WO2021087984A1 - 频段状态指示方法和装置、频段状态确定方法和装置 - Google Patents

频段状态指示方法和装置、频段状态确定方法和装置 Download PDF

Info

Publication number
WO2021087984A1
WO2021087984A1 PCT/CN2019/116708 CN2019116708W WO2021087984A1 WO 2021087984 A1 WO2021087984 A1 WO 2021087984A1 CN 2019116708 W CN2019116708 W CN 2019116708W WO 2021087984 A1 WO2021087984 A1 WO 2021087984A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
band
idle
indication information
status
Prior art date
Application number
PCT/CN2019/116708
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
小米通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米通讯技术有限公司 filed Critical 小米通讯技术有限公司
Priority to BR112022008622A priority Critical patent/BR112022008622A2/pt
Priority to CN202310296690.9A priority patent/CN116347456A/zh
Priority to CN202311361823.2A priority patent/CN117639978A/zh
Priority to US17/774,701 priority patent/US20220400504A1/en
Priority to KR1020227019079A priority patent/KR20220098189A/ko
Priority to PCT/CN2019/116708 priority patent/WO2021087984A1/zh
Priority to EP19951399.5A priority patent/EP4057675A4/en
Priority to CN201980002885.XA priority patent/CN110945899B/zh
Priority to JP2022526294A priority patent/JP7383144B2/ja
Publication of WO2021087984A1 publication Critical patent/WO2021087984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communication technology, and specifically, to a frequency band state indication method, a frequency band state determination method, a frequency band state indication device, a frequency band state determination device, and electronic equipment.
  • the bandwidth of the carrier is larger than that of the carrier in the 4G communication system.
  • the carrier can be divided into multiple sub-bands (also called sub-bands), then in the unlicensed frequency band
  • the detection of the unlicensed frequency band may specifically be the detection of each sub-frequency band in the unlicensed frequency band.
  • the base station can detect the status of each sub-band in the unlicensed frequency band, and generate a detection result based on the status of each sub-band, and then send the detection result to the terminal, so that the terminal does not have to check the status of each sub-band. After detecting each sub-band, the status of each sub-band can be determined according to the received detection result.
  • the base station When the base station determines an idle sub-band, it will immediately occupy the idle sub-band to communicate with the terminal. However, it takes a while for the base station to generate detection results based on the status of each sub-band. The detection result is sent to the terminal, which makes it impossible for the terminal to determine the status of each sub-band in time.
  • the embodiments of the present disclosure propose a frequency band status indication method, a frequency band status determination method, a frequency band status indication device, a frequency band status determination device, and electronic equipment to solve technical problems in related technologies.
  • a method for indicating the status of a frequency band which is suitable for a base station, and the method includes:
  • the idle sub-bands are used to send n preset status indication information to the terminal, where ,
  • the n status indication information is used to indicate the status of the n sub-bands.
  • a method for determining the status of a frequency band which is applicable to a terminal, and includes:
  • a frequency band status indication device which is suitable for a base station, and the device includes:
  • the status monitoring module is configured to detect the status of n sub-bands in the unlicensed frequency band, n ⁇ 1;
  • the information sending module is configured to, in the case where there are idle sub-bands in the n sub-bands, at the start position of the occupation duration of the idle sub-bands, send presets to the terminal through the idle sub-bands n status indication information, where the n status indication information is used to indicate the status of the n sub-bands.
  • a device for determining the status of a frequency band which is suitable for a terminal, and includes:
  • the information receiving module is configured to receive n preset status indication information sent by the base station in an idle sub-frequency band in the unlicensed frequency band, n ⁇ 1;
  • the status determining module is configured to determine the status of the n sub-bands in the unlicensed frequency band according to the n status indication information.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the frequency band status indication method described in any of the foregoing embodiments.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the frequency band state determination method described in any of the foregoing embodiments.
  • the base station may send n preset status indication information to the terminal through the idle sub-band at the start position of the occupied time, so as to indicate the status of the n sub-bands to the terminal through the n status indication information .
  • the base station Since the preset n status indication information is preset, the base station has stored these n status indication information before occupying the idle sub-band, so that when the idle channel is occupied, the start position of the occupied duration can be immediately changed.
  • the n status indication information is sent to the terminal, so that the terminal can receive the n status indication information in time to determine the status of the n sub-bands, and then can take appropriate actions in time for the corresponding sub-bands according to the determined status.
  • Fig. 1 is a schematic flow chart showing a method for indicating the status of a frequency band according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram showing a sub-band according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic flowchart of another frequency band status indication method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flow chart showing another method for indicating status of a frequency band according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart showing a method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flow chart showing another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic flowchart showing another method for determining a frequency band state according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 14 is a schematic flowchart showing another method for determining a frequency band state according to an embodiment of the present disclosure.
  • Fig. 15 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 16 is a schematic block diagram showing a device for indicating a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 17 is a schematic block diagram of another frequency band state indicating device according to an embodiment of the present disclosure.
  • Fig. 18 is a schematic block diagram showing an apparatus for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 19 is a schematic block diagram showing a state determination module according to an embodiment of the present disclosure.
  • Fig. 20 is a schematic block diagram showing another device for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 21 is a schematic block diagram showing another device for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 22 is a schematic block diagram showing another device for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 23 is a schematic block diagram showing yet another device for determining a state of a frequency band according to an embodiment of the present disclosure.
  • Fig. 24 is a schematic diagram showing an apparatus for indicating the status of a frequency band according to an embodiment of the present disclosure.
  • Fig. 25 is a schematic diagram showing a device for determining the status of a frequency band according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic flow chart showing a method for indicating the status of a frequency band according to an embodiment of the present disclosure.
  • the method shown in this embodiment can be applied to a base station, and the base station can communicate with a terminal, for example, can communicate with the terminal based on the 4G protocol, or can communicate with the terminal based on the 5G protocol. And it can communicate with the terminal in an authorized frequency band (for example, the frequency band corresponding to the operator's network), or it can communicate with the terminal in an unlicensed frequency band (for example, Wi-Fi frequency band, Bluetooth frequency band, etc.).
  • the terminal includes, but is not limited to, electronic devices such as mobile phones, tablet computers, and wearable devices.
  • the frequency band status indication method may include the following steps:
  • step S1 the status of n sub-bands in the unlicensed frequency band is detected, n ⁇ 1;
  • step S2 in the case that there are idle sub-bands in the n sub-bands, at the start position of the occupation duration of the idle sub-bands, the idle sub-bands are used to send n presets to the terminal.
  • Status indication information where the n pieces of status indication information are used to indicate the status of the n sub-bands.
  • the unlicensed frequency band may include n sub-bands.
  • the unlicensed frequency band may include 4 sub-bands, sub-band A, sub-band B, sub-band C, and sub-band D. Each sub-band may correspond to Equal bandwidth.
  • the base station When the base station needs to occupy the unlicensed frequency band to communicate with the terminal, it can detect the n sub-bands in the unlicensed frequency band to determine the status of each sub-band in the n sub-bands. For example, you can use LBT (Listen Before Talk, listen before talk) ) Method to detect each sub-band, and specifically determine whether the sub-band is occupied. When the sub-band is not occupied, it can be determined that the sub-band is free. When the sub-band is occupied, It can be determined that the sub-band is not idle.
  • LBT Listen Before Talk, listen before talk
  • the idle sub-band When it is determined that there is an idle sub-band in the n sub-bands, the idle sub-band may be occupied (for example, if there are multiple sub-bands idle, then one of the sub-bands may be selected for occupation), and then the idle sub-band may be used to communicate with the terminal.
  • the idle sub-band occupied by the base station is not permanently occupied, but an occupation period needs to be determined.
  • the occupation period may be referred to as Channel Occupancy Time (COT), and the base station occupies the sub-band within the occupation period.
  • COT Channel Occupancy Time
  • the base station can send the preset n states to the terminal through the idle sub-band at the start position of the occupied duration, for example, a time domain unit of the occupied duration (specifically, it may be a symbol, a time slot, etc.)
  • the indication information is used to indicate the status of the n sub-bands to the terminal through the n status indication information.
  • the base station Since the preset n status indication information is preset (for example, it can be set according to the previous or previous detection results of n sub-bands), the base station has stored these n statuses before occupying the idle sub-bands Indication information, so that when an idle channel is occupied, n status indication information can be sent to the terminal immediately at the beginning position of the occupied duration, so that the terminal can receive n status indication information in time to determine the status of the n sub-bands, and then Appropriate actions can be taken in time for the corresponding sub-bands according to the determined status.
  • Fig. 3 is a schematic flowchart of another frequency band status indication method according to an embodiment of the present disclosure. As shown in Figure 3, the method further includes:
  • step S3 update the n status indication information according to the status of the n sub-bands
  • step S4 the updated n status indication information is sent to the terminal at positions other than the start position of the occupation duration of the idle sub-band.
  • the preset n pieces of state information are preset, there may be a difference from the actual detection result of the base station for the n sub-bands.
  • the base station After the base station sends the preset n pieces of status information to the terminal, it can update the n pieces of status indication information according to the detected status of the n sub-bands, so that the updated n pieces of status indication information can accurately indicate that the base station is responsible for the n sub-bands. The actual test results.
  • the updated n states are indicated
  • the information is sent to the terminal, so that the terminal can accurately determine the status of the n sub-bands according to the updated n status indication information.
  • the n pieces of status indication information are arranged in a preset order, where the preset order has an association relationship with the n sub-bands.
  • the n status indication information sent by the base station may be arranged in a preset order, and the preset order may have an association relationship with n frequency bands.
  • the terminal may store the association relationship in advance, so that when n states are received After the indication information, the i-th sub-band corresponding to the i-th order can be determined according to the association relationship, and then the i-th indication information at the i-th order is determined for indicating the status of the i-th sub-band, 1 ⁇ i ⁇ n.
  • sub-band A corresponds to the first order position
  • sub-band B corresponds to the second order position
  • Frequency band C corresponds to the 3rd sequence bit
  • sub-band D corresponds to the 4th sequence bit
  • 4 status indication information status indication information a, status indication information b, status indication information c, status indication information d according to the order bits 1, 2, 3, 4 arrangement.
  • the status indication information a is used to indicate the status of the sub-band A
  • the status indication information b is used to indicate the status of the sub-band B
  • the status indication information c is used to indicate the status of the sub-band C
  • the status indication information d is used to indicate the status of the sub-band.
  • the status of band D is used to indicate the status of band A.
  • Fig. 4 is a schematic flow chart showing another method for indicating status of a frequency band according to an embodiment of the present disclosure. As shown in FIG. 4, the sending of n preset status indication information to the terminal includes:
  • step S21 the information of the physical downlink control channel is sent to the terminal, wherein the information of the physical downlink control channel carries the n status indication information.
  • the base station may send physical downlink control channel information to the terminal in the unlicensed frequency band, and the n status indication information may be carried in the physical downlink control channel information.
  • the status of the i-th sub-band in the n sub-bands includes one of the following:
  • the status indication information can be used to indicate three states: idle, non-idle, and possibly idle. Since the preset n status indication information may be different from the actual detection result of the base station for n sub-bands, it is passed In addition to indicating that the sub-band is idle and not idle, the status indication information may also indicate that the sub-band may be idle.
  • the preset n pieces of state information can be set according to the detection results of the n subbands for the previous preset times.
  • the state information corresponding to the i-th sub-band among the preset n state information is used to characterize the i-th sub-band.
  • Sub-bands are idle; the previous detection result for the i-th sub-band is that the i-th sub-band is not idle, then the state information corresponding to the i-th sub-band among the preset n status information is used to indicate that the i-th sub-band is not idle; The i-th sub-band has not been detected in the past, that is, there is no previous detection result of the i-th sub-band, then the state of the i-th sub-band in the preset n state information can indicate that the i-th sub-band may be idle .
  • each state indication information in the n pieces of state indication information occupies one bit, or occupies multiple bits.
  • the status indication information may occupy one bit or multiple bits.
  • each sub-band can comprehensively represent the above-mentioned 3 states of idle, non-idle and possibly idle .
  • the status indicated by the status indication information is shown in Table 1:
  • the value of the status indication information When the value of the status indication information is 00, it means that the sub-band is idle. When the value of the status indication information is 01, it means that the sub-band is not idle. When the value of the status indication information is 10, it means that the sub-band may be idle. The value of the status indication information is 11 is reserved, and does not indicate the status of the sub-band temporarily, in order to set the meaning of its expression for subsequent use.
  • the status indication information occupies one bit, since one bit can only indicate two situations, it is difficult to fully express the above three states of idle, non-idle, and possibly idle only through the status indication information. In this case, This will be described in the subsequent embodiments.
  • each of the n status indication information occupies one bit
  • the information of the physical downlink control channel also carries position indication information, where the position indication information is used to indicate that The information of the physical downlink control channel is located at the start position of the occupation duration of the idle sub-frequency band, or at a position other than the start position of the occupation duration of the idle sub-frequency band.
  • the terminal in the case that the status indication information occupies one bit position, the terminal may be indicated by combining the positions of n status indication information, so that the same status indication information is used in the n status indication information in the occupation When located in different positions within the duration, they have different meanings.
  • the association relationship between the position and the state of the n sub-bands indicated by the n status indication information can be preset. For example, when the n status indication information is located at the start position of the occupation duration, the status indication information 1 indicates that the corresponding sub-band may be idle, 0 indicates that the corresponding sub-band is not idle; when n status indication information is located at a position other than the start position of the occupation duration, 1 in the status indication information indicates that the corresponding sub-band is idle, and 0 indicates The corresponding sub-band is not idle.
  • the terminal can determine the position of the n status indication information in the occupancy duration of the idle sub-band, and then according to the position and the n sub-bands indicated by the n status indication information And query the status of the n sub-bands indicated by the n status indication information corresponding to the position, and determine the status of the n sub-bands according to the n status indication information queried.
  • the base station may also carry position indication information in the information of the physical downlink control channel sent by the base station. Whether the information of the physical downlink control channel is located at the start position of the occupation duration of the idle sub-band, or is located at a position other than the start position of the occupation duration of the idle sub-band.
  • each of the n status indication information occupies one bit, and the scrambling information of the physical downlink control channel information is used to indicate that the information of the physical downlink control channel is located in the The starting position of the occupation duration of the idle sub-band, or a position other than the starting position of the occupation duration of the idle sub-band.
  • scrambling information of the information of the physical downlink control channel can also be used to indicate that the information of the physical downlink control channel is located in an occupied idle sub-band.
  • the start position of the occupied duration of the occupancy is still located at a position other than the start position of the occupied duration of the idle sub-band.
  • the n status indication information carried by the information of the physical downlink control channel located at the start position of the occupation duration may be the n status indication information preset in the foregoing embodiment.
