WO2021088114A1 - 一种基于t型灯管的led驱动电路 - Google Patents

一种基于t型灯管的led驱动电路 Download PDF

Info

Publication number
WO2021088114A1
WO2021088114A1 PCT/CN2019/119035 CN2019119035W WO2021088114A1 WO 2021088114 A1 WO2021088114 A1 WO 2021088114A1 CN 2019119035 W CN2019119035 W CN 2019119035W WO 2021088114 A1 WO2021088114 A1 WO 2021088114A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
input
capacitor
output
pwm control
Prior art date
Application number
PCT/CN2019/119035
Other languages
English (en)
French (fr)
Inventor
谢姜
黄迪
朱奕光
陈剑晖
Original Assignee
佛山电器照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山电器照明股份有限公司 filed Critical 佛山电器照明股份有限公司
Priority to CA3109152A priority Critical patent/CA3109152A1/en
Priority to US17/266,104 priority patent/US11350501B2/en
Publication of WO2021088114A1 publication Critical patent/WO2021088114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]

Definitions

  • the invention relates to the technical field of circuits, in particular to an LED drive circuit based on a T-shaped lamp tube.
  • fluorescent lamps have been vigorously promoted. Although fluorescent lamps have the advantages of energy saving, they have a short service life and are harmful to the environment. Therefore, many manufacturers are gradually stopping the production of fluorescent lamps.
  • T-shaped tubes (mainly T5 and T8) are no exception.
  • the technical problem to be solved by the present invention is to provide an LED drive circuit based on a T-shaped lamp tube, which can realize the compatibility of mains single-ended input, mains double-ended input and electronic ballast double-ended input, simple circuit and system Low cost, small size, high efficiency and stable performance.
  • the present invention provides an LED drive circuit based on a T-shaped tube, including: an input rectifier circuit, a Buck circuit, an IC power supply circuit, a PWM control integrated circuit, and a compatible electronic ballast circuit electrically connected to each other And an output rectification filter circuit; the output end of the input rectification circuit is connected to the input end of the Buck circuit and the input end of the IC power supply circuit, the output end of the Buck circuit is connected to the input end of the output rectification filter circuit, the IC power supply circuit
  • the output end of the PWM control integrated circuit is connected to the input end of the PWM control integrated circuit, the output end of the PWM control integrated circuit is respectively connected to the input end of the Buck circuit and the input end of the output rectification filter circuit; the output end of the compatible electronic ballast circuit is connected to the output The input end of the rectification filter circuit; the input end of the input rectification circuit and the input end of the compatible electronic ballast circuit are connected to the power supply, when the input end of
  • the compatible electronic ballast circuit includes a detection capacitor and a ballast sub-circuit, one end of the detection capacitor is connected to the power supply, and the other end of the detection capacitor is connected to the input end of the ballast sub-circuit, The output end of the ballast sub-circuit is connected to the input end of the output rectification filter circuit; when one end of the detection capacitor is directly connected to the power supply, the detection capacitor is disconnected and the ballast sub-circuit does not work; When one end of the detection capacitor is connected to the power supply through the electronic ballast, the detection capacitor is connected to the circuit and the ballast sub-circuit works.
  • the ballast sub-circuit includes a Zener diode, an energy storage capacitor, a discharge resistor, a first rectifier diode, a second rectifier diode, and a field effect tube; the Zener diode, an energy storage capacitor, and a discharge resistor
  • the resistors are connected in parallel with each other, the cathode of the Zener diode is connected to the gate of the FET and the detection capacitor is connected through the first rectifier diode, and the anode of the Zener diode is connected to the source of the FET and the detection is connected through the second rectifier diode.
  • Capacitor, the drain of the field effect tube is connected to the output rectification filter circuit.
  • the PWM control integrated circuit includes a PWM control chip, a compensation capacitor, a sampling resistor group, a sampling capacitor, and a detection resistor;
  • the PWM control chip is provided with chip power supply pins, compensation pins, and output current sampling Pin, loop feedback pin, drive pin and ground pin;
  • the chip power supply pin is connected to the IC power supply circuit, the compensation pin is grounded through a compensation capacitor, and the output current sampling pin is through a sampling resistor
  • the group is grounded and connected to the output rectification filter circuit through the sampling resistor group and the sampling capacitor, the loop feedback pin is connected to the IC power supply circuit and grounded through the detection resistor, the drive pin is connected to the Buck circuit, and the ground pin is connected to the ground.
  • the Buck circuit includes a step-down resistor, a step-down capacitor, a step-down diode, and a step-down inductor; one end of the step-down resistor is connected to the PWM control integrated circuit through the step-down capacitor, and the other end is connected to the input rectifier circuit
  • the anode of the step-down diode is connected to the PWM control integrated circuit, and the negative electrode is connected to the input rectifier circuit; one end of the step-down inductor is connected to the PWM control integrated circuit, and the other end is connected to the output rectifier filter circuit.
  • the IC power supply circuit includes a charging resistor group, a charging capacitor, a charging diode, a first charging resistor, a second charging resistor, and a charging inductor; one end of the charging resistor group is connected to the input rectifier circuit, and the other end is connected to PWM control integrated circuit; one end of the charging capacitor is connected to the input rectifier circuit, and the other end is connected to the PWM control integrated circuit; one end of the charging inductor is grounded, and the other end is connected to the PWM control integrated circuit through the first charging resistor and passes through the charging diode and The second charging resistor is connected to the PWM control integrated circuit.
  • the LED driving circuit further includes any one or a combination of a double-terminal contact protection circuit, an overvoltage and overcurrent protection circuit, and an EMC filter circuit.
  • the double-ended contact protection circuit when the power supply is single-ended input to the LED load through the LED drive circuit, the double-ended contact protection circuit does not conduct; when the power supply is double-ended input to the LED load through the LED drive circuit, the double-ended contact protection circuit Conduction.
  • the overvoltage and overcurrent protection circuit includes a first varistor and a second varistor, the first varistor is arranged at both ends of the input rectifier circuit, and the second varistor Connect with the reverse output terminal of the input rectifier circuit.
  • the EMC filter circuit includes a first common-mode inductor group, a second common-mode inductor group, a first filter capacitor, a second filter capacitor, a third filter capacitor, and a fourth filter capacitor;
  • the filter capacitor and the second filter capacitor are arranged at both ends of the input rectifier circuit; the first common mode inductor group is connected to one output end of the input rectifier circuit, and the second common mode inductor group is connected to the other output terminal of the input rectifier circuit.
  • One end of the third filter capacitor is connected to one input end of the input rectifier circuit, the other end is connected to a compatible electronic ballast circuit, and one end of the fourth filter capacitor is connected to the other input end of the input rectifier circuit , The other end is connected to a compatible electronic ballast circuit.
  • the invention is suitable for T-shaped lamps, and can realize the compatibility of AC mains single-ended input, AC mains double-ended input and electronic ballast dual-ended input, and has simple circuit, low system cost, small size, high efficiency and stable performance Etc. Specifically, when the T-shaped lamp is connected to AC mains single-ended or double-ended input, the compatible electronic ballast circuit does not work, and the PWM control integrated circuit drives the LED load. When the T-shaped lamp tube is connected to the double-end input of the electronic ballast, the output of the PWM control integrated circuit is zero, which is compatible with the operation of the electronic ballast circuit to drive the LED load.
