WO2021087815A1 - 功率控制的路损计算方法及装置 - Google Patents

功率控制的路损计算方法及装置 Download PDF

Info

Publication number
WO2021087815A1
WO2021087815A1 PCT/CN2019/116036 CN2019116036W WO2021087815A1 WO 2021087815 A1 WO2021087815 A1 WO 2021087815A1 CN 2019116036 W CN2019116036 W CN 2019116036W WO 2021087815 A1 WO2021087815 A1 WO 2021087815A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
transmission power
target
receiving end
end device
Prior art date
Application number
PCT/CN2019/116036
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/774,369 priority Critical patent/US20220369239A1/en
Priority to JP2022526228A priority patent/JP7385031B2/ja
Priority to EP19951543.8A priority patent/EP4057528A4/en
Priority to BR112022008349A priority patent/BR112022008349A2/pt
Priority to KR1020227019011A priority patent/KR20220097475A/ko
Priority to CN201980002883.0A priority patent/CN110999138B/zh
Priority to PCT/CN2019/116036 priority patent/WO2021087815A1/zh
Publication of WO2021087815A1 publication Critical patent/WO2021087815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method and device for calculating the path loss of power control.
  • the transmit power value of the direct communication of the user equipment can be controlled according to the magnitude of the downlink path loss. For example, when the user equipment moves to a location far away from the base station, the user equipment can use a higher transmit power value for direct communication, and when the user equipment moves to a location closer to the base station, it can use a lower value.
  • the transmit power value for direct communication It can be seen that the transmit power value of the user equipment for direct communication can be a variable value.
  • the user equipment Since the user equipment needs to measure the power value of the reference signal by a higher layer, it requires a weighted average of multiple measurement results in a long period of time.
  • the difference from the power control process in the uplink communication process is that in the uplink communication, the base station
  • the transmit power value of is constant.
  • the transmit power value used by the user equipment as the transmitting end is variable, it is difficult to obtain the reference signal power value returned by the user equipment as the receiving end after high-level filtering. Obtaining the correct path loss estimation will affect the power control effect of the direct communication.
  • the embodiments of the present disclosure provide a power control path loss calculation method and device.
  • a power control path loss calculation method the method being used for a direct-connected unicast communication sender device, including:
  • the target RSRP value is the RSRP value obtained by the receiving end device through high-layer filtering
  • the at least one transmission power value includes at least one transmission power value within a specified time period.
  • the specified time period includes:
  • the determining a target transmission power value according to at least one transmission power value used in direct unicast communication with the receiving end device includes:
  • the determining a target transmission power value according to at least one transmission power value used in direct unicast communication with the receiving end device includes:
  • the weighted average values corresponding to the first N transmission power values are respectively obtained;
  • the weighted average value corresponding to all the transmission power values is used as the target transmission power value.
  • the step of filtering at least one of the used transmission power values based on preset filtering parameter values to obtain the weighted average values corresponding to the first N transmission power values respectively includes:
  • the sum of the first product and the second product is used as the weighted average value corresponding to the first N transmission power values.
  • the determining the target path loss value according to the target transmission power value and the current target RSRP value includes:
  • a power-controlled path loss calculation device the device being used for a direct-connected unicast communication sender device, including:
  • the power determination module is configured to determine a target transmission power value according to at least one transmission power value used in direct unicast communication with the receiving end device;
  • the receiving module is configured to receive the current target reference signal received power RSRP value returned by the receiving end device; wherein the target RSRP value is the RSRP value obtained by the receiving end device through high-level filtering;
  • the path loss determining module is configured to determine the target path loss value according to the target transmission power value and the current target RSRP value.
  • the at least one transmission power value includes at least one transmission power value within a specified time period.
  • the specified time period includes:
  • the power determination module includes:
  • the first determining submodule is configured to calculate at least one arithmetic average value of the transmission power value, and use the arithmetic average value as the target transmission power value.
  • the power determination module includes:
  • the second determining sub-module is configured to filter at least one of the used transmission power values based on a preset filtering parameter value in a time sequence from front to back to obtain the first N transmission powers respectively The weighted average value corresponding to the value;
  • the third determining submodule is configured to cut off the time point when the current target RSRP value returned by the receiving end device is received, and use the weighted average value corresponding to all the transmission power values as the target transmission Power value.
  • the second determining submodule includes:
  • a first calculation unit configured to calculate a first difference between 1 and the filter parameter value
  • a second calculation unit configured to calculate a first product of the first difference value and the weighted average value corresponding to the previous (N-1) transmission power values
  • a third calculation unit configured to calculate a second product of the filter parameter value and the Nth transmission power value
  • the fourth calculation unit is configured to use the sum of the first product and the second product as the weighted average value corresponding to the first N transmission power values.
  • the path loss determination module includes:
  • the calculation sub-module is configured to calculate the difference between the target transmission power value and the current target RSRP value to obtain the target path loss value.
  • a power control path loss calculation device including:
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • the target RSRP value is an RSRP value obtained by the receiving end device through high-layer filtering
  • the transmitting end device when determining the path loss of power control, may determine a target transmit power value according to at least one transmit power value used in direct unicast communication with the receiving end device, and The target transmission power value and the current sequential target RSRP value returned by the received receiving end device determine the target path loss value, which improves the accuracy of the target path loss value, thereby improving the power control effect of direct communication.
  • Direct communication provides more reliable communication quality and higher availability.
  • the at least one transmission power value determined by the transmitting end is at least one transmission power value in a specified time period, and at least one transmission power value in the specified time period is used to determine a target transmission power value so that the target transmission The power value is more accurate.
  • the specified time period may be the time from the last time the target RSRP value returned by the receiving end device is received to the current one returned by the receiving end device.
