WO2021088088A1 - 上行功率调整方法及相关设备 - Google Patents

上行功率调整方法及相关设备 Download PDF

Info

Publication number
WO2021088088A1
WO2021088088A1 PCT/CN2019/116889 CN2019116889W WO2021088088A1 WO 2021088088 A1 WO2021088088 A1 WO 2021088088A1 CN 2019116889 W CN2019116889 W CN 2019116889W WO 2021088088 A1 WO2021088088 A1 WO 2021088088A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop power
power parameter
open
closed
dci
Prior art date
Application number
PCT/CN2019/116889
Other languages
English (en)
French (fr)
Inventor
徐婧
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/116889 priority Critical patent/WO2021088088A1/zh
Priority to CN202210500509.7A priority patent/CN114828182B/zh
Priority to EP19951450.6A priority patent/EP4013136B1/en
Priority to CN201980098210.XA priority patent/CN114073135A/zh
Publication of WO2021088088A1 publication Critical patent/WO2021088088A1/zh
Priority to US17/688,544 priority patent/US20220191799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications, and in particular to an uplink power adjustment method and related equipment.
  • the current new radio (NR, new radio) system introduces ultra-reliable low latency communication (Ultra-reliable low latency communication, URLLC) and enhanced mobile broadband (Enhanced Mobile Broadband, eMBB) two services, URLLC is characterized by To achieve ultra-high reliability (for example, 99.999%) transmission within an extreme time delay (for example, 1 ms), the characteristic of eMBB is that it is not sensitive to delay, but the number of transmissions can be large.
  • URLLC and eMBB will conflict, that is, URLLC occupies resources that have been allocated to eMBB.
  • URLLC and eMBB transmission conflict URLLC and eMBB will interfere with each other, thereby affecting the demodulation performance of URLLC and eMBB. Retransmission can overcome this impact, but it will increase the transmission delay of URLLC.
  • the uplink power control in the wireless system is very important. Through the uplink power control, the UE in the cell can not only ensure the quality of the data sent in the uplink, but also minimize the interference to other users in the system and prolong the battery life of the UE. .
  • the uplink data between different users in the same cell is orthogonal. Therefore, the uplink power control adopted by the NR Rel 15 system mainly considers the use of power control to adapt the uplink transmission to different wireless transmission environments, including Path loss, shadow fading, etc.
  • NR Rel 15 adopts a combination of open-loop and closed-loop control.
  • the embodiment of the present application provides an uplink power adjustment method and related equipment.
  • the embodiment of the present application solves the problem of how to adjust the power when the URLLC and eMBB conflict during retransmission.
  • an uplink power adjustment method including:
  • an embodiment of the present application provides another uplink power adjustment method, including:
  • the DCI is sent to the terminal device, and the DCI is used to instruct the terminal device to determine the target open-loop power parameter from the open-loop power parameters configured by the power parameter configuration information according to the DCI, and determine the closed-loop power parameter adjustment value according to the DCI.
  • an embodiment of the present application provides another uplink power adjustment method, including:
  • a receiving unit for receiving downlink control information DCI
  • a determining unit configured to determine a target open-loop power parameter from open-loop power parameters configured by power parameter configuration information according to the DCI, and determine a closed-loop power parameter adjustment value according to the DCI;
  • the determining unit is further configured to determine the transmission power according to the target open-loop power parameter and the closed-loop power parameter adjustment value.
  • the embodiments of the present application provide another uplink power adjustment method, including:
  • the sending unit is used to send power parameter configuration information to the terminal device
  • the sending unit is also used to send DCI to the terminal device; the DCI is used to instruct the terminal device to determine the target open-loop power parameter from the open-loop power parameters configured by the power parameter configuration information according to the DCI, and determine the closed-loop power parameter adjustment according to the DCI value.
  • an embodiment of the present application provides a terminal device, including:
  • Memory used to store programs
  • the processor is configured to execute the program stored in the memory, and when the program stored in the memory is executed, the processor is configured to execute the method described in the first aspect.
  • an embodiment of the present application provides a network device, including:
  • Memory used to store programs
  • the processor is configured to execute the program stored in the memory, and when the program stored in the memory is executed, the processor is configured to execute the method described in the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores program code, and when the program code runs on a computer, the computer executes the first aspect or The method described in the second aspect.
  • the network device sends power parameter configuration information, and when the terminal device performs data retransmission, it determines the target open loop power parameter from the open loop power parameter configured by the power parameter configuration information based on the received DCI, and then determines the target open loop power parameter based on the received DCI.
  • the DCI obtains the closed-loop power parameter adjustment value, and determines the transmission power according to the target open-loop power parameter and the closed-loop power parameter adjustment value.
  • FIG. 1 is a schematic diagram of an application scenario of an uplink power adjustment method provided by an embodiment of this application;
  • FIG. 2 is a schematic flowchart of an uplink power adjustment method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of an uplink power adjustment method provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of an application scenario of an uplink power adjustment method provided by an embodiment of the application.
  • the application scenario includes a network device 10 and a terminal device 20.
  • the application scenario shown in FIG. 1 can be specifically applied to a 5G communication system or a subsequent evolved communication system.
  • the above-mentioned network device 10 may be a base station for next-generation communication, such as a 5G gNB or a small station, a micro station, a transmission reception point (TRP), and the like.
  • a base station for next-generation communication such as a 5G gNB or a small station, a micro station, a transmission reception point (TRP), and the like.
  • the aforementioned terminal device 20 may be a User Equipment (UE), that is, a device that provides voice and/or data connectivity to the user, and may also be a handheld device or a vehicle-mounted device with a wireless connection function.
  • UE User Equipment
  • Common terminal devices 20 include: mobile phones, tablet computers, notebook computers, handheld computers, mobile Internet devices (MID), Internet of Things devices, wearable devices (for example, smart watches, smart bracelets, pedometers) Wait.
  • UE User Equipment
  • MID mobile Internet devices
  • wearable devices for example, smart watches, smart bracelets, pedometers
  • the network device 10 For data retransmission using dynamically scheduled CG-PUSCH, when URLLC and eMBB conflict occur, the network device 10 sends Downlink Control Information (DCI) to the terminal device 20, and the terminal device 20 obtains the open loop power according to the DCI Parameters and closed-loop power parameter adjustment values, the transmission power is calculated according to the open-loop power parameter and the closed-loop power parameter adjustment value, and data is retransmitted to the network device 10 according to the transmission power.
  • DCI Downlink Control Information
  • FIG. 2 is a schematic flowchart of an uplink power adjustment method according to an embodiment of the application. As shown in Figure 2, the method includes:
  • power parameter configuration information before receiving the DCI, power parameter configuration information is received, and the power parameter configuration information is configured with an open loop power parameter.