  • Figure 1 is a schematic diagram of the structure of a T-shaped lamp when it is connected to a single-ended input of mains;
  • FIG. 2 is a schematic diagram of the structure of the T-shaped lamp when it is connected to the double-ended input of the mains;
  • Fig. 3 is a schematic diagram of the structure of the T-shaped lamp tube when the double-ended input of the electronic ballast is connected;
  • FIG. 4 is a schematic structural diagram of the first embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • FIG. 5 is a circuit diagram of the first embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • FIG. 6 is a schematic structural diagram of the second embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • Fig. 7 is a circuit diagram of a second embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • FIG. 8 is a schematic structural diagram of the third embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • Fig. 9 is a circuit diagram of the third embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • the LED drive circuit based on the T-shaped tube of the present invention is suitable for the T-shaped tube, and can realize the input compatibility of single-ended mains, double-ended mains and North American electronic ballasts (Instant Start Parallel), with simple circuit and low system cost , Small size, high efficiency and stable performance.
  • FIG. 4 shows the first embodiment of the LED drive circuit based on the T-shaped tube of the present invention, which includes an input rectifier circuit 1, a Buck circuit 2, an IC power supply circuit 3, and a PWM control integrated circuit 4 electrically connected to each other. , Compatible with electronic ballast circuit 5 and output rectifier filter circuit 6.
  • the input rectifier circuit 1 is used to rectify the input power to direct current;
  • the Buck circuit 2 is used to step down;
  • the IC power supply circuit 3 is used to supply power to the PWM control integrated circuit 4;
  • the PWM control integrated circuit 4 is used to provide control for the Buck circuit 2 PWM (Pulse Width Modulation) signal;
  • compatible electronic ballast circuit 5 is used for compatible electronic ballast;
  • output rectification filter circuit 6 is used for rectifying and filtering the output current. specifically:
  • the output terminal of the input rectification circuit 1 is connected to the input terminal of the Buck circuit 2 and the input terminal of the IC power supply circuit 3, and the output terminal of the Buck circuit 2 is connected to the input terminal of the output rectification filter circuit 6, and the IC power supply circuit 3
  • the output terminal of the PWM control integrated circuit 4 is connected to the input terminal.
  • the output terminal of the PWM control integrated circuit 4 is respectively connected to the input terminal of the Buck circuit 2 and the input terminal of the output rectification filter circuit 6.
  • the output of the output rectification filter circuit 6 Connect the LED load to the terminal.
  • the LED load is preferably an LED T-shaped tube.
  • the output terminal of the compatible electronic ballast circuit 5 is connected to the input terminal of the output rectification filter circuit 6.
  • the input terminal of the input rectifier circuit 1 and the input terminal of the compatible electronic ballast circuit 5 are connected to the power source.
  • the input terminal of the compatible electronic ballast circuit 5 does not work.
  • the input terminal of the input rectifier circuit 1 and the input terminal of the compatible electronic ballast circuit 5 are connected to a power source through an electronic ballast, the compatible electronic ballast
  • the input terminal of the converter circuit 5 works.
  • the present invention can be connected to AC mains single-ended input, double-ended input or electronic ballast double-ended input.
  • the compatible electronic ballast circuit 5 does not work, the input rectifier circuit 1, the Buck circuit 2, the IC power supply circuit 3, the PWM control integrated circuit 4, and the output rectifier filter circuit 6 work to drive The LED load emits light; when the LED load is connected to the AC mains dual-terminal input, the compatible electronic ballast circuit 5 does not work, the input rectifier circuit 1, the Buck circuit 2, the IC power supply circuit 3, the PWM control integrated circuit 4 and the output rectification filter circuit 6 Work to drive the LED load to emit light; when the LED load is connected to the double-ended input of the electronic ballast, the output of the PWM control integrated circuit 4 is "0", the input rectifier circuit 1, the compatible electronic ballast circuit 5, and the output rectification filter The circuit 6 works to drive the LED load to emit light.
  • the present invention realizes AC mains single-ended input, double-ended input, or electronic ballast double-ended input by being compatible with the working state of the electronic ballast circuit 5, and has strong flexibility.
  • the compatible electronic ballast circuit 5 includes a detection capacitor C1 and a ballast sub-circuit 51.
  • One end of the detection capacitor C1 is connected to a power supply, and the other end of the detection capacitor C1 is connected to the ballast sub-circuit.
  • the input terminal of the circuit 51, the output terminal of the ballast sub-circuit 51 is connected to the input terminal of the output rectification filter circuit 6; when one end of the detection capacitor C1 is directly connected to the power supply, the detection capacitor C1 is disconnected, and the ballast
  • the current sub-circuit 51 does not work; when one end of the detection capacitor C1 is connected to a power source through an electronic ballast, the detection capacitor C1 is connected, and the ballast sub-circuit 51 works.
  • the detection capacitor C1 has the characteristics of high frequency and low frequency resistance.
  • the current frequency of AC mains is low, so that the current is cut off in the middle, and the detection capacitance C1 is open, and the ballast sub-circuit 51 does not work;
  • the current output by the electronic ballast has a high frequency, so that the current flows all the time, and the circuit of the capacitor C1 is detected, and the ballast The sub-circuit 51 works.
  • the present invention determines the working state of the compatible electronic ballast circuit 5 by detecting the on-off state of the capacitor C1, so that the present invention can be applied to AC mains single-ended input, double-ended input, or electronic ballast double-ended input, etc.
  • the system has low cost, small size and strong flexibility.
  • the ballast sub-circuit 51 includes a Zener diode Z1, an energy storage capacitor C2, a discharge resistor R1, a first rectifier diode D1, a second rectifier diode D2, and a field effect tube Q1; the Zener diode Z1, a storage capacitor C2, and a field effect tube Q1.
  • the energy capacitor C2 and the discharge resistor R1 are connected in parallel with each other, the negative electrode of the Zener diode Z1 is connected to the gate of the field effect transistor Q1 and the detection capacitor C1 is connected through the first rectifier diode D1, and the anode of the Zener diode Z1 is connected to the field effect transistor.
  • the source of Q1 is connected to the detection capacitor C1 through the second rectifier diode D2, and the drain of the field effect transistor Q1 is connected to the output rectification filter circuit 6.
  • the input rectifier circuit 1 is a rectifier bridge
  • the output rectifier filter circuit 6 is an RC oscillation circuit.
  • the Buck circuit 2 includes a step-down resistor R2, a step-down capacitor C3, a step-down diode D3, and a step-down inductor TIB; one end of the step-down resistor R2 is connected to the PWM control integrated circuit 4 through the step-down capacitor C3, and the other end is connected to the input Rectifier circuit 1; the anode of the step-down diode D3 is connected to the PWM control integrated circuit 4, and the cathode is connected to the input rectifier circuit 1.
  • One end of the step-down inductor TIB is connected to the PWM control integrated circuit 4, and the other end is connected to the output rectifier filter circuit 6.
