WO2021087704A1 - 电磁流量计、控制方法、喷洒系统及农用无人飞行器 - Google Patents

电磁流量计、控制方法、喷洒系统及农用无人飞行器 Download PDF

Info

Publication number
WO2021087704A1
WO2021087704A1 PCT/CN2019/115456 CN2019115456W WO2021087704A1 WO 2021087704 A1 WO2021087704 A1 WO 2021087704A1 CN 2019115456 W CN2019115456 W CN 2019115456W WO 2021087704 A1 WO2021087704 A1 WO 2021087704A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
converter
excitation signal
oversampling
time window
Prior art date
Application number
PCT/CN2019/115456
Other languages
English (en)
French (fr)
Inventor
胡德琪
常子敬
潘仑
舒展
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/115456 priority Critical patent/WO2021087704A1/zh
Priority to CN201980034069.7A priority patent/CN112166306A/zh
Publication of WO2021087704A1 publication Critical patent/WO2021087704A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • This application relates to the technical field of electromagnetic flowmeters, in particular to an electromagnetic flowmeter, a control method, a spraying system, and an agricultural unmanned aerial vehicle.
  • the working principle of electromagnetic flowmeter is based on Faraday's law of electromagnetic induction.
  • Faraday's law of electromagnetic induction when a conductive fluid flows through the magnetic field of the sensor, a voltage signal proportional to the volume flow will be generated between a pair of electrodes, the direction of which is perpendicular to the flow direction and the magnetic field.
  • the excitation coil and current are relatively small, resulting in weak magnetic field strength, so the voltage signal generated is also very small, so a high-precision analog-to-digital converter ADC is required for sampling. Lead to higher costs.
  • the present application provides an electromagnetic flowmeter, a control method of the electromagnetic flowmeter, a spray system, and an agricultural unmanned aerial vehicle.
  • this application provides an electromagnetic flowmeter, including:
  • Excitation circuit used to generate excitation signal
  • a converter connected to the sensor, and the converter is used for over-sampling the induced voltage signal
  • the control circuit is respectively electrically connected to the excitation circuit and the converter.
  • the control circuit is used to determine whether the oversampling start time is reached by monitoring the excitation signal, and when it arrives, it issues a control command so that the converter is in oversampling.
  • the sampling time window oversamples the induced voltage signal, and the oversampling time window is a time window between the sampling start time and the oversampling end time.
  • the present application provides a method for controlling an electromagnetic flowmeter, the method is suitable for the electromagnetic flowmeter as described above, and the method includes:
  • a control instruction is issued to cause the converter to over-sample the induced voltage signal in an over-sampling time window, where the over-sampling time window is a time window between the sampling start time and the over-sampling end time.
  • the present application provides a spraying system, the spraying system includes an electromagnetic flowmeter, and the electromagnetic flowmeter includes:
  • Excitation circuit used to generate excitation signal
  • a converter connected to the sensor, and the converter is used for over-sampling the induced voltage signal
  • the control circuit is respectively electrically connected to the excitation circuit and the converter.
  • the control circuit is used to determine whether the oversampling start time is reached by monitoring the excitation signal, and when it arrives, it issues a control command so that the converter is in oversampling.
  • the sampling time window oversamples the induced voltage signal, and the oversampling time window is a time window between the sampling start time and the oversampling end time.
  • the present application provides an agricultural unmanned aerial vehicle, the agricultural unmanned aerial vehicle including a spray system, the spray system including an electromagnetic flowmeter, and the electromagnetic flowmeter includes:
  • Excitation circuit used to generate excitation signal
  • a converter connected to the sensor, and the converter is used for over-sampling the induced voltage signal
  • the control circuit is respectively electrically connected to the excitation circuit and the converter.
  • the control circuit is used to determine whether the oversampling start time is reached by monitoring the excitation signal, and when it arrives, it issues a control command so that the converter is in oversampling.
  • the sampling time window oversamples the induced voltage signal, and the oversampling time window is a time window between the sampling start time and the oversampling end time.
  • the embodiment of the application provides an electromagnetic flow meter, a control method, a spray system, and an agricultural unmanned aerial vehicle.
  • the excitation circuit is used to generate an excitation signal;
  • the sensor is electrically connected to the excitation circuit, and when the conductive fluid flows under the excitation of the excitation signal, ,
  • the sensor can generate an induced voltage signal;
  • the converter is connected to the sensor for over-sampling the induced voltage signal;
  • the control circuit is electrically connected with the excitation circuit and the converter, and is used to monitor the excitation signal to determine whether the oversampling start time has arrived, When it arrives, a control command is issued to cause the converter to over-sample the induced voltage signal in an over-sampling time window.
  • the over-sampling time window is the time window between the sampling start time and the over-sampling end time. Since the control circuit can determine whether the oversampling start time has arrived by monitoring the excitation signal, it can easily and conveniently determine the oversampling time window; when it arrives, the control command is issued to make the converter oversampling the induced voltage signal in the oversampling time window, which can be used in the oversampling time window.
  • the sampling time window realizes over-sampling. Over-sampling is multiple sampling.
  • High-precision sampling can be achieved by averaging multiple samplings, which can improve the signal-to-noise ratio and increase the effective number of bits of the converter, so there is no need to use expensive High-precision converters using low-digit converters can also achieve high-precision sampling. In this way, costs can be reduced.
  • Fig. 1 is a schematic structural diagram of an embodiment of an electromagnetic flowmeter of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of an embodiment of the sensor in the electromagnetic flowmeter of the present application
  • Fig. 3 is a schematic diagram of an embodiment of an over-sampling time window in an electromagnetic flowmeter of the present application
  • FIG. 4 is a schematic structural diagram of another embodiment of the electromagnetic flowmeter of the present application.
  • FIG. 5 is a schematic diagram of the control process in the electromagnetic flowmeter of the present application.
  • Fig. 6 is a schematic flowchart of an embodiment of a method for controlling an electromagnetic flowmeter according to the present application.
  • the excitation circuit of the embodiment of the application is used to generate an excitation signal; the sensor is electrically connected to the excitation circuit, and when the conductive fluid flows under the excitation of the excitation signal, the sensor can generate an induced voltage signal; the converter is connected to the sensor for sensing the induced voltage
  • the signal is over-sampled; the control circuit is electrically connected with the excitation circuit and the converter, and is used to determine whether the over-sampling start time is reached by monitoring the excitation signal, and when it arrives, it issues a control command to make the converter perform an over-sampling time window on the induced voltage signal.
  • the oversampling time window is the time window between the sampling start time and the oversampling end time.
  • control circuit can determine whether the oversampling start time has arrived by monitoring the excitation signal, it can easily and conveniently determine the oversampling time window; when it arrives, the control command is issued to make the converter oversampling the induced voltage signal in the oversampling time window, which can be used in the oversampling time window.
  • the sampling time window realizes over-sampling.
  • Over-sampling is multiple sampling. High-precision sampling can be achieved by averaging multiple samplings, which can improve the signal-to-noise ratio and increase the effective number of bits of the converter, so there is no need to use expensive High-precision converters using low-digit converters can also achieve high-precision sampling. In this way, costs can be reduced.
  • FIG. 1 is a schematic structural diagram of an embodiment of an electromagnetic flowmeter of the present application.
  • the electromagnetic flowmeter includes: an excitation circuit 1, a sensor 2, a converter 3, and a control circuit 4.
  • the excitation circuit 1 is used to generate an excitation signal; the sensor 2 is electrically connected to the excitation circuit 1. When the conductive fluid flows under the excitation of the excitation signal, the sensor 2 can generate an induced voltage signal; the converter 3 is connected to the sensor 2, and the converter 3 It is used for over-sampling the induced voltage signal; the control circuit 4 is electrically connected to the excitation circuit 1 and the converter 3, and the control circuit 4 is used to determine whether the over-sampling start time is reached by monitoring the excitation signal, and issue a control command to switch when it arrives
  • the device 3 over-samples the induced voltage signal in an over-sampling time window, which is a time window between the over-sampling start time and the over-sampling end time.
  • the electromagnetic flowmeter is made according to Faraday's law of electromagnetic induction. It has been widely used in the flow measurement of various conductive fluids in the industrial process, such as various acids, alkalis, salts and other corrosive media, and the flow measurement of various slurries. Formed a unique application area.
  • the sensor 2 is installed on the industrial process pipeline and is mainly composed of a magnetic circuit system 21, a measuring tube 22, an electrode 23, a housing 24, a lining 25 and other parts. As shown in Figure 2, its function is to flow into the measuring tube 22. The volume flow value of the conductive fluid is linearly transformed into an induced voltage signal, and the induced voltage signal is sent to the converter 3 through the transmission line. Among them, the function of the magnetic circuit system 21 is to generate a uniform magnetic field under the excitation of the excitation signal. The function of the measuring conduit 22 is to allow the measured conductive fluid to pass through. It is made of non-magnetic, low electrical conductivity, low thermal conductivity and a certain mechanical strength material.
  • Non-magnetic stainless steel, glass fiber reinforced plastic, high-strength plastic, aluminum can be selected. Wait.
  • the function of the electrode 23 is to draw out an induced voltage signal proportional to the flow volume of the conductive fluid to be measured; it is generally made of non-magnetic stainless steel and is required to be flush with the lining 25 so that the conductive fluid can pass through without obstruction; its The installation location should be in the vertical direction of the pipeline to prevent sediment from accumulating on it and affecting the measurement accuracy.
  • the shell 24 is made of ferromagnetic material, is the outer cover of the excitation coil of the distribution system, and isolates the interference of the external magnetic field.
  • the lining 25 has a complete electrically insulating lining on the inner side of the measuring tube 22 and the flange sealing surface; it directly contacts the conductive fluid to be measured, and its function is to increase the corrosion resistance of the measuring tube 22 and prevent the induced voltage signal from being measured by metal
