WO2021087931A1 - Systems and methods for mtc coexistence with nr - Google Patents

Systems and methods for mtc coexistence with nr Download PDF

Info

Publication number
WO2021087931A1
WO2021087931A1 PCT/CN2019/116456 CN2019116456W WO2021087931A1 WO 2021087931 A1 WO2021087931 A1 WO 2021087931A1 CN 2019116456 W CN2019116456 W CN 2019116456W WO 2021087931 A1 WO2021087931 A1 WO 2021087931A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
communication method
resource reservation
outlying
Prior art date
Application number
PCT/CN2019/116456
Other languages
French (fr)
Inventor
Huiying Fang
Bo Dai
Luanjian BIAN
Weiwei Yang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2019/116456 priority Critical patent/WO2021087931A1/en
Priority to CN201980103446.8A priority patent/CN114982324A/en
Publication of WO2021087931A1 publication Critical patent/WO2021087931A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the disclosure relates generally to facilitating the coexistence of Machine Type Communications (MTC) systems (and/or Narrowband Internet of Things, i.e., NB-IoT systems) with New Radio (NR) systems.
  • MTC Machine Type Communications
  • NR New Radio
  • the disclosure relates to reducing mutual interference when LTE-MTC carrier is deployed within an NR carrier through the use of new resource reservation techniques.
  • Machine Type Communications also known as Machine to Machine (M2M) and Narrowband Internet of Things (NB-IoT)
  • MTC Machine Type Communications
  • NB-IoT Narrowband Internet of Things
  • LTE/LTE-A based MTC terminal and the NB-IoT terminal have a service life of at least ten years
  • LTE-MTC system LTE/LTE-A based MTC system
  • NR new air interface system
  • a LTE-MTC carrier is deployed within an NR carrier, i.e., it may be necessary to share the same frequency domain and/or time domain resources between the LTE-MTC and NR systems.
  • a LTE-MTC carrier is deployed within an NR carrier, i.e., it may be necessary to share the same frequency domain and/or time domain resources between the LTE-MTC and NR systems.
  • it is necessary to reduce the mutual interference when different systems coexist.
  • REs resource elements
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • an example wireless communication method includes identifying, by a first wireless communication device, a plurality of frequency-domain resources assigned to the first wireless communication device. The method further includes determining, by the first wireless communication device, whether one or more outlying subcarriers are located in either a lower edge or an upper edge of the plurality of frequency-domain resources, and processing, by the first wireless communication device, data carried in the one or more outlying subcarriers based on the determination.
  • a wireless communication method includes determining, by the wireless communication node, to puncture data that is carried on one or more outlying subcarriers based on determining that the one or more outlying subcarriers are located in either a lower edge or an upper edge of a range of frequency-domain resources allocated to the first wireless communication device. The method further includes transmitting, by the wireless communication node to the first wireless communication device, signaling information to indicate the configuration of the one or two outlying subcarriers and a control signal to indicate resource allocation inclusive of the range of frequency-domain resources for the first wireless communication device.
  • a wireless communication method includes configuring, by a wireless communication node, a first plurality of frequency-domain resources comprising a lower edge and an upper edge, for a first wireless communication system. The method further includes reserving, by the wireless communication node, a second plurality of frequency-domain resources, wherein the second plurality of resources in frequency domain are located at the lower edge, the upper edge, or both the lower and upper edges of the first plurality of frequency-domain resources of the first wireless communication system and the second plurality of frequency-domain resources are consecutive in the lower edge or the upper edge.
  • a wireless communication method includes configuring, by a wireless communication node, a plurality of resource reservations with different granularity for a plurality of wireless communication devices. The method further includes transmitting, by the wireless communication node to a first one of a plurality wireless communication devices, a control signal indicating whether resource reservation for the first wireless communication device is valid.
  • a wireless communication method includes receiving, by a first wireless communication device, a control signal indicating a plurality of resource reservations with different granularity. The method further includes identifying, by the first wireless communication device, based on the control signal whether resource reservation for the first wireless communication device is valid.
  • a wireless communication method includes configuring, by a wireless communication node, a plurality of time-domain resource reservations with different granularity for a first wireless communication device. The method further includes selecting, by the wireless communication node for the first wireless communication device, based on a predefined rule, one of the time-domain resource reservations in response to identifying an overlap between the time-domain resource reservations with different granularity.
  • a wireless communication method includes receiving, by a wireless communication device, a reservation of a plurality of time-domain resource reservations with different granularity for a first wireless communication device, and identifying, by the wireless communication device, a selection, based on a predefined rule, of one of the time-domain resource reservations in response to identifying an overlap between the time-domain resource reservations with different granularity for the first wireless communication device.
  • a wireless communication method includes configuring, by a wireless communication node, each bit of a given bitmap to indicate reservation of a plurality of symbols for a first wireless communication device, and transmitting, by the wireless communication node to the first wireless communication device, the given bitmap.
  • a wireless communication method includes receiving, by a first wireless communication device, a given bitmap. The method further includes identifying, by the first wireless communication device, each bit of the given bitmap to correspond to a plurality of symbols that are reserved for a second wireless communication device.
  • FIG. 1A illustrates an example coexistence of MTC with NR scenario in which the processing of outlying carriers are skipped by a MTC UE, in accordance with an embodiment of the present disclosure.
  • Figure 1B illustrates an example coexistence of MTC with NR scenario in which the outlying carriers are decoded (i.e., not skipped) by a MTC UE, in accordance with an embodiment of the present disclosure.
  • Figure 2A illustrates an example frequency domain resource reserved for a NR system which is on a lower edge of the frequency domain resources of a MTC system, in accordance with some embodiments of the present disclosure.
  • Figure 2B illustrates an example frequency domain resource reserved for a NR system which is on an upper edge of the frequency domain resources of a MTC system, in accordance with some embodiments of the present disclosure.
