WO2021085894A1 - Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof - Google Patents

Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof Download PDF

Info

Publication number
WO2021085894A1
WO2021085894A1 PCT/KR2020/013964 KR2020013964W WO2021085894A1 WO 2021085894 A1 WO2021085894 A1 WO 2021085894A1 KR 2020013964 W KR2020013964 W KR 2020013964W WO 2021085894 A1 WO2021085894 A1 WO 2021085894A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium secondary
styrene
butadiene
binder composition
Prior art date
Application number
PCT/KR2020/013964
Other languages
French (fr)
Korean (ko)
Inventor
이성진
손정만
류동조
한선희
한정섭
강민아
우정은
최철훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200131978A external-priority patent/KR20210052240A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20880581.2A priority Critical patent/EP3883023B1/en
Priority to CN202080006435.0A priority patent/CN113474923B/en
Priority to US17/299,613 priority patent/US20220020992A1/en
Priority to PL20880581.2T priority patent/PL3883023T3/en
Publication of WO2021085894A1 publication Critical patent/WO2021085894A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode binder material for a lithium secondary battery, and a negative electrode binder including a cured product thereof.
  • the negative electrode of the lithium secondary battery may include a negative electrode active material that stores lithium ions during charging and releases them during discharge; A conductive material for securing an electrically conductive path while filling a space that cannot be filled by the negative active material; It is composed of a binder that physically couples these to the current collector.
  • the negative electrode binder plays an important role in physically stabilizing the negative electrode by buffering the volume change of the negative electrode active material during repetitive charging and discharging of the battery, in addition to the role of physically bonding the negative electrode active material and the conductive material.
  • negative electrode binders e.g., styrene-butadiene-based polymers, styrene-acrylate-based polymers, etc.
  • styrene-butadiene-based polymers e.g., styrene-butadiene-based polymers, styrene-acrylate-based polymers, etc.
  • problems such as deterioration of the negative electrode due to weakening of the bonding force during repeated charging and discharging of the battery and not being able to buffer the volume change of the negative electrode active material.
  • the present invention as a prerequisite for improving the performance of a lithium secondary battery, it is intended to provide a raw material that can be converted into a negative electrode binder having heat resistance, chemical resistance, excellent bonding strength and durability.
  • a vulcanization accelerator including a metal-organic framework (MOF); Styrene-butadiene-based copolymer; And it provides a negative electrode binder material for a lithium secondary battery comprising a sulfur molecule (S 8 ).
  • MOF metal-organic framework
  • S 8 sulfur molecule
  • the negative electrode binder raw material of the above embodiment may be cured while being applied to the negative electrode current collector to exhibit excellent properties such as heat resistance, chemical resistance, and mechanical properties.
  • the negative electrode binder converted from the raw material of the above embodiment is not denatured or destroyed even when high temperature is applied when manufacturing the negative electrode and the electrode assembly including the same, and side reactions with the electrolyte in the battery are suppressed, and the battery is repeatedly charged and discharged. It can contribute to improving the performance of a lithium secondary battery by maintaining excellent bonding strength and effectively buffering the volume change of the negative active material.
  • copolymerization may mean block copolymerization, random copolymerization, graft copolymerization or alternating copolymerization
  • copolymer refers to block copolymer, random copolymer, graft copolymer or alternating copolymer It can mean consolidation.
  • a material for a negative electrode binder for a lithium secondary battery comprising a vulcanization accelerator including a metal-organic framework (MOF) is provided.
  • MOF metal-organic framework
  • the styrene-butadiene-based copolymer is a polymer having a chain structure including a styrene repeating unit and a butadiene repeating unit, and a sulfur molecule (S 8 ) is a vulcanization reaction with the styrene-butadiene-based copolymer. This is a possible vulcanizing agent.
  • Vulcanization refers to a reaction forming a cured product having a network structure by forming a crosslinked bond including an S-S bond within a polymer chain and between different polymer chains.
  • the styrene-butadiene-based copolymer and the raw material composed of only sulfur molecules can undergo a vulcanization reaction only when a high temperature of about 159° C. or higher is applied.
  • sulfur molecule (S 8 ) is an octagonal ring-shaped molecule, and can be polymerized (ie, vulcanized) in the styrene-butadiene-based copolymer only by ring-opening at a temperature of about 159° C. or higher to form a radical.
  • the melting point of the styrene-butadiene-based copolymer is about 160 to 200 °C, and is denatured or destroyed at a higher temperature, so that the vulcanization reaction proceeds slowly, and the physical properties of the vulcanization reaction product may be deteriorated.
  • sulfur is activated using a vulcanization accelerator such as N,N-dicyclohexyl-2-benzothiazolesulfenamide (N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS) or ZnO. It is known to change the state and promote vulcanization.
  • a vulcanization accelerator such as N,N-dicyclohexyl-2-benzothiazolesulfenamide (N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS) or ZnO.
  • a negative electrode binder material including a metal-organic framework (MOF) in addition to the styrene-butadiene-based copolymer and sulfur molecules, a negative electrode binder material including a metal-organic framework (MOF) has been provided.
  • MOF metal-organic framework
  • the metal-organic skeleton may include metal ions or clusters; And it is a two-dimensional or three-dimensional structure comprising an organic ligand coordinated thereto.
  • the metal-organic skeleton has its own pores due to the coordination of metals and organics, and the size and shape of the pores vary according to the type of the metal-organic skeleton. Due to the presence or absence of the pores in the vulcanization reaction, unreacted monomers enter and exit the pores during the vulcanization crosslinking reaction, and the polymer-polymer crosslinking reaction is more effectively performed than the polymer-unreacted monomer reaction.
  • the metal-organic skeleton selectively promotes crosslinking between polymer chains, thereby remarking its characteristics.
  • the metal-organic skeleton has its own pores, so the mobility of lithium ions during electrode manufacturing is improved. It can contribute to the improvement of battery performance.
  • the negative electrode binder raw material of the embodiment includes the vulcanization accelerator including the metal-organic framework (MOF), so that 70 to 90 applied for drying while applied to the negative electrode current collector It is rapidly cured by hot air at °C and can exhibit excellent properties such as heat resistance, chemical resistance, and mechanical properties.
  • MOF metal-organic framework
  • the binder converted from the negative electrode binder raw material of the above embodiment is not denatured or destroyed even when high temperature is applied when manufacturing the negative electrode and the electrode assembly including the same, and side reactions with the electrolyte in the battery are suppressed, and the battery is repeatedly charged. It can contribute to improving the performance of the lithium secondary battery by maintaining excellent bonding strength even during discharge and effectively buffering the volume change of the negative electrode active material.
  • ZnDBC is used alone as a vulcanization accelerator without the help of other vulcanization accelerators such as ZnO
  • there is a limit to increasing the degree of vulcanization (crosslinking) in this regard, one method is to increase the degree of vulcanization (crosslinking) by adding another vulcanization accelerator, such as ZnO, in addition to ZnDBC, if a cathode is desired that has a higher cathode adhesion and lower expansion rate while lowering the resistance of the cathode.
  • ZnO vulcanization accelerator
  • BDC Zn (1,4-Benzenedicarboxylate)
  • the styrene-butadiene-based copolymer is a copolymer having a chain structure including a styrene repeating unit and a butadiene repeating unit, and is not particularly limited as long as it can be converted into a network structure by a vulcanization reaction.
  • the styrene-butadiene-based copolymer is generally selectable from styrene-butadiene-based copolymers known as negative electrode binders, and includes an acrylic-styrene-butadiene copolymer, a styrene-butadiene polymer, or a mixture thereof. It may be, and may further include a butadiene polymer.
  • the styrene-butadiene-based copolymer may be commercially available or may be directly prepared and used.
  • styrene-butadiene-based copolymer When the styrene-butadiene-based copolymer is directly prepared and used, a monomer mixture comprising a styrene monomer and a butadiene monomer together with a polymerization initiator generally known in the art, and optionally an acrylic monomer, etc. By emulsion polymerization in, it can be prepared into a latex-type composition containing styrene-butadiene-based copolymer particles.
  • polymerization initiator paramenthane hydroperoxide (PMHP), potassium persulfate, sodium persulfate, ammonium persulfate, and sodium bisulfate At least one polymerization initiator selected from the group containing) may be used.
  • PMHP paramenthane hydroperoxide
  • potassium persulfate potassium persulfate
  • sodium persulfate sodium persulfate
  • ammonium persulfate sodium bisulfate
  • At least one polymerization initiator selected from the group containing may be used.
  • the sulfur molecule is 0.5 to 3 parts by weight, and the metal-organic skeleton may be blended so that 0.5 to 2 parts by weight. have.
  • a crosslinking bond including a disulfide bond is formed at an appropriate level within the styrene-butadiene-based copolymer chain and between different polymer chains, while promoting and reacting vulcanization by the metal-organic skeleton. Participation can take place effectively.
  • the blending of the raw materials may be changed according to the desired physical properties.
  • the lower limit of the content of the sulfur molecule is set to 0.05 or more, 0.1 or more, 0.5 or more, or 1 or more, and the upper limit is 5 or less, 3 or less, 1 or less, or It can be made 0.5 or less.
  • the lower limit of the content of the metal-organic skeleton may be 0.05 or more, 0.1 or more, 0.5 or more, or 1 or more, and the upper limit may be 4 or less, 2 or less, 1 or less, or 0.5 or less.
  • Vulcanization accelerators other than metal-organic skeletons Vulcanization accelerators other than metal-organic skeletons
  • a general vulcanization accelerator such as N,N-dicyclohexyl-2-benzothiazolesulfenamide (N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS), ZnO, etc. It is also possible to add.
  • the N,N-dicyclohexyl-2-benzothiazolesulfenamide is a kind of organic vulcanization accelerator, and generally reduces the amount of vulcanizing agent (i.e., the sulfur molecule) to the polymer, while increasing the vulcanization rate to increase the vulcanization time. It is known as a material that shortens the vulcanization temperature, reduces the vulcanization temperature, and improves heat resistance, chemical resistance, bonding strength, and durability of a vulcanization reaction product.
  • the zinc oxide is a kind of inorganic vulcanization accelerator, which promotes the initial vulcanization reaction of a polymer mainly containing -COOH, and is known as a material that assists the function of the organic vulcanization accelerator.
  • the N,N-dicyclohexyl-2-benzothiazolesulfenamide and the zinc oxide may be mixed and added.
  • styrene-butadiene-based copolymer based on 100 parts by weight of the styrene-butadiene-based copolymer, 0.5 to 2 parts by weight of the N,N-dicyclohexyl-2-benzothiazolesulfenamide is added, and 0.5 to 5 parts by weight of the zinc oxide It may be added partly, wherein the weight ratio of N,N-dicyclohexyl-2-benzothiazolesulfenamide and zinc oxide may be 1:3.5 to 1:5.
  • the vulcanization reaction rate of the styrene-butadiene-based copolymer and the sulfur molecule becomes faster, the vulcanization reaction temperature is lowered, the sulfur molecule remaining after the vulcanization reaction is reduced, and the physical properties of the vulcanization reaction product can be improved. have.
  • the type of the vulcanization accelerator and the amount of the vulcanization accelerator may be determined by comprehensively considering the type of the styrene-butadiene-based copolymer and the desired negative electrode binder characteristics.
  • the negative electrode binder material of the embodiment may further include water as a solvent.
  • sodium lauryl sulfate SLS
  • sodium laureth sulfate SLES
  • ammonium lauryl sulfate Ammonium Lauryl Sulfate, ALS
  • emulsifier selected from the group.
  • the emulsifier may be blended in an amount of 0.2 to 2 parts by weight.
  • Anode binder composition for lithium secondary battery is anode binder composition for lithium secondary battery
  • a vulcanization accelerator including a metal-organic framework (MOF); containing, a negative electrode binder composition for a lithium secondary battery to provide.
  • MOF metal-organic framework
  • the styrene-butadiene-based copolymer vulcanized in the presence of a vulcanization accelerator including the metal-organic framework (MOF) is vulcanized in the presence of a vulcanization accelerator without the styrene-butadiene-based copolymer.
  • MOF metal-organic framework
  • the metal-organic skeleton has its own pores due to a coordination bond between metals and organics, and the size and shape of the pores vary according to the type of the metal-organic skeleton. Due to the presence or absence of the pores in the vulcanization reaction, unreacted monomers enter and exit the pores during the vulcanization (crosslinking) reaction, so that the polymer-polymer crosslinking reaction can be more effectively performed than the polymer-unreacted monomer reaction.
  • the metal-organic skeleton selectively promotes crosslinking between polymer chains, thereby remarking its properties.
  • the metal-organic skeleton has its own pores, so the mobility of lithium ions in the negative electrode including them is As a result, it can contribute to an increase in the CC (Constant Current) section compared to the capacity of the lithium secondary battery while lowering the internal resistance of the negative electrode.
  • CC Constant Current
  • the binder composition of the embodiment is not denatured or destroyed even when high temperature is applied in the manufacturing process of the negative electrode and the electrode assembly including the same, and side reactions with the electrolyte in the battery are suppressed, and excellent bonding strength even during repetitive charging and discharging of the battery.
  • By maintaining and effectively buffering the volume change of the negative active material it can contribute to improving the performance of the lithium secondary battery.
  • the metal-organic framework (MOF) is present in a bonded state with the vulcanized styrene-butadiene-based copolymer, or the vulcanized styrene-butadiene-based It can exist independently of the copolymer.
  • the styrene-butadiene-based copolymer in the process of vulcanizing the styrene-butadiene-based copolymer in the presence of the vulcanization accelerator including the metal-organic skeleton (MOF), the styrene-butadiene-based copolymer is vulcanized and at the same time, the metal-organic skeleton ( MOF) may be partially complexed with a styrene-butadiene-based copolymer.
  • MOF metal-organic skeleton
  • the structure of the metal-organic skeleton (MOF) is partially changed, allowing it to be complexed with the styrene-butadiene-based copolymer. have.
  • the catalyst efficiency is higher in the state of being complexed with the styrene-butadiene-based copolymer, and the vulcanization reaction can proceed more effectively.
  • the metal ions that participated in the vulcanization reaction may mostly return to the metal-organic skeleton (MOF) after the vulcanization reaction, but some may remain in an ionic state.
  • MOF metal-organic skeleton
  • the metal-organic framework (MOF) is present in a state independently mixed with the vulcanized styrene-butadiene-based copolymer, and a portion thereof is structurally changed and the vulcanized styrene- It can remain in a complexed state with a butadiene-based copolymer.
  • the negative electrode binder composition of the embodiment may have a gel content of 80% or more calculated by Equation 1 below:
  • M a is the negative electrode binder composition dried at room temperature for 24 hours and then dried at 80° C. for 24 hours to obtain a film-type binder composition, and the binder film was cut into a very pellet, and 0.5 g of the binder composition was prepared. It is the weight taken and measured,
  • M b is the negative electrode binder composition weighed by immersion in 50 g of THF (Tetrahydrofuran) for 24 hours or more, filtering through 200 Mesh, and drying the mesh and the negative electrode binder remaining in the mesh at 80° C. for 48 hours. It is the weight of the copolymer remaining in the mesh.
  • THF Tetrahydrofuran
  • the gel content refers to the degree of crosslinking of the copolymer, and is calculated as in Equation 1 and expressed as an insoluble fraction in the electrolyte.
  • the gel content in the negative electrode binder according to the embodiment may be 80% or more, 81% or more, or 82% or more. If the gel content is less than 80%, swelling of the electrolyte solution increases, and thus the life of the battery may be reduced.
  • the upper limit of the gel content is not particularly limited, but may be 99% or less, 98% or less, or 97% or less.
  • a vulcanization accelerator including a metal-organic framework (MOF)
  • MOF metal-organic framework
  • S 8 sulfur molecule
  • the vulcanization reaction may be carried out in a temperature range of 70 to 90 °C.
  • the temperature range for the vulcanization reaction is 70°C or more, or 71°C or more, or 72°C or more, or 73°C or more, or 74°C or more, or 75°C or more, while 90°C or less, or 89°C or less, or It can be adjusted within a range of 88°C or less, or 87°C or less, or 86°C or less, or 85°C or less.
  • the vulcanization reaction may be carried out for to 60 minutes.
  • the vulcanization reaction time is 1 minute or more, 3 minutes or more, 5 minutes or more, 7 minutes or more, or 9 minutes or more, and 60 minutes or less, 50 minutes or less, 40 minutes or less, 30 minutes or less, or 20 minutes or less. It can be adjusted within the range.
  • the vulcanization reaction may be performed in a state in which the negative electrode binder material is applied to the negative electrode current collector, as mentioned above.