  • the DCI can also be used to indicate the manner in which the terminal device transmits data, such as the time-frequency resources used.
  • the CRC of the PDCCH where the DCI is located is scrambled by the CS-RNTI, and the value of the New Data Indicator (New Data Indicator) NDI field in the DCI is 1.
  • S202 Determine the target open-loop power parameter from the open-loop power parameters configured by the power parameter configuration information according to the DCI, and determine the closed-loop power parameter adjustment value according to the DCI.
  • the open-loop power parameter configured by the power parameter configuration information is the open-loop power parameter used for uplink dynamic transmission, and the open-loop power parameter configured by the power parameter configuration information includes p0-AlphaSets and when there is no scheduling authorization According to the P0 of the DCI, the target open-loop power parameter is determined from the open-loop power parameter configured by the power parameter configuration information, including:
  • one of the open loop power parameters configured in the power parameter configuration information is determined as the target open loop power parameter.
  • the open-loop power parameter indication information implements the indicated power parameter configuration through different values of 1 bit. . If the 1-bit value is 1, the open-loop power parameter indicated by the open-loop power parameter indication information is P0 when there is no scheduling authorization. If the 1-bit value is 0, the open-loop power parameter indication information is P0. The indicated open-loop power parameter is p0-AlphaSets.
  • the open-loop power parameter indicated by the open-loop power parameter indication information is P0 when there is no scheduling authorization, and if the 1-bit value is 1, then the open loop The open loop power parameter indicated by the power parameter indication information is p0-AlphaSets.
  • the ring power parameter indication information is selected by the difference of multiple bits. Value to achieve indicating different power parameter configurations. The specific method is the same as above and will not be described here.
  • determining the open-loop power parameter from the power parameter configuration information according to the scheduling DCI includes:
  • the DCI includes open-loop power parameter indication information, determine the open-loop power parameter indicated by the open-loop power parameter indication information among the open-loop power parameters configured by the power parameter configuration information as the target open-loop power parameter;
  • one of the open loop power parameters configured in the power parameter configuration information is determined as the target open loop power parameter.
  • the open-loop power parameter configured by the power parameter configuration information includes multiple open-loop power parameters, and a mapping relationship between different values indicated by the open-loop power parameter indication information and the multiple open-loop power parameters can be established. Therefore, the target open-loop power parameter can be obtained through the open-loop power parameter indication information.
  • the open-loop power parameter configured by the power parameter configuration information is the open-loop power parameter used for the initial transmission of the uplink semi-continuous transmission.
  • the open-loop power parameter configured by the power parameter configuration information is the open-loop power parameter used in the retransmission of the uplink semi-continuous transmission.
  • the open-loop power conversion parameter used for the initial transmission and retransmission of the uplink semi-continuous transmission is The same power parameter configuration, generally p0-PUSCH-Alpha.
  • the open loop power parameter configured by the power parameter configuration information includes p0-PUSCH-Alpha
  • the open loop power parameter configured by the power parameter configuration information is the open loop power used during the initial transmission of the uplink semi-continuous transmission Parameters
  • the target open-loop power parameters are determined from the open-loop power parameters configured by the power parameter configuration information according to DCI, including:
  • the open-loop power parameter is the power parameter configuration p0-PUSCH-Alpha;
  • the open loop power parameter indicated by the open loop power parameter indication information among the open loop power parameters configured by the power parameter configuration information is determined as the target open loop power parameter.
  • p0-AlphaSets includes P0 parameter configuration and/or alpha parameter configuration
  • Each of the open loop power parameters configured by the power parameter configuration information includes a P0 parameter configuration and/or an alpha parameter configuration
  • the P0 parameter and the alpha parameter configuration take effect at the same time or only the P0 parameter configuration takes effect.
  • each of the open loop power parameters configured by the power parameter configuration information includes the P0 parameter Configuration and/or alpha parameter configuration specifically refers to not only p0-PUSCH-Alpha including P0 parameter configuration and/or alpha parameter configuration, but also other open loop power parameters including P0 parameter configuration and/or alpha parameter configuration
  • the DCI further includes closed-loop power parameter indication information, the closed-loop power parameter adjustment value is the current closed-loop power parameter, and the current closed-loop power parameter is the power parameter indicated by the above-mentioned closed-loop power parameter indication information, or;
  • the closed-loop power parameter adjustment value is the sum of the current closed-loop power parameter and the historical closed-loop power parameter, or;
  • the closed-loop power parameter adjustment value is the sum of the historical value of the closed-loop power parameter corresponding to the above-mentioned open-loop power parameter and the current closed-loop power parameter.
  • the closed-loop power parameter indication information is implemented by 2 bits
  • the corresponding values are 00, 01, 10, and 11, respectively.
  • the closed-loop power parameter set is ⁇ step0, step1, step2, step3 ⁇ , and the set contains 4 closed-loop powers. Parameters, 4 closed-loop power parameters can be indicated respectively through 2bit closed-loop power parameter indication information. For example, 00 corresponds to step0, 01 corresponds to step1, 10 corresponds to step2, and 11 corresponds to step3.
  • the open-loop power parameter set agreed by the protocol or configured by the high-level information is ⁇ P 00 , P 01 ⁇ and the closed-loop power parameter is (step0, step1, step2, step3).
  • a method consisting of open-loop power parameter indication bits(A) and closed-loop power parameter indication bits(B) indicates power information.
  • Network equipment uses 3bit to indicate power control information in DCI, where 1bit indicates open-loop power parameter (C), 0 and 1 respectively correspond to 1 in the open-loop power parameter set; 2bit indicates closed-loop power parameter (D), 00, 01 , 10, and 11 respectively correspond to one of the closed-loop power parameter sets.
  • Table 1 is a table of correspondence between power control information and open-loop power parameters and closed-loop power parameters.
  • A indicates the target open-loop power parameter
  • B indicates the closed-loop power parameter.
  • S203 Determine the transmission power according to the open-loop power parameter and the closed-loop power parameter adjustment value.
  • the transmit power can be calculated according to the following formula.
  • i is the index of one PUSCH transmission
  • j is the index of open-loop power control parameters (including the target power And the path loss factor ⁇ b, f, c (j))
  • q d is the index of the reference signal used for path loss measurement, and is used to obtain the path loss value PL b, f, c (q d ), which is also an open Loop power parameter
  • f b, f, c (i, l) is the closed-loop power control adjustment factor, where l is the closed-loop power control process.
  • DCI is received; the target open-loop power parameter is obtained from the open-loop power parameter configured by the power parameter configuration information according to the DCI, and the closed-loop power parameter adjustment value is obtained according to the DCI; and the closed-loop power parameter adjustment value is obtained according to the DCI;