  • the time period between the two target RSRP values returned by the receiving end device is regarded as the designated time period, and the availability is high.
  • the last used transmit power value before receiving the current target RSRP value returned by the receiving end device may be used as the target transmit power value, or the arithmetic average value of at least one transmit power value may be directly used as the target Transmission power value, or according to the time sequence from front to back, based on a preset filter parameter value, after filtering at least one of the used transmission power values, the corresponding values of the first N transmission power values can be obtained respectively
  • the weighted average value corresponding to all the transmission power values is used as the target transmission power value.
  • the first difference between 1 and the filter parameter value may be calculated first, and then the weighted average value corresponding to the first difference and the previous (N-1) transmission power values may be calculated And the second product of the filter parameter value and the Nth transmission power value, and finally the sum of the first product and the second product is used as the first N transmission power
  • the weighted average value corresponding to the value After filtering at least one of the used transmission power values based on the preset filter parameter values, the weighted average values corresponding to the first N transmission power values can be obtained respectively, so as to subsequently determine the target power value. , High availability.
  • the difference between the target transmission power value and the current target RSRP value can be calculated to obtain the target path loss value, which improves the accuracy of the target path loss value, thereby improving the directivity
  • the power control effect of connected communication can provide more reliable communication quality and higher availability for direct communication.
  • Fig. 1 is a schematic flow chart showing a method for calculating path loss of power control according to an exemplary embodiment.
  • Fig. 2 is a schematic flow chart showing another method for calculating path loss of power control according to an exemplary embodiment.
  • Fig. 3 is a block diagram showing a power control path loss calculation device according to an exemplary embodiment.
  • Fig. 4 is a block diagram showing another power control path loss calculation device according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing another power control path loss calculation device according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing another power control path loss calculation device according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing another power control path loss calculation device according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing another power control path loss calculation device according to an exemplary embodiment.
  • Fig. 9 is a schematic structural diagram of a power control path loss calculation device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or "in response to determination”.
  • FIG. 1 is a power control path loss according to an embodiment.
  • a flowchart of the calculation method, the method may include the following steps:
  • a target transmission power value is determined according to at least one transmission power value used in direct unicast communication with the receiving end device.
  • the transmitting end device may determine an equivalent target transmit power value according to at least one transmit power value adopted by itself when performing direct unicast communication with the receiving end device.
  • step 102 the current target reference signal received power RSRP value returned by the receiving end device is received.
  • the target RSRP is the RSRP value obtained by the receiving end device through high-level filtering, for example, layer 3 filtering.
  • the target RSRP value F n can be calculated using the following formula:
  • F n is the RSRP value obtained by the receiving end device currently using layer 3 filtering, that is, the target RSRP value
  • F n-1 is the RSRP value obtained by the receiving end device last time using layer 3 filtering
  • M n is the latest receiving end
  • the measurement result of the physical layer of the device, a 1/2 (ki/4)
  • k i is the preset value of the configuration.
  • the receiving end device can calculate the target RSRP value by using the above formula 1, and return it to the sending end device through the direct link.
  • a target path loss value is determined according to the target transmission power value and the current target RSRP value.
  • the transmitting end device may determine the target path loss value according to the determined equivalent target transmit power value and the target RSRP value returned by the receiving end device currently received.
  • the transmitting end device may determine a target transmit power value according to at least one transmit power value used in direct unicast communication with the receiving end device, and then according to the The target transmission power value and the current sequential target RSRP value returned by the received receiving end device determine the target path loss value, which improves the accuracy of the target path loss value, thereby improving the power control effect of direct communication, which can be used for direct communication.
  • Liancom provides more reliable communication quality and higher availability.
  • the at least one transmission power value refers to at least one transmission power value of the transmitting end device in a specified time period.
  • the specified time period can be determined as the The time period from the time point of the target RSRP value returned by the receiving end device to the time point of receiving the current target RSRP value returned by the receiving end device. That is to say, the time period during which the sender device receives the target RSRP value twice is the designated time period. Within this designated time period, the equivalent target can be determined based on at least one transmit power value sent by the sender device. Transmission power value.
  • the at least one transmission power value determined by the transmitting end is at least one transmission power value in a specified time period, and at least one transmission power value in the specified time period is used to determine a target transmission power value so that the target transmission power The value is more accurate.
  • step 101 may include:
  • step 101-1 the last used transmission power value before receiving the current target RSRP returned by the receiving end device is used as the target transmission power value.
  • the last time before the current target RSRP value returned by the receiving end device is received The adopted transmission power value is used as the target transmission power value.
  • the sender device before the sender device receives the current target RSRP returned by the receiver device, it uses the four transmit power values of P 1 , P 2 , P 3 and P 4 in chronological order, and can directly send P 4 as the target. Power value.
  • step 101 may include:
  • step 101-2 an arithmetic average value of at least one transmission power value is calculated, and the arithmetic average value is used as the target transmission power value.
  • the sending end device uses the arithmetic average value of at least one of the sending power values of itself within a specified time period as the target sending power value.
  • Fig. 2 is a flowchart of another power control path loss calculation method according to the embodiment shown in Fig. 1.
  • Step 101 may include
  • step 101-3 according to the time sequence from front to back, based on the preset filter parameter values, after filtering at least one of the used transmission power values, the corresponding values of the first N transmission power values are obtained respectively.
  • the weighted average according to the time sequence from front to back, based on the preset filter parameter values, after filtering at least one of the used transmission power values, the corresponding values of the first N transmission power values are obtained respectively. The weighted average.
