WO2021087775A1 - 可移动平台对障碍物的处理方法、装置及计算机存储介质 - Google Patents

可移动平台对障碍物的处理方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2021087775A1
WO2021087775A1 PCT/CN2019/115812 CN2019115812W WO2021087775A1 WO 2021087775 A1 WO2021087775 A1 WO 2021087775A1 CN 2019115812 W CN2019115812 W CN 2019115812W WO 2021087775 A1 WO2021087775 A1 WO 2021087775A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
movable platform
distance
priority
safety
Prior art date
Application number
PCT/CN2019/115812
Other languages
English (en)
French (fr)
Inventor
王石荣
高迪
王春明
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980039405.7A priority Critical patent/CN112334880B/zh
Priority to PCT/CN2019/115812 priority patent/WO2021087775A1/zh
Publication of WO2021087775A1 publication Critical patent/WO2021087775A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Definitions

  • the embodiments of the present invention relate to the field of security control, and more specifically, to a method, device, and computer storage medium for handling obstacles by a movable platform.
  • Movable platforms such as unmanned aerial vehicles are generally equipped with onboard sensors that can detect various target objects in the environment during operation. In order to ensure the safe operation of the movable platform, the threat level of the detected target object will be judged and subsequent operations will be adjusted.
  • the movable platform in operation may detect several or even dozens of target objects. Disorderly processing of these target objects may lead to security risks of the movable platform. Therefore, which decision rules should be used for this Multi-target object processing is one of the problems to be solved urgently.
  • the embodiment of the present invention provides a method, a device, and a computer storage medium for processing obstacles by a movable platform, which can set different security levels for detected target objects, and perform security processing according to the security level, so that the decision rules can be Ensure the safety of the movable platform.
  • a method for handling obstacles by a movable platform which includes:
  • a device for processing obstacles by a movable platform including: a memory and a processor, wherein,
  • the memory is used to store computer instructions
  • the processor is configured to call the computer instruction, and when the computer instruction is executed, it is configured to execute:
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • the movable platform in the embodiment of the present invention can perform corresponding processing on the detected target object based on the decision rule such as the security level, which can ensure the operational safety of the movable platform and its safety.
  • FIG. 1 is a schematic diagram of a position between a movable platform and a target object according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for processing obstacles by a movable platform according to an embodiment of the present invention
  • FIG. 3 is a schematic block diagram of a device for processing obstacles by a movable platform according to an embodiment of the present invention
  • Fig. 4 is another schematic block diagram of a device for processing obstacles by a movable platform according to an embodiment of the present invention.
  • Movable platforms are generally equipped with sensors, such as vision sensors, lidars, microwave radars, and so on.
  • the movable platform can detect target objects (or obstacles) within a certain range during the movement.
  • the position of the center of the movable platform can be expressed as Speed is expressed as T means transpose.
  • the velocity vector may be referred to as the second vector. It can be understood that if the movable platform is currently in a stationary state, the speed is 0; if the movable platform is currently moving, the speed is not 0. As shown in Figure 1, the center of the movable platform is denoted as O.
  • the embodiment of the present invention may be provided with a Cartesian coordinate system, and the origin of the coordinate system may be at any position, for example, it may be a fixed point on the ground, or a certain point on a movable platform, and so on.
  • x0, y0 and z0 are the components of the position of the center of the movable platform in the three orthogonal coordinate axes of the Cartesian coordinate system
  • vx, vy and vz are the three components of the velocity of the movable platform in the Cartesian coordinate system.
  • the components of an orthogonal coordinate axis are the components of an orthogonal coordinate axis.
  • the movable platform has a space size.
  • the maximum size of the movable platform can be defined as the maximum value of the distance between any two points on the movable platform.
  • the movable platform may be an unmanned aerial vehicle, and the maximum size of the unmanned aerial vehicle is the size from the center of the unmanned aerial vehicle to the farthest point of the blade when the arms of the unmanned aerial vehicle are deployed.
  • the maximum size can be expressed as a.
  • the movable platform can detect surrounding target objects. Specifically, at least one of the following items of the target object can be acquired through detection: position, geometric feature information, and energy.
  • the position of the target object can be the position of the center of the target object, expressed as It should be noted that this position and the position of the above-mentioned movable platform are based on the same Cartesian coordinate system. As shown in Figure 1, the center of the target object is denoted as O1.
  • the geometric feature information of the target object may include the radius of the target object.
  • a scanning system such as a radar mounted on the movable platform can obtain the point cloud data of the target object, and determine half of the distance between the two furthest points in the point cloud data as the radius through clustering.
  • the geometric feature information may include the radius of the smallest sphere (a circle represented by a dotted line in FIG. 1) that can enclose the target object.
  • the radius of the target object is represented as R, as shown in FIG. 1.
  • the geometric feature information of the target object may include the length, width, and height dimensions of the target object, which may be expressed as l, w, and h in sequence.
  • the geometric feature information may include the length, width, and height of the smallest cuboid that can enclose the target object.
  • the radius of the target object can be obtained based on the dimensions of length, width, and height.
  • the radius R is It can be understood that the radius is the radius of the smallest sphere (the circle represented by the dashed line in FIG. 1) that can enclose the target object, and the radius R is shown in FIG. 1.
  • the energy of the target object is an important attribute of the target object.
  • a scanning system (such as a radar) mounted on a movable platform can emit a beam to the target object, and the energy of the target object can be determined by processing the echo.
  • the energy of the target object is expressed as ⁇ .
  • the vector between the center of the movable platform and the center of the target object can be called the first vector, which can be expressed as Combined with Figure 1, the vector from O to O1 is the first vector
  • the linear distance between the center of the movable platform and the center of the target object can be expressed as D, and satisfies It can be understood that the straight-line distance is the modulus of the first vector.
  • the distance between the movable platform and the target object can be expressed as Specifically, the distance represents the minimum value of all distances between all points on the target object and the center of the movable platform. Combining the above terminology, the distance can be defined as the difference between the linear distance between the center of the target object and the center of the movable platform and the radius of the target object, that is, satisfying
  • the normal distance can also define the normal distance between the target object and the moving direction of the movable platform.
  • the normal distance represents the minimum value of all distances between all points on the target object and the line where the speed is located. Combining the aforementioned terms, the normal distance can be defined as the difference between the distance between the center of the target object and the line where the speed is located and the radius of the target object.
  • the distance between the center of the target object and the line where the speed is located is represented as L, and among them, Represents the cross product (also called the outer product) of two vectors, and
  • the distance L can be calculated based on the outer product. Or, it can be calculated by inner product, and Where ⁇ represents the angle between the first vector and the second vector (as shown in Figure 1). among them, Represents the dot product of two vectors (also known as inner product or scalar product),
  • the movable platform is represented as point O in Figure 1 and the target object is represented as A rectangle with O1 as the center. But in fact, the movable platform has a spatial size, and the shape of the target object can be arbitrary.
  • the following will introduce the obstacle processing method of the movable platform of the embodiment of the present invention.
  • the processing method will be described in combination with some or all of the above physical parameters or terms.
  • the physical parameters or terms with the same name have the same meaning.
  • FIG. 2 is a schematic flowchart of a method for processing obstacles by a movable platform according to an embodiment of the present invention.
  • the method shown in Figure 2 may include:
  • S10 Determine physical attributes of the detected target object, where the physical attributes include the distance between the target object and the movable platform;
  • the movable platform in the embodiment of the present invention can perform corresponding processing on the detected target object based on the decision rule such as the security level, which can ensure the operational safety of the movable platform and its safety.
  • S10 may include: acquiring the position and geometric characteristic information of the target object; determining the linear distance between the center of the target object and the center of the movable platform according to the position of the target object, and determining the radius of the target object according to the geometric characteristic information ; Determine the physical attributes of the target object according to the straight-line distance and the radius, the physical attributes including the distance between the target object and the movable platform.
  • the distance represents the difference between the linear distance from the center of the target object to the center of the movable platform and the radius of the target object.
  • the geometric feature information may include the radius (R) of the target object.
  • the geometric feature information includes the size of the length, width, and height (l, w, h) of the target object. Then, determining the radius of the target object according to the geometric feature information may include: determining that the radius satisfies In other words, the radius of the target object may be determined according to the length, width, and height of the target object.
  • S10 if there is only one target object detected in S10, then corresponding security processing can be performed on the detected one target object. If more than one target object is detected in S10, that is, at least two, that is, S10 may include: determining the physical attributes of the detected at least two target objects. Then, in S20, security levels can be set for at least two target objects respectively, and then in S30, corresponding security processing is performed according to the security levels.
