WO2022147754A1 - Systmes and methods for selecting overlapped channels - Google Patents

Systmes and methods for selecting overlapped channels Download PDF

Info

Publication number
WO2022147754A1
WO2022147754A1 PCT/CN2021/070815 CN2021070815W WO2022147754A1 WO 2022147754 A1 WO2022147754 A1 WO 2022147754A1 CN 2021070815 W CN2021070815 W CN 2021070815W WO 2022147754 A1 WO2022147754 A1 WO 2022147754A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
channel
wireless communication
priority
communication device
Prior art date
Application number
PCT/CN2021/070815
Other languages
French (fr)
Inventor
Shuaihua KOU
Wei Gou
Peng Hao
Junfeng Zhang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN202180077292.7A priority Critical patent/CN116711250A/en
Priority to PCT/CN2021/070815 priority patent/WO2022147754A1/en
Publication of WO2022147754A1 publication Critical patent/WO2022147754A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • 5G 5th Generation
  • NR New Radio
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • a wireless communication method includes determining, by a wireless communication device, whether control information is configured to be multiplexed between a data channel and a control channel.
  • the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively.
  • the method includes determining, by the wireless communication device, based on the determination and the first and second priorities, whether to skip a transmission of the data channel.
  • a wireless communication method includes identifying, by a wireless communication device, a first data channel and a channel that overlap with each other along a time-domain.
  • the first data channel and the channel are associated with a first priority and a second priority, respectively.
  • the first priority is higher than the second priority.
  • the method includes determining, by the wireless communication device, based on at least one of: whether a MAC PDU is generated for the first data channel or whether the first data channel is configured to report Channel State Information (CSI) , whether to cancel a transmission of the channel.
  • CSI Channel State Information
  • a wireless communication method includes identifying, by a wireless communication device, a first data channel and both of a first control channel and a second data channel that overlap with each other along a time-domain.
  • the first data channel and the first control channel are both associated with a first priority
  • the second data channel is associated with a second priority.
  • the second priority is higher than the first priority.
  • the method includes canceling, by the wireless communication device, a transmission of the first data channel and determining, by the wireless communication device, based on comparing a time-domain parameter of the first control channel with a time-domain reference, whether to transmit a transmission of the first control channel.
  • a wireless communication method includes identifying, by a wireless communication device, that a first data channel and a second data channel overlap with each other along a time-domain, determining, by the wireless communication device, that that no data is mapped to the first data channel or the second data channel, and generating, by the wireless communication device, based on determining that the second data channel overlap with a control channel along the time-domain, a MAC PDU for the second data channel regardless of whether there is available data mapped to the second data channel.
  • FIG. 1 illustrates an example cellular communication network in which techniques and other aspects disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates block diagrams of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure.
  • FIG. 3 illustrates an example of the overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure.
  • FIG. 4 illustrates an example of overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure.
  • FIG. 5 illustrates an example of overlapping between two PUSCHs, in accordance with some embodiments of the present disclosure.
  • FIG. 6 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
  • FIG. 7 illustrates another example of the overlapping among some channels, in accordance with some embodiments of the present disclosure.
  • FIG. 8 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
  • FIG. 9 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
  • FIG. 10 illustrates a flowchart diagram illustrating a method for determining whether to skip a transmission of a data channel, in accordance with some embodiments of the present disclosure.
  • FIG. 11 illustrates a flowchart diagram illustrating a method for determining whether to cancel a transmission of a data channel, in accordance with some embodiments of the present disclosure.
  • FIG. 12 illustrates a flowchart diagram illustrating a method for determining whether to transmit a transmission of a control channel, in accordance with some embodiments of the present disclosure.
  • FIG. 13 illustrates a flowchart diagram illustrating a method for generating a MAC PDU, in accordance with some embodiments of the present disclosure.
  • FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100.
  • NB-IoT narrowband Internet of things
  • the operations of the two transceiver modules 210 and 230 can be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof.
  • the memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively.
  • the memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230.
  • the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively.
  • Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
  • the network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202.
  • network communication module 218 may be configured to support internet or WiMAX traffic.
  • network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network.
  • the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the PUSCH may not transmitted.
  • the UCI may be multiplexed (e.g., combined, joined, added, duplicated) in the PUSCH if the PUSCH is transmitted. However, if the PUSCH is not transmitted, in some embodiments, only PUCCH is transmitted.
  • a network e.g., the network 100, the system 200, a base station, the BS 102, the BS 202, a gNB, an eNB, a wireless communication node, etc.
  • a UE e.g., UE 104, UE 204, a mobile device, a wireless communication device, a terminal, etc.
  • the network may blindly detect both of the PUCCH and PUSCH as the network may not know whether is PUCCH is multiplexed with PUSCH, which may cause a high burden to the network.
  • Disclosed herein are some embodiments on how to generate the MAC PDU to reduce such burden even if there is no available data for transmission. Further disclosed herein are some embodiments including a condition for a cancellation of a transmission of a channel (e.g., PUSCH having the multiplexed UCI) with lower priority and resumption of the PUCCH transmission.
  • a data channel may include a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
  • a control channel may include a physical downlink control channel (PDCCH) , a physical uplink control channel (PUCCH) , or a physical sidelink control channel (PSCCH) .
  • a control information may include a downlink control information (DCI) , an uplink control information (UCI) , or a sidelink control information (SCI) , which may be carried by the control channel or physical shared channel.
  • DCI downlink control information
  • UCI uplink control information
  • SCI sidelink control information
  • a data or shared channel or a control channel can be configured (or indicated) with a priority. For example, a channel is configured with a priority index 0 or 1.
  • the priority of the channel with larger priority index 1 can be higher than the priority of the channel with lower priority index 0.
  • the channel with higher priority is configured with larger index.
  • a higher layer signaling may include radio resource control (RRC) signaling or a medium access control (MAC) control element (CE) .
  • the UE when a first channel with a higher priority (e.g., than a priority of a second channel) overlaps with the second channel with a lower priority (e.g., than a priority of the first channel) at least in a time domain, the UE cancels (e.g., drops) the second channel and transmits only the first channel. Thus, information carried by the second channel can be dropped, which may be undesirable.
  • the UE to keep the information, the UE multiplexes the information in the first channel and transmits the first channel carrying the information. Whether to multiplex the information in the first channel may be configured (e.g., freely configured, indicated) by the network or determined by a predefined rule.
  • a wireless communication method includes determining, by a wireless communication device, whether control information is configured to be multiplexed between a data channel and a control channel.
  • the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively.
  • the method includes determining, by the wireless communication device, based on the determination and the first and second priorities, whether to skip a transmission of the data channel.
  • the UE may not transmit the first data channel.
  • the MAC entity e.g., the MAC layer
  • the MAC layer may generate the MAC PDU for the first data channel even if there is no available data for transmission on the first data channel.
  • the MAC layer may generate the MAC PDU including at least one of a periodic buffer status reporting (BSR) , a padding BSR, or a padding if there is no available data.
  • BSR periodic buffer status reporting
  • the MAC entity may generate the MAC PDU if the PUSCH with the higher priority overlaps with the PUCCH with the lower priority in the time domain and the network indicates or the UE determines that the UE may multiplex the UCI in the PUSCH.
  • FIG. 3 illustrates an example of the overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure.
  • X-Axis represents time (e.g., time domain)
  • Y-Axis represents frequency (e.g., frequency domain) .
  • the PUSCH has the high priority and the PUCCH carries uplink control information (UCI) and has the low priority.
  • the PUSCH and the PUCCH overlap each other (e.g., are overlapped) in the time domain. If the network indicates or the UE determines that the UE may not multiplex the UCI with the PUSCH, the UE may skip the PUSCH.
  • the MAC layer may not generate the MAC PDU for the PUSCH. Accordingly, in some embodiments, the PUSCH is not transmitted by the UE. If the network indicates or the UE determines that the UE can multiplex the UCI in the PUSCH, the UE may not skip the PUSCH. Even if there is no available data that is mapped to the PUSCH, the MAC layer may generate the MAC PDU for the PUSCH. Thus, the UE may multiplex the UCI in the PUSCH. Accordingly, in some embodiments, the PUSCH with the multiplexed UCI is transmitted by the UE.