  • the pipe wall is short-circuited; the material of the lining 25 is mostly corrosion-resistant, high-temperature, wear-resistant polytetrafluoroethylene plastic, ceramics, etc.
  • the converter 3 is installed not too far away from the sensor 2. It converts the induced voltage signal (analog signal) sent by the sensor 2 into a standard electrical signal (digital signal) proportional to the induced voltage signal for output; converter 3 converts The function of the converter is to convert the analog signal with continuous time and continuous amplitude into a digital signal with discrete time and discrete amplitude.
  • the conversion of converter 3 generally involves four processes of sampling, holding, quantization and encoding (in actual circuits, these Some of the processes are merged, and some are implemented at the same time).
  • the working magnetic field of the sensor 2 is generated by the excitation circuit 1.
  • the excitation circuit 1 is different in the way of exciting the magnetic field (that is, the excitation way), and the anti-interference ability and zero point stability of the electromagnetic flowmeter are also different, and usually need to be selected according to the specific requirements in the specific practical application.
  • the excitation signals output by the corresponding excitation circuit are DC current signals, AC current signals (such as sinusoidal alternating current) and square wave pulse current signals.
  • the excitation signal includes a square wave excitation signal.
  • the square wave excitation signal may be a unidirectional excitation signal or a bidirectional excitation signal.
  • oversampling refers to the process of sampling the signal at a frequency much higher than twice the signal bandwidth or its highest frequency.
  • oversampling is multiple sampling.
  • the oversampling time window is the time window between the oversampling start time and the oversampling end time.
  • the over-sampling time window is preset.
  • the over-sampling time window can be determined according to specific actual applications and actual measurement requirements, specifically, it can be determined based on previous empirical data combined with actual measurement requirements, or test data obtained in advance through experiments combined with actual measurement requirements, or empirical data, test data And combined with actual measurement requirements to determine, and so on. By sampling the average value multiple times, the sampling accuracy can be improved.
  • the excitation signal includes a square wave excitation signal
  • the induced voltage signal since the magnetic induction intensity is stable during most of the time before and after the transition, the induced voltage signal also tends to be stable at this time, and sampling during this period is stable and representative . That is, in an application, the over-sampling time window is determined according to the time window during which the induced voltage signal becomes stable.
  • the time window for the induced voltage signal to stabilize includes the time window corresponding to the high-level excitation signal and the time window corresponding to the low-level excitation signal, that is, the over-sampling time window includes the over-sampling time window corresponding to the high-level excitation signal and The over-sampling time window corresponding to the low-level excitation signal.
  • the high-level excitation signal represents the input current
  • the low-level excitation signal represents no input current, which is used as a reference signal.
  • the time period for collecting the volume flow to generate the induced voltage signal (or called the induced electromotive force) can only be in the circle in the figure.
  • the induced voltage signal tends to be stable.
  • the control circuit 4 is added, and the excitation circuit 1 is controlled by the control circuit 4.
  • the oversampling time window is determined by monitoring the excitation signal generated by the excitation circuit 4, and the converter 3 is also controlled by the control circuit 4. Control, when the control circuit 4 monitors and determines the over-sampling time window, the converter 3 can be directly controlled to perform over-sampling in the over-sampling time window.
  • the embodiment of the present application only adds one control circuit, and high-precision sampling can be achieved by controlling the excitation signal and the converter 3 through the control circuit 4, which is simple and convenient, and the cost is very low.
  • converter 3 adopts ADC with lower digits to satisfy high-precision sampling.
  • the excitation circuit 1 of the embodiment of the present application is used to generate an excitation signal; the sensor 2 is electrically connected to the excitation circuit 1, and when the conductive fluid flows under the excitation of the excitation signal, the sensor 2 can generate an induced voltage signal; the converter 3 is connected to the sensor 2 , Used for over-sampling the induced voltage signal; the control circuit 2 is electrically connected to the excitation circuit 1 and the converter 3, used to monitor the excitation signal to determine whether the over-sampling start time is reached, and when it arrives, a control command is issued to make the converter 3
  • the induced voltage signal is over-sampled in the over-sampling time window.
  • the over-sampling time window is the time window between the sampling start time and the over-sampling end time.
  • control circuit 4 can determine whether the over-sampling start time is reached by monitoring the excitation signal, it can simply and conveniently determine the over-sampling time window; when it arrives, the control command is issued to cause the converter 3 to over-sample the induced voltage signal in the over-sampling time window.
  • Over-sampling is achieved in the over-sampling time window.
  • Over-sampling is multiple sampling. High-precision sampling can be achieved by averaging multiple samplings, which can improve the signal-to-noise ratio and increase the effective number of bits of the converter, so there is no need to use
  • An expensive high-precision converter can also achieve high-precision sampling using a converter with a lower number of bits. In this way, costs can be reduced.
  • control circuit monitors the excitation signal and how to implement it.
  • control circuit 4 is used to monitor the excitation signal.
  • a control instruction is issued to cause the converter 3 to start oversampling, and when the current oversampling end time is monitored, it is issued
  • the control instruction causes the converter 3 to stop oversampling. That is, in this embodiment, the oversampling start time and oversampling end time of the oversampling time window are both determined by monitoring the excitation signal, which is simple and convenient.
  • control circuit 4 also controls the converter 3 to perform the current over-sampling conversion. Since the oversampling is only performed in the oversampling time window, the control circuit 4 also controls the converter 3 to perform the current oversampling conversion, which can avoid unnecessary conversions and reduce power consumption.
  • the conversion start time can be advanced, and the current oversampling conversion start time can be determined according to the delay time. In this way, the conversion result can be obtained immediately after sampling. That is, the control circuit 4 monitors the excitation signal. When the monitoring of the current oversampling start time arrives, it issues a control command to make the converter 3 start the current oversampling conversion, and when the monitoring reaches the current oversampling start time, it starts to read the conversion. The conversion result of the current oversampling by the converter.
  • the control circuit 4 specifically implements the above monitoring, in one embodiment, three simple and inexpensive timers are used.
  • the control circuit 4 includes a first timer 41, a second timer 42, and a third timer 43.
  • the first timer 41 is connected to the excitation circuit 1
  • the second timer 42 and the third timer 43 are connected to the excitation circuit 1, respectively.
  • the first timer 41 is connected. In this way, it can be ensured that the first timer 41, the second timer 42 and the third timer 42 are synchronized in time, and the redundancy of the second timer 42 and the third timer 42 can also be reduced. Consumption.
  • the control circuit 4 monitors the excitation signal through the first timer 41, controls the start and end sampling of the converter 3 through the second timer 42, and controls the initial conversion of the converter 3 and the start of the converter 3 through the third timer 43. The initial reading of the conversion result and the judgment of whether the sampling is wrong.
  • the second timer 42 and the third timer 42 can be directly connected to the converter 3, or a controller can be added and connected to the converter 3 through the controller.
  • the first timer 41 monitors the square wave excitation signal.
  • the circle on the square wave excitation signal represents the over-sampling time window.
  • the second timer 42 controls the start and end sampling of the converter 3, and the third timer 43 controls the conversion.
  • the over-sampling start time of the over-sampling time window corresponds to time point B
  • the over-sampling end time corresponds to time point C
  • the excitation conversion time is time point A
  • the over-sampling time window is enlarged
  • the converter starts conversion at time point A.
  • the conversion result of the converter is read, and at time point C, it is judged whether the sampling is wrong.
  • the third timer 43 is instructed to control the converter to start conversion at time point A, and the third timer 43 can start timing at time point A, respectively
  • the time point B and the time point C are obtained, and the initial reading of the conversion result of the converter 3 and the judgment of whether the sampling is wrong are respectively controlled.
  • the second timer 42 is instructed to control the initial sampling of the converter 3, and the second timer 42 can take time from the time point B as the starting point to obtain the time At point C, the end sampling of the control converter 3 is controlled.
  • the key control commands can be placed in the memory with fast reading speed. That is, the control circuit also includes a cache memory, a tightly coupled memory or a core coupled memory, and the control instructions are stored in the cache memory, a tightly coupled memory or a core coupled memory.
  • the control circuit also includes a cache memory, a tightly coupled memory or a core coupled memory, and the control instructions are stored in the cache memory, a tightly coupled memory or a core coupled memory.
  • other acceleration methods can also be used to achieve high real-time control commands.
  • the interrupt priority of the control instruction is set to the highest in this embodiment.
  • the present application also provides a control method of an electromagnetic flowmeter, which is applicable to any of the electromagnetic flowmeters above.
  • control method in the embodiments of the present application please refer to the relevant content of the electromagnetic flowmeter mentioned above. Repeat it again.
  • the method includes:
  • Step S101 Monitor the excitation signal to determine whether the oversampling start time has arrived.
  • Step S102 When it arrives, a control instruction is issued to cause the converter to over-sample the induced voltage signal in an over-sampling time window.
  • the over-sampling time window is a time window between the over-sampling start time and the over-sampling end time.
  • the oversampling time window can be determined simply and conveniently; when the control instruction is reached, the converter can oversampling the induced voltage signal during the oversampling time window.
  • the over-sampling time window realizes over-sampling.