  • the negative electrode binder material of the embodiment may include a negative electrode active material; Conductive material; Aqueous or non-aqueous solvents; It is prepared as a negative electrode slurry by mixing with etc., and is rapidly cured by hot air of 70 to 90°C applied for drying while applied on the negative electrode current collector, providing excellent properties such as heat resistance, chemical resistance, and mechanical properties. It can be an expressing negative electrode binder.
  • the vulcanization reaction may include applying heat to the negative active material slurry applied to one or both surfaces of the negative electrode current collector; And curing the anode binder material in the anode active material slurry by the heat.
  • the content of the negative electrode binder material may be 0.1 to 0.5% by weight, the content of the negative electrode active material may be 80 to 84% by weight, and the content of the binder may be 0.5 to 2.5% by weight And the balance may be an additive and a solvent.
  • the content of each substance can be adjusted according to common knowledge in the art.
  • the negative active material, the conductive material, the additive, and the like will be described later.
  • a negative electrode current collector In another embodiment of the present invention, a negative electrode current collector; And a styrene-butadiene-based copolymer, a negative electrode active material, and a conductive material vulcanized in the presence of a vulcanization accelerator located on the negative electrode current collector and including a metal-organic framework (MOF). It provides a negative electrode for a lithium secondary battery including a layer.
  • MOF metal-organic framework
  • the negative electrode of one embodiment includes a binder converted from the negative electrode binder raw material of the above-described embodiment, side reactions with the electrolyte solution in the battery are suppressed, and excellent bonding strength is maintained even during repetitive charging and discharging of the battery, and the volume of the negative electrode active material By effectively buffering the change, it can contribute to improving the performance of the lithium secondary battery.
  • the negative electrode active material layer is independently, the negative electrode active material is a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, doped with lithium, and It includes a material that can be undoped, or a transition metal oxide.
  • any carbon-based negative active material generally used in lithium ion secondary batteries may be used as a carbon material, and a representative example thereof is crystalline carbon.
  • Amorphous carbon, or a combination thereof may be used.
  • the crystalline carbon include graphite such as amorphous, plate-shaped, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon).
  • hard carbon, mesophase pitch carbide, and fired coke may be used.
  • the lithium metal alloy includes lithium and a metal of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, or Sn. Alloys can be used.
  • Materials capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-C composites, Si-Q alloys (where Q is an alkali metal, alkaline earth metal, group 13 to group 16 element , Transition metal, rare earth element or a combination thereof, and not Si), Sn, SnO 2 , Sn-C complex, Sn-R (the R is an alkali metal, alkaline earth metal, group 13 to group 16 element, transition metal, It is a rare earth element or a combination of these, and Sn is not), etc. are mentioned.
  • Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or combinations thereof.
  • transition metal oxide examples include vanadium oxide and lithium vanadium oxide.
  • the negative active material layer may include at least one carbon-based negative active material selected from artificial graphite, natural graphite, soft carbon, hard carbon, or a mixture thereof.
  • the negative active material layer may further include a conductive material.
  • the conductive material is used to impart conductivity to the electrode, and in the battery constituted, any material can be used as long as it does not cause chemical change and is an electronic conductive material, such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen Carbon-based materials such as black and carbon fiber; Metal-based materials such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
  • each of the negative electrode active material layers may independently include at least one selected from the group of carbon-based conductive materials including acetylene black, carbon black, ketjen black, carbon fiber, or a mixture thereof.
  • the conductive material is used to impart conductivity to the electrode, and any electronically conductive material can be used without causing a chemical change in the configured battery.
  • any electronically conductive material can be used without causing a chemical change in the configured battery.
  • natural graphite, artificial graphite, carbon black, acetylene black, ketjen black Carbon-based materials such as carbon fiber;
  • Metal-based materials such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers;
  • Conductive polymers such as polyphenylene derivatives;
  • a conductive material containing a mixture thereof may be used.
  • a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with a conductive metal, or a combination thereof may be used.
  • the cathode of the embodiment Electrolytes; And it provides a lithium secondary battery including a positive electrode.
  • the lithium secondary battery of the embodiment may further include a separator between the positive electrode and the negative electrode.
  • the lithium secondary battery may be classified into a cylindrical type, a square type, a coin type, a pouch type, etc. according to the shape to be used, and may be divided into a bulk type and a thin film type according to the size. Since the structure and manufacturing method of these batteries are widely known in this field, a minimum explanation will be added.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium (reitiated intercalation compound) may be used.
  • at least one of cobalt, manganese, nickel, or a composite oxide of lithium and a metal of a combination thereof may be used, and a specific example thereof may be a compound represented by any one of the following formulas.
  • Li a A 1-b R b D 2 (where 0.90 ⁇ a ⁇ 1.8 and 0 ⁇ b ⁇ 0.5); Li a E 1-b R b O 2-c D c (where 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, and 0 ⁇ c ⁇ 0.05); LiE 2-b R b O 4-c D c (where 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b R c D ⁇ (wherein, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05 and 0 ⁇ ⁇ 2); Li a Ni 1-bc Co b R c O 2- ⁇ Z ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05 and 0 ⁇ ⁇ 2); Li a Ni 1-bc Co b R c O 2- ⁇ Z 2 (wherein 0.90 ⁇ a ⁇ 1.8, 0
  • A is Ni, Co, Mn, or a combination thereof;
  • R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof;
  • D is O, F, S, P or a combination thereof;
  • E is Co, Mn, or a combination thereof;
  • Z is F, S, P or a combination thereof;
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof;
  • Q is Ti, Mo, Mn, or a combination thereof;
  • T is Cr, V, Fe, Sc, Y or a combination thereof;
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • the coating layer may include, as a coating element compound, oxide, hydroxide of a coating element, oxyhydroxide of a coating element, oxycarbonate of a coating element, or hydroxycarbonate of a coating element.
  • the compound constituting these coating layers may be amorphous or crystalline.
  • As a coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used.
  • the coating layer formation process is a method that does not adversely affect the physical properties of the positive electrode active material by using these elements in the compound (e.g., spray coating, dipping method, etc.), any coating method may be used.
  • any coating method may be used. The detailed description will be omitted because it can be well understood by those in the field.
  • the positive electrode active material layer also includes a binder and a conductive material.
  • the binder adheres well the positive electrode active material particles to each other, and also plays a role in attaching the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, diacetylcellulose, and polyvinyl Chloride, carboxylated polyvinylchloride, polyvinylfluoride, polymer containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene- Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but the present invention is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and in the battery constituted, any material can be used as long as it does not cause chemical change and is an electronic conductive material, such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen Metal powders such as black, carbon fiber, copper, nickel, aluminum, and silver, metal fibers, etc. may be used, and conductive materials such as polyphenylene derivatives may be used alone or in combination of one or more.
  • an electronic conductive material such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen Metal powders such as black, carbon fiber, copper, nickel, aluminum, and silver, metal fibers, etc.
  • conductive materials such as polyphenylene derivatives may be used alone or in combination of one or more.
  • Al may be used as the current collector, but is not limited thereto.
  • Each of the negative electrode and the positive electrode is prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and then applying the composition to a current collector. Since such an electrode manufacturing method is widely known in the art, a detailed description thereof will be omitted.
  • the solvent N-methylpyrrolidone or the like may be used, but is not limited thereto.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • the carbonate-based solvent dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), and the like may be used, and as the ester solvent, methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methylpropionate , Ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like may be used.
  • Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent, and cyclohexanone may be used as the ketone solvent.
  • ether solvent a solvent for ether and cyclohexanone.
  • ketone solvent a solvent for ketone solvent.
  • R-CN R is a C2 to C20 linear, branched, or cyclic hydrocarbon group, wherein Amides such as nitriles such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes such as 1,3-dioxolane, and the like may be used.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance, which is widely understood by those in the field. Can be.
  • the electrolyte may exhibit excellent performance.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon-based organic solvent in the carbonate-based solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1:1 to about 30:1.
  • an aromatic hydrocarbon-based compound of Formula 1 may be used as the aromatic hydrocarbon-based organic solvent.
  • R 1 to R 6 are each independently hydrogen, halogen, a C1 to C10 alkyl group, a C1 to C10 haloalkyl group, or a combination thereof.
  • the aromatic hydrocarbon-based organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2, 4-trichlorobenzene, iodobenzene, 1,2-diaiodobenzene, 1,3-diaiodobenzene, 1,4-diaiodobenzene, 1,2,3-triiodobenzene, 1,2,4 -Triiodobenzene, toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluor
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound of Formula 2 in order to improve battery life.
  • R 7 and R 8 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), or a C1 to C5 fluoroalkyl group, and at least one of R 7 and R 8 Is a halogen group, a cyano group (CN), a nitro group (NO 2 ), or a C1 to C5 fluoroalkyl group.
  • ethylene carbonate-based compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like. I can.
  • the lifespan may be improved by appropriately adjusting the amount of the vinylene carbonate-based compound.
  • the lithium salt is dissolved in the non-aqueous organic solvent, acts as a source of lithium ions in the battery, enables the operation of a basic lithium secondary battery, and promotes the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y +1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB(C 2 O 4 ) 2 (lithium bis(oxalato) borate; LiBOB) or a combination thereof
  • the concentration of the lithium salt is preferably within the range of 0.1 to 2.0 M. If the concentration of the lithium salt falls within the above range, the electrolyte has an appropriate conductivity and viscosity. It can exhibit
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions to move, and any separator commonly used in a lithium battery may be used. That is, those having low resistance to ion movement of the electrolyte and excellent in the ability to impregnate the electrolyte may be used.
  • any separator commonly used in a lithium battery may be used.
  • those having low resistance to ion movement of the electrolyte and excellent in the ability to impregnate the electrolyte may be used.
  • glass fiber polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof
  • PTFE polytetrafluoroethylene
  • it may be in the form of a non-woven fabric or a woven fabric.
  • polyolefin-based polymer separators such as polyethylene, polypropylene, etc. are mainly used for lithium-ion batteries, and coated separators containing ceramic components or polymer materials may be used
  • the solid content in the composition is 30% by weight, and the number average particle diameter of the polymer particles contained therein is 50 nm (measured value by dynamic light scattering (DLS) equipment).
  • Anode binder raw material (acrylic-styrene-butadiene polymer+sulfur+Zn(BDC)+DCBS+ZnO)
  • Example 1 0.5 g of the negative electrode binder material of Example 1 was taken and added to the conductive material dispersion, 150 g of artificial graphite (D50: 20 ⁇ m), which is a negative electrode active material, and 20 g of distilled water were added thereto, followed by stirring for 10 minutes. A negative active material slurry of Example 1 was prepared.
  • a copper foil having a thickness of 20 ⁇ m was used as a negative electrode current collector, and the negative active material slurry of Example 1 was coated on one side of the negative electrode current collector using a comma coater (application amount per side: 10.8 mg /cm 2 ), hot air drying for 10 minutes in an oven at 80° C., rolling at 25° C. to a total thickness of 90 ⁇ m, and vacuum drying at 120° C. to obtain a negative electrode of Example 1.
  • a comma coater application amount per side: 10.8 mg /cm 2
  • the negative electrode was used as a working electrode, a lithium metal sheet having a thickness of 150 ⁇ m was used as a reference electrode, and a polyethylene separator (thickness: 20 ⁇ m, porosity: 40%) was inserted between the working electrode and the reference electrode.
  • a lithium secondary battery was manufactured in the form of a 2032 half-cell according to a conventional manufacturing method.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • FEC fluoroethylene carbonate
  • Anode binder raw material (acrylic-styrene-butadiene polymer+sulfur+Zn(BDC)+DCBS+ZnO)
  • Example 2 instead of the binder composition of Example 1, the negative electrode binder material of Example 2 was used, and the remainder of the negative electrode and lithium ion half battery of Example 2 were prepared in the same manner as in Example 1.
  • Anode binder raw material (acrylic-styrene-butadiene polymer+sulfur+Zn(BDC)+DCBS+ZnO)
  • Example 3 In place of the binder composition of Example 1, the negative electrode binder raw material of Example 3 was used, and the remainder of the negative electrode and lithium ion half battery of Example 3 were prepared in the same manner as in Example 1.
  • Anode binder raw material (acrylic-styrene-butadiene polymer + sulfur + Zn (BDC))
  • Example 4 instead of the binder composition of Example 1, the negative electrode binder material of Example 4 was used, and the rest were the same as those of Example 1, to prepare a negative electrode and a lithium ion half battery of Example 4.
  • anode binder raw material Acrylic-styrene-butadiene polymer alone
  • the negative electrode binder raw material of Comparative Example 1 was used, and the rest were the same as those of Example 1, to prepare a negative electrode and a lithium ion half battery of Comparative Example 1.
  • the binder composition of Comparative Example 2 was used, and the rest were the same as those of Example 1 to prepare a negative electrode and a lithium ion half battery of Comparative Example 2.
  • the binder composition of Comparative Example 3 was used, and the rest were the same as those of Example 1 to prepare a negative electrode and a lithium ion half battery of Comparative Example 3.
  • Examples 1 to 4 and Comparative Examples 1 to 3 in the process of applying heat after applying a negative electrode active material slurry including a negative electrode binder raw material, a conductive material dispersion, a negative electrode active material, and an additional solvent to a negative electrode current collector, the At the same time as the solvent in the anode active material slurry is removed to form the anode active material layer, a vulcanization reaction of the material for the anode binder occurs to convert it into a binder. In such a manufacturing process, it is impossible to separate the binder (ie, vulcanized styrene-butadiene-based copolymer) from each of the final negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 3.
  • the binder ie, vulcanized styrene-butadiene-based copolymer
  • Gel content in the binder composition First, the binder composition was dried at room temperature for 24 hours, and then dried at 80° C. for 24 hours to obtain a film-type binder composition, and the binder film was cut into very small pellets, and then 0.5 Take g of the binder composition and measure the correct weight. (Ma)
  • the gel content was calculated through Equation 1 below.
  • the gel content in the negative electrode binder compositions of Examples 1 to 4 is higher.
  • the gel content refers to the degree of crosslinking of the copolymer.
  • the degree of vulcanization (crosslinking) of the vulcanized styrene-butadiene-based copolymer in the negative electrode binder compositions of Examples 1 to 4 is higher.
  • the degree of vulcanization (crosslinking) of the vulcanized styrene-butadiene-based copolymer is higher.
  • Adhesion of negative electrode When the negative electrode active material layer of each negative electrode is adhered to a glass substrate in a constant temperature chamber at 25° C., and the negative electrode is pulled at a peel rate of 5 mm/min and a peel angle of 180°, from the glass substrate. The force by which the negative active material layer of the negative electrode is peeled was measured.
  • Discharge characteristics of the battery In a constant temperature chamber at 25°C, discharge each of the lithium ion half cells 3 times in CC/CV mode from 1.5V to 5mV at 1 C, and then to 1 C in CC mode. After discharging, the discharge capacity of the CC section compared to the total discharge capacity was converted into a percentage according to Equation 2 below.
  • each battery was disassembled to recover the anode.
  • Each recovered negative electrode was washed with a DMC (dimethyl carbonate) solvent and dried within a few minutes using an air blower at room temperature, and then the thickness was measured. Accordingly, the measured thickness was substituted into the following equation to calculate the expansion rate of the negative electrode.
  • DMC dimethyl carbonate
  • Discharge negative electrode thickness of battery negative electrode thickness during one discharge of lithium ion battery
  • Thickness of copper foil thickness of negative electrode current collector in rolled electrode
  • Examples 1 to 4 showed a result of further lowering the volume resistivity of the negative active material layer, in particular, and the result improved as described above is believed to be due to Zn (DBC).
  • the metal-organic skeleton has its own pores due to a coordination bond between a metal and an organic material, and the size and shape of the pores vary according to the type of the metal-organic skeleton. Due to the presence or absence of the pores in the vulcanization reaction, unreacted monomers enter and exit the pores during the vulcanization (crosslinking) reaction, so that the polymer-polymer crosslinking reaction can be more effectively performed than the polymer-unreacted monomer reaction.
  • the metal-organic skeleton is evaluated to have outstanding properties by selectively promoting crosslinking between polymer chains.
  • the metal-organic skeleton has its own pores, so the mobility of lithium ions in the negative electrode including them is As a result, it can contribute to an increase in the CC (Constant Current) section compared to the capacity of the lithium secondary battery while lowering the internal resistance of the negative electrode.