  • the MAC entity may not generate the MAC PDU if the PUSCH overlaps with the PUCCH in the time domain and the network indicates or the UE determines that the UE may not multiplex the UCI in the PUSCH.
  • the MAC entity may generate the MAC PDU if PUSCH overlaps with the PUCCH in the time domain and the network indicates or the UE determines that the UE may multiplex the UCI in the PUSCH.
  • a second data channel (e.g., a second PUSCH) with a lower priority overlaps with a second control channel (e.g., a second PUCCH) with a higher priority at least in the time domain.
  • the second control information may be carried by the second control channel. If the network indicates or the UE determines that the UE may not multiplex the second control information in the second data channel, the UE may or may not skip the second data channel.
  • the MAC layer may generate a MAC PDU (protocol data unit) for the second data channel even if there is no available data for transmission on the second data channel.
  • the MAC layer may generate the MAC PDU including at least one of a periodic buffer status reporting (BSR) , a padding BSR, or a padding if there is no available data.
  • BSR periodic buffer status reporting
  • each of the control channel, first control channel, and second control channel includes at least one of: a Physical Downlink Control Channel (PDCCH) , a Physical Uplink Control Channel (PUCCH) , and a Physical Sidelink Control Channel (PSCCH) .
  • each of the data channel, first data channel, second data channel, and third data channel includes at least one of: a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Shared Channel (PUSCH) , and a Physical Sidelink Shared Channel (PSSCH) .
  • the control information includes at least one of: Downlink Control Information (DCI) , Uplink Control Information (UCI) , and Sidelink Control Information (SCI) .
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • SCI Sidelink Control Information
  • the UE may flush the HARQ buffer of the HARQ process after the MAC entity delivers the MAC PDU to a physical layer of the UE.
  • HARQ hybrid automatic repeat request
  • the UE uses whether the MAC layer generates a MAC PDU for a data channel (e.g., first data channel, second data channel, etc. ) transmission (e.g., the MAC layer delivers the MAC PDU to the physical layer for the data channel transmission) to determine the cancellation of one or more channels by the data channel, if the data channel overlaps with the one or more channels at least in the time domain. For example, the UE cancels the one or more channels if the MAC layer generates the MAC PDU for the data channel transmission. In some embodiments, the UE does not cancel one or more channels when the MAC layer does not generates the MAC PDU for the data channel transmission.
  • a data channel e.g., first data channel, second data channel, etc.
  • the MAC layer delivers the MAC PDU to the physical layer for the data channel transmission
  • a first data channel e.g., a PUSCH
  • a second channel e.g., a second PUSCH or a PUCCH
  • the UE may cancel the transmission of the second channel.
  • the second channel can be a data channel or a control channel. If MAC layer does not generate MAC PDU for the first data channel, the UE may not cancel the transmission of the second channel.
  • FIG. 4 illustrates an example of overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure.
  • the PUSCH has the higher priority and the PUCCH has the lower priority.
  • the PUSCH and the PUCCH may be overlapping in the time domain. If the MAC layer does not generate the MAC PDU for the PUSCH, the UE may not cancel the transmission of the PUCCH that has the lower priority. Thus, the UE may transmit the PUCCH. If the MAC layer generates the MAC PDU for the PUSCH, the UE may cancel the transmission of the PUCCH and transmits PUSCH. Thus, the UE may transmit PUSCH.
  • the UE determines the cancellation of one or more channels based on whether the network indicates that the data channel is to transmit channel state information (CSI) reporting (e.g., to report CSI) .
  • CSI channel state information
  • the UE may not cancel the one or more channels if the network does not indicate that the data channel is to transmit the CSI reporting.
  • the UE cancels the one or more channels if the network indicates that the data channel is to transmit the CSI reporting or the MAC layer generates the MAC PDU for the data channel transmission.
  • the UE does not cancel the one or more channels if (a) the network does not indicate that the data channel is to transmit the CSI reporting and (b) the MAC layer does not generate the MAC PDU for the data channel transmission.
  • a first data channel (e.g., the PUSCH) with a higher priority may overlap with a second channel with lower priority in the time domain. If the network indicates that the first data channel is to transmit the CSI (e.g., the CSI request field in the control information scheduling the first data channel is not set as all zeros) , the UE may cancel the transmission of the second channel. If the network indicates that the first data channel is not to transmit CSI (e.g., the CSI request field in the control information scheduling the first data channel is set as all zeros) and the MAC layer does not generates the MAC PDU for the data channel transmission, the UE may not cancel the transmission of the second channel.
  • the network indicates that the first data channel is not to transmit CSI (e.g., the CSI request field in the control information scheduling the first data channel is set as all zeros) and the MAC layer does not generates the MAC PDU for the data channel transmission, the UE may not cancel the transmission of the second channel.
  • FIG. 5 illustrates an example of overlapping between two PUSCHs, in accordance with some embodiments of the present disclosure.
  • PUSCH 1 has a higher priority and the PUSCH 2 has a lower priority.
  • the PUSCH 1 and the PUSCH 2 may be overlapping in the time domain. If the PUSCH 1 is used for the CSI reporting, the UE may cancel the transmission of the PUSCH 2. If the MAC layer does not generate the MAC PDU for the PUSCH 1 and the PUSCH 1 is not used for the CSI reporting, the UE may not cancel the transmission of the PUSCH 2.
  • the method in response to determining that the MAC PDU is generated or the first data channel is configured to report the CSI, the method includes canceling, by the wireless communication device, the transmission of the channel. In some embodiments, in response to determining that the MAC PDU is not generated and the first data channel is not configured to report the CSI, the method includes not canceling, by the wireless communication device, the transmission of the channel.
  • a first data channel (e.g., a PUSCH) has a higher priority.
  • the first data channel may overlap with a second data channel (e.g., a second PUSCH) in the time domain.
  • the second data channel may have a lower priority.
  • a first control channel (e.g., a PUCCH) overlaps with the second data channel in the time domain but does not overlap with the first data channel in the time domain.
  • the UE may cancel the second data channel and transmit the first data channel.
  • the first data channel is scheduled by a control information (DCI) in a second control channel (e.g., a PDCCH) .
  • DCI control information
  • a start (e.g., a first symbol) of the first control channel is not (e.g., does not occur, is not transmitted, is not reported) before (e.g., earlier than) a first end of a time interval (e.g., a defined time interval, a pre-defined time interval) after a second end (e.g., the last symbol) of the second control channel, the UE may transmit the first control channel. If the start of the first control channel is before the first end of the time interval after the second end of the second control channel, the UE may not transmit the first control channel.
  • a start (e.g., a first symbol) of the first control channel is not (e.g., does not occur, is not transmitted, is not reported) before (e.g., earlier than) a first end of a time interval (e.g., a defined time interval, a pre-defined time interval) after a second end (e.g., the last symbol) of the second control channel.
  • the time interval is T+d, in which T is a PUSCH preparation time or a PDSCH processing time, and d is a value reported by the UE. In some embodiments, the time interval is T.
  • the first data channel is at least one of configured by higher layer signaling or activated by control information. If the start of the first control channel is not before a first start of the second time interval before a second start of the first data channel, the UE may transmit the first control channel. If the start of the first control channel is before the first start of the second time interval before the second start of the first data channel, the UE may not transmit the first control channel. In some embodiments, if the start of the first control channel is not before the end of the first data channel, the UE may transmit the first control channel. If the start of the first control channel is before the end of the first data, the UE may not transmit the first control channel.
  • FIG. 6 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
  • a DCI may be carried in the PDCCH to schedule PUSCH 1.
  • the PUSCH 1 may have a higher priority.
  • PUSCH 2 may have a lower priority and overlap with the PUSCH 1 in the time domain.
  • PUCCH 1 may overlap with PUSCH 2 in the time domain.
  • the PUCCH may not overlap with PUSCH 1.
  • the UE may cancel the PUSCH 2 due to the lower priority of the PUSCH 2 and transmit the PUSCH 1 due to the higher priority of the PUSCH 1.
