例,所述诊断管理单元DMU 132与所述点云生成单元PCO 112耦接,并且配置成当接收到所述第一故障诊断信号S1时,接收与所述第一故障诊断信号相对应的点云数据(D_Cloud),也就是将发生故障时刻的点云数据传送给诊断管理单元。例如当其中一个或两个激光器或探测器发生故障时,该激光器或探测器所对应的点云数据将是错误的数据,根据需求,后续可以予以剔除。
本发明的诊断系统可以依据雷达的工作状态对雷达系统进行相应的检测。诊断的内容、方式、参数、以及算法依照工作状态可进行相应的调整。根据本发明的一个实施例,如图2A所示,所述激光雷达的状态包括:初始化状态、正常状态、劣化状态、停机状态。其中在所述初始化状态,所述激光雷达进行自检操作和电机启动操作。通常在激光雷达刚刚上电并且电机尚未达到基速(例如激光雷达正 常工作时光机转子的一个或多个转速,可以以频率为单位,例如为10Hz或者20Hz)时,激光雷达处于所述初始化阶段;或者在激光雷达正常工作过程中,也可以主动地触发再次进行初始化,或者根据接收到的外部请求,使得激光雷达再次经历初始化状态,进行自检操作以及电机启动操作。另外,上述自检操作的启动或者触发可以具备多种方式,比如可以通过外部(相对于激光雷达本身之外)感知系统(perception system)触发自检,具体可以通过发送外部信号请求激光雷达自检;另外的或者可替换的,也可以内部(激光雷达自身)系统触发自检,即LiDAR满足一定的条件(比如间隔某一段时间或者是激光雷达处于某个工作状态)时触发的自检;又比如,维修自检,即激光雷达售后过程中,利用诊断工具(设备/程序)来进行的自检。所述自检检测的内容可包括但不限于以下诊断中的一种或者多种组合:发射端故障诊断、接收端故障诊断、电压状态诊断(可以包括高压和或低压)、通信状态诊断(包括内部上仓板和下仓板之间的通信和/或激光雷达与外部感知系统之间的通信)、时钟状态诊断、点云合理性判断、供电异常检测、控制芯片诊断、电机或其它旋转部件的状态诊断、光学/机械部分器件的故障诊断。
另外,本领域技术人员理解,所述自检操作也可以独立于所述初始化状态,而单独构成一个自检状态。在此情况下,所述激光雷达的状态将包括:初始化状态、自检状态、正常状态、劣化状态、停机状态。
所述正常状态表明,激光雷达处于正常的工作状态,未检测到激光雷达的部件的故障,以最高性能或者预设性能模式运行。在所述正常状态,所述第一故障诊断单元FDU 111和第二故障诊断单元FDU 131可以对激光雷达的部件进行周期性故障检测,周期性故障检测是按照固定时间间隔进行的器件状态诊断操作,此时激光雷达处于正常工作状态,周期性故障检测操作的执行过程并不会影响雷达的正常工作,比如不会影响雷达点云的输出和电机旋转等。具体而言,所述周期性故障检测的内容可包括但不限于以下诊断中的一种或者多种组合:发射端故障诊断、接收端故障诊断、电压状态诊断(可以包括高压和或低压)、通信状态诊断(包括内部上仓板和下仓板之间的通信和/或激光雷达与外部感知系统之间的通信)、时钟状态诊断、点云合理性判断、供电异常检测、采用加装的LED检测光 电探测器是否正常工作、采用加装的光电探测器检测激光器是否正常工作、控制芯片诊断、电机或其它旋转部件的状态诊断、光学/机械部分器件的故障诊断。
所述劣化状态通常表明激光雷达整机仍然持续工作,某些性能或参数发生了衰减,但仍然在可接受的范围内。在所述劣化状态,所述第一故障诊断单元FDU 111和第二故障诊断单元FDU 131对激光雷达进行周期性故障检测,并且对所述激光雷达的至少部分数据进行记录,例如可以对发生故障的部件的状态进行持续的监视和记录。在所述停机状态,所述激光雷达断电停止工作,并对所述激光雷达的至少部分数据进行记录,例如当由于电力供应不足或强制断电而停机时,记录发生严重故障的部件的相关信息。另外优选的,如图2B所示,在激光雷达断电停止工作之前设定一定时长的延迟时间,如图2B中的Delay-2所示,在该延迟时间内进行相应的操作,例如车辆可以启动诸如摄像头之类的其他传感器,或者提醒操作者激光雷达将要断电停机,要求操作者及时接管并且控制车辆。同样,在激光雷达进入所述劣化状态、以降低的性能或参数运行之前,也可以设定一定时长的延迟时间,如图2B中的Delay-1所示,在这段时间内可以进行相应的操作,例如车辆可以启动诸如摄像头之类的其他传感器,或者提醒操作者激光雷达将要进入劣化状态,操作者可以选择接管并且控制车辆。
根据本发明的一个优选实施例,诊断系统可以将激光雷达常见的故障预先进行分类,根据其严重程度和后果分为一级故障和二级故障,并且可以针对不同类型的故障,给出不同的处理选项。例如针对一些影响程度较低的故障,当这些故障出现时,激光雷达整机仍然可以工作,性能/参数出现一定程度的衰减,但这种衰减仍然是在可接受范围内的,可以将这些故障分类为一级故障,对应的,激光雷达处于上述的劣化状态。根据本发明的一个非限制性实施例,一级故障包括但不限于以下类型的故障。对于多线束的激光雷达(诸如64线),其中少量的激光器和/或接收器无法正常工作,例如其中4个激光器和/或接收器无法正常工作,在此情况下,激光雷达剩余的60个激光器和接收器仍然可以正常工作,仅是其生成的点云密度和数量有所下降,但仍然在可接受范围内。针对一些影响程度较高的故障,当这些故障出现时,激光雷达或者无法工作,或者性能/参数的衰减状况 超出了可接受范围,可以将这些故障分类为二级故障,对应的,激光雷达处于上述的停机状态。当发生二级故障时,激光雷达需要下电停机,同时记录激光雷达故障发生时的相关数据,包括但不限于激光雷达当时的各项技术参数。根据本发明的一个非限制性实施例,二级故障例如激光雷达初始化阶段电机启动失败(例如完全没有启动,或者启动后的转速未达到基速),或者多线束的激光雷达中相当一部分激光器和/或接收器(例如10个、20个或更多的激光器或接收器)无法正常工作等。
根据本发明的一个实施例,所述第一故障诊断单元FDU 111可以完成以下检测诊断过程:发射端故障诊断;接收端故障诊断;采用加装的LED检测光电探测器;采用加装的光电探测器检测光源。第二故障诊断单元FDU 131可以完成以下检测诊断过程:点云合理性判断;供电异常检测;电机的异常检测。根据本发明的一个优选实施例,所述激光雷达的发射单元和接收单元由上仓板11承载或者与上仓板11连接,因此第一故障诊断单元FDU 111配置成执行所述发射端故障诊断、接收端故障诊断、加装LED进行探测器诊断、加装光电探测器进行光源诊断;所述激光雷达的电源由下仓板13承载或者与下仓板13连接,因此第二故障诊断单元FDU 131配置成执行所述供电异常检测以及点云合理性判断。各项诊断过程的具体流程将在下文详细描述。
如图2A所示,当所述第一故障诊断单元FDU 111或第二故障诊断单元131检测到一级故障时,所述诊断管理单元DMU 132将所述激光雷达的状态切换到劣化状态;当所述第一故障诊断单元FDU 111或第二故障诊断单元131检测到二级故障时,所述诊断管理单元DMU 132将所述激光雷达的状态切换到停机状态。根据本发明的实施例,当切换到停机状态时,激光雷达可以将其上下仓之间的通讯功能关闭,也可以将激光器的上仓电源供应关闭,也可以既关闭通讯功能,又关闭上仓板的电源供应。通过切断激光雷达的上仓的电源供应,可以确保激光器停止发光,避免造成人眼安全问题。其中,上仓电源供应可以直接来自外部直接供电或者借助于激光雷达下仓的驱动芯片,因为切断上仓电量供应时,既可以切断驱动芯片与上仓板的供电链路,也可以切断外部供电电路。通过关闭上下仓之间的 通讯功能,可以停止点云传送。
如图2C所示,根据本发明的实施例,当切换到停机状态时,关断给通讯驱动芯片的电源供应,从而关闭通信功能,另外,还要关断上仓板的电源供应。上仓板的电源供应可以来自下仓板,或者可以直接来源于外部供电。通过关闭给上仓板的电源供应,可以关断给激光器的供电,从而确保激光器不会发光而造成人眼安全问题。
根据本发明的一个优选实施例,在所述劣化状态,当所述第一故障诊断单元FDU 111和第二故障诊断单元131未检测到故障时,所述诊断管理单元DMU 132将激光雷达的状态从劣化状态切换回正常状态。在某些情况下,第一故障诊断单元FDU 111和第二故障诊断单元131可能会误检测到一些故障,或者经过一段时间后某些故障可能自动消除,因此当一定时间段以后,若没有检测到故障时,可以将激光雷达的状态切换回正常状态。例如,当激光雷达的其中一个探测器被检测到不能输出正常的电信号时,可能导致激光雷达的状态被切换到劣化状态。实际中存在这样的可能性,该探测器并未发生故障,仅是由于环境光的问题而造成未能输出正常信号。那么在下一次周期检测中,环境光变为正常,那么该探测器将显示出正常工作的能力,消除了故障状态。在此情况下,可以将激光雷达的状态切换回正常状态。
如图3所示,根据本发明的一个优选实施例,所述自检操作可以包括但不限于:激光雷达的电源和时钟的自检;上仓板和下仓板的自检;内部供电自检;发射单元和接收单元自检;电压诊断(包括低压、高压);通讯诊断(包括内部、外部);控制芯片诊断。其中电源和时钟的自检例如包括检测激光雷达的电源模块能否输出规定电源和/或电压和/或功率、以及时钟电路是否能够输出稳定的时钟脉冲;上仓板和下仓板的自检例如包括上仓板、下仓板电路板的供电情况自检;内部供电自检包括检测激光雷达的电源模块能够给激光雷达内部各个部件供电,包括但不限于激光器、探测器、电机、激光器驱动电路模块等。发射单元和接收单元的自检包括检测如激光器的发射单元和如SiPM及Spad(s)的接收单元能否正常地发射探测激光束以及接收雷达回波。下面将详细描述。
根据本发明的一个优选实施例,所述自检操作可以按照以下顺序进行:激光雷达的电源和时钟的自检(ST-1);下仓板和上仓板的自检(ST-2);内部供电自检(ST-3);发射单元和接收单元自检(ST-4)。具体而言,对于自检操作,由于电源和时钟对齐是有序工作的第一要素,故可以第一步先对电源/时钟自检,以确认电源是否电力供应短缺或供应不足,时钟的时序是否与预期相符,比如预期电源电压是60V,当前电源供应为50V,可以理解为是供电电压偏低,如果电源供应是2V甚至是0V,则可以理解为供电不足。当第一步的电源/时钟自检确认没有问题,则进行第二步:上仓板以及下仓板检测,详细地,由于下仓板一般是与外接电源相连的电路板,下仓板会至少一定程度上影响上仓板的工作,因此可以先进行下仓板的检测,待确认工作正常后,再进一步对上仓板进行检测,当上仓板也被确认无误后,可以执行第三步。第三步:内部供电自检,即检测上仓板、下仓板向其它激光雷达内部的元器件的电力供应是否正常,元器件包括但不限于如电机、光源驱动电路、回波处理电路等。待确认第三步自检结果正常之后,可以执行第四步。第四步:发射端器件及接收端器件自身功能的检测。顺序上可以先执行发射端器件的检测,再进行接收端器件的检测。发射端器件包括但不限于光源及光源驱动电路。接收端器件包括但不限于如APD、SPAD、SiPM等的光电探测器件以及回波电信号的处理器件等。当然,以上的顺序只是示例,却非限定,本领域技术人员在实际操作中,可以根据需要调整自检操作中具体执行的步骤。
根据本发明的一个实施方式,如图4所示,激光雷达的上仓板和下仓板之间可以采用双向并行的交互方式或者串行交互方式。图4中左侧示出了激光雷达的上仓板和下仓板之间采用双向并行的交互方式。其中,上仓板和下仓板独立进行自检,上仓板在接收到下仓板的发光请求后,启动自检,激光器发光并进行探测,自检完毕后无需向下仓板单独报告自检结果。如果自检成功,那么在上仓板随后向下仓板发送的点云数据(D_Cloud)中,附带有握手协议或者表明握手成功的数据;反之如果自检失败或者发生相应的故障,那么在上仓板随后向下仓板发送的点云数据中,不附带有握手协议,或者附带有表明握手失败的数据。下仓板在接收到点云数据后,如果其中不带有握手协议或者带有表明握手失败的数据,则可 判断该点云数据有误。
图4中右侧示出了激光雷达的上仓板和下仓板之间采用串行的交互方式。其中,激光雷达的上仓板自检完毕后,向下仓板发送自检结果信息,包括自检成功或者失败的信息。只有当自检成功时,下仓板才会向上仓板发送发光请求,上仓板的激光器进行发光并进行探测。
如图3所示,当所述自检操作成功后,可以进行所述电机启动操作。电机启动操作包括电机驱动电路的启动、电机的启动以及编码器(以及码盘)的启动。编码器(以及码盘)的启动过程中,会对编码器以及码盘进行故障诊断,例如可以由第二故障诊断单元FDU 131来执行。根据本发明的一个实施例,激光雷达中采用双零点码盘(见下文第五方面的内容),对于该编码器和码盘,依照脉冲信息来进行诊断,例如使得码盘进行一定角度的旋转,输出编码器的探测脉冲,将探测脉冲与预设的模板进行比较,如果二者符合,则表明编码器和码盘工作正常;否则,表明编码器和码盘工作异常。编码器(以及码盘)的检测,在激光雷达的自检过程中以及周期检测过程中都可以进行。
当在电机启动且达到预设的转速之后,所述诊断管理单元DMU 132将激光雷达1的状态从初始化状态切换为正常状态。如果所述自检操作和/或电机启动操作失败,以至于激光雷达无法工作或者工作性能衰减到无法接受(具体的情况会与当下使用场景相关,无法接受的情况是激光雷达当前的性能影响到当下使用场景的功能的实现,如应用于无人驾驶场景,若当下激光雷达的性能无法协助进行安全的无人驾驶,则是无法接受;如应用于物流小车,若当下雷达的性能无以支持将货物正确运送到购物者,则是无法接受)的程度,所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态;如果自检操作中出现的故障呈现为一级故障,所述诊断管理单元将激光雷达的状态从初始化状态切换为劣化状态;如果自检操作中出现的故障呈现为二级故障,所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态。
根据本发明的一个优选实施例,如图5所示,所述状态检测装置10还包括第一缓存BUFF-1、第二缓存BUFF-2和故障存储器MEM,其中当所述第一故障诊断单 元FDU 111检测到故障存在时,触发将故障数据缓存至所述第一缓存BUFF-1;所述当第二故障诊断单元FDU 131检测到故障存在时,触发将故障数据缓存至第二缓存BUFF-2。故障存储器MEM与所述第一缓存BUFF-1耦接,并可以接收所述故障数据。所述诊断管理单元DMU 132可以通过所述第二故障诊断单元FDU 131从所述第二缓存BUFF-2中接收存储在其中的故障数据,并且可选的将故障数据存储到所述故障存储器MEM中。另外可选的,所述第二缓存BUFF-2可以与所述故障存储器MEM耦接,从而可以直接将存储在其中的故障数据发送到所述故障存储器MEM中。所述第一缓存BUFF-1和第二缓存BUFF-2可以为易失性存储器,仅用于在激光雷达工作期间暂时缓存故障数据,故障存储器MEM为非易失性存储器,即使断电,其内部的故障数据仍然有效。根据本发明的一个实施例,所述第一缓存BUFF-1设置或连接到所述上仓板11,所述第二缓存BUFF-2和故障存储器MEM设置或连接到所述下仓板13。所述故障存储器MEM可以是各种类型的存储器,摆阔但不限于EMMC或EEPROM。
根据本发明的一个优选实施例,所述诊断管理单元DMU 132与所述故障存储器MEM通讯,并且可根据外部请求的权限,相应输出部分或者全部的所述故障存储器MEM中存储的故障数据。例如当车辆的外部感知系统向所述诊断管理单元DMU 132发送请求时,诊断管理单元DMU 132可以调取部分故障数据并发送给外部感知系统。例如当雷达的失效分析人员向所述诊断管理单元DMU 132发送请求时,诊断管理单元DMU 132可以调取全部的故障数据并发送给失效分析人员。
另外,所述诊断管理单元DMU 132当获知激光雷达出现故障时,可以主动地将所述故障信息发送给感知系统,例如可以以故障报文的形式发送,也可以以故障形式的方式呈现。如上所述,当发生一级故障时,诊断管理单元DMU 132将所述激光雷达的状态切换到劣化状态,当检测到二级故障时,诊断管理单元DMU 132将所述激光雷达的状态切换到停机状态,优选的,如图2B所示,在进行上述状态切换之前,可以设置一定的延迟时间,如图2B中的Delay-1和Delay-2所示,并且将这段延迟时间发送给所述感知系统,并呈现给车辆的用户,以尽快做出处理以确定下一步的车辆操作,例如车辆可以选择传感器过渡(诸如切换到摄像头、 或毫米波雷达等),或者车辆可以选择行驶至安全区域。在具体实施中,激光雷达与外部感知系统之间的交互的信息可以包括但不限于:激光雷达的工作状态以及状态之间的跳转、激光雷达的故障类型、激光雷达的每个通道的健康度/置信度,这些信息的触发周期和呈现形式可以有所不同。其中,激光雷达的每个通道的健康度/置信度是对激光雷达每个通道的工作状态进行评价的信息,比如激光雷达共32线,第2个通道的激光器的预设的光功率为5w,根据实际诊断结果,第2个通道的激光器可以发光,但光功率只有4w,若健康度/置信度满分为10分,此时则可以打分为7分,表明第2个通道的激光器可以工作,但是置信度并非为满分。可替换的,健康度和置信度也可以通过百分数来表示,或者,健康度和置信度也可以仅包括“正常”和“非正常”两种状态,这些都在本发明的保护范围内。
如图2A所示,当所述第一故障诊断单元FDU 111或第二故障诊断单元131检测到一级故障时,所述诊断管理单元DMU 132将所述激光雷达的状态切换到劣化状态;当所述第一故障诊断单元FDU 111或第二故障诊断单元131检测到二级故障时,所述诊断管理单元DMU 132将所述激光雷达的状态切换到停机状态。
根据本发明的一个优选实施例,所述状态检测装置还包括点云合理性诊断单元PCR 133,例如设置或连接到所述下仓板13,如图1C所示。所述点云合理性诊断单元PCR 133配置成可接收所述点云数据(D_Cloud)并输出所述点云数据是否合理的结果信息,所述诊断管理单元DMU 132与所述点云合理性诊断单元PCR 133通讯,并从所述点云合理性诊断单元PCR 133接收所述点云数据是否合理的结果信息。下面将对点云合理性诊断单元PCR 133进行详细描述。
上面是以具有上仓板和下仓板的机械式激光雷达为例进行了说明,本领域技术人员容易理解,本发明不限与此,也可以适用于其他类型的激光雷达,例如固态激光雷达。
本发明还涉及一种激光雷达,包括如上所述的状态检测装置。
所述激光雷达还包括上仓板和下仓板,所述上仓板和下仓板上分别安装或连接有激光雷达的部件,其中所述上仓板和下仓板通过FPGA和/或微控制器实现。
本发明还提供一种激光雷达的状态检测方法,包括:
通过故障诊断单元对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号;和
通过诊断管理单元接收所述故障诊断信号,并根据所述故障诊断信号,确定所述激光雷达的状态。
图6示出了根据本发明一个优选实施例的激光雷达的状态检测方法20,其中所述激光雷达包括上仓板和下仓板,所述状态检测方法包括:
在步骤S21:通过第一故障诊断单元对激光雷达的安装或连接在所述上仓板上的部件进行故障诊断,并且当诊断到故障存在时输出第一故障诊断信号;
在步骤S22:通过第二故障诊断单元对激光雷达的安装或连接在所述下仓板上的部件进行故障诊断,并且当诊断到故障存在时输出第二故障诊断信号;和
在步骤S23:通过诊断管理单元接收所述第一故障诊断信号和第二故障诊断信号,并根据所述第一故障诊断信号和第二故障诊断信号,确定所述激光雷达的状态。
根据本发明的一个优选实施例,所述激光雷达包括设置在所述上仓板上的发射单元、接收单元和点云生成单元,其中所述发射单元配置成可向激光雷达外部发射探测激光束,所述接收单元配置成接收所述探测激光束在目标物上反射后的回波并转换为电信号,所述点云生成单元配置成根据所述电信号生成激光雷达的点云数据,其中所述状态检测方法还包括:当接收到所述第一故障诊断信号时,接收与所述第一故障诊断信号相对应的点云数据,也就是将发生故障时刻的点云数据传送给诊断管理单元。
根据本发明的一个优选实施例,所述激光雷达包括设置在所述下仓板上的电机、电源、编码器和通信部件,所述激光雷达的状态包括:初始化状态、正常状态、劣化状态、停机状态,所述状态检测方法包括:
在所述初始化状态,对所述激光雷达进行自检操作和电机启动操作;
在所述正常状态,通过所述第一故障诊断单元和第二故障诊断单元进行周期性检测;
在所述劣化状态,通过所述第一故障诊断单元和第二故障诊断单元进行周期 性检测,并且对所述激光雷达的至少部分数据进行记录;
在所述停机状态,对所述激光雷达断电,并对所述激光雷达的至少部分数据进行记录。
如上所示,所述激光雷达的故障包括一级故障和二级故障,状态检测方法还包括:
当所述第一故障诊断单元或第二故障诊断单元检测到一级故障时,通过所述诊断管理单元将所述激光雷达的状态切换到劣化状态;
当所述第一故障诊断单元或第二故障诊断单元检测到二级故障时,通过所述诊断管理单元将所述激光雷达的状态切换到停机状态
根据本发明的一个优选实施例,所述的状态检测方法20还包括:当在所述劣化阶段所述第一故障诊断单元和第二故障诊断单元未检测到故障时,所述诊断管理单元将激光雷达的状态从劣化状态切换为正常状态。
根据本发明的一个优选实施例,所述自检操作包括:所述激光雷达的电源和时钟的自检;所述上仓板和下仓板的自检;内部供电自检;发射单元和接收单元自检,其中当所述自检操作成功后进行所述电机启动操作,
所述状态检测方法还包括:
其中当在所述初始化阶段自检成功并且电机启动成功后,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为正常状态;
如果所述电源和时钟的自检失败,或所述上仓板和下仓板的自检失败,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态;
如果所述电机启动操作失败,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态。
根据本发明的一个优选实施例,所述的状态检测方法20还包括:当所述第一故障诊断单元判断出故障存在时,将故障数据缓存至第一缓存;
当所述第二故障诊断单元判断出故障存在时,将故障数据缓存至第二缓存;
通过故障存储器从所述第一缓存和第二缓存接收所述故障数据。
根据本发明的一个优选实施例,所述的状态检测方法20还包括:当接收到外 部请求时,通过所述诊断管理单元输出所述故障存储器中存储的故障数据。
根据本发明的一个优选实施例,所述的状态检测方法20还包括:通过点云合理性诊断单元判断所述点云数据是否合理并输出结果信息;
通过所述诊断管理单元从所述点云合理性诊断单元接收所述点云数据是否合理的结果信息。
本领域技术人员容易理解,上面参考图1B-图6所描述的特征,同样可结合并应用于图1A的技术方案中,此处不再赘述。
第一方面:发射端故障诊断
本申请的发明人构思出,为了及时监测激光雷达发射端的故障,可以在激光雷达的发射单元中增设一个或多个光电传感器,或者通过采集发射单元中各个节点的电信号,来判断激光雷达发射端是否存在故障,以及可选地判断存在何种故障。下面详细描述。
实施例1:PD(Photon Detection)小板
本实施例的发射单元的检测,可构成上文周期性故障检测与初始化自检的一部分。
发明人构思出,可以在激光雷达的发射仓中设置检测用的光电传感器,用于检测和判断激光雷达的每个发射通道或激光器是否正常工作。下面参考附图详细描述。
激光雷达的发射单元中通常包括多个激光器,多个激光器可分别被驱动以发射出探测光束,每个激光器例如对应于一定的探测角度或者探测视场。激光器以及相关光电部件的正常工作对于确保激光雷达的高精度探测是非常必要的。发明人构思出,可以在激光雷达的发射仓中设置检测用的光电传感器,用于检测和判断激光雷达的每个发射通道或激光器是否正常工作。下面参考附图详细描述。
图7示出了激光雷达1的一个实施例。激光雷达1包括发射单元和接收单元,其中发射单元用于产生并出射探测激光束,探测激光束在激光雷达外部的物体上发生漫反射,部分反射光束返回到激光雷达,由接收单元所接收并处理。图7中示意性地示出了16线激光雷达,即沿着图中的竖直方向可发射L1、L2、…、L15、 L16共16线激光束(每一线激光束即对应激光雷达的一个通道,共16个通道),用于对周围环境进行探测。在探测过程中,该激光雷达100可沿着其竖直轴线旋转,在旋转过程中,激光雷达的各个通道根据一定的时间间隔(例如1微秒)依次发射激光束并进行探测从而完成一次垂直视场上的线扫描,之后在水平视场方向上间隔一定角度(例如0.1度或0.2度)进行下一次垂直视场的线扫描,从而在旋转过程中进行多次探测形成点云,即可感知周围环境的状况。
如图7所示,激光雷达1包括壳体210,用于容纳或支撑激光雷达1的机械、光学和电子器件。壳体中具有发射仓211和接收仓212,如图8所示,其中发射仓211用于容纳激光雷达的发射单元213(见图9),例如激光器组件2131、反射镜、激光器驱动电路等,接收仓212中用于容纳激光雷达的接收单元,例如反射镜、探测器阵列、信号处理电路等。通常发射仓211和接收仓212之间相互隔离开,以避免激光器发射出的激光束与激光雷达接收的回波之间相互干扰。本领域技术人员容易理解,发射仓和接收仓可以在物理上通过一个或多个隔板隔离开,从而更好地隔离发射单元和接收单元,避免二者之间光线的串扰。但本发明不限于此,发射仓和接收仓也可以不必物理上隔离开,而是通过其中容纳的发射单元和接收单元来大致进行区分,这些都在本发明的保护范围内。
本发明主要涉及激光雷达的发射仓和发射单元,因此为了简化起见,对接收单元和接收仓不做过多描述。
图9示出了激光雷达发射仓211中发射单元213的布置方式。如图9所示,设置在激光雷达的发射仓211中的发射单元213包括激光器组件2131和发射透镜2132,并且根据需要,还可在激光器组件2131和发射透镜2132之间设置反射镜,从而将发射组件2131发射出的激光束经过一次或多次反射后再入射到发射透镜2132。激光器组件2131包括多个激光器,每个激光器可被单独驱动并发射出激光束,激光器组件2131位于发射透镜2132的焦平面上,因此激光束经过发射透镜2132后,会被调制整形为平行光束发射到激光雷达周围的三维空间中,用于探测目标物。
如图9所示,在激光雷达的发射仓211中设置有光电探测器214,安装在发 射仓的内部顶壁上。如图9所示,其例如安装在基板215上,基板215例如为PCB电路板,二者共同构成探测电路。在图9中,基板215通过软排线216与激光雷达的上仓板连接,用于为基板215、光电探测器214提供电压以及单向或双向传输数据信号。发射仓211具有上盖板(发射舱211的顶壁)217,其上具有定位孔2171。基板215上同样具有定位孔,与所述上盖板217的定位孔2171位置相对应,从而可以通过定位孔与发射仓的上盖板217固定连接在一起,从而光电探测器215的安装平面与激光器组件2131的发光光路基本处于相互平行状态,光电探测器215的感光表面与激光器组件2131的发光光路平行或者略微倾斜。另外,图9的实施例中,光电探测器214设置在基板215上,并进而连接到激光雷达1的上仓板。本领域技术人员容易理解,本发明不限于此,也可以不设置基板215,而直接将光电探测器214设置在激光雷达1的上仓板上,这些都在本发明的保护范围内。
如图9所示,当激光器组件2131上的激光器被驱动发光时,其主光路的方向大致为朝向所述发射透镜2132的方向,如图9中主光路的箭头所示。但激光器在实际发光过程中,激光并不具有严格的方向性,因此在主光路以外,还会产生一些杂散光,例如图9中以圆形示出的光斑,其扩散面积较大,或者方向偏离所述主光路方向的程度较大。因此根据本发明的优选实施例,将所述光电探测器214安装在所述激光器组件2131的主光路之外、而且杂散光能够照射到的位置处,从而既不会干扰激光器组件2131的正常发光探测,同时又能够持续地对激光器组件2131的杂散光进行测量,检测器工作状态。例如当激光器发光时,基板215上的光电探测器214可以采集到激光器发出的主光路之外的杂散光。对于激光器,杂散光和主光路的光束之间存在一定的对应关系,这种预设关系可以通过实验获知,与激光器的类型、驱动电压、以及光电探测器214的具体位置有关。当激光器正常工作时,杂散光与主光路的光束之间满足该对应关系;而当激光器或驱动电路发生故障时,杂散光与主光路的光束之间的关系将偏离该正常工作状况下的对应关系,此时,通过光电探测器214探测到的杂散光波形也会产生异常,因此根据光电探测器214探测到的杂散光波形,可以识别出激光器是否发生故障,以及可 选的,当发生故障时,识别出具体的故障类型,如激光器开路、激光器发光光强偏大或发光光强偏小等故障状态。例如根据本发明的一个实施例,可以预设当激光器正常工作时所述杂散光的光强范围。在激光雷达工作过程中,持续地对杂散光的光强进行检测,当检测到的光强为零时,可判断激光器发生开路;当检测到的光强高于预设的光强范围时,可判断激光器发光光强偏大(例如由于驱动电压过高导致);当检测到的光强低于预设的光强范围时,可判断激光器发光光强偏小(例如由于驱动电压过低导致)。本领域技术人员容易理解,根据强度来进行检测仅是本发明的一个实施例,还可以根据检测杂散光得到的波形的其他特征参数来进行故障检测,这些都在本发明的保护范围内。
根据本发明的一个实施例,所述光电探测器214例如为雪崩二极管APD,用于接收发射系统的杂散光。图10示出了根据本发明一个实施例的探测电路的示意图。如图所示,探测电路除了基板215,还包括数据采集板,其上设置有高压生成电路,用于为所述光电探测器214提供偏压。光电探测器214感测所述激光器的杂散光并产生电信号,输出的电信号通常比较微弱,因此在基板215上还可设置放大器,用于对光电探测器214输出的电信号进行放大,然后通过数据采集板上设置的接收电路(或读取采样电路)提供给检测控制单元(或称诊断单元)。检测控制单元可根据预设的方法来判断所述光电探测器214感测到的信号是否在正常范围内,以及如果不在正常范围内,激光雷达的激光器组件2131可能发生何种故障。另外优选的,在所述基板215上还可设置有温度传感器,用于测量所述基板215的温度。温度传感器同样与所述检测控制单元耦接,从而将基板215的温度测量值发送给检测控制单元。以雪崩二极管APD为例,其作为光电探测器的感光效果(对光电流的放大倍数)是受温度和负高压影响的,通过采集APD所在环境的温度,调节负高压,可以使得APD对光电流的放大倍数在不同温度下保持基本一致,这样,在诊断过程中就排除了本身温度对感光波形的影响,此时查看到的APD输出波形的变化就只是由于故障导致的波形异常了。同时在使用光电探测器进行发射端诊断时,可以先对从以下两个方面进行诊断:接插件是否牢固;光电探测器在未探测到杂散光时的输出电压状况(如正常在给光电探测器输入1.65V 偏置电压的情况下,在不感光的情况下,理论上的输出也是1.65V左右),以检查光电探测器本身是否有故障,避免故障潜伏。
当激光器组件2131中的激光器被驱动发光时,检测控制单元可读取所述光电探测器214输出的电信号,并进行分析,以根据分析结果来判断所述发射单元的工作是否正常。本领域技术人员容易理解,所述检测控制单元可以集成到所述激光雷达1中,也可以实现为一个单独的器件,在本发明的教导下这些都是容易实现的,都在本发明的保护范围内。例如,检测控制单元可以是激光雷达1的一部分或一个单元模块集成在激光雷达的上仓板或者下仓板上,或者可以是设置于激光雷达外部的一个单独的器件,其可以接收经过放大、转换后的光电探测器214的输出并进行诊断操作。
在判断过程中,例如可以对发射单元整个链路进行诊断。对应于多个激光器,发射单元包括多个发射通道,每个接收通道包括相应的所述激光器以及驱动电路。根据一个实施例,通过诊断每个通道有无输出,就可以判断该通道是否正常工作。例如当所述光电探测器214接收到杂散光时,那么所对应的通道的激光器在发出探测激光束。那么如果当其中一个通道没有输出时,则可断定该接收通道发生了故障。
另外也能通过光电探测器214的电信号的脉宽、幅值和相位等参数中的一个或多个,与正常输出信号的脉宽、幅值和相位进行比对,识别由于故障导致的发射端激光器输出信号的脉宽、幅值和相位的异常。另外,所述激光器所发出的脉冲的波形是可以预先设定或者获知的,所述光电探测器检测到所述杂散光后,检测控制单元将经过信号采集和处理后的波形,与激光器发出的脉冲的波形进行比较,如果二者相同或者大致吻合,则判断所述接收单元工作正常;否则,判断接收单元工作异常,发出报警。
根据本发明的一个优选实施例,在激光雷达正常工作过程中,所述光电探测器214持续地或周期性地对测量杂散光的参数,所述检测控制单元持续地或周期性地基于所述探测器214的输出进行故障检测和诊断。
图11示出了根据本发明另一个优选的实施例,其中光电探测器设置在不同的 位置处,下面参考图11详细描述。
如图11所示,所述基板215通过转角连接件218被固定在所述发射透镜2132上方的内部侧壁219上,所述转角连接件218的侧表面与所述发射透镜2132上方的内部侧壁219的侧表面齐平贴合,所述转角连接件218的顶面与所述内部侧壁219的顶面齐平贴合。如图11所示,在所述转角连接件218的侧表面上具有开孔2181,所述基板215上同样具有开孔,二者的位置相对应,从而可以通过螺钉将所述基板215连同所述转角连接件218固定在所述内部侧壁219上。在所述转角连接件218的上表面上具有开孔2182,在所述内部侧壁219的顶面上具有相对应的开孔,从而可以通过螺钉将所述转角连接件218固定到所述内部侧部219的顶面上。因此通过转角连接件218的顶面和侧面的固定,可以将光电探测器214牢固地固定在内部侧壁219上,光电探测器214的感光面与激光器组件2131的发光光路基本处于相互垂直状态,因此更便于收集和测量所述激光器组件2131发出的杂散光。
根据本发明的一个优选实施例,在发射透镜2132上方的内部侧壁位置上,可以尽量使得所述光电探测器214与激光器组件2131正对,例如所述光电探测器214的纵向的中心轴线大致与激光器组件的纵向平分线对齐。
根据本发明的一个优选实施例,所述激光雷达包括上仓板(未示出),其上可以设置有电源接口。所述上仓板上靠近接收仓的外边缘处设置有开槽,所述基板215与所述上仓板通过软排线216相连,所述软排线216的一端连接所述基板215,另一端通过接头连接所述上仓板的开槽处,即连接到所述上仓板上的电源接口,用于传送电源和信号。相比其他连接方式,软排线与PCB板可一体式加工,连接可靠;软排线扁平,占据空间小,同时便于接收仓处密封;安装方便。
本发明还涉及一种激光雷达的发射单元的检测方法,例如可在如上所述的激光雷达上实施,下面参考图12详细描述。
如图12所示,发射单元的检测方法200包括:
步骤S201:通过位于激光雷达内部的光电探测器,接收来自所述激光雷达的激光器组件发射的杂散光;
步骤S202:根据所述光电探测器输出的电信号,判断所述激光器组件工作是否正常。
根据本发明一个优选实施例,所述步骤S202包括:当所述光电探测器检测到的杂散光的光强为零时,判断激光器发生开路;当检测到的杂散光的光强高于预设的光强范围时,判断激光器发光光强偏大;当检测到的杂散光的光强低于预设的光强范围时,判断激光器发光光强偏小。
根据本发明的一个方面,光电探测器配置成针对所述激光器每一次被驱动发光,接收来自所述激光器的杂散光。
根据本发明的一个方面,所述判断激光器组件工作是否正常的步骤包括:如果所述电信号的波形与预设波形相对应,判断所述激光器组件工作正常;否则判断所述激光器组件工作不正常。例如可以与预设的正常输出信号的脉宽、幅值和相位进行比对,判断激光器组件是否工作正常。
本发明的实施例的技术方案诊断覆盖率高,可以覆盖激光雷达发射端的失效检测。其实施复杂程度低,方案成本低:方案未增加专用检测芯片及复杂电路,因此成本低。方案合理高,诊断逻辑电路不影响正常工作电路,即使诊断电路损坏也可以通过FPGA逻辑识别出来,鲁棒性高。
本实施例提供一种激光雷达,包括:
壳体,所述壳体中具有发射仓;
激光器组件,设置在所述发射仓中,所述激光器组件包括多个激光器,配置成可发射探测激光束;
光电探测器,设置在所述发射仓中,配置成可接收所述激光器的杂散光,并转换为电信号;和
检测控制单元,所述检测控制单元与所述光电探测器耦合,配置成采集且分析所述光电探测器的电信号,根据分析结果判断所述激光器组件工作是否正常。
根据本实施例的一个方面,所述光电探测器设置在所述发射仓的内部顶壁上。
根据本实施例的一个方面,所述的激光雷达,还包括位于所述壳体表面上的发射透镜,用于汇聚所述探测激光束,其中所述光电探测器位于所述发射透镜上 方的内部侧壁上。
根据本实施例的一个方面,所述光电探测器通过转角连接件被固定在所述发射透镜上方的内部侧壁上,所述转角连接件的侧表面与所述发射透镜上方的内部侧壁的侧表面贴合,所述转角连接件的顶面与所述侧壁的顶面贴合。
根据本实施例的一个方面,所述的激光雷达,还包括用于承载所述光电探测器的基板。
根据本实施例的一个方面,所述激光雷达包括上仓板,所述上仓板上靠近接收仓的外边缘处设置有开槽,所述基板与所述上仓板通过软排线相连,所述软排线一端连接所述基板,另一端连接所述上仓板的开槽处。
根据本实施例的一个方面,所述光电探测器设置在所述激光器模组的主光路的上方,并且所述光电探测器的安装平面平行于所述主光路的方向。
根据本实施例的一个方面,所述的激光雷达,还包括设置在所述基板上的温度传感器,所述温度传感器配置成可感测所述基板的温度,所述温度传感器与所述控制单元耦接,从而可将所述基板的温度传送给所述控制单元。
本实施例还提供一种如上所述的激光雷达的控制方法,包括:
通过位于激光雷达内部的光电探测器,接收来自所述激光雷达的激光器组件发射的杂散光;和
根据所述光电探测器输出的电信号,判断所述激光器组件工作是否正常。