  • Over-sampling is multiple sampling. High-precision sampling can be achieved by averaging multiple samplings, which can improve the signal-to-noise ratio and increase the effective number of bits of the converter, so there is no need to use the price Expensive high-precision converters can also achieve high-precision sampling using lower-bit converters. In this way, costs can be reduced.
  • step S102 issuing a control instruction upon arrival to cause the converter to over-sampling the induced voltage signal in the over-sampling time window may include: when it is monitored that the current over-sampling start time is reached, issuing a control instruction to cause the converter to start over-sampling Sampling, when the monitoring reaches the end of the current oversampling time, a control command is issued to stop the oversampling of the converter.
  • the method further includes: controlling the converter to perform current over-sampling conversion.
  • controlling the converter to perform the conversion of the current oversampling may also include: when it is monitored that the conversion start time of the current oversampling is reached, issuing a control instruction to make the converter start the conversion of the current oversampling, when the current oversampling start time is monitored When it arrives, start to read the conversion result of the current oversampling by the converter.
  • a control instruction is issued to make the converter start the current over-sampling conversion, and it may also include: monitoring the start time of the conversion of the low-level excitation signal to the high-level excitation signal When it arrives or when it is monitored that the start time for the conversion of the high-level excitation signal to the low-level excitation signal is reached, a control instruction is issued to cause the converter to start the current over-sampling conversion.
  • the method further includes: when monitoring to the end of each sampling, according to the excitation signal in the current sampling time window, determining whether the read converter has an error in the conversion result of the current sampling.
  • the present application also provides a spraying system, which includes the electromagnetic flowmeter as described in any of the above items.
  • a spraying system which includes the electromagnetic flowmeter as described in any of the above items.
  • the electromagnetic flowmeter includes: an excitation circuit for generating an excitation signal; a sensor, which is electrically connected to the excitation circuit, and when the conductive fluid flows under the excitation of the excitation signal, the sensor can generate an induced voltage signal; a converter, which is connected to the sensor, The converter is used for over-sampling the induced voltage signal; the control circuit is electrically connected to the excitation circuit and the converter.
  • the control circuit is used to monitor the excitation signal to determine whether the over-sampling start time is reached, and when it arrives, it issues a control command to make the converter in
  • the over-sampling time window performs over-sampling of the induced voltage signal.
  • the over-sampling time window is the time window between the over-sampling start time and the over-sampling end time.
  • the excitation circuit of the embodiment of the application is used to generate an excitation signal; the sensor is electrically connected to the excitation circuit, and when the conductive fluid flows under the excitation of the excitation signal, the sensor can generate an induced voltage signal; the converter is connected to the sensor for sensing the induced voltage
  • the signal is over-sampled; the control circuit is electrically connected with the excitation circuit and the converter, and is used to determine whether the over-sampling start time is reached by monitoring the excitation signal, and when it arrives, it issues a control command to make the converter perform an over-sampling time window on the induced voltage signal.
  • the oversampling time window is the time window between the sampling start time and the oversampling end time.
  • control circuit can determine whether the oversampling start time has arrived by monitoring the excitation signal, it can easily and conveniently determine the oversampling time window; when it arrives, the control command is issued to make the converter oversampling the induced voltage signal in the oversampling time window, which can be used in the oversampling time window.
  • the sampling time window realizes over-sampling.
  • Over-sampling is multiple sampling. High-precision sampling can be achieved by averaging multiple samplings, which can improve the signal-to-noise ratio and increase the effective number of bits of the converter, so there is no need to use expensive High-precision converters using low-digit converters can also achieve high-precision sampling. In this way, costs can be reduced.
  • the spraying system also includes: a liquid storage tank, a diverter, a liquid pump and a spray head, and the conductive fluid flows along the path of the liquid storage tank, the diverter, the electromagnetic flowmeter, the liquid pump and the spray head.
  • the excitation signal includes a square wave excitation signal.
  • the square wave excitation signal is a one-way excitation signal or a two-way excitation signal.
  • the over-sampling time window is determined according to the time window when the induced voltage signal tends to be stable.
  • the over-sampling time window includes an over-sampling time window corresponding to a high-level excitation signal and an over-sampling time window corresponding to a low-level excitation signal.
  • control circuit is used to monitor the excitation signal.
  • a control command is issued to make the converter start oversampling, and when the current oversampling end time is monitored, a control command is issued to stop the converter Oversampling.
  • control circuit also controls the converter to perform the current over-sampling conversion.
  • control circuit is used to monitor the excitation signal.
  • a control command is issued to make the converter start the current oversampling conversion, and when the current oversampling start time is monitored, it starts to read.
  • the conversion result of the current oversampling by the converter is used to monitor the excitation signal.
  • the control circuit includes a first timer, a second timer, and a third timer.
  • the first timer is connected to the excitation circuit
  • the second timer and the third timer are respectively connected to the first timer, and the control circuit passes through the first timer.
  • a timer monitors the excitation signal, controls the initial sampling and end sampling of the converter through the second timer, controls the initial conversion of the converter, the initial reading of the conversion result of the converter and the sampling error through the third timer Judgment.
  • control circuit also includes a cache memory, a tightly coupled memory or a core coupled memory, and the control instruction is stored in the cache memory, a tightly coupled memory or a core coupled memory.
  • the interrupt priority of the control instruction is set to the highest.
  • the application also provides an agricultural unmanned aerial vehicle, which includes a spraying system, and the spraying system includes an electromagnetic flowmeter as described above.
  • the spraying system includes an electromagnetic flowmeter as described above.
  • the electromagnetic flowmeter includes: an excitation circuit for generating an excitation signal; a sensor, which is electrically connected to the excitation circuit, and when the conductive fluid flows under the excitation of the excitation signal, the sensor can generate an induced voltage signal; a converter, which is connected to the sensor, The converter is used for over-sampling the induced voltage signal; the control circuit is electrically connected to the excitation circuit and the converter.
  • the control circuit is used to monitor the excitation signal to determine whether the over-sampling start time is reached, and when it arrives, it issues a control command to make the converter in
  • the over-sampling time window performs over-sampling of the induced voltage signal.
  • the over-sampling time window is the time window between the over-sampling start time and the over-sampling end time.
  • the excitation circuit of the embodiment of the application is used to generate an excitation signal; the sensor is electrically connected to the excitation circuit, and when the conductive fluid flows under the excitation of the excitation signal, the sensor can generate an induced voltage signal; the converter is connected to the sensor for sensing the induced voltage
  • the signal is over-sampled; the control circuit is electrically connected with the excitation circuit and the converter, and is used to determine whether the over-sampling start time is reached by monitoring the excitation signal, and when it arrives, it issues a control command to make the converter perform an over-sampling time window on the induced voltage signal.
  • the oversampling time window is the time window between the sampling start time and the oversampling end time.
  • control circuit can determine whether the over-sampling start time has arrived by monitoring the excitation signal, it can easily and conveniently determine the over-sampling time window; when it arrives, the control command is issued to make the converter over-sampling the induced voltage signal in the over-sampling time window.
  • the sampling time window realizes over-sampling.
  • Over-sampling is multiple sampling. High-precision sampling can be achieved by averaging multiple samplings, which can improve the signal-to-noise ratio and increase the effective number of bits of the converter, so there is no need to use expensive High-precision converters using low-digit converters can also achieve high-precision sampling. In this way, costs can be reduced.
  • the spraying system also includes: a liquid storage tank, a diverter, a liquid pump and a spray head, and the conductive fluid flows along the path of the liquid storage tank, the diverter, the electromagnetic flowmeter, the liquid pump and the spray head.
  • the excitation signal includes a square wave excitation signal.
  • the square wave excitation signal is a one-way excitation signal or a two-way excitation signal.
  • the over-sampling time window is determined according to the time window when the induced voltage signal tends to be stable.
  • the over-sampling time window includes an over-sampling time window corresponding to a high-level excitation signal and an over-sampling time window corresponding to a low-level excitation signal.
  • control circuit is used to monitor the excitation signal.
  • a control command is issued to make the converter start oversampling, and when the current oversampling end time is monitored, a control command is issued to stop the converter Oversampling.
  • control circuit also controls the converter to perform the current over-sampling conversion.
  • control circuit is used to monitor the excitation signal.
  • a control command is issued to make the converter start the current oversampling conversion, and when the current oversampling start time is monitored, it starts to read.
  • the conversion result of the current oversampling by the converter is used to monitor the excitation signal.
  • the control circuit includes a first timer, a second timer, and a third timer.
  • the first timer is connected to the excitation circuit
  • the second timer and the third timer are respectively connected to the first timer, and the control circuit passes through the first timer.
  • a timer monitors the excitation signal, controls the initial sampling and end sampling of the converter through the second timer, controls the initial conversion of the converter, the initial reading of the conversion result of the converter and the sampling error through the third timer Judgment.
  • control circuit also includes a cache memory, a tightly coupled memory or a core coupled memory, and the control instruction is stored in the cache memory, a tightly coupled memory or a core coupled memory.
  • the interrupt priority of the control instruction is set to the highest.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