  • the safety level of the target object represents the probability that the target object has a potential safety hazard to the safe driving of the movable platform.
  • the lower the security level the greater the probability.
  • different security levels may be set for at least two target objects according to physical attributes.
  • the security level can also be sorted from low to high or high to low.
  • corresponding security processing can be performed on the at least two target objects according to the security level from low to high.
  • the security levels of at least two target objects can be set by sorting. Taking the sorting according to the security level from low to high as an example, the security level of the first target object located at the front in the ranking is lower than the security level of the second target object located at the back.
  • S20 can set the security levels of at least two target objects through serial numbers. For example, each target object can be numbered. The smaller the number, the lower the security level. Assuming that the first target object number is 11 and the second target object number is 22, it indicates that the security level of the first target object is lower than the security level of the second target object.
  • the security levels of at least two target objects may also be set in other ways, which will not be listed here.
  • S20 may include: sorting the security levels of at least two target objects according to the distance from the largest to the smallest or from the smallest to the largest, where the smaller the distance, the lower the security level.
  • the security level of the first target object is lower than the security level of the second target object.
  • the at least two target objects may be sorted according to the distance from small to large, and the security level of the target object located at the front in the sorting is lower than the security level of the target object located at the back in the sorting.
  • the movable platform is currently at a standstill, that is, the speed is zero. Then you can only consider the distance when setting the security level of the target object. This simple and convenient setting method can save processing time and improve processing efficiency.
  • S20 may include: determining the safety distance according to the size of the movable platform; and setting the safety level of the target object according to the physical attributes of the target object and the safety distance of the movable platform.
  • the size of the movable platform is a physical parameter of the movable platform itself, for example, it may include, but is not limited to, the distance between the most edge points in each dimension, and so on.
  • the safety distance can be set according to the hardware conditions, operating environment, etc. of the movable platform.
  • the safety distance can be determined according to the maximum size of the movable platform.
  • the safety distance can be the maximum size of the movable platform multiplied by the magnification ratio, and the magnification factor is greater than 1.
  • the embodiment of the present invention fully considers the size of the movable platform, and determines the safety distance according to the size of the movable platform.
  • the size of the movable platform cannot be ignored and may even play a more decisive role. Therefore, it should not only be used as a physical "point" in a safe driving scenario, but the movable platform should be used.
  • As a "body” consideration by considering its size and setting the security level for the detected target object, the safety of the movable platform can be further ensured.
  • the safety level of the first target object is lower than The security level of the second target object.
  • S20 may include: if the distance between the target object and the movable platform is less than or equal to a safe distance, then according to the distance between the target object and the movable platform, the order of magnitude Or set the security level from small to large.
  • the distance between multiple target objects and the movable platform is less than or equal to the safe distance, the distance between multiple target objects and the movable platform can be scaled from large to small or from small to large.
  • Set the security level for multiple target objects Specifically, a target object with a small distance has a low security level.
  • S20 may include: setting the priority to which the target object belongs according to the distance between the target object and the movable platform; and setting the priority of the target object to which the target object belongs. The security level in the priority.
  • the target objects in the high priority can be processed according to the security level first; and then the target objects in the low priority can be processed according to the security level.
  • each target object belonging to a high priority can be sorted according to the security level by distance.
  • Each target object belonging to the low priority can be sorted according to the security level by distance.
  • the embodiment of the present invention categorizes target objects by setting two different priorities, so that in S30, different security processing can be performed for target objects in different priorities, thereby ensuring the mobile platform Security.
  • each target object belonging to a low priority you can set the priority of the target object according to the relative relationship between the target object and the moving direction of the movable platform; then set the target object in the target object The security level of the priority to which it belongs.
  • the relative relationship may include being close to each other or far away from each other.
  • the relative relationship can be determined according to the relative position between the target object and the movable platform and the speed of the movable platform.
  • the relative position between the target object and the movable platform is represented as a first vector
  • the speed of the movable platform is represented as a second vector.
  • the inner product of the first vector and the second vector is greater than or equal to zero
  • the relative relationship is that the target object and the movable platform are close to each other. If the inner product of the first vector and the second vector is less than zero, the relative relationship is that the target object and the movable platform are far away from each other.
  • the relative relationship can be determined by judging the angle between the position and the speed of the target object.
  • the relative relationship is that the target object and the movable platform are far away from each other, which can also be understood as the target object is located on the back of the speed direction of the movable platform (cos ⁇ 0).
  • the priority of the target object is the first priority; if the relative relationship is far away, the priority of the target object is the second priority, where the first priority is higher than the second priority. priority.
  • corresponding safety processing may be executed based on the safety level in the first priority, and then corresponding safety processing may be executed based on the safety level in the second priority. deal with.
  • the priority to which the target object belongs is set as the first priority. If the distance between the target object and the movable platform is greater than the safety distance, and the relative relationship is that the target object and the movable platform are far away from each other, the priority to which the target object belongs is set as the second priority.
  • this embodiment can be understood as being divided into two priorities: a high priority and a low priority, where the low priority includes the first priority and the second priority.
  • this embodiment can be understood as being divided into three priority levels: high priority (also referred to as zeroth priority), first priority, and second priority.
  • the security level of the target object in the priority of the target object can be set according to the function F( ⁇ ) of the normal distance between the target object and the moving direction of the movable platform, where the smaller the function, the safer The lower the level.
  • the normal distance can be expressed as ⁇ as mentioned above. It can be understood that if the target object belongs to the first priority, the normal distance indicates whether the target object will be located within the safe distance of the movable platform. Specifically, if ⁇ C, it means that if the movable platform continues to maintain the current speed direction and the target object is stationary, it means that the target object will be within the safe distance of the movable platform at some point after this.
  • the independent variable of the function is the normal distance
  • the dependent variable of the function (that is, the value of the function) is a positive number.
  • the security level of the target object can be set according to the value of the function, by arranging from large to small or from small to large.
  • the coefficient is determined based on the energy upper limit of the signal acquisition system of the movable platform and the energy of the target object.
  • the coefficient may be a positive number less than or equal to 1.
  • ⁇ -log ⁇ , where ⁇ represents the logarithmic value of the upper limit of the energy of the signal acquisition system of the movable platform. It can be understood that the upper limit of the energy of the signal acquisition system of the movable platform is related to the analog-to-digital conversion chip processing capability of the signal acquisition system.
  • the security processing may be executed in sequence from low to high security level.
  • the safety processing may include: prompting the user to manually clear and/or navigate obstacle avoidance.
  • the user can be prompted to clear certain target objects, such as target objects within a safe distance.
  • certain target objects such as target objects whose relative relationship is close to each other
  • the direction and posture of the speed when using methods such as adjusting the speed and direction to avoid obstacles, the target objects whose relative relationship is far away from each other will also be considered.
  • safety is set for the target object by considering the distance between the target object and the movable platform, the safety distance of the movable platform, the normal distance from the target object to the movable platform in the speed direction, etc.
  • Level which enables the movable platform to perform response processing in accordance with the security level, ensuring the safety of the movable platform.
  • Fig. 3 is a schematic block diagram of a device for processing obstacles by a movable platform according to an embodiment of the present invention.
  • the apparatus 100 shown in FIG. 3 may include a determining module 110, a setting module 120, and a processing module 130.
  • the determining module 110 may be used to determine the physical attributes of the detected target object, the physical attributes including the distance between the target object and the movable platform;
  • the setting module 120 may be used to set the security level of the target object according to the physical attribute
  • the processing module 130 may be configured to perform corresponding security processing based on the security level.
  • the setting module 120 may be specifically configured to: determine the safety distance according to the size of the movable platform; and set the safety level of the target object according to the physical attributes and the safety distance.
  • the setting module 120 may be specifically configured to sort the security levels of the at least two target objects from large to small or from small to large according to the distance, where the smaller the distance, the lower the security level.
  • the physical attribute further includes the relative relationship between the moving direction of the target object and the movable platform
  • the setting module 120 may be specifically configured to: if the target object is different from the movable platform If the distance between the two is less than or equal to the safety distance, the safety level is set from large to small or from small to large according to the distance between the target object and the movable platform.
  • the physical attribute further includes the relative relationship between the moving direction of the target object and the movable platform
  • the setting module 120 may be specifically configured to: according to the relationship between the target object and the movable platform And the relative relationship between the target object and the moving direction of the movable platform, set the priority of the target object; set the target object in the priority of the target object Security level.