  • the transmitting end device can filter each transmission power value by using preset filtering parameter values in the order of time from front to back for at least one transmission power value used to obtain the first N transmission power values.
  • step 101-4 until the time point when the current target RSRP value returned by the receiving end device is received, the weighted average value corresponding to all the transmission power values is used as the target transmission power value .
  • the sending end device may use the weighted average value corresponding to all transmit power values in a specified time period as the total value.
  • the target transmit power value may be used to use the weighted average value corresponding to all transmit power values in a specified time period as the total value.
  • the weighted average Q n corresponding to the first N transmission power values in step 101-3 can be calculated by the following formula:
  • Q n-1 is the weighted average value corresponding to the first N-1 transmission power values
  • a' is the filter parameter value
  • P n is the Nth transmission power value.
  • the transmitting end device uses a total of four transmission power values P 1 , P 2 , P 3 and P 4 in a specified time period. Assuming that a'is 1/2, the corresponding The weighted average is as follows:
  • the weighted average value Q 4 corresponding to all the transmission power values P 1 , P 2 , P 3 and P 4 may be used as the target power value P.
  • the last used transmission power value before receiving the current target RSRP value returned by the receiving end device may be used as the target transmission power value, or the arithmetic mean value of at least one transmission power value may be directly used as the target transmission value.
  • Power value after filtering at least one of the used transmission power values based on a preset filter parameter value in a time sequence from front to back, the weighted average values corresponding to the first N transmission power values can be obtained respectively. , Cut off the time point at which the current target RSRP value returned by the receiving end device is received, and use the weighted average value corresponding to all the transmission power values as the target transmission power value.
  • step 102 the following formula may be used to calculate the target path loss value PL:
  • Eff_referenceSignalPower is the target transmit power value
  • higher layer filtered RSRP is the target RPRP value received at the current time.
  • the difference between the target transmission power value and the current target RSRP value can be calculated to obtain the target path loss value, which improves the accuracy of the target path loss value, thereby improving the direct connection
  • the power control effect of communication can provide more reliable communication quality and higher availability for direct communication.
  • the present disclosure also provides an embodiment of an application function realization apparatus.
  • Fig. 3 is a block diagram of a power control path loss calculation device according to an exemplary embodiment.
  • the device is used to directly connect a sending end device of unicast communication, and includes:
  • the power determining module 210 is configured to determine a target transmission power value according to at least one transmission power value used in direct unicast communication with the receiving end device;
  • the receiving module 220 is configured to receive the current target reference signal received power RSRP value returned by the receiving end device; wherein the target RSRP value is the RSRP value obtained by the receiving end device through high-level filtering;
  • the path loss determining module 230 is configured to determine a target path loss value according to the target transmission power value and the current target RSRP value.
  • the at least one transmission power value includes at least one transmission power value within a specified time period.
  • the specified time period includes:
  • FIG. 4 is a block diagram showing another power control path loss calculation device based on the embodiment shown in FIG. 3.
  • the power determination module 210 includes:
  • the first determining submodule 211 is configured to use the last used transmission power value before receiving the current target RSRP returned by the receiving end device as the target transmission power value.
  • FIG. 5 is a block diagram showing another power control path loss calculation device based on the embodiment shown in FIG. 3.
  • the power determination module 210 includes:
  • the second determining submodule 212 is configured to calculate at least one arithmetic average value of the transmission power value, and use the arithmetic average value as the target transmission power value.
  • FIG. 6 is a block diagram showing another power control path loss calculation device based on the embodiment shown in FIG. 3.
  • the power determination module 210 includes:
  • the third determining sub-module 213 is configured to filter at least one of the used transmission power values based on a preset filter parameter value in a time sequence from front to back to obtain the first N transmission power values respectively.
  • the fourth determining submodule 214 is configured to cut off the time point at which the current target RSRP value returned by the receiving end device is received, and use the weighted average value corresponding to all the transmit power values as the target Transmission power value.
  • Fig. 7 is a block diagram showing another power control path loss calculation device based on the embodiment shown in Fig. 6, and the third determining submodule 213 includes:
  • the first calculation unit 2131 is configured to calculate the first difference between 1 and the filter parameter value
  • the second calculation unit 2132 is configured to calculate a first product of the first difference value and the weighted average value corresponding to the previous (N-1) transmission power values;
  • the third calculation unit 2133 is configured to calculate a second product of the filter parameter value and the Nth transmission power value
  • the fourth calculation unit 2134 is configured to use the sum of the first product and the second product as the weighted average value corresponding to the first N transmission power values.
  • FIG. 8 is a block diagram showing another power control path loss calculation device based on the embodiment shown in FIG. 3.
  • the path loss determination module 230 includes:
  • the calculation sub-module 231 is configured to calculate the difference between the target transmission power value and the current target RSRP value to obtain the target path loss value.
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one unit. Locally, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the present disclosure. Those of ordinary skill in the art can understand and implement it without creative work.
  • the present disclosure also provides a power control path loss calculation device, including:
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • the target RSRP value is the RSRP value obtained by the receiving end device through high-layer filtering
  • FIG. 9 is a schematic structural diagram of a power control path loss calculation device 900 according to an exemplary embodiment.
  • the apparatus 900 may be provided as a sender device of direct unicast communication.
  • the device 900 includes a processing component 922, a wireless transmitting/receiving component 924, an antenna component 926, and a signal processing part specific to a wireless interface.
  • the processing component 922 may further include one or more processors.
  • One of the processors in the processing component 922 may be configured to perform any of the above-mentioned path loss calculation methods for power control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种功率控制的路损计算方法及装置,其中,所述方法包括:根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值(101);接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值(102);其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值(103)。提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。