  • the information of the physical downlink control channel may be scrambled by the radio network temporary identity (RNTI), and the scrambling information may refer to the wireless network temporary identity itself, or it may refer to the temporary identity of the wireless network. Identifies the scrambling information to be scrambled.
  • RNTI radio network temporary identity
  • the physical downlink control channel is a group common physical downlink control channel.
  • the physical downlink control channel may specifically be a group common physical downlink control channel (Group Common Physical Downlink Control Channel, referred to as GC-PDCCH).
  • GC-PDCCH Group Common Physical Downlink Control Channel
  • the base station can send information to a specific group
  • the n sub-bands belong to the same carrier, or at least one of the sub-bands and other sub-bands belong to different carriers, or at least one of the sub-bands corresponds to a frequency band of a preset carrier.
  • the n sub-bands detected by the base station may belong to the same carrier or different carriers.
  • at least one of the sub-bands and other sub-bands belong to different carriers, and there may be sub-bands corresponding to preset carriers.
  • the frequency band, that is, the sub-frequency band is the same as the frequency band of the preset carrier. Which of the above-mentioned specific sub-bands belongs to can be set according to actual needs.
  • Fig. 5 is a schematic flowchart showing a method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • the method shown in this embodiment can be applied to a terminal, and the terminal can communicate with a base station (for example, the base station described in any of the above embodiments), for example, it can communicate with the base station based on the 4G protocol, or it can communicate with the base station based on the 5G protocol. To communicate. And it can communicate with the base station in the authorized frequency band (for example, the frequency band corresponding to the operator's network), and it can also communicate with the base station in the unlicensed frequency band (for example, Wi-Fi frequency band, Bluetooth frequency band, etc.).
  • the terminal includes, but is not limited to, electronic devices such as mobile phones, tablet computers, and wearable devices.
  • the frequency band status determination method may include the following steps:
  • step S1' the idle sub-band in the unlicensed frequency band receives n preset status indication information sent by the base station, n ⁇ 1;
  • step S2' the status of the n sub-bands in the unlicensed frequency band is determined according to the n status indication information.
  • the base station may occupy an idle sub-frequency band to send preset n status indication information to the terminal, because the preset n status indication information is preset (for example, it may be based on the previous time or the previous few times).
  • the base station has stored these n status indication information before occupying the idle sub-bands, so that when the idle channel is occupied, the n status indications can be immediately indicated at the beginning of the occupation duration.
  • the information is sent to the terminal, so that the terminal can receive n status indication information in time to determine the status of the n sub-bands, and then can take appropriate actions in time for the corresponding sub-bands according to the determined status.
  • Fig. 6 is a schematic flow chart showing another method for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 6, the method further includes:
  • step S3' receiving n pieces of status indication information sent by the base station according to the status of the n sub-bands
  • step S4' the status of the n sub-bands is determined according to the updated n status indication information.
  • the preset n pieces of state information are preset, there may be a difference from the actual detection result of the base station for the n sub-bands.
  • the base station After the base station sends the preset n pieces of state information to the terminal, it may The n status indication information is updated according to the status of the n sub-bands, so that the updated n status indication information can accurately represent the actual detection result of the base station for the n sub-bands.
  • the updated n status indication information is sent to the terminal, and the terminal Then the updated n status indication information can be received, so as to accurately determine the status of the n sub-bands according to the updated n status indication information.
  • Fig. 7 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • the n status indication information are arranged in a preset order, and the determining the status of the n sub-bands according to the n status indication information includes:
  • step S21' according to the association relationship between the preset order and the n sub-bands, the i-th indication information located in the i-th order among the n status indication information is determined to indicate the i-th
  • the status of the sequence bit corresponding to the i-th sub-band in the n sub-bands is 1 ⁇ i ⁇ n.
  • the n status indication information sent by the base station may be arranged in a preset order, and the preset order may have an association relationship with n frequency bands.
  • the terminal may store the association relationship in advance, and then, upon receiving n states After the indication information, the i-th sub-band corresponding to the i-th order can be determined according to the association relationship, and then the i-th indication information located at the i-th order is used to indicate the status of the i-th sub-band, 1 ⁇ i ⁇ n .
  • sub-band A corresponds to the first order position
  • sub-band B corresponds to the second order position
  • Frequency band C corresponds to the 3rd sequence bit
  • sub-band D corresponds to the 4th sequence bit
  • 4 status indication information status indication information a, status indication information b, status indication information c, status indication information d according to the order bits 1, 2, 3, 4 arrangement.
  • the status indication information a is used to indicate the status of the sub-band A
  • the status indication information b is used to indicate the status of the sub-band B
  • the status indication information c is used to indicate the status of the sub-band C
  • the status indication information d is used to indicate the status of the sub-band.
  • the status of band D is used to indicate the status of band A.
  • Fig. 8 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • the reception of preset n pieces of status indication information sent by the base station in the idle sub-band in the unlicensed frequency band includes:
  • step S11' receiving physical downlink control channel information sent by the base station in the unlicensed frequency band
  • step S12' the n pieces of status indication information are extracted from the information of the physical downlink control channel.
  • the base station may send physical downlink control channel information to the terminal in the unlicensed frequency band, and the n status indication information may be carried in the physical downlink control channel information.
  • the terminal may receive the information of the physical downlink control channel sent by the base station, and then extract the n status indication information from the information of the physical downlink control channel.
  • the status of the i-th sub-band in the n sub-bands includes one of the following:
  • Idle or non-idle, possibly idle.
  • the status indication information can be used to indicate three states: idle, non-idle, and possibly idle. Since the preset n status indication information may be different from the actual detection result of the base station for n sub-bands, it is passed In addition to indicating that the sub-band is idle and non-idle, the status indication information may also indicate that the sub-band may be idle.
  • the preset n status information is set according to the previous detection result of n sub-bands.
  • the previous detection result for the i-th sub-band is that the i-th sub-band is idle
  • the preset n status information corresponds to The status information of the i-th sub-band is used to indicate that the i-th sub-band is idle; for example, the previous detection result for the i-th sub-band is that the i-th sub-band is not idle, then the preset n status information corresponds to the i-th sub-band
  • the status information is used to characterize that the i-th sub-band is not idle; for example, for the i-th sub-band, it has not been detected in the past, that is, there is no previous detection result of the i sub-band, then the preset n status information corresponds to The status of the i-th sub-band may indicate that the i-th sub-band may be idle.
  • each state indication information in the n pieces of state indication information occupies one bit, or occupies multiple bits.
  • the status indication information can occupy one bit or multiple bits.
  • each sub-band can comprehensively represent the above-mentioned 3 states of idle, non-idle and possibly idle .
  • the status indicated by the status indication information is shown in Table 1.
  • the value of the status indication information is 00, it means that the sub-band is idle, and when the value of the status indication information is 01, it means that the sub-band is not idle, and the value of the status indication information is 10.
  • the time it means that the sub-band may be free, and the value of the status indication information is 11 for reserved. It does not indicate the status of the sub-band for the time being, in order to set the meaning of its expression for subsequent use.
  • the status indication information occupies one bit, since one bit can only indicate two situations, it is difficult to fully express the above three states of idle, non-idle, and possibly idle only through the status indication information. In this case, This will be described in the subsequent embodiments.
  • Fig. 9 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in FIG. 9, each of the n status indication information occupies one bit, and the determining the status of the n subbands in the unlicensed frequency band according to the n status indication information includes:
  • step S22' determine the position of the n status indication information in the occupation time length of the idle sub-band
  • step S23' according to the association relationship between the position and the state of the n sub-bands indicated by the n status indication information, query the position indicated by the n status indication information corresponding to the position The status of n sub-bands;
  • step S24' the status of the n sub-bands is determined according to the n status indication information found.
  • the position of the n status indication information may be combined to indicate the terminal, so that the same status indication information is in the n states
  • the indication information expresses different meanings when it is located in different positions within the occupied time period.
  • the association relationship between the position and the status of the n sub-bands indicated by the n status indication information can be preset.
  • the association relationship between the position and the status of the n sub-bands indicated by the n status indication information is as follows: n status indications When the information is located at the starting position of the occupied duration, 1 in the status indication information indicates that the corresponding sub-band may be idle, and 0 indicates that the corresponding sub-band is not idle; n pieces of status indication information are located at other than the starting position of the occupied duration In the position, 1 in the status indication information indicates that the corresponding sub-band is idle, and 0 indicates that the corresponding sub-band is not idle.
  • one bit of status information comprehensively expresses the three states of idle, non-idle and possibly idle.
  • the terminal can determine the position of the n status indication information in the occupancy duration of the idle sub-band, and then according to the position and the n sub-bands indicated by the n status indication information And query the status of the n sub-bands indicated by the n status indication information corresponding to the position, and determine the status of the n sub-bands according to the n status indication information queried.
  • the terminal determines that n status indication information is located at the starting position in the occupation duration of the occupied idle sub-band, and according to the association relationship between the position and the status of the n sub-bands indicated by the n status indication information, n status indication information can be queried.
  • the 1 indicates that the corresponding sub-band may be idle, and 0 indicates that the corresponding sub-band is not idle. Therefore, when the i-th status indication information is 1, it can be determined that the status of the i-th sub-band is possibly idle, and the i-th status indication information is At 0, it can be determined that the status of the i-th sub-band is non-idle.
  • Fig. 10 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure.
  • the determining the position of the n status indication information in the occupation time length of the idle sub-band includes:
  • step S221' extract position indication information from the information of the physical downlink control channel
  • step S222' it is determined according to the position indication information that the information of the physical downlink control channel is located at the beginning of the occupation duration of the idle sub-band, or at the beginning of the occupation duration of the idle sub-band. Location other than location.
  • the base station may also carry position indication information in the information of the physical downlink control channel sent by the terminal. According to the position indication information, it can be determined whether the information of the physical downlink control channel is located at the start position of the occupation duration of the idle sub-band or at a position other than the start position of the occupation duration of the idle sub-band.
  • Fig. 11 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in FIG. 11, the determining the position of the n status indication information in the occupation time length of the idle sub-band includes:
  • step S223' the information of the physical downlink control channel is descrambled through descrambling information
  • step S224' it is determined, according to the scrambling information corresponding to the descrambling information, that the information of the physical downlink control channel is located at the beginning of the occupancy duration of the idle sub-band, or located in the idle sub-band. Occupy a position other than the starting position of the duration.
  • the base station in addition to setting additional position indication information in the information of the physical downlink control channel, can also indicate the information of the physical downlink control channel of the terminal by the scrambling information of the information of the physical downlink control channel to indicate the duration of the occupation of the information of the physical downlink control channel of the terminal. Location within.
  • the terminal may descramble the information of the physical downlink control channel through the descrambling information, and then determine whether the information of the physical downlink control channel is located at the beginning of the occupied period of the idle sub-band according to the scrambling information corresponding to the descrambling information, or It is located at a position other than the starting position of the occupied duration of the occupied idle sub-band.
  • the terminal may also pre-arrange with the base station for receiving information from the base station within the preset time period. All physical downlink control channel information is located at a preset position (for example, the starting position) within the occupied duration by default, so that for the physical downlink control channel information received from the base station, there is no need to further determine its occupied duration , But it can be located at a preset position by default.
  • the physical downlink control channel is a group common physical downlink control channel.
  • the physical downlink control channel may specifically be a group common physical downlink control channel.
  • the base station can send the information of the physical downlink control channel to terminals belonging to a specific group.
  • the n sub-bands belong to the same carrier, or at least one of the sub-bands and other sub-bands belong to different carriers, or at least one of the sub-bands corresponds to a frequency band of a preset carrier.
  • the n sub-bands detected by the base station may belong to the same carrier or different carriers.
  • at least one of the sub-bands and other sub-bands belong to different carriers, and there may be sub-bands corresponding to preset carriers.
  • the frequency band, that is, the sub-frequency band is the same as the frequency band of the preset carrier. Which of the above-mentioned specific sub-bands belongs to can be set according to actual needs.
  • the terminal takes appropriate actions in time on the corresponding sub-bands according to the determined status. From the perspective of receiving information, it may include monitoring the corresponding sub-bands; thus, from the perspective of sending information, it may include directly occupying the corresponding sub-bands. Sub-band, and in the case of detecting that the i-th sub-band is idle by a detection method other than the preset detection method, occupying the i-th sub-band, and detecting that the i-th sub-band is idle by a preset detection method Next, the i-th sub-band is occupied.
  • Fig. 12 is a schematic flowchart showing another method for determining a frequency band state according to an embodiment of the present disclosure. As shown in Figure 12, the method further includes:
  • step S5' when it is determined that the i-th sub-band among the n sub-bands is idle, monitor the i-th sub-band, and/or within a preset time period, when the i-th sub-band needs to be occupied When the state of the i-th sub-band is not detected, or when the i-th sub-band is detected to be idle by a detection method other than the preset detection method, the i-th sub-band is occupied, wherein, The preset detection method has a longer detection time than the other detection methods, and the detection result is more accurate.
  • the terminal may continue to monitor the i-th sub-band when it is determined that the i-th sub-band is idle.
  • the i-th sub-band can be directly occupied to communicate with the base station without detecting the status of the i-th sub-band; or in advance If the i-th sub-frequency band needs to be occupied within the time period, when the i-th sub-frequency band is detected to be idle by a detection method other than the preset detection method, the i-th sub-frequency band is occupied to communicate with the base station .
  • monitoring the i-th sub-frequency band includes but is not limited to receiving control information and receiving downlink data; the terminal occupies the i-th sub-frequency band to communicate with the base station, including but not limited to sending uplink data to the base station.
  • the preset detection method has a longer detection time than the other detection methods, and the detection result is more accurate.
  • the preset detection method may be the cat4 detection method, and the other detection methods may be the cat2 detection method.
  • the terminal when the terminal determines that the i-th sub-band is free, it can keep monitoring the i-th sub-band, so as to receive the control information and data sent by the base station in time.
  • the i-th sub-band when it is determined that the i-th sub-band is free, there is a high probability that other devices will not occupy the i-th sub-band. Then, when the i-th sub-band needs to be occupied for communication with the base station, the i-th sub-band can be directly occupied. Or use other relatively less stringent detection methods to detect that the i-th sub-band is occupied when the i-th sub-band is idle. Because the detection time of other detection methods is relatively short, the i-th sub-band is directly occupied, or other detection methods are used to detect the i-th sub-band. Frequency band, time-consuming is relatively short, which is conducive to the terminal to quickly complete sending data to the base station.
  • Fig. 13 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 13, the method further includes:
  • step S6' when it is determined that the i-th sub-band among the n sub-bands may be idle, monitor the i-th sub-band, and/or when the i-th sub-band needs to be occupied, perform detection When the i-th sub-band is idle, the i-th sub-band is occupied.