  • the setting module 120 may be specifically configured to: if the distance between the target object and the movable platform is greater than a safe distance, and the relative relationship is that the target object and the movable platform are close to each other , The priority to which the target object belongs is set as the first priority; if the distance between the target object and the movable platform is greater than a safe distance, and the relative relationship is that the target object and the If the movable platforms are far away from each other, the priority to which the target object belongs is set as the second priority, where the first priority is higher than the second priority.
  • the relative relationship is determined according to the relative position between the target object and the movable platform and the speed of the movable platform.
  • the relative position is expressed as a first vector between the center of the movable platform and the center of the target object, and the speed of the movable platform is expressed as a second vector. If the inner product of a vector and the second vector is greater than or equal to zero, the relative relationship is that the target object and the movable platform are close to each other; if the inner product of the first vector and the second vector is less than Zero, the relative relationship is that the target object and the movable platform are far away from each other.
  • the safety distance is the maximum size of the movable platform multiplied by a magnification ratio, wherein the magnification ratio is greater than one.
  • the movable platform is an unmanned aerial vehicle
  • the maximum size is the size from the center of the unmanned aerial vehicle to the farthest distance of the blades when the arms of the unmanned aerial vehicle are deployed.
  • the setting module 120 may be specifically configured to: according to a function of the normal distance between the target object and the moving direction of the movable platform, set the priority of the target object in the direction of the target object.
  • the security level in the level where the smaller the function, the lower the security level.
  • the normal distance indicates whether the target object will be located within a safe distance of the movable platform.
  • the normal distance is obtained by calculating the distance from the center of the target object to the line represented by the velocity vector of the movable platform.
  • the function is equal to the normal distance multiplied by a coefficient.
  • the coefficient is 1.
  • the coefficient is determined based on the energy upper limit of the signal acquisition system of the movable platform and the energy of the target object.
  • the processing module 130 may be specifically configured to: for a target object whose distance is less than or equal to the safety distance, perform corresponding safety processing based on the safety level in the first priority, and then perform corresponding safety processing based on the second priority.
  • the security level in the priority level executes corresponding security processing.
  • the distance represents the minimum value of all distances between all points on the target object and the center of the movable platform.
  • the distance represents the difference between the linear distance from the center of the target object to the center of the movable platform and the radius of the target object.
  • the radius of the target object is determined according to the length, width, and height dimensions of the target object.
  • the processing module 130 may be specifically configured to: sequentially execute security processing according to the security level from low to high.
  • the safety processing includes at least one of the following: prompting the user to manually clear and navigate obstacle avoidance.
  • the device shown in FIG. 3 can be used to implement the obstacle processing method of the movable platform shown in FIG. 2 described above.
  • Fig. 4 is another schematic block diagram of the device for processing obstacles by a movable platform according to an embodiment of the present invention.
  • the apparatus 200 shown in FIG. 4 includes a processor 210 and a memory 220.
  • the memory 220 stores computer instructions.
  • the processor 210 executes the computer instructions, the processor 210 executes the following steps: determining the physical attributes of the detected target object, the physical attributes including the target object and the The distance between the movable platforms; the security level of the target object is set according to the physical attributes; and the corresponding security processing is performed based on the security level.
  • the processor 210 may be specifically configured to: determine a safety distance according to the size of the movable platform; and set the safety level of the target object according to the physical attributes and the safety distance.
  • the number of target objects is at least two
  • the processor 210 may be specifically configured to: according to the distance, sort the security levels of the at least two target objects from large to small or from small to large, where: The smaller the distance, the lower the security level.
  • the physical attribute further includes the relative relationship between the moving direction of the target object and the movable platform
  • the processor 210 may be specifically configured to: If the distance is less than or equal to the safety distance, the safety level is set from large to small or small to large according to the distance between the target object and the movable platform.
  • the physical attribute further includes the relative relationship between the moving direction of the target object and the movable platform
  • the processor 210 may be specifically configured to: according to the relationship between the target object and the movable platform And the relative relationship between the target object and the moving direction of the movable platform, set the priority of the target object; set the priority of the target object in the priority of the target object Security Level.
  • the processor 210 may be specifically configured to: if the distance between the target object and the movable platform is greater than a safe distance, and the relative relationship is that the target object and the movable platform are close to each other, Set the priority to which the target object belongs to the first priority; if the distance between the target object and the movable platform is greater than the safe distance, and the relative relationship is that the target object and the movable platform If the mobile platforms are far away from each other, the priority to which the target object belongs is set as the second priority, where the first priority is higher than the second priority.
  • the relative relationship is determined according to the relative position between the target object and the movable platform and the speed of the movable platform.
  • the relative position is expressed as a first vector between the center of the movable platform and the center of the target object, and the speed of the movable platform is expressed as a second vector. If the inner product of a vector and the second vector is greater than or equal to zero, the relative relationship is that the target object and the movable platform are close to each other; if the inner product of the first vector and the second vector is less than Zero, the relative relationship is that the target object and the movable platform are far away from each other.
  • the safety distance is the maximum size of the movable platform multiplied by a magnification ratio, wherein the magnification ratio is greater than one.
  • the movable platform is an unmanned aerial vehicle
  • the maximum size is the size from the center of the unmanned aerial vehicle to the farthest distance of the blades when the arms of the unmanned aerial vehicle are deployed.
  • the processor 210 may be specifically configured to: according to a function of the normal distance between the target object and the moving direction of the movable platform, set the priority of the target object to which the target object belongs.
  • the security level in, where the smaller the function, the lower the security level.
  • the normal distance indicates whether the target object will be located within a safe distance of the movable platform.
  • the normal distance is obtained by calculating the distance from the center of the target object to the line represented by the velocity vector of the movable platform.
  • the function is equal to the normal distance multiplied by a coefficient.
  • the coefficient is 1.
  • the coefficient is determined based on the energy upper limit of the signal acquisition system of the movable platform and the energy of the target object.
  • the processor 210 may be specifically configured to: for a target object whose distance is less than or equal to the safety distance, perform corresponding safety processing based on the safety level in the first priority, and then perform corresponding safety processing based on the second priority.
  • the security level in the priority level executes corresponding security processing.
  • the distance represents the minimum value of all distances between all points on the target object and the center of the movable platform.
  • the distance represents the difference between the linear distance from the center of the target object to the center of the movable platform and the radius of the target object.
  • the radius of the target object is determined according to the length, width, and height of the target object.
  • the processor 210 may be specifically configured to: sequentially execute security processing according to the security level from low to high.
  • the safety processing includes at least one of the following: prompting the user to manually clear and navigate obstacle avoidance.
  • the device shown in FIG. 4 can be used to implement the aforementioned method for processing obstacles by the movable platform shown in FIG. 2.
  • the embodiment of the present invention also provides a computer storage medium on which a computer program is stored.
  • the computer program is executed by a computer or a processor
  • the computer or the processor executes the movable platform provided in the above method embodiment to prevent obstacles. ⁇ Treatment methods.
  • the physical properties of the detected target object are determined, and the physical properties include the distance between the target object and the movable platform; according to the physical properties, Set the security level of the target object; perform corresponding security processing based on the security level.
  • the embodiment of the present invention also provides a computer program or a computer program product containing instructions, which when executed by a computer causes the computer to execute the obstacle processing method provided by the above method embodiment on the movable platform.