  • CC Constant Current
  • each of the negative electrode binder raw materials of Examples 1 to 4 contained Zn (DBC) as a vulcanization accelerator, compared to Comparative Example 2 containing only DSBS as a vulcanization accelerator and Comparative Example 3 containing only ZnO. It is possible to more effectively promote the vulcanization reaction of the coalescence and sulfur molecules (S 8 ), and significantly improve the performance of the negative electrode and lithium secondary battery to which the vulcanization reaction product is applied.
  • DBC Zn
  • Examples 1 to 4 commonly exhibit the effect of lowering the resistance of the negative electrode, and in particular, Examples 1 to 3 showed higher adhesion to the negative electrode and a lower expansion rate than that of Example 4, and this result is a result of DSBS as a vulcanization accelerator. And ZnO is considered to be due to the additional inclusion.
  • ZnDBC performs its special function as well as a vulcanization accelerating role, it shows the effect of lowering the resistance of the negative electrode in Examples 1 to 4.
  • Example 4 the higher cathode adhesion and lower expansion rates in Examples 1 to 3 than in Example 4 are that when ZnDBC is used alone as a vulcanization accelerator without the aid of other vulcanization accelerators such as DSBS and ZnO, the degree of vulcanization (crosslinking) is reduced. There seems to be a limit to the height.
  • the present invention is not limited to the above embodiments, but may be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains, other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented with.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The objective of the present invention is to provide, as a prerequisite for improving the performance of a lithium secondary battery, a material that can be converted into an anode binder having all of heat resistance, chemical resistance, excellent binding force, durability and the like. Specifically, provided in one implementation embodiment of the present invention is an anode binder material for a lithium secondary battery, comprising: a vulcanization accelerator comprising a metal-organic framework (MOF); a styrene-butadiene copolymer; and a sulfur molecule (S8).

Description

리튬 이차 전지용 음극 바인더 원료, 이의 경화물을 포함하는 음극 바인더Anode binder raw material for lithium secondary batteries, anode binder including a cured product thereof
관련 출원(들)과의 상호 인용Cross-reference with related application(s)
본 출원은 2019년 10월 31일자 한국 특허 출원 제10-2019-0138185호 및 2020년 10월 13일자 한국 특허 출원 제10-2020-0131978호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0138185 filed October 31, 2019 and Korean Patent Application No. 10-2020-0131978 filed October 13, 2020. All contents disclosed in the literature are included as part of this specification.
리튬 이차 전지용 음극 바인더 원료, 이의 경화물을 포함하는 음극 바인더에 관한 것이다.The present invention relates to a negative electrode binder material for a lithium secondary battery, and a negative electrode binder including a cured product thereof.
최근 들어, 리튬 이차 전지의 응용 분야가 소형 전자 디바이스로부터 자동차, 전력 저장 장치 등 대형 디바이스로 확대되면서, 에너지 용량을 높이고, 빠른 충전 속도를 확보하는 등, 리튬 이차 전지의 성능을 개선하기 위한 다양한 연구가 진행되고 있다.In recent years, as the application field of lithium secondary batteries has expanded from small electronic devices to large devices such as automobiles and power storage devices, various studies to improve the performance of lithium secondary batteries, such as increasing energy capacity and securing fast charging speeds. Is in progress.
리튬 이차 전지의 음극은, 충전 시 리튬 이온을 저장하고 방전 시 이를 방출하는 음극 활물질; 음극 활물질이 채우지 못하는 공간을 대신 채우면서 전기적 도전 경로를 확보하는 도전재; 이들을 집전체와 물리적으로 결합시키는 바인더 등으로 구성된다.The negative electrode of the lithium secondary battery may include a negative electrode active material that stores lithium ions during charging and releases them during discharge; A conductive material for securing an electrically conductive path while filling a space that cannot be filled by the negative active material; It is composed of a binder that physically couples these to the current collector.
여기서 음극 바인더는, 음극 활물질과 도전재를 물리적으로 결합시키는 역할 외에도, 전지의 반복적인 충방전 중 음극 활물질의 부피 변화를 완충함으로써, 음극을 물리적으로 안정화시키는 데 중요한 역할을 한다.Here, the negative electrode binder plays an important role in physically stabilizing the negative electrode by buffering the volume change of the negative electrode active material during repetitive charging and discharging of the battery, in addition to the role of physically bonding the negative electrode active material and the conductive material.
그런데, 일반적으로 알려진 음극 바인더(예를 들어, 스타일렌-부타디엔계 중합체, 스티렌-아크릴레이트계 중합체 등)는, 전지 제조 시의 고온(최대 200 ℃)에서 변성되거나, 전지 내에서 전해액과의 부반응을 일으키고, 전지의 반복적인 충방전 중 결합력이 약화되며 음극 활물질의 부피 변화를 완충하지 못하여, 음극을 열화시키는 등의 문제가 있다.However, generally known negative electrode binders (e.g., styrene-butadiene-based polymers, styrene-acrylate-based polymers, etc.) are denatured at high temperatures (up to 200°C) during battery manufacturing, or cause side reactions with electrolytes in the battery. It causes problems such as deterioration of the negative electrode due to weakening of the bonding force during repeated charging and discharging of the battery and not being able to buffer the volume change of the negative electrode active material.
본 발명에서는, 리튬 이차 전지의 성능을 개선하기 위한 선결 과제로, 내열성, 내화학성, 우수한 결합력과 내구성 등을 두루 갖춘 음극 바인더로 전환될 수 있는 원료를 제공하고자 한다.In the present invention, as a prerequisite for improving the performance of a lithium secondary battery, it is intended to provide a raw material that can be converted into a negative electrode binder having heat resistance, chemical resistance, excellent bonding strength and durability.
구체적으로, 본 발명의 일 구현예에서는, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제; 스티렌-부타디엔계 공중합체; 및 황 분자(S 8)를 포함하는, 리튬 이차 전지용 음극 바인더 원료를 제공한다.Specifically, in one embodiment of the present invention, a vulcanization accelerator including a metal-organic framework (MOF); Styrene-butadiene-based copolymer; And it provides a negative electrode binder material for a lithium secondary battery comprising a sulfur molecule (S 8 ).
상기 일 구현예의 음극 바인더 원료는, 음극 집전체에 도포된 상태에서 경화되어 내열성, 내화학성, 기계적 물성 등의 특성을 두루 우수하게 발현할 수 있다.The negative electrode binder raw material of the above embodiment may be cured while being applied to the negative electrode current collector to exhibit excellent properties such as heat resistance, chemical resistance, and mechanical properties.
따라서, 상기 일 구현예의 원료로부터 전환된 음극 바인더는, 음극 및 이를 포함하는 전극 조립체 제조 시 고온이 가해지더라도 변성되거나 파괴되지 않고, 전지 내에서 전해액과의 부반응이 억제되며, 전지의 반복적인 충방전 중에도 우수한 결합력을 유지하며 음극 활물질의 부피 변화를 효과적으로 완충함으로써, 리튬 이차 전지의 성능을 개선하는 데 기여할 수 있다. Therefore, the negative electrode binder converted from the raw material of the above embodiment is not denatured or destroyed even when high temperature is applied when manufacturing the negative electrode and the electrode assembly including the same, and side reactions with the electrolyte in the battery are suppressed, and the battery is repeatedly charged and discharged. It can contribute to improving the performance of a lithium secondary battery by maintaining excellent bonding strength and effectively buffering the volume change of the negative active material.
본 명세서에서 별도의 정의가 없는 한, "공중합"이란 블록 공중합, 랜덤 공중합, 그래프트 공중합 또는 교호 공중합을 의미할 수 있고, "공중합체"란 블록 공중합체, 랜덤 공중합체, 그래프트 공중합체 또는 교호 공중합체를 의미할 수 있다.Unless otherwise defined herein, "copolymerization" may mean block copolymerization, random copolymerization, graft copolymerization or alternating copolymerization, and "copolymer" refers to block copolymer, random copolymer, graft copolymer or alternating copolymer It can mean consolidation.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 혹은 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.In the drawings, the thicknesses are enlarged in order to clearly express various layers and regions. Like reference numerals are attached to similar parts throughout the specification. When a part of a layer, film, region, plate, etc. is said to be "above" or "on" another part, this includes not only the case where the other part is "directly above", but also the case where there is another part in the middle. Conversely, when one part is "directly above" another part, it means that there is no other part in the middle.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.
리튬 이차 전지용 음극 바인더 원료Anode binder raw material for lithium secondary battery
본 발명의 일 구현예에서는, 스티렌-부타디엔계 공중합체 및 황 분자에 더하여, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제를 포함하는 리튬 이차 전지용 음극 바인더 원료를 제공한다.In one embodiment of the present invention, in addition to a styrene-butadiene-based copolymer and a sulfur molecule, a material for a negative electrode binder for a lithium secondary battery comprising a vulcanization accelerator including a metal-organic framework (MOF) is provided.
상기 일 구현예의 음극 바인더 원료에 있어서, 스티렌-부타디엔계 공중합체는 스티렌 반복 단위 및 부타디엔 반복 단위를 포함하는 사슬 구조의 고분자이며, 황 분자(S 8)는 상기 스티렌-부타디엔계 공중합체와 가황 반응 가능한 가황제(vulcanizing agent)에 해당된다.In the negative electrode binder material of the embodiment, the styrene-butadiene-based copolymer is a polymer having a chain structure including a styrene repeating unit and a butadiene repeating unit, and a sulfur molecule (S 8 ) is a vulcanization reaction with the styrene-butadiene-based copolymer. This is a possible vulcanizing agent.
여기서 "가황 반응(Vulcanization)"이란, 고분자 사슬 내부 및 서로 다른 고분자 사슬 사이에 이황화결합(S-S bond)을 포함하는 가교 결합을 형성시킴으로써, 망상 구조의 경화물을 형성하는 형성하는 반응을 의미한다.Here, "Vulcanization" refers to a reaction forming a cured product having a network structure by forming a crosslinked bond including an S-S bond within a polymer chain and between different polymer chains.
상기 스티렌-부타디엔계 공중합체 및 상기 황 분자만으로 이루어진 원료는, 약 159 ℃이상의 고온을 가하여야만 가황 반응이 진행될 수 있다.The styrene-butadiene-based copolymer and the raw material composed of only sulfur molecules can undergo a vulcanization reaction only when a high temperature of about 159° C. or higher is applied.
상기 황 분자(S 8)는 팔각형 고리 형태의 분자로, 약 159 ℃이상의 온도에서 개환되어 라디칼을 형성하여 비로소 상기 스티렌-부타디엔계 공중합체에 중합(즉 가황)될 수 있기 때문이다.This is because the sulfur molecule (S 8 ) is an octagonal ring-shaped molecule, and can be polymerized (ie, vulcanized) in the styrene-butadiene-based copolymer only by ring-opening at a temperature of about 159° C. or higher to form a radical.
그런데, 상기 스티렌-부타디엔계 공중합체의 녹는점은 약 160 내지 200 °C 으로, 그보다 높은 온도에서는 변성되거나 파괴되어 가황 반응이 느리게 진행되며, 가황 반응 생성물의 물성이 저하될 수 있다.However, the melting point of the styrene-butadiene-based copolymer is about 160 to 200 °C, and is denatured or destroyed at a higher temperature, so that the vulcanization reaction proceeds slowly, and the physical properties of the vulcanization reaction product may be deteriorated.
이와 관련하여, 일반적인 가황 반응 시에는, N,N-디사이클로헥실-2-벤조티아졸술펜아미드(N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS), ZnO 등의 가황 촉진제를 사용하여 황을 활성 상태로 변화시키고 가황을 촉진시키는 것으로 알려져 있다.In this regard, during a general vulcanization reaction, sulfur is activated using a vulcanization accelerator such as N,N-dicyclohexyl-2-benzothiazolesulfenamide (N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS) or ZnO. It is known to change the state and promote vulcanization.
다만, 이처럼 일반적인 가황 촉진제만으로는, 가황 반응의 속도를 일부 높일 수 있을지언정, 경화물의 물성을 현저하게 높이는 데에는 역부족이다.However, such a general vulcanization accelerator alone is insufficient to remarkably increase the physical properties of the cured product, although it is possible to partially increase the speed of the vulcanization reaction.
이에, 본 발명의 일 구현예에서는, 스티렌-부타디엔계 공중합체 및 황 분자에 더하여, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 음극 바인더 원료를 제공하게 되었다.Accordingly, in one embodiment of the present invention, in addition to the styrene-butadiene-based copolymer and sulfur molecules, a negative electrode binder material including a metal-organic framework (MOF) has been provided.
상기 금속-유기 골격은, 금속 이온 또는 클러스터; 및 이에 배위 결합된 유기 리간드를 포함하는 2 차원 또는 3 차원 구조체이다.The metal-organic skeleton may include metal ions or clusters; And it is a two-dimensional or three-dimensional structure comprising an organic ligand coordinated thereto.
상기 금속-유기 골격은 금속과 유기물의 배위 결합으로 그 고유의 기공을 가지고 있고 금속-유기 골격의 종류에 따라 그 기공의 크기와 모양이 다양하다. 가황 반응에서 그 기공의 유무 때문에 가황 가교 반응 시 기공 내외로 미반응 단량체가 드나들면서 고분자-미반응 단량체 반응 보다 고분자-고분자 가교반응이 효과적으로 이루어진다. The metal-organic skeleton has its own pores due to the coordination of metals and organics, and the size and shape of the pores vary according to the type of the metal-organic skeleton. Due to the presence or absence of the pores in the vulcanization reaction, unreacted monomers enter and exit the pores during the vulcanization crosslinking reaction, and the polymer-polymer crosslinking reaction is more effectively performed than the polymer-unreacted monomer reaction.
이는, DCBS, ZnO 등의 일반적인 가황 촉진제가 반응 속도 측면에서 가교를 효과적으로 일으키는 것과는 다르게 금속-유기 골격은 고분자 사슬끼리의 가교를 선택적으로 촉진함으로써 그 특성이 두드러진다고 할 수 있다.This can be said that unlike general vulcanization accelerators such as DCBS and ZnO that effectively cause crosslinking in terms of reaction rate, the metal-organic skeleton selectively promotes crosslinking between polymer chains, thereby remarking its characteristics.
나아가, DCBS, ZnO 등의 일반적인 가황 촉진제가 단지 가황 반응을 촉진할 뿐 구조적인 효과가 없는 것과 달리, 금속-유기 골격의 경우 그 고유의 기공이 존재하기 때문에 전극 제조시 리튬 이온의 이동성이 향상되어 전지성능 향상에 기여할 수 있다.Furthermore, unlike general vulcanization accelerators such as DCBS and ZnO, which only accelerate the vulcanization reaction and have no structural effect, the metal-organic skeleton has its own pores, so the mobility of lithium ions during electrode manufacturing is improved. It can contribute to the improvement of battery performance.
따라서, 상기 일 구현예의 음극 바인더 원료는, 상기 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제를 포함함에 따라, 음극 집전체에 도포된 상태에서 건조를 위해 가해지는 70 내지 90 ℃의 열풍에 의해 빠르게 경화되어, 내열성, 내화학성, 기계적 물성 등의 특성을 두루 우수하게 발현할 수 있다.Accordingly, the negative electrode binder raw material of the embodiment includes the vulcanization accelerator including the metal-organic framework (MOF), so that 70 to 90 applied for drying while applied to the negative electrode current collector It is rapidly cured by hot air at °C and can exhibit excellent properties such as heat resistance, chemical resistance, and mechanical properties.
나아가, 상기 일 구현예의 음극 바인더 원료로부터 전환된 바인더는, 음극 및 이를 포함하는 전극 조립체 제조 시 고온이 가해지더라도 변성되거나 파괴되지 않고, 전지 내에서 전해액과의 부반응이 억제되며, 전지의 반복적인 충방전 중에도 우수한 결합력을 유지하며 음극 활물질의 부피 변화를 효과적으로 완충함으로써, 리튬 이차 전지의 성능을 개선하는 데 기여할 수 있다. Further, the binder converted from the negative electrode binder raw material of the above embodiment is not denatured or destroyed even when high temperature is applied when manufacturing the negative electrode and the electrode assembly including the same, and side reactions with the electrolyte in the battery are suppressed, and the battery is repeatedly charged. It can contribute to improving the performance of the lithium secondary battery by maintaining excellent bonding strength even during discharge and effectively buffering the volume change of the negative electrode active material.
한편, 상기 가황 촉진제로 ZnDBC를 단독으로 사용하더라도 음극의 저항을 낮추는 효과를 취할 수 있지만, 접착력과 팽창률의 측면에서 더욱 개선된 음극을 목적한다면, ZnO 등의 다른 가황 촉진제를 첨가할 수 있다.On the other hand, even if ZnDBC is used alone as the vulcanization accelerator, the effect of lowering the resistance of the negative electrode can be obtained, but if the negative electrode is further improved in terms of adhesion and expansion rate, other vulcanization accelerators such as ZnO may be added.