  • the IC power supply circuit 3 includes a charging resistor group (R3, R4), a charging capacitor C4, a charging diode D4, a first charging resistor R5, a second charging resistor R6, and a charging inductor TIA; the charging resistor group (R3, R4) One end of the charging capacitor C4 is connected to the input rectifier circuit 1, and the other end is connected to the PWM control integrated circuit 4; one end of the charging capacitor C4 is connected to the input rectifier circuit 1, and the other end is connected to the PWM control integrated circuit 4; one end of the charging inductor TIA is grounded, and the other end
  • the PWM control integrated circuit 4 is connected through the first charging resistor R5 and connected to the PWM control integrated circuit 4 through the charging diode D4 and the second charging resistor R6 in turn.
  • the charging resistor group (R3, R4) includes at least two resistors connected in series.
  • the PWM control integrated circuit 4 includes a PWM control chip U1, a compensation capacitor C5, a sampling resistor group (R7, R8), a sampling capacitor C6, and a detection resistor R9; the PWM control chip U1 is provided with a chip power supply pin VCC, compensation Pin COMP, output current sampling pin SNP, loop feedback pin FB, drive pin DRAIN and ground pin GND; the chip power supply pin VCC is connected to the IC power supply circuit 3, and the compensation pin COMP passes The compensation capacitor C5 is grounded, the output current sampling pin SNP is grounded through the sampling resistor group (R7, R8) and connected to the output rectifier filter circuit 6 through the sampling resistor group (R7, R8) and the sampling capacitor C6.
  • the loop feedback tube The pin FB is connected to the IC power supply circuit 3 and is grounded through the detection resistor R9, the driving pin DRAIN is connected to the Buck circuit 2, and the ground pin GND is connected to the ground.
  • the sampling resistor group (R7, R8) includes at least two resistors connected in parallel.
  • the PWM control chip U1 may be a JW1602D chip, but it is not limited thereto.
  • the PWM control chip U1 is packaged in SO8-8, and its pins are defined as follows:
  • JW1602D is a chip made specifically for LEDs, which can be applied to a non-isolated step-down LED system with a constant current drive and control PFC with a source lighting design. JW1602D can achieve excellent constant current characteristics with few peripheral components, low system cost and high efficiency.
  • the compatible electronic ballast circuit 5 does not work, input rectifier circuit 1, Buck circuit 2, IC power supply circuit 3, PWM control integrated circuit 4 and output rectifier
  • the filter circuit 6 works to drive the LED load to emit light.
  • the bus voltage charges the VCC of the PWM control chip U1 through the charging resistor group (R3, R4).
  • the VCC voltage of the PWM control chip U1 reaches 22V
  • the gate drive signal starts to switch, and the PWM control chip U1 enters a stable state.
  • the output voltage is used to supply power to the PWM control chip at this time.
  • the PWM control chip U1 has a built-in VCC voltage protection function. When VCC exceeds 35V, the internal 6mA current of the PWM control chip U1 will pull down VCC. Once the VCC voltage is lower than 7V, the PWM control chip U1 stops working.
  • the compensation capacitor C5 By connecting the compensation capacitor C5 to the compensation pin COMP of the PWM control chip U1, the integration link is introduced into the input current loop. In offline applications, the crossover frequency is much greater than the secondary power frequency of 120Hz or 100Hz. In order to achieve a better PFC (power factor correction) effect, the compensation pin COMP needs to be connected to a suitable compensation capacitor C5.
  • the PWM control chip U1 controls the output current of the system according to the voltage signal flowing on the sampling resistor.
  • the PWM control chip U1 works in the continuous conduction mode of the inductor current.
  • the PWM control chip U1 controls the external MOSFET to turn on, the current flowing through the inductor rises from zero; when the PWM control chip U1 controls the external MOSFET to turn off, the current flowing through the inductor starts to decrease from the peak value.
  • the PWM control chip U1 controls the MOSFET to turn on again.
  • the potential at point A of the compatible electronic ballast circuit 5 becomes zero, so that the output of the PWM control chip U1 is zero.
  • the work of the PWM control chip U1 is not responsible for the LED Function, so as to realize that the LED load is compatible with the electronic ballast and can also work normally.
  • the present invention is suitable for T-shaped lamps, can realize the compatibility of single-ended mains, double-ended mains and electronic ballast with dual-end input, and has the advantages of simple circuit, low system cost, small size, high efficiency, stable performance, etc. .
  • FIGS. 6 and 7 show the second embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • the difference from the first embodiment shown in FIGS. 4 and 5 is that this embodiment
  • the example also includes a double-ended contact protection circuit 7.
  • the double-ended contact protection circuit 7 is provided with a protection chip U2. When the power supply is single-ended input to the LED load through the LED drive circuit, the double-ended contact protection circuit 7 does not conduct; when the power supply is double-ended input to the LED through the LED drive circuit When there is a load, the double-ended contact protection circuit 7 is turned on.
  • the protection chip is preferably LT2600, but it is not limited thereto.
  • the double-ended contact protection circuit 7 After the system is powered on, if only one pin of the T-shaped tube is connected, the double-ended contact protection circuit 7 will not conduct and the circuit cannot work; when the pins of both ends of the T-shaped tube are connected at the same time, the double-ended The contact protection circuit 7 is turned on. Therefore, the double-ended contact protection circuit 7 can ensure that when only one pin of the T-shaped tube is connected, the other pin does not work, thereby avoiding electric shock accidents when the user touches the pin of the other end.
  • Figs. 8 and 9 show the second embodiment of the LED drive circuit based on the T-shaped tube of the present invention.
  • the difference from the first embodiment shown in Figs. 4 and 5 is that this embodiment Examples also include a double-ended contact protection circuit 7, an overvoltage and overcurrent protection circuit 8, and an EMC filter circuit 9.
  • the overvoltage and overcurrent protection circuit 8 includes a first varistor VR1 and a second varistor VR2.
  • the first varistor VR1 is provided at both ends of the input rectifier circuit 1.
  • the second varistor VR2 Connect with the reverse output terminal of the input rectifier circuit 1.
  • the EMC filter circuit 9 includes a first common mode inductor group (L1, R10), a second common mode inductor group (L2, R11), a first filter capacitor C7, a second filter capacitor C8, a third filter capacitor C9, and a second common mode inductor group (L2, R11).
  • the first common mode inductor group (L1, R10) and the second common mode inductor group (L2, R11) both include air-core inductors and resistors connected in parallel, which can effectively filter electromagnetic interference (EMI, Electro Magnetic Interference) signals.
  • EMI Electro Magnetic Interference
  • the double-ended contact protection circuit 7, the overvoltage and overcurrent protection circuit 8, and the EMC filter circuit 9 are independent of each other. The engineer can add or delete the double-ended contact protection circuit in the LED drive circuit according to the actual situation.
  • a double-terminal contact protection circuit 7, an overvoltage and overcurrent protection circuit 8 or an EMC filter circuit 9 can be separately provided, or a double-terminal contact protection circuit 7 and an overvoltage and overcurrent protection circuit 8, and an overvoltage and overcurrent protection circuit can be provided at the same time.
  • 8 and EMC filter circuit 9, double-ended contact protection circuit 7 and EMC filter circuit 9, and double-ended contact protection circuit 7, overvoltage and overcurrent protection circuit 8, and EMC filter circuit 9 can also be set at the same time, which has strong flexibility.
  • the present invention is suitable for T-shaped lamps, can realize AC mains single-ended input, AC mains dual-ended input and electronic ballast dual-ended input compatibility, with simple circuit, low system cost, small size, and efficiency High and stable performance.
  • the compatible electronic ballast circuit 5 does not work, and the PWM control integrated circuit 4 drives the LED load.
  • the output of the PWM control integrated circuit 4 is zero, which is compatible with the operation of the electronic ballast circuit 5 to drive the LED load.