  • a time offset between the PDCCH and the PUCCH is 10 symbols. If the time interval is 8 symbols, then the start of the PUCCH may not be before the first end of the time interval after the second end of the PDCCH (e.g., the time interval is greater than or equal to the time offset, 10 ⁇ 8) . Thus, the UE may transmit the PUCCH. If the time interval is 11 symbols, then the start of the PUCCH is before the first end of the time interval after the second end of the PDCCH (e.g., the time offset is less than the time interval, 10 ⁇ 11) . Thus, the UE may not transmit the PUCCH.
  • FIG. 7 illustrates another example of the overlapping among some channels, in accordance with some embodiments of the present disclosure.
  • PUSCH 1 has a higher priority and overlaps with PUSCH 2 that has a lower priority in the time domain.
  • PUCCH 1 and PUCCH 2 have the same (e.g., lower) priority as the PUSCH 2.
  • the PUCCH 1 is not before a first start (e.g., t1) of a time interval (e.g., T) before a second start of the PUSCH 1, and the UE may transmit the PUCCH 1.
  • the PUCCH 2 is before the first start of the time interval before a second start of the PUSCH 1, and the UE may not transmit PUCCH 2.
  • the timeline illustrated in this example is applied when the PUSCH 1 is configured grant PUSCH.
  • a wireless communication method includes identifying, by a wireless communication device, a first data channel and both of a first control channel and a second data channel that overlap with each other along a time-domain.
  • the first data channel and the first control channel are both associated with a first priority
  • the second data channel is associated with a second priority.
  • the second priority is higher than the first priority.
  • the method includes canceling, by the wireless communication device, a transmission of the first data channel and determining, by the wireless communication device, based on comparing a time-domain parameter of the first control channel with a time-domain reference, whether to transmit a transmission of the first control channel.
  • the method in response to determining that the time-domain parameter is not earlier than the time-domain reference, includes transmitting, by the wireless communication device, the transmission of the first control channel. In some embodiments, in response to determining that the time-domain parameter is earlier than the time-domain reference, the method includes not transmitting, by the wireless communication device, the transmission of the first control channel.
  • the time-domain reference is a time interval after a time-domain ending of a second control channel.
  • the second control channel is configured to schedule the second data channel. In some embodiments, the time-domain reference is a time interval before a time-domain starting of the second data channel.
  • the MAC layer if at least two data channels overlaps in the time domain and there are no available data to be mapped to the overlapped channels, the MAC layer generates a MAC PDU for a first data channel (e.g., one of the two data channels) that overlaps with a control channel. Thus, the UE may not skip the first data channel that overlaps with the control channel. If there are more than one data channel that overlaps with the control channel, the MAC layer generates a MAC PDU for a second data channel that overlaps with the control channels and has the higher (e.g., highest) priority. Thus, the UE may not skip second data channel that overlaps with the control channels and has the higher priority.
  • the MAC layer If there is no priority configured for the overlapped data channels or the overlapped channels have a same priority, the MAC layer generates a MAC PDU for a third data channel scheduled by a control information (e.g., dynamically scheduled data channel) . Thus, the UE may not skip the third data channel scheduled by a control information.
  • a control information e.g., dynamically scheduled data channel
  • FIG. 8 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
  • PUSCH 1 and PUSCH 2 are overlapping in the time domain.
  • PUCCH may be overlapping with the PUSCH 2 in the time domain.
  • the PUCCH may not be overlapping with PUSCH 1 in the time domain.
  • the MAC layer may generate the MAC PDU for the PUSCH 2 regardless of the priority of the PUSCH 2 since PUSCH 2 overlaps with the PUCCH in the time domain.
  • a third data channel that has a higher priority overlaps with a fourth data channel that has a lower priority at least in the time domain.
  • a third control channel may overlap with the third data channel at least in the time domain.
  • the third control channel may not overlap with the fourth data channel.
  • a fourth control channel may overlap with the fourth data channel. If there is no available data for the third data channel and the fourth data channel, the MAC layer may generate the MAC PDU for the third data channel.
  • FIG. 9 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
  • PUSCH 1 with a higher priority may overlap with PUSCH 2 with a lower priority in the time domain.
  • PUCCH 1 overlaps with the PUSCH 1 in the time domain
  • PUCCH 2 overlaps with PUSCH 2 in the time domain. Even if there is no available data to be mapped to the PUSCH 1 and PUSCH 2, the MAC layer may generate the MAC PDU for PUSCH1.
  • PUSCH 1 and PUSCH 2 there is no priority configured for PUSCH 1 and PUSCH 2. Only PUSCH 1 is scheduled by a DCI. Even if there is no available data to be mapped to the PUSCH 1 and PUSCH 2, the MAC layer may generate MAC PDU for PUSCH 1.
  • a wireless communication method includes identifying, by a wireless communication device, that a first data channel and a second data channel overlap with each other along a time-domain, determining, by the wireless communication device, that that no data is mapped to the first data channel or the second data channel, and generating, by the wireless communication device, based on determining that the second data channel overlap with a control channel along the time-domain, a MAC PDU for the second data channel regardless of whether there is available data mapped to the second data channel.
  • the method includes identifying, by the wireless communication device, that the first data channel and the control data channel also overlap with each other along the time-domain.
  • the first data channel is associated with a priority lower than a priority of the second data channel.
  • the method includes identifying, by the wireless communication device, that the first data channel and the control data channel also overlap with each other along the time-domain.
  • the first data channel is associated with a priority equal to a priority of the second data channel, or neither the second data channel nor the third data channel is associated with a priority.
  • the second data channel is scheduled by control information.
  • the network configures an SPS (semi-persistent scheduling) is to be associated with a multicast transmission (e.g., a Multimedia Broadcast Multicast Services (MBMS) or a Multicast Broadcast Services (MBS) ) .
  • More than one UE can receive (e.g., detect decode) a DCI (e.g., group common DCI) activating or deactivating the SPS.
  • a special RNTI radio network temporary identifier
  • the group common DCI with CRC (cyclic redundancy check) scrambled by the special RNTI can be used to activate or deactivate the SPS configuration.
  • the RNTI can be used to indicate (e.g., identify, determine) the SPS configuration that the group common DCI activates or deactivates.
  • a first SPS is associated with MBS 1.
  • RNTI 1 can be configured for the first SPS or the MBS 1.
  • a second SPS can be associated with MBS 2.
  • RNTI 2 can be configured for the second SPS or the MBS 2.
  • a third SPS can be associated with MBS 3.
  • RNTI 3 is configured for the third SPS or the MBS 3. If the UE receives an activation DCI with CRC scrambled by RNTI 2, the second SPS can be activated. If the UE receives a deactivation DCI with CRC scrambled by RNTI 3, the third SPS can be deactivated.
  • FIG. 11 illustrates a flowchart diagram illustrating a method 1100 for determining whether to cancel a transmission of a data channel, in accordance with some embodiments of the present disclosure.
  • the method 1100 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1100 depending on the embodiment.
  • a wireless communication device e.g., a UE
  • Additional, fewer, or different operations may be performed in the method 1100 depending on the embodiment.
  • a wireless communication device identifies a first data channel and a channel that overlap with each other along a time-domain (1102) .
  • the first data channel and the channel are associated with a first priority and a second priority, respectively, the first priority being higher than the second priority.
  • the wireless communication device determines, based on at least one of whether a medium access control (MAC) protocol data unit (PDU) is generated for the first data channel or whether the first data channel is configured to report Channel State Information (CSI) , whether to cancel a transmission of the channel (1104) .
  • MAC medium access control
  • PDU protocol data unit
  • CSI Channel State Information
  • FIG. 13 illustrates a flowchart diagram illustrating a method 1300 for generating a MAC PDU, in accordance with some embodiments of the present disclosure.
  • the method 1300 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1300 depending on the embodiment.
  • a wireless communication device e.g., a UE
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A system and method for selecting overlapped channels is disclosed. In one aspect, a wireless communication method includes determining, by a wireless communication device, whether control information is configured to be multiplexed between a data channel and a control channel. In some embodiments, the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively. In some embodiments, the method includes determining, by the wireless communication device, based on the determination and the first and second priorities, whether to skip a transmission of the data channel.