Description

功率控制的路损计算方法及装置 技术领域
本公开涉及通信领域,尤其涉及功率控制的路损计算方法及装置。
背景技术
目前,为了避免用户设备在进行直连通信时对该用户设备的上行通信的干扰,用户设备的直连通信的发送功率值可以按照下行路损的大小进行控制。例如,当用户设备移动到距离基站较远的位置时,该用户设备可以使用较高的发送功率值进行直连通信,而当该用户设备移动到离基站较近的位置时,可以使用较低的发送功率值进行直连通信。可以看出,直连通信的用户设备的发送功率值可以是个可变的值。
由于用户设备测量参考信号功率值需要通过高层来进行测量,需要较长时间段内多个测量结果的加权平均值,与上行通信过程中进行功率控制的过程不同的是,在上行通信中,基站的发送功率值是不变的,而直连通信中,如果作为发送端的用户设备所采用的发送功率值可变,很难根据作为接收端的用户设备返回的经过高层滤波得到的参考信号功率值,得到正确的路损估计,会影响直连通信的功率控制的效果。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种功率控制的路损计算方法及装置。
根据本公开实施例的第一方面,提供一种功率控制的路损计算方法,所述方法用于直连单播通信的发送端设备,包括:
根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP 值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
可选地,至少一个所述发送功率值包括在指定时间段内的至少一个所述发送功率值。
可选地,所述指定时间段包括:
从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。
可选地,所述根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,包括:
计算至少一个所述发送功率值的算数平均值,将所述算数平均值作为所述目标发送功率值。
可选地,所述根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,包括:
按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值;
截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。
可选地,所述基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值,包括:
计算1与所述滤波参数值之间的第一差值;
计算所述第一差值与前(N-1)个所述发送功率值对应的加权平均值 的第一乘积;
计算所述滤波参数值与第N个所述发送功率值的第二乘积;
将所述第一乘积与所述第二乘积的和值作为前N个所述发送功率值对应的所述加权平均值。
可选地,所述根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值,包括:
计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,得到所述目标路损值。
根据本公开实施例的第二方面,提供一种功率控制的路损计算装置,所述装置用于直连单播通信的发送端设备,包括:
功率确定模块,被配置为根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
接收模块,被配置为接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
路损确定模块,被配置为根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
可选地,至少一个所述发送功率值包括在指定时间段内的至少一个所述发送功率值。
可选地,所述指定时间段包括:
从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。
可选地,所述功率确定模块包括:
第一确定子模块,被配置为计算至少一个所述发送功率值的算数平均值,将所述算数平均值作为所述目标发送功率值。
可选地,所述功率确定模块包括:
第二确定子模块,被配置为按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值;
第三确定子模块,被配置为截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。
可选地,所述第二确定子模块包括:
第一计算单元,被配置为计算1与所述滤波参数值之间的第一差值;
第二计算单元,被配置为计算所述第一差值与前(N-1)个所述发送功率值对应的加权平均值的第一乘积;
第三计算单元,被配置为计算所述滤波参数值与第N个所述发送功率值的第二乘积;
第四计算单元,被配置为将所述第一乘积与所述第二乘积的和值作为前N个所述发送功率值对应的所述加权平均值。
可选地,所述路损确定模块包括:
计算子模块,被配置为计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,得到所述目标路损值。
根据本公开实施例的第三方面,提供一种功率控制的路损计算装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,在确定功率控制的路损时,可以由发送端设备根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,在根据该目标发送功率值和接收到的接收端设备返回的当前依次的目标RSRP值,确定目标路损值,提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。
本公开实施例中,发送端确定的至少一个发送功率值是在指定时间段内的至少一个发送功率值,采用指定时间段内的至少一个发送功率值,确定一个目标发送功率值,使得目标发送功率值更加准确。
本公开实施例中,可选地,指定时间段可以采用从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。将接收端设备返回两次目标RSRP值之间的时间段作为指定时间段,可用性高。
本公开实施例中,可以将接收到接收端设备返回的当前一次的目标RSRP值之前,最后一次采用的发送功率值作为目标发送功率值,或者直接将至少一个发送功率值的算数平均值作为目标发送功率值,或者还可以按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值,截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。通过上述方式,可以确定出一个目标发送功率值,提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。