Abstract

一种基于T型灯管的LED驱动电路,包括:相互电连接的输入整流电路(1)、Buck电路(2)、IC供电电路(3)、PWM控制集成电路(4)、兼容电子镇流器电路(5)及输出整流滤波电路(6);输入整流电路(1)的输出端分别连接Buck电路(2)的输入端及IC供电电路(3)的输入端,Buck电路(2)的输出端连接输出整流滤波电路(6)的输入端,IC供电电路(3)的输出端连接PWM控制集成电路(4)的输入端,PWM控制集成电路(4)的输出端分别连接Buck电路(2)的输入端及输出整流滤波电路(6)的输入端;兼容电子镇流器电路(5)的输出端连接输出整流滤波电路(6)的输入端;输入整流电路(1)的输入端及兼容电子镇流器电路(5)的输入端连接电源。采用所述基于T型灯管的LED驱动电路可实现市电单端输入、市电双端输入及电子镇流器双端输入的兼容,电路简单、体积小、效率高、性能稳定。

Description

一种基于T型灯管的LED驱动电路 技术领域
本发明涉及一种电路技术领域,尤其涉及一种基于T型灯管的LED驱动电路。
背景技术
近几十年,T型荧光灯得到大力推广,虽然荧光灯具有节能的优点,但是荧光灯的使用寿命短,对环境的危害大,因此,很多厂家正逐步停止荧光灯的生产。
随着科技的进步,越来越多的国家在推广LED照明产品,LED照明较荧光灯更加环保、节能、高效,在产品性能上更加具有优势。其中T型灯管(以T5、T8为主)也不例外。
但是,在欧美国家,改造线路的成本极高,为了使LED照明产品的安装更方便简单,这就迫不及待的需要一种既可实现单端或者双端AC市电输入,也可兼容电子镇流器(Instant Start Parallel)的LED T型产品去替换传统的荧光灯。
发明内容
本发明所要解决的技术问题在于,提供一种基于T型灯管的LED驱动电路,可实现市电单端输入、市电双端输入及电子镇流器双端输入的兼容,电路简单、系统成本低、体积小、效率高、性能稳定。
为了解决上述技术问题,本发明提供了一种基于T型灯管的LED驱动电路,包括:相互电连接的输入整流电路、Buck电路、IC供电电路、PWM控制集成电路、兼容电子镇流器电路及输出整流滤波电路;所述输入整流电路的输出端分别连接Buck电路的输入端及IC供电电路的输入端,所述Buck电路的输出端连接输出整流滤波电路的输入端,所述IC供电电路的输出端连接PWM控制集成电路的输入端,所述PWM控制集成电路的输出端分别连接Buck电路的输入端及输出整流滤波电路的输入端;所述兼容电子镇流器电路的输出端连接输出 整流滤波电路的输入端;所述输入整流电路的输入端及兼容电子镇流器电路的输入端连接电源,当所述输入整流电路的输入端及兼容电子镇流器电路的输入端直接连接电源时,所述兼容电子镇流器电路的输入端不工作,当所述输入整流电路的输入端及兼容电子镇流器电路的输入端通过电子镇流器连接电源时,所述兼容电子镇流器电路的输入端工作。
作为上述方案的改进,所述兼容电子镇流器电路包括检测电容及镇流器子电路,所述检测电容的一端连接电源,所述检测电容的另一端连接镇流器子电路的输入端,所述镇流器子电路的输出端连接输出整流滤波电路的输入端;当所述检测电容的一端直接连接电源时,所述检测电容断路,所述镇流器子电路不工作;当所述检测电容的一端通过电子镇流器连接电源时,所述检测电容通路,所述镇流器子电路工作。
作为上述方案的改进,所述镇流器子电路包括稳压二极管、储能电容、放电电阻、第一整流二极管、第二整流二极管及场效应管;所述稳压二极管、储能电容及放电电阻相互并联,所述稳压二极管的负极连接场效应管的栅极并通过第一整流二极管连接检测电容,所述稳压二极管的正极连接场效应管的源极并通过第二整流二极管连接检测电容,所述场效应管的漏极连接输出整流滤波电路。
作为上述方案的改进,所述PWM控制集成电路包括PWM控制芯片、补偿电容、采样电阻组、采样电容及检测电阻;所述PWM控制芯片上设有芯片供电管脚、补偿管脚、输出电流采样管脚、环路反馈管脚、驱动管脚及接地管脚;所述芯片供电管脚连接所述IC供电电路,所述补偿管脚通过补偿电容接地,所述输出电流采样管脚通过采样电阻组接地并通过采样电阻组及采样电容连接输出整流滤波电路,所述环路反馈管脚连接IC供电电路并通过检测电阻接地,所述驱动管脚连接Buck电路,所述接地管脚连接地。
作为上述方案的改进,所述Buck电路包括降压电阻、降压电容、降压二极管及降压电感;所述降压电阻的一端通过降压电容连接PWM控制集成电路,另一端连接输入整流电路;所述降压二极管的正极连接PWM控制集成电路,负极连接输入整流电路;所述降压电感的一端连接PWM控制集成电路,另一端连接输出整流滤波电路。
作为上述方案的改进,所述IC供电电路包括充电电阻组、充电电容、充电 二极管、第一充电电阻、第二充电电阻及充电电感;所述充电电阻组的一端连接输入整流电路,另一端连接PWM控制集成电路;所述充电电容的一端连接输入整流电路,另一端连接PWM控制集成电路;所述充电电感的一端接地,另一端通过第一充电电阻连接PWM控制集成电路并依次通过充电二极管及第二充电电阻接PWM控制集成电路。
作为上述方案的改进,所述的LED驱动电路还包括双端接触保护电路、过压过流保护电路及EMC滤波电路中的任意一种或其组合。
作为上述方案的改进,当电源通过LED驱动电路单端输入LED负载时,所述双端接触保护电路不导通;当电源通过LED驱动电路双端输入LED负载时,所述双端接触保护电路导通。
作为上述方案的改进,所述过压过流保护电路包括第一压敏电阻及第二压敏电阻,所述第一压敏电阻设于输入整流电路的两端,所述第二压敏电阻与输入整流电路的反向输出端连接。
作为上述方案的改进,所述EMC滤波电路包括第一共模电感组、第二共模电感组、第一滤波电容、第二滤波电容、第三滤波电容及第四滤波电容;所述第一滤波电容及第二滤波电容设于输入整流电路的两端;所述第一共模电感组与输入整流电路的一个输出端连接,所述第二共模电感组与输入整流电路的另一个输出端连接;所述第三滤波电容的一端与输入整流电路的一个输入端连接,另一端与兼容电子镇流器电路连接,所述第四滤波电容的一端与输入整流电路的另一个输入端连接,另一端与兼容电子镇流器电路连接。
实施本发明,具有如下有益效果:
本发明适用于T型灯管,可实现AC市电单端输入、AC市电双端输入和电子镇流器双端输入兼容,具有电路简单、系统成本低、体积小、效率高以及性能稳定等优点。具体地,当T型灯管接AC市电单端或双端输入时,兼容电子镇流器电路不工作,PWM控制集成电路驱动LED负载。当T型灯管接电子镇流器双端端输入时,PWM控制集成电路的输出为零,兼容电子镇流器电路工作以驱动LED负载。