Description

SYSTMES AND METHODS FOR SELECTING OVERLAPPED CHANNELS TECHNICAL FIELD
The disclosure relates generally to wireless communications and, more particularly, to systems and methods for selecting overlapped channels.
BACKGROUND
Under the 5th Generation (5G) New Radio (NR) standard, latency constraints are tighter than under previous standards. To enable low latency access, grant-free data transmissions can be targeted, which eliminates signaling related to scheduling request and resource allocation.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
In one aspect, a wireless communication method includes determining, by a wireless communication device, whether control information is configured to be multiplexed between a data channel and a control channel. In some embodiments, the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively. In some embodiments, the method includes determining, by the wireless communication device, based on the determination and the first and second priorities, whether to skip a transmission of the data channel.
In another aspect, a wireless communication method includes identifying, by a wireless communication device, a first data channel and a channel that overlap with each other along a time-domain. In some embodiments, the first data channel and the channel are associated with a first priority and a second priority, respectively. In some embodiments, the first priority is higher than the second priority. In some embodiments, the method includes determining, by the wireless communication device, based on at least one of: whether a MAC PDU is generated for the first data channel or whether the first data channel is configured to report Channel State Information (CSI) , whether to cancel a transmission of the channel.
In another aspect, a wireless communication method includes identifying, by a wireless communication device, a first data channel and both of a first control channel and a second data channel that overlap with each other along a time-domain. In some embodiments, the first data channel and the first control channel are both associated with a first priority, and the second data channel is associated with a second priority. In some embodiments, the second priority is higher than the first priority. In some embodiments, the method includes canceling, by the wireless communication device, a transmission of the first data channel and determining, by the wireless communication device, based on comparing a time-domain parameter of the first  control channel with a time-domain reference, whether to transmit a transmission of the first control channel.
In another aspect, a wireless communication method includes identifying, by a wireless communication device, that a first data channel and a second data channel overlap with each other along a time-domain, determining, by the wireless communication device, that that no data is mapped to the first data channel or the second data channel, and generating, by the wireless communication device, based on determining that the second data channel overlap with a control channel along the time-domain, a MAC PDU for the second data channel regardless of whether there is available data mapped to the second data channel.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present solution are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present solution to facilitate the reader's understanding of the present solution. Therefore, the drawings should not be considered limiting of the breadth, scope, or applicability of the present solution. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
FIG. 1 illustrates an example cellular communication network in which techniques and other aspects disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
FIG. 2 illustrates block diagrams of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure.
FIG. 3 illustrates an example of the overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure.
FIG. 4 illustrates an example of overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure.
FIG. 5 illustrates an example of overlapping between two PUSCHs, in accordance with some embodiments of the present disclosure.
FIG. 6 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
FIG. 7 illustrates another example of the overlapping among some channels, in accordance with some embodiments of the present disclosure.
FIG. 8 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
FIG. 9 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure.
FIG. 10 illustrates a flowchart diagram illustrating a method for determining whether to skip a transmission of a data channel, in accordance with some embodiments of the present disclosure.
FIG. 11 illustrates a flowchart diagram illustrating a method for determining whether to cancel a transmission of a data channel, in accordance with some embodiments of the present disclosure.
FIG. 12 illustrates a flowchart diagram illustrating a method for determining whether to transmit a transmission of a control channel, in accordance with some embodiments of the present disclosure.
FIG. 13 illustrates a flowchart diagram illustrating a method for generating a MAC PDU, in accordance with some embodiments of the present disclosure.
DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
Various example embodiments of the present solution are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present solution. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present solution. Thus, the present solution is not limited to the example embodiments and applications described and illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present solution. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present solution is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
A. Network Environment and Computing Environment
FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. In the following discussion, the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100. ” Such an example network 100 includes a base station 102 (hereinafter “BS 102” ) and a user equipment device 104 (hereinafter “UE 104” ) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of  cells  126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In Figure 1, the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126. Each of the  other cells  130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals, e.g., OFDM/OFDMA signals, in  accordance with some embodiments of the present solution. The system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one illustrative embodiment, system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of Figure 1, as described above.
System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) . The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in Figure 2. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware,  or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
In accordance with some embodiments, the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two  transceiver modules  210 and 230 can be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme. In some illustrative embodiments, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is  understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various embodiments, the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example. In some embodiments, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc. The  processor modules  214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by  processor modules  214 and 236, respectively, or in any practical combination thereof. The  memory modules  216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a  removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard,  memory modules  216 and 234 may be coupled to the  processor modules  210 and 230, respectively, such that the  processors modules  210 and 230 can read information from, and write information to,  memory modules  216 and 234, respectively. The  memory modules  216 and 234 may also be integrated into their  respective processor modules  210 and 230. In some embodiments, the  memory modules  216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by  processor modules  210 and 230, respectively.  Memory modules  216 and 234 may also each include non-volatile memory for storing instructions to be executed by the  processor modules  210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for, ” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
B. Selecting Overlapped Channels
If there is no available data for transmission, the PUSCH may not transmitted. When PUSCH overlaps with PUCCH in the time domain, the UCI may be multiplexed (e.g., combined, joined, added, duplicated) in the PUSCH if the PUSCH is transmitted. However, if the PUSCH is not transmitted, in some embodiments, only PUCCH is transmitted. A network (e.g., the network 100, the system 200, a base station, the BS 102, the BS 202, a gNB, an eNB, a wireless communication node, etc. ) may not know (e.g., determine, detect, identify) if a UE (e.g., UE 104, UE 204, a mobile device, a wireless communication device, a terminal, etc. ) has available data for transmission when the PUSCH is configured as grant free. Thus, the network may blindly detect both of the PUCCH and PUSCH as the network may not know whether is PUCCH is multiplexed with PUSCH, which may cause a high burden to the network. Disclosed herein are some embodiments on how to generate the MAC PDU to reduce such burden even if there is no available data for transmission. Further disclosed herein are some embodiments including a condition for a cancellation of a transmission of a channel (e.g., PUSCH having the multiplexed UCI) with lower priority and resumption of the PUCCH transmission.
A data channel may include a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) . A control channel may include a physical downlink control channel (PDCCH) , a physical uplink control channel (PUCCH) , or a physical sidelink control channel (PSCCH) . A control information may include a downlink control information (DCI) , an uplink control information (UCI) , or a sidelink control information (SCI) , which may be carried by the control channel or physical shared channel. A data or shared channel or a control channel can be configured (or indicated) with a priority. For example, a channel is configured with a priority index 0 or 1. The priority of the  channel with larger priority index 1 can be higher than the priority of the channel with lower priority index 0. In some embodiments, the channel with higher priority is configured with larger index. A higher layer signaling may include radio resource control (RRC) signaling or a medium access control (MAC) control element (CE) .
In some embodiments, when a first channel with a higher priority (e.g., than a priority of a second channel) overlaps with the second channel with a lower priority (e.g., than a priority of the first channel) at least in a time domain, the UE cancels (e.g., drops) the second channel and transmits only the first channel. Thus, information carried by the second channel can be dropped, which may be undesirable. In some embodiments, to keep the information, the UE multiplexes the information in the first channel and transmits the first channel carrying the information. Whether to multiplex the information in the first channel may be configured (e.g., freely configured, indicated) by the network or determined by a predefined rule. For example, the predefined rule is (a) if the ending symbol of the second channel is not later than the ending symbol of the first channel, the UE can multiplex the information in the first channel, and (b) otherwise, the UE may not multiplex the information in the first channel. In some embodiments, a wireless communication method includes determining, by a wireless communication device, whether control information is configured to be multiplexed between a data channel and a control channel. In some embodiments, the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively. In some embodiments, the method includes determining, by the wireless communication device, based on the determination and the first and second priorities, whether to skip a transmission of the data channel.
In one example, a first data or shared channel (e.g., first data channel, PUSCH) with a higher priority overlaps with a first control channel (e.g., PUCCH) with a lower priority at least in the time domain. The UE may multiplex the first control information with the first channel. If the network indicates or the UE determines that the UE may not multiplex the first control with the first data channel, and if the PUSCH does not have available data, the UE may skip (e.g., not transmit, cancel transmission of, determine to skip, etc. ) the first data channel. A MAC layer of the UE may not generate MAC PDU (protocol data unit) for the first data channel if there is no available data for transmission on the first data channel. If the MAC PDU is not generated for the first data channel, the UE may not transmit the first data channel. The MAC entity (e.g., the MAC layer) may not generate the MAC PDU if the PUSCH with the higher priority overlaps with the PUCCH with the lower priority in the time domain and the network indicates or the UE determines that the UE may not multiplex the UCI in the PUSCH.