  • Figure 2C illustrates an example frequency domain resource reservation for a NR system which is on both a lower edge and an upper edge of the frequency domain resources of a MTC system, in accordance with some embodiments of the present disclosure.
  • Figure 3 depicts an example scenario of different levels of granularity of time domain resources allocated for a MTC UE.
  • Figure 4A illustrates an example predefined rule which determines the resource allocation for a MTC UE in case of more than one granularity of time domain resources allocated to the MTC UE.
  • Figure 4B illustrates yet another example predefined rule which determines the resource allocation for a MTC UE in case of more than one granularity of time domain resources allocated to the MTC UE.
  • Figure 5A depicts an example scenario of optimized indication of downlink (DL) time domain resources allocated for a MTC UE.
  • Figure 5B depicts an example scenario of optimized indication of uplink (UL) time domain resources allocated for a MTC UE.
  • Figure 6A depicts an example embodiment for handling the avoidance of collision between DMRS resource reservation and symbol-level resource reservation for a UL NB-IoT.
  • Figure 6B depicts an example embodiment for handling of resource reservation for different subcarrier spacings.
  • Figure 6C depicts an example embodiment for avoiding the collision of resource reservation for different subcarrier spacings.
  • LTE-MTC and NB-IoT may be used interchangeably throughout the following disclosure.
  • the transmission of the M subcarrier positions of each narrowband or every N narrowband edges of the LTE-MTC system is punctured, that is, the data transmission of the M subcarrier positions is discarded.
  • M 1 or 2.
  • the edge of the narrow band can be the upper or lower edge of the narrow band, configured by signaling.
  • a DC subcarrier 105 in a LTE-MTC system, which is not required for a NR system. Due to the DC subcarrier 105, there may be a loss of alignment of the narrowband 110 of the LTE-MTC with respect to the corresponding narrowband of the NR system.
  • the number of outlying subcarrier to be punctured for LTE-MTC allocated primary resource block (PRBs) in different band side may be different in different embodiments.
  • the allocated PRBs in one band side may have one more outlying subcarrier than the other side.
  • the outlying subcarrier below the DC subcarrier may be 2 while the outlying subcarrier above DC subcarrier may be 1.
  • the outlying subcarrier below the DC subcarrier may be 1 while the outlying subcarrier above DC subcarrier may be 2.
  • the UE judges the number of subcarriers to be punctured according to the allocated PRBs (i.e., PRB Index) .
  • the LTE-MTC system transmits a synchronization signal for UE’s downlink synchronization and transmits broadcast channel to indicate the system bandwidth to the MTC UEs.
  • the LTE-MTC UE by decoding the synchronization signal and the broadcast channel, the LTE-MTC UE figures out the location of DC subcarrier and judges the lower edge and upper edge based on the bandwidth.
  • the system 100 allocates the primary resource block (PRB) resources of PRBs 16, 17, 18 to a LTE-MTC UE.
  • the LTE MTC user equipment (UE) considers that the edge subcarriers 125 on PRB 18 (reference numeral 120) are punctured.
  • the LTE-MTC skips decoding the data of the punctured subcarrier at the edge, i.e., the outlying subcarrier 125 for PRB 18 is not decoded.
  • the outlying carrier 135 is also skipped being decoded in the example embodiment.
  • the location of the punctured subcarrier is in the middle of the LTE-MTC resource allocation.
  • the location of the narrowband 160 and DC subcarrier 155 are similar in Figure 1B as for Figure 1A.
  • the system 150 allocates PRB resources of PRB 16, 17, 18, 19, 20 for the LTE-MTC UE. Based on the configuration information, the LTE MTC UE considers that the edge subcarriers on the PRB 18 (reference numeral 170) in the figure are not punctured, and thus decodes the data of the punctured subcarrier 175.
  • the processing for the outlying subcarrier 185 in Figure 1B is skipped, based on the LTE-MTC UE figuring out from the configuration information that PRB 24 (reference numeral 180) is not in the middle of the PRBs allocated to the LTE-MTC UE.
  • part of the continuous frequency domain resources of the LTE-MTC system are reserved for use by the NR.
  • the reserved frequency domain resources for the NR carrier are located on the lower edge, the upper edge, or both the lower and the upper edges of the LTE-MTC system, while the LTE-MTC UEs can scheduled in the frequency domain resources in the middle (the reserved PRBs for the LTE-MTC system are continuous) .
  • the frequency domain resources allocated to the LTE-MTC system and the NR system is avoided by allocating continuous PRBs 210 for the LTE-MTC system which are distinct in the frequency domain from the PRBs 220 allocated for the NR system.
  • the block of PRBs 215 i.e., PRB 0-9) is a subset of allocated PRBs 220 for the NR system.
  • PRBs 220 allocated for a NR system are on the lower edge of the PRBs 210 allocated to the LTE-MTC system, thus ensuring that there is no overlap or collision in the frequency domain resources between the LTE-MTC system and the NR system.
  • frequency domain resources 220 for the NR system can be configured as a number of PRBs on the lower edge of the frequency-domain resources of the LTE-MTC system.
  • This implementation has the advantage of reducing the overhead in communication to the LTE-MTC system about the resources reserved for NR system by transmitting the number of LTE PRBs 215 at the edge of LTE-MTC carrier configured for the NR UEs in a signaling message.
  • the frequency domain resources allocated to the LTE-MTC system and the NR system is avoided by allocating continuous PRBs 230 for the LTE-MTC system which are distinct in the frequency domain from the PRBs 240 allocated for the NR system.
  • the block of PRBs 245 i.e., PRB 39-49
  • PRBs 240 allocated for a NR system are on the upper edge of the PRBs 230 allocated to the LTE-MTC system, thus ensuring that there is no overlap or collision in the frequency domain resources between the LTE-MTC system and the NR system.
  • PRBs 260 allocated for a NR system are on the lower edge of the PRBs 270 allocated to the LTE-MTC system while PRBs 280 allocated for a NR system are on the upper edge of the PRBs 270 allocated to the LTE-MTC system, thus ensuring that there is no overlap or collision in the frequency domain resources between the LTE-MTC system and the NR system.
  • the unit of allocation of frequency domain resources may be different from a PRB which is used as the frequency domain resource unit in the above embodiments.
  • the frequency domain resource unit may be different from a PRB.
  • the frequency domain resource unit may be a MTC narrowband, and a number of MTC narrowbands 225, 245 and 275 in Figures 2A, 2B, and 2C respectively may be indicated in a signaling message as being the unit of frequency domain resource reservation for both the LTE-MTC and the NR system.
  • the semi-statically reserved LTE-MTC/NB-IoT resources are slot/symbol/subframe level in time domain, and resource reservations with different granularity may overlap. According to the present disclosure, once the semi-statically reserved LTE-MTC/NB-IoT resources are configured, the reserved resources may not be used by NR.
  • a subframe level 310 allocation may be semi-statically reserved for a LTE-MTC UE.