电磁流量计、控制方法、喷洒系统及农用无人飞行器。电磁流量计包括:励磁电路(1)、传感器(2)、转换器(3)及控制电路(4);励磁电路(1)产生励磁信号;传感器(2)在励磁信号的激励下,当导电流体流动时产生感应电压信号;转换器(3)对感应电压信号进行过采样;控制电路(4)通过监控励磁信号确定过采样开始时间到达时下达控制指令使转换器(3)在过采样时间窗口对感应电压信号进行过采样。该电磁流量计通过过采样能够实现高精度采样,降低成本。

Description

电磁流量计、控制方法、喷洒系统及农用无人飞行器 技术领域
本申请涉及电磁流量计技术领域,尤其涉及一种电磁流量计、控制方法、喷洒系统及农用无人飞行器。
背景技术
电磁流量计的工作原理基于法拉第电磁感应定律。根据法拉第电磁感应定律,当导电流体流经传感器的磁场时,一对电极之间就会产生与体积流量成正比的电压信号,其方向与流向和磁场垂直。
在实际应用中,考虑到成本和功耗等因素,励磁线圈和电流都比较小,导致磁场强度很弱,故产生的电压信号也很小,所以需要高精度的模数转换器ADC进行采样,导致成本较高。
发明内容
基于此,本申请提供一种电磁流量计、电磁流量计的控制方法、喷洒系统及农用无人飞行器。
第一方面,本申请提供了一种电磁流量计,包括:
励磁电路,用于产生励磁信号;
传感器,与所述励磁电路电连接,在所述励磁信号的激励下,当导电流体流动时,所述传感器能够产生感应电压信号;
转换器,与所述传感器连接,所述转换器用于对所述感应电压信号进行过采样;
控制电路,分别与所述励磁电路和所述转换器电连接,所述控制电路用于通过监控所述励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样 时间窗口是采样开始时间和过采样结束时间之间的时间窗口。
第二方面,本申请提供了一种电磁流量计的控制方法,所述方法适用于如上所述的电磁流量计,所述方法包括:
监控所述励磁信号确定过采样开始时间是否到达;
在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。
第三方面,本申请提供了一种喷洒系统,所述喷洒系统包括电磁流量计,所述电磁流量计包括:
励磁电路,用于产生励磁信号;
传感器,与所述励磁电路电连接,在所述励磁信号的激励下,当导电流体流动时,所述传感器能够产生感应电压信号;
转换器,与所述传感器连接,所述转换器用于对所述感应电压信号进行过采样;
控制电路,分别与所述励磁电路和所述转换器电连接,所述控制电路用于通过监控所述励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。
第四方面,本申请提供了一种农用无人飞行器,所述农用无人飞行器包括喷洒系统,所述喷洒系统包括电磁流量计,所述电磁流量计包括:
励磁电路,用于产生励磁信号;
传感器,与所述励磁电路电连接,在所述励磁信号的激励下,当导电流体流动时,所述传感器能够产生感应电压信号;
转换器,与所述传感器连接,所述转换器用于对所述感应电压信号进行过采样;
控制电路,分别与所述励磁电路和所述转换器电连接,所述控制电路用于通过监控所述励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。
本申请实施例提供了一种电磁流量计、控制方法、喷洒系统及农用无人飞行器,励磁电路用于产生励磁信号;传感器与励磁电路电连接,在励磁信号的激励下,当导电流体流动时,传感器能够产生感应电压信号;转换器与传感器连接,用于对感应电压信号进行过采样;控制电路分别与励磁电路和转换器电连接,用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。由于控制电路能够通过监控励磁信号确定过采样开始时间是否到达,能够简单方便确定过采样时间窗口;在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,能够在过采样时间窗口实现过采样,过采样即为多次采样,通过多次采样取平均值的方式能够实现高精度采样,从而能够提高信噪比,增加转换器的有效位数,因此无需使用价格昂贵的高精度转换器、而使用较低位数的转换器也能够实现高精度采样,通过这种方式,能够减低成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请电磁流量计一实施例的结构示意图;
图2是本申请电磁流量计中传感器一实施例的截面结构示意图;
图3是本申请电磁流量计中过采样时间窗口一实施例的示意图;
图4是本申请电磁流量计另一实施例的结构示意图;
图5是本申请电磁流量计中控制过程的示意图;
图6是本申请电磁流量计的控制方法一实施例的流程示意图。
主要元件及符号说明:
1、励磁电路;2、传感器;3、转换器;4、控制电路;
21、磁路系统;22、测量导管;23、电极;24、外壳;25、衬里;
41、第一定时器;42、第二定时器;43、第三定时器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
电磁流量计在实际应用中,考虑到成本和功耗等因素,励磁线圈和电流都比较小,磁场强度很弱,产生的电压信号也很小,需要高精度的模数转换器ADC进行采样,导致成本较高。本申请实施例励磁电路用于产生励磁信号;传感器与励磁电路电连接,在励磁信号的激励下,当导电流体流动时,传感器能够产生感应电压信号;转换器与传感器连接,用于对感应电压信号进行过采样;控制电路分别与励磁电路和转换器电连接,用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。由于控制电路能够通过监控励磁信号确定过采样开始时间是否到达,能够简单方便确定过采样时间窗口;在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,能够在过采样时间窗口实现过采样,过采样即为多次采样,通过多次采样取平均值的方式能够实现高精度采样,从而能够提高信噪比,增加转换器的有效位数,因此无需使用价格昂贵的高精度转换器、而使用较低位数的转换器也能够实现高精度采样,通过这种方式,能够减低成本。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参见图1,图1是本申请电磁流量计一实施例的结构示意图,该电磁流量计包括:励磁电路1、传感器2、转换器3以及控制电路4。
励磁电路1用于产生励磁信号;传感器2与励磁电路1电连接,在励磁信号的激励下,当导电流体流动时,传感器2能够产生感应电压信号;转换器3与传感器2连接,转换器3用于对感应电压信号进行过采样;控制电路4分别与励磁电路1和转换器3电连接,控制电路4用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器3在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
电磁流量计是根据法拉第电磁感应定律制成的,目前已广泛地被应用于工业过程中各种导电流体的流量测量,如各种酸、碱、盐等腐蚀性介质,各种浆液流量测量,形成了独特的应用领域。
传感器2安装在工业过程管道上,主要由磁路系统21、测量导管22、电极23、外壳24、衬里25等部分组成,如图2所示,它的作用是将流进测量导管22内的导电流体体积流量值线性地变换成感应电压信号,并通过传输线将此感应电压信号送到转换器3。其中,磁路系统21的作用是在励磁信号的激励下产生均匀的磁场。测量导管22的作用是使被测导电流体通过,采用不导磁、低导电率、低导热率和具有一定机械强度的材料制成,可选用不导磁的不锈钢、玻璃钢、高强度塑料、铝等。电极23的作用是引出和被测量导电流体的流量体积成正比的感应电压信号;一般用非导磁的不锈钢制成,且要求与衬里25齐平,以便导电流体通过时不受阻碍;它的安装位置宜在管道的垂直方向,以防止沉淀物堆积在其上面而影响测量精度。外壳24应用铁磁材料制成,是分配制度励磁线圈的外罩,并隔离外磁场的干扰。衬里25在测量导管22的内侧及法兰密封面上,有一层完整的电绝缘衬里;它直接接触被测导电流体,其作用是增加测量导管22的耐腐蚀性,防止感应电压信号被金属测量导管管壁短路;衬里25材料多为耐腐蚀、耐高温、耐磨的聚四氟乙烯塑料、陶瓷等。
转换器3安装在离传感器2不太远的地方,它将传感器2送来的感应电压信号(模拟信号)转换成与感应电压信号成正比的标准电信号(数字信号)输出;转换器3转换的作用是将时间连续、幅值也连续的模拟信号转换为时间离 散、幅值也离散的数字信号,转换器3转换一般要经过采样、保持、量化及编码4个过程(实际电路中,这些过程有的合并进行,有的同时实现)。
在电磁流量计中,传感器2的工作磁场是由励磁电路1激励而产生的。励磁电路1激励磁场的方式(即励磁方式)不同,电磁流量计的抗干扰能力大小和零点稳定性能也各不相同,通常需要根据具体实际应用中的具体要求来进行选择。目前,一般有三种励磁方式,即直流励磁、交流励磁和低频方波励磁,对应励磁电路输出的励磁信号分别是直流电流信号、交流电流信号(例如正弦交变电流)以及方波脉冲电流信号。
由于方形波的磁感应强度随时间的变化率(dφ/dt)仅发生在波形转换过渡过程期间,如果转换过程时间比较短(这段时间的感应电压信号称为微分干扰),磁感应强度在过渡前和过渡后的大部分时间幅度是稳定的,应用不同的时序在处于方形波的稳定时段采样,很容易把由方形波前沿产生的微分干扰切除掉。没有正交干扰也没有同相干扰,零点也稳定。因此,在一实施例中,励磁信号包括方波励磁信号。具体地,根据具体的实际应用,方波励磁信号可以为单向励磁信号或为双向励磁信号。
在信号处理中,过采样(Oversampling)是指以远远高于信号带宽两倍或其最高频率对其进行采样的过程。简单来说,过采样就是多次采样。过采样时间窗口就是过采样开始时间和过采样结束时间之间的时间窗口。过采样时间窗口预先已设定。过采样时间窗口可以根据具体的实际应用和实际测量要求确定,具体地可以根据之前的经验数据结合实际测量要求确定,或者预先通过试验取得的试验数据结合实际测量要求确定,或者经验数据、试验数据并结合实际测量要求确定,等等。通过多次采样取其平均值,能够提高采样精度。