根据本实施例的一个方面,判断所述激光器组件工作是否正常的步骤包括:根当所述光电探测器检测到的杂散光的光强为零时,判断激光器发生开路;当检测到的杂散光的光强高于预设的光强范围时,判断激光器发光光强偏大;当检测到的杂散光的光强低于预设的光强范围时,判断激光器发光光强偏小。
根据本实施例的一个方面,光电探测器配置成针对所述激光器每一次被驱动发光,接收来自所述激光器的杂散光。
根据本实施例的一个方面,所述判断激光器组件工作是否正常的步骤包括:如果所述电信号的波形与预设波形相对应,判断所述激光器组件工作正常;否则判断所述激光器组件工作不正常。
本实施例还提供一种激光雷达的发射单元,包括:
激光器组件,设置在激光雷达的发射仓中,所述激光器组件包括多个激光器,配置成可发射探测激光束;
光电探测器,设置在所述发射仓中,配置成可接收所述激光器的杂散光,并转换为电信号;和
检测控制单元,所述检测控制单元与所述光电探测器耦合,配置成采集且分析所述光电探测器的电信号,根据分析结果判断所述激光器组件工作是否正常。
根据本实施例的一个方面,所述光电探测器设置在所述发射仓的内部顶壁上。
根据本实施例的一个方面,所述的发射单元还包括发射透镜,用于汇聚所述探测激光束,其中所述光电探测器位于所述发射透镜上方的内部侧壁上。
根据本实施例的一个方面,所述光电探测器通过转角连接件被固定在所述发射透镜上方的内部侧壁上,所述转角连接件的侧表面与所述发射透镜上方的内部侧壁的侧表面贴合,所述转角连接件的顶面与所述侧壁的顶面贴合。
实施例2:发射端故障诊断
实施例2涉及激光雷达的发射单元的检测,例如可以由第一故障诊断单元FDU111来执行,以下详细描述。本实施例的发射单元的检测,可以是上文周期性故障检测或自检操作的一部分。
图13示出了激光雷达发射端组件300的一个实施例。如图13所示,激光雷达发射端组件300包括电源单元301、储能单元302、激光器303以及开关器件304。其中电源单元301通常可接收较低的电压输入,例如12V,然后通过升压电路,将输出电压进行升压,提供高压HV,例如提升到60V。储能单元302用于接收所述电源单元301的输出的高压HV,并进行电能存储和积蓄。所述激光器303例如为激光二极管LD,其一端耦接到开关器件304,另一端耦接到所述储能单元302。根据本发明的一种实现方式,电源单元301为储能单元302供电,储能单元302积蓄电能,当控制开关器件304闭合时,储能单元302驱动激光器303,通过开关器件304形成的回路进行放电,电流流过激光器303,激光器303发射出激 光束。所述开关器件304例如可以为GaN开关。
另外如图13所示,激光雷达发射端组件300还包括驱动单元305,驱动单元305与所述开关器件304的控制端耦接在一起,从而可以输出控制信号,控制所述开关器件304的导通和断开以及通断的持续时长,例如30ns,从而可以影响激光器303发射的激光束的脉宽。当所述驱动单元305控制所述开关器件304处于导通状态时,开关器件304为所述激光器303提供了放电回路,从而储能单元302驱动激光器303,电流流过激光器303,激光器303发出激光束。当所述驱动单元305控制所述开关器件304处于断开状态时,所述放电回路被断开,激光器303停止发光。因此通过控制所述开关器件304的通断的持续时长,可以控制激光器303的发光时长。
图14示出了根据图13激光雷达发射端组件300的一种优选的电路结构的示意图。下面结合图14和图13详细描述。
图14中示出了图13电源单元301的具体结构。如图14所示,电源单元301包括充电电感3011、二极管3012以及开关3013(例如场效应管)。充电电感3011的一端接输入电压PSV,例如为12V的输入电压,另一端分别连接到所述开关3013的漏极以及所述二极管3012。开关3013的栅极接收控制电压脉冲Vpulse,开关3013的源极接地。所述电源单元301耦接到所述电容302(储能单元),从而可以在其上建立高压HV,并且耦接到所述激光器303。激光器303的另一端耦接到开关器件304(图中所示为场效应管,或者为GaN开关)的漏极,开关器件304的源极接地,栅极耦接到作为驱动单元305的FPGA。本领域技术人员容易理解,除了采用FPGA来实现驱动单元305之外,还可以采用DSP、ASIC来实现驱动单元,这些都在本发明的保护范围内。
其工作原理基本如下。电路工作过程如下:储能单元302进行充电和储能,当开关器件304导通时,激光器被高压HV驱动从而发光放电,整个激光探测过程中循环持续。
在充电时,提供输入电压PSV(例如12v或者5v),控制电压脉冲Vpulse控制了开关3013是否导通以及导通时间。当开关3013导通的时候,其源极接地,形成回路,从而在输入电压PSV的驱动下,对充电电感3011进行充电;当开关3013断开的时候,电感3011由于要维持其上的电流,因此会进行放电,二极管3012导通,从而给电容302进行充电,电容302充电后两端的电压即为高压HV,作为驱动单元305的FPGA向开关器件304提供驱动信号VDRV使其导通,从而使得发光通路导通,电流流过激光器303,激光器发出测量光。通过采用不同占空比的脉冲信号Vpulse控制开关3013的导通时间,从而实现对高压HV电平的控制。通过控制FPGA 305输出的驱动信号VDRV的占空比,可以控制激光器303的发光时间。另外,FPGA 305还可以采集所述激光雷达发射端中一个或多个节点的电信号,并将所述电信号的波形,与预设的波形进行比较,从而判断所述激光雷达发射端是否存在故障以及可能的故障类型,比如具体的故障是激光器短路、激光器开路、电源单元开路,还是储能元件开路。
图15示出了根据本发明一个实施例的一种的故障诊断方法30,例如可用于图13和图14的激光雷达发射端组件300的故障诊断。下面参考图15详细描述。
如图15所示,在步骤S31,采集所述激光雷达发射端中一个或多个节点的电信号。
本申请的发明人发现,可以采集所述电源单元301的输出端的电信号(即高压HV),即电源单元的输出端的电压波形(或储能单元上的电压波形),因为电源单元输出端的电压波形可表征和识别多种故障。另外优选的,所述节点还包括所述驱动单元305的输出端,所采集的电信号包括驱动单元305的输出端的电压波形。
在步骤S32,根据所述电信号,判断所述激光雷达发射端是否存在故障。
根据采集到的电信号的幅值和/或波形,进行一定的处理后,就可以判断在激光雷达发射端组件300中是否存在故障。
激光雷达发射端组件的故障可能包括以下故障中的一种或多种:激光器短路,激光器开路,电源单元开路,储能元件开路。每一种故障会反映在其中一个或多个节点的电信号上。因此可以在存储器中存储预先设置的故障波形或者判断条件,将所述电信号与所述预设波形或者判断条件进行比较,以判断所述激光雷达发射端是否存在故障以及故障的类型。
图16A-16E示出了多种故障的预设波形,对应于在电源单元301的输出端的电信号。其中,如图16A所示,波形Q1代表激光器短路的波形。当图13中的激光器303发生短路时,所述电源单元301的输出电压波形会很快降至零,因此可以通过电源单元301的输出端的电信号下降的斜率来判断是否发生了激光器短路的故障。
如图16B所示,波形Q2代表激光器开路的波形。图13中的激光器303发生开路时,在储能单元302中存储的电能无法通过激光器303进行放电,因此电源单元301的输出端的电压信号将较为平稳,或者以很小的速度下降,体现在波形图上,其下降的斜率较小。
如图16C所示,波形Q3代表电源单元开路的波形。当图13中的电源单元301发生开路或断路时,电源单元301的输出将始终保持在较低的电平,如波形Q3所示。
所述电源单元包括充电电感,所述故障还包括充电电感开路。如图16E所示,其中波形Q5代表充电电感开路的波形。波形Q5中完全缺失了建立高压的一个脉冲,表明充电电感可能发生开路。
根据本发明一个实施例,可以根据电源单元301的输出进行计算,例如计算其幅值、下降斜率等,进而与预设阈值进行比较,从而判断其是否存在故障,以及具体的故障类型。或者可选的,可以将电源单元301的输出的电压波形与预设波形进行比对,例如通过图像分类算法,得到与电压波形最为接近的其中一个预设波形,从而判断其是否存在故障以及具体的故障类型。
根据本发明的一个实施例,所述储能单元包括充电电容或充电电容组,波形Q4代表充电电容开路的波形。当充电电容发生开路之后,高压HV将始终保持高位,无法驱动激光器而泄放其上的电荷,波形如图16D中的波形Q4所示。
另外,本领域技术人员容易理解,图16中所示出的各种故障对应的波形仅是示意性的,不构成对本发明的保护范围的限制。本领域技术人员在本发明的教导下,可以设置其他各种类型的故障波形,都在本发明的范围内。
图17示出了根据本发明一个实施例的激光雷达发射端组件300’,其同样包括电源单元301、储能单元302、激光器303、开关器件304以及驱动单元305,与图13所示的激光雷达发射端组件300基本相同,此处不再赘述。另外,图14所示的实施例中的各种组件及其连接关系等特征,同样可结合到图17中,不需要付出创造性的劳动。下面着重描述其与图13的激光雷达发射端组件300的不同之处。
如图17所示,激光雷达发射端组件300’还包括故障诊断单元106,所述故障诊断单元106配置成可采集所述激光雷达发射端300’中的一个或多个节点的电信号,并根据所述电信号,判断所述激光雷达发射端是否存在故障。
如参考图13和图14描述的,所述一个或多个节点可以包括所述电源单元301的输出端,电信号包括所述电源单元的输出端的电压波形。
故障诊断单元106可以用于实施如图15所示的故障诊断方法30,例如将所述电信号的波形,与预设的波形进行比较,以判断所述激光雷达发射端是否存在故障以及故障的类型。所述故障例如包括:激光器短路,激光器开路,电源单元开路,储能元件开路。
所述储能元件302例如包括充电电容或充电电容组,所述电源单元包括充电电感,所述故障还包括充电电感开路。
本发明还涉及一种激光雷达,包括:如上所述的激光雷达发射端组件300或300’以及接收端组件。其中,激光雷达发射端组件300或300’配置成可发射探 测光束。探测光束在激光雷达外部的障碍物上会发生漫反射,部分反射光束会作为雷达回波入射到接收端组件上。接收端组件中例如包括光学透镜和光电传感器。其中,光学透镜将雷达回波进行汇聚,使其入射到光电传感器上。光电传感器可以是雪崩式光电二极管APD或者SiPM,根据所接受的光强或者光子数目产生电信号,电信号经过后续的电路和信号处理,进行放大和滤波等处理,生成激光雷达的点云数据,可表征障碍物的距离、方位、反射率等信息。
根据本发明的实施例的技术方案,故障诊断的覆盖率较高,可以满足激光接收端多个器件失效的探测和诊断。另外实施复杂程度低。本发明实施例的设计方案中,可以在电源单元的输出端上进行信号采集,以64线激光雷达为例,通常只需要采集5个点(具体取决于架构,但对于多线激光雷达pin脚数量可以减少30%以上),实施复杂程度相对传统方案低。方案实施的成较低。电路采集逻辑实时性要求很高,甚至为纳秒级别,但可以复用激光接收端的高速ADC来进行采集,不会额外增加ADC芯片。另外,诊断逻辑电路不影响正常工作电路,即使诊断电路损坏也可以通过FPGA逻辑识别出来,鲁棒性高
提供一种可用于激光雷达发射端的故障诊断方法,其中所述激光雷达发射端包括激光器以及与所述激光器的一端耦接的开关器件、与所述激光器的另一端耦接的储能单元、以及为所述储能单元供电的电源单元,并且其中所述故障诊断方法包括:
采集所述激光雷达发射端中一个或多个节点的电信号;
根据所述电信号,判断所述激光雷达发射端是否存在故障。
根据本发明的一个方面,所述一个或多个节点包括所述电源单元的输出端,所述电信号包括所述电源单元的输出端的电压波形。
根据本发明的一个方面,所述激光雷达发射端还包括与所述开关器件的控制端耦接的驱动单元,所述驱动单元配置成可控制所述开关器件的通断以及通断的持续时长,其中所述节点还包括所述驱动单元的输出端,所述电信号还包括所述驱动单元的输出端的电压波形。
根据本发明的一个方面,所述根据电信号判断激光雷达发射端是否存在故障 的步骤包括:将所述电信号的波形,与预设的波形进行比较,以判断所述激光雷达发射端是否存在故障以及故障的类型。
根据本发明的一个方面,所述故障包括以下中的一种或多种:激光器短路,激光器开路,电源单元开路,储能元件开路。
根据本发明的一个方面,所述储能元件包括充电电容组和充电电感,所述储能元件开路包括充电电容开路和充电电感开路。
本发明还提供一种激光雷达发射端组件,包括:
激光器;
开关器件,与所述激光器的一端耦接;
储能单元,与所述激光器的另一端耦接;
电源单元,耦合到所述储能单元并为所述储能单元供电;
故障诊断单元,所述故障诊断单元配置成可采集所述激光雷达发射端中一个或多个节点的电信号,并根据所述电信号,判断所述激光雷达发射端是否存在故障。
根据本发明的一个方面,所述一个或多个节点包括所述电源单元的输出端,所述电信号包括所述电源单元的输出端的电压波形。
根据本发明的一个方面,所述激光雷达发射端还包括与所述开关器件的控制端耦接的驱动单元,所述驱动单元配置成可控制所述开关器件的通断以及通断的持续时长,其中所述节点还包括所述驱动单元的输出端,所述电信号还包括所述驱动单元的输出端的电压波形。
根据本发明的一个方面,所述故障诊断单元配置成:将所述电信号的波形,与预设的波形进行比较,以判断所述激光雷达发射端是否存在故障以及故障的类型。
根据本发明的一个方面,所述故障包括以下中的一种或多种:激光器短路,激光器开路,电源单元开路,储能元件开路。
根据本发明的一个方面,所述储能元件包括充电电容组和充电电感,所述储能元件开路包括充电电容开路和充电电感开路。
本发明还提供一种激光雷达,包括:
如上所述的激光雷达发射端组件,配置成可发射探测光束;和
接收端组件,配置成可接收所述探测光束在障碍物上反射后形成的雷达回波。
本发明实施例的技术方案中,故障诊断的覆盖率较高,可以覆盖激光雷达接收端电路的全部失效场景,并且实施复杂程度低。传统诊断方案需要将前端解复用器和跨阻放大单元及后端两级复用器、模数转换器的驱动器等分开检测,电路复杂。而本发明中,通过向跨阻放大单元提供测试信号,能够检测激光雷达接收端的每个通道是否正常工作,并且通过模数转换器的输出,能够诊断可能发生故障的器件和位置。本发明的方案中未增加专用检测芯片及复杂电路,因此成本低。同时,诊断逻辑电路不影响正常工作电路,即使诊断电路损坏也可以通过控制器(例如FPGA、DSP、或ASIC)逻辑识别出来,鲁棒性高
第二方面:接收端故障诊断
第二方面的实施例,可以构成上文周期性检测或自检的一部分。
本申请的发明人构思出,为了及时监测激光雷达接收端的故障,可以在激光雷达的接收单元中增设一检测光源,或者通过采集接收单元中各个节点的电信号,来判断激光雷达接收端是否存在故障,以及可选地判断存在何种故障。下面详细描述。
实施例1:加装LED检测光源
实施例1涉及激光雷达的接收单元的检测,例如可以由第一故障诊断单元FDU111来执行,以下详细描述。本实施例的接收单元的检测,可以是上文周期性故障检测的一部分。
图18示出了根据本发明一个实施例的一种激光雷达1。下面参考图18详细描述。激光雷达1主要包括发射单元4200和接收单元4300,其中发射单元4200用于产生并出射探测激光束,探测激光束在激光雷达外部的物体上发生漫反射,部分反射光束返回到激光雷达1,由接收单元4300所接收并处理,将雷达回波的光信号转换成电信号,并进行进一步的放大、模数转换、滤波等信号处理操作,最后形成激光雷达的点云,可以识别和表征外部物体的距离、方位等参数。
激光雷达1包括壳体(未示出),用于容纳或支撑激光雷达1的机械、光学和电子器件。壳体中具有发射仓和接收仓,分别用于在其中接纳激光雷达1的发射单元4200和接收单元4300。图18中虽然没有示出发射仓和接收仓,但本领域技术人员容易理解,发射仓和接收仓可以在物理上通过一个或多个隔板隔离开,从而更好地隔离发射单元和接收单元,避免二者之间光线的串扰。但本发明不限于此,发射仓和接收仓也可以不必隔离开,而是通过其中容纳的发射单元4200和接收单元4300来大致进行区分,这些都在本发明的保护范围内。
下面参考图18描述发射单元4200和接收单元4300。
发射单元4200包括激光器驱动电路4201、激光器组件4203、发射端反射镜组件4208以及发射透镜4209。其中,激光器组件4203包括一个或多个激光器,每个均可单独控制而发出探测脉冲。激光器组件4203耦接到激光器驱动电路4201,由激光器驱动电路4201为其提供驱动电压以及发射脉冲信号。当接收到发射脉冲信号时,激光器组件4203中的一个激光器将被驱动以发出探测光束。发射端反射镜组件4208以及发射透镜4209依次设置在激光器组件4203的光路下游,其中发射端反射镜组件4208用于通过一次或多次反射,改变探测光束的方向,将探测光束反射到所述发射透镜4209上。图18中示出了发射端反射镜组件4208包括两个反射镜,本发明不限于此,也可以设置一个或者更多个反射镜,这都在本发明的范围内。发射透镜4209通常位于激光雷达1的壳体的表面上,配置成可将入射到其上的探测光束进行准直或者其他类型的整形处理,并将其发射到激光雷达的外部,用于探测周围的障碍物。这对本领域技术人员是容易理解的,此处不再详细描述。
在接收单元4300中,沿着光路的方向依次设置有接收透镜4301、接收端反射镜组件4302以及探测组件4303。其中接收透镜4301通常位于激光雷达1的壳体的表面上,例如与发射透镜4209在水平方向上并置,用于接收来自外部障碍物的反射光束(或称雷达回波),并将反射光束进行汇聚,被汇聚的光束通过接收端反射镜组件4302改变其方向,经历一次或多次反射后,入射到所述探测组件4303上。所述探测组件上可包括光电传感器43031(如图21所示)、放大电路、模数 转换器以及其他一些信号处理电路。其中光电传感器例如可以包括光电二极管、雪崩式光电二极管APD、SiPM等,其可以根据入射到其上的光束的强度或者光子数量而输出电信号(例如电流信号)。该电信号通常比较微弱,所以需要放大电路进行放大,才能进行后续的信号处理操作。放大电路例如可以是跨阻放大器TIA,其耦接到所述光电传感器43031的输出端,接收光电传感器43031输出的电流信号,进行放大并转换输出电压信号。模数转换器连接到放大电路,用于将放大后的模拟信号采样转换并输出数字信号,以便于后续的诸如滤波、存储等操作。此处不再赘述。
根据本发明的一个优选实施例,所述探测组件4303包括基板和APD阵列探测器,所述APD阵列探测器设置于所述基板一侧面,大致朝向所述接收透镜4301或接收端反射镜组件4302。所述APD阵列探测器为APD面阵探测器,由N×N排布的面阵雪崩光电二极管组成,其中M≥2,N≥2。如4×4,4×8,8×8等,具体地,所述N×N排布取决于激光雷达的激光器布置方式。