  • a slot level 320 allocation may be semi-statically reserved for a LTE-MTC UE.
  • a symbol level 330 allocation may be semi-statically reserved for a LTE-MTC UE.
  • 2 bits in the DCI control signal can be used to dynamically indicate whether to apply resource reservation and which granularity of resource reservation are applied for the scheduled LTE-MTC/NB-IoT transmission.
  • the DCI control signal indicates whether resource reservation for the first wireless communication device is valid. Then the control signal further indicates which one of the plurality of resource reservations with different granularity to apply for transmission of data by the first wireless communication device, in case the resource reservation is valid.
  • the configuration of outlying subcarriers is carried in system information by adding a new field.
  • Symbol-level resource reservation and slot-level resource reservation can be indicated by system information or UE specific RRC signaling.
  • the signaling is carried by DCI by either adding a new 2-bit field to DCI format 6-0A or by using reserved bits, if available.
  • the 2 bit information in the DCI is carried by repurposing an existing (or unused) field in DCI format 6-0A.
  • resource reservation mode 1 resource reservation mode 2
  • different resource reservation modes have different resource reservation granularities.
  • the different granularities may be subframe level, slot level or symbol level.
  • the resource reservation is determined by predefined rule. For example, when slot-level resource reservation and subframe level resource reservation overlap, slot-level resource reservation applies. Another predefined rule may be: when symbol-level resource reservation and subframe level resource reservation overlap, symbol-level resource reservation applies. Yet another predefined rule may be: when symbol-level resource reservation and slot level resource reservation overlap, symbol-level resource reservation applies.
  • resource reservation on the resource area is determined according to one of the following predefined rules:
  • Rule 1 When resource reservation modes with different resource reservation granularities overlap on the same resource area, the resource area uses a resource reservation mode with a smaller granularity of resource reservation.
  • a subframe level 410 reservation and a slot level 420 reservation is depicted.
  • the final reservation chosen by the LTE-MTC is the slot level 430 reservation by applying the above rule, in one example embodiment.
  • Rule 2 When resource reservation modes with different resource reservation granularities overlap on the same resource area, the resource area uses a resource reservation mode with a larger resource reservation granularity.
  • a slot level 460 reservation and a symbol level 470 reservation is depicted.
  • the final reservation chosen by the LTE-MTC is the slot level 480 reservation to resolve the different granularities of resource reservation by applying the above rule, in one example embodiment.
  • one bit in a given bitmap can be used to indicate resource reservation for multiple continuous symbols.
  • 2-bit bitmap can be used to indicate the resource reservation in a slot 530.
  • the first bit in the bitmap indicate whether the first and the second symbols are reserved, and the second bit in the bitmap indicate whether the third, fourth and fifth symbols are reserved.
  • the first bit in the bitmap indicate whether the first, second, third symbols are reserved, and the second bit in the bitmap indicate whether the fourth and fifth symbols are reserved
  • 2-bit bitmap can be used to indicate the resource reservation in a slot 580.
  • the first bit in the bitmap indicate whether the first, second, third symbols (symbol #0, #1, #2) are reserved, and the second bit in the bitmap indicate whether the fifth, sixth and seventh symbols (symbol #4, #5, #6) are reserved.
  • 4-bit bitmap can be used to indicate the resource reservation in a subframe 590.
  • the first bit in the bitmap indicate whether the first, second, third symbols (symbol #0, #1, #2) are reserved, and the second bit in the bitmap indicate whether the fifth, sixth and seventh symbols (symbol #4, #5, #6) are reserved while the third bit in the bitmap indicate whether the 8 th , 9 th and 10 th symbols (symbol #7, #8, #9) are reserved, and the second bit in the bitmap indicate whether the 12 th , 13 th and 14 th symbols (symbol #11, #12, #13) are reserved.
  • a reserved UL symbol e.g., 560
  • a symbol 595 for sounding transmission which is always located at the last symbol 595 of a subframe, if present
  • the sounding signal would be transmitted if the corresponding symbol is configured as a reserved symbol.
  • UL reserved resources collide with aperiodic sounding transmission
  • the aperiodic sounding transmission would have higher priority. This means that the aperiodic sounding signal would be transmitted if the corresponding symbol is configured as a UL reserved resource.
  • the periodic sounding transmission would have lower priority. This means that the periodic sounding signal would be dropped if the corresponding symbol is configured as UL reserved resource.
  • DMRS is located in the 4 th symbol 610 of every 7 symbols for 15 kHz subcarrier spacing while DMRS symbol is the 5 th symbol 620 of every 7 symbols in 2 ms NB-slot for single tone 3.75 kHz subcarrier spacing.
  • the eNB cannot correctly decode data transmission in a slot without DMRS.
  • symbol-level resource reservation DMRS symbol cannot be reserved if other symbols in corresponding slot are not reserved.
  • slot-level reservation in UL NB-IoT if a given slot is reserved, the DMRS transmission in the slot is dropped.
  • the reserved symbols/slot configured for 15 kHz subcarrier spacing are overlapped with the DMRS transmission for 3.75 kHz subcarrier spacing, it is assumed that the overlapped symbols are not reserved. In another embodiment, if the reserved symbols/slot configured for 15 kHz subcarrier spacing are overlapped with the DMRS transmission for 3.75 kHz subcarrier spacing, then the 2 ms slot where the DMRS for 3.75 kHz subcarrier spacing locates would be dropped.
  • a symbol/slot can be regarded as a reserved symbol/slot only when the corresponding time regions 660 and 670 are reserved for both 15 kHz subcarrier spacing and 3.75 kHz subcarrier spacing.
  • subframe-level resource reservation 685 configured for 15 kHz subcarrier spacing are overlapped with transmission in the symbols 690 (non-DMRS symbol) for 3.75 kHz subcarrier spacing
  • the transmission in the 2 ms slot (NB-slot, narrowband slot, the length of such slot is 2 ms) for 3.75kHz subcarrier spacing corresponding to the overlapped symbols 690 are dropped.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A system and method for facilitating LTE-MTC (and/or NB-IoT) coexistence with NR systems are disclosed herein. In one embodiment, an example wireless communication method includes identifying, by a first wireless communication device, a plurality of frequency-domain resources assigned to the first wireless communication device. The method further includes determining, by the first wireless communication device, whether one or more outlying subcarriers are located in either a lower edge or an upper edge of the plurality of frequency-domain resources, and processing, by the first wireless communication device, data carried in the one or more outlying subcarriers based on the determination..