  • the terminal may continue to monitor the i-th sub-band when it is determined that the i-th sub-band may be idle. And when the i-th sub-frequency band needs to be occupied, when the i-th sub-frequency band is detected (for example, detected by a preset detection method) that the i-th sub-frequency band is idle, the i-th sub-frequency band is occupied to communicate with the base station.
  • monitoring the i-th sub-frequency band includes but is not limited to receiving control information and receiving downlink data; the terminal occupies the i-th sub-frequency band to communicate with the base station, including but not limited to sending uplink data to the base station.
  • the preset detection method may be a detection method that has a longer detection time and a more accurate detection result, such as the cat4 detection method.
  • a relatively strict preset detection method can be used It is detected that the i-th sub-band is occupied when the i-th sub-band is idle. Since the detection result of the preset detection method is relatively accurate, the preset detection method is used to detect the i-th sub-band, which can ensure that the terminal can be unoccupied in the i-th sub-band It occupies the i-th sub-band to complete sending data to the base station.
  • the terminal when the terminal determines that the i-th sub-band may be free, the terminal may keep monitoring the i-th sub-band, so as to receive the control information and data sent by the base station in time. Moreover, when the i-th sub-band needs to be occupied for communication with the base station, the i-th sub-band can be occupied when the i-th sub-band is detected to be idle, so as to ensure that the i-th sub-band is occupied when the i-th sub-band is accurately determined to be idle.
  • Fig. 14 is a schematic flowchart showing another method for determining a frequency band state according to an embodiment of the present disclosure. As shown in Figure 14, the method further includes:
  • step S7' when it is determined that the i-th sub-band among the n sub-bands is not idle, stop monitoring the i-th sub-band, and/or when the i-th sub-band needs to be occupied, detect When the i-th sub-band is idle, the i-th sub-band is occupied.
  • the terminal may stop monitoring the i-th sub-band when it is determined that the i-th sub-band is not idle. And when the i-th sub-frequency band needs to be occupied, when the i-th sub-frequency band is detected (for example, detected by a preset detection method) that the i-th sub-frequency band is idle, the i-th sub-frequency band is occupied to communicate with the base station.
  • monitoring the i-th sub-band includes but is not limited to receiving control information and receiving downlink data.
  • Fig. 15 is a schematic flowchart showing yet another method for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 15, the method further includes:
  • step S8' when it is determined that the i-th sub-band among the n sub-bands is idle or possibly idle, monitor the i-th sub-band, and/or when the i-th sub-band needs to be occupied, When detecting that the i-th sub-band is idle, occupy the i-th sub-band.
  • the terminal when the sub-band is idle and the sub-band may be idle, the terminal may take different actions in the embodiments shown in FIG. 12 and FIG. 13 respectively.
  • the same action can also be taken for these two situations. For example, in the case where it is determined that the i-th sub-band among the n sub-bands is idle or possibly idle, the i-th sub-band can be continuously monitored, and when the i-th sub-band needs to be occupied, In the case of the i-th sub-band, the i-th sub-band may be occupied when it is detected that the i-th sub-band is idle. In order to receive the control information and data sent by the base station in time, and ensure that the i-th sub-band is occupied when it is accurately determined that the i-th sub-band is free. And since the terminal takes the same action for the two situations, the complexity of the terminal's execution of the action can be reduced.
  • occupying the i-th sub-band includes:
  • the i-th sub-band In the case of detecting that the i-th sub-band is idle by a preset detection method, the i-th sub-band is occupied, wherein the preset detection method is relative to that detected by the other detection methods other than the preset detection method. The time is longer and the detection result is more accurate.
  • the occupation of the i-th sub-band may be detected by a preset detection method, where the preset detection method may be a detection sub-band
  • the preset detection method may be a detection sub-band
  • the present disclosure also provides embodiments of a frequency band status indication device and a frequency band status determination device.
  • Fig. 16 is a schematic block diagram showing a device for indicating a state of a frequency band according to an embodiment of the present disclosure.
  • the device shown in this embodiment can be applied to a base station, and the base station can communicate with a terminal, for example, it can communicate with the terminal based on the 4G protocol, or it can communicate with the terminal based on the 5G protocol. And it can communicate with the terminal in an authorized frequency band (for example, the frequency band corresponding to the operator's network), or it can communicate with the terminal in an unlicensed frequency band (for example, Wi-Fi frequency band, Bluetooth frequency band, etc.).
  • the terminal includes, but is not limited to, electronic devices such as mobile phones, tablet computers, and wearable devices.
  • the frequency band status indicating device may include
  • the status monitoring module 1 is configured to detect the status of n sub-bands in the unlicensed frequency band, where n ⁇ 1;
  • the information sending module 2 is configured to, when there are idle sub-bands in the n sub-bands, send a preset to the terminal through the idle sub-bands at the start position of the occupation period of the idle sub-bands N status indication information of, where the n status indication information is used to indicate the status of the n sub-bands.
  • Fig. 17 is a schematic block diagram of another frequency band state indicating device according to an embodiment of the present disclosure. As shown in Figure 17, the device further includes:
  • the status update module 3 is configured to update the n status indication information according to the status of the n sub-bands
  • the information sending module 2 is further configured to send the updated n status indication information to the terminal at a location other than the start position of the occupied duration of the idle sub-band.
  • the n pieces of status indication information are arranged in a preset order, where the preset order has an association relationship with the n sub-bands.
  • the information sending module is configured to send information of a physical downlink control channel to the terminal, wherein the information of the physical downlink control channel carries the n status indication information.
  • the status of the i-th sub-band in the n sub-bands includes one of the following:
  • each state indication information in the n pieces of state indication information occupies one bit, or occupies multiple bits.
  • each of the n status indication information occupies one bit
  • the information of the physical downlink control channel also carries position indication information, where the position indication information is used to indicate that The information of the physical downlink control channel is located at the start position of the occupation duration of the idle sub-frequency band, or at a position other than the start position of the occupation duration of the idle sub-frequency band.
  • each of the n status indication information occupies one bit, and the scrambling information of the physical downlink control channel information is used to indicate that the information of the physical downlink control channel is located in the The starting position of the occupation duration of the idle sub-band, or a position other than the starting position of the occupation duration of the idle sub-band.
  • the physical downlink control channel is a group common physical downlink control channel.
  • the n sub-bands belong to the same carrier, or at least one of the sub-bands and other sub-bands belong to different carriers, or at least one of the sub-bands corresponds to a frequency band of a preset carrier.
  • Fig. 18 is a schematic block diagram showing an apparatus for determining a state of a frequency band according to an embodiment of the present disclosure.
  • the device shown in this embodiment can be applied to a terminal, and the terminal can communicate with a base station (such as the base station described in any of the above embodiments), for example, it can communicate with the base station based on the 4G protocol, or it can communicate with the base station based on the 5G protocol. To communicate. And it can communicate with the base station in the authorized frequency band (for example, the frequency band corresponding to the operator's network), and it can also communicate with the base station in the unlicensed frequency band (for example, Wi-Fi frequency band, Bluetooth frequency band, etc.).
  • the terminal includes, but is not limited to, electronic devices such as mobile phones, tablet computers, and wearable devices.
  • the frequency band status determining device may include
  • the information receiving module 1' is configured to receive n preset status indication information sent by the base station in an idle sub-frequency band in the unlicensed frequency band, n ⁇ 1;
  • the status determining module 2' is configured to determine the status of the n sub-bands in the unlicensed frequency band according to the n status indication information.
  • the information receiving module is further configured to receive n status indication information updated according to the status of the n sub-frequency bands sent by the base station; determine according to the updated n status indication information The state of the n sub-bands.
  • the n pieces of status indication information are arranged in a preset order, and the status determination module is configured to determine the n pieces of status indication information according to the association relationship between the preset order and the n sub-bands
  • the i-th indication information located at the i-th position in is used to indicate the state of the i-th sub-band corresponding to the i-th position in the n sub-bands, 1 ⁇ i ⁇ n.
  • the information receiving module is configured to receive physical downlink control channel information sent by the base station in the unlicensed frequency band; extract the n status indication information from the physical downlink control channel information .
  • the status of the i-th sub-band in the n sub-bands includes one of the following:
  • Idle or non-idle, possibly idle.
  • each state indication information in the n pieces of state indication information occupies one bit, or occupies multiple bits.
  • Fig. 19 is a schematic block diagram showing a state determination module according to an embodiment of the present disclosure. As shown in FIG. 19, each of the n status indication information occupies one bit, and the status determination module 2'includes:
  • the position determining sub-module 21' is configured to determine the position of the n status indication information in the occupation time length of the idle sub-band;
  • the status query submodule 22' is configured to query the location of the n status indication information corresponding to the location according to the association relationship between the location and the status of the n subbands indicated by the n status indication information.
  • the status determining submodule 23' is configured to determine the status of the n sub-bands according to the n status indication information that is queried.
  • the position determining sub-module is configured to extract position indication information from the information of the physical downlink control channel; according to the position indication information, it is determined that the information of the physical downlink control channel is located in the idle submodule.
  • the position determining sub-module is configured to descramble the information of the physical downlink control channel through descrambling information; determine the position of the physical downlink control channel according to the scrambling information corresponding to the descrambling information
  • the information is located at the start position of the occupation duration of the idle sub-band, or at a position other than the start position of the occupation duration of the idle sub-band.
  • the physical downlink control channel is a group common physical downlink control channel.
  • the n sub-bands belong to the same carrier, or at least one of the sub-bands and other sub-bands belong to different carriers, or at least one of the sub-bands corresponds to a frequency band of a preset carrier.
  • Fig. 20 is a schematic block diagram showing another device for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 20, the device further includes:
  • the first monitoring module 3' is configured to monitor the i-th sub-band when it is determined that the i-th sub-band among the n sub-bands is idle; and/or
  • the first occupancy module 4' is configured to occupy the i-th sub-band within a preset period of time, without detecting the status of the i-th sub-band, or by other than the preset detection method When other detection methods detect that the i-th sub-band is idle, the i-th sub-band is occupied, wherein the preset detection method has a longer detection time than the other detection methods, and the detection result is more accurate.
  • Fig. 21 is a schematic block diagram showing another device for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 21, the device further includes:
  • the second monitoring module 5' is configured to monitor the i-th sub-band when it is determined that the i-th sub-band among the n sub-bands may be idle; and/or
  • the second occupancy module 6' is configured to occupy the i-th sub-band when it is detected that the i-th sub-band is idle when the i-th sub-band needs to be occupied.
  • Fig. 22 is a schematic block diagram showing another device for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 22, the device further includes:
  • the third monitoring module 7' is configured to stop monitoring the i-th sub-band when it is determined that the i-th sub-band among the n sub-bands is not idle; and/or
  • the third occupancy module 8' is configured to occupy the i-th sub-band when it is detected that the i-th sub-band is idle when the i-th sub-band needs to be occupied.
  • Fig. 23 is a schematic block diagram showing yet another device for determining a state of a frequency band according to an embodiment of the present disclosure. As shown in Figure 23, the device further includes:
  • the fourth monitoring module 9' is configured to monitor the i-th sub-band when it is determined that the i-th sub-band among the n sub-bands is idle or possibly idle; and/or
  • the fourth occupancy module 10' is configured to occupy the i-th sub-band when it is detected that the i-th sub-band is idle when the i-th sub-band needs to be occupied.
  • the second occupancy module, and/or the third occupancy module, and/or the fourth occupancy module are configured to detect that the i-th sub-band is idle through a preset detection method Next, the i-th sub-band is occupied, wherein the preset detection method has a longer detection time than the other detection methods other than the preset detection method, and the detection result is more accurate.
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative, and the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the present disclosure also proposes an electronic device, including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the frequency band status indication method described in any of the foregoing embodiments.
  • the present disclosure also proposes an electronic device, including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the frequency band state determination method described in any of the foregoing embodiments.
  • FIG. 24 is a schematic diagram of an apparatus 2400 for indicating the status of a frequency band according to an embodiment of the present disclosure.
  • the apparatus 2400 may be provided as a base station.
  • the device 2400 includes a processing component 2422, a wireless transmitting/receiving component 2424, an antenna component 2426, and a signal processing part specific to a wireless interface.
  • the processing component 2422 may further include one or more processors. One of the processors in the processing component 2422 may be configured to implement the frequency band status indication method described in any of the foregoing embodiments.
  • FIG. 25 is a schematic diagram showing a device 2500 for determining the status of a frequency band according to an embodiment of the present disclosure.
  • the device 2500 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 2500 may include one or more of the following components: a processing component 2502, a memory 2504, a power supply component 2506, a multimedia component 2508, an audio component 2510, an input/output (I/O) interface 2512, a sensor component 2514, And the communication component 2516.
  • the processing component 2502 generally controls the overall operations of the device 2500, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 2502 may include one or more processors 2520 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 2502 may include one or more modules to facilitate the interaction between the processing component 2502 and other components.
  • the processing component 2502 may include a multimedia module to facilitate the interaction between the multimedia component 2508 and the processing component 2502.
  • the memory 2504 is configured to store various types of data to support the operation of the device 2500. Examples of these data include instructions for any application or method operating on the device 2500, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 2504 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 2506 provides power for various components of the device 2500.
  • the power supply component 2506 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 2500.
  • the multimedia component 2508 includes a screen that provides an output interface between the device 2500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 2508 includes a front camera and/or a rear camera. When the device 2500 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2510 is configured to output and/or input audio signals.
  • the audio component 2510 includes a microphone (MIC), and when the device 2500 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 2504 or transmitted via the communication component 2516.
  • the audio component 2510 further includes a speaker for outputting audio signals.
  • the I/O interface 2512 provides an interface between the processing component 2502 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 2514 includes one or more sensors for providing the device 2500 with various aspects of status assessment.
  • the sensor component 2514 can detect the on/off status of the device 2500 and the relative positioning of components.
  • the component is the display and the keypad of the device 2500.
  • the sensor component 2514 can also detect the position change of the device 2500 or a component of the device 2500. , The presence or absence of contact between the user and the device 2500, the orientation or acceleration/deceleration of the device 2500, and the temperature change of the device 2500.
  • the sensor assembly 2514 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 2514 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 2516 is configured to facilitate wired or wireless communication between the device 2500 and other devices.
  • the device 2500 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 2516 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2516 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 2500 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are used to implement the frequency band state determination method described in any of the above embodiments.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller a microcontroller, a microprocessor or other electronic components are used to implement the frequency band state determination method described in any of the above embodiments.
  • a non-transitory computer-readable storage medium including instructions, such as a memory 2504 including instructions, and the foregoing instructions may be executed by the processor 2520 of the device 2500 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及频段状态指示方法,包括:检测非授权频段中n个子频段的状态,n≥1;在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。根据本公开的实施例,基站可以在占用时长的起始位置,向终端发送预设的n个状态指示信息。由于预设的n个状态指示信息是预先设定的,从而可以在占用空闲信道时,在占用时长的起始位置立即将n个状态指示信息发送给终端,使得终端可以及时接收到n个状态指示信息,以确定n个子频段的状态,进而可以根据确定的状态对相应的子频段及时采取适当的动作。