앞서 언급한 바와 같이, ZnDBC는 가황 촉진 역할과 더불어 그 특수한 기능을 수행하므로, 이를 단독으로 사용하더라도 음극의 저항이 낮아지는 효과를 취할 수 있다.As mentioned above, since ZnDBC performs its special function as well as the vulcanization accelerating role, even if it is used alone, the resistance of the negative electrode can be lowered.
다만, ZnO 등의 다른 가황 촉진제의 도움 없이 ZnDBC를 가황 촉진제로 단독 사용할 경우, 가황(가교)도를 높이는 데 한계가 있다. 이와 관련하여, 음극의 저항을 낮추면서도, 더 높은 음극 접착력과 더 낮은 팽창률을 나타내는 음극을 목적한다면, ZnDBC에 더하여 ZnO 등의 다른 가황 촉진제를 첨가하여 가황(가교)도를 높이는 것도 하나의 방법이 될 수 있을 것이다. DSBS, ZnO 등의 다른 가황 촉진제에 대한 더욱 상세한 설명은 후술하기로 한다.However, when ZnDBC is used alone as a vulcanization accelerator without the help of other vulcanization accelerators such as ZnO, there is a limit to increasing the degree of vulcanization (crosslinking). In this regard, one method is to increase the degree of vulcanization (crosslinking) by adding another vulcanization accelerator, such as ZnO, in addition to ZnDBC, if a cathode is desired that has a higher cathode adhesion and lower expansion rate while lowering the resistance of the cathode. It will be possible. A more detailed description of other vulcanization accelerators such as DSBS and ZnO will be described later.
이하, 상기 일 구현예의 음극 바인더 원료를 상세히 살펴보기로 한다.Hereinafter, the negative electrode binder material of the embodiment will be described in detail.
금속-유기 골격Metal-organic skeleton
상기 금속-유기 골격은, 후술되는 Zn(1,4-Benzenedicarboxylate)(BDC) 뿐만 아니라, 이와 동일한 구조와 기능을 발현하는 Zn 4O(4,4′,4″-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate)(BPDC 2=biphenyl-4,4′-dicarboxylate) (BTE)(BPDC), Zn 4O(1,3,5-benzenetribenzoate) (BTB) 및 Zn 4O(4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate) (BBC)을 포함하는 군에서 적어도 하나를 선택할 수 있다.The metal-organic skeleton is Zn (1,4-Benzenedicarboxylate) (BDC), which will be described later, as well as Zn 4 O (4,4',4″-[benzene-1,3, 5-triyl-tris(ethyne-2,1-diyl)]tribenzoate)(BPDC 2 =biphenyl-4,4′-dicarboxylate) (BTE)(BPDC), Zn 4 O(1,3,5-benzenetribenzoate) ( BTB) and at least one from the group containing Zn 4 O(4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate) (BBC) You can choose.
스티렌-부타디엔계 공중합체Styrene-butadiene-based copolymer
상기 스티렌-부타디엔계 공중합체;는, 스티렌 반복 단위 및 부타디엔 반복단위를 포함하는 사슬 구조의 공중합체로서, 가황 반응에 의해 망상 구조로 전환 가능한 것이라면 특별히 한정되지 않는다.The styrene-butadiene-based copolymer; is a copolymer having a chain structure including a styrene repeating unit and a butadiene repeating unit, and is not particularly limited as long as it can be converted into a network structure by a vulcanization reaction.
예를 들어, 상기 스티렌-부타디엔계 공중합체;는 일반적으로 음극 바인더로 알려진 스티렌-부타디엔계 공중합체 중 선택 가능하며, 아크릴-스티렌-부타디엔 공중합체, 스티렌-부타디엔 중합체, 또는 이들의 혼합물을 포함하는 것일 수 있고, 부타디엔 중합체를 더 포함할 수도 있다.For example, the styrene-butadiene-based copolymer; is generally selectable from styrene-butadiene-based copolymers known as negative electrode binders, and includes an acrylic-styrene-butadiene copolymer, a styrene-butadiene polymer, or a mixture thereof. It may be, and may further include a butadiene polymer.
한편, 상기 스티렌-부타디엔계 공중합체는, 시판되는 것을 사용하거나 직접 제조하여 사용할 수 있다. Meanwhile, the styrene-butadiene-based copolymer may be commercially available or may be directly prepared and used.
상기 스티렌-부타디엔계 공중합체를 직접 제조하여 사용하는 경우, 당업계에 일반적으로 알려진 중합 개시제와 함께 스티렌 단량체 및 부타디엔 단량체를 포함하고, 선택적으로 아크릴 단량체 등을 더 포함하는 단량체 혼합물을 통상의 중합 온도에서 유화 중합시켜, 스티렌-부타디엔계 공중합체 입자가 포함된 라텍스 형태의 조성물로 제조할 수 있다.When the styrene-butadiene-based copolymer is directly prepared and used, a monomer mixture comprising a styrene monomer and a butadiene monomer together with a polymerization initiator generally known in the art, and optionally an acrylic monomer, etc. By emulsion polymerization in, it can be prepared into a latex-type composition containing styrene-butadiene-based copolymer particles.
여기서, 중합 개시제로는, 파라멘탄 하이드로퍼옥사이드(Paramenthane hydroperoxide, PMHP), 포타슘 퍼설페이트(Potassium persulfate), 소듐 퍼설페이트(Sodium persulfate), 암모늄 퍼설페이트(Ammonium persulfate) 및 소듐 바이설페이트(Sodium bisulfate)를 포함하는 군에서 선택되는 적어도 하나의 중합 개시제를 사용할 수 있다. Here, as the polymerization initiator, paramenthane hydroperoxide (PMHP), potassium persulfate, sodium persulfate, ammonium persulfate, and sodium bisulfate At least one polymerization initiator selected from the group containing) may be used.
스티렌-부타디엔계 공중합체, 황 분자, 및 금속-유기 골격의 배합비Mixing ratio of styrene-butadiene-based copolymer, sulfur molecule, and metal-organic skeleton
상기 일 구현예의 음극 바인더 원료의 제조 시, 상기 스티렌-부타디엔계 공중합체 100 중량부를 기준으로, 상기 황 분자는 0.5 내지 3 중량부 이고, 상기 금속-유기 골격은 0.5 내지 2 중량부가 되도록 배합할 수 있다.In the preparation of the negative electrode binder material of the embodiment, based on 100 parts by weight of the styrene-butadiene-based copolymer, the sulfur molecule is 0.5 to 3 parts by weight, and the metal-organic skeleton may be blended so that 0.5 to 2 parts by weight. have.
이 범위 내에서, 상기 스티렌-부타디엔계 공중합체 사슬 내부 및 서로 다른 고분자 사슬 사이에 이황화결합(S-S bond)을 포함하는 가교 결합이 적정 수준으로 형성되면서, 상기 금속-유기 골격에 의한 가황 촉진 및 반응 참여가 효과적으로 일어날 수 있다. 다만, 상기 범위 내에서, 목적하는 물성에 따라 상기 원료의 배합을 변경할 수 있다. Within this range, a crosslinking bond including a disulfide bond (SS bond) is formed at an appropriate level within the styrene-butadiene-based copolymer chain and between different polymer chains, while promoting and reacting vulcanization by the metal-organic skeleton. Participation can take place effectively. However, within the above range, the blending of the raw materials may be changed according to the desired physical properties.
구체적으로, 상기 스티렌-부타디엔계 공중합체 100 중량부를 기준으로, 상기 황 분자의 함량 하한은 0.05 이상, 0.1 이상, 0.5 이상, 또는 1 이상으로 하면서, 상한은 5 이하, 3 이하, 1 이하, 또는 0.5 이하로 할 수 있다. 또한, 상기 금속-유기 골격의 함량 하한은 0.05 이상, 0.1 이상, 0.5 이상, 또는 1 이상으로 하면서, 상한은 4 이하, 2 이하, 1 이하, 또는 0.5 이하로 할 수 있다.Specifically, based on 100 parts by weight of the styrene-butadiene-based copolymer, the lower limit of the content of the sulfur molecule is set to 0.05 or more, 0.1 or more, 0.5 or more, or 1 or more, and the upper limit is 5 or less, 3 or less, 1 or less, or It can be made 0.5 or less. In addition, the lower limit of the content of the metal-organic skeleton may be 0.05 or more, 0.1 or more, 0.5 or more, or 1 or more, and the upper limit may be 4 or less, 2 or less, 1 or less, or 0.5 or less.
이처럼 예시된 범위 내에서, 상기 황 분자의 함량이 증가할수록, 최종 음극 바인더의 내열성, 내화학성, 그리고 기계적 물성이 향상될 수 있다. 또한, 상기 금속-유기 골격의 함량이 증가할수록, 상기 가황 반응이 촉진되며, 최종 음극 바인더의 물성이 더욱 개선될 수 있다.Within the range illustrated as described above, as the content of the sulfur molecule increases, heat resistance, chemical resistance, and mechanical properties of the final negative electrode binder may be improved. In addition, as the content of the metal-organic skeleton increases, the vulcanization reaction is accelerated, and physical properties of the final negative electrode binder may be further improved.
금속-유기 골격 이외의 가황 촉진제Vulcanization accelerators other than metal-organic skeletons
한편, 상기 일 구현예의 음극 바인더 원료를 배합할 때, N,N-디사이클로헥실-2-벤조티아졸술펜아미드(N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS), ZnO 등의 일반적인 가황 촉진제를 첨가하는 것도 가능하다.On the other hand, when mixing the negative electrode binder raw material of the embodiment, a general vulcanization accelerator such as N,N-dicyclohexyl-2-benzothiazolesulfenamide (N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS), ZnO, etc. It is also possible to add.
상기 N,N-디사이클로헥실-2-벤조티아졸술펜아미드는 유기 가황 촉진제의 일종으로, 일반적으로 고분자에 대한 가황제(즉 상기 황 분자)의 사용량을 줄이면서도, 가황 속도를 높여 가황 시간을 단축시키고, 가황 온도를 저하시키며, 가황 반응 생성물의 내열성, 내화학성, 결합력, 내구성 등을 개선하는 물질로 알려져 있다.The N,N-dicyclohexyl-2-benzothiazolesulfenamide is a kind of organic vulcanization accelerator, and generally reduces the amount of vulcanizing agent (i.e., the sulfur molecule) to the polymer, while increasing the vulcanization rate to increase the vulcanization time. It is known as a material that shortens the vulcanization temperature, reduces the vulcanization temperature, and improves heat resistance, chemical resistance, bonding strength, and durability of a vulcanization reaction product.
또한, 상기 산화아연은 무기 가황 촉진제의 일종으로, 주로 -COOH를 포함하는 고분자의 초기 가황 반응을 촉진하며, 상기 유기 가황 촉진제의 기능을 보조하는 물질로 알려져 있다.In addition, the zinc oxide is a kind of inorganic vulcanization accelerator, which promotes the initial vulcanization reaction of a polymer mainly containing -COOH, and is known as a material that assists the function of the organic vulcanization accelerator.
이와 관련하여, 상기 일 구현예의 음극 바인더 원료를 배합할 때, 상기 N,N-디사이클로헥실-2-벤조티아졸술펜아미드 및 상기 산화 아연을 혼합하여 첨가할 수 있다.In this regard, when the negative electrode binder material of the embodiment is mixed, the N,N-dicyclohexyl-2-benzothiazolesulfenamide and the zinc oxide may be mixed and added.
예를 들어, 상기 스티렌-부타디엔계 공중합체 100 중량부 기준으로, 상기 N,N-디사이클로헥실-2-벤조티아졸술펜아미드를 0.5 내지 2 중량부 첨가하고, 상기 산화 아연을 0.5 내지 5 중량부 첨가할 수 있고, 여기서 N,N-디사이클로헥실-2-벤조티아졸술펜아미드 및 산화 아연의 중량비는 1: 3.5 내지 1:5로 할 수 있다.For example, based on 100 parts by weight of the styrene-butadiene-based copolymer, 0.5 to 2 parts by weight of the N,N-dicyclohexyl-2-benzothiazolesulfenamide is added, and 0.5 to 5 parts by weight of the zinc oxide It may be added partly, wherein the weight ratio of N,N-dicyclohexyl-2-benzothiazolesulfenamide and zinc oxide may be 1:3.5 to 1:5.
이 범위 내에서, 상기 스티렌-부타디엔계 공중합체 및 상기 황 분자의 가황 반응 속도가 더욱 빨라지고, 가황 반응 온도가 낮아지며, 가황 반응 후 잔존하는 황 분자가 감소되며, 가황 반응 생성물의 물성이 개선될 수 있다.Within this range, the vulcanization reaction rate of the styrene-butadiene-based copolymer and the sulfur molecule becomes faster, the vulcanization reaction temperature is lowered, the sulfur molecule remaining after the vulcanization reaction is reduced, and the physical properties of the vulcanization reaction product can be improved. have.
다만, 이는 예시일 뿐이며, 상기 스티렌-부타디엔계 공중합체의 종류, 목적하는 음극 바인더 특성 등을 종합적으로 고려하여, 상기 가황 촉진제의 종류와 그 첨가량을 결정할 수 있을 것이다.However, this is only an example, and the type of the vulcanization accelerator and the amount of the vulcanization accelerator may be determined by comprehensively considering the type of the styrene-butadiene-based copolymer and the desired negative electrode binder characteristics.
용매 및 유화제Solvent and emulsifier
또한, 상기 일 구현예의 음극 바인더 원료는, 용매로 물을 더 포함할 수 있다.In addition, the negative electrode binder material of the embodiment may further include water as a solvent.
이 경우, 분산성, 안정성 등을 개선하기 위해, 소듐 라우릴 설페이트 (Sodium Lauryl Sulfate, SLS), 소듐 라우레스 설페이트(Sodium Laureth Sulfate, SLES) 및 암모늄 라우릴 설페이트(Ammonium Lauryl Sulfate, ALS)를 포함하는 군에서 선택되는 적어도 하나의 유화제를 더 포함할 수 있다.In this case, in order to improve dispersibility, stability, etc., sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES), and ammonium lauryl sulfate (Ammonium Lauryl Sulfate, ALS) are included. It may further include at least one emulsifier selected from the group.
예를 들어, 상기 스티렌-부타디엔계 공중합체 100 중량부 기준으로, 상기 유화제는 0.2 내지 2 중량부로 배합할 수 있다.For example, based on 100 parts by weight of the styrene-butadiene-based copolymer, the emulsifier may be blended in an amount of 0.2 to 2 parts by weight.
앞서 설명한 성분들 외, 당업계에 일반적으로 알려진 첨가제를 더 첨가하는 것도 가능하며, 이에 대한 더 이상의 상세한 설명은 생략한다.In addition to the above-described components, it is possible to further add additives generally known in the art, and further detailed description thereof will be omitted.
리튬 이차 전지용 음극 바인더 조성물Anode binder composition for lithium secondary battery
본 발명의 다른 일 구현예로, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에 가황화된 스티렌-부타디엔계 공중합체;를 포함하는, 리튬 이차 전지용 음극 바인더 조성물을 제공한다.In another embodiment of the present invention, a styrene-butadiene-based copolymer vulcanized in the presence of a vulcanization accelerator including a metal-organic framework (MOF); containing, a negative electrode binder composition for a lithium secondary battery to provide.
상기 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에 가황화된 스티렌-부타디엔계 공중합체는, 상기 스티렌-부타디엔계 공중합체를 불포함하는 가황 촉진제의 존재 하에 가황화된 스티렌-부타디엔계 공중합체에 대비하여, 구조적으로 안정하며, 내열성, 내화학성, 기계적 물성 등에 있어서 향상된 특성을 나타낼 수 있다.The styrene-butadiene-based copolymer vulcanized in the presence of a vulcanization accelerator including the metal-organic framework (MOF) is vulcanized in the presence of a vulcanization accelerator without the styrene-butadiene-based copolymer. Compared to the styrene-butadiene-based copolymer, it is structurally stable and can exhibit improved properties in heat resistance, chemical resistance, and mechanical properties.