Description

SYSTEMS AND METHODS FOR MTC COEXISTENCE WITH NR TECHNICAL FIELD
The disclosure relates generally to facilitating the coexistence of Machine Type Communications (MTC) systems (and/or Narrowband Internet of Things, i.e., NB-IoT systems) with New Radio (NR) systems. In particular, the disclosure relates to reducing mutual interference when LTE-MTC carrier is deployed within an NR carrier through the use of new resource reservation techniques.
BACKGROUND
Machine Type Communications (MTC) , also known as Machine to Machine (M2M) and Narrowband Internet of Things (NB-IoT) , are prominent application forms of the Internet of Things. Since the LTE/LTE-A based MTC terminal and the NB-IoT terminal have a service life of at least ten years, the LTE/LTE-A based MTC system (referred to as LTE-MTC system) or the NB-IoT system and the new air interface system (NR) System) are likely to coexist for a number of years. In case where the coexistence system has limited bandwidth, the LTE-MTC/NB-IoT and NR systems cannot be alloacted separate frequency domain regions within the coexistence system bandwidth. In such a scenario, a LTE-MTC carrier is deployed within an NR carrier, i.e., it may be necessary to share the same frequency domain and/or time domain resources between the LTE-MTC and NR systems. In order to ensure the system performance when the LTE-MTC/NB-IoT and the NR systems coexist, it is necessary to reduce the mutual interference when different systems coexist. There is a need to develop new resource reservation techniques for resource elements (REs) , symbols, etc. in the shared resources in the frequency domain in order to reduce coexistence interference.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments,  example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
In one embodiment, an example wireless communication method includes identifying, by a first wireless communication device, a plurality of frequency-domain resources assigned to the first wireless communication device. The method further includes determining, by the first wireless communication device, whether one or more outlying subcarriers are located in either a lower edge or an upper edge of the plurality of frequency-domain resources, and processing, by the first wireless communication device, data carried in the one or more outlying subcarriers based on the determination.
In another embodiment, a wireless communication method includes determining, by the wireless communication node, to puncture data that is carried on one or more outlying subcarriers based on determining that the one or more outlying subcarriers are located in either a lower edge or an upper edge of a range of frequency-domain resources allocated to the first wireless communication device. The method further includes transmitting, by the wireless communication node to the first wireless communication device, signaling information to indicate the configuration of the one or two outlying subcarriers and a control signal to indicate resource allocation inclusive of the range of frequency-domain resources for the first wireless communication device.
In yet another embodiment, a wireless communication method includes configuring, by a wireless communication node, a first plurality of frequency-domain resources comprising a lower edge and an upper edge, for a first wireless communication system. The method further includes reserving, by the wireless communication node, a second plurality of frequency-domain resources, wherein the second plurality of resources in frequency domain are located at the lower edge, the upper edge, or both the lower and upper edges of the first plurality of frequency-domain resources of the first wireless communication system and the second plurality of frequency-domain resources are consecutive in the lower edge or the upper edge.
In one embodiment, a wireless communication method includes configuring, by a wireless communication node, a plurality of resource reservations with different granularity for a  plurality of wireless communication devices. The method further includes transmitting, by the wireless communication node to a first one of a plurality wireless communication devices, a control signal indicating whether resource reservation for the first wireless communication device is valid.
In another embodiment, a wireless communication method includes receiving, by a first wireless communication device, a control signal indicating a plurality of resource reservations with different granularity. The method further includes identifying, by the first wireless communication device, based on the control signal whether resource reservation for the first wireless communication device is valid.
In yet another embodiment, a wireless communication method includes configuring, by a wireless communication node, a plurality of time-domain resource reservations with different granularity for a first wireless communication device. The method further includes selecting, by the wireless communication node for the first wireless communication device, based on a predefined rule, one of the time-domain resource reservations in response to identifying an overlap between the time-domain resource reservations with different granularity.
In one embodiment, a wireless communication method includes receiving, by a wireless communication device, a reservation of a plurality of time-domain resource reservations with different granularity for a first wireless communication device, and identifying, by the wireless communication device, a selection, based on a predefined rule, of one of the time-domain resource reservations in response to identifying an overlap between the time-domain resource reservations with different granularity for the first wireless communication device.
In another embodiment, a wireless communication method includes configuring, by a wireless communication node, each bit of a given bitmap to indicate reservation of a plurality of symbols for a first wireless communication device, and transmitting, by the wireless communication node to the first wireless communication device, the given bitmap.
In yet another embodiment, a wireless communication method includes receiving, by a first wireless communication device, a given bitmap. The method further includes identifying, by the first wireless communication device, each bit of the given bitmap to correspond to a plurality of symbols that are reserved for a second wireless communication device.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present disclosure are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present disclosure to facilitate the reader's understanding of the present disclosure. Therefore, the drawings should not be considered limiting of the breadth, scope, or applicability of the present disclosure. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
Figure 1A illustrates an example coexistence of MTC with NR scenario in which the processing of outlying carriers are skipped by a MTC UE, in accordance with an embodiment of the present disclosure.
Figure 1B illustrates an example coexistence of MTC with NR scenario in which the outlying carriers are decoded (i.e., not skipped) by a MTC UE, in accordance with an embodiment of the present disclosure.
Figure 2A illustrates an example frequency domain resource reserved for a NR system which is on a lower edge of the frequency domain resources of a MTC system, in accordance with some embodiments of the present disclosure.
Figure 2B illustrates an example frequency domain resource reserved for a NR system which is on an upper edge of the frequency domain resources of a MTC system, in accordance with some embodiments of the present disclosure.
Figure 2C illustrates an example frequency domain resource reservation for a NR system which is on both a lower edge and an upper edge of the frequency domain resources of a MTC system, in accordance with some embodiments of the present disclosure.
Figure 3 depicts an example scenario of different levels of granularity of time domain resources allocated for a MTC UE.
Figure 4A illustrates an example predefined rule which determines the resource allocation for a MTC UE in case of more than one granularity of time domain resources allocated to the MTC UE.
Figure 4B illustrates yet another example predefined rule which determines the resource allocation for a MTC UE in case of more than one granularity of time domain resources allocated to the MTC UE.
Figure 5A depicts an example scenario of optimized indication of downlink (DL) time domain resources allocated for a MTC UE.
Figure 5B depicts an example scenario of optimized indication of uplink (UL) time domain resources allocated for a MTC UE.
Figure 6A depicts an example embodiment for handling the avoidance of collision between DMRS resource reservation and symbol-level resource reservation for a UL NB-IoT.
Figure 6B depicts an example embodiment for handling of resource reservation for different subcarrier spacings.
Figure 6C depicts an example embodiment for avoiding the collision of resource reservation for different subcarrier spacings.
DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