另外如图18所示,所述发射透镜4209和接收透镜4301位于激光雷达1的壳体的表面上,并且在二者之间可以设置隔光片4127,用于进一步隔离发射透镜4209和接收透镜4301,减少二者之间的光线串扰。
如图19所示,所述激光雷达1还包括检测光源416和控制单元43032(如图21所示,或称诊断单元)。其中,检测光源416设置在所述接收仓中,配置成可发射检测光束,检测光束可以由所述光电探测器43031接收到。本领域技术人员容易理解,所述检测光源416发射出的检测光束可以直接入射到所述光电探测器43031上,也可以经过接收端反射镜组件4302的反射后入射到所述光电探测器43031上,这些都在本发明的保护范围内。
如图21所示,所述激光雷达1还包括控制单元43032,控制单元43032与所述光电探测器43031耦合,配置成当所述检测光源416发射检测光束时,采集所述光电探测器43031的电信号并且进行分析,以根据分析结果来判断所述接收单元4300的工作是否正常。本领域技术人员容易理解,所述控制单元43032可以集成到所述激光雷达1的探测组件4303中,也可以实现为一个单独的器件,在本发 明的教导下这些都是容易实现的,都在本发明的保护范围内。例如,控制单元43032可以是所述探测组件4303的处理电路的一部分或一个单元模块,其可以接收经过放大、转换后的光电探测器43031的输出并进行诊断操作。
在判断过程中,例如可以对接收端整个链路进行诊断。接收单元例如包括多个接收通道,每个接收通道包括相应的所述光电探测器。根据一个实施例,通过诊断每个通道有无输出,就可以判断该通道是否正常工作。例如当所述检测光源416发射的探测光束理论上应当被所有的光电探测器所接收到时,那么每一个接收通道应当具有相应的输出。那么如果当其中一个通道没有输出时,则可断定该接收通道发生了故障。
另外也能通过接收端输出信号的脉宽、幅值和相位等参数中的一个或多个,与正常输出信号的脉宽、幅值和相位进行比对,识别由于故障导致的接收端输出信号的脉宽、幅值和相位的异常。另外,所述检测光源416所发出的脉冲的波形是可以预先设定或者获知的,所述光电探测器检测到所述检测光源416发出的光束后,控制单元43032将经过信号采集和处理后的波形,与检测光源416发出的脉冲的波形进行比较,如果二者相同或者大致吻合,则判断所述接收单元工作正常;否则,判断接收单元工作异常,发出报警。
根据本发明的一个优选实施例,所述控制单元43032与所述检测光源416耦合,并配置成当所述激光雷达在开机时控制所述检测光源416发光,进行激光雷达的自检,采集所述接收单元中一个或多个节点的电信号,以判断所述接收单元工作是否正常。并且当其中一个或多个接收通道发生故障时,向用户发出报警。
所述接收单元包括多个接收通道,每个接收通道包括相应的所述光电探测器。所述检测光源可以为一个或多个。在设置一个检测光源的情况下,检测光源被设置于预设位置,在所述预设位置上,所述检测光源的检测光束可被每个接收通道对应的光电探测器检测到。在此情况下,一个检测光源发出的检测光束可覆盖所有接收通道的光电探测器,因此一个检测光源发出的光能够被所有光电传感器接收到,也就实现了模拟多个激光器同时发光的作用。接收端有多个采样通道,各采样通道可同时工作,各个采样通道分别负责一定数目的光电传感器,因此检测 光源可以以一定周期持续驱动,同每个采样通道上的光电传感器以一定周期切换就能实现对所有采样通道输出的识别。
在设置多个检测光源的情况下,多个所述检测光源发出的检测光束可覆盖所有接收通道的光电探测器。所述检测光源个数应根据所述光电探测器布局、所述检测光源强度和两者相对位置关系确定,多个所述检测光源发出的检测光束可覆盖所有接收通道的光电探测器。
根据本发明的一个优选实施例,所述接收单元包括多个接收通道,每个接收通道包括相应的所述光电探测器,所述控制单元配置成依次判断每个接收通道是否工作正常。
根据本发明的一个优选实施例,如图19所示,所述检测光源416设置在所述接收仓的内部侧壁412的相对上部。如图19和图20所示,所述检测光源416包括位于LED光源4162以及PCB驱动板4161,所述PCB驱动板4161连接到所述LED光源4162,为LED光源4162提供驱动电压和电流。如图19所示,所述检测光源416可设置于所述接收透镜301上方的内部侧壁412的侧表面上。或者可替换的,检测光源416包括可在激光雷达工作温度范围内使得光电探测器43031感受到足够光辐射的发光器件。LED光源体积小、功耗低,发热量少,进而对接收仓的温度影响较小,同时驱动电压低、驱动电路简单可靠,因而是一种优选的实现方式。
根据本发明的一个优选实施例,所述检测光源416位于所述接收透镜4301上方的内部侧壁,所述接收透镜位于所述壳体表面,用于汇聚所述雷达回波。
根据本发明的一个优选实施例,如图19所示,所述检测光源416通过转角连接件417被固定在所述接收透镜4301上方的内部侧壁412上,所述转角连接件417的侧表面与所述接收透镜4301上方的内部侧壁412的侧表面齐平贴合,所述转角连接件417的顶面与所述内部侧壁412的顶面齐平贴合。如图19和20所示,在所述转角连接件417的侧表面上具有开孔4172,在所述光源416的PCB驱动板4161具有穿孔41611,二者的位置相对应,从而可以通过螺钉将所述PCB驱动板4161连同所述转角连接件417固定在所述内部侧壁412上。在所述转角连接件417的上表面上具有开孔4171,在所述内部侧壁412的顶面上具有相对应的开孔,从 而可以通过螺钉将所述转角连接件417固定到所述内部侧部412的顶面上。因此通过转角连接件417的顶面和侧面的固定,可以将光源416牢固地固定在内部侧壁412上。
根据本发明的一个优选实施例,在接收透镜上方的内部侧壁位置上,可以尽量使得LED与光电探测器正对,使得LED发出的光的辐射能量的最大的位置照射在光电探测器上。如图20所示,根据本发明一个优选实施例,所述LED的纵向的中心轴线大致与光电探测器阵列的纵向平分线对齐。
根据本发明的一个优选实施例,所述激光雷达包括上仓板(未示出),其上可以设置有电源接口。所述上仓板上靠近接收仓的外边缘处设置有开槽,所述PCB驱动板4161与所述上仓板通过软排线418相连,所述软排418的一端连接所述PCB驱动板4161,另一端通过接头419连接所述上仓板的开槽处,即连接到所述上仓办上的电源接口,用于传送电源和信号。相比其他连接方式,软排线与PCB板可一体式加工,连接可靠;软排线扁平,占据空间小,同时便于接收仓处密封;安装方便。
根据本发明的一个实施例,还可以将所述LED放置于接收仓的上盖板位置,该位置便于安装。
根据本发明的一个优选实施例,所述控制单元配置成通过以下方式判断所述接收单元工作是否正常:
如果所述电信号的波形与所述检测光束的波形相对应,判断所述接收单元工作正常;
否则判断所述接收单元工作不正常。
本发明还涉及一种如上所述的激光雷达的控制方法4100,例如可在如上所述的激光雷达1上实施。如图22所示,控制方法4100包括:
步骤S4101:当光电探测单元不接收用于测距的雷达回波时,通过所述激光雷达的检测光源向所述激光雷达的光电探测器发射检测光束;
步骤S4102:采集所述激光雷达的接收单元中一个或多个节点的电信号,以判断所述接收单元工作是否正常。所述多个节点可以位于接收单元中的多个位置 处,例如所述光电探测器的输出端、所述放大器的输出端、所述模数转换器的输出端等各个位置,本发明不限于具体的位置。
根据本发明一个优选实施例,步骤S4101包括:每间隔预设的时间控制所述检测光源发射检测光束。
根据本发明的一个优选实施例,所述步骤S4101包括:当所述激光雷达在开机时控制所述检测光源发射检测光束。
根据本发明的一个优选实施例,所述接收单元包括多个接收通道,每个接收通道包括相应的所述光电探测器,所述控制方法包括:对每个接收通道分别执行所述步骤S4101和步骤S4102。
根据本发明的一个优选实施例,其中判断所述接收单元工作是否正常的步骤包括:
如果所述电信号的波形与所述检测光束的波形相对应,判断所述接收单元工作正常;
否则判断所述接收单元工作不正常。
本发明的实施例的技术方案诊断覆盖率高,可以覆盖激光雷达接收端电路的全部失效。其实施复杂程度低,方案成本低:方案未增加专用检测芯片及复杂电路,因此成本低。方案合理高,诊断逻辑电路不影响正常工作电路,即使诊断电路损坏也可以通过FPGA逻辑识别出来,鲁棒性高。
根据本发明的一个方面,所述控制单元与所述检测光源耦合,并配置成当所述激光雷达在开机时控制所述检测光源发光,并采集所述接收单元中一个或多个节点的电信号,以判断所述接收单元工作是否正常。
根据本发明的一个方面,所述接收单元包括多个接收通道,每个接收通道包括相应的所述光电探测器,所述控制单元配置成依次判断每个接收通道是否工作正常。
根据本发明的一个方面,所述光电探测器为雪崩光电二极管,所述检测光源设置在所述接收仓的侧壁的上部。
根据本发明的一个方面,所述检测光源包括位于所述侧壁表面的LED以及位 于所述侧壁内部的PCB驱动板,所述PCB驱动板连接到所述LED。
根据本发明的一个方面,所述的激光雷达还包括位于所述壳体表面上的接收透镜,用于汇聚所述雷达回波,其中所述检测光源位于所述接收透镜上方。
根据本发明的一个方面,所述检测光源通过转角连接件被固定在所述接收仓上,所述转角连接件的侧表面与所述接收仓的侧表面齐平,所述转角连接件的顶面与所述侧壁的顶面齐平。
根据本发明的一个方面,所述控制单元配置成通过以下方式判断所述接收单元工作是否正常:
如果所述电信号的波形与所述检测光束的波形相对应,判断所述接收单元工作正常;
否则判断所述接收单元工作不正常。
本发明还涉及一种如上所述的激光雷达的控制方法,包括:
步骤S101:通过所述激光雷达的检测光源向所述激光雷达的光电探测器发射检测光束;
步骤S102:采集所述激光雷达的接收单元中一个或多个节点的电信号,以判断所述接收单元工作是否正常。
根据本发明的一个方面,所述步骤S101包括:当所述激光雷达在开机时控制所述检测光源发射检测光束。
根据本发明的一个方面,所述接收单元包括多个接收通道,每个接收通道包括相应的所述光电探测器,所述控制方法包括:对每个接收通道分别执行所述步骤S101和步骤S102。
根据本发明的一个方面,其中判断所述接收单元工作是否正常的步骤包括:
如果所述电信号的波形与所述检测光束的波形相对应,判断所述接收单元工作正常;
否则判断所述接收单元工作不正常。
本发明的实施例的技术方案诊断覆盖率高,可以覆盖激光雷达接收端电路的全部失效。其实施复杂程度低,方案成本低:方案未增加专用检测芯片及复杂电 路,因此成本低。方案合理高,诊断逻辑电路不影响正常工作电路,即使诊断电路损坏也可以通过FPGA逻辑识别出来,鲁棒性高。
实施例2:接收端故障诊断
实施例2涉及激光雷达的接收单元的检测,例如可以由第一故障诊断单元FDU111来执行,以下详细描述。本实施例的接收单元的检测,可以是上文周期性故障检测的一部分。
图23示出了激光雷达接收端组件的示意图。如图所示,激光雷达接收端组件包括光电传感器(例如雪崩式光电二极管APD)、跨阻放大单元TIA、以及模数转换器ADC。其中,光电传感器接收激光雷达的回波信号,将光信号转变为电信号。通常该电信号为电流信号,并且较为微弱,因此通过跨阻放大单元TIA,可以将该信号放大,同时转换为电压信号。然后,通过模数转换器ADC进行模数转换,产生数字信号,供激光雷达后续的信号处理,例如生成点云数据,表征障碍物的距离、角度、反射率等参数中的一个或多个。
图24示出了根据本发明一个实施例的一种可用于激光雷达接收端的故障诊断方法50,下面参考附图详细描述。
如图24所示,故障诊断方法50包括:
在步骤S51,向所述跨阻放大单元输入测试信号。
图23中,在激光雷达工作过程中,跨阻放大单元TIA的输入信号来自于光电传感器。本发明中,如图25所示,为了在激光雷达开始工作之前或者运行的间隙能够检测接收端是否正常工作,那么代替光电传感器的电信号输出,单独地向所述跨阻放大单元输入一个测试信号,用来测试激光雷达接收端的链路是否能够正常工作。根据本发明的一个实施例,当输入所述测试信号的同时,屏蔽所述光电传感器使其不产生信号输出,或者使得光电传感器上产生的信号无法提供给跨阻放大单元TIA,从而测试信号与光电传感器的信号不会相互干扰。
在步骤S52,根据所述模数转换器的输出,判断所述激光雷达接收端是否存在故障。
步骤S51中输入测试信号后,跨阻放大单元会将其作为输入信号而放大,然后经模数转换器ADC进行模数转换和输出。通过采集模数转换器的输出并进行分析,能够判断激光雷达接收端的链路是否正常工作。
例如,可以通过将所述模数转换器ADC的输出与预设的波形进行比较,以判断所述激光雷达接收端是否存在故障以及故障的类型。激光雷达接收端常见的故障例如包括:跨阻放大单元开路、电源短路、跨阻放大单元等比放大异常等。
另外,根据本发明的一个优选实施例,所述测试信号包括高低交替的脉冲信号。图26中的PWM波形示出了根据本实施例的测试信号的波形。其中,测试信号包括连续的多个方波脉冲,并且相邻的脉冲的幅值不同,从而可以对脉冲进行奇偶区分,可以进一步提高故障诊断的准确性。
图26中的Q1、Q2、Q3和Q4波形分别示出了多种可能的故障发生时模数转换器ADC输出的波形。
如波形Q1所述,其中,对应于测试信号中的一个或多个脉冲,在波形Q1中缺少相对应的输出脉冲,表明激光雷达的接收端存在故障,可能的故障例如是跨阻放大单元开路。
如波形Q2所示,其中,第一个脉冲的幅值过高,第三个脉冲的幅值被钳制为与第二个脉冲基本相等,同样表明激光雷达的接收端存在故障,可能的故障例如是偏置电压故障(例如APD偏置电压不稳),导致输出出现偏移。
如波形Q3所示,其中,各个脉冲相互之间的比例虽然正常,但是与测试信号PWM相比,每个脉冲都被异常放大。例如,假定模数转换器ADC输出的高低脉冲的正常幅值为分别为1和0.8,但目前输出的高低脉冲的幅值分别为2和1.6,在正常幅值的基础上又被放大了2倍,同样表明激光雷达的接收端存在故障,可能的故障例如是跨阻放大单元可能存在故障。
如波形Q4所示,表征如果有一级运放,会导致脉冲等比例地变化,因此存在最大值Max与最小值Min。
图27示出了激光雷达接收端的一个实施例,其中包括解复用器De-Mux、多个光电传感器APD 1、APD 2、…、APD N、与所述多个光电传感器对应并耦合的多个所述跨阻放大单元TIA 1、TIA 2、…、TIA N、复用器Mux以及模数转换器ADC,其中所述解复用器De-Mux与所述多个跨阻放大单元耦合并可选择性地选通其中一个跨阻放大单元,所述多个跨阻放大单元通过所述复用器耦合到所述模数转换器。每个光电传感器以及与其相连的跨阻放大单元构成一个通道。
其中,解复用器De-Mux例如可以依次向各个跨阻放大单元输出使能信号,从而依次激活各个跨阻放大单元。当其中一个跨阻放大单元被激活时,向该被激活的跨阻放大单元提供测试信号,测试该通道以及下游的模数转换器是否工作正常。
图28示出了根据本发明一个实施例的一种激光雷达接收端组件500,下面参考图28详细描述。
如图28所示,激光雷达接收端组件500包括光电传感器501、跨阻放大单元502、模数转换器503、测试信号生成单元504、以及故障诊断单元505。其中,光电传感器501可将入射的光信号转换成电信号,跨阻放大单元502与所述光电传感器501耦接,并配置成可放大所述光电传感器501输出的电信号。模数转换器503与所述跨阻放大单元502耦接,可接收所述跨阻放大单元的输出并进行模数转换。测试信号生成单元504用于生成测试信号,其与所述跨阻放大单元502耦接,并配置成可向所述跨阻放大单元提供测试信号。如图28所示,光电传感器501和测试信号生成单元504可以通过选择开关506从而耦接到所述跨阻放大单元502。选择开关506例如可具有第一位置和第二位置,当在第一位置时,其可以将光电传感器501的输出信号耦接到所述跨阻放大单元502;当处于第二位置时,其可以将测试信号生成单元504生成的测试信号耦接到所述跨阻放大单元502。选择开关506在同一时刻仅允许所述测试信号生成单元504和所述光电传感器501中的一个的输出信号被耦接到所述跨阻放大单元。从而避免了测试信号与光电传感器501的输出信号发生干扰。
所述故障诊断单元505耦接到所述模数转换器的输出端,并且配置成可响应于所述测试信号,根据所述模数转换器的输出,判断所述激光雷达接收端是否存在故障。故障诊断单元505例如可以执行如上所述的故障诊断方法50来判断是否存在故障以及具体故障的位置和类型。本领域技术人员容易理解,上文参考图23-27所描述的特征,均可以结合到图28的技术方案中,而无需付出创造性的劳动,这都在本发明的保护范围内。
根据本发明的一个实施例,故障诊断单元505配置成将所述模数转换器503的输出与预设的波形进行比较,以判断所述激光雷达接收端是否存在故障以及故障的类型,例如上述参考图25所详细描述的,此处不再赘述。
常见的故障可能包括以下中的一种或多种:跨阻放大单元开路、电源短路、跨阻放大单元等比放大异常。另外,所述测试信号可包括高低交替脉冲信号,从而更加精确地进行激光雷达接收端链路的故障诊断。
另外,所述激光雷达接收端组件可包括多个通道,每个通道包括一个光电传感器和与其对应并耦接的跨阻放大单元,激光雷达接收端组件并且包括解复用器、以及复用器,所述解复用器与所述多个跨阻放大单元耦合并可选择性地选通其中一个跨阻放大单元,所述多个跨阻放大单元通过所述复用器耦合到所述模数转换器,其结构示意图如图27所示。在此情况下,所述测试信号生成单元504可以依次向多个所述跨阻放大单元输入测试信号。
另外,根据本发明的一个优选实施例,所述测试信号生成单元504和所述故障诊断单元505集成在一起,构成集成的控制器,例如通过FPGA、DSP或者ASIC实现,如图29所示,所述测试信号生成单元504中可以集成有故障诊断的模块,可以通过软件、硬件、或者软硬件结合的方式实现。所述模数转换器503的输出直接耦合到所述测试信号生成单元504,通过其中集成的故障诊断模块来进行故障诊断。这种方式有利于使得整个激光雷达接收端组件更为紧凑、功耗更小。
本发明还涉及一种激光雷达,包括发射端组件和如上所述的激光雷达接收端 组件,其中发射端组件可发射探测光束,激光雷达接收端组件可接收所述探测光束在障碍物上反射后的雷达回波。
本发明提供一种可用于激光雷达接收端的故障诊断方法,其中所述激光雷达接收端包括光电传感器、跨阻放大单元以及模数转换器,其中所述跨阻放大单元可放大所述光电传感器的输出,所述模数转换器可将所述跨阻放大单元的输出进行模数转换,其中所述故障诊断方法包括:
向所述跨阻放大单元输入测试信号;
根据所述模数转换器的输出,判断所述激光雷达接收端是否存在故障。