Description

频段状态指示方法和装置、频段状态确定方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及频段状态指示方法、频段状态确定方法、频段状态指示装置、频段状态确定装置和电子设备。
背景技术
随着通信技术的发展,授权频段已难以满足终端与基站的通信需要,例如在5G通信系统中,需要将基站与终端的通信拓展到了非授权频段。但是在使用非授权频段之前,需要先对见非授权频段进行检测,以确定非授权频段的状态,在非授权频段处于空闲的状态下,才能够占用非授权频段进行通信。
而在5G通信系统中,载波的带宽相对于4G通信系统中载波的带宽要大,为了提高检测的精度,可以将载波划分为多个子频段(也可以称作子带),那么在非授权频段对应的载波包含多个子频段的情况下,对非授权频段进行检测,可以具体是对非授权频段中每个子频段进行检测。
在基站需要占用非授权频段的情况下,基站可以对非授权频段中每个子频段的状态进行检测,并基于每个子频段的状态生成检测结果,然后将检测结果发送至终端,从而终端不必对每个子频段进行检测,就可以根据接收到的检测结果确定每个子频段的状态。
基站在确定到空闲的子频段时,会立即占用空闲的子频段与终端进行通信,但是基站基于每个子频段的状态生成检测结果需要花费一段时间,所以不能在占用空闲的子频段时,立即将检测结果发送至终端,这就使得终端不能及时地确定每个子频段的状态。
发明内容
有鉴于此,本公开的实施例提出了频段状态指示方法、频段状态确定方法、频段状态指示装置、频段状态确定装置和电子设备,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种频段状态指示方法,适用于基站,所述方法包括:
检测非授权频段中n个子频段的状态,n≥1;
在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。
根据本公开实施例的第二方面,提出一种频段状态确定方法,适用于终端,所述包括:
在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息,n≥1;
根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态。
根据本公开实施例的第三方面,提出一种频段状态指示装置,适用于基站,所述装置包括:
状态监测模块,被配置为检测非授权频段中n个子频段的状态,n≥1;
信息发送模块,被配置为在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。
根据本公开实施例的第四方面,提出一种频段状态确定装置,适用于终端,所述包括:
信息接收模块,被配置为在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息,n≥1;
状态确定模块,被配置为根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态。
根据本公开实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的频段状态指示方法。
根据本公开实施例的第六方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的频段状态确定方法。
根据本公开的实施例,基站可以在占用时长的起始位置,通过该空闲子频段向终端发送预设的n个状态指示信息,以通过这n个状态指示信息向终端指示n个子频段的状态。
由于预设的n个状态指示信息是预先设定的,那么基站在占用空闲子频段之前已经存储了这n个状态指示信息,从而可以在占用空闲信道时,在占用时长的起始位置立即将n个状态指示信息发送给终端,使得终端可以及时接收到n个状态指示信息,以确定n个子频段的状态,进而可以根据确定的状态对相应的子频段及时采取适当的动作。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种频段状态指示方法的示意流程图。
图2是根据本公开的实施例示出的一种子频段的示意图。
图3是根据本公开的实施例示出的另一种频段状态指示方法的示意流程图。
图4是根据本公开的实施例示出的又一种频段状态指示方法的示意流程图。
图5是根据本公开的实施例示出的一种频段状态确定方法的示意流程图。
图6是根据本公开的实施例示出的另一种频段状态确定方法的示意流程图。
图7是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图8是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图9是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图10是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图11是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图12是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图13是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图14是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图15是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。
图16是根据本公开的实施例示出的一种频段状态指示装置的示意框图。
图17是根据本公开的实施例示出的另一种频段状态指示装置的示意框图。
图18是根据本公开的实施例示出的一种频段状态确定装置的示意框图。
图19是根据本公开的实施例示出的一种状态确定模块的示意框图。
图20是根据本公开的实施例示出的另一种频段状态确定装置的示意框图。
图21是根据本公开的实施例示出的又一种频段状态确定装置的示意框图。
图22是根据本公开的实施例示出的又一种频段状态确定装置的示意框图。
图23是根据本公开的实施例示出的又一种频段状态确定装置的示意框图。
图24是根据本公开的实施例示出的一种用于频段状态指示的装置的示意图。
图25是根据本公开的实施例示出的一种用于频段状态确定的装置的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种频段状态指示方法的示意流程图。本实施例所示的方法可以适用于基站,所述基站可以与终端进行通信,例如可以基于4G协议与终端进行通信,也可以基于5G协议与终端进行通信。并且可以在授权频段(例如运营商网络对应的频段)与终端进行通信,也可以在非授权频段(例如Wi-Fi频段、蓝牙频段等)与终端进行通信。所述终端包括但不限于手机、平板电脑、可穿戴设备等电子设备。
如图1所示,所述频段状态指示方法可以包括以下步骤:
在步骤S1中,检测非授权频段中n个子频段的状态,n≥1;
在步骤S2中,在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。
在一个实施例中,非授权频段可以包括n个子频段,例如图2所示,非授权频段可以包括4个子频段,子频段A、子频段B、子频段C和子频段D,每个子频段可以对应相等的带宽。
基站在需要占用非授权频段与终端进行通信时,可以对非授权频段中n个子频段进行检测,以确定n个子频段中每个子频段的状态,例如可以通过LBT(Listen Before Talk,先听后说)的方式对每个子频段进行检测,具体确定是否该子频段是否已被占用,在该子频段未被占用的情况下,可以确定该子频段空闲,在该子频段已被占用的情况下,可以确定该子频段非空闲。
在n个子频段中确定存在空闲子频段的情况下,可以占用该空闲子频段(例如存在多个子频段空闲,那么可以在其中选择一个子频段占用),然后通过该空闲子频段与终端通信。
但是基站占用空闲子频段并非永久占用,而是需要确定一个占用时长,该占用时长可以称作信道占用时长(Channel Occupancy Time,简称COT),基站在该占用时长内占用子频段。
根据本公开的实施例,基站可以在占用时长的起始位置,例如占用时长的一个时域单元(具体可以是符号、时隙等),通过该空闲子频段向终端发送预设的n个状态指示信息,以通过这n个状态指示信息向终端指示n个子频段的状态。
由于预设的n个状态指示信息是预先设定的(例如可以根据前一次或前几次对n个子频段的检测结果设定),那么基站在占用空闲子频段之前已经存储了这n个状态指示信息,从而可以在占用空闲信道时,在占用时长的起始位置立即将n个状态指示信息发送给终端,使得终端可以及时接收到n个状态指示信息,以确定n个子频段的状态,进而可以根据确定的状态对相应的子频段及时采取适当的动作。
图3是根据本公开的实施例示出的另一种频段状态指示方法的示意流程图。如图3所示,所述方法还包括:
在步骤S3中,根据所述n个子频段的状态更新所述n个状态指示信息;
在步骤S4中,在占用所述空闲子频段的占用时长的起始位置以外的其他位置, 将更新后的n个状态指示信息发送至所述终端。
在一个实施例中,由于预设的n个状态信息是预先设定的,所以与基站对于n个子频段的实际检测结果可能存在差异。基站在向终端发送预设的n个状态信息后,可以根据检测到的n个子频段的状态更新n个状态指示信息,以使更新后的n个状态指示信息能够准确地表示基站对于n个子频段的实际检测结果。
然后可以在占用所述空闲子频段的占用时长的起始位置以外的其他位置(其他位置也位于占用时长内,例如可以是起始位置之后的任一位置),将更新后的n个状态指示信息发送至所述终端,从而使得终端可以根据更新后的n个状态指示信息准确地确定n个子频段的状态。
可选地,所述n个状态指示信息按照预设顺序排列,其中,所述预设顺序与所述n个子频段存在关联关系。
在一个实施例中,基站发送的n个状态指示信息可以按照预设顺序排列,而预设顺序则可以与n个频段存在关联关系,终端可以预先存储该关联关系,从而在接收到n个状态指示信息后,可以根据该关联关系,确定第i序位对应的第i个子频段,进而确定位于第i序位的第i个指示信息,用于指示的第i个子频段的状态,1≤i≤n。
例如以图2为例,子频段A、子频段B、子频段C、子频段D与预设顺序的对应关系为,子频段A对应第1序位,子频段B对应第2序位,子频段C对应第3序位,子频段D对应第4序位,而4个状态指示信息,状态指示信息a、状态指示信息b、状态指示信息c、状态指示信息d按照序位1、2、3、4排列。
那么可以确定状态指示信息a用于指示子频段A的状态,状态指示信息b用于指示子频段B的状态,状态指示信息c用于指示子频段C的状态,状态指示信息d用于指示子频段D的状态。
图4是根据本公开的实施例示出的又一种频段状态指示方法的示意流程图。如图4所示,所述向终端发送预设的n个状态指示信息包括:
在步骤S21中,向所述终端发送物理下行控制信道的信息,其中,在所述物理下行控制信道的信息中携带有所述n个状态指示信息。
在一个实施例中,基站可以在所述非授权频段向终端发送物理下行控制信道的信息,而所述n个状态指示信息则可以携带在物理下行控制信道的信息中。
可选地,所述n个子频段中第i子频段的状态包括以下之一:
为空闲、或为非空闲、或为可能空闲。
在一个实施例中,状态指示信息可以用于指示三种状态:空闲、非空闲和可能空闲,由于预设的n状态指示信息与基站对于n个子频段的实际检测结果可能存在差异,所以在通过状态指示信息指示子频段空闲和非空闲外,还可以指示子频段可能空闲。
需要说明的是,预设的n个状态信息可以根据前预设次数对n个子频段的检测结果来设定。
例如在预设次数为1的情况下,前一次对于第i个子频段的检测结果为第i个子频段空闲,那么预设的n个状态信息中对应第i个子频段的状态信息用于表征第i个子频段空闲;前一次对于第i个子频段的检测结果为第i个子频段非空闲,那么预设的n个状态信息中对应第i个子频段的状态信息用于表征第i个子频段非空闲;对于第i个子频段,过去没有对其进行检测,也即不存在前一次对i个子频段的检测结果,那么预设的n个状态信息中对应第i个子频段的状态可以表征第i个子频段可能空闲。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,或占用多个比特。
在一个实施例中,状态指示信息可以占用一个比特,也可以占用多个比特。
在状态指示信息占用多个比特的情况下,以占用两个比特为例,由于两个比特可以表示4种情况,因此针对每个子频段可以全面地表示上述空闲、非空闲和可能空闲3种状态。例如状态指示信息所表示的状态如表1所示:
状态指示信息 子频段的状态
00 空闲
01 非空闲
10 可能空闲
11 预留
表1
状态指示信息的值为00时,表示子频段空闲,状态指示信息的值为01时,表 示子频段非空闲,状态指示信息的值为10时,表示子频段可能空闲,状态指示信息的值为11为预留,暂不表示子频段的状态,以备后续使用时设置其表达的含义。
而在状态指示信息占用一个比特的情况下,由于一个比特只能表示2种情况,那么仅通过状态指示信息难以全面地表示上述空闲、非空闲和可能空闲3种状态,对于这种情况下,在后续实施例中进行说明。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述物理下行控制信道的信息中还携带有位置指示信息,其中,所述位置指示信息用于指示,所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
在一个实施例中,在状态指示信息占用一个比特位的情况下,可以结合n个状态指示信息的位置对终端进行指示,使得同一个状态指示信息在所述n个状态指示信息在所述占用时长内位于不同位置时,表达不同的含义。
其中,可以预先设定位置与n个状态指示信息所指示的n个子频段的状态的关联关系,例如可以设定n个状态指示信息位于所述占用时长的起始位置时,状态指示信息中的1表示对应子频段可能空闲,0表示对应子频段非空闲;n个状态指示信息位于所述占用时长的起始位置以外的其他位置时,状态指示信息中的1表示对应子频段空闲,0表示对应子频段非空闲。
据此,可以结合n个状态指示信息在占用时长中所处的位置,通过一个比特的状态信息全面地表示空闲、非空闲和可能空闲3种状态。
相应地,终端在接收到n个状态指示信息后,可以确定n个状态指示信息在占用空闲子频段的占用时长中所处的位置,然后根据位置与n个状态指示信息所指示的n个子频段的状态的关联关系,查询所述位置对应的所述n个状态指示信息所指示的所述n个子频段的状态,从而根据查询到的n个状态指示信息,确定n个子频段的状态。
而为了使得终端能够确定n个状态指示信息在占用空闲子频段的占用时长中所处的位置,基站在发送的物理下行控制信道的信息中还可以携带有位置指示信息,通过位置指示信息指示所述物理下行控制信道的信息位于占用空闲子频段的占用时长的起始位置,还是位于占用空闲子频段的占用时长的起始位置以外的其他位置。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述物 理下行控制信道的信息的加扰信息用于指示,所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
在一个实施例中,除了通过在物理下行控制信道的信息中额外设置位置指示信息,还可以通过物理下行控制信道的信息的加扰信息来指示所述物理下行控制信道的信息位于占用空闲子频段的占用时长的起始位置,还是位于占用空闲子频段的占用时长的起始位置以外的其他位置。
需要说明的是,位于占用时长的起始位置的物理下行控制信道的信息所携带的n个状态指示信息,可以是上述实施例中预设的n个状态指示信息。而位于占用时长的起始位置以外的其他位置(其他位置也位于占用时长内,例如可以是起始位置之后的任一位置)的物理下行控制信道的信息所携带的n个状态指示信息,则可以是上述实施例中更新后的n个状态指示信息。