  • the computer executes: determine the physical attribute of the detected target object, the physical attribute includes the distance between the target object and the movable platform; according to the physical attribute, set Set the security level of the target object; perform corresponding security processing based on the security level.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional unit in each embodiment of the present application may be integrated in a processor, or each unit may exist alone physically, or two or more units may be integrated in one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种可移动平台对障碍物的处理方法、装置及计算机存储介质。该处理方法包括:确定探测到的目标对象的物理属性,该物理属性包括目标对象与可移动平台之间的距离(S10);根据该物理属性,设定目标对象的安全级别(S20);基于该安全级别执行相应的安全处理(S30)。该可移动平台可以基于安全级别这样的决策规则针对探测到的目标对象执行相应的处理,能够确保可移动平台的作业安全,保障其安全性。

Description

可移动平台对障碍物的处理方法、装置及计算机存储介质 技术领域
本发明实施例涉及安全控制领域,并且更具体地,涉及一种可移动平台对障碍物的处理方法、装置及计算机存储介质。
背景技术
诸如无人机之类的可移动平台,一般搭载有机载传感器,能够在作业过程中探测到环境中的各个目标对象。为了保证可移动平台的安全作业,会判断探测到的目标对象的威胁程度并对后续作业进行调整。
在实际情况下,作业中的可移动平台可能会探测到几个甚至几十个目标对象,对这些目标对象的无序处理可能会导致可移动平台的安全风险,因此使用何种决策规则针对这么多目标对象进行处理是目前亟待解决的问题之一。
发明内容
本发明实施例提供了一种可移动平台对障碍物的处理方法、装置及计算机存储介质,能够将探测到的目标对象设定不同的安全级别,并按照安全级别进行安全处理,这样决策规则能够保证可移动平台的安全性。
第一方面,提供了一种可移动平台对障碍物的处理方法,包括:
确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;
根据所述物理属性,设定所述目标对象的安全级别;
基于所述安全级别执行相应的安全处理。
第二方面,提供了一种可移动平台对障碍物的处理装置,包括:存储器和处理器,其中,
所述存储器,用于存储计算机指令;
所述处理器,用于调用所述计算机指令,当所述计算机指令被执行时,用于执行:
确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;
根据所述物理属性,设定所述目标对象的安全级别;
基于所述安全级别执行相应的安全处理。
第三方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述方法的步骤。
这样,本发明实施例中的可移动平台可以基于安全级别这样的决策规则针对探测到的目标对象执行相应的处理,能够确保可移动平台的作业安全,保障其安全性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的可移动平台与目标对象之间的位置的示意图;
图2是本发明实施例的一种可移动平台对障碍物的处理方法的示意性流程图;
图3是本发明实施例的一种可移动平台对障碍物的处理装置的示意性框图;
图4是本发明实施例的一种可移动平台对障碍物的处理装置的另一示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
可移动平台一般搭载有传感器,如视觉传感器、激光雷达、微波雷达等等。可移动平台在移动过程中,能够探测到一定范围内的目标对象(或者也称为障碍物)。为了后续实施例的描述的方便,首先将使用到的物理参数以及相关术语进行解释。
可移动平台在移动过程中,位置会发生变化,可以将可移动平台的中心的位置表示为
Figure PCTCN2019115812-appb-000001
速度表示为
Figure PCTCN2019115812-appb-000002
T表示转置。本发明实施例中,为了描述的方便,可以将速度向量称为第二向量。可理解,若可移动平台当前处于静止状态,则速度为0;若可移动平台当前正在移动,则速度不为0。如图1所示,将可移动平台的中心表示为O。
可理解,本发明实施例可以设置有笛卡尔坐标系,该坐标系的原点可以在任意位置,例如可以在地面上的一个固定点,或者在可移动平台上的某个点,等等。其中,x0,y0和z0分别为可移动平台的中心的位置在笛卡尔坐标系的三个正交坐标轴的分量;vx,vy和vz分别为可移动平台的速度在笛卡尔坐标系的三个正交坐标轴的分量。
可选地,可以假设该笛卡尔坐标系的原点位于可移动平台的中心,即
Figure PCTCN2019115812-appb-000003
其中,可移动平台具有空间尺寸。可以定义可移动平台的最大尺寸为可移动平台的任意两点之间的距离的最大值。作为一例,可移动平台可以为无人机,那么无人机的最大尺寸为在无人机的机臂展开的状态下,无人机的中心至桨叶的最远点之间的尺寸。示例性地,可以将该最大尺寸表示为a。
可移动平台可以探测到周围的目标对象,具体地,可以通过探测获取目标对象的以下至少一项:位置、几何特征信息和能量。
其中,目标对象的位置可以为目标对象的中心的位置,表示为
Figure PCTCN2019115812-appb-000004
应当注意的是,该位置与上述可移动平台的位置是基于同一个笛卡尔坐标系的。如图1所示,将目标对象的中心表示为O1。
作为一例,目标对象的几何特征信息可以包括目标对象的半径。示例性地,可移动平台上搭载的扫描系统(如雷达)可以获取目标对象的点云数据,并通过聚类将点云数据中最远的两个点之间的距离的一半确定为半径。作为另一种理解,该几何特征信息可以包括能够包围目标对象的最小球体(如图1中的虚线所表示的圆)的半径。本发明实施例中,将目标对象的半径表示为R,如图1所示。
作为另一例,目标对象的几何特征信息可以包括目标对象的长、宽、高的尺寸,可以依次表示为l,w,h。作为另一种理解,该几何特征信息可以包括能够包围目标对象的最小长方体的长、宽、高的尺寸。可选地,可以基于长、宽、高的尺寸得到目标对象的半径,具体地,半径R为
Figure PCTCN2019115812-appb-000005
可理解,该半径为能够包围目标对象的最小球体(如图1中的虚线所表示的圆)的半径,如图1中示出了半径R。
其中,目标对象的能量是目标对象的一个重要属性。示例性地,可以由可移动平台上搭载的扫描系统(如雷达)向目标对象发射波束,并通过对回波进行处理来确定目标对象的能量。本发明实施例中,将目标对象的能量表 示为σ。
另外,可以将可移动平台的中心至目标对象的中心之间的向量称为第一向量,可以表示为
Figure PCTCN2019115812-appb-000006
结合图1,从O至O1的向量为第一向量
Figure PCTCN2019115812-appb-000007
可以将可移动平台的中心至目标对象的中心之间的直线距离表示为D,且满足
Figure PCTCN2019115812-appb-000008
可理解,该直线距离为第一向量的模。
可以将可移动平台与目标对象之间的距离表示为
Figure PCTCN2019115812-appb-000009
具体地,该距离表示目标对象上的所有点中与可移动平台的中心之间的所有距离的最小值。结合上述的术语,可以将该距离定义为目标对象的中心至可移动平台的中心之间的直线距离与目标对象的半径之差,即满足
Figure PCTCN2019115812-appb-000010
另外,还可以定义目标对象至可移动平台的移动方向之间的法向距离。具体地,法向距离表示目标对象上的所有点中与速度所在的线之间的所有距离的最小值。结合上述的术语,可以将该法向距离定义为目标对象的中心至与速度所在的线之间的距离与目标对象的半径之差。
参照图1,将目标对象的中心至与速度所在的线之间的距离表示表示为L,且
Figure PCTCN2019115812-appb-000011
其中,
Figure PCTCN2019115812-appb-000012
表示两个向量的叉乘(也称为外积),|·|表示向量的模。也就是说,可以基于外积计算得到距离L。或者,也可以通过内积计算得到,
Figure PCTCN2019115812-appb-000013
Figure PCTCN2019115812-appb-000014
其中θ表示第一向量与第二向量之间的夹角(如图1所示)。其中,
Figure PCTCN2019115812-appb-000015
表示两个向量的点积(也称为内积或数量积),|·|表示向量的模。那么,法向距离为ε=L-R,其中,ε表示法向距离。
应当注意的是,上述结合图1描述了相关的物理参数或术语,但是图1 仅是示意性的,为了描述的方便,在图1中将可移动平台表示为点O,将目标对象表示为以O1为中心的长方形。但是实际上,可移动平台具有空间尺寸,且目标对象的形状可以是任意的。