根据本发明的一个方面,所述根据模数转换器的输出判断激光雷达接收端是否存在故障步骤包括:将所述模数转换器的输出,与预设的波形进行比较,以判断所述激光雷达接收端是否存在故障以及故障的类型。
根据本发明的一个方面,所述故障包括以下中的一种或多种:跨阻放大单元开路、电源短路、跨阻放大单元等比放大异常。
根据本发明的一个方面,所述测试信号包括高低交替脉冲信号。
根据本发明的一个方面,所述激光雷达接收端包括解复用器、多个光电传感器、与所述多个光电传感器对应并耦合的多个所述跨阻放大单元、以及复用器,所述解复用器与所述多个跨阻放大单元耦合并可选择性地选通其中一个跨阻放大单元,所述多个跨阻放大单元通过所述复用器耦合到所述模数转换器,
其中所述向跨阻放大单元输入测试信号的步骤包括:依次向多个所述跨阻放大单元输入测试信号。
本发明还涉及一种激光雷达接收端组件,包括:
光电传感器,配置成可将入射的光信号转换成电信号;
跨阻放大单元,与所述光电传感器耦接,并配置成可放大所述光电传感器输出的电信号;
模数转换器,与所述跨阻放大单元耦接,可接收所述跨阻放大单元的输出并进行模数转换;
测试信号生成单元,与所述跨阻放大单元耦接,并配置成可向所述跨阻放大 单元提供测试信号;
故障诊断单元,所述故障诊断单元配置成:响应于所述测试信号,根据所述模数转换器的输出,判断所述激光雷达接收端是否存在故障。
根据本发明的一个方面,所述故障诊断单元配置成将所述模数转换器的输出与预设的波形进行比较,以判断所述激光雷达接收端是否存在故障以及故障的类型。
根据本发明的一个方面,所述故障包括以下中的一种或多种:跨阻放大单元开路、电源短路、跨阻放大单元等比放大异常。
根据本发明的一个方面,所述测试信号包括高低交替脉冲信号。
根据本发明的一个方面,所述激光雷达接收端组件包括解复用器、多个光电传感器、与所述多个光电传感器对应并耦合的多个所述跨阻放大单元、以及复用器,所述解复用器与所述多个跨阻放大单元耦合并可选择性地选通其中一个跨阻放大单元,所述多个跨阻放大单元通过所述复用器耦合到所述模数转换器,
其中所述测试信号生成单元配置成依次向多个所述跨阻放大单元输入测试信号。
根据本发明的一个方面,所述的激光雷达接收端组件还包括选择开关,所述测试信号生成单元和所述光电传感器均通过所述选择开关耦合到所述跨阻放大单元,其中所述选择开关配置成在同一时刻仅允许所述测试信号生成单元和所述光电传感器中的一个的输出信号被耦接到所述跨阻放大单元。
根据本发明的一个方面,所述测试信号生成单元和所述故障诊断单元集成在一起。
本发明还涉及一种激光雷达,包括:
发射端组件,配置成可发射探测光束;和
如上所述的激光雷达接收端组件,配置成可接收所述探测光束在障碍物上反射后的雷达回波。
本发明实施例的技术方案中,故障诊断的覆盖率较高,可以覆盖激光雷达接收端电路的全部失效场景,并且实施复杂程度低。传统诊断方案需要将前端解复 用器和跨阻放大单元及后端两级复用器、模数转换器的驱动器等分开检测,电路复杂。而本发明中,通过向跨阻放大单元提供测试信号,能够检测激光雷达接收端的每个通道是否正常工作,并且通过模数转换器的输出,能够诊断可能发生故障的器件和位置。本发明的方案中未增加专用检测芯片及复杂电路,因此成本低。同时,诊断逻辑电路不影响正常工作电路,即使诊断电路损坏也可以通过FPGA逻辑识别出来,鲁棒性高
第三方面:点云合理性判断
本实施例涉及激光雷达的点云数据的检测,例如可以由图1B中所示的点云合理性诊断单元PCR 133来执行,以下详细描述。本实施例的点云合理性诊断,可以是上文周期性故障检测或自检的一部分。
图30示出了根据本发明一个实施例的可用于激光雷达的点云合理性诊断方法60,下面参考附图详细描述。
在步骤S61,接收激光雷达的点云数据以及生成所述点云数据时对应的激光雷达的工作参数。
激光雷达一般可以绕着竖直轴线旋转,从而采集水平面内360度范围内的点云数据。以16线激光雷达为例进行说明,其可以在竖直方向上发射L1、L2、…、L15、L16共16线激光束(每一线激光束即对应激光雷达的一个通道,共16个通道),用于对周围环境进行探测。
在探测过程中,激光雷达可沿着其竖直轴线旋转,在旋转过程中,激光雷达的各个通道根据一定的时间间隔(例如1微秒)依次发射激光束并进行探测,从而完成一次垂直视场上的线扫描,之后在水平视场方向上间隔一定角度(例如0.1度或0.2度)进行下一次垂直视场的线扫描,从而在旋转过程中进行多次探测形成点云,即可感知周围环境的状况。
在激光雷达工作时,多项工作参数均可以被调节,比如若只想探测较近距离(如100m)的障碍物,则可以相对降低(与预期探测距离达200m的要求而言)发射器的功率或者脉冲强度。又比如,如果期望激光雷达的探测分辨率较高,可以控制激光雷达以20HZ进行360度旋转,而如果对探测分辨率要求不是很高,则 可以控制激光类以10HZ进行水平视场上的扫描。还比如,当前大部分的激光雷达均为多线的激光雷达(所谓的多线,也即在垂直视场上设置有多个发射器或可将单束出射光分为多束的器件),若激光雷达本身具备64线,也即最多可实现垂直视场上64线的点云,但根据探测需求,也可以控制激光雷达只采用其中的32线扫描。另外,激光雷达可以通过360度的旋转,来实现对周边障碍物进行360度的全方位扫描,但有些应用场景中,如激光雷达被用作前视雷达时,可能对用户而言,只期望激光雷达提供前向(车辆行驶的方向)±70度范围内的扫描,此时激光雷达可以被控制着只在±70度范围内进行障碍物的探测。
在步骤S62,将所述点云数据以及工作参数输入神经网络,所述神经网络配置为至少可根据激光雷达的点云数据及工作参数输出所述点云数据是否合理的判断结果。
需要说明的是,此处的点云不合理或者说点云异常表示激光雷达探测后生成的点云数据与当前的工作参数并非特别对应,表征点云数据存在一定的不合理的状态,此时相对应地,可能激光雷达工作不是很正常或者存在故障。因此,神经网络还可以根据点云数据是否合理的判断结果,进而判断所述激光雷达是否存在故障或工作异常。
所述神经网络例如为已经预先训练好的神经网络或者深度学习模块,其输入端接收激光雷达的点云数据以及工作参数,并至少可以识别该点云数据是否合理或是否正常。
并且优选的,在识别出点云数据异常之后,可以判断点云数据的具体的异常情况以及所对应的激光雷达的故障。其中所述神经网络包括BP网络、多层神经网络、模糊神经网络、小波神经网络中的一个或多个,本发明不限于具体的神经网络的类型。
在本发明另一实施例中,激光雷达探测得到的点云数据可以经过一定的预处理之后,然后输入至神经网络内进行后续的识别处理。
在步骤S63,根据所述神经网络的输出,判断所述点云数据是否合理。
经过训练之后,神经网络或者深度学习模块可以根据激光雷达的点云数据及 工作参数输出所述点云数据是否合理的指示。比如激光雷达本身为64线的雷达,但其工作参数为40线,当神经网络接收到激光雷达获取得到的40线的点云数据后,则判断所述点云数据是合理的;但如果神经网络此时收到的点云数据为38线,则可以判断所述点云数据是不合理的或异常的,至少存在一定不合理的情况。
又比如,激光雷达可以实现对周边障碍物进行360度的全方位扫描,但一定的时间段内,激光雷达被控制的工作参数为仅需提供前向±50度范围内的扫描,此时如果激光雷达经过探测后,无论输入至神经网络的是前向±90还是前向±30或者是后向(车辆行驶方向的反向)±50度范围内的扫描得到的点云数据,则均一定程度上表征激光雷达的点云不太合理,整个激光雷达可能存在故障或工作异常。
根据神经网络的输出,可以判断所述点云数据是否合理,并且优选的,在判断出点云数据不合理之后,还可以判断激光雷达的故障类型以及故障的具体位置。所述故障包括光学部件故障、机械结构故障、电路故障中的一个或多个。在判断出激光雷达是否存在故障,以及可选的判断出激光雷达的故障类型以及故障的具体位置之后,可以向激光雷达的用户发出告警或者提示。
根据本发明的一个优选实施例,所述点云合理性诊断方法100还包括对所述神经网络进行训练以识别异常的点云数据,具体例如包括:将异常的点云数据以及生成所述异常的点云数据时对应的激光雷达的工作参数,输入所述神经网络中,以训练所述神经网络识别所述异常的点云数据。
例如根据本发明的一个实施例,所述激光雷达的参数例如包括激光雷达在某一时刻的有效线数。以64线的激光雷达为例进行说明。在正常工况下,64线需要同时工作以进行障碍物探测,因此在产生的点云中,如果线数少于64线,则表明点云异常或者激光雷达发生了某种故障。
而在一些工况下,无需对远处的障碍物进行非常精细的探测,此时仅需要使用其中一半线数(32线)进行探测即可,因此在产生的点云数据中,仅包括32线,在此情况下,32线的点云数据就是正常的,而多于或者少于32线的点云数据则是非正常或者说是不合理的。
另外根据本发明的一个优选实施例,所述神经网络对于点云数据的合理性的判断提供一定的裕量。例如当64线激光雷达工作在64线的状态下,但是其中一个激光器发生故障,因此导致在点云中只存在63线的数据。这虽然也属于激光雷达故障,但由于当前状态与正常状态之间的偏差较小,因此激光雷达的点云还是可信的,可以作为一种异常,还可以作为无人驾驶的可靠的传感器。
另外,所述神经网络配置成可根据在先的一帧或多帧点云数据来判断在后的一帧或多帧点云数据是否合理。例如如果第20帧的点云显示某一处有一个物体,21帧的点云同样显示出该物体,根据20帧-21帧的时间间隔可以推出该物体的运动速度和方向,因此可以预测第22或23帧中该物体应该在某一处,但第22或23帧检测到的点云与预测相差很大,那说明该点云是异常的。
在进行神经网络的训练时,可以将所述异常的点云数据所对应的故障输入所述神经网络中,以训练所述神经网络识别所对应的故障。例如,可以预先统计得出激光雷达的各种故障及其所对应的点云的异常状态,在将异常的点云数据以及生成所述异常的点云数据时对应的激光雷达的参数输入所述神经网络中的同时,将所对应的故障输入到神经网络中,供神经网络学习判断激光雷达的故障状况。所述故障例如包括光学部件故障、机械结构故障、电路故障中的一个或多个。
根据本发明的一个实施例,所述神经网络的输出包括点云是否异常、所述激光雷达的可能故障名称和概率中的一个或多个。另外,根据本发明的一个优选实施例,神经网络配置成可输出多个故障以及相对应的概率。例如先对神经网络的模型进行训练,使得它可以认识不同的故障1、故障2…故障n等对应的点云图形态(建立一个异常点云图与故障原因之间的映射关系图之类),进而在实际场景中再利用该神经网络,通过对一个lidar输出的点云的分析,来进而反推lidar可能发生的故障类型、故障部件或者故障原因,例如在当前的点云数据中,故障1的概率为90%,故障2的概率为40%,故障3的概率为10%,输出概率高于预设值的全部故障,供用户参考。
根据本发明的一个优选实施例,激光雷达安装在车辆上,并且激光雷达的控制单元与车辆的电子控制单元ECU耦接,因此当判断出所述激光雷达存在故障或 工作异常时,激光雷达的控制单元可以将所述故障的信息发送给安装有所述激光雷达的车辆的电子控制单元。所述故障信息可以包括所述激光雷达发生故障的指示、和/或具体的故障类型以及故障位置。电子控制单元在接收到所述故障信息后,可以根据该故障信息而进行决策,例如向车辆驾驶员发出声光提示,或者停止车辆自动驾驶状态,提示车辆驾驶员接管车辆的驾驶操作。需要说明的是,以上所提及的故障信息可以为点云是否异常、雷达的工作是否异常、雷达是否发生故障、可能的故障类型以及大概的概率。
根据本发明的一个实施例,所述电子控制单元在接收到故障信息时,可以根据故障的严重程度来决定是否继续信任激光雷达并继续自动驾驶状态。例如,如前所述,当64线激光雷达工作在64线的状态下,但是其中一个激光器发生故障,因此导致在点云中只存在63线的数据。这虽然也属于激光雷达故障,但由于当前状态与正常状态之间的偏差较小,因此激光雷达的点云还是可信的,还可以作为无人驾驶的可靠的传感器,电子控制单元可以继续自动驾驶状态,但可以向操作者提示当前的状态。
图31示出了根据本发明一个实施例的激光雷达600。下面参考图24详细描述。
如图31所示,激光雷达600包括发射单元601、接收单元602、信号处理单元603、以及点云合理性诊断单元604。其中,发射单元601通常包括多个激光器和发射透镜,其中激光器配置成可发射激光束,激光束入射到发射透镜上,经整形后形成探测光束,发射到激光雷达周围的三维空间中。接收单元602通常包括接收透镜和探测器,其中接收透镜接收来自激光雷达外部的反射光束(或称激光雷达回波),并将其汇聚到探测器上,探测器例如可包括APD或SiPM,可将入射到其上的光信号转换为电信号。信号处理单元603与所述接收单元602耦接,并配置成根据所述电信号,生成所述激光雷达的点云数据。信号处理单元603通常可包括各级的信号处理电路,包括但不限于放大电路(例如跨阻放大器)、滤波电路、以及模数转换电路等,可根据所述光信号以及其他相关信息,来计算障碍物的距离、方位等参数,并生产点云数据。
点云合理性诊断单元604与所述信号处理单元603耦接,可接收所述点云数据,并配置成可执行如上所述的点云合理性诊断方法60,并输出所述点云数据是否合理的结果信息。
根据本发明的一个优选实施例,所述点云合理性诊断单元604还被配置成输出所述激光雷达的故障信息。在判断出所述点云数据不合理的基础上,所述点云合理性诊断单元604还可以根据所述点云数据,判断激光雷达的具体故障信息。
根据本发明的一个优选实施例,所述信号处理单元603和所述点云合理性诊断单元604可以集成在一起,例如在信号处理单元603的FPGA或ASIC内部同时集成了诊断模块,从而除了可以进行信号处理,还可以判断激光雷达的硬件是否有问题。如果有问题,输出报错信息。如果没有问题,通过神经网络,给神经网络输入点云,输出为是否有故障。根据一个实施例,所述信号处理单元603和所述点云合理性诊断单元604均集成在激光雷达的下仓板上。
本发明还涉及一种车辆,其上安装有如上所述的激光雷达。
车辆的电子控制单元ECU可以与所述激光雷达耦接,并可接收所述激光雷达的点云合理性诊断单元输出的故障信息。并且车辆上可安装有提醒单元,诸如声音提醒单元、或者灯光提醒单元,提醒单元与电子控制单元ECU耦接并可由电子控制单元ECU触发。当所述电子控制单元配置接收到点云合理性诊断单元输出的故障信息时,触发所述提醒单元,向驾驶员发出告警。
本发明的实施例中,利用神经网络,通过对一个激光雷达输出的点云的分析,来进而反推激光雷达可能发生的故障。通过本发明实施例的技术方案,能够协助激光雷达的技术人员迅速定位激光雷达发生故障的根本原因;另外,可以把神经网络模块集成到激光雷达中,用户在购买激光雷达之后,将激光雷达与车辆上的ECU连接,则使用激光雷达的时候,激光雷达内部的神经网络模块可以随时对激光雷达输出的点云进行检测,当发现点云出现异常,对客户进行提醒。
本发明提供一种可用于激光雷达的点云合理性诊断方法,包括:
接收所述激光雷达的点云数据以及生成所述点云数据时对应的激光雷达的工作参数;
将所述点云数据以及所述激光雷达的工作参数输入神经网络,所述神经网络配置为至少可根据激光雷达的点云数据以及工作参数输出所述点云数据是否合理;
根据所述神经网络的输出,判断所述点云数据是否合理。
根据本发明的一个方面,所述点云合理性诊断方法还包括:根据所述神经网络的输出,判断所述激光雷达是否存在故障或工作异常。
根据本发明的一个方面,所述点云合理性诊断方法还包括:训练所述神经网络以识别异常的点云数据,包括:
将异常的点云数据以及生成所述异常的点云数据时对应的激光雷达的参数输入所述神经网络中,以训练所述神经网络识别所述异常的点云数据。
根据本发明的一个方面,所述点云合理性诊断方法还包括:将所述异常的点云数据所对应的故障输入所述神经网络中,以训练所述神经网络识别所对应的故障。
根据本发明的一个方面,所述点云合理性诊断方法还包括:当判断所述激光雷达存在故障或工作异常时,将所述故障的信息发送给安装有所述激光雷达的车辆的电子控制单元。
根据本发明的一个方面,所述故障包括光学部件故障、机械结构故障、电路故障中的一个或多个。
根据本发明的一个方面,所述神经网络的输出包括点云是否异常、所述激光雷达的可能故障名称和概率。
本发明还涉及一种激光雷达,包括:
发射单元,所述发射单元配置成可向激光雷达外部发射探测光束;
接收单元,所述接收单元配置成可接收来自激光雷达外部的反射光束,并转换为电信号;
信号处理单元,所述信号处理单元与所述接收单元耦接,并配置成根据所述电信号,生成所述激光雷达的点云数据;和
点云合理性诊断单元,所述点云合理性诊断单元配置成可执行如上所述的点 云合理性诊断方法,并配置成可接收所述点云数据并输出所述点云数据是否合理的结果信息。
根据本发明的一个方面,所述点云合理性诊断单元,还被配置成输出所述激光雷达的故障信息。
根据本发明的一个方面,所述信号处理单元和所述点云合理性诊断单元集成在一起。
根据本发明的一个方面,所述故障信息包括以下至少一种信息:点云是否异常、所述激光雷达的可能故障名称和概率。
本发明还涉及一种车辆,包括如上所述的激光雷达。
根据本发明的一个方面,所述车辆还包括电子控制单元,所述电子控制单元与所述激光雷达耦接并可接收所述激光雷达的点云合理性诊断单元输出的故障信息。
根据本发明的一个方面,所述车辆还包括提醒单元,所述提醒单元与所述电子控制单元耦接,所述电子控制单元配置成当接收到点云合理性诊断单元输出的故障信息时,触发所述提醒单元。
根据本发明的一个方面,所述电子控制单元还适于根据所述故障信息,控制车辆执行对应的行驶操作。
本发明的实施例中,利用神经网络,通过对一个激光雷达输出的点云的分析,来进而反推激光雷达可能发生的故障。通过本发明实施例的技术方案,能够协助激光雷达的技术人员迅速定位激光雷达发生故障的根本原因;另外,可以把神经网络模块集成到激光雷达中,客户购买激光雷达之后,将激光雷达与车辆上的ECU连接,则使用激光雷达的时候,激光雷达内部的神经网络模块可以随时对激光雷达输出的点云进行检测,当发现点云出现异常,对客户进行提醒,进而可以控制车辆执行相对应的行驶操作以应对可能的故障或者异常,从而可以提高激光雷达的安全性能。
第四方面:供电异常检测
本实施例涉及激光雷达的供电异常的检测,例如可以由第二故障诊断单元来 执行,以下详细描述。本实施例的供电异常的检测,可以是上文周期性故障检测或自检的一部分。
随着车辆安全标准、自动驾驶技术的不断提高,当前高级辅助驾驶系统(ADAS)正在快速普及,行业也正迈入到L3级自动驾驶阶段(即有条件自动驾驶)。无论是ADAS还是自动驾驶,要实现对车辆周围360°环境的准确的感知,车辆将配备多种传感器,包括毫米波雷达(RADAR)、激光雷达(LIDAR)、摄像头(Camera)、惯性测量单元(IMU)和全球导航卫星系统(GNSS)等。
LIDAR快速发射激光脉冲(通常最高可达每秒150000次脉冲),激光信号到达障碍物后反射回LIDAR传感器。LIDAR通过测量激光信号从发射到返回的时间间隔,精确计算确定传感器到障碍物之间的距离,它还能探测目标物体的准确尺寸。另外,LIDAR通常还可用于高分辨率地图的绘制。