本公开实施例中,可以先计算1与所述滤波参数值之间的第一差值, 再计算所述第一差值与前(N-1)个所述发送功率值对应的加权平均值的第一乘积,还有所述滤波参数值与第N个所述发送功率值的第二乘积,最终将所述第一乘积与所述第二乘积的和值作为前N个所述发送功率值对应的所述加权平均值。通过上述方式,可以基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值,以便后续确定目标功率值,可用性高。
本公开实施例中,可以计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,从而得到所述目标路损值,提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种功率控制的路损计算方法流程示意图。
图2是根据一示例性实施例示出的另一种功率控制的路损计算方法流程示意图。
图3是根据一示例性实施例示出的一种功率控制的路损计算装置框图。
图4是根据一示例性实施例示出的另一种功率控制的路损计算装置框图。
图5是根据一示例性实施例示出的另一种功率控制的路损计算装置框图。
图6是根据一示例性实施例示出的另一种功率控制的路损计算装置框图。
图7是根据一示例性实施例示出的另一种功率控制的路损计算装置框图。
图8是根据一示例性实施例示出的另一种功率控制的路损计算装置框图。
图9是本公开根据一示例性实施例示出的一种功率控制的路损计算装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例提供了一种功率控制的路损计算方法,可以用于直连单播通信的发送端设备,参照1所示,图1是根据一实施例示出的一种功率控制的路损计算方法流程图,该方法可以包括以下步骤:
在步骤101中,根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值。
本步骤中,发送端设备可以在与接收端设备进行直连单播通信时,根据自身采用的至少一个发送功率值,确定出一个等效的目标发送功率值。
在步骤102中,接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值。
其中,目标RSRP是接收端设备经过高层滤波,例如层3滤波得到的RSRP值。目标RSRP值F n可以采用以下公式进行计算:
F n=(1-a)×F n-1+a×M n   公式1
其中,F n为接收端设备当前一次采用层3滤波得到的RSRP值,即目标RSRP值,F n-1是接收端设备上一次采用层3滤波得到的RSRP值,M n是最近一次接收端设备物理层的测量结果,a=1/2 (ki/4),k i为配置的预设值。
接收端设备可以采用上述公式1计算得到目标RSRP值,并通过直连链路返回给所述发送端设备。
在步骤103中,根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
在本公开实施例中,发送端设备可以根据确定的等效目标发送功率值和当前一次接收到的接收端设备返回的目标RSRP值,确定得到目标路损值。
上述实施例中,在确定功率控制的路损时,可以由发送端设备根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,在根据该目标发送功率值和接收到的接收端设备返回的当前依次的目标RSRP值,确定目标路损值,提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。
在一实施例中,至少一个发送功率值是指发送端设备在指定时间段内的至少一个发送功率值。
其中,由于接收端设备进行高层滤波得到的目标RSRP值是经过一段时间才能得到的测量结果,因此,为了后续提高目标路损值的准确性,可以将指定时间段确定为从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。也就是说,发送端设备相邻两次接收到目标RSRP值的时间段作为指定时间段,在这一指定时间段内可以根据发送端设备发送的至少一个发送功率值,确定出等效的目标发送功率值。
上述实施例中,发送端确定的至少一个发送功率值是在指定时间段内的至少一个发送功率值,采用指定时间段内的至少一个发送功率值,确定一个目标发送功率值,使得目标发送功率值更加准确。
在一实施例中,步骤101可以包括:
在步骤101-1中,将接收到所述接收端设备返回的当前一次的所述目标RSRP之前,最后一次采用的所述发送功率值作为所述目标发送功率值。
本公开实施例中,可以在发送端设备与接收端设备进行直连单播通信时所采用的至少一个发送功率值中,将接收到接收端设备返回的当前一次的目标RSRP值之前,最后一次采用的发送功率值作为目标发送功率值。
例如,发送端设备在接收到接收端设备返回的当前一次目标RSRP之前,按照时间顺序分别采用了P 1、P 2、P 3和P 4四个发送功率值,可以直接将P 4作为目标发送功率值。
在一实施例中,步骤101可以包括:
在步骤101-2中,计算至少一个所述发送功率值的算数平均值,将所述算数平均值作为所述目标发送功率值。
发送端设备将指定时间段内自身的至少一个所述发送功率值的算数平均值,作为目标发送功率值。
例如,指定时间段内,发送端设备分别采用了P 1、P 2、P 3和P 4四个发送功率值,则目标发送功率值P=(P 1+P 2+P 3+P 4)/4。
在一实施例中,参照2所示,图2是根据图1所示的实施例示出的另 一种功率控制的路损计算方法流程图,步骤101可以包括
在步骤101-3中,按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值。
在本步骤中,发送端设备可以对采用的至少一个发送功率值按照时间由前到后的顺序,通过预设的滤波参数值,分别对每个发送功率值进行滤波,得到前N个发送功率值对应的加权平均值。
在步骤101-4中,截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。
在本步骤中,截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,发送端设备可以将在指定时间段内所有发送功率值对应的所述加权平均值作为所述目标发送功率值。
在一实施例中,步骤101-3中前N个所述发送功率值对应的加权平均值Q n可以通过以下公式计算:
Q n=(1–a’)×Q n-1+a’×P n     公式2
其中,Q n-1是前N-1个发送功率值对应的加权平均值,a’是滤波参数值,P n是第N个发送功率值。
例如,按照由前到后的时间顺序,发送端设备在指定时间段内共采用了P 1、P 2、P 3和P 4四个发送功率值,假设a’为1/2,分别对应的加权平均值如下:
Q 1=(1–a’)×Q 0+a’×P 1=(1/2)P 1