其中,所述物理下行控制信道的信息可以通过无线网络临时标识(Radio Network Tempory Identity,简称RNTI)加扰,加扰信息可以是指无线网络临时标识本身,还可以是指用于对无线网络临时标识进行加扰的加扰信息。
可选地,所述物理下行控制信道为群组公共物理下行控制信道。
在一个实施例中,物理下行控制信道具体可以是群组公共物理下行控制信道(Group Common Physical Downlink Control Channel,简称GC-PDCCH),通过群组公共物理下行控制信道,基站可以向属于特定群组的终端发送所述物理下行控制信道的信息。
可选地,所述n个子频段属于同一个载波,或其中至少一个子频段与其他子频段属于不同载波,或其中至少一个子频段对应预设载波的频段。
在一个实施例中,基站所检测的n个子频段,可以属于同一个载波,也可以属于不同载波,例如其中至少一个子频段与其他子频段属于不同载波,还可以有子频段对应预设载波的频段,也即子频段与预设载波的频段相同。而具体子频段属于上述哪种情况,可以根据实际需要设定。
图5是根据本公开的实施例示出的一种频段状态确定方法的示意流程图。本实施例所示的方法可以适用于终端,所述终端可以与基站(例如上述任一实施例所述的基站)进行通信,例如可以基于4G协议与基站进行通信,也可以基于5G协议与基站 进行通信。并且可以在授权频段(例如运营商网络对应的频段)与基站进行通信,也可以在非授权频段(例如Wi-Fi频段、蓝牙频段等)与基站进行通信。所述终端包括但不限于手机、平板电脑、可穿戴设备等电子设备。
如图5所示,所述频段状态确定方法可以包括以下步骤:
在步骤S1'中,在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息,n≥1;
在步骤S2'中,根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态。
在一个实施例中,基站可以占用空闲的子频段来向终端发送预设的n个状态指示信息,由于预设的n个状态指示信息是预先设定的(例如可以根据前一次或前几次对n个子频段的检测结果设定),那么基站在占用空闲子频段之前已经存储了这n个状态指示信息,从而可以在占用空闲信道时,在占用时长的起始位置立即将n个状态指示信息发送给终端,使得终端可以及时接收到n个状态指示信息,以确定n个子频段的状态,进而可以根据确定的状态对相应的子频段及时采取适当的动作。
图6是根据本公开的实施例示出的另一种频段状态确定方法的示意流程图。如图6所示,所述方法还包括:
在步骤S3'中,接收所述基站发送的根据所述n个子频段的状态更新后的n个状态指示信息;
在步骤S4'中,根据所述更新后的n个状态指示信息,确定所述n个子频段的状态。
在一个实施例中,由于预设的n个状态信息是预先设定的,所以与基站对于n个子频段的实际检测结果可能存在差异,基站在向终端发送预设的n个状态信息后,可以根据n个子频段的状态更新n个状态指示信息,以使更新后的n个状态指示信息能够准确地表示基站对于n个子频段的实际检测结果。然后在占用所述空闲子频段的占用时长的起始位置以外的其他位置(例如占用时长内起始位置之后的任一位置),将更新后的n个状态指示信息发送至所述终端,终端则可以接收更新后的n个状态指示信息,从而根据更新后的n个状态指示信息准确地确定n个子频段的状态。
图7是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图7所示,所述n个状态指示信息按照预设顺序排列,所述根据所述n个状态指示信 息,确定所述n个子频段的状态包括:
在步骤S21'中,根据所述预设顺序与所述n个子频段的关联关系,确定所述n个状态指示信息中位于第i序位的第i个指示信息,用于指示所述第i序位在所述n个子频段中对应的第i个子频段的状态,1≤i≤n。
在一个实施例中,基站发送的n个状态指示信息可以按照预设顺序排列,而预设顺序则可以与n个频段存在关联关系,终端可以预先存储该关联关系,进而在接收到n个状态指示信息后,可以根据该关联关系,确定第i序位对应的第i个子频段,进而确定位于第i序位的第i个指示信息用于指示第i个子频段的状态,1≤i≤n。
例如以图2为例,子频段A、子频段B、子频段C、子频段D与预设顺序的对应关系为,子频段A对应第1序位,子频段B对应第2序位,子频段C对应第3序位,子频段D对应第4序位,而4个状态指示信息,状态指示信息a、状态指示信息b、状态指示信息c、状态指示信息d按照序位1、2、3、4排列。
那么可以确定状态指示信息a用于指示子频段A的状态,状态指示信息b用于指示子频段B的状态,状态指示信息c用于指示子频段C的状态,状态指示信息d用于指示子频段D的状态。
图8是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图8所示,所述在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息包括:
在步骤S11'中,在所述非授权频段接收所述基站发送的物理下行控制信道的信息;
在步骤S12'中,在所述物理下行控制信道的信息中提取所述n个状态指示信息。
在一个实施例中,基站可以在所述非授权频段向终端发送物理下行控制信道的信息,而所述n个状态指示信息则可以携带在物理下行控制信道的信息中。终端可以接收基站发送的物理下行控制信道的信息,然后在所述物理下行控制信道的信息中提取所述n个状态指示信息。
可选地,所述n个子频段中第i子频段的状态包括以下之一:
空闲、或为非空闲、可能空闲。
在一个实施例中,状态指示信息可以用于指示三种状态:空闲、非空闲和可能 空闲,由于预设的n状态指示信息与基站对于n个子频段的实际检测结果可能存在差异,所以在通过状态指示信息指示子频段空闲和非空闲外,还可以指示子频段可能空闲。
例如预设的n个状态信息是根据前一次对n个子频段的检测结果设定,例如前一次对于第i个子频段的检测结果为第i个子频段空闲,那么预设的n个状态信息中对应第i个子频段的状态信息用于表征第i个子频段空闲;例如前一次对于第i个子频段的检测结果为第i个子频段非空闲,那么预设的n个状态信息中对应第i个子频段的状态信息用于表征第i个子频段非空闲;例如对于第i个子频段,过去没有对其进行检测,也即不存在前一次对i个子频段的检测结果,那么预设的n个状态信息中对应第i个子频段的状态可以表征第i个子频段可能空闲。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,或占用多个比特。
状态指示信息可以占用一个比特,也可以占用多个比特。
在状态指示信息占用多个比特的情况下,以占用两个比特为例,由于两个比特可以表示4种情况,因此针对每个子频段可以全面地表示上述空闲、非空闲和可能空闲3种状态。例如状态指示信息所表示的状态如表1所示,状态指示信息的值为00时,表示子频段空闲,状态指示信息的值为01时,表示子频段非空闲,状态指示信息的值为10时,表示子频段可能空闲,状态指示信息的值为11为预留,暂不表示子频段的状态,以备后续使用时设置其表达的含义。
而在状态指示信息占用一个比特的情况下,由于一个比特只能表示2种情况,那么仅通过状态指示信息难以全面地表示上述空闲、非空闲和可能空闲3种状态,对于这种情况下,在后续实施例中进行说明。
图9是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图9所示,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态包括:
在步骤S22'中,确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置;
在步骤S23'中,根据所述位置与所述n个状态指示信息所指示的所述n个子频段的状态的关联关系,查询所述位置对应的所述n个状态指示信息所指示的所述n个 子频段的状态;
在步骤S24'中,根据查询到的所述n个状态指示信息,确定所述n个子频段的状态。
在一个实施例中,在一个实施例中,在状态指示信息占用一个比特位的情况下,可以结合n个状态指示信息的位置对终端进行指示,使得同一个状态指示信息在所述n个状态指示信息在所述占用时长内位于不同位置时,表达不同的含义。
其中,可以预先设定位置与n个状态指示信息所指示的n个子频段的状态的关联关系,例如位置与n个状态指示信息所指示的n个子频段的状态的关联关系如下:n个状态指示信息位于所述占用时长的起始位置时,状态指示信息中的1表示对应子频段可能空闲,0表示对应子频段非空闲;n个状态指示信息位于所述占用时长的起始位置以外的其他位置时,状态指示信息中的1表示对应子频段空闲,0表示对应子频段非空闲。
从而结合n个状态指示信息在占用时长中所处的位置,通过一个比特的状态信息全面地表示空闲、非空闲和可能空闲3种状态。
相应地,终端在接收到n个状态指示信息后,可以确定n个状态指示信息在占用空闲子频段的占用时长中所处的位置,然后根据位置与n个状态指示信息所指示的n个子频段的状态的关联关系,查询所述位置对应的所述n个状态指示信息所指示的所述n个子频段的状态,从而根据查询到的n个状态指示信息,确定n个子频段的状态。
例如终端确定n个状态指示信息在占用空闲子频段的占用时长中位于起始位置,根据位置与n个状态指示信息所指示的n个子频段的状态的关联关系,可以查询到n个状态指示信息中的1表示对应子频段可能空闲,0表示对应子频段非空闲,从而在第i个状态指示信息为1时,可以确定第i个子频段的状态为可能空闲,在第i个状态指示信息为0时,可以确定第i个子频段的状态为非空闲。
图10是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图10所示,所述确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置包括:
在步骤S221'中,在所述物理下行控制信道的信息中提取位置指示信息;
在步骤S222'中,根据所述位置指示信息确定所述物理下行控制信道的信息位 于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
在一个实施例中,为了使得终端能够确定n个状态指示信息在占用空闲子频段的占用时长中所处的位置,基站在发送的物理下行控制信道的信息中还可以携带有位置指示信息,终端根据位置指示信息可以确定所述物理下行控制信道的信息位于占用空闲子频段的占用时长的起始位置,还是位于占用空闲子频段的占用时长的起始位置以外的其他位置。
图11是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图11所示,所述确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置包括:
在步骤S223'中,通过解扰信息对所述物理下行控制信道的信息进行解扰;
在步骤S224'中,根据所述解扰信息对应的加扰信息确定所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
在一个实施例中,基站除了通过在物理下行控制信道的信息中额外设置位置指示信息,还可以通过物理下行控制信道的信息的加扰信息来指示终端物理下行控制信道的信息在所述占用时长内所处位置。
终端可以通过解扰信息对物理下行控制信道的信息进行解扰,然后根据解扰信息对应的加扰信息确定所述物理下行控制信道的信息位于占用空闲子频段的占用时长的起始位置,还是位于占用空闲子频段的占用时长的起始位置以外的其他位置。
终端除了按照上述图10和图11所示实施例的方式确定物理下行控制信道的信息在所述占用时长内所处的位置,还可以与基站预先约定,对于预设时间段内从基站接收到的所有物理下行控制信道的信息,都默认位于所述占用时长内的预设位置(例如起始位置),从而对于从基站接收到的物理下行控制信道的信息,无需再进一步确定其在占用时长内的位置,而是可以默认其位于预设位置。
可选地,所述物理下行控制信道为群组公共物理下行控制信道。
在一个实施例中,物理下行控制信道具体可以是群组公共物理下行控制信道,通过群组公共物理下行控制信道,基站可以向属于特定群组的终端发送所述物理下行控制信道的信息。
可选地,所述n个子频段属于同一个载波,或其中至少一个子频段与其他子频段属于不同载波,或其中至少一个子频段对应预设载波的频段。
在一个实施例中,基站所检测的n个子频段,可以属于同一个载波,也可以属于不同载波,例如其中至少一个子频段与其他子频段属于不同载波,还可以有子频段对应预设载波的频段,也即子频段与预设载波的频段相同。而具体子频段属于上述哪种情况,可以根据实际需要设定。
在一个实施例中,终端根据确定的状态对相应的子频段及时采取适当的动作,从接收信息角度而言,可以包括监听对应的子频段;从而发送信息角度而言,可以包括直接占用对应的子频段,以及通过预设检测方式以外的其他检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,以及通过预设检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
图12是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图12所示,所述方法还包括:
在步骤S5'中,在确定所述n个子频段中第i个子频段为空闲的情况下,监听所述第i个子频段,和/或在预设时长内,在需要占用所述第i个子频段时,在不检测所述第i个子频段的状态的情况下,或通过预设检测方式以外的其他检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,其中,所述预设检测方式相对所述其他检测方式检测的时长较长,且检测的结果较为准确。
在一个实施例中,终端在确定第i子频段空闲的情况下,可以继续监听第i子频段。并且还可以在预设时长内,在需要占用所述第i个子频段时,在不检测所述第i个子频段的状态的情况下,直接占用第i个子频段,以与基站通信;或者在预设时长内,在需要占用所述第i个子频段时,在通过预设检测方式以外的其他检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,以与基站通信。
其中,监听第i子频段包括但不限于接收控制信息,接收下行数据;终端占用第i个子频段与基站通信,包括但不限于向基站发送上行数据。
预设检测方式相对所述其他检测方式检测的时长较长,且检测的结果较为准确,例如预设检测方式可以是cat4检测方式,其他检测方式可以是cat2检测方式。
在本实施例中,终端在确定第i子频段空闲的情况下,可以保持对第i子频段的监听,以便及时接收到基站发送的控制信息、数据。
而且在确定第i子频段空闲的情况下,较大概率不会存在其他设备占用第i子频段,那么在需要占用第i子频段与基站进行通信的情况下,可以直接占用第i子频段,或者采用相对不严格的其他检测方式检测第i个子频段空闲时占用第i子频段,由于其他检测方式检测的时长相对较短,因此直接占用第i子频段,或者采用其他检测方式检测第i个子频段,耗时相对较短,有利于终端快速地完成向基站发送数据。
图13是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图13所示,所述方法还包括:
在步骤S6'中,在确定所述n个子频段中第i个子频段为可能空闲的情况下,监听所述第i个子频段,和/或在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
在一个实施例中,终端在确定第i子频段可能空闲的情况下,可以继续监听第i子频段。并且在需要占用所述第i个子频段时,在检测(例如通过预设检测方式检测)所述第i个子频段空闲的情况下,占用所述第i个子频段,以与基站通信。