附图说明
图1是T型灯管接市电单端输入时的结构示意图;
图2是T型灯管接市电双端输入时的结构示意图;
图3是T型灯管接电子镇流器双端输入时的结构示意图;
图4是本发明基于T型灯管的LED驱动电路的第一实施例结构示意图;
图5是本发明基于T型灯管的LED驱动电路的第一实施例电路图;
图6是本发明基于T型灯管的LED驱动电路的第二实施例结构示意图;
图7是本发明基于T型灯管的LED驱动电路的第二实施例电路图;
图8是本发明基于T型灯管的LED驱动电路的第三实施例结构示意图;
图9是本发明基于T型灯管的LED驱动电路的第三实施例电路图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明基于T型灯管的LED驱动电路适用于T型灯管,可实现单端市电、双端市电以及北美电子镇流器(Instant Start Parallel)输入兼容,具有电路简单、系统成本低、体积小、效率高以及性能稳定等优点。
参见图4,图4显示了本发明基于T型灯管的LED驱动电路的第一实施例,其包括相互电连接的输入整流电路1、Buck电路2、IC供电电路3、PWM控制集成电路4、兼容电子镇流器电路5及输出整流滤波电路6。其中,输入整流电路1用于将输入电源整流为直流电;Buck电路2用于降压;IC供电电路3用于为PWM控制集成电路4供电;PWM控制集成电路4用于为Buck电路2提供控制PWM(Pulse Width Modulation脉冲宽度调制)信号;兼容电子镇流器电路5用于兼容电子镇流器;输出整流滤波电路6用于对输出电流进行整流滤波处理。具体地:
所述输入整流电路1的输出端分别连接Buck电路2的输入端及IC供电电路3的输入端,所述Buck电路2的输出端连接输出整流滤波电路6的输入端,所述IC供电电路3的输出端连接PWM控制集成电路4的输入端,所述PWM控制集成电路4的输出端分别连接Buck电路2的输入端及输出整流滤波电路6的输入端,所述输出整流滤波电路6的输出端连接LED负载。所述LED负载,优选为LED T型灯管。
所述兼容电子镇流器电路5的输出端连接输出整流滤波电路6的输入端。
所述输入整流电路1的输入端及兼容电子镇流器电路5的输入端连接电源,当所述输入整流电路1的输入端及兼容电子镇流器电路5的输入端直接连接电源时,所述兼容电子镇流器电路5的输入端不工作,当所述输入整流电路1的输入端及兼容电子镇流器电路5的输入端通过电子镇流器连接电源时,所述兼容电子镇流器电路5的输入端工作。
需要说明的是,本发明可接交流市电单端输入、双端输入或电子镇流器双端输入。当LED负载接AC市电单端输入时,兼容电子镇流器电路5不工作,输入整流电路1、Buck电路2、IC供电电路3、PWM控制集成电路4及输出整流滤波电路6工作,驱动LED负载发光;当LED负载接AC市电双端输入时,兼容电子镇流器电路5不工作,输入整流电路1、Buck电路2、IC供电电路3、PWM控制集成电路4及输出整流滤波电路6工作,驱动LED负载发光;当LED负载接电子镇流器双端端输入时,PWM控制集成电路4的输出为“0”,输入整流电路1、兼容电子镇流器电路5及输出整流滤波电路6工作,驱动LED负载发光。
因此,本发明通过兼容电子镇流器电路5的工作状态实现交流市电单端输入、双端输入或电子镇流器双端输入,灵活性强。
如图5所示,所述兼容电子镇流器电路5包括检测电容C1及镇流器子电路51,所述检测电容C1的一端连接电源,所述检测电容C1的另一端连接镇流器子电路51的输入端,所述镇流器子电路51的输出端连接输出整流滤波电路6的输入端;当所述检测电容C1的一端直接连接电源时,所述检测电容C1断路,所述镇流器子电路51不工作;当所述检测电容C1的一端通过电子镇流器连接电源时,所述检测电容C1通路,所述镇流器子电路51工作。
需要说明的是,检测电容C1具有通高频阻低频的特点,当LED负载接AC市电单端/双端输入时,由于AC市电的电流频率较低,使得电流中途断流,检测电容C1断路,镇流器子电路51不工作;当LED负载接电子镇流器双端输入时,由于电子镇流器输出的电流频率较高,使得电流一直流通,检测电容C1通路,镇流器子电路51工作。因此,本发明通过检测电容C1的通断状态确定兼容电子镇流器电路5的工作状态,从而使得本发明可适用于交流市电单端输入、双端输入或电子镇流器双端输入等三种情况,系统成本低、体积小、灵活性强。
进一步,所述镇流器子电路51包括稳压二极管Z1、储能电容C2、放电电 阻R1、第一整流二极管D1、第二整流二极管D2及场效应管Q1;所述稳压二极管Z1、储能电容C2及放电电阻R1相互并联,所述稳压二极管Z1的负极连接场效应管Q1的栅极并通过第一整流二极管D1连接检测电容C1,所述稳压二极管Z1的正极连接场效应管Q1的源极并通过第二整流二极管D2连接检测电容C1,所述场效应管Q1的漏极连接输出整流滤波电路6。
所述输入整流电路1为整流桥,输出整流滤波电路6为RC振荡电路。
所述Buck电路2包括降压电阻R2、降压电容C3、降压二极管D3及降压电感TIB;所述降压电阻R2的一端通过降压电容C3连接PWM控制集成电路4,另一端连接输入整流电路1;所述降压二极管D3的正极连接PWM控制集成电路4,负极连接输入整流电路1;所述降压电感TIB的一端连接PWM控制集成电路4,另一端连接输出整流滤波电路6。
所述IC供电电路3包括充电电阻组(R3、R4)、充电电容C4、充电二极管D4、第一充电电阻R5、第二充电电阻R6及充电电感TIA;所述充电电阻组(R3、R4)的一端连接输入整流电路1,另一端连接PWM控制集成电路4;所述充电电容C4的一端连接输入整流电路1,另一端连接PWM控制集成电路4;所述充电电感TIA的一端接地,另一端通过第一充电电阻R5连接PWM控制集成电路4并依次通过充电二极管D4及第二充电电阻R6接PWM控制集成电路4。优选地,所述充电电阻组(R3、R4)至少包括两个相互串联的电阻。
所述PWM控制集成电路4包括PWM控制芯片U1、补偿电容C5、采样电阻组(R7、R8)、采样电容C6及检测电阻R9;所述PWM控制芯片U1上设有芯片供电管脚VCC、补偿管脚COMP、输出电流采样管脚SNP、环路反馈管脚FB、驱动管脚DRAIN及接地管脚GND;所述芯片供电管脚VCC连接所述IC供电电路3,所述补偿管脚COMP通过补偿电容C5接地,所述输出电流采样管脚SNP通过采样电阻组(R7、R8)接地并通过采样电阻组(R7、R8)及采样电容C6连接输出整流滤波电路6,所述环路反馈管脚FB连接IC供电电路3并通过检测电阻R9接地,所述驱动管脚DRAIN连接Buck电路2,所述接地管脚GND连接地。优选地,所述采样电阻组(R7、R8)至少包括两个相互并联的电阻。