Q 2=(1–a’)×Q 1+a’×P 2=(1/2)×(1/2)×P 1+(1/2)×P 2=(1/4)P 1+(1/2)P 2
Q 3=(1–a’)×Q 2+a’×P 3=(1/8)P 1+(1/4)P 2+(1/2)P 3
Q 4=(1–a’)×Q 3+a’×P 4=(1/16)P 1+(1/8)P 2+(1/4)P 3+(1/2)P 4
在本公开实施例中,可以将所有发送功率值P 1、P 2、P 3和P 4对应的加 权平均值Q 4作为目标功率值P。
上述实施例中,可以将接收到接收端设备返回的当前一次的目标RSRP值之前,最后一次采用的发送功率值作为目标发送功率值,或者直接将至少一个发送功率值的算数平均值作为目标发送功率值。或者还可以按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值,截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。通过上述方式,可以确定出一个目标发送功率值,提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。
在一实施例中,针对步骤102,可以采用以下公式计算目标路损值PL:
PL=Eff_referenceSignalPower–higher layer filtered RSRP   公式3
其中,Eff_referenceSignalPower是目标发送功率值,higher layer filtered RSRP是当前一次接收到的目标RPRP值。
上述实施例中,可以计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,从而得到所述目标路损值,提高了目标路损值的准确性,从而提高了直连通信的功率控制效果,可以为直连通信提供更可靠的通信质量,可用性更高。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图3,图3是根据一示例性实施例示出的一种功率控制的路损计算装置框图,所述装置用于直连单播通信的发送端设备,包括:
功率确定模块210,被配置为根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
接收模块220,被配置为接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值;其中,所述目标RSRP值是所述接收端设备 经过高层滤波得到的RSRP值;
路损确定模块230,被配置为根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
可选地,至少一个所述发送功率值包括在指定时间段内的至少一个所述发送功率值。
可选地,所述指定时间段包括:
从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。
参照图4,图4是根据图3所示实施例的基础上示出的另一种功率控制的路损计算装置框图,所述功率确定模块210包括:
第一确定子模块211,被配置为将接收到所述接收端设备返回的当前一次的所述目标RSRP之前,最后一次采用的所述发送功率值作为所述目标发送功率值。
参照图5,图5是根据图3所示实施例的基础上示出的另一种功率控制的路损计算装置框图,所述功率确定模块210包括:
第二确定子模块212,被配置为计算至少一个所述发送功率值的算数平均值,将所述算数平均值作为所述目标发送功率值。
参照图6,图6是根据图3所示实施例的基础上示出的另一种功率控制的路损计算装置框图,所述功率确定模块210包括:
第三确定子模块213,被配置为按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值;
第四确定子模块214,被配置为截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。
参照图7,图7是根据图6所示实施例的基础上示出的另一种功率控 制的路损计算装置框图,所述第三确定子模块213包括:
第一计算单元2131,被配置为计算1与所述滤波参数值之间的第一差值;
第二计算单元2132,被配置为计算所述第一差值与前(N-1)个所述发送功率值对应的加权平均值的第一乘积;
第三计算单元2133,被配置为计算所述滤波参数值与第N个所述发送功率值的第二乘积;
第四计算单元2134,被配置为将所述第一乘积与所述第二乘积的和值作为前N个所述发送功率值对应的所述加权平均值。
参照图8,图8是根据图3所示实施例的基础上示出的另一种功率控制的路损计算装置框图,所述路损确定模块230包括:
计算子模块231,被配置为计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,得到所述目标路损值。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种功率控制的路损计算装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP 值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
如图9所示,图9是根据一示例性实施例示出的一种功率控制的路损计算装置900的一结构示意图。装置900可以被提供为直连单播通信的发送端设备。参照图9,装置900包括处理组件922、无线发射/接收组件924、天线组件926、以及无线接口特有的信号处理部分,处理组件922可进一步包括一个或多个处理器。
处理组件922中的其中一个处理器可以被配置为用于执行上述任一所述的功率控制的路损计算方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种功率控制的路损计算方法,其特征在于,所述方法用于直连单播通信的发送端设备,包括:
    根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
    接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
    根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
  2. 根据权利要求1所述的方法,其特征在于,至少一个所述发送功率值包括在指定时间段内的至少一个所述发送功率值。
  3. 根据权利要求2所述的方法,其特征在于,所述指定时间段包括:
    从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,包括:
    将接收到所述接收端设备返回的当前一次的所述目标RSRP之前,最后一次采用的所述发送功率值作为所述目标发送功率值。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,包括:
    计算至少一个所述发送功率值的算数平均值,将所述算数平均值作为所述目标发送功率值。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值,包括:
    按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值;
    截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。
  7. 根据权利要求6所述的方法,其特征在于,所述基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值,包括:
    计算1与所述滤波参数值之间的第一差值;
    计算所述第一差值与前(N-1)个所述发送功率值对应的加权平均值的第一乘积;
    计算所述滤波参数值与第N个所述发送功率值的第二乘积;
    将所述第一乘积与所述第二乘积的和值作为前N个所述发送功率值对应的所述加权平均值。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值,包括:
    计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,得到所述目标路损值。
  9. 一种功率控制的路损计算装置,其特征在于,所述装置用于直连单播通信的发送端设备,包括:
    功率确定模块,被配置为根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
    接收模块,被配置为接收所述接收端设备返回的当前一次的目标参考 信号接收功率RSRP值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
    路损确定模块,被配置为根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
  10. 根据权利要求9所述的装置,其特征在于,至少一个所述发送功率值包括在指定时间段内的至少一个所述发送功率值。
  11. 根据权利要求10所述的装置,其特征在于,所述指定时间段包括:
    从上一次接收到所述接收端设备返回的所述目标RSRP值的时间点开始、到接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点为止的时间段。
  12. 根据权利要求9-11任一项所述的装置,其特征在于,所述功率确定模块包括:
    第一确定子模块,被配置为将接收到所述接收端设备返回的当前一次的所述目标RSRP之前,最后一次采用的所述发送功率值作为所述目标发送功率值。
  13. 根据权利要求9-11任一项所述的装置,其特征在于,所述功率确定模块包括:
    第二确定子模块,被配置为计算至少一个所述发送功率值的算数平均值,将所述算数平均值作为所述目标发送功率值。
  14. 根据权利要求9-11任一项所述的装置,其特征在于,所述功率确定模块包括:
    第三确定子模块,被配置为按照由前到后的时间顺序,基于预设的滤波参数值,对所采用的至少一个所述发送功率值进行滤波后,分别得到前N个所述发送功率值对应的加权平均值;
    第四确定子模块,被配置为截止接收到所述接收端设备返回的当前一次的所述目标RSRP值的时间点,将所有所述发送功率值对应的所述加权平均值作为所述目标发送功率值。
  15. 根据权利要求14所述的装置,其特征在于,所述第三确定子模块包括:
    第一计算单元,被配置为计算1与所述滤波参数值之间的第一差值;
    第二计算单元,被配置为计算所述第一差值与前(N-1)个所述发送功率值对应的加权平均值的第一乘积;
    第三计算单元,被配置为计算所述滤波参数值与第N个所述发送功率值的第二乘积;
    第四计算单元,被配置为将所述第一乘积与所述第二乘积的和值作为前N个所述发送功率值对应的所述加权平均值。
  16. 根据权利要求9所述的装置,其特征在于,所述路损确定模块包括:
    计算子模块,被配置为计算所述目标发送功率值和当前一次的所述目标RSRP值的差值,得到所述目标路损值。
  17. 一种功率控制的路损计算装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    根据与接收端设备进行直连单播通信时所采用的至少一个发送功率值,确定一个目标发送功率值;
    接收所述接收端设备返回的当前一次的目标参考信号接收功率RSRP值;其中,所述目标RSRP值是所述接收端设备经过高层滤波得到的RSRP值;
    根据所述目标发送功率值和当前一次的所述目标RSRP值,确定目标路损值。
PCT/CN2019/116036 2019-11-06 2019-11-06 功率控制的路损计算方法及装置 WO2021087815A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/774,369 US20220369239A1 (en) 2019-11-06 2019-11-06 Method and apparatus for allocating path loss for power control
JP2022526228A JP7385031B2 (ja) 2019-11-06 2019-11-06 電力制御の線路損失計算方法及び装置
EP19951543.8A EP4057528A4 (en) 2019-11-06 2019-11-06 TRAVEL LOSS CALCULATION METHOD AND POWER CONTROL DEVICE
BR112022008349A BR112022008349A2 (pt) 2019-11-06 2019-11-06 Método para calcular uma perda de caminho para controle de potência, e, dispositivo emissor
KR1020227019011A KR20220097475A (ko) 2019-11-06 2019-11-06 전력 제어의 경로 손실 계산 방법 및 장치
CN201980002883.0A CN110999138B (zh) 2019-11-06 2019-11-06 功率控制的路损计算方法及装置
PCT/CN2019/116036 WO2021087815A1 (zh) 2019-11-06 2019-11-06 功率控制的路损计算方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116036 WO2021087815A1 (zh) 2019-11-06 2019-11-06 功率控制的路损计算方法及装置