  • the power parameter and the closed-loop power parameter adjustment value determine the transmission power.
  • the embodiment of the application solves the problem of how to adjust the power when the URLLC and eMBB conflict during retransmission, thereby overcoming the problem of signal interference between the URLLC and eMBB when the URLLC conflicts with the eMBB.
  • FIG. 3 is a schematic flowchart of another uplink power adjustment method according to an embodiment of the present invention. As shown in Figure 3, the method includes:
  • S301 Send power parameter configuration information to the terminal device.
  • DCI can also be used to indicate the way the terminal device transmits data.
  • the open-loop power parameter is an open-loop power parameter used for uplink dynamic transmission.
  • the open-loop power parameter includes p0-AlphaSets and P0 when there is no scheduling authorization.
  • the open-loop power parameter is an open-loop power parameter used for initial transmission of uplink semi-continuous transmission.
  • the open loop power parameter includes p0-PUSCH-Alpha.
  • the target open loop power parameter is the open loop power indicated by the open loop power parameter indication information in the open loop power parameter parameter;
  • the target open loop power parameter is one of the open loop power parameters.
  • the CRC of the PDCCH where the DCI is located is scrambled by the CS-RNTI, and the new data in the DCI indicates that the value of the NDI field is 1.
  • the P0 parameter configuration and the alpha parameter configuration take effect at the same time or only the P0 parameter configuration takes effect.
  • the DCI further includes closed-loop power parameter indication information
  • the closed-loop power parameter adjustment value is the current closed-loop power parameter, or;
  • the current closed-loop power parameter is obtained according to the closed-loop power parameter indication information.
  • the terminal device 400 includes:
  • the receiving unit 401 is configured to receive downlink control information DCI;
  • the determining unit 402 is configured to determine a target open-loop power parameter from the open-loop power parameters configured by the power parameter configuration information according to the DCI, and determine a closed-loop power parameter adjustment value according to the DCI;
  • the determining unit 402 is further configured to determine the transmission power according to the target open-loop power parameter and the closed-loop power parameter adjustment value.
  • the open-loop power parameter is an open-loop power parameter used for uplink dynamic transmission.
  • the open-loop power parameter includes p0-AlphaSets and P0 when there is no scheduling authorization.
  • the open-loop power parameter is an open-loop power parameter used for initial transmission of uplink semi-continuous transmission.
  • the open loop power parameter includes p0-PUSCH-Alpha.
  • the determining unit 402 is specifically configured to:
  • the open-loop power parameter indication information does not exist in the DCI, determine one of the open-loop power parameters as the target open-loop power parameter.
  • the CRC of the PDCCH where the DCI is located is scrambled by the CS-RNTI, and the new data in the DCI indicates that the value of the NDI field is 1.
  • the P0 parameter configuration and the alpha parameter configuration take effect at the same time or only the P0 parameter configuration takes effect.
  • the DCI further includes closed-loop power parameter indication information
  • the closed-loop power parameter adjustment value is the current closed-loop power parameter, and the current closed-loop power parameter is obtained according to the closed-loop power parameter indication information, or;
  • the closed-loop power parameter adjustment value is the sum of the historical closed-loop power parameter and the current closed-loop power parameter, or;
  • the closed-loop power parameter adjustment value is the sum of the historical value of the closed-loop power parameter corresponding to the target open-loop power parameter and the current closed-loop power parameter.
  • the aforementioned units are used to execute relevant steps of the aforementioned method.
  • the receiving unit 401 is used to execute related content of step S201
  • the determining unit 402 is used to execute related content of steps S202 and S203.
  • the terminal device 400 is presented in the form of a unit.
  • the "unit” here can refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions .
  • ASIC application-specific integrated circuit
  • the above acquisition unit 401 and determination unit 402 may be implemented by the processor 601 of the communication device shown in FIG. 6.
  • FIG. 5 is a schematic structural diagram of another network device according to an embodiment of this application.
  • the network device 500 includes:
  • the sending unit 501 is configured to send power parameter configuration information to a terminal device
  • the sending unit 501 is further configured to send DCI to a terminal device, where the DCI is used to instruct the terminal device to determine a target open-loop power parameter from the open-loop power parameters configured by the power parameter configuration information according to the DCI, and according to The DCI determines the closed-loop power parameter adjustment value.
  • the open-loop power parameter is an open-loop power parameter used for uplink dynamic transmission.
  • the open-loop power parameter includes p0-AlphaSets and P0 when there is no scheduling authorization.
  • the open-loop power parameter is an open-loop power parameter used for initial transmission of uplink semi-continuous transmission.
  • the open loop power parameter includes p0-PUSCH-Alpha.
  • the target open loop power parameter is the open loop power indicated by the open loop power parameter indication information in the open loop power parameter parameter;
  • the target open loop power parameter is one of the open loop power parameters.
  • the CRC of the PDCCH where the DCI is located is scrambled by the CS-RNTI, and the new data in the DCI indicates that the value of the NDI field is 1.
  • the P0 parameter configuration and the alpha parameter configuration take effect at the same time or only the P0 parameter configuration takes effect.
  • the DCI further includes closed-loop power parameter indication information
  • the closed-loop power parameter adjustment value is the current closed-loop power parameter, or;
  • the current closed-loop power parameter is obtained according to the closed-loop power parameter indication information.
  • sending unit 502 are used to execute relevant steps of the foregoing method.
  • the sending unit 501 is configured to execute the related content of steps S301 and S302.
  • the network device 500 is presented in the form of a unit.
  • the "unit” here can refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions .
  • ASIC application-specific integrated circuit
  • the implementation process described above may be implemented by the processor 601 of the communication device shown in FIG. 6.
  • the communication device 600 may be implemented with the structure in FIG. 6, and the terminal device 600 includes at least one processor 601, at least one memory 602 and at least one communication interface 603.
  • the processor 601, the memory 602, and the communication interface 603 are connected through the communication bus and complete mutual communication.
  • the processor 601 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the programs in the above scheme.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 603 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • RAN radio access network
  • WLAN Wireless Local Area Networks
  • the memory 602 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 602 is used to store application program codes for executing the above solutions, and the processor 601 controls the execution.
  • the processor 601 is configured to execute application program codes stored in the memory 602.
  • the code stored in the memory 602 can execute part or all of the steps of any uplink power adjustment method provided above.
  • An embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, and the program includes part or all of the steps of any uplink power adjustment method recorded in the above method embodiment when the program is executed.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: a flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行功率调整方法,包括:接收下行控制信息DCI;配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值;根据目标开环功率参数和闭环功率参数调整值确定发送功率。本申请还公开了一种相关设备。采用本申请实施例解决了在重传时发生URLLC和eMBB冲突时如何进行功率调整的问题。