If the network indicates or the UE determines that the UE can multiplex the first control information with the first data channel, the UE may not skip the first data channel. The MAC layer may generate the MAC PDU for the first data channel even if there is no available data for transmission on the first data channel. The MAC layer may generate the MAC PDU including at least one of a periodic buffer status reporting (BSR) , a padding BSR, or a padding if there is no available data. From the perspective of MAC layer, the MAC entity may generate the MAC PDU if the PUSCH with the higher priority overlaps with the PUCCH with the lower priority in the time domain and the network indicates or the UE determines that the UE may multiplex the UCI in the PUSCH.
FIG. 3 illustrates an example of the overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure. In FIG. 3, X-Axis represents  time (e.g., time domain) , and Y-Axis represents frequency (e.g., frequency domain) . The PUSCH has the high priority and the PUCCH carries uplink control information (UCI) and has the low priority. In some embodiments, the PUSCH and the PUCCH overlap each other (e.g., are overlapped) in the time domain. If the network indicates or the UE determines that the UE may not multiplex the UCI with the PUSCH, the UE may skip the PUSCH. If there is no available data that is mapped to the PUSCH, the MAC layer may not generate the MAC PDU for the PUSCH. Accordingly, in some embodiments, the PUSCH is not transmitted by the UE. If the network indicates or the UE determines that the UE can multiplex the UCI in the PUSCH, the UE may not skip the PUSCH. Even if there is no available data that is mapped to the PUSCH, the MAC layer may generate the MAC PDU for the PUSCH. Thus, the UE may multiplex the UCI in the PUSCH. Accordingly, in some embodiments, the PUSCH with the multiplexed UCI is transmitted by the UE.
In some embodiments, the MAC entity may not generate the MAC PDU if the PUSCH overlaps with the PUCCH in the time domain and the network indicates or the UE determines that the UE may not multiplex the UCI in the PUSCH. The MAC entity may generate the MAC PDU if PUSCH overlaps with the PUCCH in the time domain and the network indicates or the UE determines that the UE may multiplex the UCI in the PUSCH.
In some embodiments, in response to determining that the first priority is higher than the second priority and the control information is not configured to be multiplexed in the data channel, the method includes skipping, by the wireless communication device, the transmission of the data channel. In some embodiments, the method includes determining, by the wireless communication device, that no available data is mapped to the data channel, and not generating, by the wireless communication device, a Medium Access Control (MAC) Protocol Data Unit  (PDU) for the data channel. In some embodiments, in response to determining that the first priority is higher than the second priority and the control information is configured to be multiplexed in the data channel, the method includes not skipping, by the wireless communication device, the transmission of the data channel. In some embodiments, the method includes generating, by the wireless communication device, a MAC PDU for the data channel, regardless of whether there is available data mapped to the data channel.
In some embodiments, a second data channel (e.g., a second PUSCH) with a lower priority overlaps with a second control channel (e.g., a second PUCCH) with a higher priority at least in the time domain. The second control information may be carried by the second control channel. If the network indicates or the UE determines that the UE may not multiplex the second control information in the second data channel, the UE may or may not skip the second data channel.
If the network indicates or the UE determines that the UE may multiplex the second control information in the second data channel, the UE may not skip the second data channel. The MAC layer may generate a MAC PDU (protocol data unit) for the second data channel even if there is no available data for transmission on the second data channel. The MAC layer may generate the MAC PDU including at least one of a periodic buffer status reporting (BSR) , a padding BSR, or a padding if there is no available data.
In some embodiments, in response to determining that the first priority is lower than the second priority and the control information is not configured to be multiplexed in the data channel, the method includes selectively skipping, by the wireless communication device, the transmission of the data channel. In some embodiments, in response to skipping the transmission of the data channel, the method includes determining, by the wireless communication device,  that no available data is mapped to the data channel and not generating, by the wireless communication device, a MAC PDU for the data channel. In some embodiments, in response to not skipping the transmission of the data channel, the method includes generating, by the wireless communication device, a MAC PDU for the data channel, regardless of whether there is available data mapped to the data channel. In some embodiments, in response to determining that the first priority is lower than the second priority and the control information is configured to be multiplexed in the data channel, the method includes not skipping, by the wireless communication device, the transmission of the data channel. In some embodiments, the method includes generating, by the wireless communication device, a MAC PDU for the data channel, regardless of whether there is available data mapped to the data channel.
In some embodiments, each of the control channel, first control channel, and second control channel includes at least one of: a Physical Downlink Control Channel (PDCCH) , a Physical Uplink Control Channel (PUCCH) , and a Physical Sidelink Control Channel (PSCCH) . In some embodiments, each of the data channel, first data channel, second data channel, and third data channel includes at least one of: a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Shared Channel (PUSCH) , and a Physical Sidelink Shared Channel (PSSCH) . In some embodiments, the control information includes at least one of: Downlink Control Information (DCI) , Uplink Control Information (UCI) , and Sidelink Control Information (SCI) .
For a hybrid automatic repeat request (HARQ) process, if (a) the MAC entity generates the MAC PDU when there is no available data for transmission or (b) the MAC entity generates a MAC PDU including only at least one of the periodic BSR, padding BSR and padding, the UE may flush the HARQ buffer of the HARQ process after the MAC entity delivers the MAC PDU to a physical layer of the UE.
In some embodiments, the UE uses whether the MAC layer generates a MAC PDU for a data channel (e.g., first data channel, second data channel, etc. ) transmission (e.g., the MAC layer delivers the MAC PDU to the physical layer for the data channel transmission) to determine the cancellation of one or more channels by the data channel, if the data channel overlaps with the one or more channels at least in the time domain. For example, the UE cancels the one or more channels if the MAC layer generates the MAC PDU for the data channel transmission. In some embodiments, the UE does not cancel one or more channels when the MAC layer does not generates the MAC PDU for the data channel transmission.
When a first data channel (e.g., a PUSCH) with a higher priority overlaps with a second channel (e.g., a second PUSCH or a PUCCH) with a lower priority at least in the time domain and the MAC layer generates a MAC PDU for the first data channel, the UE may cancel the transmission of the second channel. The second channel can be a data channel or a control channel. If MAC layer does not generate MAC PDU for the first data channel, the UE may not cancel the transmission of the second channel.
FIG. 4 illustrates an example of overlapping between the PUSCH and the PUCCH, in accordance with some embodiments of the present disclosure. In some embodiments, the PUSCH has the higher priority and the PUCCH has the lower priority. The PUSCH and the PUCCH may be overlapping in the time domain. If the MAC layer does not generate the MAC PDU for the PUSCH, the UE may not cancel the transmission of the PUCCH that has the lower priority. Thus, the UE may transmit the PUCCH. If the MAC layer generates the MAC PDU for the PUSCH, the UE may cancel the transmission of the PUCCH and transmits PUSCH. Thus, the UE may transmit PUSCH.
In some embodiments, if a data channel overlaps with the one or more channels at least in the time domain, the UE determines the cancellation of one or more channels based on whether the network indicates that the data channel is to transmit channel state information (CSI) reporting (e.g., to report CSI) . For example, the UE cancels the one or more channels if the network indicates that the data channel is to transmit the CSI reporting. The UE may not cancel the one or more channels if the network does not indicate that the data channel is to transmit the CSI reporting. In one example, the UE cancels the one or more channels if the network indicates that the data channel is to transmit the CSI reporting or the MAC layer generates the MAC PDU for the data channel transmission. In some embodiments, the UE does not cancel the one or more channels if (a) the network does not indicate that the data channel is to transmit the CSI reporting and (b) the MAC layer does not generate the MAC PDU for the data channel transmission.