具体地,所述PWM控制芯片U1可以为JW1602D芯片,但不以此为限制,所述PWM控制芯片U1采用SO8-8封装,其管脚定义如下:
Figure PCTCN2019119035-appb-000001
需要说明的是,JW1602D是一款专为LED制芯片,可应用于带有源照明设计的恒流驱动控PFC的非隔离降压型LED系统。JW1602D只需很少的外围器件就可以达到优异的恒流特性,系统成本低,效率高。
下面结合具体的电路对本发明作进一步的详细说明。
(1)当LED负载接AC市电单端/双端输入时,兼容电子镇流器电路5不工作,输入整流电路1、Buck电路2、IC供电电路3、PWM控制集成电路4及输出整流滤波电路6工作,驱动LED负载发光。
启动:
系统上电后,母线电压通过充电电阻组(R3、R4)对PWM控制芯片U1的VCC充电,当PWM控制芯片U1的VCC电压达到22V时,门极驱动信号开始开关,PWM控制芯片U1进入稳定工作状态,此时改由输出电压给PWM控制芯片供电。PWM控制芯片U1内置VCC电压保护功能,当VCC超过35V时,PWM控制芯片U1内部6mA电流将拉低VCC,一旦VCC电压低于7V,PWM控制芯片U1停止工作。
环路补偿:
通过在PWM控制芯片U1的补偿管脚COMP连接补偿电容C5,将积分环节引入输入电流环中。在离线应用中,穿越频率远远大于二次工频120Hz或100Hz。为了实现更好的PFC(功率因素校正)效果,补偿管脚COMP需要接合适的补偿电容C5。
恒流控制:
PWM控制芯片U1根据采样电阻流上的电压信号控制系统的输出电流。系 统输出电流平均值的计算公式为:ILED=300/Rcs(mA),其中Rcs为输出电流采样管脚SNP与接地管脚GND之间的采样电阻组(R7、R8)的电阻。
临界导通模式:
PWM控制芯片U1工作在电感电流连续导通模式。当PWM控制芯片U1控制外部的MOSFET导通时,流过电感的电流从零开始上升;当PWM控制芯片U1控制外部的MOSFET关断时,流过电感的电流从峰值开始下降,当电感的电流下降到零时,PWM控制芯片U1再次控制MOSFET导通。
(2)当LED负载接电子镇流器双端端输入时,不需要PWM控制芯片U1工作,输入整流电路1、输出整流滤波电路6及兼容电子镇流器电路5驱动LED负载发光。
当兼容电子镇流器电路5导通,使得兼容电子镇流器电路5位置点A的电位变为零电位,从而使PWM控制芯片U1的输出为零,PWM控制芯片U1的工作对LED负责不起作用,从而实现LED负载兼容电子镇流器,也能正常工作。
因此,本发明适用于T型灯管,可实现单端市电、双端市电和电子镇流器双端输入兼容,具有电路简单、系统成本低、体积小、效率高以及性能稳定等优点。
参见图6及图7,图6及图7显示了本发明基于T型灯管的LED驱动电路的第二实施例,与图4及图5所示的第一实施例不同的是,本实施例还包括双端接触保护电路7。所述双端接触保护电路7内设有保护芯片U2,当电源通过LED驱动电路单端输入LED负载时,所述双端接触保护电路7不导通;当电源通过LED驱动电路双端输入LED负载时,所述双端接触保护电路7导通。所述保护芯片优选为LT2600,但不以此为限制。
系统上电后,如果只有T型灯管的一端pin脚接入,则双端接触保护电路7不导通,电路不能工作;当T型灯管的两端pin脚同时接入,则双端接触保护电路7导通。因此,通过双端接触保护电路7可保证当只有T型灯管的一端pin脚接入时,另一pin脚不工作,从而避免用户接触另一端的pin脚时,发生触电事故。
参见图8及图9,图8及图9显示了本发明基于T型灯管的LED驱动电路的第二实施例,与图4及图5所示的第一实施例不同的是,本实施例还包括双端接触保护电路7、过压过流保护电路8及EMC滤波电路9。
所述过压过流保护电路8包括第一压敏电阻VR1及第二压敏电阻VR2,所述第一压敏电阻VR1设于输入整流电路1的两端,所述第二压敏电阻VR2与输入整流电路1的反向输出端连接。
所述EMC滤波电路9包括第一共模电感组(L1,R10)、第二共模电感组(L2,R11)、第一滤波电容C7、第二滤波电容C8、第三滤波电容C9及第四滤波电容C10;所述第一滤波电容C7及第二滤波电容C8设于输入整流电路1的两端;所述第一共模电感组(L1,R10)与输入整流电路1的一个输出端连接,所述第二共模电感组(L2,R11)与输入整流电路1的另一个输出端连接;所述第三滤波电容C9的一端与输入整流电路1的一个输入端连接,另一端与兼容电子镇流器电路5连接,所述第四滤波电容C10的一端与输入整流电路1的另一个输入端连接,另一端与兼容电子镇流器电路5连接。所述第一共模电感组(L1,R10)及第二共模电感组(L2,R11)均包括相互并联的空心电感及电阻,可有效过滤电磁干扰(EMI,Electro Magnetic Interference)信号。
当LED负载接AC市电单端输入时,兼容电子镇流器电路5及双端接触保护电路7不工作,输入整流电路1、过压过流保护电路8、EMC滤波电路9、Buck电路2、IC供电电路3、PWM控制集成电路4及输出整流滤波电路6工作,驱动LED负载发光;当LED负载接AC市电双端输入时,兼容电子镇流器电路5不工作,输入整流电路1、过压过流保护电路8、EMC滤波电路9、双端接触保护电路7、Buck电路2、IC供电电路3、PWM控制集成电路4及输出整流滤波电路6工作,驱动LED负载发光;当LED负载接电子镇流器双端端输入时,PWM控制集成电路4的输出为“0”,输入整流电路1、过压过流保护电路8、EMC滤波电路9、双端接触保护电路7、兼容电子镇流器电路5及输出整流滤波电路6工作,驱动LED负载发光。
需要说明的是,所述双端接触保护电路7、过压过流保护电路8及EMC滤波电路9相互独立,工程人员可根据实际情况在LED驱动电路中增加或删除双端接触保护电路7、过压过流保护电路8或EMC滤波电路9。例如,可单独设置双端接触保护电路7、过压过流保护电路8或EMC滤波电路9,也可同时设置双端接触保护电路7及过压过流保护电路8、过压过流保护电路8及EMC滤波电路9、双端接触保护电路7及EMC滤波电路9,还可同时设置双端接触保护电路7、过压过流保护电路8及EMC滤波电路9,灵活性强。