여기서, 상기 금속-유기 골격은 금속과 유기물의 배위 결합으로 그 고유의 기공을 가지고 있고 금속-유기 골격의 종류에 따라 그 기공의 크기와 모양이 다양하다. 가황 반응에서 그 기공의 유무 때문에 가황(가교) 반응 시 기공 내외로 미반응 단량체가 드나들면서 고분자-미반응 단량체 반응보다 고분자-고분자 가교반응이 효과적으로 이루어질 수 있다. Here, the metal-organic skeleton has its own pores due to a coordination bond between metals and organics, and the size and shape of the pores vary according to the type of the metal-organic skeleton. Due to the presence or absence of the pores in the vulcanization reaction, unreacted monomers enter and exit the pores during the vulcanization (crosslinking) reaction, so that the polymer-polymer crosslinking reaction can be more effectively performed than the polymer-unreacted monomer reaction.
여기서, DCBS, ZnO 등의 일반적인 가황 촉진제가 반응 속도 측면에서 가교를 효과적으로 일으키는 것과는 달리, 금속-유기 골격은 고분자 사슬끼리의 가교를 선택적으로 촉진함으로써 그 특성이 두드러질 수 있다.Here, unlike general vulcanization accelerators such as DCBS and ZnO that effectively cause crosslinking in terms of the reaction rate, the metal-organic skeleton selectively promotes crosslinking between polymer chains, thereby remarking its properties.
나아가, DCBS, ZnO 등의 일반적인 가황 촉진제가 단지 가황 반응을 촉진할 뿐 구조적인 효과가 없는 것과 달리, 금속-유기 골격의 경우 그 고유의 기공이 존재하기 때문에 이를 포함하는 음극 내 리튬 이온의 이동성이 향상되어 음극 내부 저항을 낮추면서 리튬 이차 전지의 용량 대비 CC(Constant current) 구간이 증가시키는 데 기여할 수 있다. Furthermore, unlike general vulcanization accelerators such as DCBS and ZnO, which only accelerate the vulcanization reaction and have no structural effect, the metal-organic skeleton has its own pores, so the mobility of lithium ions in the negative electrode including them is As a result, it can contribute to an increase in the CC (Constant Current) section compared to the capacity of the lithium secondary battery while lowering the internal resistance of the negative electrode.
따라서, 상기 일 구현예의 바인더 조성물은, 음극 및 이를 포함하는 전극 조립체 제조 공정에서 고온이 가해지더라도 변성되거나 파괴되지 않고, 전지 내에서 전해액과의 부반응이 억제되며, 전지의 반복적인 충방전 중에도 우수한 결합력을 유지하며 음극 활물질의 부피 변화를 효과적으로 완충함으로써, 리튬 이차 전지의 성능을 개선하는 데 기여할 수 있다. Accordingly, the binder composition of the embodiment is not denatured or destroyed even when high temperature is applied in the manufacturing process of the negative electrode and the electrode assembly including the same, and side reactions with the electrolyte in the battery are suppressed, and excellent bonding strength even during repetitive charging and discharging of the battery. By maintaining and effectively buffering the volume change of the negative active material, it can contribute to improving the performance of the lithium secondary battery.
이하, 전술한 내용과 중복되는 설명은 생략하고, 상기 일 구현예의 음극 바인더 조성물을 상세히 설명한다.Hereinafter, descriptions overlapping with those described above will be omitted, and the negative electrode binder composition of the embodiment will be described in detail.
음극 바인더 조성물 내 금속-유기 골격의 존재 형태Existence form of metal-organic skeleton in negative electrode binder composition
상기 일 구현예의 바인더 조성물에 있어서, 상기 금속-유기 골격(Metal-organic framework, MOF)는, 상기 가황화된 스티렌-부타디엔계 공중합체와 결합된 상태로 존재하거나, 상기 가황화된 스티렌-부타디엔계 공중합체와 독립적으로 존재할 수 있다.In the binder composition of the embodiment, the metal-organic framework (MOF) is present in a bonded state with the vulcanized styrene-butadiene-based copolymer, or the vulcanized styrene-butadiene-based It can exist independently of the copolymer.
구체적으로, 상기 금속-유기 골격(MOF)을 포함하는 가황 촉진제의 존재 하에 스티렌-부타디엔계 공중합체가 가황화되는 과정에서, 스티렌-부타디엔계 공중합체가 가황화됨과 동시에, 상기 금속-유기 골격(MOF)이 스티렌-부타디엔계 공중합체와 일부 복합화될 수 있다.Specifically, in the process of vulcanizing the styrene-butadiene-based copolymer in the presence of the vulcanization accelerator including the metal-organic skeleton (MOF), the styrene-butadiene-based copolymer is vulcanized and at the same time, the metal-organic skeleton ( MOF) may be partially complexed with a styrene-butadiene-based copolymer.
보다 구체적으로, 금속-유기 골격(MOF) 내부의 안정화된 금속 이온이 일종의 촉매로서 가황 반응에 참여하면서, 금속-유기 골격(MOF)의 구조가 일부 변화하면서 스티렌-부타디엔계 공중합체와 복합화될 수 있다. 이처럼 스티렌-부타디엔계 공중합체와 복합화된 상태에서 촉매 효율이 더 높고, 가황 반응이 보다 효과적으로 진행될 수 있다.More specifically, while the stabilized metal ions inside the metal-organic skeleton (MOF) participate in the vulcanization reaction as a kind of catalyst, the structure of the metal-organic skeleton (MOF) is partially changed, allowing it to be complexed with the styrene-butadiene-based copolymer. have. As such, the catalyst efficiency is higher in the state of being complexed with the styrene-butadiene-based copolymer, and the vulcanization reaction can proceed more effectively.
여기서, 상기 가황 반응에 참여했던 금속 이온은, 가황 반응 후 대부분 금속-유기 골격(MOF)으로 복귀할 수 있지만, 일부분은 이온 상태로 잔존할 수 있다. Here, the metal ions that participated in the vulcanization reaction may mostly return to the metal-organic skeleton (MOF) after the vulcanization reaction, but some may remain in an ionic state.
이에, 최종 음극 바인더 조성물 내에서, 금속-유기 골격(MOF)의 대부분은 상기 가황화된 스티렌-부타디엔계 공중합체와 독립적으로 혼합된 상태로 존재하고, 일부분은 구조 변화 및 상기 가황화된 스티렌-부타디엔계 공중합체와 복합화된 상태로 잔존할 수 있다.Thus, in the final negative electrode binder composition, most of the metal-organic framework (MOF) is present in a state independently mixed with the vulcanized styrene-butadiene-based copolymer, and a portion thereof is structurally changed and the vulcanized styrene- It can remain in a complexed state with a butadiene-based copolymer.
음극 바인더 조성물 내 겔 함량Gel content in negative electrode binder composition
상기 일 구현예의 음극 바인더 조성물은 하기 수학식 1로 계산되는 겔 함량이 80% 이상일 수 있다:The negative electrode binder composition of the embodiment may have a gel content of 80% or more calculated by Equation 1 below:
[수학식 1][Equation 1]
겔 함량(%)= M b/M a * 100Gel content (%) = M b /M a * 100
상기 수학식 1에서,In Equation 1,
M a는 상기 음극 바인더 조성물을 상온에서 24시간 건조 후, 80 ℃ 에서 24 시간 동안 건조시켜 필름 형태의 바인터 조성물을 확보하고 바인더 필름을 아주 펠렛(pellet) 형태로 제단 한뒤 0.5g 의 바인더 조성물을 취하여 측정한 무게이고, M a is the negative electrode binder composition dried at room temperature for 24 hours and then dried at 80° C. for 24 hours to obtain a film-type binder composition, and the binder film was cut into a very pellet, and 0.5 g of the binder composition was prepared. It is the weight taken and measured,
M b는 무게가 측정된 음극 바인더 조성물을 THF(Tetrahydrofuran) 50 g 에 24 시간 이상 담근 후 200 Mesh를 통해 거른 다음, 상기 Mesh와 Mesh에 남아 있는 음극용 바인더를 같이 80 ℃에서 48 시간 건조시킨 뒤 Mesh에 남아 있는 공중합체의 무게이다.M b is the negative electrode binder composition weighed by immersion in 50 g of THF (Tetrahydrofuran) for 24 hours or more, filtering through 200 Mesh, and drying the mesh and the negative electrode binder remaining in the mesh at 80° C. for 48 hours. It is the weight of the copolymer remaining in the mesh.
상기의 겔 함량은 공중합체의 가교 정도를 의미하는 것으로, 수학식 1과 같이 계산하여 전해액에 대한 불용 분율로 표현된다. 구체적으로, 상기 일 구현예의 음극용 바인더 내 겔 함량은 80 % 이상, 81 % 이상, 또는 82 % 이상일 수 있다. 겔 함량이 80% 미만인 경우, 전해액에 대한 스웰링(swelling)이 높아져 전지의 수명이 저하될 수 있다. 또한, 겔 함량의 상한은 특별히 한정하지 않지만, 99 % 이하, 98 % 이하, 또는 97 % 이하일 수 있다. The gel content refers to the degree of crosslinking of the copolymer, and is calculated as in Equation 1 and expressed as an insoluble fraction in the electrolyte. Specifically, the gel content in the negative electrode binder according to the embodiment may be 80% or more, 81% or more, or 82% or more. If the gel content is less than 80%, swelling of the electrolyte solution increases, and thus the life of the battery may be reduced. In addition, the upper limit of the gel content is not particularly limited, but may be 99% or less, 98% or less, or 97% or less.
리튬 이차 전지용 음극 바인더의 제조 방법Method for producing a negative electrode binder for a lithium secondary battery
본 발명의 또 다른 일 구현예에서는, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에, 스티렌-부타디엔계 공중합체 및 황 분자(S 8)를 가황 반응시키는 단계;를 포함하는, 리튬 이차 전지용 음극 바인더 조성물의 제조 방법을 제공한다.In another embodiment of the present invention, in the presence of a vulcanization accelerator including a metal-organic framework (MOF), a styrene-butadiene-based copolymer and a sulfur molecule (S 8 ) are subjected to a vulcanization reaction; It provides a method for producing a negative electrode binder composition for a lithium secondary battery comprising a.
이는, 전술한 음극 바인더 원료를 경화시켜 음극 바인더를 제조하는 방법에 해당된다.This corresponds to a method of manufacturing a negative electrode binder by curing the above-described negative electrode binder raw material.
이하, 전술한 내용과 중복되는 설명은 생략하고, 상기 일 구현예의 각 단계를 상세히 설명한다.Hereinafter, descriptions overlapping with those described above will be omitted, and each step of the embodiment will be described in detail.
상기 가황 반응은, 70 내지 90 ℃의 온도 범위에서 수행될 수 있다. The vulcanization reaction may be carried out in a temperature range of 70 to 90 °C.
예컨대, 상기 가황 반응을 위한 온도 범위는 70 ℃ 이상, 또는 71 ℃ 이상, 또는 72 ℃ 이상, 또는 73 ℃ 이상, 또는 74 ℃ 이상, 또는 75 ℃ 이상이면서, 90 ℃ 이하, 또는 89 ℃ 이하, 또는 88 ℃ 이하, 또는 87 ℃ 이하, 또는 86 ℃ 이하, 또는 85 ℃ 이하인 범위 내에서 조절 가능하다.For example, the temperature range for the vulcanization reaction is 70°C or more, or 71°C or more, or 72°C or more, or 73°C or more, or 74°C or more, or 75°C or more, while 90°C or less, or 89°C or less, or It can be adjusted within a range of 88°C or less, or 87°C or less, or 86°C or less, or 85°C or less.
또한, 상기 가황 반응은, 내지 60 분 동안 수행될 수 있다.In addition, the vulcanization reaction may be carried out for to 60 minutes.
예컨대, 상기 가황 반응 시간은, 1 분 이상, 3 분 이상, 5 분 이상, 7 분 이상, 또는 9 분 이상이면서, 60 분 이하, 50 분 이하, 40 분 이하, 30 분 이하, 또는 20분 이하인 범위 내에서 조절 가능하다.For example, the vulcanization reaction time is 1 minute or more, 3 minutes or more, 5 minutes or more, 7 minutes or more, or 9 minutes or more, and 60 minutes or less, 50 minutes or less, 40 minutes or less, 30 minutes or less, or 20 minutes or less. It can be adjusted within the range.
상기 가황 반응은, 앞서 언급한 바와 같이, 상기 음극 바인더 원료가 음극 집전체에 도포된 상태에서 수행될 수 있다.The vulcanization reaction may be performed in a state in which the negative electrode binder material is applied to the negative electrode current collector, as mentioned above.
구체적으로, 상기 일 구현예의 음극 바인더 원료는, 음극 활물질; 도전재; 수계 또는 비수계 용매; 등과 함께 혼합하여 음극 슬러리로 제조되어, 음극 집전체 상에 도포된 상태에서 건조를 위해 가해지는 70 내지 90 ℃의 열풍에 의해 빠르게 경화되어, 내열성, 내화학성, 기계적 물성 등의 특성을 두루 우수하게 발현하는 음극 바인더가 될 수 있다.Specifically, the negative electrode binder material of the embodiment may include a negative electrode active material; Conductive material; Aqueous or non-aqueous solvents; It is prepared as a negative electrode slurry by mixing with etc., and is rapidly cured by hot air of 70 to 90°C applied for drying while applied on the negative electrode current collector, providing excellent properties such as heat resistance, chemical resistance, and mechanical properties. It can be an expressing negative electrode binder.
보다 구체적으로, 상기 가황 반응 이전에, 상기 음극 바인더 원료, 도전재, 바인더, 및 용매를 포함하는 음극 활물질 슬러리를 제조하는 단계; 및 상기 음극 활물질 슬러리를 음극 집전체의 일면 또는 양면에 도포하는 단계;를 포함할 수 있다.More specifically, before the vulcanization reaction, preparing a negative electrode active material slurry including the negative electrode binder raw material, a conductive material, a binder, and a solvent; And applying the negative active material slurry to one or both surfaces of a negative electrode current collector.
이에 따라, 상기 가황 반응은, 상기 음극 집전체의 일면 또는 양면에 도포된 음극 활물질 슬러리에 열을 가하는 단계; 및 상기 열에 의해, 상기 음극 활물질 슬러리 내 음극 바인더 원료가 경화되는 단계;를 포함할 수 있다.Accordingly, the vulcanization reaction may include applying heat to the negative active material slurry applied to one or both surfaces of the negative electrode current collector; And curing the anode binder material in the anode active material slurry by the heat.
상기 음극 활물질 슬러리 100 중량% 중, 상기 음극 바인더 원료의 함량은 0.1 내지 0.5 중량%일 수 있고, 상기 음극 활물질의 함량은 80 내지 84 중량%일 수 있고, 상기 바인더의 함량은 0.5 내지 2.5 중량%일 수 있고, 잔부는 첨가제 및 용매일 수 있다. 여기서, 각 물질의 함량은, 당업계의 일반적인 상식에 따라 조절 가능하다.In 100% by weight of the negative electrode active material slurry, the content of the negative electrode binder material may be 0.1 to 0.5% by weight, the content of the negative electrode active material may be 80 to 84% by weight, and the content of the binder may be 0.5 to 2.5% by weight And the balance may be an additive and a solvent. Here, the content of each substance can be adjusted according to common knowledge in the art.
상기 음극 활물질, 상기 도전재, 상기 첨가제 등에 대해서는, 후술하기로 한다.The negative active material, the conductive material, the additive, and the like will be described later.
리튬 이차 전지용 음극Negative electrode for lithium secondary battery
본 발명의 또 다른 일 구현예에서는, 음극 집전체; 및 상기 음극 집전체 상에 위치하고, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에 가황화된 스티렌-부타디엔계 공중합체, 음극 활물질, 및 도전재를 포함하는 음극 활물질 층을 포함하는, 리튬 이차 전지용 음극을 제공한다.In another embodiment of the present invention, a negative electrode current collector; And a styrene-butadiene-based copolymer, a negative electrode active material, and a conductive material vulcanized in the presence of a vulcanization accelerator located on the negative electrode current collector and including a metal-organic framework (MOF). It provides a negative electrode for a lithium secondary battery including a layer.
상기 일 구현예의 음극은, 전술한 일 구현예의 음극 바인더 원료로부터 전환된 바인더를 포함하므로, 전지 내에서 전해액과의 부반응이 억제되며, 전지의 반복적인 충방전 중에도 우수한 결합력을 유지하며 음극 활물질의 부피 변화를 효과적으로 완충함으로써, 리튬 이차 전지의 성능을 개선하는 데 기여할 수 있다.Since the negative electrode of one embodiment includes a binder converted from the negative electrode binder raw material of the above-described embodiment, side reactions with the electrolyte solution in the battery are suppressed, and excellent bonding strength is maintained even during repetitive charging and discharging of the battery, and the volume of the negative electrode active material By effectively buffering the change, it can contribute to improving the performance of the lithium secondary battery.