Description

上行功率调整方法及相关设备 技术领域
本申请涉及通信领域,尤其涉及一种上行功率调整方法及相关设备。
背景技术
目前的新无线(NR,new radio)系统引入了超可靠低时延通信(Ultra-reliable low latency communication,URLLC)和增强型移动带宽(Enhanced Mobile Broadband,eMBB)两种业务,URLLC的特征是在极端的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输,eMBB的特征是对时延不敏感,但传输数量可以很大。对于URLLC和eMBB共存的场景,为了实现URLLC即时传输,URLLC和eMBB会发生冲突,即URLLC占用已经分配给eMBB的资源。URLLC和eMBB传输发生冲突时,URLLC和eMBB会相互干扰对方,从而影响URLLC和eMBB的解调性能,重传可以克服这一影响,但是会导致URLLC的传输时延增大。
对于上行URLLC和eMBB传输冲突的问题。有两种主流解决方式:1)停止eMBB传输,降低对URLLC的干扰。2)提高URLLC发送功率,即使eMBB干扰存在,也能保证URLLC的接收信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)满足解调需求。前者干扰消除彻底,但需要增加eMBB终端复杂度。后者通过提高有用信号功率,保持接收SINR,且仅需要URLLC做增强。
无线系统中的上行功率控制是非常重要的,通过上行功控,可以使得小区中的UE既保证上行所发送数据的质量,又尽可能减少对系统中其他用户的干扰,延长UE电池的使用时间。NR Rel 15系统中,同小区内不同用户之间的上行数据是正交的,因此,NR Rel 15系统采用的上行功率控制,主要考虑通过功率控制来使得上行传输适应不同的无线传输环境,包括路损、阴影衰落等。NR Rel 15采用一种开环和闭环控制结合的方式。
但是,对于使用动态调度的CG-PUSCH进行数据重传发生URLLC和eMBB冲突时,调整发送功率可以解决URLLC和eMBB传输冲突的问题,但现有技术并未给出如何解决URLLC的功率调整问题。
发明内容
本申请实施例提供一种上行功率调整方法及相关设备,采用本申请实施例解决了在重传时发生URLLC和eMBB冲突时如何进行功率调整的问题。
第一方面,本申请实施例提供了一种上行功率调整方法,包括:
接收下行控制信息DCI;
根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值;
根据所述目标开环功率参数和所述闭环功率参数调整值确定发送功率
第二方面,本申请实施例提供了另一种上行功率调整方法,包括:
向终端设备发送功率参数配置信息;
向终端设备发送DCI,该DCI用于指示终端设备根据DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据DCI确定闭环功率参数调整值。
第三方面,本申请实施例提供了另一种上行功率调整方法,包括:
接收单元,用于接收下行控制信息DCI;
确定单元,用于根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值;
确定单元,还用于根据所述目标开环功率参数和所述闭环功率参数调整值确定发送功率。
第四方面,本申请实施例提供了另一种上行功率调整方法,包括:
发送单元,用于向终端设备发送功率参数配置信息;
所述发送单元,还用于向终端设备发送DCI;该DCI用于指示终端设备根据DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据DCI确定闭环功率参数调整值。
第五方面,本申请实施例提供一种终端设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行如第一方面所述的方法。
第六方面,本申请实施例提供一种网络设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行如第二方面所述的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,当所述程序代码在计算机上运行时,使得所述计算机执行如第一方面或第二方面所述的方法。
可以看出,网络设备下发功率参数配置信息,终端设备在进行数据重传时,基于接收到DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据接收到的DCI获取闭环功率参数调整值,在根据目标开环功率参数和闭环功率参数调整值确定发送功率。在数据重传时通过调整发送功率,克服了URLLC和eMBB发生冲突时两者之间的相互干扰,进而解决了在重传时发生URLLC和eMBB冲突时如何进行功率调整的问题。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种上行功率调整方法的应用场景示意图;
图2为本申请实施例提供的一种上行功率调整方法的流程示意图;
图3为本申请实施例提供的一种上行功率调整方法的流程示意图;
图4为本申请实施例提供的一种终端设备的结构示意图;
图5为本申请实施例提供的一种网络设备的结构示意图;
图6为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
以下分别进行详细说明。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参见图1,图1为本申请实施例提供的一种上行功率调整方法的应用场景示意图。如图1所示,该应用场景中包括网络设备10和终端设备20。图1所示的应用场景具体可以应用在5G通信系统或后续演进的通信系统中。
上述网络设备10可以为下一代通信的基站,如5G的gNB或小站、微站,传输接收点(transmission reception point,TRP)等。
上述终端设备20可以是用户设备(User Equipment,UE),即一种向用户提供语音和/或数据连通性的设备,还可以是具有无线连接功能的手持式设备或车载设备等。常见的终端设备20包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、物联网设备,可穿戴设备(例如,智能手表、智能手环、计步器)等。
对于使用动态调度的CG-PUSCH进行数据重传,发生URLLC和eMBB冲突时,网络设备10向终端设备20发送下行控制信息(Downlink Control Information,DCI),该终端设备20根据该DCI获取开环功率参数和闭环功率参数调整值,并根据开环功率参数和闭环功率参数调整值计算得到发送功率,按照该发送功率向网络设备10进行数据重传。
参见图2,图2为本申请实施例提供的一种上行功率调整方法的流程示意图。如图2所示,该方法包括:
S201、接收DCI。
在一个示例中,在接收DCI之前,接收功率参数配置信息,该功率参数配置信息配置有开环功率参数。
可以理解的是,DCI还可以用于指示终端设备传输数据的方式,比如使用的时频资源等。
其中,DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且DCI中新数据指示(New Data Indicator)NDI域的值为1。
S202、根据DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据DCI确定闭环功率参数调整值。