由上可知,本发明适用于T型灯管,可实现AC市电单端输入、AC市电双端输入和电子镇流器双端输入兼容,具有电路简单、系统成本低、体积小、效率高以及性能稳定等优点。具体地,当T型灯管接AC市电单端或双端输入时,兼容电子镇流器电路5不工作,PWM控制集成电路4驱动LED负载。当T型灯管接电子镇流器双端端输入时,PWM控制集成电路4的输出为零,兼容电子镇流器电路5工作以驱动LED负载。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种基于T型灯管的LED驱动电路,其特征在于,包括相互电连接的输入整流电路、Buck电路、IC供电电路、PWM控制集成电路、兼容电子镇流器电路及输出整流滤波电路;
    所述输入整流电路的输出端分别连接Buck电路的输入端及IC供电电路的输入端,所述Buck电路的输出端连接输出整流滤波电路的输入端,所述IC供电电路的输出端连接PWM控制集成电路的输入端,所述PWM控制集成电路的输出端分别连接Buck电路的输入端及输出整流滤波电路的输入端;
    所述兼容电子镇流器电路的输出端连接输出整流滤波电路的输入端;
    所述输入整流电路的输入端及兼容电子镇流器电路的输入端连接电源,当所述输入整流电路的输入端及兼容电子镇流器电路的输入端直接连接电源时,所述兼容电子镇流器电路的输入端不工作,当所述输入整流电路的输入端及兼容电子镇流器电路的输入端通过电子镇流器连接电源时,所述兼容电子镇流器电路的输入端工作。
  2. 如权利要求1所述的LED驱动电路,其特征在于,所述兼容电子镇流器电路包括检测电容及镇流器子电路,所述检测电容的一端连接电源,所述检测电容的另一端连接镇流器子电路的输入端,所述镇流器子电路的输出端连接输出整流滤波电路的输入端;
    当所述检测电容的一端直接连接电源时,所述检测电容断路,所述镇流器子电路不工作;
    当所述检测电容的一端通过电子镇流器连接电源时,所述检测电容通路,所述镇流器子电路工作。
  3. 如权利要求2所述的LED驱动电路,其特征在于,所述镇流器子电路包括稳压二极管、储能电容、放电电阻、第一整流二极管、第二整流二极管及场效应管;
    所述稳压二极管、储能电容及放电电阻相互并联,所述稳压二极管的负极连接场效应管的栅极并通过第一整流二极管连接检测电容,所述稳压二极管的 正极连接场效应管的源极并通过第二整流二极管连接检测电容,所述场效应管的漏极连接输出整流滤波电路。
  4. 如权利要求1所述的LED驱动电路,其特征在于,所述PWM控制集成电路包括PWM控制芯片、补偿电容、采样电阻组、采样电容及检测电阻;
    所述PWM控制芯片上设有芯片供电管脚、补偿管脚、输出电流采样管脚、环路反馈管脚、驱动管脚及接地管脚;
    所述芯片供电管脚连接所述IC供电电路,所述补偿管脚通过补偿电容接地,所述输出电流采样管脚通过采样电阻组接地并通过采样电阻组及采样电容连接输出整流滤波电路,所述环路反馈管脚连接IC供电电路并通过检测电阻接地,所述驱动管脚连接Buck电路,所述接地管脚连接地。
  5. 如权利要求1所述的LED驱动电路,其特征在于,所述Buck电路包括降压电阻、降压电容、降压二极管及降压电感;
    所述降压电阻的一端通过降压电容连接PWM控制集成电路,另一端连接输入整流电路;
    所述降压二极管的正极连接PWM控制集成电路,负极连接输入整流电路;
    所述降压电感的一端连接PWM控制集成电路,另一端连接输出整流滤波电路。
  6. 如权利要求1所述的LED驱动电路,其特征在于,所述IC供电电路包括充电电阻组、充电电容、充电二极管、第一充电电阻、第二充电电阻及充电电感;
    所述充电电阻组的一端连接输入整流电路,另一端连接PWM控制集成电路;
    所述充电电容的一端连接输入整流电路,另一端连接PWM控制集成电路;
    所述充电电感的一端接地,另一端通过第一充电电阻连接PWM控制集成电路并依次通过充电二极管及第二充电电阻接PWM控制集成电路。
  7. 如权利要求1所述的LED驱动电路,其特征在于,所述的LED驱动电 路还包括双端接触保护电路、过压过流保护电路及EMC滤波电路中的任意一种或其组合。
  8. 如权利要求7所述的LED驱动电路,其特征在于,
    当电源通过LED驱动电路单端输入LED负载时,所述双端接触保护电路不导通;
    当电源通过LED驱动电路双端输入LED负载时,所述双端接触保护电路导通。
  9. 如权利要求7所述的LED驱动电路,其特征在于,所述过压过流保护电路包括第一压敏电阻及第二压敏电阻,所述第一压敏电阻设于输入整流电路的两端,所述第二压敏电阻与输入整流电路的反向输出端连接。
  10. 如权利要求7所述的LED驱动电路,其特征在于,所述EMC滤波电路包括第一共模电感组、第二共模电感组、第一滤波电容、第二滤波电容、第三滤波电容及第四滤波电容;
    所述第一滤波电容及第二滤波电容设于输入整流电路的两端;
    所述第一共模电感组与输入整流电路的一个输出端连接,所述第二共模电感组与输入整流电路的另一个输出端连接;
    所述第三滤波电容的一端与输入整流电路的一个输入端连接,另一端与兼容电子镇流器电路连接,
    所述第四滤波电容的一端与输入整流电路的另一个输入端连接,另一端与兼容电子镇流器电路连接。
PCT/CN2019/119035 2019-11-04 2019-11-16 一种基于t型灯管的led驱动电路 WO2021088114A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3109152A CA3109152A1 (en) 2019-11-04 2019-11-16 Led driving circuit based on t-shaped lamp tube
US17/266,104 US11350501B2 (en) 2019-11-04 2019-11-16 LED driving circuit based on t-shaped lamp tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911063677.9A CN110798927A (zh) 2019-11-04 2019-11-04 一种基于t型灯管的led驱动电路
CN201911063677.9 2019-11-04