下面将介绍本发明实施例的可移动平台对障碍物的处理方法,该处理方法将结合上述的部分或全部的物理参数或术语进行阐述,相同名称的物理参数或术语具有相同的含义。
图2是本发明实施例的一种可移动平台对障碍物的处理方法的示意性流程图。图2所示的方法可以包括:
S10,确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;
S20,根据所述物理属性,设定所述目标对象的安全级别;
S30,基于所述安全级别执行相应的安全处理。
这样,本发明实施例中的可移动平台可以基于安全级别这样的决策规则针对探测到的目标对象执行相应的处理,能够确保可移动平台的作业安全,保障其安全性。
示例性地,S10可以包括:获取目标对象的位置和几何特征信息;根据目标对象的位置确定目标对象的中心与可移动平台的中心之间的直线距离,并根据几何特征信息确定目标对象的半径;根据所述直线距离和所述半径确定目标对象的物理属性,该物理属性包括目标对象与可移动平台之间的距离。
其中,距离表示目标对象的中心至可移动平台的中心之间的直线距离与目标对象的半径之差。
作为一例,几何特征信息可以包括目标对象的半径(R)。作为另一例,几何特征信息包括目标对象的长、宽、高(l,w,h)的尺寸,那么,根据几 何特征信息确定目标对象的半径可以包括:确定半径满足
Figure PCTCN2019115812-appb-000016
也就是说,目标对象的半径可以是根据目标对象的长、宽、高的尺寸确定的。
可理解,若S10中探测到的目标对象只有一个,那么可以针对探测到的一个目标对象执行相应的安全处理。若S10中探测到的目标对象不止一个,即至少两个,也就是说,S10中可以包括:确定探测到的至少两个目标对象的物理属性。则可以在S20中为至少两个目标对象分别设定安全级别,进而在S30中根据安全级别执行相应的安全处理。
本发明实施例中,目标对象的安全级别表示目标对象对可移动平台的安全行驶具有安全隐患的概率。安全级别越低,概率越大。示例性地,S20中可以根据物理属性,为至少两个目标对象分别设定不同的安全级别。可选地,还可以按照安全级别由低到高或者由高到低进行排序。进而,S30中可以按照安全级别由低到高对至少两个目标对象执行相应的安全处理。
作为一种实现方式,S20中可以通过排序设定至少两个目标对象的安全级别。以按照安全级别由低到高进行排序为例,在该排序中位于前面的第一目标对象的安全级别低于位于后面的第二目标对象的安全级别。
作为另一种实现方式,S20可以通过编号设定至少两个目标对象的安全级别。例如,可以为各个目标对象进行编号,编号越小说明安全级别越低。假设为第一目标对象编号为11,为第二目标对象编号为22,则说明第一目标对象的安全级别低于第二目标对象的安全级别。
本发明实施例还可以通过其他方式设定至少两个目标对象的安全级别,这里不再一一罗列。
在一个实施例中,S20可以包括:按照距离由大到小或者由小到大,将至少两个目标对象的安全级别进行排序,其中,距离越小安全级别越低。
例如,如果第一目标对象与可移动平台之间的距离小于第二目标对象与可移动平台之间的距离,则第一目标对象的安全级别低于第二目标对象的安全级别。
可选地,可以按照距离由小到大,将至少两个目标对象进行排序,并且在该排序中位于前面的目标对象的安全级别低于该排序中位于后面的目标对象的安全级别。
举例来说,可移动平台当前处于静止状态,即速度为零。那么在设定目标对象的安全级别时可以只考虑距离,这样简单方便的设定方式能够节省处理时间,提升处理效率。
在另一个实施例中,S20可以包括:根据可移动平台的尺寸,确定安全距离;根据目标对象的物理属性以及可移动平台的安全距离,设定目标对象的安全级别。
其中,可移动平台的尺寸为可移动平台自身的物理参数,例如可以包括但不限于其在各个维度上的最边缘点之间的距离,等等。
其中,安全距离可以按照可移动平台的硬件条件、操作环境等等进行设定,可选地,可以根据可移动平台的最大尺寸来确定安全距离。安全距离可以为可移动平台的最大尺寸乘以放大比例,放大系数大于1。具体地,安全距离可以表示为C=γa,其中C为安全距离,γ为放大系数,a为最大尺寸。作为一例,可以定义γ=2或者其他值。
可见,本发明实施例充分考虑了可移动平台的尺寸,并根据可移动平台的尺寸确定安全距离。在很多场景下,可移动平台的尺寸是不容忽略的,甚至会起到较大的决定性作用,因此在安全行驶的场景下不应当仅仅将其作为一个物理“点”,而应该将可移动平台作为一个“体”考虑,这里通过考虑其尺寸再为探测到的目标对象设定安全级别,能够进一步确保可移动平台的安全。
示例性地,如果第一目标对象与可移动平台之间的距离小于或等于安全距离,而第二目标对象与可移动平台之间的距离大于安全距离,则第一目标对象的安全级别低于第二目标对象的安全级别。
示例性地,S20可以包括:如果所述目标对象与所述可移动平台之间的距离小于或等于安全距离,则根据所述目标对象与所述可移动平台之间的距离,由大到小或者由小到大设定安全级别。
也就是说,如果多个目标对象与可移动平台之间的距离都小于或等于安全距离,则可以根据多个目标对象与可移动平台之间的距离,由大到小地或者由小到大地,为多个目标对象设定安全级别。具体地,距离小的目标对象的安全级别低。
在另一个实施例中,S20可以包括:根据所述目标对象与所述可移动平台之间的距离,设定所述目标对象所属的优先级;设定所述目标对象在所述目标对象所属的优先级中的安全级别。
具体地,可以划分为两个优先级,如高优先级和低优先级。若第一目标对象与可移动平台之间的距离小于或等于安全距离,则设定该第一目标对象所属的优先级为高优先级。若第二目标对象与可移动平台之间的距离第二大于安全距离,则设定该第二目标对象所属的优先级为低优先级。进一步地,可理解,在S30中,可以先针对高优先级中的目标对象,按照安全级别进行处理;然后再针对低优先级中的目标对象,按照安全级别进行处理。
作为一例,可以将所属为高优先级中的各个目标对象按照距离进行安全级别的排序。可以将所属为低优先级中的各个目标对象按照距离进行安全级别的排序。
这样,本发明实施例通过设定两个不同的优先级,将目标对象进行分类,如此在S30中可以针对不同的优先级中的目标对象可以执行不同的安全处理,由此能够保障可移动平台的安全性。
作为另一例,针对所属为低优先级中的各个目标对象:可以根据目标对象与可移动平台的移动方向之间的相对关系,设定目标对象所属的优先级;然后设定目标对象在目标对象所属的优先级中的安全级别。
其中,相对关系可以包括相互靠近或者相互远离。相对关系可以根据目标对象与可移动平台之间的相对位置以及可移动平台的速度进行确定。其中,目标对象与可移动平台之间的相对位置表示为第一向量,可移动平台的速度表示为第二向量。相应的,若第一向量与第二向量的内积大于或等于零,则相对关系为目标对象与可移动平台相互靠近。若第一向量与第二向量的内积小于零,则相对关系为目标对象与可移动平台相互远离。
如上所述,第一向量表示为
Figure PCTCN2019115812-appb-000017
第二向量表示为
Figure PCTCN2019115812-appb-000018
那么,第一向量与第二向量的内积为
Figure PCTCN2019115812-appb-000019
其中θ表示第一向量与第二向量之间的夹角(如图1所示)。可理解,若
Figure PCTCN2019115812-appb-000020
则说明cosθ>0,即0<θ<π/2。若
Figure PCTCN2019115812-appb-000021
则说明cosθ=0,即θ=π/2。若
Figure PCTCN2019115812-appb-000022
则说明cosθ<0,即π/2<θ<π。
也就是说,本发明实施例中可以通过判断目标对象的位置与速度之间的夹角来确定相对关系。作为另一种表述,相对关系为目标对象与可移动平台相互靠近,也可以理解为是目标对象位于可移动平台的速度方向的正面(cosθ>0)或者目标对象位于可移动平台的速度方向的正左侧或正右侧(cosθ=0)。相对关系为目标对象与可移动平台相互远离,也可以理解为是目标对象位于可移动平台的速度方向的背面(cosθ<0)。
具体地,若相对关系为相互靠近,则目标对象的优先级为第一优先级;若相对关系为相互远离,则目标对象的优先级为第二优先级,其中第一优先级高于第二优先级。相应地,S30中,针对距离小于或等于安全距离的目标对象,可以基于所述第一优先级中安全级别执行相应的安全处理,然后再基于所述第二优先级中安全级别执行相应的安全处理。
也就是说,若目标对象与可移动平台之间的距离大于安全距离,并且相对关系为目标对象与可移动平台相互靠近,则设定目标对象所属的优先级为第一优先级。若目标对象与可移动平台之间的距离大于安全距离,并且相对关系为目标对象与可移动平台相互远离,则设定目标对象所属的优先级为第二优先级。
或者,本实施例可以理解为划分为两个优先级:高优先级和低优先级,其中,低优先级包括第一优先级和第二优先级。
或者,本实施例可以理解为划分为三个优先级:高优先级(也可称为第零优先级)、第一优先级和第二优先级。
示例性地,可以按照目标对象至可移动平台的移动方向之间的法向距离的函数F(ε),设定目标对象在目标对象所属的优先级中的安全级别,其中,函数越小安全级别越低。
法向距离如前所述,可以表示为ε。可理解,如果目标对象属于第一优先级,那么该法向距离表示目标对象是否将要位于可移动平台的安全距离内。具体地,如果ε<C,则说明:如果可移动平台继续保持当前的速度方向,且目标对象静止,则说明在此之后的某个时刻目标对象将处于可移动平台的安全距离内。
示例性地,该函数的自变量为法向距离,该函数的应变量(即函数的值)为正数。可以根据该函数的值的大小,通过由大到小或者由小到大排列,设定目标对象的安全级别。
本发明实施例中,法向距离的函数F(ε)可以等于方向距离乘以系数,即F(ε)=ρε,且系数ρ为正数。
作为一例,该系数为1,ρ=1,也就是说,可以根据法向距离设定目标对象的安全级别。