在例如上述高级辅助驾驶系统的应用中,通常经由车辆(例如,车载电源)向LIDAR供电。在这样的车载LIDAR应用中,车辆作为外部电源为LIDAR供电发生供电异常的情况时有发生,导致用户体验度较差。另外,在发生供电异常的情况下,用户一般地认为LIDAR发生故障,而不是外部电源供电异常。
因此,需要一种能够确定LIDAR的工作异常是由于外部电源供电异常而导致的,并记录外部电源供电异常相关信息以帮助查证LIDAR停止工作的原因的解决方案。
图32示出根据本发明实施例的用于LIDAR的供电异常监测系统700。本发明实施例的用于LIDAR的供电异常监测系统700可以与LIDAR系统集成在一起,或者构造为独立的系统,这都在本发明的范围内。
如图32所示,供电异常监测系统700包括存储单元710、供电监测单元720和控制单元730。供电监测单元720与LIDAR的供电输入耦接并且监测供电输入是否正常。
特别地,LIDAR的供电输入来自于LIDAR的外部电力供应源,其可以为LIDAR的操作、与外部设备的通信等功能提供电力。典型地,LIDAR的供电输入提供12V或48V的电压。在本发明的一些应用(例如,LIDAR应用于车辆中,例如作为实 现高级辅助驾驶系统的功能单元/模块)中,LIDAR的供电输入来自车载电源,例如,车辆为LIDAR提供5V或12V的供电输入。或者可替换的,LIDAR自身具有蓄电池,为LIDAR上的元器件提供供电输入。在此情况下,供电监测单元720可检测来自蓄电池的供电输入是否正常。
本发明中的供电监测单元720与LIDAR的供电输入耦接并且监测供电输入是否正常,其中,“监测供电输入是否正常”是指监测/判断/确定供电输入的某一物理特性是否满足(或不满足)预定要求。在本发明的优选实施例中,所述物理特性指电压,在这种情况下,“监测供电输入是否正常”是指监测/判断/确定供电输入的电压是否满足(或不满足)预定要求。在本发明的优选实施例中,“监测供电输入是否正常”是指监测供电输入的电压是否低于预定阈值,在这种情况下,供电监测单元710可以被实现为或实现为包括电压比较器,以监测/判断/确定供电输入的电压是否低于预定阈值。
在其他实施例中,本发明的实施例可以监测供电输入的其他物理特性(例如,电流)来确定供电输入是否正常。特别地,在本发明的优选实施例中,如果供电输入的某一物理特性(电压、电流等)小于预定阈值,则确定供电输入出现不正常的状况(或者说监测到供电输入的异常事件)。在本发明的其他实施例中,如果供电输入的某一物理特性(电压、电流等)大于预定阈值,则监测供电输入不正常(或者说监测到供电输入的异常事件)。要注意,供电输入的某一物理特性不仅包括电压、电流等,而且还包括表征这些物理特性的衍生特性,例如,电压的抖动、频率波动等。例如,当供电输入的电压或者电流的波动幅度超过一定阈值时,确定供电输入出现不正常的状况。本发明涵盖监测供电输入的任何物理特性和表征该物理特定的衍生特性。相应地,本发明涵盖供电监测单元720中设置其他监测/比较相应的特性的装置/机构/模块。
供电监测单元720与控制单元730耦接,控制单元730被配置为响应于供电监测单元720监测到供电输入的异常事件,将与异常事件相关的信息记录到存储单元710中。
在一些实施例中,控制单元730被实现为LIDAR模块(例如FPGA)的一部分。 在另一些实施例中,控制单元730被实现为单独的单元/模块。总体来说,控制单元730可以被实现为执行控制功能的任何控制单元,例如,处理器、微处理器、控制器、微控制器、逻辑器件(例如,可编程逻辑器件,例如FPGA)、专用集成电路(ASIC)等。
如上所述,供电输入的“异常事件”可以指供电输入的某个/或某些物理特定满足/不满足预定要求。控制单元730被配置为响应于供电监测单元720监测到供电输入的异常事件,将与异常事件相关的信息记录到存储单元710。异常事件相关的信息可以包括指示发生异常事件的信息(例如,异常事件标志)、发生何种异常事件的信息(例如,异常事件的类别)、异常事件的属性(例如,物理量(电压、电流)的量值)以及发生异常事件的时间(例如,时间戳)中的一个或多个。存储单元710可以包括记录/存储异常事件相关的信息的任何非易失性存储器/装置(例如,各种类型的存储器和闪存等)。
图33示出了根据本发明一个实施例的一种LIDAR系统70,其包括前述的供电异常监测系统700(如图33中虚线框所示),下面参考图33详细描述。
如图33所示,LIDAR系统70包括升压电路71、LIDAR电力管理模块72以及FPGA,其中升压电路71可连接到外部电源,例如连接到车辆的车载电源,所述的外部是相对于lidar本身而言的之外。当车辆启动后,车载电源自动向升压电路71提供供电输入,例如5V电压输入。升压电路71例如包括LTO升压器,其接受供电输入并将其转换为可供驱动激光雷达所需的高压,例如60V电压。LIDAR电力管理模块72与所述升压电路71耦接,并接收该高压,用于向LIDAR系统70中需要电能的元器件提供电功率,例如如图33中所示的,向供电异常检测系统700中的各个单元部件、以及向以外网/外设73(下面描述)提供电功率。
所述LIDAR系统70还可包括以太网/外设73,例如以太网接口/外设接口,用于将激光雷达的点云数据发送给外部的控制器(未示出),或者接受外部控制器的控制信号输入。
如图33所示,所述LIDAR系统70中包括中央控制器,例如通过FPGA实现,其集成了前述的供电异常监测系统700中的供电监测单元720以及控制单元730。 该FPGA除了耦接到所述存储单元710用于向其中写入异常事件相关的信息以外,还耦接到所述供电输入一侧,即耦接到所述升压电路71的输入端,从而可以监测供电输入是否正常(例如,是否等于12V或是否低于12V,特别地,低于12V指示发生欠压,更特别地,当供电输入电压为0V时,指示发生掉电/断电)。FPGA所集成的供电监测单元720监测到供电输入的异常事件(例如,低于12V)时,FPGA所集成的控制单元730将与该异常事件相关的信息记录到存储单元710。另外,图33所示的中央控制器也可以通过其他类型的电子器件来实现,例如数字信号处理器DSP或者专用集成电路ASIC,这些都在本发明的保护范围内。
另外,如图33所示,供电异常监测系统700还可包括储能设备740(或称辅助供电单元),储能设备740耦接到所述FPGA以及所述LIDAR电力管理模块72,并可受所述FPGA控制。FPGA可以响应于其监测到供电输入的异常事件而启用储能设备740以为LIDAR供电。例如当FPGA监测到供电输入的异常事件时,所述FPGA此时将向储能设备740发出启动指令,启动所述储能设备740,并向所述LIDAR电力管理模块72提供备用电能。
在一些实施例中,FPGA还响应于其监测到供电输入的异常事件而控制LIDAR的电力管理模块停止向LIDAR系统的以太网/外设73供电。也就是说,在这种情况下,控制单元730还响应于供电监测单元720监测到供电输入的异常事件而控制LIDAR的电力管理模块(未示出)仅向LIDAR的核心模块/单元供电以确保其基本功能,同时停止向LIDAR的非核心模块/单元(例如,网络通信模块和/或外设供电)。图33还示出了惯性测量单元IMU连接到LIDAR系统70的FPGA,用于辅助实现高级辅助驾驶系统的功能。
本领域技术人员可以理解,图32与图33中示出的用于LIDAR的供电异常监测系统700以及LIDAR系统的示意图仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的装置/单元/模块的限定,具体的系统的装置/单元/模块可以包括比图中所示更多或更少的装置/单元/模块,或者组合某些装置/单元/模块,或者具有不同的装置/单元/模块布置。
图33中所示的储能设备可以为任何类型的储能设备,例如电容、电池(如纽 扣电池)、电池组等。在另一些实施例中,辅助供电单元可以是另一外部电力供应源。“启用辅助供电单元以为LIDAR供电”可以包括停用LIDAR的供电输入而以辅助供电单元为LIDAR供电,或者不停用LIDAR的供电输入而以辅助供电单元作为辅助为LIDAR供电。关于辅助供电单元/储能设备,其可以位于LIDAR外部,例如利用车辆本身或车辆内设置的驾驶辅助装置的储能设备(例如,纽扣电池),举例来说,一般地在行车记录仪中具有纽扣电池,可以将该纽扣电池连接于LIDAR(替代外部电力供应或辅助外部电力供应)。或者该储能设备可以为电容,通过增设电容来作为储能设备,以备在供电输入出现异常时为LIDAR系统提供电功率。
在本发明的一些实施例中,用于LIDAR的供电异常监测系统700还包括诊断单元(未示出)。诊断单元可以被配置为基于存储单元710记录的与异常事件相关的信息而提供诊断报告。诊断单元可以设置为独立单元或者作为控制单元730的一部分。特别地,诊断单元可以响应于用户请求而导出包括所记录的与所述异常事件相关的信息的诊断报告,从而用户可以审查诊断报告以排除/确定故障原因。
根据本发明的另一方面,如图34所示,本发明还提供一种用于LIDAR的供电异常监测方法800。供电异常监测方法800包括:
S810:监测LIDAR的供电输入是否正常;以及
S820:响应于监测到供电输入的异常事件,记录与异常事件相关的信息。
供电异常监测方法800例如可以通过如上所述的供电异常监测系统700来实施。供电输入的异常事件可以包括供电输入的电压发生欠压或断电。所述方法还可以包括:设置辅助供电单元,并且响应于监测到供电输入的异常事件而启用辅助供电单元以为LIDAR供电。方法还可以包括响应于监测到供电输入的异常事件而控制LIDAR的电力管理模块停止向LIDAR的网络通信模块和/或外设供电。辅助供电单元可以设置于LIDAR内部和/或外部。辅助供电单元可以包括电池和/或电容。所述方法还可以包括:基于存储单元记录的与异常事件相关的信息而提供诊断报告。本发明的诊断系统可以将所有的与故障或异常事件相关的数据存贮记录起来,从而可以对每一项数据(例如同一部件的持续的检测数据)进行统计分析,使用统计分析的结果调整阈值或者是通过测试数据的变化趋势预测某个部件的失 效时间或系统失效的时间。
本发明的另一方面还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器执行时实现上述任一项所述的方法。例如,所述计算机程序在被处理器执行时能够指示处理器和/或相应部件实现以下步骤:监测LIDAR的供电输入是否正常;以及响应于监测到供电输入的异常事件,记录与异常事件相关的信息。另外,应理解上述用于LIDAR的供电异常监测系统700中的各个单元可全部或部分通过软件、硬件及其组合来实现。上述各单元可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个单元对应的操作。
在一个实施例中,提供了一种计算机设备,包括存储器及处理器,所述存储器上存储有可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述任意一个实施例中的方法的步骤。该计算机设备可以是服务器或者车载终端。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现本发明的车辆驾驶辅助方法。
本领域普通技术人员可以理解实现根据本发明的上述实施例的方法中的全部或部分步骤,可以通过计算机程序来指示相关的硬件完成,所述的计算机程序可存储于非易失性的计算机可读存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的步骤。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。
根据第一方面,本发明提出了一种用于LIDAR的供电异常监测系统,所述供 电异常监测系统包括:存储单元;供电监测单元,所述供电监测单元与LIDAR的供电输入耦接并且被配置为监测所述供电输入是否正常;以及控制单元,所述控制单元响应于所述供电监测单元监测到所述供电输入的异常事件,将与所述异常事件相关的信息记录到所述存储单元。
在根据第一方面的一些实施例中,所述供电输入的异常事件包括所述供电输入的电压发生欠压或断电。
在根据第一方面的一些实施例中,所述系统还包括辅助供电单元,并且其中,所述控制单元还响应于所述供电监测单元监测到所述供电输入的异常事件而启用所述辅助供电单元以为LIDAR供电。
在根据第一方面的一些实施例中,所述控制单元还响应于所述供电监测单元监测到所述供电输入的异常事件而控制LIDAR的电力管理模块停止向LIDAR的网络通信模块和/或外设供电。
在根据第一方面的一些实施例中,所述辅助供电单元位于LIDAR内部和/或外部。
在根据第一方面的一些实施例中,所述辅助供电单元包括电池和/或电容。
在根据第一方面的一些实施例中,所述系统还包括诊断单元,所述诊断单元被配置为基于所述存储单元记录的与所述异常事件相关的信息而提供诊断报告。
根据第二方面,本发明提出了一种包括根据本发明第一方面所述的供电异常监测系统的LIDAR系统。
在根据第二方面的一些实施例中,所述供电输入来自车载电源。
根据第三方面,本发明提出了一种用于LIDAR的供电异常监测方法,所述供电异常监测方法包括:监测LIDAR的供电输入是否正常;以及响应于监测到所述供电输入的异常事件,记录与所述异常事件相关的信息。
在根据第三方面的一些实施例中,所述供电输入的异常事件包括所述供电输入的电压发生欠压或断电。
在根据第三方面的一些实施例中,所述方法还包括:设置辅助供电单元,并且响应于监测到所述供电输入的异常事件而启用所述辅助供电单元以为LIDAR供 电。
在根据第三方面的一些实施例中,所述方法还包括响应于监测到所述供电输入的异常事件而控制LIDAR的电力管理模块停止向LIDAR的网络通信模块和/或外设供电。
在根据第三方面的一些实施例中,所述辅助供电单元设置于LIDAR内部和/或外部。
在根据第三方面的一些实施例中,所述辅助供电单元包括电池和/或电容。
在根据第三方面的一些实施例中,所述方法还包括:基于所述存储单元记录的与所述异常事件相关的信息而提供诊断报告。
根据本发明的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器执行时实现根据本发明第三方面所述的方法。
利用本发明的方案,能够监测LIDAR的供电输入的异常事件并记录与所述异常事件相关的信息,从而为后续的故障查找提供客观依据。此外,根据本发明的一些优选实施例,响应于监测到供电输入的异常事件,还启动应对措施,保证LIDAR正常工作(或发挥基本功能)。本发明提供查找系统故障的客观参考信息,有助于快速确定故障源;并且本发明还提高了用户体验。
第五方面:码盘检测
光电编码器被广泛的用在各种角度测量和控制方案中。光电编码器上通常包括光源(例如发光二极管)、编码盘和光电传感器。其中编码盘上通常具有均匀排布的小孔。光源发出的光束经过编码盘上的小孔,照射到光电传感器上,产生电脉冲信号。数据处理装置根据光电传感器的脉冲信号,即可确定编码盘的转速和当前的角度定向。编码盘上通常具有零度位置,如图35所示,作为编码盘角度定向的参考使用。但如果该零度的位置出现了油污或者磨损坏掉,也即不能起到标识作用之后,会导致测角不准。
激光雷达系统目前被广泛地用在无人驾驶领域,包括激光发射系统和探测接收系统,发射激光遇到目标后反射并被探测系统所接收,通过测量激光往返的时间可测量相应目标点的距离(如时间飞行法),当对整个目标区域扫描探测后,则 最终可实现三维成像。机械lidar是指带有电机或者其他可带动旋转的部件的产品,可以通过360度旋转,对周边的物体进行探测。为了实时地定位激光雷达旋转的角度,则需要采用编码盘,来进行角度的测量,以确定激光的发射方向和接收方向。图35示出了一种编码盘,其通常具有一个零度位置,用于确定编码盘的角度定向。但在实际运行过程中,在编码盘的零度位置出现油污或者磨损之后,激光雷达的点云的质量会急剧下降,lidar的安全性能降低。
相对于图35所示的现有的编码盘,本发明提供了一种改进的编码盘,其上具有相隔预设角度的第一零度标识和第二零度标识,所述第一零度标识的外观不同于第二零度标识的外观,从而可以补充或者替换所述第一零度标识,来读编码盘的旋转角度进行定位。下面参考附图详细描述。
如图36所示,根据本发明实施例的编码盘91包括大致圆形的盘体911,在盘体911的边缘上均匀分布有多个编码孔912。其中编码孔912的数量、间隔、以及宽度可以根据实际情况来设定,例如根据编码盘的直径、所需的测量精度等参数来决定,不用于限制本发明的保护范围。盘体911上另外具有第一零度标识913和第二零度标识914,二者相隔预设角度,该预设角度是已知的。第一零度标识913在角度测量中用作测量的起点或者参考点,用于衡量其他编码孔的角度以及编码盘91的当前角度定向。其中第一零度标识913的外观不同于第二零度标识914的外观,从而在第一零度标识913例如被污损或者磨损的情况下,可以根据第二零度标识914来得到第一零度标识913的位置,和/或可以直接用于得到编码盘91的角度定向。
本领域技术人员容易理解,所述编码孔912可用于使得光束透过,而相邻的编码孔912之间的部分则不允许光束透过。光源和光电传感器例如分别置于编码盘91的两侧,位于所述编码孔912的圆周上。当有光线入射到光电传感器上时,光电传感器将产生脉冲。因此当编码盘91绕其圆心的轴线旋转时,光源发出的光束会被所述编码盘连续地阻隔、透射、阻隔、透射,从而在光电传感器上产生一个脉冲序列。数据处理装置根据该脉冲序列,即可获得编码盘91的转速、以及当前的角度定位等参数,此处不再赘述。
如图36所示,根据本发明的一个优选实施例,第一零度标识913例如包括位于两个编码孔912之间的宽遮挡区域。在本发明中,“宽遮挡区域”是指未开孔的区域的宽度超过了正常的编码孔912之间的间隔,因而该区域可用于标识零度位置。在图36中,第一零度标识913位于两个编码孔912之间,相比于其他位置的编码孔912之间的间隔区域,第一零度标识913的宽遮挡区域明显较宽。因此当第一零度标识913经过所述光源和光电传感器时,会在显著更长的时间段内阻隔光束,因而在该时间段内无法在光电传感器上产生一个脉冲。以图37为例进行说明。图37中,P1、P2、P3、P4、P5表示由编码孔912产生的脉冲序列。脉冲序列的周期为T,该周期T取决于编码盘91的转速以及编码孔912的分布密度,可以预先确定下来。当在时刻t1-t2中未检测出光电传感器上产生的脉冲,而且t1-t2的长度又大于周期T,从而可以确定检测到了第一零度标识913,此时编码盘的位置为零度位置,即其初始位置。
但如果第一零度标识913被污损或者由于其他原因,在时刻t1-t2同样产生了一个“假”脉冲,此时将无法分辨出第一零度标识913的位置,因而无法定位编码盘91的零度位置。根据本发明,在此情况下,可以根据第二零度标识914来进行定位。