Publications (1)

Publication Number Publication Date
WO2021088114A1 true WO2021088114A1 (zh) 2021-05-14

Family

ID=69440824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119035 WO2021088114A1 (zh) 2019-11-04 2019-11-16 一种基于t型灯管的led驱动电路

Country Status (2)

Country Link
CN (1) CN110798927A (zh)
WO (1) WO2021088114A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343759B (zh) * 2020-03-30 2022-06-10 晨辉光宝科技股份有限公司 Led驱动电路、灯管和照明装置
CN111542147A (zh) * 2020-06-01 2020-08-14 厦门普为光电科技有限公司 具有防触电保护并兼容电子镇流器及工频ac电源供电的灯管
CN112040603B (zh) * 2020-09-25 2021-07-27 福州大学 一种bpsk可见光通信调制的单级led驱动电路与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205160832U (zh) * 2015-11-28 2016-04-13 许富昌 一种兼容传统荧光灯管镇流器的led驱动电源
CN205491311U (zh) * 2016-02-01 2016-08-17 深圳市豪恩光电照明股份有限公司 一种兼容电子整流器和市电的led驱动电路
CN205793527U (zh) * 2016-06-12 2016-12-07 浙江阳光美加照明有限公司 一种兼容市电和电子镇流器的led日光灯管驱动电路
CN206302603U (zh) * 2016-12-20 2017-07-04 深圳市福瑞新科技有限公司 智能全兼容led驱动电源电路
CN206402497U (zh) * 2017-01-25 2017-08-11 浙江东元照明有限公司 一种兼容多种镇流器的led驱动电路
CN206422954U (zh) * 2017-02-16 2017-08-18 厦门其力电子科技有限公司 一种兼容电子镇流器的led驱动电路
CN107148113A (zh) * 2017-06-15 2017-09-08 佛山电器照明股份有限公司 一种用于t型灯管的led驱动电路
US10182479B1 (en) * 2018-02-01 2019-01-15 Alfasemi Inc. Voltage regulation circuit for LED tube

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205160832U (zh) * 2015-11-28 2016-04-13 许富昌 一种兼容传统荧光灯管镇流器的led驱动电源
CN205491311U (zh) * 2016-02-01 2016-08-17 深圳市豪恩光电照明股份有限公司 一种兼容电子整流器和市电的led驱动电路
CN205793527U (zh) * 2016-06-12 2016-12-07 浙江阳光美加照明有限公司 一种兼容市电和电子镇流器的led日光灯管驱动电路
CN206302603U (zh) * 2016-12-20 2017-07-04 深圳市福瑞新科技有限公司 智能全兼容led驱动电源电路
CN206402497U (zh) * 2017-01-25 2017-08-11 浙江东元照明有限公司 一种兼容多种镇流器的led驱动电路
CN206422954U (zh) * 2017-02-16 2017-08-18 厦门其力电子科技有限公司 一种兼容电子镇流器的led驱动电路
CN107148113A (zh) * 2017-06-15 2017-09-08 佛山电器照明股份有限公司 一种用于t型灯管的led驱动电路
US10182479B1 (en) * 2018-02-01 2019-01-15 Alfasemi Inc. Voltage regulation circuit for LED tube

Also Published As

Publication number Publication date
CN110798927A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021088114A1 (zh) 一种基于t型灯管的led驱动电路
CN102752929A (zh) 一种支持可控硅调光的高功率因数led驱动电路
CN106793293B (zh) 调光装置及led调光驱动电源
CN101742784A (zh) 一种led灯具及其驱动电路
CN102014557A (zh) Led调光电源
CN102438377A (zh) 高功率因素led恒流驱动电路
CN105451409A (zh) 兼容电感、电子镇流器的直管led电源
CN105792421A (zh) 一种无桥式led驱动电源
CN107148113B (zh) 一种用于t型灯管的led驱动电路
CN203896538U (zh) 一种单开关管双Buck-Boost电路级联的LED驱动电源
CN202435665U (zh) 高功率因素led恒流驱动电路
CN108024420B (zh) Led低压驱动电路和led灯具
CN203504839U (zh) 一种采用初级检测和调控的led灯驱动电源
US11350501B2 (en) LED driving circuit based on t-shaped lamp tube
CN208190964U (zh) Led驱动电路和led灯具
CN202663613U (zh) 用于led mr16射灯的驱动电路
CN102458011A (zh) 一种led驱动电路及led灯具
CN202425146U (zh) 一种led照明装置驱动电路
CN102111936B (zh) Led驱动电源
CN211509366U (zh) 一种基于t型灯管的led驱动电路
CN203340372U (zh) 一种采用模拟调光的led灯驱动电源
CN101541134A (zh) 低压交流荧光灯驱动电路
CN207692103U (zh) 一种用于g4 led灯的驱动电路
CN111511079A (zh) 一种利用输入谷底补偿的无频闪调光驱动器
CN105764198A (zh) 一种轨道车辆车厢led照明驱动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951389

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19951389

Country of ref document: EP

Kind code of ref document: A1