Various example embodiments of the present disclosure are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present disclosure. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present disclosure. Thus, the present disclosure is not limited to the example embodiments and applications described and illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
It should be understood that the terms LTE-MTC and NB-IoT may be used interchangeably throughout the following disclosure.
Resource reservation in frequency domain
Solution 1:
When the LTE-MTC system and the NR system coexist, the transmission of the M subcarrier positions of each narrowband or every N narrowband edges of the LTE-MTC system is punctured, that is, the data transmission of the M subcarrier positions is discarded. Depending on the configuration, M = 1 or 2. The edge of the narrow band can be the upper or lower edge of the narrow band, configured by signaling. When the location of the punctured subcarrier is at the edge of the LTE-MTC resource allocation, the LTE MTC UE does not decode the data of the punctured subcarrier position.
For LTE-MTC coexistence with NR, M=1 or 2 outlying subcarriers can be configured to be punctured per narrowband or per group narrowbands or a system bandwidth. If the outlying subcarrier is located in the edge of the allocated resources, the system (i.e., the base station for the LTE-MTC system, not shown) would drop the data transmission in the outlying subcarrier (i.e., transmission in the outlying subcarrier is punctured) .
Referring to Figure 1A, there is a requirement of a DC subcarrier 105 in a LTE-MTC system, which is not required for a NR system. Due to the DC subcarrier 105, there may be a loss of alignment of the narrowband 110 of the LTE-MTC with respect to the corresponding narrowband of the NR system. The number of outlying subcarrier to be punctured for LTE-MTC allocated primary resource block (PRBs) in different band side may be different in different embodiments. The allocated PRBs in one band side may have one more outlying subcarrier than the other side. In one embodiment, the outlying subcarrier below the DC subcarrier may be 2 while the outlying subcarrier above DC subcarrier may be 1. In another embodiment, the outlying subcarrier below the DC subcarrier may be 1 while the outlying subcarrier above DC subcarrier may be 2. In one embodiment, if the maximum number of outlying subcarriers to be punctured and the location of the outlying subcarrier with maximum number (above or below the DC subcarrier) are configured, the UE judges the number of subcarriers to be punctured according to the allocated PRBs (i.e., PRB Index) . In one embodiment, the LTE-MTC system transmits a synchronization signal for UE’s downlink synchronization and transmits broadcast channel to indicate the system bandwidth to the MTC UEs. In such an embodiment, by decoding the synchronization signal and the broadcast channel, the LTE-MTC UE figures out the location of DC subcarrier and judges the lower edge and upper edge based on the bandwidth.
Referring back to Figure 1A, the system 100 allocates the primary resource block (PRB) resources of  PRBs  16, 17, 18 to a LTE-MTC UE. According to the present disclosure, the LTE MTC user equipment (UE) considers that the edge subcarriers 125 on PRB 18 (reference numeral 120) are punctured. Thus in one embodiment, the LTE-MTC skips decoding the data of the punctured subcarrier at the edge, i.e., the outlying subcarrier 125 for PRB 18 is not decoded. The outlying carrier 135 is also skipped being decoded in the example embodiment.
Referring to Figure 1B, in another embodiment, the location of the punctured subcarrier is in the middle of the LTE-MTC resource allocation. The location of the narrowband 160 and DC subcarrier 155 are similar in Figure 1B as for Figure 1A. In the specific example embodiment, the system 150 allocates PRB resources of  PRB  16, 17, 18, 19, 20 for the LTE-MTC UE. Based on the configuration information, the LTE MTC UE considers that the edge subcarriers on the PRB 18 (reference numeral 170) in the figure are not punctured, and thus decodes the data of the punctured subcarrier 175. The processing for the outlying subcarrier 185 in Figure 1B is skipped, based on the LTE-MTC UE figuring out from the configuration information that PRB 24 (reference numeral 180) is not in the middle of the PRBs allocated to the LTE-MTC UE.
Solution 2:
To maximize the resource utilization when LTE-MTC is deployed within an NR carrier, according to the present disclosure, part of the continuous frequency domain resources of the LTE-MTC system are reserved for use by the NR. The reserved frequency domain resources for the NR carrier are located on the lower edge, the upper edge, or both the lower and the upper edges of the LTE-MTC system, while the LTE-MTC UEs can scheduled in the frequency domain resources in the middle (the reserved PRBs for the LTE-MTC system are continuous) .
Referring to Figure 2A, collision between the frequency domain resources allocated to the LTE-MTC system and the NR system is avoided by allocating continuous PRBs 210 for the LTE-MTC system which are distinct in the frequency domain from the PRBs 220 allocated for the NR system. The block of PRBs 215 (i.e., PRB 0-9) is a subset of allocated PRBs 220 for the NR system. PRBs 220 allocated for a NR system are on the lower edge of the PRBs 210 allocated to the LTE-MTC system, thus ensuring that there is no overlap or collision in the frequency domain resources between the LTE-MTC system and the NR system.
Thus, according to an embodiment of the present disclosure, frequency domain resources 220 for the NR system can be configured as a number of PRBs on the lower edge of the frequency-domain resources of the LTE-MTC system. This implementation has the advantage of reducing the overhead in communication to the LTE-MTC system about the resources reserved for NR system by transmitting the number of LTE PRBs 215 at the edge of LTE-MTC carrier configured for the NR UEs in a signaling message.
Referring to Figure 2B, in another embodiment of the present disclosure, collision between the frequency domain resources allocated to the LTE-MTC system and the NR system is avoided by allocating continuous PRBs 230 for the LTE-MTC system which are distinct in the frequency domain from the PRBs 240 allocated for the NR system. The block of PRBs 245 (i.e., PRB 39-49) is a subset of allocated PRBs 240 for the NR system. PRBs 240 allocated for a NR system are on the upper edge of the PRBs 230 allocated to the LTE-MTC system, thus ensuring that there is no overlap or collision in the frequency domain resources between the LTE-MTC system and the NR system.
Referring now to Figure 2C, in yet another embodiment of the present disclosure, collision between the frequency domain resources allocated to the LTE-MTC system and the NR system is avoided by allocating continuous PRBs 270 for the LTE-MTC UE which are distinct in the frequency domain from the  PRBs  260 and 280 allocated for the NR system. The block of PRBs 277 (i.e., PRB 0-9) and 279 (i.e., PRB 39-49) respectively are a subset of allocated  PRBs  260 and 280 for the NR system. PRBs 260 allocated for a NR system are on the lower edge of the PRBs 270 allocated to the LTE-MTC system while PRBs 280 allocated for a NR system are on the upper edge of the PRBs 270 allocated to the LTE-MTC system, thus ensuring that there is no overlap or collision in the frequency domain resources between the LTE-MTC system and the NR system.
The unit of allocation of frequency domain resources may be different from a PRB which is used as the frequency domain resource unit in the above embodiments. Referring back to Figures 2A, 2B, and 2C, in some other embodiments, the frequency domain resource unit may be different from a PRB. For example, in some other embodiments, the frequency domain resource unit may be a MTC narrowband, and a number of MTC narrowbands 225, 245 and 275  in Figures 2A, 2B, and 2C respectively may be indicated in a signaling message as being the unit of frequency domain resource reservation for both the LTE-MTC and the NR system.
Resource reservation in time domain
Solution 3:
The semi-statically reserved LTE-MTC/NB-IoT resources are slot/symbol/subframe level in time domain, and resource reservations with different granularity may overlap. According to the present disclosure, once the semi-statically reserved LTE-MTC/NB-IoT resources are configured, the reserved resources may not be used by NR.
Referring to Figure 3, in one embodiment, a subframe level 310 allocation may be semi-statically reserved for a LTE-MTC UE. In another embodiment, a slot level 320 allocation may be semi-statically reserved for a LTE-MTC UE. In yet another embodiment, a symbol level 330 allocation may be semi-statically reserved for a LTE-MTC UE.