如图36所示,第二标识符914包括第一点a和第二点b,其中在第一点a处和第二点b处分别具有宽遮挡区域,两个宽遮挡区域之间可以由一个编码孔912间隔开。所述第一点a和第二点b处的宽遮挡区域例如与所述第一零度标识的宽遮挡区域相同。但本发明的保护范围不限于此,也可以是不相同的。
如图38所示,在编码盘91旋转过程中,当检测到一个特殊的脉冲图案时,可以判断编码盘91当前旋转到了第二零度位置914。如图38中所示的,P1、P2和P4、P5均为正常的编码孔912产生的脉冲序列。而脉冲P3在其两侧分别具有一个显著较长的时间段(t1-t2以及t3-t4),在该时间段中未检测出光电传感器上产生的脉冲,而且该时间段又大于周期T,此时可以判断编码盘91当前位置为第二零度位置。或者更精确的是,将脉冲P3所在对应的编码盘的位置当做第二零度位置。
由于第一零度标识913和第二零度标识914相隔预设的角度,因此,通过识别第二零度标识914,可以获得第一零度标识913的位置,或者也可以直接通过第二零度标识914,来对编码盘91进行角度定位。这些都在本发明的保护范围内。
图36中所示的第一点a和第二点b之间间隔1个编码孔912,本发明不限于此,二者之间可以间隔1-5个编码孔912,都在本发明的保护范围内。相对于图35的方案而言,本实施例还增设了一个第二零度位置,具体包括点a与点b,点a与点b之间的夹角为α,一般是比较小的数值。点a与点b共同构成零度位置2,起到另一个标识位置的作用。
根据本发明的一个优选实施例,第二零度标识914与第一零度标识913可间隔90度,例如所述第二点b与所述第一零度标识913之间间隔90度,即第二点b与第一零度标识各自与圆心连线构成的角度为90度。
图36的实施例中,在编码孔912之间设置了宽遮挡区域,从而在改变了正常的脉冲序列图案,使得能够识别出第一零度标识和第二零度标识。图39示出了根据本发明的另一个实施例,其中所述第一零度标识913包括第一零度开孔,该第一零度开孔的宽度不同于所述编码孔912的宽度;所述第二零度标识914包括第二零度开孔,所述第二零度开孔的宽度不同于所述编码孔912的宽度,也不同于所述第一零度开孔的宽度。因此,在编码盘91的旋转过程中,除了编码孔912产生的正常脉冲以外,还会产生两个相异的脉冲,分别由第一零度开孔与第二零度开孔产生,脉冲的宽度分别取决于所述第一零度开孔和第二零度开孔的宽度。根据本发明的一个优选实施例,第一零度开孔的宽度大于第二零度开孔的宽度,第二零度开孔的宽度大于编码孔13的宽度。因此,当在编码盘91旋转过程中,检测到最大一个脉冲宽度时,可确定编码盘91当前旋转到了零度位置。如果由于任何原因,第一零度标识无法识别,那么此时可借助于识别第二零度标识914的第二零度开孔,来获得第一零度标识913的位置,和/或直接得到编码盘91的角度定向。
图39的实施例中,是在第一零度标识和第二零度标识的位置处分别设置了不同宽度的开孔。可替换的,所述第一零度标识913和所述第二零度标识914均可 以包括位于两个编码孔之间的宽遮挡区域,其中所述第二零度标识的宽遮挡区域的宽度不同于所述第一零度标识的宽遮挡区域的宽度。从而可以根据未产生脉冲的时间段的长度,识别出第一零度标识和第二零度标识的位置。
在本发明的教导和启示下,本领域技术人员可以构思出多种实现第一零度标识和第二零度标识的方式。上述实施例中,所述第一零度标识和第二零度标识设置在与所述编码孔相同的圆周上,本领域技术人员也可以构思,将第一零度标识和第二零度标识设置在与所述编码孔不同的圆周上。
本发明的另一个方面还涉及一种光电编码器,如图40所示。下面参考图40详细描述。
图40示出了一种透射式的光电编码装置920,其中,光电编码装置920包括编码盘91以及编码器,所述编码器包括光源922以及光电读码器923,分别设置在如上所述的编码盘91的两侧。其中,光源922朝向编码盘91发射出光束,例如为准直性和方向性较高的光束。编码盘91绕其圆心的轴线旋转,光源922位于编码盘91的编码孔912的圆周上,从而随着编码盘91的旋转,所述光源922发出的光束周期性地通过所述编码孔912以及被所述编码孔912之间的区域所阻断。光电读码器923位于编码盘91的与所述光源922相反的一侧上,其上包括光电传感器,例如光电二极管或者雪崩式光电二极管。当来自光源922的光束穿过编码盘91的编码孔912时,光束照射到光电读码器923的光电传感器上,产生脉冲;当光源922的光束被编码盘91阻断时,该光电传感器不会产生脉冲。另外,所述光电读码器923例如还可包括信号处理电路,其接受所述光电传感器的脉冲,从而确定所述编码盘91的角度定向。本领域技术人员容易理解,所述信号处理电路与所述光电传感器可以集成在一起,也可以是分离的电路部件,这些都在本发明的保护范围内。
根据本发明的一个优选实施例,所述光电读码器923配置成:当检测到所述第一零度标识时,确定所述编码盘处于零度位置;当无法检测所述第一零度标识时,检测所述第二零度标识,并根据所述第一零度标识与第二零度标识之间的预设角度,确定所述第一零度标识的位置,和/或确定所述编码盘的角度定向。
另外,图40中示出了所述光源922和光电读码器923分别位于所述编码盘91的两侧,本发明不限于此,本领域技术人员也可以构思将二者放置在所述编码盘91的同一侧上。如图41所示,其中示出了根据本发明一个实施例的反射式的光电编码装置930。其中,所述光电编码装置930包括编码盘91以及第一编码器和第二编码器。其中,第一编码器和第二编码器例如均为反射式的编码器。以第一编码器为例,其包括光源932、以及光电读码器933,分别设置在如上所述的编码盘91的同侧上,例如图41中所示的编码盘91的下侧。如图41所示,当光源932发射的光束穿过编码盘91的编码孔912时,光电读码器933上无法接收到光束的照射,因而没有脉冲产生;而当光源932发射的脉冲被编码孔912之间的部分反射时,反射光束可照射到光电读码器933上,从而产生脉冲。除了第一编码器以外,光电编码装置还包括有第二编码器,第二编码器与第一编码器结构上例如是相同的,同样包括类似的光源932’以及光电读码器933’,但第二编码器设置在所述码盘的不同位置处,优选的,第一编码器与第二编码器可沿着码盘的直径对置。另外根据本发明的一个实施例,第二编码器也可以设置在所述编码盘的另一侧,即图35中的上侧。另外可选的,所述第一编码器和第二编码器可以是不同类型的编码器,例如其中一个为透射式的编码器,另一个为反射式的编码器,这些都在本发明的保护范围内。
本发明还涉及一种激光雷达,包括如上所述的编码盘光电编码装置920或930。通过在激光雷达中包括本发明的光电编码器,可以确保在激光雷达旋转过程中,即使其第一零度位置出现油污或者磨损而不能识别,仍然可以以第二零度位置来代替,基本不会影响激光雷达的点云质量,从而提高lidar的安全性。该激光雷达例如可以为旋转式的机械雷达,其转子围绕激光雷达的轴线旋转,编码盘的圆心的轴线重合于所述激光雷达的轴线,光电编码器设置于激光雷达的底部,随着激光雷达的转子一起转动,以用于检测激光雷达的转动角度。
图42示出了激光雷达910包括如图41所示的光电编码装置930,也就是包括编码盘91、第一编码器和第二编码器。另外,激光雷达还包括控制单元92,控制单元92与所述第一编码器和第二编码器耦合,从而可接收第一编码器输出的第 一编码信号和第二编码器输出的第二编码信号,进而根据第一编码信号和第二编码信号进行各种诊断和操作。
根据本发明的一个实施例,控制单元92可分别根据所述第一编码信号和第二编码信号,判断所述第一编码器和第二编码器是否发生故障。例如当使用本发明的包括两个零度标识的编码盘91时,所述第一编码信号和第二编码信号中都应当包括与所述两个零度标识相对应的信号。如果所述控制单元在所述第一编码信号中发现与两个零度标识相对应的信号,而在第二编码信号中未发现与两个零度标识相对应的信号,那么可以判断在所述第二编码器中发生了故障。反之亦然。
根据本发明的一个实施例,控制单元92可进行所述码盘的诊断。例如,如上所述,本发明编码盘91包括两个零度标识,那么如果所述控制单元在所述第一编码信号和第二编码信号中均没有发现与两个零度标识相对应的信号,或者都只发现一个零度标识相对应的信号,那么说明所述编码盘91可能发生了故障。
根据本发明的一个实施例,控制单元92可以进行转速诊断。控制单元92基于所述第一编码信号或第二编码信号,可以计算出所述编码盘的转速。所述编码盘通常具有预设的转速,将预设转速与计算得到的转速进行比较,判断所述编码盘是否已预设转速进行旋转。当二者之间具有偏差,或者偏差高于一定幅度时,发出报警。
根据本发明的一个实施例,控制单元92可以在诊断并确认编码器无故障之后,进行码盘的故障检测,并在确认码盘无故障之后,再进行电机的转速诊断。
通过图42所示的实施例可知,本发明实施例中lidar采用具备双零度位置的码盘以及双编码器,从单个器件的角度,无论是对码盘或者编码器,在其中一个出现一定异常时,还可以存在备选器件。另外,再配合控制单元根据双编码器以及码盘输出信号进行故障的检测,从而本申请中的lidar可以提供一种安全可靠的角度测试、速度测量方案。
本发明还涉及一种使用如上所述的编码盘进行角度定向的方法940,如图43所示,方法940,包括:
在步骤S941:检测所述第一零度标识,以确定所述编码盘的零度位置;
在步骤S942:当无法检测所述第一零度标识时,检测所述第二零度标识;和
在步骤S943:根据所述第一零度标识与第二零度标识之间的预设角度,确定所述第一零度标识的位置,和/或确定所述编码盘的角度定向。
通过本发明实施例的技术方案,在码盘的零度位置出现了油污或者磨损等问题之后,还能采用该码盘进行角度的准确测量;零度脏污后不影响启动工作;非零度脏污造成干扰信号时,转子的信号测量系统仍然可以继续工作,因而具有很强的鲁棒性。
本发明提供一种编码盘,包括大致圆形的盘体,其中在所述盘体的边缘上设置有多个均匀分布的编码孔,所述盘体上另外具有相隔预设角度的第一零度标识和第二零度标识,其中所述第一零度标识的外观不同于第二零度标识的外观。
根据本发明的一个方面,所述第一零度标识和第二零度标识设置在与所述编码孔相同的圆周上。
根据本发明的一个方面,所述第一零度标识包括位于两个编码孔之间的宽遮挡区域,所述第二零度标识包括第一点和第二点,其中在第一点和第二点分别对应的圆周上分别具有与所述第一零度标识相同的宽遮挡区域。
根据本发明的一个方面,所述第一点和第二点之间间隔1-5个所述编码孔,所述第二点与所述第一零度标识间隔90度。
根据本发明的一个方面,所述第一零度标识包括第一零度开孔,该第一零度开孔的宽度不同于所述编码孔的宽度;所述第二零度标识包括第二零度开孔,所述第二零度开孔的宽度不同于所述编码孔的宽度,也不同于所述第一零度开孔的宽度。
根据本发明的一个方面,所述第一零度标识和所述第二零度标识均包括位于两个编码孔之间的宽遮挡区域,其中所述第二零度标识的宽遮挡区域的宽度不同于所述第一零度标识的宽遮挡区域的宽度。
本发明还提供一种光电编码装置,包括:
如上所述的编码盘,所述编码盘可绕其圆心的轴线旋转;
第一编码器,所述第一编码器包括:
第一光源,所述第一光源发出的光束可透过所述编码盘上的编码孔,或被所述编码孔之间的部分阻断;
第一光电读码器,配置成可接收来自所述第一光源的光束,以确定所述编码盘的角度定向。
根据本发明的一个方面,所述第一光电读码器配置成,当检测到所述第一零度标识时,确定所述编码盘处于零度位置;当无法检测所述第一零度标识时,检测所述第二零度标识,并根据所述第一零度标识与第二零度标识之间的预设角度,确定所述第一零度标识的位置,和/或对所述编码盘进行角度定位。
根据本发明的一个方面,所述的光电编码装置,还包括第二编码器,所述第二编码器包括:
第二光源,所述第二光源发出的光束可透过所述编码盘上的编码孔,或被所述编码孔之间的部分阻断;
第二光电读码器,配置成可接收来自所述第二光源的光束,以确定所述编码盘的角度定向。
本发明还提供一种使用如上所述的编码盘进行角度定向的方法,包括:
检测所述第一零度标识,以确定所述编码盘的零度位置;
当无法检测所述第一零度标识时,检测所述第二零度标识;和
根据所述第一零度标识与第二零度标识之间的预设角度,确定所述第一零度标识的位置,和/或对所述编码盘进行角度定位。
本发明还提供一种激光雷达,包括如上所述的光电编码装置,所述编码盘的圆心的轴线重合于所述激光雷达的轴线,所述光电编码装置设置于激光雷达的底部,随着激光雷达的转子一起转动,以用于检测激光雷达的转动角度。
根据本发明的一个方面,其中所述第一光电读码器配置成,当检测到所述第一零度标识时,确定所述编码盘处于零度位置;当无法检测所述第一零度标识时,检测所述第二零度标识,并根据所述第一零度标识与第二零度标识之间的预设角度,确定所述第一零度标识的位置,和/或对所述编码盘进行角度定位。
根据本发明的一个方面,其中所述光电编码装置还包括第二编码器,所述第 二编码器包括:
第二光源,所述第二光源发出的光束可透过所述编码盘上的编码孔,或被所述编码孔之间的部分阻断;
第二光电读码器,配置成可接收来自所述第二光源的光束,以确定所述编码盘的角度定向。
根据本发明的一个方面,所述的激光雷达还包括控制单元,所述控制单元与所述第一编码器和第二编码器耦合,并根据所述第一编码器输出的第一编码信号和所述第二编码器输出的第二编码信号,进行编码器诊断。
根据本发明的一个方面,所述控制单元还适于在确认编码器无故障后,进行码盘诊断。
根据本发明的一个方面,所述控制单元还适于在确认码盘无故障后,进行转速诊断。
通过本发明实施例的技术方案,在码盘的零度位置出现了油污或者磨损等问题之后,还能采用该码盘进行角度的准确测量;零度脏污后不影响启动工作;非零度脏污造成干扰信号时,转子的信号测量系统仍然可以继续工作,因而具有很强的鲁棒性。
以上描述了激光雷达诊断系统的整体架构以及根据本发明各个方面的诊断单元以及各个具体实施例。本领域技术人员容易理解,上述各个方面以及各个实施例中的技术方案,均可以进行自由的组合,而无需付出创造性的劳动,这些都在本发明的保护范围内。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种可用于激光雷达的状态检测装置,包括:
    故障诊断单元,配置成可对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号;
    诊断管理单元,所述诊断管理单元与所述故障诊断单元通讯以接收所述故障诊断信号,并配置成根据所述故障诊断信号,确定所述激光雷达的状态。
  2. 如权利要求1所述的状态检测装置,其中所述激光雷达包括上仓板和下仓板,所述故障诊断单元包括:
    第一故障诊断单元,配置成可对激光雷达的安装或连接到所述上仓板的部件进行故障诊断,并且当诊断到故障存在时输出第一故障诊断信号;和
    第二故障诊断单元,配置成可对激光雷达的安装或连接到所述下仓板的部件进行故障诊断,并且当诊断到故障存在时输出第二故障诊断信号;
    其中所述诊断管理单元与所述第一故障诊断单元和第二故障诊断单元通讯以接收所述第一故障诊断信号和第二故障诊断信号,并配置成根据所述第一故障诊断信号和第二故障诊断信号,确定所述激光雷达的状态。
  3. 如权利要求2所述的状态检测装置,其中所述激光雷达包括设置在所述上仓板上的发射单元、接收单元和点云生成单元,其中所述发射单元配置成可向激光雷达外部发射探测激光束,所述接收单元配置成接收所述探测激光束在目标物上反射后的回波并转换为电信号,所述点云生成单元配置成根据所述电信号生成激光雷达的点云数据,其中所述诊断管理单元与所述点云生成单元耦接,并且配置成当接收到所述第一故障诊断信号时,接收与所述第一故障诊断信号相对应的点云数据。
  4. 如权利要求2或3所述的状态检测装置,其中所述激光雷达包括设置在所述下仓板上的电机、电源、编码器和通信部件,所述激光雷达的状态包括:初始 化状态、正常状态、劣化状态、停机状态,
    其中在所述初始化状态,所述激光雷达进行自检操作和电机启动操作;
    在所述正常状态,所述第一故障诊断单元和第二故障诊断单元进行周期性检测;
    在所述劣化状态,所述第一故障诊断单元和第二故障诊断单元进行周期性检测,并且对所述激光雷达的至少部分数据进行记录;
    在所述停机状态,所述激光雷达断电,并对所述激光雷达的至少部分数据进行记录。
  5. 如权利要求4所述的状态检测装置,其中所述激光雷达的故障包括预设的一级故障和二级故障;其中当所述第一故障诊断单元或第二故障诊断单元检测到一级故障时,所述诊断管理单元将所述激光雷达的状态切换到劣化状态;当所述第一故障诊断单元或第二故障诊断单元检测到二级故障时,所述诊断管理单元将所述激光雷达的状态切换到停机状态。
  6. 如权利要求5所述的状态检测装置,其中当在所述劣化状态所述第一故障诊断单元和第二故障诊断单元未检测到故障时,所述诊断管理单元将激光雷达的状态从劣化状态切换为正常状态。
  7. 如权利要求4所述的状态检测装置,其中所述自检操作包括:所述激光雷达的电源和时钟的自检;所述上仓板和下仓板的自检;内部供电自检;发射单元和接收单元自检,
    其中当所述自检操作成功后进行所述电机启动操作,
    其中当在所述初始化阶段自检成功并且电机启动成功后,所述诊断管理单元将激光雷达的状态从初始化状态切换为正常状态;
    如果所述电源和时钟的自检失败,或所述上仓板和下仓板的自检失败,所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态;
    如果所述电机启动操作失败,所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态。
  8. 如权利要求5所述的状态检测装置,还包括第一缓存、第二缓存和故障存储器,其中所述第一故障诊断单元当判断出故障存在时,触发将故障数据缓存至所述第一缓存;
    所述第二故障诊断单元当判断出故障存在时,触发将所述至少故障数据缓存至所述第二缓存;
    所述故障存储器与所述第一缓存和第二缓存耦接,并配置成可接收所述故障数据。
  9. 如权利要求8所述的状态检测装置,其中所述诊断管理单元与所述故障存储器通讯,并且可根据外部请求输出所述故障存储器中存储的故障数据。
  10. 如权利要求3所述的状态检测装置,还包括点云合理性诊断单元,所述点云合理性诊断单元配置成可接收所述点云数据并输出所述点云数据是否合理的结果信息,所述诊断管理单元与所述点云合理性诊断单元通讯,并从所述点云合理性诊断单元接收所述点云数据是否合理的结果信息。
  11. 一种激光雷达,包括:如权利要求1-10中任一项所述的状态检测装置。
  12. 如权利要求11所述的激光雷达,还包括上仓板和下仓板,所述上仓板和下仓板上分别安装或连接有激光雷达的部件,其中所述上仓板和下仓板通过FPGA和/或微控制器实现。