其中,监听第i子频段包括但不限于接收控制信息,接收下行数据;终端占用第i个子频段与基站通信,包括但不限于向基站发送上行数据。预设检测方式可以是检测的时长较长,且检测的结果较为准确的检测方式,例如cat4检测方式。
在确定第i子频段可能空闲的情况下,较大概率会存在其他设备占用第i子频段,那么在需要占用第i子频段与基站进行通信的情况下,可以采用相对严格的预设检测方式检测第i个子频段空闲时占用第i子频段,由于预设检测方式检测的结果较为准确,因此采用预设检测方式检测第i个子频段,可以确保终端能够在第i子频段未被占用的情况下占用第i子频段完成向基站发送数据。
在本实施例中,终端在确定第i子频段可能空闲的情况下,可以保持对第i子频段的监听,以便及时接收到基站发送的控制信息、数据。而且在需要占用第i子频段与基站进行通信的情况下,可以在检测第i个子频段空闲时占用第i子频段,以保证在准确地确定第i子频段空闲时才占用第i子频段。
图14是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图14所示,所述方法还包括:
在步骤S7'中,在确定所述n个子频段中第i个子频段为非空闲的情况下,停止监听所述第i个子频段,和/或在需要占用所述第i个子频段时,在检测所述第i个 子频段空闲的情况下,占用所述第i个子频段。
在一个实施例中,终端在确定第i子频段非空闲的情况下,可以停止监听第i子频段。并且在需要占用所述第i个子频段时,在检测(例如通过预设检测方式检测)所述第i个子频段空闲的情况下,占用所述第i个子频段,以与基站通信。其中,监听第i子频段包括但不限于接收控制信息,接收下行数据。
据此,可以避免终端对第i子频段进行不必要的监听,以便节省终端的电量,并且可以保证在准确地确定第i子频段空闲时才占用第i子频段。
图15是根据本公开的实施例示出的又一种频段状态确定方法的示意流程图。如图15所示,所述方法还包括:
在步骤S8'中,在确定所述n个子频段中第i个子频段为空闲或可能空闲的情况下,监听所述第i个子频段,和/或在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
在一个实施例中,终端对于子频段为空闲和子频段为可能空闲的情况下,可以如图12和图13所示实施例,分别采取不同的动作。
也可以针对这两种情况采取相同的动作,例如在确定所述n个子频段中第i个子频段为空闲或可能空闲的情况下,可以继续监听所述第i个子频段,而在需要占用所述第i个子频段时,可以在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。以便及时接收到基站发送的控制信息、数据,并且保证在准确地确定第i子频段空闲时才占用第i子频段。并且由于终端针对两种情况采取相同的动作,可以降低终端执行动作的复杂度。
可选地,所述在检测所述第i个子频段空闲的情况下,占用所述第i个子频段包括:
在通过预设检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,其中,所述预设检测方式相对所述预设检测方式以外的所述其他检测方式检测的时长较长,且检测的结果较为准确。
上述任一实施例所述的在检测所述第i个子频段空闲的情况下,占用所述第i个子频段,都可以是通过预设检测方式检测,其中,预设检测方式可以是检测子频段是否空闲的较为严格的检测方式,例如cat4检测方式,而通过较为严格的检测方式进行检测,检测结果将对准确,有利于保证在准确地确定第i子频段空闲时才占用第i 子频段。
与前述的频段状态指示方法和频段状态确定方法的实施例相对应,本公开还提供了频段状态指示装置和频段状态确定装置的实施例。
图16是根据本公开的实施例示出的一种频段状态指示装置的示意框图。本实施例所示的装置可以适用于基站,所述基站可以与终端进行通信,例如可以基于4G协议与终端进行通信,也可以基于5G协议与终端进行通信。并且可以在授权频段(例如运营商网络对应的频段)与终端进行通信,也可以在非授权频段(例如Wi-Fi频段、蓝牙频段等)与终端进行通信。所述终端包括但不限于手机、平板电脑、可穿戴设备等电子设备。
如图16所示,所述频段状态指示装置可以包括
状态监测模块1,被配置为检测非授权频段中n个子频段的状态,n≥1;
信息发送模块2,被配置为在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。
图17是根据本公开的实施例示出的另一种频段状态指示装置的示意框图。如图17所示,所述装置还包括:
状态更新模块3,被配置为根据所述n个子频段的状态更新所述n个状态指示信息;
其中,所述信息发送模块2,还被配置为在占用所述空闲子频段的占用时长的起始位置以外的其他位置,将更新后的n个状态指示信息发送至所述终端。
可选地,所述n个状态指示信息按照预设顺序排列,其中,所述预设顺序与所述n个子频段存在关联关系。
可选地,所述信息发送模块,被配置为向所述终端发送物理下行控制信道的信息,其中,在所述物理下行控制信道的信息中携带有所述n个状态指示信息。
可选地,所述n个子频段中第i子频段的状态包括以下之一:
为空闲、或为非空闲、或为可能空闲。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,或占用多个比特。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述物理下行控制信道的信息中还携带有位置指示信息,其中,所述位置指示信息用于指示,所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述物理下行控制信道的信息的加扰信息用于指示,所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
可选地,所述物理下行控制信道为群组公共物理下行控制信道。
可选地,所述n个子频段属于同一个载波,或其中至少一个子频段与其他子频段属于不同载波,或其中至少一个子频段对应预设载波的频段。
图18是根据本公开的实施例示出的一种频段状态确定装置的示意框图。本实施例所示的装置可以适用于终端,所述终端可以与基站(例如上述任一实施例所述的基站)进行通信,例如可以基于4G协议与基站进行通信,也可以基于5G协议与基站进行通信。并且可以在授权频段(例如运营商网络对应的频段)与基站进行通信,也可以在非授权频段(例如Wi-Fi频段、蓝牙频段等)与基站进行通信。所述终端包括但不限于手机、平板电脑、可穿戴设备等电子设备。
如图18所示,所述频段状态确定装置可以包
信息接收模块1',被配置为在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息,n≥1;
状态确定模块2',被配置为根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态。
可选地,所述信息接收模块,还被配置为接收所述基站发送的根据所述n个子频段的状态更新后的n个状态指示信息;根据所述更新后的n个状态指示信息,确定所述n个子频段的状态。
可选地,所述n个状态指示信息按照预设顺序排列,所述状态确定模块,被配置为根据所述预设顺序与所述n个子频段的关联关系,确定所述n个状态指示信息中位于第i序位的第i个指示信息,用于指示所述第i序位在所述n个子频段中对应的第i个子频段的状态,1≤i≤n。
可选地,所述信息接收模块,被配置为在所述非授权频段接收所述基站发送的物理下行控制信道的信息;在所述物理下行控制信道的信息中提取所述n个状态指示信息。
可选地,所述n个子频段中第i子频段的状态包括以下之一:
空闲、或为非空闲、可能空闲。
可选地,所述n个状态指示信息中的每个状态指示信息占用一个比特,或占用多个比特。
图19是根据本公开的实施例示出的一种状态确定模块的示意框图。如图19所示,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述状态确定模块2'包括:
位置确定子模块21',被配置为确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置;
状态查询子模块22',被配置为根据所述位置与所述n个状态指示信息所指示的所述n个子频段的状态的关联关系,查询所述位置对应的所述n个状态指示信息所指示的所述n个子频段的状态;
状态确定子模块23',被配置为根据查询到的所述n个状态指示信息,确定所述n个子频段的状态。
可选地,所述位置确定子模块,被配置为在所述物理下行控制信道的信息中提取位置指示信息;根据所述位置指示信息确定所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
可选地,所述位置确定子模块,被配置为通过解扰信息对所述物理下行控制信道的信息进行解扰;根据所述解扰信息对应的加扰信息确定所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
可选地,所述物理下行控制信道为群组公共物理下行控制信道。
可选地,所述n个子频段属于同一个载波,或其中至少一个子频段与其他子频段属于不同载波,或其中至少一个子频段对应预设载波的频段。
图20是根据本公开的实施例示出的另一种频段状态确定装置的示意框图。如图20所示,所述装置还包括:
第一监听模块3',被配置为在确定所述n个子频段中第i个子频段为空闲的情况下,监听所述第i个子频段;和/或
第一占用模块4',被配置为在预设时长内,在需要占用所述第i个子频段时,在不检测所述第i个子频段的状态的情况下,或通过预设检测方式以外的其他检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,其中,所述预设检测方式相对所述其他检测方式检测的时长较长,且检测的结果较为准确。
图21是根据本公开的实施例示出的又一种频段状态确定装置的示意框图。如图21所示,所述装置还包括:
第二监听模块5',被配置为在确定所述n个子频段中第i个子频段为可能空闲的情况下,监听所述第i个子频段;和/或
第二占用模块6',被配置为在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
图22是根据本公开的实施例示出的又一种频段状态确定装置的示意框图。如图22所示,所述装置还包括:
第三监听模块7',被配置为在确定所述n个子频段中第i个子频段为非空闲的情况下,停止监听所述第i个子频段;和/或
第三占用模块8',被配置为在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
图23是根据本公开的实施例示出的又一种频段状态确定装置的示意框图。如图23所示,所述装置还包括:
第四监听模块9',被配置为在确定所述n个子频段中第i个子频段为空闲或可能空闲的情况下,监听所述第i个子频段;和/或
第四占用模块10',被配置为在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
可选地,所述第二占用模块、和/或所述第三占用模块、和/或所述第四占用模块,被配置为在通过预设检测方式检测所述第i个子频段空闲的情况下,占用所述第i 个子频段,其中,所述预设检测方式相对所述预设检测方式以外的所述其他检测方式检测的时长较长,且检测的结果较为准确。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提出了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的频段状态指示方法。
本公开还提出了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的频段状态确定方法。
如图24所示,图24是根据本公开的实施例示出的一种用于频段状态指示的装置2400的示意图。装置2400可以被提供为一基站。参照图24,装置2400包括处理组件2422、无线发射/接收组件2424、天线组件2426、以及无线接口特有的信号处理部分,处理组件2422可进一步包括一个或多个处理器。处理组件2422中的其中一个处理器可以被配置为实现上述任一实施例所述的频段状态指示方法。
图25是根据本公开的实施例示出的一种用于频段状态确定的装置2500的示意图。例如,装置2500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图25,装置2500可以包括以下一个或多个组件:处理组件2502,存储器2504,电源组件2506,多媒体组件2508,音频组件2510,输入/输出(I/O)的接口 2512,传感器组件2514,以及通信组件2516。
处理组件2502通常控制装置2500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2502可以包括一个或多个处理器2520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2502可以包括一个或多个模块,便于处理组件2502和其他组件之间的交互。例如,处理组件2502可以包括多媒体模块,以方便多媒体组件2508和处理组件2502之间的交互。
存储器2504被配置为存储各种类型的数据以支持在装置2500的操作。这些数据的示例包括用于在装置2500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2506为装置2500的各种组件提供电力。电源组件2506可以包括电源管理系统,一个或多个电源,及其他与为装置2500生成、管理和分配电力相关联的组件。
多媒体组件2508包括在所述装置2500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2508包括一个前置摄像头和/或后置摄像头。当装置2500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2510被配置为输出和/或输入音频信号。例如,音频组件2510包括一个麦克风(MIC),当装置2500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2504或经由通信组件2516发送。在一些实施例中,音频组件2510还包括一个扬声器,用于输出音频信号。
I/O接口2512为处理组件2502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2514包括一个或多个传感器,用于为装置2500提供各个方面的状态评估。例如,传感器组件2514可以检测到装置2500的打开/关闭状态,组件的相对定位,例如所述组件为装置2500的显示器和小键盘,传感器组件2514还可以检测装置2500或装置2500一个组件的位置改变,用户与装置2500接触的存在或不存在,装置2500方位或加速/减速和装置2500的温度变化。传感器组件2514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2516被配置为便于装置2500和其他设备之间有线或无线方式的通信。装置2500可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件2516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述任一实施例所述的频段状态确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2504,上述指令可由装置2500的处理器2520执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的 公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (30)