在一个可行的实施例中,若功率参数配置信息配置的开环功率参数为上行动态传输使用的开环功率参数,且功率参数配置信息配置的开环功率参数包括p0-AlphaSets和无调度授权时的P0,根据DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,包括:
若DCI中存在开环功率参数指示信息,将功率参数配置信息配置的开环功率参数中由开环功率参数指示信息指示的开环功率参数确定为目标开环功率参数;
若DCI中不存在开环功率参数指示信息,将功率参数配置信息配置的开环功率参数中的一个开环功率参数确定为目标开环功率参数。
具体地,当功率参数配置信息配置的开环功率参数中只包括无调度授权时的P0和p0-AlphaSets时,开环功率参数指示信息是通过1比特位的不同取值来实现指示功率参数配置。若该1比特位取值为1,则开环功率参数指示信息所指示的开环功率参数为无调度授权时的P0,若该1比特位取值为0,则开环功率参数指示信息所指示的开环功率参数为p0-AlphaSets。
当然,还可以是若该1比特位取值为0,则开环功率参数指示信息所指示的开环功率参数为无调度授权时的P0,若该1比特位取值为1,则开环功率参数指示信息所指示的开环功率参数为p0-AlphaSets。
当功率参数配置信息配置的开环功率参数中不仅包括功率参数配置无调度授权时的P0和p0-AlphaSets,还包括其他功率参数配置时,环功率参数指示信息是通过多个比特位的不同取值来实现指示不同的功率参数配置。具体方法同上,在此不再叙述。
在一个可行的实施例中,若功率参数配置信息配置的开环功率参数为上行动态传输使用的开环功率参数,根据调度DCI从功率参数配置信息中确定开环功率参数,包括:
若DCI包括开环功率参数指示信息,将功率参数配置信息配置的开环功率参数中由开环功率参数指示信息指示的开环功率参数确定为目标开环功率参数;
若DCI中不存在开环功率参数指示信息,将功率参数配置信息配置的开环功率参数中的一个开环功率参数确定为目标开环功率参数。
在本实施例中,功率参数配置信息配置的开环功率参数包括多个开环功率参数,可建立开环功率参数指示信息所指示的不同值与多个开环功率参数之间的映射关系,因此可通过开环功率参数指示信息得到目标开环功率参数。
在一个可行的实时例中,功率参数配置信息配置的开环功率参数为上行半持续传输的初传使用的开环功率参数。
可选地,功率参数配置信息配置的开环功率参数为上行半持续传输的重传时使用的开环功率参数。
在功率参数配置信息配置的开环功率参数为上行半持续传输的初传时使用的开环功率参数的情况下,进行上行半持续传输的初传和重传时使用的开环换功率参数为同一个功率 参数配置,一般为p0-PUSCH-Alpha。
在一个可行的实施例中,功率参数配置信息配置的开环功率参数包括p0-PUSCH-Alpha,且功率参数配置信息配置的开环功率参数为上行半持续传输的初传时使用的开环功率参数,根据DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,包括:
若DCI不包括开环功率参数指示信息,则将功率参数配置信息配置的开环功率参数中一个开环功率参数确定为目标开环功率参数。一般来说,该开环功率参数为功率参数配置p0-PUSCH-Alpha;
若DCI包括开环功率参数指示信息,则将功率参数配置信息配置的开环功率参数中由开环功率参数指示信息指示的开环功率参数确定为目标开环功率参数。
在一个可行的实施例中,p0-AlphaSets包括P0参数配置和/或alpha参数配置;
功率参数配置信息配置的开环功率参数中的每个包括P0参数配置和/或alpha参数配置;
其中,P0参数配alpha参数配置同时生效或只有P0参数配置生效。
其中,由于功率参数配置信息配置的开环功率参数包括p0-PUSCH-Alpha,可选地还可以包括其他开环功率参数,因此功率参数配置信息配置的开环功率参数中的每个包括P0参数配置和/或alpha参数配置具体是指不仅是p0-PUSCH-Alpha包括P0参数配置和/或alpha参数配置,还可以是其他开环功率参数包括P0参数配置和/或alpha参数配置
在一个可行的实施例中,DCI还包括闭环功率参数指示信息,闭环功率参数调整值为当前闭环功率参数,该当前闭环功率参数为上述闭环功率参数指示信息所指示的功率参数,或者;
闭环功率参数调整值为当前闭环功率参数与历史闭环功率参数之和,或者;
闭环功率参数调整值为上述开环功率参数对应的闭环功率参数的历史值与当前闭环功率参数之和。
假设闭环功率参数指示信息由2比特位来实现,分别对应的取值为00,01,10和11,闭环功率参数集合为{step0,step1,step2,step3},该集合中包含4个闭环功率参数,可通过2bit的闭环功率参数指示信息分别指示4个闭环功率参数。比如00对应step0,01对应step1,10对应step2,11对应step3。
假设协议约定或高层信息配置的开环功率参数集合为{P 00,P 01}和闭环功率参数为(step0,step1,step2,step3)。
由开环功率参数指示bits(A),和闭环功率参数指示bits(B)组成的方法指示功率信息。
网络设备在DCI中使用3bit指示功率控制信息,其中1bit指示开环功率参数(C),0,1分别对应开环功率参数集合中的1个;2bit指示闭环功率参数(D),00,01,10,11分别对应闭环功率参数集合中的1个。
下表1为功率控制信息与开环功率参数及闭环功率参数之间的对应关系表。
Figure PCTCN2019116889-appb-000001
表1
网络测设备发送的功率控制信息bit为A=0,B=00,A=0指示目标开环功率参数为P 00,B=00指示当前闭环功率参数为step0。
网络测设备发送的功率信息bit为A=1,B=00,A=1指示目标开环功率参数为P 01,B=00指示闭环功率控制参数为step0。
依次类推,A指示目标开环功率参数,B指示闭环功率参数,在计算发送功率时,两种参数都需要使用
S203、根据开环功率参数和闭环功率参数调整值确定发送功率。
在获取目标开环功率参数和闭环功率参数调整值后,可根据以下公式计算得到发送功率。
Figure PCTCN2019116889-appb-000002
其中,i是一次PUSCH传输的索引,j是开环功率控制参数索引(包括目标功率
Figure PCTCN2019116889-appb-000003
和路损因子α b,f,c(j));q d是用于进行路损测量的参考信号的索引,用于得到路损值PL b,f,c(q d),也是一个开环功率参数;f b,f,c(i,l)是闭环功率控制调整因子,其中l是闭环功率控制进程。
可以看出,在本申请的实施例中,接收DCI;根据DCI从功率参数配置信息配置的开环功率参数中获取目标开环功率参数,并根据DCI获取闭环功率参数调整值;根据目标开环功率参数和闭环功率参数调整值确定发送功率。采用本申请实施例解决了在重传时发生URLLC和eMBB冲突时如何进行功率调整的问题,从而克服了URLLC和eMBB冲突时两者之间的信号干扰问题。
参见图3,图3为本发明实施例提供的另一种上行功率调整方法的流程示意图。如图3所示,该方法包括:
S301、向终端设备发送功率参数配置信息。
S302、向终端设备发送DCI,该DCI用于指示终端设备根据DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据DCI确定闭环功率参数调整值。
可以理解的是,DCI还可以用于指示终端设备传输数据的方式。
在一个可行的实施例中,所述开环功率参数为上行动态传输使用的开环功率参数。
进一步地,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