A first data channel (e.g., the PUSCH) with a higher priority may overlap with a second channel with lower priority in the time domain. If the network indicates that the first data channel is to transmit the CSI (e.g., the CSI request field in the control information scheduling the first data channel is not set as all zeros) , the UE may cancel the transmission of the second channel. If the network indicates that the first data channel is not to transmit CSI (e.g., the CSI request field in the control information scheduling the first data channel is set as all zeros) and the MAC layer does not generates the MAC PDU for the data channel transmission, the UE may not cancel the transmission of the second channel.
FIG. 5 illustrates an example of overlapping between two PUSCHs, in accordance with some embodiments of the present disclosure. In some embodiments, PUSCH 1 has a higher priority and the PUSCH 2 has a lower priority. The PUSCH 1 and the PUSCH 2 may be  overlapping in the time domain. If the PUSCH 1 is used for the CSI reporting, the UE may cancel the transmission of the PUSCH 2. If the MAC layer does not generate the MAC PDU for the PUSCH 1 and the PUSCH 1 is not used for the CSI reporting, the UE may not cancel the transmission of the PUSCH 2.
In some embodiments, a wireless communication method includes identifying, by a wireless communication device, a first data channel and a channel that overlap with each other along a time-domain. In some embodiments, the first data channel and the channel are associated with a first priority and a second priority, respectively. In some embodiments, the first priority is higher than the second priority. In some embodiments, the method includes determining, by the wireless communication device, based on at least one of: whether a MAC PDU is generated for the first data channel or whether the first data channel is configured to report Channel State Information (CSI) , whether to cancel a transmission of the channel. In some embodiments, the channel includes either a second data channel or a control channel. In some embodiments, in response to determining that the MAC PDU is generated or the first data channel is configured to report the CSI, the method includes canceling, by the wireless communication device, the transmission of the channel. In some embodiments, in response to determining that the MAC PDU is not generated and the first data channel is not configured to report the CSI, the method includes not canceling, by the wireless communication device, the transmission of the channel.
In some embodiments, a first data channel (e.g., a PUSCH) has a higher priority. The first data channel may overlap with a second data channel (e.g., a second PUSCH) in the time domain. The second data channel may have a lower priority. In some embodiments, a first control channel (e.g., a PUCCH) overlaps with the second data channel in the time domain but  does not overlap with the first data channel in the time domain. The UE may cancel the second data channel and transmit the first data channel. In one example, the first data channel is scheduled by a control information (DCI) in a second control channel (e.g., a PDCCH) . If a start (e.g., a first symbol) of the first control channel is not (e.g., does not occur, is not transmitted, is not reported) before (e.g., earlier than) a first end of a time interval (e.g., a defined time interval, a pre-defined time interval) after a second end (e.g., the last symbol) of the second control channel, the UE may transmit the first control channel. If the start of the first control channel is before the first end of the time interval after the second end of the second control channel, the UE may not transmit the first control channel. In some embodiments, the time interval is T+d, in which T is a PUSCH preparation time or a PDSCH processing time, and d is a value reported by the UE. In some embodiments, the time interval is T. In one example, the first data channel is at least one of configured by higher layer signaling or activated by control information. If the start of the first control channel is not before a first start of the second time interval before a second start of the first data channel, the UE may transmit the first control channel. If the start of the first control channel is before the first start of the second time interval before the second start of the first data channel, the UE may not transmit the first control channel. In some embodiments, if the start of the first control channel is not before the end of the first data channel, the UE may transmit the first control channel. If the start of the first control channel is before the end of the first data, the UE may not transmit the first control channel.
FIG. 6 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure. A DCI may be carried in the PDCCH to schedule PUSCH 1. The PUSCH 1 may have a higher priority. PUSCH 2 may have a lower priority and overlap with the PUSCH 1 in the time domain. PUCCH 1 may overlap with  PUSCH 2 in the time domain. The PUCCH may not overlap with PUSCH 1. The UE may cancel the PUSCH 2 due to the lower priority of the PUSCH 2 and transmit the PUSCH 1 due to the higher priority of the PUSCH 1. In one example, a time offset between the PDCCH and the PUCCH (e.g., an offset between a last symbol of the PDCCH and a first symbol of the PUCCH) is 10 symbols. If the time interval is 8 symbols, then the start of the PUCCH may not be before the first end of the time interval after the second end of the PDCCH (e.g., the time interval is greater than or equal to the time offset, 10≥8) . Thus, the UE may transmit the PUCCH. If the time interval is 11 symbols, then the start of the PUCCH is before the first end of the time interval after the second end of the PDCCH (e.g., the time offset is less than the time interval, 10<11) . Thus, the UE may not transmit the PUCCH.
FIG. 7 illustrates another example of the overlapping among some channels, in accordance with some embodiments of the present disclosure. In some embodiments, PUSCH 1 has a higher priority and overlaps with PUSCH 2 that has a lower priority in the time domain. In some embodiments, PUCCH 1 and PUCCH 2 have the same (e.g., lower) priority as the PUSCH 2. In one example, the PUCCH 1 is not before a first start (e.g., t1) of a time interval (e.g., T) before a second start of the PUSCH 1, and the UE may transmit the PUCCH 1. In one example, the PUCCH 2 is before the first start of the time interval before a second start of the PUSCH 1, and the UE may not transmit PUCCH 2. The timeline illustrated in this example is applied when the PUSCH 1 is configured grant PUSCH.
In some embodiments, a wireless communication method includes identifying, by a wireless communication device, a first data channel and both of a first control channel and a second data channel that overlap with each other along a time-domain. In some embodiments, the first data channel and the first control channel are both associated with a first priority, and the  second data channel is associated with a second priority. In some embodiments, the second priority is higher than the first priority. In some embodiments, the method includes canceling, by the wireless communication device, a transmission of the first data channel and determining, by the wireless communication device, based on comparing a time-domain parameter of the first control channel with a time-domain reference, whether to transmit a transmission of the first control channel. In some embodiments, in response to determining that the time-domain parameter is not earlier than the time-domain reference, the method includes transmitting, by the wireless communication device, the transmission of the first control channel. In some embodiments, in response to determining that the time-domain parameter is earlier than the time-domain reference, the method includes not transmitting, by the wireless communication device, the transmission of the first control channel. In some embodiments, the time-domain reference is a time interval after a time-domain ending of a second control channel. In some embodiments, the second control channel is configured to schedule the second data channel. In some embodiments, the time-domain reference is a time interval before a time-domain starting of the second data channel.
In some embodiments, if at least two data channels overlaps in the time domain and there are no available data to be mapped to the overlapped channels, the MAC layer generates a MAC PDU for a first data channel (e.g., one of the two data channels) that overlaps with a control channel. Thus, the UE may not skip the first data channel that overlaps with the control channel. If there are more than one data channel that overlaps with the control channel, the MAC layer generates a MAC PDU for a second data channel that overlaps with the control channels and has the higher (e.g., highest) priority. Thus, the UE may not skip second data channel that overlaps with the control channels and has the higher priority. If there is no priority  configured for the overlapped data channels or the overlapped channels have a same priority, the MAC layer generates a MAC PDU for a third data channel scheduled by a control information (e.g., dynamically scheduled data channel) . Thus, the UE may not skip the third data channel scheduled by a control information.
In some embodiments, a first data channel overlaps with a second data channel at least in the time domain. A first control channel may overlap with the first data channel at least in the time domain. Even if there is no available data for the first data channel and the second data channel, the MAC layer may generate the MAC PDU for the data channel that overlaps with the first control channel.
FIG. 8 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure. In some embodiments, PUSCH 1 and PUSCH 2 are overlapping in the time domain. PUCCH may be overlapping with the PUSCH 2 in the time domain. The PUCCH may not be overlapping with PUSCH 1 in the time domain. In some embodiments, there are no available data to be mapped to the PUSCH 1 and PUSCH 2. The MAC layer may generate the MAC PDU for the PUSCH 2 regardless of the priority of the PUSCH 2 since PUSCH 2 overlaps with the PUCCH in the time domain.
In some embodiments, a third data channel that has a higher priority overlaps with a fourth data channel that has a lower priority at least in the time domain. A third control channel may overlap with the third data channel at least in the time domain. The third control channel may not overlap with the fourth data channel. A fourth control channel may overlap with the fourth data channel. If there is no available data for the third data channel and the fourth data channel, the MAC layer may generate the MAC PDU for the third data channel.