상기 일 구현예의 음극에 있어서, 상기 음극 활물질 층은 독립적으로, 상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다. In the negative electrode of one embodiment, the negative electrode active material layer is independently, the negative electrode active material is a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, doped with lithium, and It includes a material that can be undoped, or a transition metal oxide.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.As a material capable of reversibly intercalating/deintercalating lithium ions, any carbon-based negative active material generally used in lithium ion secondary batteries may be used as a carbon material, and a representative example thereof is crystalline carbon. , Amorphous carbon, or a combination thereof may be used. Examples of the crystalline carbon include graphite such as amorphous, plate-shaped, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). Alternatively, hard carbon, mesophase pitch carbide, and fired coke may be used.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 또는 Sn의 금속과의 합금이 사용될 수 있다.The lithium metal alloy includes lithium and a metal of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, or Sn. Alloys can be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiO x(0 < x < 2), Si-C 복합체, Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님), Sn, SnO 2, Sn-C 복합체, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po 또는 이들의 조합을 들 수 있다.Materials capable of doping and undoping lithium include Si, SiO x (0 <x <2), Si-C composites, Si-Q alloys (where Q is an alkali metal, alkaline earth metal, group 13 to group 16 element , Transition metal, rare earth element or a combination thereof, and not Si), Sn, SnO 2 , Sn-C complex, Sn-R (the R is an alkali metal, alkaline earth metal, group 13 to group 16 element, transition metal, It is a rare earth element or a combination of these, and Sn is not), etc. are mentioned. Specific elements of Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or combinations thereof.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. Examples of the transition metal oxide include vanadium oxide and lithium vanadium oxide.
예를 들어, 상기 음극 활물질 층은 인조 흑연, 천연 흑연, 소프트 카본, 하드 카본, 또는 이들의 혼합물 중에서 선택된 적어도 하나의 탄소계 음극 활물질을 포함할 수 있다.For example, the negative active material layer may include at least one carbon-based negative active material selected from artificial graphite, natural graphite, soft carbon, hard carbon, or a mixture thereof.
한편, 상기 음극 활물질 층은 도전재를 더 포함할 수 있다. 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.Meanwhile, the negative active material layer may further include a conductive material. The conductive material is used to impart conductivity to the electrode, and in the battery constituted, any material can be used as long as it does not cause chemical change and is an electronic conductive material, such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen Carbon-based materials such as black and carbon fiber; Metal-based materials such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
예를 들어, 상기 각 음극 활물질 층은 독립적으로, 아세틸렌 블랙, 카본 블랙, 케첸블랙, 탄소섬유, 또는 이들의 혼합물을 포함하는 탄소계 도전재 군에서 선택되는 적어도 하나를 포함할 수 있다.For example, each of the negative electrode active material layers may independently include at least one selected from the group of carbon-based conductive materials including acetylene black, carbon black, ketjen black, carbon fiber, or a mixture thereof.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and any electronically conductive material can be used without causing a chemical change in the configured battery. For example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen black , Carbon-based materials such as carbon fiber; Metal-based materials such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있다.As the current collector, a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with a conductive metal, or a combination thereof may be used.
리튬 이차 전지Lithium secondary battery
본 발명의 또 다른 일 구현예로, 상기 일 구현예의 음극; 전해질; 및 양극을 포함하는 리튬 이차 전지를 제공한다.In another embodiment of the present invention, the cathode of the embodiment; Electrolytes; And it provides a lithium secondary battery including a positive electrode.
상기 일 구현예의 리튬 이차 전지는, 상기 양극 및 상기 음극 사이에, 세퍼레이터;를 더 포함하는 것일 수 있다.The lithium secondary battery of the embodiment may further include a separator between the positive electrode and the negative electrode.
상기 리튬 이차 전지는 사용하는 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로, 최소한의 설명을 덧붙이기로 한다.The lithium secondary battery may be classified into a cylindrical type, a square type, a coin type, a pouch type, etc. according to the shape to be used, and may be divided into a bulk type and a thin film type according to the size. Since the structure and manufacturing method of these batteries are widely known in this field, a minimum explanation will be added.
상기 양극은 전류 집전체 및 이 전류 집전체에 형성되는 양극 활물질 층을 포함한다. The positive electrode includes a current collector and a positive electrode active material layer formed on the current collector.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 구체적으로는 코발트, 망간, 니켈 또는 이들의 조합의 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다. Li aA 1-bR bD 2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0 ≤ b ≤ 0.5이다); Li aE 1-bR bO 2-cD c(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 및 0 ≤ c ≤ 0.05이다); LiE 2-bR bO 4-cD c(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); Li aNi 1-b-cCo bR cD α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2이다); Li aNi 1-b-cCo bR cO 2-αZ α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); Li aNi 1-b-cCo bR cO 2-αZ 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); Li aNi 1-b-cMn bR cD α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2이다); Li aNi 1-b-cMn bR cO 2-αZ α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); Li aNi 1-b-cMn bR cO 2-αZ 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); Li aNi bE cG dO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5 및 0.001 ≤ d ≤ 0.1이다.); Li aNi bCo cMn dGeO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5 및 0.001 ≤ e ≤ 0.1이다.); Li aNiG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); Li aCoG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); Li aMnG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); Li aMn 2G bO 4(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); QO 2; QS 2; LiQS 2; V 2O 5; LiV 2O 5; LiTO 2; LiNiVO 4; Li (3-f)J 2(PO 4) 3(0 ≤ f ≤ 2); Li (3-f)Fe 2(PO 4) 3(0 ≤ f ≤ 2); 및 LiFePO 4.As the positive electrode active material, a compound capable of reversible intercalation and deintercalation of lithium (reitiated intercalation compound) may be used. Specifically, at least one of cobalt, manganese, nickel, or a composite oxide of lithium and a metal of a combination thereof may be used, and a specific example thereof may be a compound represented by any one of the following formulas. Li a A 1-b R b D 2 (where 0.90≦a≦1.8 and 0≦b≦0.5); Li a E 1-b R b O 2-c D c (where 0.90≦a≦1.8, 0≦b≦0.5, and 0≦c≦0.05); LiE 2-b R b O 4-c D c (where 0≦b≦0.5, 0≦c≦0.05); Li a Ni 1-bc Co b R c D α (wherein, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 <α ≤ 2); Li a Ni 1-bc Co b R c O 2-α Z α (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 <α <2); Li a Ni 1-bc Co b R c O 2-α Z 2 (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 <α <2); Li a Ni 1-bc Mn b R c D α (wherein, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 <α ≤ 2); Li a Ni 1-bc Mn b R c O 2-α Z α (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 <α <2); Li a Ni 1-bc Mn b R c O 2-α Z 2 (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 and 0 <α <2); Li a Ni b E c G d O 2 (in the above formula, 0.90≦a≦1.8, 0≦b≦0.9, 0≦c≦0.5, and 0.001≦d≦0.1); Li a Ni b Co c Mn d GeO 2 (wherein, 0.90≦a≦1.8, 0≦b≦0.9, 0≦c≦0.5, 0≦d≦0.5, and 0.001≦e≦0.1.); Li a NiG b O 2 (wherein, 0.90≦a≦1.8 and 0.001≦b≦0.1); Li a CoG b O 2 (wherein, 0.90≦a≦1.8 and 0.001≦b≦0.1.); Li a MnG b O 2 (wherein, 0.90≦a≦1.8 and 0.001≦b≦0.1.); Li a Mn 2 G b O 4 (wherein, 0.90≦a≦1.8 and 0.001≦b≦0.1); QO 2 ; QS 2 ; LiQS 2 ; V 2 O 5 ; LiV 2 O 5 ; LiTO 2 ; LiNiVO 4 ; Li (3-f) J 2 (PO 4 ) 3 (0≦f≦2); Li (3-f) Fe 2 (PO 4 ) 3 (0≦f≦2); And LiFePO 4 .
상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; R은 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; Z는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; T는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.In the above formula, A is Ni, Co, Mn, or a combination thereof; R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof; D is O, F, S, P or a combination thereof; E is Co, Mn, or a combination thereof; Z is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof; Q is Ti, Mo, Mn, or a combination thereof; T is Cr, V, Fe, Sc, Y or a combination thereof; J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
물론 이 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 상기 코팅층은 코팅 원소 화합물로서, 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 또는 코팅 원소의 하이드록시카보네이트를 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.Of course, one having a coating layer on the surface of the compound may be used, or a mixture of the compound and a compound having a coating layer may be used. The coating layer may include, as a coating element compound, oxide, hydroxide of a coating element, oxyhydroxide of a coating element, oxycarbonate of a coating element, or hydroxycarbonate of a coating element. The compound constituting these coating layers may be amorphous or crystalline. As a coating element included in the coating layer, Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used. The coating layer formation process is a method that does not adversely affect the physical properties of the positive electrode active material by using these elements in the compound (e.g., spray coating, dipping method, etc.), any coating method may be used. The detailed description will be omitted because it can be well understood by those in the field.
상기 양극 활물질 층은 또한 바인더 및 도전재를 포함한다.The positive electrode active material layer also includes a binder and a conductive material.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder adheres well the positive electrode active material particles to each other, and also plays a role in attaching the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, diacetylcellulose, and polyvinyl Chloride, carboxylated polyvinylchloride, polyvinylfluoride, polymer containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene- Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but the present invention is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and in the battery constituted, any material can be used as long as it does not cause chemical change and is an electronic conductive material, such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen Metal powders such as black, carbon fiber, copper, nickel, aluminum, and silver, metal fibers, etc. may be used, and conductive materials such as polyphenylene derivatives may be used alone or in combination of one or more.
상기 전류 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.Al may be used as the current collector, but is not limited thereto.
상기 음극과 상기 양극은 각각 활물질, 도전재 및 결착제를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.Each of the negative electrode and the positive electrode is prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and then applying the composition to a current collector. Since such an electrode manufacturing method is widely known in the art, a detailed description thereof will be omitted. As the solvent, N-methylpyrrolidone or the like may be used, but is not limited thereto.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다. The electrolyte includes a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란(sulfolane)류 등이 사용될 수 있다. As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used. As the carbonate-based solvent, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), and the like may be used, and as the ester solvent, methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methylpropionate , Ethyl propionate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like may be used. Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent, and cyclohexanone may be used as the ketone solvent. have. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol-based solvent, and R-CN (R is a C2 to C20 linear, branched, or cyclic hydrocarbon group, wherein Amides such as nitriles such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes such as 1,3-dioxolane, and the like may be used.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance, which is widely understood by those in the field. Can be.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. In addition, in the case of the carbonate-based solvent, it is preferable to use a mixture of cyclic carbonate and chain carbonate. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족 탄화수소계 유기용매는 약 1:1 내지 약 30:1의 부피비로 혼합될 수 있다.The non-aqueous organic solvent may further include the aromatic hydrocarbon-based organic solvent in the carbonate-based solvent. At this time, the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1:1 to about 30:1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소계 화합물이 사용될 수 있다.As the aromatic hydrocarbon-based organic solvent, an aromatic hydrocarbon-based compound of Formula 1 may be used.
[화학식 1][Formula 1]
Figure PCTKR2020013964-appb-img-000001
Figure PCTKR2020013964-appb-img-000001
상기 화학식 1에서, R 1 내지 R 6는 각각 독립적으로 수소, 할로겐, C1 내지 C10의 알킬기, C1 내지 C10의 할로알킬기 또는 이들의 조합이다.In Formula 1, R 1 to R 6 are each independently hydrogen, halogen, a C1 to C10 alkyl group, a C1 to C10 haloalkyl group, or a combination thereof.
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 1,2-디플루오로톨루엔, 1,3-디플루오로톨루엔, 1,4-디플루오로톨루엔, 1,2,3-트리플루오로톨루엔, 1,2,4-트리플루오로톨루엔, 클로로톨루엔, 1,2-디클로로톨루엔, 1,3-디클로로톨루엔, 1,4-디클로로톨루엔, 1,2,3-트리클로로톨루엔, 1,2,4-트리클로로톨루엔, 아이오도톨루엔, 1,2-디아이오도톨루엔, 1,3-디아이오도톨루엔, 1,4-디아이오도톨루엔, 1,2,3-트리아이오도톨루엔, 1,2,4-트리아이오도톨루엔, 자일렌 또는 이들의 조합을 사용할 수 있다.The aromatic hydrocarbon-based organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2, 4-trichlorobenzene, iodobenzene, 1,2-diaiodobenzene, 1,3-diaiodobenzene, 1,4-diaiodobenzene, 1,2,3-triiodobenzene, 1,2,4 -Triiodobenzene, toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluorotoluene, 1,2,3-trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,3-trichlorotoluene, 1,2,4 -Trichlorotoluene, iodotoluene, 1,2-diaiodotoluene, 1,3-diaiodotoluene, 1,4-diaiodotoluene, 1,2,3-triiodotoluene, 1,2,4- Triiodotoluene, xylene, or combinations thereof may be used.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound of Formula 2 in order to improve battery life.
[화학식 2][Formula 2]
Figure PCTKR2020013964-appb-img-000002
Figure PCTKR2020013964-appb-img-000002
상기 화학식 2에서, R 7 및 R 8는 각각 독립적으로 수소, 할로겐기, 시아노기(CN), 니트로기(NO 2) 또는 C1 내지 C5의 플루오로알킬기이며, 상기 R 7과 R 8중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO 2) 또는 C1 내지 C5의 플루오로알킬기이다.In Formula 2, R 7 and R 8 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), or a C1 to C5 fluoroalkyl group, and at least one of R 7 and R 8 Is a halogen group, a cyano group (CN), a nitro group (NO 2 ), or a C1 to C5 fluoroalkyl group.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 플루오로에틸렌 카보네이트 등을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다.Representative examples of the ethylene carbonate-based compound include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like. I can. When the vinylene carbonate or the ethylene carbonate-based compound is further used, the lifespan may be improved by appropriately adjusting the amount of the vinylene carbonate-based compound.
상기 리튬염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염의 대표적인 예로는 LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiC 4F 9SO 3, LiClO 4, LiAlO 2, LiAlCl 4, LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2)(여기서, x 및 y는 자연수임), LiCl, LiI, LiB(C 2O 4) 2(리튬 비스옥살레이토 보레이트(lithium bis(oxalato) borate; LiBOB) 또는 이들의 조합을 들 수 있으며, 이들을 지지(supporting) 전해염으로 포함한다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt is dissolved in the non-aqueous organic solvent, acts as a source of lithium ions in the battery, enables the operation of a basic lithium secondary battery, and promotes the movement of lithium ions between the positive electrode and the negative electrode. to be. Representative examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y +1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB(C 2 O 4 ) 2 (lithium bis(oxalato) borate; LiBOB) or a combination thereof The concentration of the lithium salt is preferably within the range of 0.1 to 2.0 M. If the concentration of the lithium salt falls within the above range, the electrolyte has an appropriate conductivity and viscosity. It can exhibit excellent electrolyte performance, and lithium ions can move effectively.
세퍼레이터는 상기 음극과 상기 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능하다.  즉, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다.  예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다.  예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 고분자 세퍼레이터가 주로 사용되고, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.The separator separates the negative electrode from the positive electrode and provides a passage for lithium ions to move, and any separator commonly used in a lithium battery may be used. That is, those having low resistance to ion movement of the electrolyte and excellent in the ability to impregnate the electrolyte may be used. For example, as selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, it may be in the form of a non-woven fabric or a woven fabric. For example, polyolefin-based polymer separators such as polyethylene, polypropylene, etc. are mainly used for lithium-ion batteries, and coated separators containing ceramic components or polymer materials may be used to secure heat resistance or mechanical strength, and optionally single-layer or multi-layer Can be used as a structure.
이하, 본 발명의 바람직한 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, the following examples are only preferred examples of the present invention, and the present invention is not limited to the following examples.
제조예 1Manufacturing Example 1
중합 개시제인 Paramenthane hydroperoxide (PMHP)가 0.5 중량% 포함되어 있는 물에, 단량체로서 부타디엔 61 g, 스티렌 57 g, 및 아크릴산 2 g을 첨가하고, 유화제로서 소듐 라우릴 설페이트 10 g을 첨가하여 이들을 혼합한 뒤, 70 ℃에서 약 5 시간 동안 중합시켜, 부타디엔-스티렌-아크릴 중합체 입자가 포함된 조성물을 수득하였다.In water containing 0.5% by weight of the polymerization initiator Paramenthane hydroperoxide (PMHP), 61 g of butadiene, 57 g of styrene, and 2 g of acrylic acid were added as monomers, and 10 g of sodium lauryl sulfate was added as an emulsifier to mix them. Then, polymerization was performed at 70° C. for about 5 hours to obtain a composition containing butadiene-styrene-acrylic polymer particles.