在一个可行的实施例中,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
进一步地,所述开环功率参数包括p0-PUSCH-Alpha。
在一个可行的实施例中,若所述DCI中存在开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数;
若所述DCI中不存在所述开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中的一个开环功率参数。
在一个可行的实施例中,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
在一个可行的实施例中,P0参数配置和所述alpha参数配置同时生效或只有所述P0参数配置生效。
在一个可行的实施例中,所述DCI还包括闭环功率参数指示信息,
所述闭环功率参数调整值为所述当前闭环功率参数,或者;
历史闭环功率参数与所述当前闭环功率参数之和,或者;
所述目标开环功率参数对应的闭环功率参数的历史值与所述当前闭环功率参数之和,
其中,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的。
在此需要说明的是,本实施例的具体描述可参见图2所示实施例的相关描述,在此不再叙述。
参见图4,图4为本申请实施例提的一种终端设备结构的结构示意图。如图4所示,该终端设备400包括:
接收单元401,用于接收下行控制信息DCI;
确定单元402,用于根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值;
所述确定单元402,还用于根据所述目标开环功率参数和所述闭环功率参数调整值确定发送功率。
在一个可行的实施例中,所述开环功率参数为上行动态传输使用的开环功率参数。
进一步地,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
在一个可行的实施例中,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
进一步地,所述开环功率参数包括p0-PUSCH-Alpha。
在一个可行的实施例中,在所述根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数的方面,所述确定单元402具体用于:
若所述DCI中存在开环功率参数指示信息,将所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数确定为所述目标开环功率参数;
若所述DCI中不存在所述开环功率参数指示信息,将所述开环功率参数中的一个开环功率参数确定为所述目标开环功率参数。
在一个可行的实施例中,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
在一个可行的实施例中,P0参数配置和所述alpha参数配置同时生效或只有所述P0参数配置生效。
在一个可行的实施例中,所述DCI还包括闭环功率参数指示信息,
所述闭环功率参数调整值为所述当前闭环功率参数,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的,或者;
所述闭环功率参数调整值为历史闭环功率参数与所述当前闭环功率参数之和,或者;
所述闭环功率参数调整值为所述目标开环功率参数对应的闭环功率参数的历史值与所述当前闭环功率参数之和。
需要说明的是,上述各单元(接收单元401和确定单元402)用于执行上述方法的相关步骤。比如接收单元401用于执行步骤S201相关内容,比如确定单元402用于执行步骤S202和S203相关内容。
在本实施例中,终端设备400是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上获取单元401和确定单元402可通过图6所示的通信设备的处理器601来实现。
参见图5,图5为本申请实施例提的另一种网络设备的结构示意图。如图5所示,该网络设备500包括:
发送单元501,用于向终端设备发送功率参数配置信息;
所述发送单元501,还用于向终端设备发送DCI,所述DCI用于指示终端设备根据所述DCI从所述功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值。
在一个可行的实施例中,所述开环功率参数为上行动态传输使用的开环功率参数。
进一步地,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
在一个可行的实施例中,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
进一步地,所述开环功率参数包括p0-PUSCH-Alpha。
在一个可行的实施例中,若所述DCI中存在开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数;
若所述DCI中不存在所述开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中的一个开环功率参数。
在一个可行的实施例中,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
在一个可行的实施例中,P0参数配置和所述alpha参数配置同时生效或只有所述P0参数配置生效。
在一个可行的实施例中,所述DCI还包括闭环功率参数指示信息,
所述闭环功率参数调整值为所述当前闭环功率参数,或者;
历史闭环功率参数与所述当前闭环功率参数之和,或者;
所述目标开环功率参数对应的闭环功率参数的历史值与所述当前闭环功率参数之和,
其中,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的。
需要说明的是,上述各单元(发送单元502)用于执行上述方法的相关步骤。比如发送单元501用于执行步骤S301和S302的相关内容。
在本实施例中,网络设备500是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上所述的实现过程可通过图6所示的通信设备的处理器601来实现。
如图6所示通信设备600可以以图6中的结构来实现,该终端设备600包括至少一个处理器601,至少一个存储器602以及至少一个通信接口603。所述处理器601、所述存储器602和所述通信接口603通过所述通信总线连接并完成相互间的通信。
处理器601可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口603,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器602可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器602用于存储执行以上方案的应用程序代码,并由处理器601来控制执行。所述处理器601用于执行所述存储器602中存储的应用程序代码。
存储器602存储的代码可执行以上提供的任一种上行功率调整方法的部分或全部步骤。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序, 该程序执行时包括上述方法实施例中记载的任一种上行功率调整方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (39)