To improve the resource utilization of LTE-MTC/NB-IoT system and resolve the potential overlapping issue for different granularity resource reservation, 2 bits in the DCI control signal can be used to dynamically indicate whether to apply resource reservation and which granularity of resource reservation are applied for the scheduled LTE-MTC/NB-IoT transmission. In one embodiment, the DCI control signal indicates whether resource reservation for the first wireless communication device is valid. Then the control signal further indicates which one of the plurality of resource reservations with different granularity to apply for transmission of data by the first wireless communication device, in case the resource reservation is valid.
In one embodiment, the configuration of outlying subcarriers is carried in system information by adding a new field. Symbol-level resource reservation and slot-level resource reservation can be indicated by system information or UE specific RRC signaling. For example, in one example embodiment, the signaling is carried by DCI by either adding a new 2-bit field to DCI format 6-0A or by using reserved bits, if available. In another embodiment, the 2 bit information in the DCI is carried by repurposing an existing (or unused) field in DCI format 6-0A.
Solution 4:
When the LTE-MTC system is semi-statically configured with resource reservation mode 1, resource reservation mode 2, ... resource reservation mode N, N>=1, different resource reservation modes have different resource reservation granularities. For example, the different granularities may be subframe level, slot level or symbol level.
When resource reservations with different granularities overlap in the same resource, the resource reservation is determined by predefined rule. For example, when slot-level resource reservation and subframe level resource reservation overlap, slot-level resource reservation applies. Another predefined rule may be: when symbol-level resource reservation and subframe level resource reservation overlap, symbol-level resource reservation applies. Yet another predefined rule may be: when symbol-level resource reservation and slot level resource reservation overlap, symbol-level resource reservation applies.
In one embodiment, when resource reservation modes with different resource reservation granularities overlap on the same resource area, resource reservation on the resource area is determined according to one of the following predefined rules:
Rule 1: When resource reservation modes with different resource reservation granularities overlap on the same resource area, the resource area uses a resource reservation mode with a smaller granularity of resource reservation. Referring to Figure 4A, a subframe level 410 reservation and a slot level 420 reservation is depicted. The final reservation chosen by the LTE-MTC is the slot level 430 reservation by applying the above rule, in one example embodiment.
Rule 2: When resource reservation modes with different resource reservation granularities overlap on the same resource area, the resource area uses a resource reservation mode with a larger resource reservation granularity.. Referring to Figure 4B, a slot level 460 reservation and a symbol level 470 reservation is depicted. The final reservation chosen by the LTE-MTC is the slot level 480 reservation to resolve the different granularities of resource reservation by applying the above rule, in one example embodiment.
Solution 5:
To reduce the indication overhead of resource reservation, for symbol level resource reservation, one bit in a given bitmap can be used to indicate resource reservation for multiple continuous symbols.
Referring to Figure 5A, for symbol-level resource reservation 510 for downlink (DL) LTE-MTC or NB-IoT, other than the NRS symbols 520 that cannot be reserved, 2-bit bitmap can be used to indicate the resource reservation in a slot 530. For example, the first bit in the bitmap indicate whether the first and the second symbols are reserved, and the second bit in the bitmap indicate whether the third, fourth and fifth symbols are reserved. Or, the first bit in the bitmap indicate whether the first, second, third symbols are reserved, and the second bit in the bitmap indicate whether the fourth and fifth symbols are reserved
Referring now to Figure 5B, for symbol-level resource reservation for uplink (UL) LTE-MTC, other than the DMRS symbols 570 that cannot be reserved, 2-bit bitmap can be used to indicate the resource reservation in a slot 580. For example, the first bit in the bitmap indicate whether the first, second, third symbols (symbol #0, #1, #2) are reserved, and the second bit in the bitmap indicate whether the fifth, sixth and seventh symbols (symbol #4, #5, #6) are reserved. 4-bit bitmap can be used to indicate the resource reservation in a subframe 590. For example, the first bit in the bitmap indicate whether the first, second, third symbols (symbol #0, #1, #2) are reserved, and the second bit in the bitmap indicate whether the fifth, sixth and seventh symbols (symbol #4, #5, #6) are reserved while the third bit in the bitmap indicate whether the 8 th, 9 th and 10 th symbols (symbol #7, #8, #9) are reserved, and the second bit in the bitmap indicate whether the 12 th, 13 th and 14 th symbols (symbol #11, #12, #13) are reserved.
Referring to Figure 5B, according to another embodiment, for symbol-level resource reservation for uplink (UL) LTE-MTC, if a reserved UL symbol (e.g., 560) collides with a symbol 595 for sounding transmission (which is always located at the last symbol 595 of a subframe, if present) , then the sounding transmission would have higher priority. In such embodiments, the sounding signal would be transmitted if the corresponding symbol is configured as a reserved symbol.
In another embodiment, for symbol/slot/subframe-level resource reservation for uplink (UL) LTE-MTC, if UL reserved resources collide with aperiodic sounding transmission, the aperiodic sounding transmission would have higher priority. This means that the aperiodic  sounding signal would be transmitted if the corresponding symbol is configured as a UL reserved resource.
In yet another embodiment, for symbol/slot/subframe-level resource reservation for uplink (UL) LTE-MTC, if the UL reserved resources (e.g., 560) collide with a symbol 595 for periodic sounding transmission, the periodic sounding transmission would have lower priority. This means that the periodic sounding signal would be dropped if the corresponding symbol is configured as UL reserved resource.
Referring now to Figure 6A, for UL NB-IoT, in one embodiment for collision handling of DMRS and resource reservation, DMRS is located in the 4 th symbol 610 of every 7 symbols for 15 kHz subcarrier spacing while DMRS symbol is the 5 th symbol 620 of every 7 symbols in 2 ms NB-slot for single tone 3.75 kHz subcarrier spacing. For UL NB-IoT, the eNB cannot correctly decode data transmission in a slot without DMRS. For symbol-level resource reservation, DMRS symbol cannot be reserved if other symbols in corresponding slot are not reserved. For slot-level reservation in UL NB-IoT, if a given slot is reserved, the DMRS transmission in the slot is dropped.
In another embodiment, if the reserved symbols/slot configured for 15 kHz subcarrier spacing are overlapped with the DMRS transmission for 3.75 kHz subcarrier spacing, it is assumed that the overlapped symbols are not reserved. In another embodiment, if the reserved symbols/slot configured for 15 kHz subcarrier spacing are overlapped with the DMRS transmission for 3.75 kHz subcarrier spacing, then the 2 ms slot where the DMRS for 3.75 kHz subcarrier spacing locates would be dropped.
Referring to Figure 6B, according to an example embodiment for handling of resource reservation for different subcarrier spacings, if symbol-level/slot resource reservation for 15 kHz subcarrier spacing case and symbol-level/slot resource reservation for 3.75 subcarrier spacing case overlap, then a symbol/slot can be regarded as a reserved symbol/slot only when the  corresponding time regions  660 and 670 are reserved for both 15 kHz subcarrier spacing and 3.75 kHz subcarrier spacing.
Referring now to Figure 6C, in one embodiment of the present disclosure for avoiding collision of resource reservation for different subcarrier spacings, if reserved slot/subframe level resources reservation 685 for 15 kHz subcarrier spacing case are overlapped with data  transmission in the symbol (s) 690 (non-DMRS symbol) for 3.75 kHz subcarrier spacing, then it is assumed that the transmission in the overlapped symbols 690 for 3.75 kHz subcarrier spacing are dropped.
In another embodiment, if subframe-level resource reservation 685 configured for 15 kHz subcarrier spacing are overlapped with transmission in the symbols 690 (non-DMRS symbol) for 3.75 kHz subcarrier spacing, then the transmission in the 2 ms slot (NB-slot, narrowband slot, the length of such slot is 2 ms) for 3.75kHz subcarrier spacing corresponding to the overlapped symbols 690 are dropped.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present disclosure. Such persons would understand, however, that the disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and  not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present disclosure. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present disclosure with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (28)