상기 조성물 내 고형분 함량은 30 중량% 이고, 이에 포함된 중합체 입자의 수평균 입경은 50 ㎚(동적 광 산란(DLS) 장비에 의한 측정 값)이다.The solid content in the composition is 30% by weight, and the number average particle diameter of the polymer particles contained therein is 50 nm (measured value by dynamic light scattering (DLS) equipment).
실시예 1Example 1
(1) 음극 바인더 원료 (아크릴-스티렌-부타디엔 중합체+황+Zn(BDC)+DCBS+ZnO)(1) Anode binder raw material (acrylic-styrene-butadiene polymer+sulfur+Zn(BDC)+DCBS+ZnO)
상기 제조예 1의 조성물을 20 g 취하고, 여기에 황(S 8) 0.2 g, Zn(BDC)(여기서, BDC=1,4-Benzenedicarboxylate) 0.4 g, DCBS(N,N-Dicyclohexyl-2-benzothiazolesulfenamide) 0.2 g, 및 ZnO 0.7 g을 첨가한 뒤 1 시간 동안 교반하여, 실시예 1의 음극 바인더 원료를 수득하였다.Take 20 g of the composition of Preparation Example 1, sulfur (S 8 ) 0.2 g, Zn (BDC) (here, BDC = 1,4-Benzenedicarboxylate) 0.4 g, DCBS (N,N-Dicyclohexyl-2-benzothiazolesulfenamide) ) 0.2 g, and 0.7 g of ZnO were added and stirred for 1 hour to obtain a negative electrode binder raw material of Example 1.
(2) 음극(2) cathode
증점제인 카르복시 메틸 셀룰로오스 수용액 150 g (고형분 함량: 1.5 중량%) 및 도전재인 아세틸렌 블랙 1.5 g을 혼합하고 1시간 동안 교반하여, 도전재 분산액을 제조하였다.150 g of an aqueous solution of carboxy methyl cellulose as a thickener (solid content: 1.5% by weight) and 1.5 g of acetylene black as a conductive material were mixed and stirred for 1 hour to prepare a conductive material dispersion.
상기 실시예 1의 음극 바인더 원료를 0.5 g 취하여 상기 도전재 분산액에 투입하고, 여기에 음극 활물질인 인조 흑연(D50: 20 μm) 150 g, 및 증류수 20 g을 투입하고 10 분 동안 교반하여, 실시예 1의 음극 활물질 슬러리(slurry)를 제조하였다.0.5 g of the negative electrode binder material of Example 1 was taken and added to the conductive material dispersion, 150 g of artificial graphite (D50: 20 μm), which is a negative electrode active material, and 20 g of distilled water were added thereto, followed by stirring for 10 minutes. A negative active material slurry of Example 1 was prepared.
20 ㎛ 두께의 구리 호일을 음극 집전체로 사용하고, 콤마 코터(comma coater)를 이용하여 상기 음극 집전체의 일면 상에 상기 실시예 1의 음극 활물질 슬러리를 도포한 뒤(편면 당 도포량: 10.8 mg/cm 2), 80 ℃의 오븐(oven)에서 10 분간 열풍 건조하고, 총 두께가 90 ㎛이 되도록 25 ℃에서 압연하고 120 ℃에서 진공 건조하여 실시예 1의 음극으로 수득하였다.A copper foil having a thickness of 20 μm was used as a negative electrode current collector, and the negative active material slurry of Example 1 was coated on one side of the negative electrode current collector using a comma coater (application amount per side: 10.8 mg /cm 2 ), hot air drying for 10 minutes in an oven at 80° C., rolling at 25° C. to a total thickness of 90 μm, and vacuum drying at 120° C. to obtain a negative electrode of Example 1.
(3) 리튬 이온 반쪽 전지(3) Li-ion half battery
상기 음극을 작동 전극으로 사용하고, 150 ㎛ 두께의 리튬 메탈 시트를 기준 전극으로 사용하고, 상기 작동 전극과 상기 기준 전극 사이에 폴리에틸렌 세퍼레이터(두께:20㎛ , 기공도: 40%)를 삽입하여 전지 용기에 투입하고, 전해액을 주입한 다음, 이 외의 사항은 통상적인 제조방법에 따라 2032 하프셀(half-cell)의 형태로 리튬 이차 전지를 제작하였다.The negative electrode was used as a working electrode, a lithium metal sheet having a thickness of 150 µm was used as a reference electrode, and a polyethylene separator (thickness: 20 µm, porosity: 40%) was inserted between the working electrode and the reference electrode. After putting into a container and injecting an electrolyte, for other matters, a lithium secondary battery was manufactured in the form of a 2032 half-cell according to a conventional manufacturing method.
상기 전해액으로는, 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카르보네이트(propylene carbonate, PC)와 디에틸 카보네이트(diethyl carbonate, DEC)의 혼합 용매(EC:PC:DEC=3:2:5의 무게비)에 LiPF 6가 1.3M의 농도가 되도록 용해시키고, 전해액 총 중량에 대해 10 중량%의 첨가제 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)를 첨가시킨 것을 사용하였다.As the electrolyte, a mixed solvent (EC:PC:DEC=3:2:5) of ethylene carbonate (EC), propylene carbonate (PC) and diethyl carbonate (DEC) LiPF 6 was dissolved in a weight ratio) to a concentration of 1.3M, and 10% by weight of an additive fluoroethylene carbonate (FEC) was added to the total weight of the electrolyte.
실시예 2Example 2
(1) 음극 바인더 원료 (아크릴-스티렌-부타디엔 중합체+황+Zn(BDC)+DCBS+ZnO)(1) Anode binder raw material (acrylic-styrene-butadiene polymer+sulfur+Zn(BDC)+DCBS+ZnO)
상기 제조예 1의 조성물을 20 g 취하고, 여기에 황(S 8) 0.2 g, Zn(BDC) 0.4 g, DCBS 0.1 g, 및 ZnO 0.7 g을 첨가한 뒤 1 시간 동안 교반하여, 실시예 2의 음극 바인더 원료를 수득하였다.20 g of the composition of Preparation Example 1 was taken, and 0.2 g of sulfur (S 8 ), 0.4 g of Zn (BDC), 0.1 g of DCBS, and 0.7 g of ZnO were added thereto, followed by stirring for 1 hour. A negative electrode binder raw material was obtained.
(2) 음극 및 리튬 이온 반쪽 전지의 제조 (2) Preparation of negative electrode and lithium ion half battery
상기 실시예 1의 바인더 조성물 대신 상기 실시예 2의 음극 바인더 원료를 사용하고, 나머지는 상기 실시예 1과 동일하게 하여, 실시예 2의 음극 및 리튬 이온 반쪽 전지를 제조하였다. Instead of the binder composition of Example 1, the negative electrode binder material of Example 2 was used, and the remainder of the negative electrode and lithium ion half battery of Example 2 were prepared in the same manner as in Example 1.
실시예 3Example 3
(1) 음극 바인더 원료 (아크릴-스티렌-부타디엔 중합체+황+Zn(BDC)+DCBS+ZnO)(1) Anode binder raw material (acrylic-styrene-butadiene polymer+sulfur+Zn(BDC)+DCBS+ZnO)
상기 제조예 1의 조성물을 20 g 취하고, 여기에 황(S 8) 0.2 g, Zn(BDC) 0.8 g, DCBS 0.2 g, 및 ZnO 0.7 g을 첨가한 뒤 1 시간 동안 교반하여, 실시예 3의 음극 바인더 원료를 수득하였다.20 g of the composition of Preparation Example 1 was taken, and 0.2 g of sulfur (S 8 ), 0.8 g of Zn (BDC), 0.2 g of DCBS, and 0.7 g of ZnO were added thereto, followed by stirring for 1 hour. A negative electrode binder raw material was obtained.
(2) 음극 및 리튬 이온 반쪽 전지의 제조(2) Preparation of negative electrode and lithium ion half battery
상기 실시예 1의 바인더 조성물 대신 상기 실시예 3의 음극 바인더 원료를 사용하고, 나머지는 상기 실시예 1과 동일하게 하여, 실시예 3의 음극 및 리튬 이온 반쪽 전지를 제조하였다. In place of the binder composition of Example 1, the negative electrode binder raw material of Example 3 was used, and the remainder of the negative electrode and lithium ion half battery of Example 3 were prepared in the same manner as in Example 1.
실시예 4Example 4
(1) 음극 바인더 원료 (아크릴-스티렌-부타디엔 중합체+황+Zn(BDC))(1) Anode binder raw material (acrylic-styrene-butadiene polymer + sulfur + Zn (BDC))
상기 제조예 1의 조성물을 20 g 취하고, 여기에 황(S 8) 0.2 g, 및 Zn(BDC) 0.4 g을 첨가한 뒤 1 시간 동안 교반하여, 실시예 4의 음극 바인더 원료를 수득하였다.20 g of the composition of Preparation Example 1 was taken, 0.2 g of sulfur (S 8 ), and 0.4 g of Zn (BDC) were added thereto, followed by stirring for 1 hour to obtain a negative electrode binder raw material of Example 4.
(2) 음극 및 리튬 이온 반쪽 전지의 제조(2) Preparation of negative electrode and lithium ion half battery
상기 실시예 1의 바인더 조성물 대신 상기 실시예 4의 음극 바인더 원료를 사용하고, 나머지는 상기 실시예 1과 동일하게 하여, 실시예 4의 음극 및 리튬 이온 반쪽 전지를 제조하였다. Instead of the binder composition of Example 1, the negative electrode binder material of Example 4 was used, and the rest were the same as those of Example 1, to prepare a negative electrode and a lithium ion half battery of Example 4.
비교예 1Comparative Example 1
(1) 음극 바인더 원료 (1) anode binder raw material (( 아크릴-스티렌-부타디엔 중합체 단독)Acrylic-styrene-butadiene polymer alone)
상기 제조예 1의 조성물 그 자체를 비교예 1의 바인더 조성물로 사용하였다.The composition of Preparation Example 1 itself was used as the binder composition of Comparative Example 1.
(2) 음극 및 리튬 이온 반쪽 전지의 제조(2) Preparation of negative electrode and lithium ion half battery
상기 실시예 1의 바인더 조성물 대신 상기 비교예 1의 음극 바인더 원료를 사용하고, 나머지는 상기 실시예 1과 동일하게 하여, 비교예 1의 음극 및 리튬 이온 반쪽 전지를 제조하였다. Instead of the binder composition of Example 1, the negative electrode binder raw material of Comparative Example 1 was used, and the rest were the same as those of Example 1, to prepare a negative electrode and a lithium ion half battery of Comparative Example 1.
비교예 2 Comparative Example 2
(1) 음극 바인더 원료의 제조 (1) Preparation of negative electrode binder raw material (( 아크릴-스티렌-부타디엔 중합체+황+DCBS)Acrylic-styrene-butadiene polymer + sulfur + DCBS)
상기 제조예 1의 조성물을 20 g 취하고, 여기에 황(S 8) 0.2 g 및 DCBS 0.2 g을 첨가한 뒤 1 시간 동안 교반하여, 비교예 2의 바인더 조성물을 수득하였다.20 g of the composition of Preparation Example 1 was taken, 0.2 g of sulfur (S 8 ) and 0.2 g of DCBS were added thereto, followed by stirring for 1 hour, to obtain a binder composition of Comparative Example 2.
(2) 음극 및 리튬 이온 반쪽 전지의 제조(2) Preparation of negative electrode and lithium ion half battery
상기 실시예 1의 바인더 조성물 대신 상기 비교예 2의 바인더 조성물을 사용하고, 나머지는 상기 실시예 1과 동일하게 하여, 비교예 2의 음극 및 리튬 이온 반쪽 전지를 제조하였다.Instead of the binder composition of Example 1, the binder composition of Comparative Example 2 was used, and the rest were the same as those of Example 1 to prepare a negative electrode and a lithium ion half battery of Comparative Example 2.
비교예 3Comparative Example 3
(1) 음극 바인더 원료의 제조 (아크릴-스티렌-부타디엔 중합체+황+ZnO)(1) Preparation of negative electrode binder raw material (acrylic-styrene-butadiene polymer + sulfur + ZnO)
상기 제조예 1의 조성물을 20 g 취하고, 여기에 황(S 8) 0.2 g 및 ZnO 0.7 g을 첨가한 뒤 1 시간 동안 교반하여, 비교예 3의 바인더 조성물을 수득하였다.20 g of the composition of Preparation Example 1 was taken, 0.2 g of sulfur (S 8 ) and 0.7 g of ZnO were added thereto, followed by stirring for 1 hour to obtain a binder composition of Comparative Example 3.
(2) 음극 및 리튬 이온 반쪽 전지의 제조(2) Preparation of negative electrode and lithium ion half battery
상기 실시예 1의 바인더 조성물 대신 상기 비교예 3의 바인더 조성물을 사용하고, 나머지는 상기 실시예 1과 동일하게 하여, 비교예 3의 음극 및 리튬 이온 반쪽 전지를 제조하였다.Instead of the binder composition of Example 1, the binder composition of Comparative Example 3 was used, and the rest were the same as those of Example 1 to prepare a negative electrode and a lithium ion half battery of Comparative Example 3.
실험예 1: 음극 바인더 조성물 평가Experimental Example 1: Evaluation of negative electrode binder composition
상기 실시예 1 내지 4 및 비교예 1 내지 3에서는, 음극 바인더 원료, 도전재 분산액, 음극 활물질, 및 추가의 용매를 포함하는 음극 활물질 슬러리를 음극 집전체에 도포한 뒤 열을 가하는 과정에서, 상기 음극 활물질 슬러리 내 용매가 제거되어 음극 활물질 층이 형성됨과 동시에, 상기 음극 바인더 원료의 가황 반응이 일어나 바인더로 전환된다. 이와 같은 제조 공정 상, 상기 실시예 1 내지 4 및 비교예 1 내지 3의 각 최종 음극으로부터 바인더(즉, 가황화된 스티렌-부타디엔계 공중합체)를 분리하는 것은 불가능하다.In Examples 1 to 4 and Comparative Examples 1 to 3, in the process of applying heat after applying a negative electrode active material slurry including a negative electrode binder raw material, a conductive material dispersion, a negative electrode active material, and an additional solvent to a negative electrode current collector, the At the same time as the solvent in the anode active material slurry is removed to form the anode active material layer, a vulcanization reaction of the material for the anode binder occurs to convert it into a binder. In such a manufacturing process, it is impossible to separate the binder (ie, vulcanized styrene-butadiene-based copolymer) from each of the final negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 3.
다만, 본 실험예에서는, 평가를 위해, 상기 실시예 1 내지 4 및 비교예 1 내지 3의 음극 바인더 원료 그 자체에 80 ℃의 오븐(oven)에서 24시간 동안 건조하여 음극 바인더 조성물을 제조하였다.However, in this experimental example, for evaluation, the negative electrode binder raw materials of Examples 1 to 4 and Comparative Examples 1 to 3 were dried in an oven at 80° C. for 24 hours to prepare a negative electrode binder composition.
이에 따라 제조된 실시예 1 내지 4 및 상기 비교예 1 내지 3의 음극 바인더 조성물을 각각 다음과 같은 조건으로 평가하여, 그 결과를 하기 표 1에 기록하였다. The negative electrode binder compositions of Examples 1 to 4 and Comparative Examples 1 to 3 thus prepared were evaluated under the following conditions, respectively, and the results are recorded in Table 1 below.
바인더 조성물 내 겔 함량: 먼저, 상기 바인더 조성물을 상온에서 24시간 건조 후, 80 ℃ 에서 24 시간 동안 건조시켜 필름 형태의 바인터 조성물을 확보하고 바인더 필름을 아주 작은 펠렛(pellet) 형태로 제단 한뒤 0.5g 의 바인더 조성물을 취하여 정확한 무게를 측정하였다. (Ma) Gel content in the binder composition: First, the binder composition was dried at room temperature for 24 hours, and then dried at 80° C. for 24 hours to obtain a film-type binder composition, and the binder film was cut into very small pellets, and then 0.5 Take g of the binder composition and measure the correct weight. (Ma)
그리고, 상기 무게 측정이 완료된 바인더 입자를 약 50g의 테트라하이드로퓨란(THF)에 상온에서 24 시간 침지시키고, 200 메쉬의 체를 이용하여 거른 다음, 80 ℃에서 48 시간 동안 건조한 이후, 정확한 무게를 측정하였다. (Mb)Then, the weight-measured binder particles were immersed in about 50 g of tetrahydrofuran (THF) at room temperature for 24 hours, filtered through a 200 mesh sieve, dried at 80° C. for 48 hours, and then accurately weighed. I did. (Mb)
겔 함량은 하기 수학식 1을 통해 계산하였다. The gel content was calculated through Equation 1 below.