  1. 一种频段状态指示方法,其特征在于,适用于基站,所述方法包括:
    检测非授权频段中n个子频段的状态,n≥1;
    在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述n个子频段的状态更新所述n个状态指示信息;
    在占用所述空闲子频段的占用时长的起始位置以外的其他位置,将更新后的n个状态指示信息发送至所述终端。
  3. 根据权利要求1所述的方法,其特征在于,所述n个状态指示信息按照预设顺序排列,其中,所述预设顺序与所述n个子频段存在关联关系。
  4. 根据权利要求1所述的方法,其特征在于,所述向终端发送预设的n个状态指示信息包括:
    向所述终端发送物理下行控制信道的信息,其中,在所述物理下行控制信道的信息中携带有所述n个状态指示信息。
  5. 根据权利要求4所述的方法,其特征在于,所述n个子频段中第i子频段的状态包括以下之一:
    为空闲、或为非空闲、或为可能空闲。
  6. 根据权利要求5所述的方法,其特征在于,所述n个状态指示信息中的每个状态指示信息占用一个比特,或占用多个比特。
  7. 根据权利要求6所述的方法,其特征在于,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述物理下行控制信道的信息中还携带有位置指示信息,其中,所述位置指示信息用于指示,所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
  8. 根据权利要求6所述的方法,其特征在于,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述物理下行控制信道的信息的加扰信息用于指示,所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
  9. 根据权利要求4所述的方法,其特征在于,所述物理下行控制信道为群组公共 物理下行控制信道。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述n个子频段属于同一个载波,或其中至少一个子频段与其他子频段属于不同载波,或其中至少一个子频段对应预设载波的频段。
  11. 一种频段状态确定方法,其特征在于,适用于终端,所述包括:
    在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息,n≥1;
    根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的根据所述n个子频段的状态更新后的n个状态指示信息;
    根据所述更新后的n个状态指示信息,确定所述n个子频段的状态。
  13. 根据权利要求11所述的方法,其特征在于,所述n个状态指示信息按照预设顺序排列,所述根据所述n个状态指示信息,确定所述n个子频段的状态包括:
    根据所述预设顺序与所述n个子频段的关联关系,确定所述n个状态指示信息中位于第i序位的第i个指示信息,用于指示所述第i序位在所述n个子频段中对应的第i个子频段的状态,1≤i≤n。
  14. 根据权利要求11所述的方法,其特征在于,所述在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息包括:
    在所述非授权频段接收所述基站发送的物理下行控制信道的信息;
    在所述物理下行控制信道的信息中提取所述n个状态指示信息。
  15. 根据权利要求14所述的方法,其特征在于,所述n个子频段中第i子频段的状态包括以下之一:
    空闲、或为非空闲、可能空闲。
  16. 根据权利要求15所述的方法,其特征在于,所述n个状态指示信息中的每个状态指示信息占用一个比特,或占用多个比特。
  17. 根据权利要求16所述的方法,其特征在于,所述n个状态指示信息中的每个状态指示信息占用一个比特,所述根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态包括:
    确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置;
    根据所述位置与所述n个状态指示信息所指示的所述n个子频段的状态的关联关系,查询所述位置对应的所述n个状态指示信息所指示的所述n个子频段的状态;
    根据查询到的所述n个状态指示信息,确定所述n个子频段的状态。
  18. 根据权利要求17所述的方法,其特征在于,所述确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置包括:
    在所述物理下行控制信道的信息中提取位置指示信息;
    根据所述位置指示信息确定所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
  19. 根据权利要求17所述的方法,其特征在于,所述确定所述n个状态指示信息在占用所述空闲子频段的占用时长中所处的位置包括:
    通过解扰信息对所述物理下行控制信道的信息进行解扰;
    根据所述解扰信息对应的加扰信息确定所述物理下行控制信道的信息位于占用所述空闲子频段的占用时长的起始位置,或位于占用所述空闲子频段的占用时长的起始位置以外的其他位置。
  20. 根据权利要求14所述的方法,其特征在于,所述物理下行控制信道为群组公共物理下行控制信道。
  21. 根据权利要求11至20中任一项所述的方法,其特征在于,所述n个子频段属于同一个载波,或其中至少一个子频段与其他子频段属于不同载波,或其中至少一个子频段对应预设载波的频段。
  22. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在确定所述n个子频段中第i个子频段为空闲的情况下,监听所述第i个子频段,和/或在预设时长内,在需要占用所述第i个子频段时,在不检测所述第i个子频段的状态的情况下,或通过预设检测方式以外的其他检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,其中,所述预设检测方式相对所述其他检测方式检测的时长较长,且检测的结果较为准确。
  23. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在确定所述n个子频段中第i个子频段为可能空闲的情况下,监听所述第i个子频段,和/或在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
  24. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在确定所述n个子频段中第i个子频段为非空闲的情况下,停止监听所述第i个子频段,和/或在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
  25. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在确定所述n个子频段中第i个子频段为空闲或可能空闲的情况下,监听所述第i个子频段,和/或在需要占用所述第i个子频段时,在检测所述第i个子频段空闲的情况下,占用所述第i个子频段。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述在检测所述第i个子频段空闲的情况下,占用所述第i个子频段包括:
    在通过预设检测方式检测所述第i个子频段空闲的情况下,占用所述第i个子频段,其中,所述预设检测方式相对所述预设检测方式以外的所述其他检测方式检测的时长较长,且检测的结果较为准确。
  27. 一种频段状态指示装置,其特征在于,适用于基站,所述装置包括:
    状态监测模块,被配置为检测非授权频段中n个子频段的状态,n≥1;
    信息发送模块,被配置为在所述n个子频段中存在空闲子频段的情况下,在占用所述空闲子频段的占用时长的起始位置,通过所述空闲子频段,向终端发送预设的n个状态指示信息,其中,所述n个状态指示信息用于指示所述n个子频段的状态。
  28. 一种频段状态确定装置,其特征在于,适用于终端,所述包括:
    信息接收模块,被配置为在非授权频段中空闲的子频段接收基站发送的预设的n个状态指示信息,n≥1;
    状态确定模块,被配置为根据所述n个状态指示信息,确定所述非授权频段中n个子频段的状态。
  29. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至10中任一项所述的频段状态指示方法。
  30. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求11至26中任一项所述的频段状态确定方法。
PCT/CN2019/116708 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置 WO2021087984A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112022008622A BR112022008622A2 (pt) 2019-11-08 2019-11-08 Métodos para indicar e para determinar um estado de faixa de frequência, e, terminal
CN202310296690.9A CN116347456A (zh) 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置
CN202311361823.2A CN117639978A (zh) 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置
US17/774,701 US20220400504A1 (en) 2019-11-08 2019-11-08 Method for indicating frequency band state, method for determining frequency band state, and terminal
KR1020227019079A KR20220098189A (ko) 2019-11-08 2019-11-08 주파수 대역 상태 지시 방법 및 장치, 주파수 대역 상태 결정 방법 및 장치(frequency band state indication method and apparatus, and frequency band state determination method and apparatus)
PCT/CN2019/116708 WO2021087984A1 (zh) 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置
EP19951399.5A EP4057675A4 (en) 2019-11-08 2019-11-08 METHOD AND APPARATUS FOR FREQUENCY BAND STATUS INDICATION AND METHOD AND APPARATUS FOR FREQUENCY BAND STATUS DETERMINATION
CN201980002885.XA CN110945899B (zh) 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置
JP2022526294A JP7383144B2 (ja) 2019-11-08 2019-11-08 周波数帯域の状態を示す方法及び装置、周波数帯域の状態を決定する方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116708 WO2021087984A1 (zh) 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置