  1. A wireless communication method, comprising:
    identifying, by a first wireless communication device, a plurality of frequency-domain resources assigned to the first wireless communication device;
    determining, by the first wireless communication device, whether one or more outlying subcarriers are located in either a lower edge or an upper edge of the plurality of frequency-domain resources; and
    processing, by the first wireless communication device, data carried in the one or more outlying subcarriers based on the determination.
  2. The wireless communication method of claim 1, wherein processing data in the one or more outlying subcarriers further comprises:
    skipping, by the first wireless communication device, decoding of the data in the one or more outlying subcarriers based on the determination that the one or more outlying subcarriers are located in either the lower edge or the upper edge of the plurality of frequency-domain resources.
  3. The wireless communication method of claim 1, wherein processing data in the one or more outlying subcarriers further comprises:
    decoding, by the first wireless communication device, of the data in the one or more outlying subcarriers based on the determination that the one or more outlying subcarriers are not located in either the lower edge or the upper edge of the plurality of frequency-domain resources.
  4. A wireless communication method, comprising:
    determining, by the wireless communication node, to puncture data that is carried on one or more outlying subcarriers based on determining that the one or more outlying subcarriers are located in either a lower edge or an upper edge of a range of frequency-domain resources allocated to the first wireless communication device; and
    transmitting, by the wireless communication node to the first wireless communication device, signaling information to indicate the configuration of the one or two outlying subcarriers and a control signal to indicate resource allocation inclusive of the range of frequency-domain resources for the first wireless communication device.
  5. The wireless communication method of claim 4, wherein the one or two outlying subcarriers to puncture is configured for a predetermined frequency unit.
  6. The wireless communication method of claim 5, wherein the predetermined frequency unit is one of a narrowband, a group of narrowbands, or a system bandwidth.
  7. A wireless communication method, comprising:
    configuring, by a wireless communication node, a first plurality of frequency-domain resources comprising a lower edge and an upper edge, for a first wireless communication system; and
    reserving, by the wireless communication node, a second plurality of frequency-domain resources, wherein the second plurality of resources in frequency domain are located at the lower edge, the upper edge, or both the lower and upper edges of the first plurality of frequency-domain resources of the first wireless communication system and the second plurality of frequency-domain resources are consecutive in the lower edge, the upper edge, or both the lower and upper edges.
  8. A wireless communication method, comprising:
    configuring, by a wireless communication node, a plurality of resource reservations with different granularity for a plurality of wireless communication devices; and
    transmitting, by the wireless communication node to a first one of a plurality of wireless communication devices, a control signal indicating whether resource reservation for the first wireless communication device is valid.
  9. The wireless communication method of claim 8, wherein the control signal further comprises:
    indicating which one of the plurality of resource reservations with different granularity to apply for transmission of data by the first wireless communication device, in case the resource reservation is valid.
  10. A wireless communication method, comprising:
    receiving, by a first wireless communication device, a control signal indicating a plurality of resource reservations with different granularity; and
    identifying, by the first wireless communication device, based on the control signal whether resource reservation for the first wireless communication device is valid.
  11. The wireless communication method of claim 10, further comprising:
    identifying, by the first wireless communication device, based on the control signal which one of the plurality of resource reservations with different granularity to apply for transmission of data by the first wireless communication device, in case resource reservation is valid.
  12. A wireless communication method, comprising:
    configuring, by a wireless communication node, a plurality of time-domain resource reservations with different granularity for a first wireless communication device; and
    selecting, by the wireless communication node for the first wireless communication device, based on a predefined rule, one of the time-domain resource reservations in response to identifying an overlap between the time-domain resource reservations with different granularity.
  13. A wireless communication method, comprising:
    receiving, by a wireless communication device, a reservation of a plurality of time-domain resource reservations with different granularity for a first wireless communication device; and
    identifying, by the wireless communication device, a selection, based on a predefined rule, of one of the time-domain resource reservations in response to identifying an overlap between the time-domain resource reservations with different granularity for the first wireless communication device.
  14. The wireless communication method of claim 13, wherein time-domain resource reservations further comprises:
    a plurality of subframe-level, slot-level and symbol-level time-domain resource reservation.
  15. The wireless communication method of claim 14, wherein predefined rule for selecting one of the plurality of the options for reserved time-domain resources further comprises:
    selecting slot-level resource reservation in case slot-level resource reservation and subframe-level resource reservation overlap.
  16. The wireless communication method of claim 14, wherein predefined rule for selecting one of the plurality of the options for reserved time-domain resources further comprises:
    selecting symbol-level resource reservation in case slot-level resource reservation and symbol-level resource reservation overlap.
  17. The wireless communication method of claim 14, wherein predefined rule for selecting one of the plurality of the options for reserved time-domain resources further comprises:
    selecting slot-level resource reservation in case slot-level resource reservation and symbol-level resource reservation overlap.
  18. A wireless communication method, comprising:
    configuring, by a wireless communication node, each bit of a given bitmap to indicate reservation of a plurality of symbols for a first wireless communication device; and
    transmitting, by the wireless communication node to the first wireless communication device, the given bitmap.
  19. The wireless communication method of claim 18, wherein the first wireless communication device is a Long Term Evolution-Machine Type Communication (LTE-MTC) user equipment (UE) device or a NarrowBand-Internet of Things (NB-IoT) UE device.
  20. A wireless communication method, comprising:
    receiving, by a first wireless communication device, a given bitmap; and
    identifying, by the first wireless communication device, each bit of the given bitmap to correspond to a plurality of symbols that are reserved for a second wireless communication device.
  21. The wireless communication method of claim 20, wherein the given bitmap comprises two bits for indicating reservation of symbols in a downlink slot.
  22. The wireless communication method of claim 20, wherein the given bitmap comprises four bits for indicating reservation of symbols in an uplink subframe.
  23. The wireless communication method of claim 21, wherein a first bit of the given bitmap indicates whether a first and a second symbol in the downlink slot are reserved for the first wireless communication device.
  24. The wireless communication method of claim 21, wherein a second bit of the given bitmap indicates whether a third, a fourth and a fifth symbol in the downlink slot are reserved for the first wireless communication device.
  25. The wireless communication method of claim 22, wherein a first bit of the given bitmap indicates whether a first, a second and a third symbol in the uplink subframe are reserved for the first wireless communication device.
  26. The wireless communication method of claim 22, wherein a second bit of the given bitmap indicates whether a fifth, a sixth and a seventh symbol in the uplink subframe are reserved for the first wireless communication device.
  27. The wireless communication method of claim 22, wherein a third bit of the given bitmap indicates whether an eighth, a ninth and a tenth symbol in the uplink subframe are reserved for the first wireless communication device.
  28. The wireless communication method of claim 22, wherein a fourth bit of the given bitmap indicates whether a twelfth, a thirteenth and a fourteenth symbol in the uplink subframe are reserved for the first wireless communication device.
PCT/CN2019/116456 2019-11-08 2019-11-08 Systems and methods for mtc coexistence with nr WO2021087931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116456 WO2021087931A1 (en) 2019-11-08 2019-11-08 Systems and methods for mtc coexistence with nr
CN201980103446.8A CN114982324A (en) 2019-11-08 2019-11-08 System and method for MTC and NR coexistence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116456 WO2021087931A1 (en) 2019-11-08 2019-11-08 Systems and methods for mtc coexistence with nr