  13. 一种激光雷达的状态检测方法,包括:
    通过故障诊断单元对激光雷达的部件进行故障诊断,并且当诊断到故障存在时输出故障诊断信号;和
    通过诊断管理单元接收所述故障诊断信号,并根据所述故障诊断信号,确定所述激光雷达的状态。
  14. 如权利要求12所述的状态检测方法,其中所述激光雷达包括上仓板和下仓板,所述故障诊断单元包括第一故障诊断单元和第二故障诊断单元,其中所述通过故障诊断单元对激光雷达的部件进行故障诊断并且当诊断到故障存在时输出故障诊断信号的步骤包括:
    通过第一故障诊断单元对激光雷达的安装或连接到所述上仓板上的部件进行故障诊断,并且当诊断到故障存在时输出第一故障诊断信号;和
    通过第二故障诊断单元对激光雷达的安装或连接到所述下仓板上的部件进行故障诊断,并且当诊断到故障存在时输出第二故障诊断信号;
    其中所述通过诊断管理单元接收所述故障诊断信号、并根据所述故障诊断信号、确定所述激光雷达的状态的步骤包括:通过诊断管理单元接收所述第一故障诊断信号和第二故障诊断信号,并根据所述第一故障诊断信号和第二故障诊断信号,确定所述激光雷达的状态。
  15. 如权利要求14所述的状态检测方法,其中所述激光雷达包括设置在所述上仓板上的发射单元、接收单元和点云生成单元,其中所述发射单元配置成可向激光雷达外部发射探测激光束,所述接收单元配置成接收所述探测激光束在目标物上反射后的回波并转换为电信号,所述点云生成单元配置成根据所述电信号生成激光雷达的点云数据,其中所述状态检测方法还包括:当接收到所述第一故障诊断信号时,接收与所述第一故障诊断信号相对应的点云数据。
  16. 如权利要求14或15所述的状态检测方法,其中所述激光雷达包括设置在所述下仓板上的电机、电源、编码器和通信部件,所述激光雷达的状态包括:初始化状态、正常状态、劣化状态、停机状态,所述状态检测方法包括:
    在所述初始化状态,对所述激光雷达进行自检操作和电机启动操作;
    在所述正常状态,通过所述第一故障诊断单元和第二故障诊断单元进行周期性检测;
    在所述劣化状态,通过所述第一故障诊断单元和第二故障诊断单元进行周期性检测,并且对所述激光雷达的至少部分数据进行记录;
    在所述停机状态,对所述激光雷达断电,并对所述激光雷达的至少部分数据进行记录。
  17. 如权利要求16所述的状态检测方法,其中所述激光雷达的故障包括一级故障和二级故障;其中所述状态检测方法还包括:
    当所述第一故障诊断单元或第二故障诊断单元检测到一级故障时,通过所述诊断管理单元将所述激光雷达的状态切换到劣化状态;
    当所述第一故障诊断单元或第二故障诊断单元检测到二级故障时,通过所述诊断管理单元将所述激光雷达的状态切换到停机状态。
  18. 如权利要求17所述的状态检测方法,还包括:当在所述劣化阶段所述第一故障诊断单元和第二故障诊断单元未检测到故障时,所述诊断管理单元将激光雷达的状态从劣化状态切换为正常状态。
  19. 如权利要求16所述的状态检测方法,其中所述自检操作包括:所述激光雷达的电源和时钟的自检;所述上仓板和下仓板的自检;内部供电自检;发射单元和接收单元自检,其中当所述自检操作成功后进行所述电机启动操作,
    所述状态检测方法还包括:
    其中当在所述初始化阶段自检成功并且电机启动成功后,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为正常状态;
    如果所述电源和时钟的自检失败,或所述上仓板和下仓板的自检失败,通过所述诊断管理单元将激光雷达的状态从初始化状态切换为停机状态;
    如果所述电机启动操作失败,通过所述诊断管理单元将激光雷达的状态从初 始化状态切换为停机状态。
  20. 如权利要求17所述的状态检测方法,还包括:当所述第一故障诊断单元判断出故障存在时,将故障数据缓存至第一缓存;
    当所述第二故障诊断单元判断出故障存在时,将故障数据缓存至第二缓存;
    通过故障存储器从所述第一缓存和第二缓存接收所述故障数据。
  21. 如权利要求20所述的状态检测方法,还包括:当接收到外部请求时,通过所述诊断管理单元输出所述故障存储器中存储的故障数据。
  22. 如权利要求13-15中任一项所述的状态检测方法,还包括:通过点云合理性诊断单元判断所述点云数据是否合理并输出结果信息;
    通过所述诊断管理单元从所述点云合理性诊断单元接收所述点云数据是否合理的结果信息。
PCT/CN2020/084031 2019-11-07 2020-04-09 激光雷达的状态检测装置、激光雷达以及状态检测方法 WO2021088313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/738,236 US20220268904A1 (en) 2019-11-07 2022-05-06 State detection device for lidar, lidar, and state detection method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201911084360.3A CN112782673A (zh) 2019-11-07 2019-11-07 故障诊断方法、激光雷达发射端组件及激光雷达
CN201911084372.6A CN112782674A (zh) 2019-11-07 2019-11-07 激光雷达及其控制方法
CN201911084372.6 2019-11-07
CN201911084360.3 2019-11-07
CN201911083826.8 2019-11-07
CN201911084281.2A CN110794383A (zh) 2019-11-07 2019-11-07 编码盘、光电编码器和激光雷达
CN201911084281.2 2019-11-07
CN201911083826.8A CN112782672A (zh) 2019-11-07 2019-11-07 激光雷达接收端组件、其故障诊断方法以及激光雷达
CN201911121480.6 2019-11-15
CN201911121480.6A CN110940965A (zh) 2019-11-15 2019-11-15 用于lidar的供电异常监测系统、方法及lidar系统
CN201911250924.6 2019-12-09
CN201911250924.6A CN113030881A (zh) 2019-12-09 2019-12-09 激光雷达的点云合理性诊断方法、激光雷达以及包括其的车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,236 Continuation US20220268904A1 (en) 2019-11-07 2022-05-06 State detection device for lidar, lidar, and state detection method

Publications (1)

Publication Number Publication Date
WO2021088313A1 true WO2021088313A1 (zh) 2021-05-14

Family

ID=75848081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084031 WO2021088313A1 (zh) 2019-11-07 2020-04-09 激光雷达的状态检测装置、激光雷达以及状态检测方法

Country Status (2)

Country Link
US (1) US20220268904A1 (zh)
WO (1) WO2021088313A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170381A1 (en) * 2021-10-19 2023-04-26 Suteng Innovation Technology Co., Ltd Lidar performance detection method, related device and computer storage medium
CN117935132A (zh) * 2024-03-22 2024-04-26 深圳市天兴诚科技有限公司 一种利用激光雷达识别堆叠货物的数据处理系统
WO2024120372A1 (en) * 2022-12-05 2024-06-13 Hesai Technology Co., Ltd. Position detection device for a rotating mechanism of a lidar and self-diagnostic method therefor, and lidar

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220137197A1 (en) * 2020-10-30 2022-05-05 Motional Ad Llc Robust eye safety for lidars
US11843344B2 (en) * 2020-11-02 2023-12-12 Richtek Technology Corporatiion Brushless DC electric (BLDC) motor driver circuit
CN115761215B (zh) * 2022-11-10 2024-04-26 中国矿业大学 一种考虑物体表面粗糙度的隔离开关监测方法
CN115877362B (zh) * 2023-02-22 2023-06-02 广州导远电子科技有限公司 故障诊断方法、驱动电路和激光雷达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047051A (ja) * 2004-08-03 2006-02-16 Denso Corp ミリ波レーダ装置
CN105183593A (zh) * 2015-07-29 2015-12-23 山东超越数控电子有限公司 一种基于国产计算机自检测的系统及方法
CN108874733A (zh) * 2018-04-25 2018-11-23 明阳智慧能源集团股份公司 一种大型半直驱机组健康状态评估方法
CN109597088A (zh) * 2018-11-15 2019-04-09 深圳市速腾聚创科技有限公司 激光雷达融合系统
CN208872865U (zh) * 2018-06-13 2019-05-17 深圳市华讯方舟雷达技术装备有限公司 一种船用导航雷达状态监视系统
CN110133658A (zh) * 2019-04-28 2019-08-16 惠州市德赛西威智能交通技术研究院有限公司 一种应用于车载雷达的故障检测方法以及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137903B2 (en) * 2016-08-16 2018-11-27 Uber Technologies, Inc. Autonomous vehicle diagnostic system
US11340336B2 (en) * 2017-12-07 2022-05-24 Ouster, Inc. Rotating light ranging system with optical communication uplink and downlink channels
US10942244B2 (en) * 2017-12-12 2021-03-09 Waymo Llc Systems and methods for LIDARs with adjustable resolution and failsafe operation
US10553044B2 (en) * 2018-01-31 2020-02-04 Mentor Graphics Development (Deutschland) Gmbh Self-diagnosis of faults with a secondary system in an autonomous driving system
WO2020081524A1 (en) * 2018-10-15 2020-04-23 Nvidia Corporation Enhanced in-system test coverage based on detecting component degradation
US11543535B2 (en) * 2019-07-03 2023-01-03 Uatc, Llc Lidar fault detection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047051A (ja) * 2004-08-03 2006-02-16 Denso Corp ミリ波レーダ装置
CN105183593A (zh) * 2015-07-29 2015-12-23 山东超越数控电子有限公司 一种基于国产计算机自检测的系统及方法
CN108874733A (zh) * 2018-04-25 2018-11-23 明阳智慧能源集团股份公司 一种大型半直驱机组健康状态评估方法
CN208872865U (zh) * 2018-06-13 2019-05-17 深圳市华讯方舟雷达技术装备有限公司 一种船用导航雷达状态监视系统
CN109597088A (zh) * 2018-11-15 2019-04-09 深圳市速腾聚创科技有限公司 激光雷达融合系统
CN110133658A (zh) * 2019-04-28 2019-08-16 惠州市德赛西威智能交通技术研究院有限公司 一种应用于车载雷达的故障检测方法以及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170381A1 (en) * 2021-10-19 2023-04-26 Suteng Innovation Technology Co., Ltd Lidar performance detection method, related device and computer storage medium
WO2024120372A1 (en) * 2022-12-05 2024-06-13 Hesai Technology Co., Ltd. Position detection device for a rotating mechanism of a lidar and self-diagnostic method therefor, and lidar
CN117935132A (zh) * 2024-03-22 2024-04-26 深圳市天兴诚科技有限公司 一种利用激光雷达识别堆叠货物的数据处理系统
CN117935132B (zh) * 2024-03-22 2024-06-04 深圳市天兴诚科技有限公司 一种利用激光雷达识别堆叠货物的数据处理系统

Also Published As

Publication number Publication date
US20220268904A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021088313A1 (zh) 激光雷达的状态检测装置、激光雷达以及状态检测方法
CN113567961A (zh) 激光雷达的状态检测装置、激光雷达以及状态检测方法
WO2017087951A1 (en) Compact chip scale lidar solution
US10113694B2 (en) Time-of-flight safety photoelectric barrier and method of monitoring a protective field
US20220184811A1 (en) Method and system for initialization diagnosis of mobile robot
CN110927734A (zh) 一种激光雷达系统及其抗干扰方法
KR20140025041A (ko) 3차원 레이저 스캐닝 시스템
JP2023549774A (ja) 伝送光学パワーモニタを伴うLiDARシステム
EP3540468B1 (en) Object detector, mobile object, and object detection method
WO2021175227A1 (zh) 激光雷达及使用激光雷达测距的方法
CN111247443A (zh) 电机状态监测装置和电机状态监测方法
JP2024509876A (ja) 能動的な障害監視を伴うLiDARシステム
US20220057493A1 (en) Device for operating a light source for the optical time-of-flight measurement
CN112034486A (zh) 激光雷达及激光雷达的控制方法
WO2020061969A1 (zh) 一种激光发射装置和测距装置
US11927644B2 (en) Circuit failure detection for diode arrays
CN112782673A (zh) 故障诊断方法、激光雷达发射端组件及激光雷达
WO2020061968A1 (zh) 一种光发射装置及测距装置、移动平台
US20240069177A1 (en) Optical assembly detection system for lidar and lidar
KR102100860B1 (ko) 라이다 다이오드 고장 진단 장치 및 방법
JPH1031064A (ja) 走査型レーザレーダ装置
CN115480253B (zh) 一种基于spad线阵探测器的三维扫描激光雷达
CN112782672A (zh) 激光雷达接收端组件、其故障诊断方法以及激光雷达
WO2020215577A1 (zh) 激光雷达及其探测装置
CN109891264B (zh) 用于机动车辆的检测装置,驾驶员辅助系统,机动车辆和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885580

Country of ref document: EP

Kind code of ref document: A1