Publications (1)

Publication Number Publication Date
WO2021087984A1 true WO2021087984A1 (zh) 2021-05-14

Family

ID=69914054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116708 WO2021087984A1 (zh) 2019-11-08 2019-11-08 频段状态指示方法和装置、频段状态确定方法和装置

Country Status (7)

Country Link
US (1) US20220400504A1 (zh)
EP (1) EP4057675A4 (zh)
JP (1) JP7383144B2 (zh)
KR (1) KR20220098189A (zh)
CN (3) CN110945899B (zh)
BR (1) BR112022008622A2 (zh)
WO (1) WO2021087984A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230005999A (ko) * 2020-05-15 2023-01-10 애플 인크. 무선 통신에서의 리소스 결정을 위한 시스템들, 방법들, 및 장치
CN114337873B (zh) * 2020-09-30 2024-01-23 京东方科技集团股份有限公司 通信方法、装置及系统、存储介质
CN112583511B (zh) * 2020-12-06 2024-03-29 广州技象科技有限公司 基于相同时隙传输的组网方法、装置、设备和存储介质
WO2022261843A1 (zh) * 2021-06-15 2022-12-22 北京小米移动软件有限公司 网络接入方法、装置、用户设备、接入网设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595608A (zh) * 2012-02-16 2012-07-18 中国联合网络通信集团有限公司 物联网频段分配方法及物联网接入网关
WO2016176550A1 (en) * 2015-04-29 2016-11-03 Interdigital Patent Holdings, Inc. Methods and devices for sub-channelized transmission schemes in wlans
CN109842939A (zh) * 2017-11-27 2019-06-04 上海诺基亚贝尔股份有限公司 上行链路传输方法、设备和计算机可读介质
CN110034830A (zh) * 2018-01-12 2019-07-19 普天信息技术有限公司 一种多子带协同检测方法、装置、基站及终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973492B (zh) * 2004-06-24 2010-12-08 皇家飞利浦电子股份有限公司 用于发送mc网络中子载波状态的方法和用于自适应分配mc网络中子载波的方法
CN104507108B (zh) * 2014-12-19 2019-03-08 宇龙计算机通信科技(深圳)有限公司 信道空闲状态的指示或资源预留方法、系统、终端和基站
CN105634703B (zh) * 2015-05-25 2017-11-17 宇龙计算机通信科技(深圳)有限公司 指示方法、指示系统、获取方法、获取系统和通信系统
WO2020124597A1 (zh) * 2018-12-21 2020-06-25 北京小米移动软件有限公司 资源占用指示方法、装置以及资源占用确定方法、装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595608A (zh) * 2012-02-16 2012-07-18 中国联合网络通信集团有限公司 物联网频段分配方法及物联网接入网关
WO2016176550A1 (en) * 2015-04-29 2016-11-03 Interdigital Patent Holdings, Inc. Methods and devices for sub-channelized transmission schemes in wlans
CN109842939A (zh) * 2017-11-27 2019-06-04 上海诺基亚贝尔股份有限公司 上行链路传输方法、设备和计算机可读介质
CN110034830A (zh) * 2018-01-12 2019-07-19 普天信息技术有限公司 一种多子带协同检测方法、装置、基站及终端设备

Also Published As

Publication number Publication date
CN117639978A (zh) 2024-03-01
CN110945899B (zh) 2023-11-14
KR20220098189A (ko) 2022-07-11
BR112022008622A2 (pt) 2022-07-19
JP2023500350A (ja) 2023-01-05
EP4057675A4 (en) 2023-04-12
CN110945899A (zh) 2020-03-31
JP7383144B2 (ja) 2023-11-17
US20220400504A1 (en) 2022-12-15
EP4057675A1 (en) 2022-09-14
CN116347456A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2021087984A1 (zh) 频段状态指示方法和装置、频段状态确定方法和装置
US11963142B2 (en) Slot format indication method, apparatus and system, and device and storage medium
US20200280938A1 (en) Method and device for indicating period information of common control resource set of remaining key system information
US11382055B2 (en) Paging synchronization method and apparatus
US20230300642A1 (en) Method and apparatus for broadcasting indication, and method and apparatus for receiving indication
EP3823198A1 (en) Methods and apparatuses for transmitting and receiving reference signal, base station, and user equipment
US20210120508A1 (en) Methods and devices of synchronization signal block transmission and demodulation, base station and user equipment
US11864190B2 (en) Method and apparatus for configuring and determining transmission block scheduling interval, and base station
US11937296B2 (en) Monitoring method and apparatus, device, and storage medium
WO2021081796A1 (zh) 寻呼信令接收方法和装置、寻呼信令发送方法和装置
US11968716B2 (en) Information configuration methods, and information reporting methods, base station, and user equipment
US20220263632A1 (en) Information transmission method, device, system, and storage medium
WO2020258273A1 (zh) 检测非授权频段的方法和检测非授权频段的装置
CN110506430B (zh) 信道占用时间的起始位置确定方法、装置、设备和介质
CN108702255A (zh) 控制混合自动重传反馈的方法及装置
US11160012B2 (en) Methods and devices for notifying system information modification, and computer-readable storage media
US11160042B2 (en) Information determining method and apparatus, electronic device, and computer readable storage medium
WO2019227442A1 (zh) 同步广播块的配置、解析方法及装置、基站和用户设备
US11601934B2 (en) Data transmission method and device
US20220070893A1 (en) Data scheduling method and apparatus, and data transmission method and apparatus
US20220070863A1 (en) Carrier configuration method and device
WO2021087952A1 (zh) 占用时长确定方法、占用时长确定装置和电子设备
RU2793957C1 (ru) Способ индикации состояния частотного диапазона, способ определения состояния частотного диапазона и электронное устройство
WO2021026897A1 (zh) 网络分配向量设置方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526294

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008622

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227019079

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951399

Country of ref document: EP

Effective date: 20220608

ENP Entry into the national phase

Ref document number: 112022008622

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220504