  1. 一种上行功率调整方法,其特征在于,包括:
    接收下行控制信息DCI;
    根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值;
    根据所述目标开环功率参数和所述闭环功率参数调整值确定发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述开环功率参数为上行动态传输使用的开环功率参数。
  3. 根据权利要求2所述的方法,其特征在于,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
  4. 根据权利要求1所述的方法,其特征在于,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
  5. 根据权利要求4所述的方法,其特征在于,所述开环功率参数包括p0-PUSCH-Alpha。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,包括:
    若所述DCI中存在开环功率参数指示信息,将所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数确定为所述目标开环功率参数;
    若所述DCI中不存在所述开环功率参数指示信息,将所述开环功率参数中的一个开环功率参数确定为所述目标开环功率参数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,P0参数配置和alpha参数配置同时生效或只有所述P0参数配置生效。
  9. 权利要求2-8任一项所述的方法,其特征在于,所述DCI还包括闭环功率参数指示信息,
    所述闭环功率参数调整值为所述当前闭环功率参数,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的,或者;
    所述闭环功率参数调整值为历史闭环功率参数与所述当前闭环功率参数之和,或者;
    所述闭环功率参数调整值为所述目标开环功率参数对应的闭环功率参数的历史值与所述当前闭环功率参数之和。
  10. 一种上行功率调整方法,其特征在于,包括:
    向终端设备发送功率参数配置信息;
    向所述终端设备发送DCI,所述DCI用于指示终端设备根据所述DCI从所述功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值。
  11. 根据权利要求10所述的方法,其特征在于,所述开环功率参数为上行动态传输使用的开环功率参数。
  12. 根据权利要求11所述的方法,其特征在于,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
  13. 根据权利要求10所述的方法,其特征在于,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
  14. 根据权利要求13所述的方法,其特征在于,所述开环功率参数包括p0-PUSCH-Alpha。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,
    若所述DCI中存在开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数;
    若所述DCI中不存在所述开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中的一个开环功率参数。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,P0参数配置和alpha参数配置同时生效或只有所述P0参数配置生效。
  18. 权利要求11-17任一项所述的方法,其特征在于,所述DCI还包括闭环功率参数指示信息,
    所述闭环功率参数调整值为所述当前闭环功率参数,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的,或者;
    所述闭环功率参数调整值为历史闭环功率参数与所述当前闭环功率参数之和,或者;
    所述闭环功率参数调整值为所述目标开环功率参数对应的闭环功率参数的历史值与所述当前闭环功率参数之和。
  19. 一种终端设备,其特征在于,包括:
    接收单元,用于接收下行控制信息DCI;
    确定单元,用于根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值;
    所述确定单元,还用于根据所述目标开环功率参数和所述闭环功率参数调整值确定发送功率。
  20. 根据权利要求19所述的终端设备,其特征在于,所述开环功率参数为上行动态传输使用的开环功率参数。
  21. 根据权利要求20所述的终端设备,其特征在于,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
  22. 根据权利要求19所述的终端设备,其特征在于,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
  23. 根据权利要求22所述的终端设备,其特征在于,所述开环功率参数包括p0-PUSCH-Alpha。
  24. 根据权利要求19-23任一项所述的终端设备,在所述根据所述DCI从功率参数配置信息配置的开环功率参数中确定目标开环功率参数的方面,所述确定单元具体用于:
    若所述DCI中存在开环功率参数指示信息,将所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数确定为所述目标开环功率参数;
    若所述DCI中不存在所述开环功率参数指示信息,将所述开环功率参数中的一个开环功率参数确定为所述目标开环功率参数。
  25. 根据权利要求19-24任一项所述的终端设备,其特征在于,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
  26. 根据权利要求20-25任一项所述的终端设备,其特征在于,P0参数配置和alpha参数配置同时生效或只有所述P0参数配置生效。
  27. 权利要求20-26任一项所述的终端设备,其特征在于,所述DCI还包括闭环功率参数指示信息,
    所述闭环功率参数调整值为所述当前闭环功率参数,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的,或者;
    所述闭环功率参数调整值为历史闭环功率参数与所述当前闭环功率参数之和,或者;
    所述闭环功率参数调整值为所述目标开环功率参数对应的闭环功率参数的历史值与所 述当前闭环功率参数之和。
  28. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送功率参数配置信息;
    所述发送单元,还用于向终端设备发送DCI;所述DCI用于指示终端设备根据所述DCI从所述功率参数配置信息配置的开环功率参数中确定目标开环功率参数,并根据所述DCI确定闭环功率参数调整值。
  29. 根据权利要求28所述的网络设备,其特征在于,所述开环功率参数为上行动态传输使用的开环功率参数。
  30. 根据权利要求29所述的网络设备,其特征在于,所述开环功率参数包括p0-AlphaSets和无调度授权时的P0。
  31. 根据权利要求28所述的网络设备,其特征在于,所述开环功率参数为上行半持续传输的初传使用的开环功率参数。
  32. 根据权利要求31所述的网络设备,其特征在于,所述开环功率参数包括p0-PUSCH-Alpha。
  33. 根据权利要求28-32任一项所述的网络设备,其特征在于,若所述DCI中存在开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中由所述开环功率参数指示信息指示的开环功率参数;
    若所述DCI中不存在所述开环功率参数指示信息,所述目标开环功率参数为所述开环功率参数中的一个开环功率参数。
  34. 根据权利要求28-32任一项所述的网络设备,其特征在于,所述DCI所在的PDCCH的CRC是由CS-RNTI加扰的,并且所述DCI中新数据指示NDI域的值为1。
  35. 根据权利要求29-32任一项所述的网络设备,其特征在于,P0参数配置和alpha参数配置同时生效或只有所述P0参数配置生效。
  36. 根据权利要求29-35任一项所述的网络设备,其特征在于,所述DCI还包括闭环功率参数指示信息,
    所述闭环功率参数调整值为所述当前闭环功率参数,或者;
    历史闭环功率参数与所述当前闭环功率参数之和,或者;
    所述目标开环功率参数对应的闭环功率参数的历史值与所述当前闭环功率参数之和,
    其中,所述当前闭环功率参数是根据所述闭环功率参数指示信息得到的。
  37. 一种终端设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行如权利要求1-9任一项所述的方法。
  38. 一种网络设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行如权利要求10-18任一项所述的方法。
  39. 一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,当所述程序代码在计算机上运行时,使得所述计算机执行如权利要求1-18任一项所述的方法。
PCT/CN2019/116889 2019-11-08 2019-11-08 上行功率调整方法及相关设备 WO2021088088A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/116889 WO2021088088A1 (zh) 2019-11-08 2019-11-08 上行功率调整方法及相关设备
CN202210500509.7A CN114828182B (zh) 2019-11-08 2019-11-08 上行功率调整方法及相关设备
EP19951450.6A EP4013136B1 (en) 2019-11-08 2019-11-08 Uplink power adjustment method and related device
CN201980098210.XA CN114073135A (zh) 2019-11-08 2019-11-08 上行功率调整方法及相关设备
US17/688,544 US20220191799A1 (en) 2019-11-08 2022-03-07 Methods for adjusting uplink power and related