FIG. 9 illustrates an example of the overlapping between some channels, in accordance with some embodiments of the present disclosure. PUSCH 1 with a higher priority may overlap with PUSCH 2 with a lower priority in the time domain. In some embodiments, PUCCH 1 overlaps with the PUSCH 1 in the time domain, and PUCCH 2 overlaps with PUSCH 2 in the time domain. Even if there is no available data to be mapped to the PUSCH 1 and PUSCH 2, the MAC layer may generate the MAC PDU for PUSCH1.
In some embodiments, there is no priority configured for PUSCH 1 and PUSCH 2. Only PUSCH 1 is scheduled by a DCI. Even if there is no available data to be mapped to the PUSCH 1 and PUSCH 2, the MAC layer may generate MAC PDU for PUSCH 1.
In some embodiments, a wireless communication method includes identifying, by a wireless communication device, that a first data channel and a second data channel overlap with each other along a time-domain, determining, by the wireless communication device, that that no data is mapped to the first data channel or the second data channel, and generating, by the wireless communication device, based on determining that the second data channel overlap with a control channel along the time-domain, a MAC PDU for the second data channel regardless of whether there is available data mapped to the second data channel. In some embodiments, the method includes identifying, by the wireless communication device, that the first data channel and the control data channel also overlap with each other along the time-domain. In some embodiments, the first data channel is associated with a priority lower than a priority of the second data channel. In some embodiments, the method includes identifying, by the wireless communication device, that the first data channel and the control data channel also overlap with each other along the time-domain. In some embodiments, the first data channel is associated with a priority equal to a priority of the second data channel, or neither the second data channel  nor the third data channel is associated with a priority. In some embodiments, the second data channel is scheduled by control information.
In some embodiments, the network configures an SPS (semi-persistent scheduling) is to be associated with a multicast transmission (e.g., a Multimedia Broadcast Multicast Services (MBMS) or a Multicast Broadcast Services (MBS) ) . More than one UE can receive (e.g., detect decode) a DCI (e.g., group common DCI) activating or deactivating the SPS. A special RNTI (radio network temporary identifier) can be configured for the SPS configuration. The group common DCI with CRC (cyclic redundancy check) scrambled by the special RNTI can be used to activate or deactivate the SPS configuration. The RNTI can be used to indicate (e.g., identify, determine) the SPS configuration that the group common DCI activates or deactivates.
For example, a first SPS is associated with MBS 1. RNTI 1 can be configured for the first SPS or the MBS 1. A second SPS can be associated with MBS 2. RNTI 2 can be configured for the second SPS or the MBS 2. A third SPS can be associated with MBS 3. RNTI 3 is configured for the third SPS or the MBS 3. If the UE receives an activation DCI with CRC scrambled by RNTI 2, the second SPS can be activated. If the UE receives a deactivation DCI with CRC scrambled by RNTI 3, the third SPS can be deactivated.
In some embodiments, only one UE receives a DCI (e.g., UE-specific DCI) activating and deactivating the SPS. The HARQ (hybrid automatic repeat request) process number field in the UE-specific DCI can be used to indicate the SPS configuration that the UE-specific DCI activates or deactivates. More specifically, the HARQ process number field in the UE-specific DCI can indicate the SPS index. For a UE, the network can configure the association between the SPS index and a RNTI or the association between the SPS index and an MBS via RRC signaling, MAC CE, or DCI. Thus, the SPS index can be configured for an SPS associated with  a MBS. The SPS index can be UE-specific. Thus, each UE may be configured with a different SPS index for the SPS. Based on the association, the corresponding SPS transmission can be activated or deactivated when a UE receives a UE-specific DCI.
For example, UE 1 only receives the MBS 1 and MBS 3. The network can configure that an SPS index 1 is associated with RNTI 1 (e.g., the first SPS) and an SPS index 2 is associated with RNTI 3 (e.g., the third SPS) . If the UE 1 receives a UE-specific activation DCI with HARQ process number field indicating SPS index 2, then the third SPS can be activated based on the association. If the UE 1 receives a UE-specific deactivation DCI with HARQ process number field indicating SPS index 1, then the first SPS can be deactivated based on the association.
FIG. 10 illustrates a flowchart diagram illustrating a method 1000 for determining whether to skip a transmission of a data channel, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-9, the method 1000 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1000 depending on the embodiment.
A wireless communication device determines whether control information is configured to be multiplexed between a data channel and a control channel (1002) . In some embodiments, the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively. The wireless communication device determines, based on the determination and the first and second priorities, whether to skip a transmission of the data channel (1004) .
FIG. 11 illustrates a flowchart diagram illustrating a method 1100 for determining whether to cancel a transmission of a data channel, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-9, the method 1100 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1100 depending on the embodiment.
A wireless communication device identifies a first data channel and a channel that overlap with each other along a time-domain (1102) . In some embodiments, the first data channel and the channel are associated with a first priority and a second priority, respectively, the first priority being higher than the second priority. The wireless communication device determines, based on at least one of whether a medium access control (MAC) protocol data unit (PDU) is generated for the first data channel or whether the first data channel is configured to report Channel State Information (CSI) , whether to cancel a transmission of the channel (1104) .
FIG. 12 illustrates a flowchart diagram illustrating a method 1200 for determining whether to transmit a transmission of a control channel, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-9, the method 1200 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1200 depending on the embodiment.
A wireless communication device identifies a first data channel and both of a first control channel and a second data channel that overlap with each other along a time-domain (1202) . In some embodiments, the first data channel and the first control channel are both associated with a first priority, and the second data channel is associated with a second priority, the second priority being higher than the first priority. The wireless communication device cancels a transmission of the first data channel (1204) . The wireless communication device  determines, based on comparing a time-domain parameter of the first control channel with a time-domain reference, whether to transmit a transmission of the first control channel (1206) .
FIG. 13 illustrates a flowchart diagram illustrating a method 1300 for generating a MAC PDU, in accordance with some embodiments of the present disclosure. Referring to FIGS. 1-9, the method 1300 can be performed by a wireless communication device (e.g., a UE) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1300 depending on the embodiment.
A wireless communication device identifies that a first data channel and a second data channel overlap with each other along a time-domain (1302) . The wireless communication device determines that that no data is mapped to the first data channel or the second data channel (1304) . The wireless communication device generates, based on determining that the second data channel overlap with a control channel along the time-domain, a medium access control (MAC) protocol data unit (PDU) for the second data channel regardless of whether there is available data mapped to the second data channel (1306) .
While various embodiments of the present solution have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present solution. Such persons would understand, however, that the solution is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein.  Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware,  firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or  other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present solution. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present solution with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be  accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (27)

  1. A wireless communication method, comprising:
    determining, by a wireless communication device, whether control information is configured to be multiplexed between a data channel and a control channel, wherein the data channel and the control channel overlap with each other along a time-domain and are associated with a first priority and a second priority, respectively; and
    determining, by the wireless communication device, based on the determination and the first and second priorities, whether to skip a transmission of the data channel.
  2. The method of claim 1, in response to determining that the first priority is higher than the second priority and the control information is not configured to be multiplexed in the data channel, further comprising:
    skipping, by the wireless communication device, the transmission of the data channel.
  3. The method of claim 2, further comprising:
    determining, by the wireless communication device, that no available data is mapped to the data channel; and
    not generating, by the wireless communication device, a Medium Access Control (MAC) Protocol Data Unit (PDU) for the data channel.
  4. The method of claim 1, in response to determining that the first priority is higher than the second priority and the control information is configured to be multiplexed in the data channel, further comprising:
    not skipping, by the wireless communication device, the transmission of the data channel.
  5. The method of claim 4, further comprising:
    generating, by the wireless communication device, a MAC PDU for the data channel, regardless of whether there is available data mapped to the data channel.
  6. The method of claim 1, in response to determining that the first priority is lower than the second priority and the control information is not configured to be multiplexed in the data channel, further comprising:
    selectively skipping, by the wireless communication device, the transmission of the data channel.