作为另一例,该系数是基于可移动平台的信号采集系统的能量上限以及目标对象的能量而确定的,此时该系数可以为小于或等于1的正数。
可选地,ρ=Δ-logσ,其中Δ表示可移动平台的信号采集系统的能量上限的对数值。可理解,可移动平台的信号采集系统的能量上限与该信号采集系统的模数转换的芯片处理能力等有关。
示例性地,S30中可以按照安全级别由低到高依次执行安全处理。安全处理可以包括:提示用户进行手动清除和/或导航避障。
例如,可以提示用户清除某些目标对象,如处于安全距离内的目标对象。例如,可以通过调整速度的方向、姿态等避开某些目标对象,如相对关系为相互靠近的目标对象。其中,在采用调整速度方向等方式避障时,还将考虑相对关系为相互远离的目标对象。
由此可见,本发明实施例中,通过考虑目标对象与可移动平台之间的距离、可移动平台的安全距离、目标对象至可移动平台的速度方向的法向距离等为目标对象设定安全级别,从而能够使得可移动平台按照安全级别进行响应的处理,保障了可移动平台的安全性。
图3是本发明实施例的可移动平台对障碍物的处理装置的一个示意性框图。图3所示的装置100可以包括确定模块110、设定模块120和处理模块130。
确定模块110可以用于确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;
设定模块120可以用于根据所述物理属性,设定所述目标对象的安全级别;
处理模块130可以用于基于所述安全级别执行相应的安全处理。
示例性地,设定模块120可以具体用于:根据所述可移动平台的尺寸, 确定安全距离;根据所述物理属性以及所述安全距离,设定所述目标对象的安全级别。
示例性地,设定模块120可以具体用于:根据所述距离,由大到小或者由小到大将所述至少两个目标对象的安全级别进行排序,其中,距离越小安全级别越低。
示例性地,所述物理属性还包括所述目标对象与所述可移动平台的移动方向之间的相对关系,设定模块120可以具体用于:如果所述目标对象与所述可移动平台之间的距离小于或等于安全距离,则根据所述目标对象与所述可移动平台之间的距离,由大到小或者由小到大设定安全级别。
示例性地,所述物理属性还包括所述目标对象与所述可移动平台的移动方向之间的相对关系,设定模块120可以具体用于:根据所述目标对象与所述可移动平台之间的距离以及所述目标对象与所述可移动平台的移动方向之间的相对关系,设定所述目标对象所属的优先级;设定所述目标对象在所述目标对象所属的优先级中的安全级别。
示例性地,设定模块120可以具体用于:若所述目标对象与所述可移动平台之间的距离大于安全距离,并且所述相对关系为所述目标对象与所述可移动平台相互靠近,则设定所述目标对象所属的优先级为第一优先级;若所述目标对象与所述可移动平台之间的距离大于安全距离,并且所述相对关系为所述目标对象与所述可移动平台相互远离,则设定所述目标对象所属的优先级为第二优先级,其中,所述第一优先级高于所述第二优先级。
示例性地,所述相对关系根据所述目标对象与所述可移动平台之间的相对位置以及所述可移动平台的速度进行确定。
示例性地,将所述相对位置表示为所述可移动平台的中心至所述目标对象的中心之间的第一向量,将所述可移动平台的速度表示为第二向量,若所述第一向量与所述第二向量的内积大于或等于零,则所述相对关系为所述目 标对象与所述可移动平台相互靠近;若所述第一向量与所述第二向量的内积小于零,则所述相对关系为所述目标对象与所述可移动平台相互远离。
示例性地,所述安全距离为所述可移动平台的最大尺寸乘以放大比例,其中,所述放大比例大于1。
示例性地,所述可移动平台为无人机,所述最大尺寸为在所述无人机的机臂展开的状态下所述无人机的中心至桨叶的最远距离之间的尺寸。
示例性地,设定模块120可以具体用于:按照所述目标对象至所述可移动平台的移动方向之间的法向距离的函数,设定所述目标对象在所述目标对象所属的优先级中的安全级别,其中,所述函数越小安全级别越低。
示例性地,若所述优先级为第一优先级,则所述法向距离表示所述目标对象是否将要位于所述可移动平台的安全距离内。
示例性地,所述法向距离是通过计算所述目标对象的中心至所述可移动平台的速度的向量所表示线的距离而得到的。
示例性地,所述函数等于所述法向距离乘以系数。
示例性地,所述系数为1。或者,所述系数是基于所述可移动平台的信号采集系统的能量上限以及所述目标对象的能量而确定的。
示例性地,处理模块130可以具体用于:针对所述距离小于或等于所述安全距离的目标对象,基于所述第一优先级中安全级别执行相应的安全处理,然后再基于所述第二优先级中安全级别执行相应的安全处理。
示例性地,所述距离表示所述目标对象上的所有点中与所述可移动平台的中心之间的所有距离的最小值。
示例性地,所述距离表示所述目标对象的中心至所述可移动平台的中心之间的直线距离与所述目标对象的半径之差。
示例性地,所述目标对象的半径是根据所述目标对象的长、宽、高的尺 寸确定的。
示例性地,处理模块130可以具体用于:按照安全级别由低到高依次执行安全处理。
示例性地,所述安全处理包括以下至少一项:提示用户进行手动清除、导航避障。
图3示的装置能够用于实现前述图2所示的可移动平台对障碍物的处理方法。
图4是本发明实施例的可移动平台对障碍物的处理装置的另一个示意性框图。图4所示的装置200包括处理器210和存储器220。该存储器220中存储有计算机指令,该处理器210执行该计算机指令时,使得该处理器210执行以下步骤:确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;根据所述物理属性,设定所述目标对象的安全级别;基于所述安全级别执行相应的安全处理。
示例性地,处理器210可以具体用于:根据所述可移动平台的尺寸,确定安全距离;根据所述物理属性以及所述安全距离,设定所述目标对象的安全级别。
示例性地,目标对象的数量为至少两个,处理器210可以具体用于:根据所述距离,由大到小或者由小到大将所述至少两个目标对象的安全级别进行排序,其中,距离越小安全级别越低。
示例性地,所述物理属性还包括所述目标对象与所述可移动平台的移动方向之间的相对关系,处理器210可以具体用于:如果所述目标对象与所述可移动平台之间的距离小于或等于安全距离,则根据所述目标对象与所述可移动平台之间的距离,由大到小或者由小到大设定安全级别。
示例性地,所述物理属性还包括所述目标对象与所述可移动平台的移动 方向之间的相对关系,处理器210可以具体用于:根据所述目标对象与所述可移动平台之间的距离以及所述目标对象与所述可移动平台的移动方向之间的相对关系,设定所述目标对象所属的优先级;设定所述目标对象在所述目标对象所属的优先级中的安全级别。
示例性地,处理器210可以具体用于:若所述目标对象与所述可移动平台之间的距离大于安全距离,并且所述相对关系为所述目标对象与所述可移动平台相互靠近,则设定所述目标对象所属的优先级为第一优先级;若所述目标对象与所述可移动平台之间的距离大于安全距离,并且所述相对关系为所述目标对象与所述可移动平台相互远离,则设定所述目标对象所属的优先级为第二优先级,其中,所述第一优先级高于所述第二优先级。
示例性地,所述相对关系根据所述目标对象与所述可移动平台之间的相对位置以及所述可移动平台的速度进行确定。
示例性地,将所述相对位置表示为所述可移动平台的中心至所述目标对象的中心之间的第一向量,将所述可移动平台的速度表示为第二向量,若所述第一向量与所述第二向量的内积大于或等于零,则所述相对关系为所述目标对象与所述可移动平台相互靠近;若所述第一向量与所述第二向量的内积小于零,则所述相对关系为所述目标对象与所述可移动平台相互远离。
示例性地,所述安全距离为所述可移动平台的最大尺寸乘以放大比例,其中,所述放大比例大于1。
示例性地,所述可移动平台为无人机,所述最大尺寸为在所述无人机的机臂展开的状态下所述无人机的中心至桨叶的最远距离之间的尺寸。
示例性地,处理器210可以具体用于:按照所述目标对象至所述可移动平台的移动方向之间的法向距离的函数,设定所述目标对象在所述目标对象所属的优先级中的安全级别,其中,所述函数越小安全级别越低。
示例性地,若所述优先级为第一优先级,则所述法向距离表示所述目标 对象是否将要位于所述可移动平台的安全距离内。
示例性地,所述法向距离是通过计算所述目标对象的中心至所述可移动平台的速度的向量所表示线的距离而得到的。
示例性地,所述函数等于所述法向距离乘以系数。
示例性地,所述系数为1。或者,所述系数是基于所述可移动平台的信号采集系统的能量上限以及所述目标对象的能量而确定的。
示例性地,处理器210可以具体用于:针对所述距离小于或等于所述安全距离的目标对象,基于所述第一优先级中安全级别执行相应的安全处理,然后再基于所述第二优先级中安全级别执行相应的安全处理。
示例性地,所述距离表示所述目标对象上的所有点中与所述可移动平台的中心之间的所有距离的最小值。
示例性地,所述距离表示所述目标对象的中心至所述可移动平台的中心之间的直线距离与所述目标对象的半径之差。
示例性地,所述目标对象的半径是根据所述目标对象的长、宽、高的尺寸确定的。
示例性地,处理器210可以具体用于:按照安全级别由低到高依次执行安全处理。
示例性地,所述安全处理包括以下至少一项:提示用户进行手动清除、导航避障。
图4所示的装置能够用于实现前述图2所示的可移动平台对障碍物的处理方法。
本发明实施例还提供一种计算机存储介质,其上存储有计算机程序,该计算机程序被计算机或处理器执行时使得,该计算机或处理器执行上文方法实施例提供的可移动平台对障碍物的处理方法。
具体地,计算机程序被计算机或处理器执行时使得:确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;根据所述物理属性,设定所述目标对象的安全级别;基于所述安全级别执行相应的安全处理。
本发明实施例还提供一种包含指令的计算机程序或者计算机程序产品,该指令被计算机执行时使得计算机执行上文方法实施例提供的可移动平台对障碍物的处理方法。