Publications (1)

Publication Number Publication Date
WO2021087815A1 true WO2021087815A1 (zh) 2021-05-14

Family

ID=70080513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116036 WO2021087815A1 (zh) 2019-11-06 2019-11-06 功率控制的路损计算方法及装置

Country Status (7)

Country Link
US (1) US20220369239A1 (zh)
EP (1) EP4057528A4 (zh)
JP (1) JP7385031B2 (zh)
KR (1) KR20220097475A (zh)
CN (1) CN110999138B (zh)
BR (1) BR112022008349A2 (zh)
WO (1) WO2021087815A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811478A (zh) * 2011-05-31 2012-12-05 华为技术有限公司 一种路损补偿方法和基站及用户设备
CN103024884A (zh) * 2011-09-27 2013-04-03 中兴通讯股份有限公司 上行信号功率控制方法及装置
CN104349443A (zh) * 2013-08-09 2015-02-11 电信科学技术研究院 一种上行功率控制方法和装置
CN108235797A (zh) * 2017-12-28 2018-06-29 北京小米移动软件有限公司 确定路径损耗的方法及装置
WO2018144781A1 (en) * 2017-02-03 2018-08-09 Intel IP Corporation Rsrp metric for new radio standard

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258937A (ja) 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd 伝搬環境推定方法、装置及び通信方法
WO2015170934A1 (ko) 2014-05-09 2015-11-12 주식회사 아이티엘 무선통신 시스템에서 전송 파워 제어 방법 및 장치
JP6938642B2 (ja) 2016-12-30 2021-09-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 経路損失推定方法およびデバイス
CN109392069A (zh) * 2017-08-10 2019-02-26 中兴通讯股份有限公司 一种功率控制方法及装置
US20220346038A1 (en) * 2019-09-27 2022-10-27 Nec Corporation Methods, devices and computer storage media for communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811478A (zh) * 2011-05-31 2012-12-05 华为技术有限公司 一种路损补偿方法和基站及用户设备
CN103024884A (zh) * 2011-09-27 2013-04-03 中兴通讯股份有限公司 上行信号功率控制方法及装置
CN104349443A (zh) * 2013-08-09 2015-02-11 电信科学技术研究院 一种上行功率控制方法和装置
WO2018144781A1 (en) * 2017-02-03 2018-08-09 Intel IP Corporation Rsrp metric for new radio standard
CN108235797A (zh) * 2017-12-28 2018-06-29 北京小米移动软件有限公司 确定路径损耗的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057528A4 *

Also Published As

Publication number Publication date
CN110999138A (zh) 2020-04-10
BR112022008349A2 (pt) 2022-08-09
JP2023501410A (ja) 2023-01-18
EP4057528A4 (en) 2022-11-09
KR20220097475A (ko) 2022-07-07
EP4057528A1 (en) 2022-09-14
JP7385031B2 (ja) 2023-11-21
US20220369239A1 (en) 2022-11-17
CN110999138B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN107889150B (zh) 表征准共位置参数配置的方法和装置、发射及接收设备
CN109155984B (zh) 确定通道时延的方法、定位方法和相关设备
TW202038639A (zh) Rsrp 報告方法以及使用者設備
JP7384909B2 (ja) ビーム情報を用いた測位方法及び測位装置
WO2018187977A1 (zh) 上行功率控制方法、设备及系统
CN105450332B (zh) 一种三维信道状态信息确定方法及装置
CN113271671A (zh) 波束管理方法及相关装置
CN113676830B (zh) 一种信息上报方法、装置、设备及可读存储介质
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
CN106656280A (zh) 一种信道状态信息的反馈及其控制方法和设备
CN115486035A (zh) 用于信道估计的nn参数的类别
WO2021057397A1 (zh) 一种信号测量方法、终端及网络侧设备
JP7382487B2 (ja) オンデマンド位置決め関連アプリケーションデータのための方法及びデバイス
US9813205B2 (en) Uplink CoMP set selecting method and system, and device
WO2021068194A1 (zh) 天线信号处理模型的训练方法、装置、天线及存储介质
WO2021056588A1 (zh) 一种配置预编码的方法及装置
CN110166091B (zh) 多用户配对方法、装置及基站
US20230194647A1 (en) Conditional measurement reporting mode for positioning
WO2021087815A1 (zh) 功率控制的路损计算方法及装置
CN111869123A (zh) 用于高效波束管理的通信设备
WO2023143572A1 (zh) 基于人工智能ai模型的定位方法及通信设备
US9692685B2 (en) Heterogeneous network system, network apparatus, and rendezvous path selection method thereof
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
CN114666188A (zh) 信息生成方法及相关装置
RU2795585C1 (ru) Способ и устройство для вычисления потерь в тракте для управления мощностью

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526228

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008349

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227019011

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951543

Country of ref document: EP

Effective date: 20220607

ENP Entry into the national phase

Ref document number: 112022008349

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220429