  7. The method of claim 6, in response to skipping the transmission of the data channel, further comprising:
    determining, by the wireless communication device, that no available data is mapped to the data channel; and
    not generating, by the wireless communication device, a MAC PDU for the data channel.
  8. The method of claim 6, in response to not skipping the transmission of the data channel, further comprising:
    generating, by the wireless communication device, a MAC PDU for the data channel, regardless of whether there is available data mapped to the data channel.
  9. The method of claim 1, in response to determining that the first priority is lower than the second priority and the control information is configured to be multiplexed in the data channel, further comprising:
    not skipping, by the wireless communication device, the transmission of the data channel.
  10. The method of claim 9, further comprising:
    generating, by the wireless communication device, a MAC PDU for the data channel, regardless of whether there is available data mapped to the data channel.
  11. A wireless communication method, comprising:
    identifying, by a wireless communication device, a first data channel and a channel that overlap with each other along a time-domain, wherein the first data channel and the channel are associated with a first priority and a second priority, respectively, the first priority being higher than the second priority; and
    determining, by the wireless communication device, based on at least one of: whether a MAC PDU is generated for the first data channel or whether the first data channel is configured to report Channel State Information (CSI) , whether to cancel a transmission of the channel.
  12. The method of claim 11, wherein the channel includes either a second data channel or a control channel.
  13. The method of claim 11, in response to determining that the MAC PDU is generated or the first data channel is configured to report the CSI, further comprising:
    canceling, by the wireless communication device, the transmission of the channel.
  14. The method of claim 11, in response to determining that the MAC PDU is not generated and the first data channel is not configured to report the CSI, further comprising:
    not canceling, by the wireless communication device, the transmission of the channel.
  15. A wireless communication method, comprising:
    identifying, by a wireless communication device, a first data channel and both of a first control channel and a second data channel that overlap with each other along a time-domain, wherein the first data channel and the first control channel are both associated with a first priority, and the second data channel is associated with a second priority, the second priority being higher than the first priority;
    canceling, by the wireless communication device, a transmission of the first data channel; and
    determining, by the wireless communication device, based on comparing a time-domain parameter of the first control channel with a time-domain reference, whether to transmit a transmission of the first control channel.
  16. The method of claim 15, in response to determining that the time-domain parameter is not earlier than the time-domain reference, further comprising:
    transmitting, by the wireless communication device, the transmission of the first control channel.
  17. The method of claim 15, in response to determining that the time-domain parameter is earlier than the time-domain reference, further comprising:
    not transmitting, by the wireless communication device, the transmission of the first control channel.
  18. The method of claim 15, wherein the time-domain reference is a time interval after a time-domain ending of a second control channel, and wherein the second control channel is configured to schedule the second data channel.
  19. The method of claim 15, wherein the time-domain reference is a time interval before a time-domain starting of the second data channel.
  20. A wireless communication method, comprising:
    identifying, by a wireless communication device, that a first data channel and a second data channel overlap with each other along a time-domain;
    determining, by the wireless communication device, that that no data is mapped to the first data channel or the second data channel; and
    generating, by the wireless communication device, based on determining that the second data channel overlap with a control channel along the time-domain, a MAC PDU for the second data channel regardless of whether there is available data mapped to the second data channel.
  21. The method of claim 20, further comprising:
    identifying, by the wireless communication device, that the first data channel and the control data channel also overlap with each other along the time-domain, wherein the first data channel is associated with a priority lower than a priority of the second data channel.
  22. The method of claim 20, further comprising:
    identifying, by the wireless communication device, that the first data channel and the control data channel also overlap with each other along the time-domain, wherein the first data channel is associated with a priority equal to a priority of the second data channel, or neither the second data channel nor the third data channel is associated with a priority, and wherein the second data channel is scheduled by control information.
  23. The method of any of claims 1 through 22, wherein each of the control channel, first control channel, and second control channel includes at least one of: a Physical Downlink Control Channel (PDCCH) , a Physical Uplink Control Channel (PUCCH) , and a Physical Sidelink Control Channel (PSCCH) .
  24. The method of any of claims 1 through 22, wherein each of the data channel, first data channel, second data channel, and third data channel includes at least one of: a Physical Downlink Shared Channel (PDSCH) , a Physical Uplink Shared Channel (PUSCH) , and a Physical Sidelink Shared Channel (PSSCH) .
  25. The method of any of claims 1 through 22, wherein the control information includes at least one of: Downlink Control Information (DCI) , Uplink Control Information (UCI) , and Sidelink Control Information (SCI) .
  26. A wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory and implement a method recited in any of claims 1 to 25.
  27. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 25.
PCT/CN2021/070815 2021-01-08 2021-01-08 Systmes and methods for selecting overlapped channels WO2022147754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180077292.7A CN116711250A (en) 2021-01-08 2021-01-08 System and method for selecting overlapping channels
PCT/CN2021/070815 WO2022147754A1 (en) 2021-01-08 2021-01-08 Systmes and methods for selecting overlapped channels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070815 WO2022147754A1 (en) 2021-01-08 2021-01-08 Systmes and methods for selecting overlapped channels

Publications (1)

Publication Number Publication Date
WO2022147754A1 true WO2022147754A1 (en) 2022-07-14

Family

ID=82357601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070815 WO2022147754A1 (en) 2021-01-08 2021-01-08 Systmes and methods for selecting overlapped channels

Country Status (2)

Country Link
CN (1) CN116711250A (en)
WO (1) WO2022147754A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033716A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Uplink collision handling for wireless communications
WO2020096330A1 (en) * 2018-11-09 2020-05-14 한국전자통신연구원 Method for transmitting data or control information having high reliability conditions, and device therefor
US20200314900A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Uplink collision handling
US20200322972A1 (en) * 2019-04-05 2020-10-08 Qualcomm Incorporated Timeline considerations for intra-ue multiplexing
CN111756506A (en) * 2019-03-29 2020-10-09 华为技术有限公司 Method and communication device for transmitting uplink information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033716A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Uplink collision handling for wireless communications
WO2020096330A1 (en) * 2018-11-09 2020-05-14 한국전자통신연구원 Method for transmitting data or control information having high reliability conditions, and device therefor
US20200314900A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Uplink collision handling
CN111756506A (en) * 2019-03-29 2020-10-09 华为技术有限公司 Method and communication device for transmitting uplink information
US20200322972A1 (en) * 2019-04-05 2020-10-08 Qualcomm Incorporated Timeline considerations for intra-ue multiplexing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Correction on timeline check for uplink physical channel overlapping", 3GPP DRAFT; R1-1906297 CORRECTION ON TIMELINE CHECK FOR UPLINK PHYSICAL CHANNEL OVERLAPPING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727747 *

Also Published As

Publication number Publication date
CN116711250A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US11924841B2 (en) System and method for allocating resource blocks
US11265870B2 (en) Systems and methods for determining information indicative of cancelation
US20220385401A1 (en) System and method for transmission repetition mode indicators
US11523418B2 (en) Method and apparatus for resource indication
US20220217750A1 (en) Systems and methods for transmitting signals
US20220272557A1 (en) Systems and methods for determining information indicative of cancelation
JP2023509907A (en) Systems and methods for reference signaling design and configuration in wireless communication networks
US20230180244A1 (en) System and method for signal transmission
US20220330321A1 (en) Signaling solution for fast beam diversity
US20220304039A1 (en) System and method for receiving shared channels for multi trp transmission
WO2022147754A1 (en) Systmes and methods for selecting overlapped channels
WO2024108923A1 (en) Systems and methods for feedback information transmission
US20240121774A1 (en) Transmissions across multiple time-domain resources in wireless communication networks
WO2024026691A1 (en) Systems, methods, and non-transitory computer-readable media for transmission mode switching
WO2024113544A1 (en) Systems and methods for feedback information transmission
WO2024098585A1 (en) Systems and methods for information transmission
WO2022147828A1 (en) Systems and methods for managing transmission indication in multicast and broadcast communications
US20230199798A1 (en) Method and device for signal transmission
US20230403064A1 (en) Determining times for applying beam states for uplink transmissions
WO2022133897A1 (en) Multi-beam transmission signaling for uplink communication channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077292.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 16/11/2023 )