Publications (1)

Publication Number Publication Date
WO2021087931A1 true WO2021087931A1 (en) 2021-05-14

Family

ID=75849222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116456 WO2021087931A1 (en) 2019-11-08 2019-11-08 Systems and methods for mtc coexistence with nr

Country Status (2)

Country Link
CN (1) CN114982324A (en)
WO (1) WO2021087931A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3407637A1 (en) * 2017-05-26 2018-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reduction of interference between neighbor transmissions
CN110035532A (en) * 2018-01-12 2019-07-19 华为技术有限公司 A kind of indicating means and equipment retaining resource

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3407637A1 (en) * 2017-05-26 2018-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reduction of interference between neighbor transmissions
CN110035532A (en) * 2018-01-12 2019-07-19 华为技术有限公司 A kind of indicating means and equipment retaining resource

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Coexistence of LTE-MTC with NR", 3GPP DRAFT; R1-1909989 COEXISTENCE OF LTE-MTC WITH NR, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 11, XP051788796 *
QUALCOMM INCORPORATED: "Coexistence of LTE-MTC with NR", 3GPP DRAFT; R1-1910719, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 5, XP051789506 *
ZTE: "Coexistence of LTE-MTC with NR", 3GPP DRAFT; R1-1910265 MTC COEXISTENCE WITH NR, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 9, XP051789070 *

Also Published As

Publication number Publication date
CN114982324A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
US11924841B2 (en) System and method for allocating resource blocks
US11265870B2 (en) Systems and methods for determining information indicative of cancelation
TW202007192A (en) Control information transmission method and apparatus, resource pool configuration method and apparatus, and communication device
CN110234164B (en) Method and apparatus for determining control channel position and processor readable storage medium
US20220272557A1 (en) Systems and methods for determining information indicative of cancelation
US11419039B2 (en) System and method for indicating information
US20230371043A1 (en) System and method for blind detection
WO2021093125A1 (en) Systems and methods for determining information indicative of cancelation
US20200068542A1 (en) System and method for allocating resource blocks
WO2021087931A1 (en) Systems and methods for mtc coexistence with nr
WO2018227594A1 (en) System and method for allocating system bandwidth
US11387972B2 (en) System and method for allocating resource blocks
CN115021884B (en) System and method for receiving shared channel for multi-TRP transmission
WO2022147754A1 (en) Systmes and methods for selecting overlapped channels
US20220014330A1 (en) System and method for reference signaling configuration
US20240048346A1 (en) Systems and methods for uplink transmission scheme in multi-trp operation
WO2020198984A1 (en) System and method for scheduling a channel
US20220369307A1 (en) System and method for resource allocation
WO2023168564A1 (en) Transmissions across multiple time-domain resources in wireless communication networks
WO2024026874A1 (en) Sub-band determination for wireless communications
WO2022067458A1 (en) Method and device for sounding reference signal indication enhancement
WO2021248459A1 (en) Method for reference signal configuration
WO2021062702A1 (en) System and method for monitoring indicators
CN116325610A (en) Methods, apparatus and computer program products for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951341

Country of ref document: EP

Kind code of ref document: A1