具体地,该指令被计算机执行时使得计算机执行:确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;根据所述物理属性,设定所述目标对象的安全级别;基于所述安全级别执行相应的安全处理。
由此可见,本发明实施例中为不同的目标对象设定不同的安全级别,使得可移动平台能够基于安全级别执行安全处理,从而为可移动平台提供了一种对障碍物进行处理的决策规则,保障了可移动平台的安全。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质 或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种可移动平台对障碍物的处理方法,其特征在于,包括:
    确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;
    根据所述物理属性,设定所述目标对象的安全级别;
    基于所述安全级别执行相应的安全处理。
  2. 根据权利要求1所述的方法,其特征在于,
    所述根据所述物理属性,设定所述目标对象的安全级别,包括:
    根据所述可移动平台的尺寸,确定安全距离;
    根据所述物理属性以及所述安全距离,设定所述目标对象的安全级别。
  3. 根据权利要求1所述的方法,其特征在于,所述目标对象的数量为至少两个,所述根据所述物理属性,设定所述目标对象的安全级别,包括:
    根据所述距离,由大到小或者由小到大将所述至少两个目标对象的安全级别进行排序,其中,距离越小安全级别越低。
  4. 根据权利要求2所述的方法,其特征在于,
    所述根据所述物理属性以及所述安全距离,设定所述目标对象的安全级别,包括:
    如果所述目标对象与所述可移动平台之间的距离小于或等于所述安全距离,则根据所述目标对象与所述可移动平台之间的距离,由大到小或者由小到大设定安全级别。
  5. 根据权利要求2所述的方法,其特征在于,所述物理属性还包括所述目标对象与所述可移动平台的移动方向之间的相对关系,
    所述根据所述物理属性以及所述安全距离,设定所述目标对象的安全级别,包括:
    根据所述目标对象与所述可移动平台之间的距离、所述安全距离以及所述目标对象与所述可移动平台的移动方向之间的相对关系,设定所述目标对象所属的优先级;
    设定所述目标对象在所述目标对象所属的优先级中的安全级别。
  6. 根据权利要求5所述的方法,其特征在于,所述设定所述目标对象所属的优先级,包括:
    若所述目标对象与所述可移动平台之间的距离大于所述安全距离,并且 所述相对关系为所述目标对象与所述可移动平台相互靠近,则设定所述目标对象所属的优先级为第一优先级;
    若所述目标对象与所述可移动平台之间的距离大于所述安全距离,并且所述相对关系为所述目标对象与所述可移动平台相互远离,则设定所述目标对象所属的优先级为第二优先级,其中,所述第一优先级高于所述第二优先级。
  7. 根据权利要求5或6所述的方法,其特征在于,所述相对关系根据所述目标对象与所述可移动平台之间的相对位置以及所述可移动平台的速度进行确定。
  8. 根据权利要求7所述的方法,其特征在于,将所述相对位置表示为所述可移动平台的中心至所述目标对象的中心之间的第一向量,将所述可移动平台的速度表示为第二向量,
    若所述第一向量与所述第二向量的内积的结果大于或等于零,则所述相对关系为所述目标对象与所述可移动平台相互靠近;
    若所述第一向量与所述第二向量的内积的结果小于零,则所述相对关系为所述目标对象与所述可移动平台相互远离。
  9. 根据权利要求2或4至8中任一项所述的方法,其特征在于,所述安全距离为所述可移动平台的最大尺寸乘以放大比例,其中,所述放大比例大于1。
  10. 根据权利要求9所述的方法,其特征在于,所述可移动平台为无人机,所述最大尺寸为在所述无人机的机臂展开的状态下所述无人机的中心至桨叶的最远距离之间的尺寸。
  11. 根据权利要求6至8中任一项所述的方法,其特征在于,设定所述目标对象在所述目标对象所属的优先级中的安全级别,包括:
    按照所述目标对象至所述可移动平台的移动方向之间的法向距离的函数,设定所述目标对象在所述目标对象所属的优先级中的安全级别,其中,所述函数越小安全级别越低。
  12. 根据权利要求11所述的方法,其特征在于,
    若所述优先级为第一优先级,则所述法向距离表示所述目标对象是否将要位于所述可移动平台的安全距离内。
  13. 根据权利要求11所述的方法,其特征在于,所述法向距离是通过 计算所述目标对象的中心至所述可移动平台的速度的向量所表示线的距离而得到的。
  14. 根据权利要求11所述的方法,其特征在于,所述函数等于所述法向距离乘以系数。
  15. 根据权利要求14所述的方法,其特征在于,
    所述系数为1,或者,
    所述系数是基于所述可移动平台的信号采集系统的能量上限以及所述目标对象的能量而确定的。
  16. 根据权利要求6至15中任一项所述的方法,其特征在于,所述基于所述安全级别执行相应的安全处理,包括:
    针对所述距离小于或等于所述安全距离的目标对象,基于所述第一优先级中安全级别执行相应的安全处理,然后再基于所述第二优先级中安全级别执行相应的安全处理。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述距离表示所述目标对象上的所有点中与所述可移动平台的中心之间的所有距离的最小值。
  18. 根据权利要求1至16中任一项所述的方法,其特征在于,所述距离表示所述目标对象的中心至所述可移动平台的中心之间的直线距离与所述目标对象的半径之差。
  19. 根据权利要求18所述的方法,所述目标对象的半径是根据所述目标对象的长、宽、高的尺寸确定的。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述基于所述安全级别执行相应的安全处理,包括:
    按照安全级别由低到高依次执行安全处理。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述安全处理包括以下至少一项:
    提示用户进行手动清除、导航避障。
  22. 一种可移动平台对障碍物的处理装置,其特征在于,包括:存储器和处理器,其中,
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述计算机指令,当所述计算机指令被执行时, 用于执行:
    确定探测到的目标对象的物理属性,所述物理属性包括所述目标对象与所述可移动平台之间的距离;
    根据所述物理属性,设定所述目标对象的安全级别;
    基于所述安全级别执行相应的安全处理。
  23. 根据权利要求22所述的装置,其特征在于,所述处理器,具体用于:
    根据所述可移动平台的尺寸,确定安全距离;
    根据所述物理属性以及所述安全距离,设定所述目标对象的安全级别。
  24. 根据权利要求22所述的装置,其特征在于,所述目标对象的数量为至少两个,所述处理器,具体用于:
    根据所述距离,由大到小或者由小到大将所述至少两个目标对象的安全级别进行排序,其中,距离越小安全级别越低。
  25. 根据权利要求23所述的装置,其特征在于,所述处理器,具体用于:
    如果所述目标对象与所述可移动平台之间的距离小于或等于所述安全距离,则根据所述目标对象与所述可移动平台之间的距离,由大到小或者由小到大设定安全级别。
  26. 根据权利要求23所述的装置,其特征在于,所述物理属性还包括所述目标对象与所述可移动平台的移动方向之间的相对关系,所述处理器,具体用于:
    根据所述目标对象与所述可移动平台之间的距离、所述安全距离以及所述目标对象与所述可移动平台的移动方向之间的相对关系,设定所述目标对象所属的优先级;
    设定所述目标对象在所述目标对象所属的优先级中的安全级别。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器,具体用于:
    若所述目标对象与所述可移动平台之间的距离大于所述安全距离,并且所述相对关系为所述目标对象与所述可移动平台相互靠近,则设定所述目标对象所属的优先级为第一优先级;
    若所述目标对象与所述可移动平台之间的距离大于所述安全距离,并且 所述相对关系为所述目标对象与所述可移动平台相互远离,则设定所述目标对象所属的优先级为第二优先级,其中,所述第一优先级高于所述第二优先级。
  28. 根据权利要求26或27所述的装置,其特征在于,所述相对关系根据所述目标对象与所述可移动平台之间的相对位置以及所述可移动平台的速度进行确定。
  29. 根据权利要求28所述的装置,其特征在于,将所述相对位置表示为所述可移动平台的中心至所述目标对象的中心之间的第一向量,将所述可移动平台的速度表示为第二向量,
    若所述第一向量与所述第二向量的内积的结果大于或等于零,则所述相对关系为所述目标对象与所述可移动平台相互靠近;
    若所述第一向量与所述第二向量的内积的结果小于零,则所述相对关系为所述目标对象与所述可移动平台相互远离。
  30. 根据权利要求23或25至29中任一项所述的装置,其特征在于,所述安全距离为所述可移动平台的最大尺寸乘以放大比例,其中,所述放大比例大于1。
  31. 根据权利要求30所述的装置,其特征在于,所述可移动平台为无人机,所述最大尺寸为在所述无人机的机臂展开的状态下所述无人机的中心至桨叶的最远距离之间的尺寸。
  32. 根据权利要求26至29中任一项所述的装置,其特征在于,所述处理器,具体用于:
    按照所述目标对象至所述可移动平台的移动方向之间的法向距离的函数,设定所述目标对象在所述目标对象所属的优先级中的安全级别,其中,所述函数越小安全级别越低。