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116889 WO2021088088A1 (zh) 2019-11-08 2019-11-08 上行功率调整方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/688,544 Continuation US20220191799A1 (en) 2019-11-08 2022-03-07 Methods for adjusting uplink power and related

Publications (1)

Publication Number Publication Date
WO2021088088A1 true WO2021088088A1 (zh) 2021-05-14

Family

ID=75848694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116889 WO2021088088A1 (zh) 2019-11-08 2019-11-08 上行功率调整方法及相关设备

Country Status (4)

Country Link
US (1) US20220191799A1 (zh)
EP (1) EP4013136B1 (zh)
CN (2) CN114828182B (zh)
WO (1) WO2021088088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729723B2 (en) * 2019-11-21 2023-08-15 Qualcomm Incorporated Power control indication for multiple services

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627554A (zh) * 2007-03-07 2010-01-13 交互数字技术公司 用于控制移动站上行链路功率的组合的开环/闭环方法
WO2013166695A1 (zh) * 2012-05-11 2013-11-14 富士通株式会社 上行探测参考信号的发送功率控制方法及其装置
CN110235479A (zh) * 2017-01-26 2019-09-13 高通股份有限公司 为长和短上行链路突发配置不同的上行链路功率控制

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107095A1 (ko) * 2013-01-07 2014-07-10 엘지전자 주식회사 신호를 송수신하는 방법 및 장치
WO2018107358A1 (zh) * 2016-12-13 2018-06-21 广东欧珀移动通信有限公司 控制上行功率的方法和设备
US10425900B2 (en) * 2017-05-15 2019-09-24 Futurewei Technologies, Inc. System and method for wireless power control
CN111656842B (zh) * 2018-02-16 2023-08-25 联想(新加坡)私人有限公司 具有用于免许可上行链路传输的功率控制的方法和装置
CN110392418A (zh) * 2018-04-17 2019-10-29 中兴通讯股份有限公司 功率控制方法和装置、基站、终端、计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627554A (zh) * 2007-03-07 2010-01-13 交互数字技术公司 用于控制移动站上行链路功率的组合的开环/闭环方法
WO2013166695A1 (zh) * 2012-05-11 2013-11-14 富士通株式会社 上行探测参考信号的发送功率控制方法及其装置
CN110235479A (zh) * 2017-01-26 2019-09-13 高通股份有限公司 为长和短上行链路突发配置不同的上行链路功率控制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Feature lead summary#2 on physical layer control procedures for NTN", 3GPP DRAFT; R1-1907760 FEATURE LEAD SUMMARY#2 ON PHYSICAL LAYER CONTROL PROCEDURES FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 16 May 2019 (2019-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740033 *

Also Published As

Publication number Publication date
EP4013136A1 (en) 2022-06-15
US20220191799A1 (en) 2022-06-16
CN114073135A (zh) 2022-02-18
EP4013136A4 (en) 2022-08-17
EP4013136B1 (en) 2023-06-07
CN114828182B (zh) 2023-08-22
CN114828182A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
TWI754075B (zh) 用於傳輸信號的方法、終端設備和網絡設備
US11476972B2 (en) Uplink control information transmission method and device
WO2020221021A1 (zh) 通信方法和通信装置
WO2018228544A1 (zh) 一种功率确定方法、设备及系统
WO2018210195A1 (zh) 一种发送和接收指示信息的方法、设备和系统
WO2018227494A1 (zh) 测量间隔配置方法、装置、设备、终端及系统
US12107786B2 (en) Method for tracking reference signal (TRS) enhancement
WO2021013102A1 (zh) 参数确定、信息配置方法和设备
WO2015158004A1 (zh) 一种功率配置方法、用户设备及基站
WO2018227814A1 (zh) 数据指示方法、装置、通信系统
WO2021016774A1 (zh) 无线通信方法和设备
WO2020001277A1 (zh) 一种上行同步方法、装置和系统
WO2021062836A1 (zh) 功率调整方法及装置
WO2021088088A1 (zh) 上行功率调整方法及相关设备
WO2021228252A1 (zh) 一种缓存确定方法及装置
WO2019191880A1 (zh) 一种资源配置的方法、设备及计算机存储介质
WO2019007256A1 (zh) 一种功率调整方法和系统
WO2019076226A1 (zh) 一种多载波中数据传输的方法及装置
WO2021062711A1 (zh) 传输上行控制信息的方法和装置
WO2023005833A1 (zh) 信息传输的方法和通信装置
WO2022011636A1 (en) Self-adaptive transmit power control for bluetooth
WO2022011711A1 (zh) 通信方法、通信设备、电子设备及计算机存储介质
CN111447026B (zh) 处理数据的方法和处理数据的装置
CN110463284B (zh) 用于确定功率控制配置的方法和设备
WO2020220352A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951450

Country of ref document: EP

Effective date: 20220307

NENP Non-entry into the national phase

Ref country code: DE