当励磁信号包括方波励磁信号时,由于磁感应强度在过渡前和过渡后的大部分时间幅度是稳定的,此时感应电压信号也趋于平稳,在这段时间进行采样,稳定且具有代表性。即在一应用中,过采样时间窗口是根据感应电压信号趋于平稳的时间窗口确定的。
进一步,感应电压信号趋于平稳的时间窗口包括高电平励磁信号对应的时间窗口和低电平励磁信号对应的时间窗口,即过采样时间窗口包括高电平励磁信号对应的过采样时间窗口和低电平励磁信号对应的过采样时间窗口。在实际 应用中,高电平励磁信号代表输入电流,低电平励磁信号代表不输入电流,以作为参考信号。
例如,参见图3,由于励磁信号变换导致在过渡过程中有微分干扰电压的存在,故采集体积流量产生感应电压信号(或称为感应电动势)的时间段只能在图中圆圈中。在这些圆圈对应的时间段内(例如第一个圆圈对应的△T),感应电压信号趋于平稳。
为了通过过采样的方式提高采样精度,首先需要监控并确定过采样时间窗口,其次是需要控制转换器3在过采样时间窗口进行过采样,因此本申请实施例在一般情况下的电磁流量计的基础上,增加控制电路4,并使励磁电路1受控制电路4的控制,通过对励磁电路4产生的励磁信号进行监控,来确定过采样时间窗口,而且使转换器3也受控制电路4的控制,在控制电路4监控并确定过采样时间窗口时,能够直接控制转换器3在过采样时间窗口进行过采样。确定过采样时间窗口时首先需要监控励磁信号并确定过采样开始时间,也可以直接监控励磁信号并确定过采样结束时间,也可以另外在过采样开始时间的基础上进行计时来确定过采样结束时间。相对于采用价格昂贵的高精度转换器,本申请实施例仅增加一个控制电路,通过控制电路4控制励磁信号和转换器3即可实现高精度采样,简单方便,且成本很低,在此情形下,转换器3采用较低位数的ADC即可满足高精度采样。
本申请实施例励磁电路1用于产生励磁信号;传感器2与励磁电路1电连接,在励磁信号的激励下,当导电流体流动时,传感器2能够产生感应电压信号;转换器3与传感器2连接,用于对感应电压信号进行过采样;控制电路2分别与励磁电路1和转换器3电连接,用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器3在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。由于控制电路4能够通过监控励磁信号确定过采样开始时间是否到达,能够简单方便确定过采样时间窗口;在到达时下达控制指令使转换器3在过采样时间窗口对感应电压信号进行过采样,能够在过采样时间窗口实现过采样,过采样即为多次采样,通过多次采样取平均值的方式能够实现高精度采样,从而能够提高信噪比,增加转换器的有效位数,因此无需使用价格昂贵的 高精度转换器、而使用较低位数的转换器也能够实现高精度采样,通过这种方式,能够减低成本。
下面详细说明控制电路具体是如何对励磁信号进行监控以及如何实现。
在一实施例中,控制电路4用于监控励磁信号,当监控到当前过采样开始时间到达时,下达控制指令使转换器3开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使转换器3停止过采样。即在本实施例中,过采样时间窗口的过采样开始时间和过采样结束时间均通过监控励磁信号确定,简单方便。
进一步,控制电路4还控制转换器3进行当前过采样的转换。由于过采样只是在过采样时间窗口进行,控制电路4还控制转换器3进行当前过采样的转换,能够避免多余无用的转换,减少功耗。
具体地,由于转换器3完成一次从模拟信号转换到数字信号的转换需要时间,即从采样到得到转换结果是有延迟时间的。为了采样后即刻能够得到转换结果,可以将开始转换的时间提前,根据延迟时间确定当前过采样的转换开始时间,通过这种方式,能够在采样即刻得到转换结果。即控制电路4监控励磁信号,当监控到当前过采样的转换开始时间到达时,下达控制指令使转换器3开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取转换器对当前过采样的转换结果。
在一应用中对于方形波励磁信号,监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使转换器3开始当前过采样的转换。
为了避免监控出现意外问题或者采样出现意外,避免在过采样时间窗口之外错误采样,当监控到每次采样结束时,根据在本次的采样时间窗口内励磁信号,确定读取的转换器3对本次采样的转换结果是否出错。
具体地,若本次的采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
通过上述方式,能够保证错误的采样及时丢弃,保证采样正确性,提前避免错误采样影响最终的结果,从而为保证测量结果的准确性提供支持。
控制电路4在具体实现上述监控时,在一实施例中通过三个简单低廉的定 时器即可。参见图4,控制电路4包括第一定时器41、第二定时器42以及第三定时器43,第一定时器41与励磁电路1连接,第二定时器42和第三定时器43分别与第一定时器41连接,通过这种方式能够保证第一定时器41、第二定时器42以及第三定时器42在时间上同步,也能够减少第二定时器42以及第三定时器42多余的消耗。当然,第一定时器41、第二定时器42以及第三定时器42可以分别独立,在起始时保持同步后续也一直同步。控制电路4通过第一定时器41监控励磁信号,通过第二定时器42控制转换器3的起始采样和结束采样,通过第三定时器43控制转换器3的起始转换、转换器3的转换结果的起始读取以及采样是否出错的判断。其中,第二定时器42以及第三定时器42可以直接与转换器3连接,也可以增加控制器,通过控制器与转换器3连接。
结合图5为例说明控制过程。第一定时器41监控方波励磁信号,方波励磁信号上的圆圈代表过采样时间窗口,通过第二定时器42控制转换器3的起始采样和结束采样,通过第三定时器43控制转换器3的起始转换、转换器3的转换结果的起始读取以及采样是否出错的判断。过采样时间窗口的过采样开始时间对应时间点B,过采样结束时间对应时间点C,励磁变换的时间是时间点A,将过采样时间窗口放大,在时间点A转换器开始转换,在时间点B开始读取转换器的转换结果,在时间点C进行采样是否出错的判断。当第一定时器41监控到励磁信号的时间点A时,指示第三定时器43,即可控制转换器在时间点A开始转换,第三定时器43以时间点A为起点可以计时,分别获得时间点B和时间点C,分别控制转换器3的转换结果的起始读取以及采样是否出错的判断。当第一定时器41监控到励磁信号的时间点B时,指示第二定时器42,即可控制转换器3的起始采样,第二定时器42以时间点B为起点可以计时,获得时间点C,控制转换器3的结束采样。
在其他应用中,为了实现上述微秒级过采样的控制,也可以采样一个定时器多个通道进行级联来控制上述时序。
为了实现控制指令的高实时性,可以将关键性控制指令放读取速度快的内存中。即控制电路还包括高速缓冲存储器,紧致耦合存储器或核心耦合存储器,控制指令存放在高速缓冲存储器,紧致耦合存储器或核心耦合存储器中。当然, 实现控制指令的高实时性也可以采用其他加速方式。
为了避免被其他中断打断,从而影响测量精度,在本实施例中控制指令的中断优先级设置为最高。
本申请还提供一种电磁流量计的控制方法,该方法适用于如上任一项的电磁流量计,有关本申请实施例控制方法的相关详细说明请参见上述电磁流量计的相关内容,在此不再赘叙。
参见图6,该方法包括:
步骤S101:监控励磁信号确定过采样开始时间是否到达。
步骤S102:在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
本申请实施例由于通过监控励磁信号确定过采样开始时间是否到达,能够简单方便确定过采样时间窗口;在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,能够在过采样时间窗口实现过采样,过采样即为多次采样,通过多次采样取平均值的方式能够实现高精度采样,从而能够提高信噪比,增加转换器的有效位数,因此无需使用价格昂贵的高精度转换器、而使用较低位数的转换器也能够实现高精度采样,通过这种方式,能够减低成本。
其中,步骤S102中在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,可以包括:当监控到当前过采样开始时间到达时,下达控制指令使转换器开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使转换器停止过采样。
其中,该方法还包括:控制转换器进行当前过采样的转换。
其中,控制转换器进行当前过采样的转换,还可以包括:当监控到当前过采样的转换开始时间到达时,下达控制指令使转换器开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取转换器对当前过采样的转换结果。
其中,当监控到当前过采样的转换开始时间到达时,下达控制指令使转换器开始当前过采样的转换,还可以包括:监控到低电平励磁信号向高电平励磁 信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使转换器开始当前过采样的转换。
其中,该方法还包括:当监控到每次采样结束时,根据在本次的采样时间窗口内励磁信号,确定读取的转换器对本次采样的转换结果是否出错。
具体地,若本次的采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
本申请还提供一种喷洒系统,该喷洒系统包括如上任一项的电磁流量计,相关内容的详细说明请参见上述电磁流量计的内容部分,在此不再赘叙。
该电磁流量计包括:励磁电路,用于产生励磁信号;传感器,与励磁电路电连接,在励磁信号的激励下,当导电流体流动时,传感器能够产生感应电压信号;转换器,与传感器连接,转换器用于对感应电压信号进行过采样;控制电路,分别与励磁电路和转换器电连接,控制电路用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