  33. 根据权利要求32所述的装置,其特征在于,
    若所述优先级为第一优先级,则所述法向距离表示所述目标对象是否将要位于所述可移动平台的安全距离内。
  34. 根据权利要求32所述的装置,其特征在于,所述法向距离是通过计算所述目标对象的中心至所述可移动平台的速度的向量所表示线的距离而得到的。
  35. 根据权利要求32所述的装置,其特征在于,所述函数等于所述法 向距离乘以系数。
  36. 根据权利要求35所述的装置,其特征在于,
    所述系数为1,或者,
    所述系数是基于所述可移动平台的信号采集系统的能量上限以及所述目标对象的能量而确定的。
  37. 根据权利要求27至36中任一项所述的装置,其特征在于,所述处理器,具体用于:
    针对所述距离小于或等于所述安全距离的目标对象,按照安全级别执行相应的安全处理,再基于所述第一优先级中安全级别执行相应的安全处理,然后再基于所述第二优先级中安全级别执行相应的安全处理。
  38. 根据权利要求22至37中任一项所述的装置,其特征在于,所述距离表示所述目标对象上的所有点中与所述可移动平台的中心之间的所有距离的最小值。
  39. 根据权利要求22至37中任一项所述的装置,其特征在于,所述距离表示所述目标对象的中心至所述可移动平台的中心之间的直线距离与所述目标对象的半径之差。
  40. 根据权利要求39所述的装置,所述目标对象的半径是根据所述目标对象的长、宽、高的尺寸确定的。
  41. 根据权利要求22至40中任一项所述的装置,其特征在于,所述处理器,具体用于:
    按照安全级别由低到高依次执行安全处理。
  42. 根据权利要求22至41中任一项所述的装置,其特征在于,所述安全处理包括以下至少一项:
    提示用户进行手动清除、导航避障。
  43. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至21中任一项所述方法的步骤。
PCT/CN2019/115812 2019-11-05 2019-11-05 可移动平台对障碍物的处理方法、装置及计算机存储介质 WO2021087775A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980039405.7A CN112334880B (zh) 2019-11-05 2019-11-05 可移动平台对障碍物的处理方法、装置及计算机存储介质
PCT/CN2019/115812 WO2021087775A1 (zh) 2019-11-05 2019-11-05 可移动平台对障碍物的处理方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115812 WO2021087775A1 (zh) 2019-11-05 2019-11-05 可移动平台对障碍物的处理方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021087775A1 true WO2021087775A1 (zh) 2021-05-14

Family

ID=74319813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115812 WO2021087775A1 (zh) 2019-11-05 2019-11-05 可移动平台对障碍物的处理方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN112334880B (zh)
WO (1) WO2021087775A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505823B (zh) * 2021-07-02 2023-06-23 中国联合网络通信集团有限公司 供应链安全分析方法及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105955298A (zh) * 2016-06-03 2016-09-21 腾讯科技(深圳)有限公司 一种飞行器的自动避障方法及装置
CN106233219A (zh) * 2015-03-31 2016-12-14 深圳市大疆创新科技有限公司 移动平台操作系统及方法
CN107272735A (zh) * 2017-06-16 2017-10-20 深圳市可飞科技有限公司 移动平台自动规避碰撞的方法、系统及移动平台
CN108227731A (zh) * 2016-12-15 2018-06-29 比亚迪股份有限公司 无人机防碰撞方法和装置
US20180246215A1 (en) * 2017-02-28 2018-08-30 Stmicroelectronics, Inc. Vehicle dynamics obstacle compensation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789610B1 (en) * 2015-09-02 2017-10-17 X Development Llc Safe path planning for collaborative robots
CN108382391A (zh) * 2018-01-31 2018-08-10 佛山杰致信息科技有限公司 一种适应恶劣环境的驾驶控制系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233219A (zh) * 2015-03-31 2016-12-14 深圳市大疆创新科技有限公司 移动平台操作系统及方法
CN105955298A (zh) * 2016-06-03 2016-09-21 腾讯科技(深圳)有限公司 一种飞行器的自动避障方法及装置
CN108227731A (zh) * 2016-12-15 2018-06-29 比亚迪股份有限公司 无人机防碰撞方法和装置
US20180246215A1 (en) * 2017-02-28 2018-08-30 Stmicroelectronics, Inc. Vehicle dynamics obstacle compensation system
CN107272735A (zh) * 2017-06-16 2017-10-20 深圳市可飞科技有限公司 移动平台自动规避碰撞的方法、系统及移动平台

Also Published As

Publication number Publication date
CN112334880A (zh) 2021-02-05
CN112334880B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US20210166418A1 (en) Object posture estimation method and apparatus
CN108732582B (zh) 车辆定位方法和装置
CN110858076B (zh) 一种设备定位、栅格地图构建方法及移动机器人
US20190196474A1 (en) Control method, control apparatus, control device, and movable platform
CN113510703B (zh) 机器人位姿的确定方法、装置、机器人及存储介质
WO2021168708A1 (zh) 用于可移动平台的控制方法、可移动平台、设备和存储介质
WO2022017131A1 (zh) 点云数据的处理方法、智能行驶控制方法及装置
US11045953B2 (en) Relocalization method and robot using the same
US11751008B2 (en) Angle of arrival capability in electronic devices
JP2022553356A (ja) データ処理方法及び関連装置
WO2021087775A1 (zh) 可移动平台对障碍物的处理方法、装置及计算机存储介质
WO2021037071A1 (zh) 一种飞行控制方法及相关装置
Abhijith et al. Robot operating system based charging pad detection for multirotors
WO2020073245A1 (zh) 手势识别方法、vr视角控制方法以及vr系统
CN112418316B (zh) 机器人重定位方法、装置、激光机器人及可读存储介质
CN112465908B (zh) 一种物体定位方法、装置、终端设备及存储介质
CN114355879A (zh) 无人船及其编队的队形保持控制方法
CN116342704B (zh) 一种扫描点类别确定方法、装置、计算机设备及存储介质
CN111474560A (zh) 一种障碍物定位方法、装置及设备
CN114373046B (zh) 辅助机器人运行的方法、装置及存储介质
WO2022252036A1 (zh) 障碍物信息获取方法、装置、可移动平台及存储介质
WO2021218347A1 (zh) 一种聚类的方法和装置
CN113822372A (zh) 基于YOLOv5神经网络的无人机检测方法
EP3948162A1 (en) Multiple target interception
WO2022254609A1 (ja) 情報処理装置、移動体、情報処理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951448

Country of ref document: EP

Kind code of ref document: A1