本申请实施例励磁电路用于产生励磁信号;传感器与励磁电路电连接,在励磁信号的激励下,当导电流体流动时,传感器能够产生感应电压信号;转换器与传感器连接,用于对感应电压信号进行过采样;控制电路分别与励磁电路和转换器电连接,用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。由于控制电路能够通过监控励磁信号确定过采样开始时间是否到达,能够简单方便确定过采样时间窗口;在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,能够在过采样时间窗口实现过采样,过采样即为多次采样,通过多次采样取平均值的方式能够实现高精度采样,从而能够提高信噪比,增加转换器的有效位数,因此无需使用价格昂贵的高精度转换器、而使用较低位数的转换器也能够实现高精度采样,通过这种方式,能够减低成本。
其中,喷洒系统还包括:储液箱、分流器、液泵以及喷头,导电流体沿储液箱、分流器、电磁流量计、液泵以及喷头的路径流动。
其中,励磁信号包括方波励磁信号。
其中,方波励磁信号为单向励磁信号或双向励磁信号。
其中,过采样时间窗口是根据感应电压信号趋于平稳的时间窗口确定的。
其中,过采样时间窗口包括高电平励磁信号对应的过采样时间窗口和低电平励磁信号对应的过采样时间窗口。
其中,控制电路用于监控励磁信号,当监控到当前过采样开始时间到达时,下达控制指令使转换器开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使转换器停止过采样。
其中,控制电路还控制转换器进行当前过采样的转换。
其中,控制电路用于监控励磁信号,当监控到当前过采样的转换开始时间到达时,下达控制指令使转换器开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取转换器对当前过采样的转换结果。
其中,监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使转换器开始当前过采样的转换。
其中,当监控到每次采样结束时,根据在本次的采样时间窗口内励磁信号,确定读取的转换器对本次采样的转换结果是否出错。
其中,若本次的采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
其中,控制电路包括第一定时器、第二定时器以及第三定时器,第一定时器与励磁电路连接,第二定时器和第三定时器分别与第一定时器连接,控制电路通过第一定时器监控励磁信号,通过第二定时器控制转换器的起始采样和结束采样,通过第三定时器控制转换器的起始转换、转换器的转换结果的起始读取以及采样是否出错的判断。
其中,控制电路还包括高速缓冲存储器,紧致耦合存储器或核心耦合存储器,控制指令存放在高速缓冲存储器,紧致耦合存储器或核心耦合存储器中。
其中,控制指令的中断优先级设置为最高。
本申请还提供一种农用无人飞行器,该农用无人飞行器包括喷洒系统,该喷洒系统包括如上任一项的电磁流量计,相关内容的详细说明请参见上述电磁 流量计内容部分,在此不再赘叙。
该电磁流量计包括:励磁电路,用于产生励磁信号;传感器,与励磁电路电连接,在励磁信号的激励下,当导电流体流动时,传感器能够产生感应电压信号;转换器,与传感器连接,转换器用于对感应电压信号进行过采样;控制电路,分别与励磁电路和转换器电连接,控制电路用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
本申请实施例励磁电路用于产生励磁信号;传感器与励磁电路电连接,在励磁信号的激励下,当导电流体流动时,传感器能够产生感应电压信号;转换器与传感器连接,用于对感应电压信号进行过采样;控制电路分别与励磁电路和转换器电连接,用于通过监控励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,过采样时间窗口是采样开始时间和过采样结束时间之间的时间窗口。由于控制电路能够通过监控励磁信号确定过采样开始时间是否到达,能够简单方便确定过采样时间窗口;在到达时下达控制指令使转换器在过采样时间窗口对感应电压信号进行过采样,能够在过采样时间窗口实现过采样,过采样即为多次采样,通过多次采样取平均值的方式能够实现高精度采样,从而能够提高信噪比,增加转换器的有效位数,因此无需使用价格昂贵的高精度转换器、而使用较低位数的转换器也能够实现高精度采样,通过这种方式,能够减低成本。
其中,喷洒系统还包括:储液箱、分流器、液泵以及喷头,导电流体沿储液箱、分流器、电磁流量计、液泵以及喷头的路径流动。
其中,励磁信号包括方波励磁信号。
其中,方波励磁信号为单向励磁信号或双向励磁信号。
其中,过采样时间窗口是根据感应电压信号趋于平稳的时间窗口确定的。
其中,过采样时间窗口包括高电平励磁信号对应的过采样时间窗口和低电平励磁信号对应的过采样时间窗口。
其中,控制电路用于监控励磁信号,当监控到当前过采样开始时间到达时,下达控制指令使转换器开始进行过采样,当监控到当前过采样结束时间到达 时,下达控制指令使转换器停止过采样。
其中,控制电路还控制转换器进行当前过采样的转换。
其中,控制电路用于监控励磁信号,当监控到当前过采样的转换开始时间到达时,下达控制指令使转换器开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取转换器对当前过采样的转换结果。
其中,监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使转换器开始当前过采样的转换。
其中,当监控到每次采样结束时,根据在本次的采样时间窗口内励磁信号,确定读取的转换器对本次采样的转换结果是否出错。
其中,若本次的采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
其中,控制电路包括第一定时器、第二定时器以及第三定时器,第一定时器与励磁电路连接,第二定时器和第三定时器分别与第一定时器连接,控制电路通过第一定时器监控励磁信号,通过第二定时器控制转换器的起始采样和结束采样,通过第三定时器控制转换器的起始转换、转换器的转换结果的起始读取以及采样是否出错的判断。
其中,控制电路还包括高速缓冲存储器,紧致耦合存储器或核心耦合存储器,控制指令存放在高速缓冲存储器,紧致耦合存储器或核心耦合存储器中。
其中,控制指令的中断优先级设置为最高。
应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种电磁流量计,其特征在于,包括:
    励磁电路,用于产生励磁信号;
    传感器,与所述励磁电路电连接,在所述励磁信号的激励下,当导电流体流动时,所述传感器能够产生感应电压信号;
    转换器,与所述传感器连接,所述转换器用于对所述感应电压信号进行过采样;
    控制电路,分别与所述励磁电路和所述转换器电连接,所述控制电路用于通过监控所述励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
  2. 根据权利要求1所述的电磁流量计,其特征在于,所述励磁信号包括方波励磁信号。
  3. 根据权利要求2所述的电磁流量计,其特征在于,所述方波励磁信号为单向励磁信号或双向励磁信号。
  4. 根据权利要求2所述的电磁流量计,其特征在于,所述过采样时间窗口是根据所述感应电压信号趋于平稳的时间窗口确定的。
  5. 根据权利要求4所述的电磁流量计,其特征在于,所述过采样时间窗口包括高电平励磁信号对应的过采样时间窗口和低电平励磁信号对应的过采样时间窗口。
  6. 根据权利要求1所述的电磁流量计,其特征在于,所述控制电路用于监控所述励磁信号,当监控到当前过采样开始时间到达时,下达控制指令使所述转换器开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使所述转换器停止过采样。
  7. 根据权利要求6所述的电磁流量计,其特征在于,所述控制电路还控制所述转换器进行当前过采样的转换。
  8. 根据权利要求7所述的电磁流量计,其特征在于,所述控制电路用于监控所述励磁信号,当监控到当前过采样的转换开始时间到达时,下达控制指 令使所述转换器开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取所述转换器对当前过采样的转换结果。
  9. 根据权利要求8所述的电磁流量计,其特征在于,监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使所述转换器开始当前过采样的转换。
  10. 根据权利要求8所述的电磁流量计,其特征在于,当监控到每次采样结束时,根据在本次的所述采样时间窗口内所述励磁信号,确定读取的所述转换器对本次采样的转换结果是否出错。
  11. 根据权利要求10所述的电磁流量计,其特征在于,若本次的所述采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
  12. 根据权利要求7-11任一项所述的电磁流量计,其特征在于,所述控制电路包括第一定时器、第二定时器以及第三定时器,所述第一定时器与所述励磁电路连接,所述第二定时器和所述第三定时器分别与所述第一定时器连接,所述控制电路通过所述第一定时器监控所述励磁信号,通过所述第二定时器控制所述转换器的起始采样和结束采样,通过所述第三定时器控制所述转换器的起始转换、所述转换器的转换结果的起始读取以及采样是否出错的判断。
  13. 根据权利要求1-12任一项所述的电磁流量计,其特征在于,所述控制电路还包括高速缓冲存储器,紧致耦合存储器或核心耦合存储器,所述控制指令存放在所述高速缓冲存储器,紧致耦合存储器或核心耦合存储器中。
  14. 根据权利要求13所述的电磁流量计,其特征在于,所述控制指令的中断优先级设置为最高。
  15. 一种电磁流量计的控制方法,其特征在于,所述方法适用于如权利要求1-14任一项所述的电磁流量计,所述方法包括:
    监控所述励磁信号确定过采样开始时间是否到达;
    在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
  16. 根据权利要求15所述的方法,其特征在于,所述在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,包括:
    当监控到当前过采样开始时间到达时,下达控制指令使所述转换器开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使所述转换器停止过采样。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    控制所述转换器进行当前过采样的转换。
  18. 根据权利要求17所述的方法,其特征在于,所述控制所述转换器进行当前过采样的转换,包括:
    当监控到当前过采样的转换开始时间到达时,下达控制指令使所述转换器开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取所述转换器对当前过采样的转换结果。
  19. 根据权利要求18所述的方法,其特征在于,所述当监控到当前过采样的转换开始时间到达时,下达控制指令使所述转换器开始当前过采样的转换,包括:
    监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使所述转换器开始当前过采样的转换。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    当监控到每次采样结束时,根据在本次的所述采样时间窗口内所述励磁信号,确定读取的所述转换器对本次采样的转换结果是否出错。
  21. 根据权利要求20所述的方法,其特征在于,所述根据在本次的所述采样时间窗口内所述励磁信号,确定读取的所述转换器对本次采样的转换结果是否出错,包括:
    若本次的所述采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
  22. 一种喷洒系统,其特征在于,所述喷洒系统包括电磁流量计,所述电磁流量计包括:
    励磁电路,用于产生励磁信号;
    传感器,与所述励磁电路电连接,在所述励磁信号的激励下,当导电流体流动时,所述传感器能够产生感应电压信号;
    转换器,与所述传感器连接,所述转换器用于对所述感应电压信号进行过采样;
    控制电路,分别与所述励磁电路和所述转换器电连接,所述控制电路用于通过监控所述励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
  23. 根据权利要求22所述的喷洒系统,其特征在于,所述喷洒系统还包括:储液箱、分流器、液泵以及喷头,所述导电流体沿储液箱、分流器、电磁流量计、液泵以及喷头的路径流动。
  24. 根据权利要求22所述的喷洒系统,其特征在于,所述励磁信号包括方波励磁信号。
  25. 根据权利要求24所述的喷洒系统,其特征在于,所述方波励磁信号为单向励磁信号或双向励磁信号。
  26. 根据权利要求24所述的喷洒系统,其特征在于,所述过采样时间窗口是根据所述感应电压信号趋于平稳的时间窗口确定的。
  27. 根据权利要求26所述的喷洒系统,其特征在于,所述过采样时间窗口包括高电平励磁信号对应的过采样时间窗口和低电平励磁信号对应的过采样时间窗口。
  28. 根据权利要求22所述的喷洒系统,其特征在于,所述控制电路用于监控所述励磁信号,当监控到当前过采样开始时间到达时,下达控制指令使所述转换器开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使所述转换器停止过采样。
  29. 根据权利要求28所述的喷洒系统,其特征在于,所述控制电路还控制所述转换器进行当前过采样的转换。
  30. 根据权利要求29所述的喷洒系统,其特征在于,所述控制电路用于监控所述励磁信号,当监控到当前过采样的转换开始时间到达时,下达控制指令使所述转换器开始当前过采样的转换,当监控到当前过采样开始时间到达 时,开始读取所述转换器对当前过采样的转换结果。
  31. 根据权利要求30所述的喷洒系统,其特征在于,监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使所述转换器开始当前过采样的转换。
  32. 根据权利要求30所述的喷洒系统,其特征在于,当监控到每次采样结束时,根据在本次的所述采样时间窗口内所述励磁信号,确定读取的所述转换器对本次采样的转换结果是否出错。
  33. 根据权利要求32所述的喷洒系统,其特征在于,若本次的所述采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
  34. 根据权利要求29-33任一项所述的喷洒系统,其特征在于,所述控制电路包括第一定时器、第二定时器以及第三定时器,所述第一定时器与所述励磁电路连接,所述第二定时器和所述第三定时器分别与所述第一定时器连接,所述控制电路通过所述第一定时器监控所述励磁信号,通过所述第二定时器控制所述转换器的起始采样和结束采样,通过所述第三定时器控制所述转换器的起始转换、所述转换器的转换结果的起始读取以及采样是否出错的判断。
  35. 根据权利要求22-34任一项所述的喷洒系统,其特征在于,所述控制电路还包括高速缓冲存储器,紧致耦合存储器或核心耦合存储器,所述控制指令存放在所述高速缓冲存储器,紧致耦合存储器或核心耦合存储器中。
  36. 根据权利要求35所述的喷洒系统,其特征在于,所述控制指令的中断优先级设置为最高。
  37. 一种农用无人飞行器,其特征在于,所述农用无人飞行器包括喷洒系统,所述喷洒系统包括电磁流量计,所述电磁流量计包括:
    励磁电路,用于产生励磁信号;
    传感器,与所述励磁电路电连接,在所述励磁信号的激励下,当导电流体流动时,所述传感器能够产生感应电压信号;
    转换器,与所述传感器连接,所述转换器用于对所述感应电压信号进行过采样;
    控制电路,分别与所述励磁电路和所述转换器电连接,所述控制电路用于通过监控所述励磁信号确定过采样开始时间是否到达,在到达时下达控制指令使所述转换器在过采样时间窗口对所述感应电压信号进行过采样,所述过采样时间窗口是过采样开始时间和过采样结束时间之间的时间窗口。
  38. 根据权利要求37所述的农用无人飞行器,其特征在于,所述喷洒系统还包括:储液箱、分流器、液泵以及喷头,所述导电流体沿储液箱、分流器、电磁流量计、液泵以及喷头的路径流动。
  39. 根据权利要求37所述的农用无人飞行器,其特征在于,所述励磁信号包括方波励磁信号。
  40. 根据权利要求39所述的农用无人飞行器,其特征在于,所述方波励磁信号为单向励磁信号或双向励磁信号。
  41. 根据权利要求39所述的农用无人飞行器,其特征在于,所述过采样时间窗口是根据所述感应电压信号趋于平稳的时间窗口确定的。
  42. 根据权利要求41所述的农用无人飞行器,其特征在于,所述过采样时间窗口包括高电平励磁信号对应的过采样时间窗口和低电平励磁信号对应的过采样时间窗口。
  43. 根据权利要求37所述的农用无人飞行器,其特征在于,所述控制电路用于监控所述励磁信号,当监控到当前过采样开始时间到达时,下达控制指令使所述转换器开始进行过采样,当监控到当前过采样结束时间到达时,下达控制指令使所述转换器停止过采样。
  44. 根据权利要求43所述的农用无人飞行器,其特征在于,所述控制电路还控制所述转换器进行当前过采样的转换。
  45. 根据权利要求44所述的农用无人飞行器,其特征在于,所述控制电路用于监控所述励磁信号,当监控到当前过采样的转换开始时间到达时,下达控制指令使所述转换器开始当前过采样的转换,当监控到当前过采样开始时间到达时,开始读取所述转换器对当前过采样的转换结果。
  46. 根据权利要求45所述的农用无人飞行器,其特征在于,监控到低电平励磁信号向高电平励磁信号变换的起始时间到达时或者监控到高电平励磁信号向低电平励磁信号变换的起始时间到达时,下达控制指令使所述转换器开 始当前过采样的转换。
  47. 根据权利要求45所述的农用无人飞行器,其特征在于,当监控到每次采样结束时,根据在本次的所述采样时间窗口内所述励磁信号,确定读取的所述转换器对本次采样的转换结果是否出错。
  48. 根据权利要求47所述的农用无人飞行器,其特征在于,若本次的所述采样时间窗口对应的励磁信号没有发生改变,确定采样正确,否则,确定采样出错,并丢弃此次采样。
  49. 根据权利要求44-48任一项所述的农用无人飞行器,其特征在于,所述控制电路包括第一定时器、第二定时器以及第三定时器,所述第一定时器与所述励磁电路连接,所述第二定时器和所述第三定时器分别与所述第一定时器连接,所述控制电路通过所述第一定时器监控所述励磁信号,通过所述第二定时器控制所述转换器的起始采样和结束采样,通过所述第三定时器控制所述转换器的起始转换、所述转换器的转换结果的起始读取以及采样是否出错的判断。
  50. 根据权利要求37-49任一项所述的农用无人飞行器,其特征在于,所述控制电路还包括高速缓冲存储器,紧致耦合存储器或核心耦合存储器,所述控制指令存放在所述高速缓冲存储器,紧致耦合存储器或核心耦合存储器中。
  51. 根据权利要求50所述的农用无人飞行器,其特征在于,所述控制指令的中断优先级设置为最高。
PCT/CN2019/115456 2019-11-04 2019-11-04 电磁流量计、控制方法、喷洒系统及农用无人飞行器 WO2021087704A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/115456 WO2021087704A1 (zh) 2019-11-04 2019-11-04 电磁流量计、控制方法、喷洒系统及农用无人飞行器
CN201980034069.7A CN112166306A (zh) 2019-11-04 2019-11-04 电磁流量计、控制方法、喷洒系统及农用无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115456 WO2021087704A1 (zh) 2019-11-04 2019-11-04 电磁流量计、控制方法、喷洒系统及农用无人飞行器

Publications (1)

Publication Number Publication Date
WO2021087704A1 true WO2021087704A1 (zh) 2021-05-14

Family

ID=73860468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115456 WO2021087704A1 (zh) 2019-11-04 2019-11-04 电磁流量计、控制方法、喷洒系统及农用无人飞行器

Country Status (2)

Country Link
CN (1) CN112166306A (zh)
WO (1) WO2021087704A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186373B (en) * 1986-02-06 1990-06-06 Danfoss As Electromagnetic flowmeters and flowmetering methods
CN103759862A (zh) * 2014-01-07 2014-04-30 安徽润尔兴仪表有限公司 一种集散式电磁冷热量计量系统和方法
CN104236645A (zh) * 2014-09-30 2014-12-24 四川泛华航空仪表电器有限公司 智能磁感应流量传感器
WO2016041723A1 (de) * 2014-09-17 2016-03-24 Endress+Hauser Flowtec Ag Magnetisch-induktives durchflussmessgerät mit einem vierspulen-magnetsystem
CN105865547A (zh) * 2015-02-05 2016-08-17 因文西斯系统公司 电磁流量计及其使用方法
CN106066641A (zh) * 2015-04-24 2016-11-02 横河电机株式会社 现场仪器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464171B (zh) * 2007-12-18 2010-12-01 深圳职业技术学院 一种超声波流量检测方法
CN101893465B (zh) * 2010-06-30 2012-07-11 合肥工业大学 一种基于dsp的电磁流量计信号处理系统
CN102128652B (zh) * 2011-02-22 2012-11-07 上海天石测控设备有限公司 一种混频励磁电磁流量转换器
US9207683B2 (en) * 2012-01-20 2015-12-08 Infineon Technologies Austria Ag Flow meter device and method of operation
CN107218979A (zh) * 2017-07-28 2017-09-29 广东青藤环境科技有限公司 低功耗电磁水表转换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186373B (en) * 1986-02-06 1990-06-06 Danfoss As Electromagnetic flowmeters and flowmetering methods
CN103759862A (zh) * 2014-01-07 2014-04-30 安徽润尔兴仪表有限公司 一种集散式电磁冷热量计量系统和方法
WO2016041723A1 (de) * 2014-09-17 2016-03-24 Endress+Hauser Flowtec Ag Magnetisch-induktives durchflussmessgerät mit einem vierspulen-magnetsystem
CN104236645A (zh) * 2014-09-30 2014-12-24 四川泛华航空仪表电器有限公司 智能磁感应流量传感器
CN105865547A (zh) * 2015-02-05 2016-08-17 因文西斯系统公司 电磁流量计及其使用方法
CN106066641A (zh) * 2015-04-24 2016-11-02 横河电机株式会社 现场仪器

Also Published As

Publication number Publication date
CN112166306A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
US5372046A (en) Vortex flowmeter electronics
US9696188B2 (en) Magnetic flowmeter with automatic adjustment based on sensed complex impedance
JP2011528110A (ja) 流動媒体の誘導導電率測定の方法およびデバイス
CN103852637B (zh) 具有基波计量功能的智能电表及其测量方法
CN111595233A (zh) 一种无磁传感器
WO2021087704A1 (zh) 电磁流量计、控制方法、喷洒系统及农用无人飞行器
JP5023836B2 (ja) 2線式フィールド機器
CN204679129U (zh) 一种新型的电磁流量计
CN204679127U (zh) 一种电磁流量计
CN203642970U (zh) 智能磁致伸缩明渠流量计
RU2631916C1 (ru) Способ контроля измерения расхода текучих сред электромагнитным расходомером
US6834555B2 (en) Magnetoinductive flow measuring method
CN106404085B (zh) 一种超声波流量计
CN110207770B (zh) 一种可识别干扰及位置的线圈感应式水表
CN109186692A (zh) 电磁流量计的电磁流量信号的dsp处理方法
JP3965130B2 (ja) 磁気誘導流量測定方法
CN204228214U (zh) 一种智能型电磁流量计
CN212158462U (zh) 无磁传感器
CN204202661U (zh) 一种应用双激励式电磁流量计
CN104266696A (zh) 一种高精度智能型电磁流量计
CN214256621U (zh) 一种基于无线wia-pa电池供电的电磁流量计设备
CN210426651U (zh) 一种恒流控制电路及质量流量计
CN214224222U (zh) 一种涡轮流量计
CN216246559U (zh) 一种浮子流量计指针轴系阻尼装置
JPH01288724A (ja) 電磁流量計の電極汚れ検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951887

Country of ref document: EP

Kind code of ref document: A1