[수학식 1][Equation 1]
겔 함량(%)= M b/M a * 100Gel content (%) = M b /M a * 100
구분division 겔 함량Gel content
실시예 1Example 1 82.7 %82.7%
실시예 2Example 2 77.6 %77.6%
실시예 3Example 3 77.9 %77.9%
실시예 4Example 4 76.8 %76.8%
비교예 1Comparative Example 1 71.1 %71.1%
비교예 2Comparative Example 2 74.4 %74.4%
비교예 3Comparative Example 3 74.6 %74.6%
상기 표 1에서, 상기 비교예 1 내지 3에 대비하여, 상기 실시예 1 내지 4의 음극 바인더 조성물 내 겔 함량이 더 높은 것을 확인할 수 있다.여기서, 겔 함량은 공중합체의 가교 정도를 의미하는 것이므로, 상기 비교예 1 내지 3에 대비하여, 상기 실시예 1 내지 4의 음극 바인더 조성물 내 가황화된 스티렌-부타디엔계 공중합체의 가황(가교) 정도가 더 높은 것을 알 수 있다.In Table 1, compared to Comparative Examples 1 to 3, it can be seen that the gel content in the negative electrode binder compositions of Examples 1 to 4 is higher. Here, the gel content refers to the degree of crosslinking of the copolymer. , Compared to Comparative Examples 1 to 3, it can be seen that the degree of vulcanization (crosslinking) of the vulcanized styrene-butadiene-based copolymer in the negative electrode binder compositions of Examples 1 to 4 is higher.
이와 같은 결과는, 금속-유기 골격(MOF)의 가황 반응 참여와 관계된다. 앞서 언급한 바와 같이, 금속-유기 골격(MOF) 내부의 안정화된 금속 이온이 일종의 촉매로서 가황 반응에 참여하면서, 금속-유기 골격(MOF)의 구조가 일부 변화하면서 스티렌-부타디엔계 공중합체와 복합화될 수 있다. 이처럼 스티렌-부타디엔계 공중합체와 복합화된 상태에서 촉매 효율이 더 높고, 가황 반응이 보다 효과적으로 진행된 결과, 가황화된 스티렌-부타디엔계 공중합체의 가황(가교) 정도가 더 높아진 것으로 추론된다.These results are related to the participation in the vulcanization reaction of the metal-organic skeleton (MOF). As mentioned above, while the stabilized metal ions inside the metal-organic framework (MOF) participate in the vulcanization reaction as a kind of catalyst, the structure of the metal-organic framework (MOF) partially changes, resulting in complexation with the styrene-butadiene-based copolymer. Can be. As a result of the higher catalytic efficiency and more effective vulcanization reaction in the complexed state with the styrene-butadiene-based copolymer, it is inferred that the degree of vulcanization (crosslinking) of the vulcanized styrene-butadiene-based copolymer is higher.
실험예 2: 음극 및 리튬 이차 전지 평가Experimental Example 2: Evaluation of negative electrode and lithium secondary battery
상기 실시예 1 내지 4 및 상기 비교예 1 내지 3의 음극 및 리튬 이차 전지를 각각 다음과 같은 조건으로 평가하여, 그 결과를 하기 표 2에 기록하였다.The negative electrodes and lithium secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were evaluated under the following conditions, respectively, and the results are recorded in Table 2 below.
음극 접착력: 25℃의 항온 챔버 내에서, 상기 각 음극의 음극 활물질 층을 유리 기판에 접착시키고, 5 mm/min의 박리 속도 및 180˚의 박리 각도로 상기 음극을 당길 때, 상기 유리 기판으로부터 상기 음극의 음극 활물질 층이 박리되는 힘을 측정하였다. Adhesion of negative electrode: When the negative electrode active material layer of each negative electrode is adhered to a glass substrate in a constant temperature chamber at 25° C., and the negative electrode is pulled at a peel rate of 5 mm/min and a peel angle of 180°, from the glass substrate. The force by which the negative active material layer of the negative electrode is peeled was measured.
음극 활물질 층(코팅층)의 체적 저항률: AC 저항 측정 기기(제조사: Hioki)를 이용하여, 4.25V/0.05C cu-off로 SOC100을 맞춘 후, 1KHz에서의 상기 각 음극의 체적 저항률 (ρv=V/I×π r 2/h)을 측정하였다. . Volume resistivity of the negative electrode active material layer (coating layer) : Using an AC resistance measuring device (manufacturer: Hioki), adjust SOC100 to 4.25V/0.05C cu-off, and then the volume resistivity of each negative electrode at 1KHz (ρv = V /I x pi r 2 /h) was measured. .
전지의 방전 특성: 25℃의 항온 챔버 내에서, 1 C로 1.5V에서 5mV 에 이르기까지 CC/CV 모드(mode)로 상기 각 리튬 이온 반쪽 전지를 3회 방전한 뒤, CC모드로 1 C로 방전하고, 하기 수학식 2에 따라 전체 방전 용량 대비 CC 구간의 방전 용량을 백분율로 변환하였다. Discharge characteristics of the battery : In a constant temperature chamber at 25°C, discharge each of the lithium ion half cells 3 times in CC/CV mode from 1.5V to 5mV at 1 C, and then to 1 C in CC mode. After discharging, the discharge capacity of the CC section compared to the total discharge capacity was converted into a percentage according to Equation 2 below.
[수학식 2][Equation 2]
=100%*{(1.0C CC)})/{(1.0C CC/CV)} =100%*{(1.0C CC)})/{(1.0C CC/CV)}
또한, 25℃의 항온 챔버 내에서, 0.5 C로 1.5V에서 5mV 에 이르기까지 CC/CV 모드(mode)로 상기 각 리튬 이온 반쪽 전지를 3회 방전한 뒤, CC모드로 0.5 C로 방전하고, 하기 수학식 2에 따라 전체 방전 용량 대비 CC 구간의 방전 용량을 백분율로 변환하였다.In addition, in a constant temperature chamber at 25°C, after discharging each of the lithium ion half cells 3 times in CC/CV mode from 1.5V to 5mV at 0.5 C, discharged at 0.5 C in CC mode, According to Equation 2 below, the discharge capacity of the CC section compared to the total discharge capacity was converted into a percentage.
[수학식 3][Equation 3]
=100%*{(0.5C CC)})/{(0.5C CC/CV)} =100%*{(0.5C CC)})/{(0.5C CC/CV)}
음극 팽창률: 상기 방전 특성 평가 후, 각 전지를 분해하여 음극을 회수하였다. 각 회수된 음극을 DMC(디메틸 카보네이트) 용매로 세척하고 상온에서 송풍기(air blower)를 이용하여 수분 내로 건조시킨 뒤, 두께를 측정하였다. 이에 따라 측정된 두께를 다음과 같은 식에 대입하여, 음극의 팽창률을 계산하였다. Anode expansion rate : After evaluating the discharge characteristics, each battery was disassembled to recover the anode. Each recovered negative electrode was washed with a DMC (dimethyl carbonate) solvent and dried within a few minutes using an air blower at room temperature, and then the thickness was measured. Accordingly, the measured thickness was substituted into the following equation to calculate the expansion rate of the negative electrode.
[음극 팽창률][Cathode expansion rate]
= 100%*{(전지의 방전 음극 두께)-(압연 음극 두께)}/{(압연 음극 두께)-(구리 호일 두께)}= 100%*{(discharge cathode thickness of battery)-(rolled anode thickness)}/{(rolled anode thickness)-(copper foil thickness)}
여기서, 각 용어의 정의는 다음과 같다:Here, the definition of each term is as follows:
전지의 방전 음극 두께 = 리튬 이온 전지의 1회 방전 시 음극 두께Discharge negative electrode thickness of battery = negative electrode thickness during one discharge of lithium ion battery
압연 음극 두께 = 리튬 이온 전지의 조립 전 음극의 두께Rolled negative electrode thickness = thickness of negative electrode before assembly of lithium ion battery
구리 호일의 두께 = 압연 전극 중 음극 집전체의 두께Thickness of copper foil = thickness of negative electrode current collector in rolled electrode
구분division 음극 접착력Cathode adhesion 음극 활물질 층의 체적 저항률Volume resistivity of negative active material layer (0.5C CC)})
/{(0.5C CC/CV)
(0.5C CC)})
/((0.5C CC/CV)
(1.0C CC)})
/{(1.0C CC/CV)
(1.0C CC)})
/((1.0C CC/CV)
음극 팽창률Cathode expansion rate
실시예 1Example 1 23.9 gf/cm23.9 gf/cm 46.3 mΩ·㎝46.3 mΩ·cm 76.4 %76.4% 44.3 %44.3% 26.3 %26.3%
실시예 2Example 2 20.6 gf/cm20.6 gf/cm 51.2 mΩ·㎝51.2 mΩ·cm 73.1 %73.1% 41.1%41.1% 28.7 %28.7%
실시예 3Example 3 21.7 gf/cm21.7 gf/cm 50.1 mΩ·㎝50.1 mΩ·cm 74.1 %74.1% 41.5%41.5% 27.6 %27.6%
실시예 4Example 4 18.8 gf/cm18.8 gf/cm 49.8 mΩ·㎝49.8 mΩ·cm 73.1 %73.1% 42.0%42.0% 29.9 %29.9%
비교예 1Comparative Example 1 16.8 gf/cm16.8 gf/cm 63.1 mΩ·㎝63.1 mΩ·cm 71.9 %71.9% 33.1 %33.1% 30.9 %30.9%
비교예 2Comparative Example 2 19.7 gf/cm19.7 gf/cm 52.7 mΩ·㎝52.7 mΩ·cm 72.6 %72.6% 38.1%38.1% 29.7 %29.7%
비교예 3Comparative Example 3 20.1 gf/cm20.1 gf/cm 51.5 mΩ·㎝51.5 mΩ·cm 72.6 %72.6% 40.6%40.6% 29.2 %29.2%
상기 표 2에서, 상기 비교예 1 내지 3을 비교할 때, 아크릴-스티렌-부타디엔 중합체 및 황 분자를 포함하는 원료가 음극 집전체에 도포된 상태에서 경화된 경우(비교예 2 및 3), 그 경화물의 결합력과 내구성이 아크릴-스티렌-부타디엔 중합체 그 자체(비교예 1)보다 개선되고, 전해액과의 부반응이 억제되어 저항이 낮아진 것으로 보인다.In Table 2, when comparing Comparative Examples 1 to 3, when a raw material containing an acrylic-styrene-butadiene polymer and a sulfur molecule is cured while being applied to a negative electrode current collector (Comparative Examples 2 and 3), the curing It seems that the bonding strength and durability of water were improved than that of the acrylic-styrene-butadiene polymer itself (Comparative Example 1), and the side reaction with the electrolyte was suppressed, and the resistance was lowered.
상기 비교예 2 및 3보다도, 상기 실시예 1 내지 4는, 특히 음극 활물질층의 체적 저항률을 더욱 낮추는 결과를 나타내었으며, 이와 같이 개선된 결과는 Zn(DBC)에 기인한 것으로 판단된다. Compared to Comparative Examples 2 and 3, Examples 1 to 4 showed a result of further lowering the volume resistivity of the negative active material layer, in particular, and the result improved as described above is believed to be due to Zn (DBC).
구체적으로, 상기 금속-유기 골격은 금속과 유기물의 배위 결합으로 그 고유의 기공을 가지고 있고 금속-유기 골격의 종류에 따라 그 기공의 크기와 모양이 다양하다. 가황 반응에서 그 기공의 유무 때문에 가황(가교) 반응 시 기공 내외로 미반응 단량체가 드나들면서 고분자-미반응 단량체 반응보다 고분자-고분자 가교반응이 효과적으로 이루어질 수 있다. Specifically, the metal-organic skeleton has its own pores due to a coordination bond between a metal and an organic material, and the size and shape of the pores vary according to the type of the metal-organic skeleton. Due to the presence or absence of the pores in the vulcanization reaction, unreacted monomers enter and exit the pores during the vulcanization (crosslinking) reaction, so that the polymer-polymer crosslinking reaction can be more effectively performed than the polymer-unreacted monomer reaction.
여기서, DCBS, ZnO 등의 일반적인 가황 촉진제가 반응 속도 측면에서 가교를 효과적으로 일으키는 것과는 달리, 금속-유기 골격은 고분자 사슬끼리의 가교를 선택적으로 촉진함으로써 그 특성이 두드러지는 것으로 평가된다.Here, unlike general vulcanization accelerators such as DCBS and ZnO that effectively cause crosslinking in terms of reaction rate, the metal-organic skeleton is evaluated to have outstanding properties by selectively promoting crosslinking between polymer chains.
나아가, DCBS, ZnO 등의 일반적인 가황 촉진제가 단지 가황 반응을 촉진할 뿐 구조적인 효과가 없는 것과 달리, 금속-유기 골격의 경우 그 고유의 기공이 존재하기 때문에 이를 포함하는 음극 내 리튬 이온의 이동성이 향상되어 음극 내부 저항을 낮추면서 리튬 이차 전지의 용량 대비 CC(Constant current) 구간이 증가시키는 데 기여할 수 있다.Furthermore, unlike general vulcanization accelerators such as DCBS and ZnO, which only accelerate the vulcanization reaction and have no structural effect, the metal-organic skeleton has its own pores, so the mobility of lithium ions in the negative electrode including them is As a result, it can contribute to an increase in the CC (Constant Current) section compared to the capacity of the lithium secondary battery while lowering the internal resistance of the negative electrode.
따라서, 실시예 1 내지 4의 각 음극 바인더 원료는, 가황 촉진제로 DSBS만 포함하는 비교예 2 및 ZnO만 포함하는 비교예 3보다도, Zn(DBC)를 가황 촉진제로 포함함에 따라 스티렌-부타디엔계 공중합체 및 황 분자(S 8)의 가황 반응을 더욱 효과적으로 촉진할 수 있고, 그 가황 반응 생성물을 적용한 음극 및 리튬 이차 전지의 성능을 현저하게 개선할 수 있는 것이다.Therefore, each of the negative electrode binder raw materials of Examples 1 to 4 contained Zn (DBC) as a vulcanization accelerator, compared to Comparative Example 2 containing only DSBS as a vulcanization accelerator and Comparative Example 3 containing only ZnO. It is possible to more effectively promote the vulcanization reaction of the coalescence and sulfur molecules (S 8 ), and significantly improve the performance of the negative electrode and lithium secondary battery to which the vulcanization reaction product is applied.
한편, 실시예 1 내지 4는 공통적으로 음극의 저항을 낮추는 효과를 나타내며, 특히 실시예 4보다도 실시예 1 내지 3은 더 높은 음극 접착력과 더 낮은 팽창률을 나타내었으며, 이와 같은 결과는 가황 촉진제로써 DSBS, ZnO 등의 추가 포함 여부에 기인한 것으로 판단된다. On the other hand, Examples 1 to 4 commonly exhibit the effect of lowering the resistance of the negative electrode, and in particular, Examples 1 to 3 showed higher adhesion to the negative electrode and a lower expansion rate than that of Example 4, and this result is a result of DSBS as a vulcanization accelerator. And ZnO is considered to be due to the additional inclusion.
앞서 언급한 바와 같이, ZnDBC는 가황 촉진 역할과 더불어 그 특수한 기능을 수행하므로, 실시예 1 내지 4에서 음극의 저항이 낮아지는 효과를 나타낸 것이다.As mentioned above, since ZnDBC performs its special function as well as a vulcanization accelerating role, it shows the effect of lowering the resistance of the negative electrode in Examples 1 to 4.
다만, 실시예 4보다도 실시예 1 내지 3에서 더 높은 음극 접착력과 더 낮은 팽창률이 나타나는 것은, DSBS, ZnO 등의 다른 가황 촉진제의 도움 없이 ZnDBC를 가황 촉진제로 단독 사용할 경우, 가황(가교)도를 높이는 데 한계가 있는 것으로 보인다. However, the higher cathode adhesion and lower expansion rates in Examples 1 to 3 than in Example 4 are that when ZnDBC is used alone as a vulcanization accelerator without the aid of other vulcanization accelerators such as DSBS and ZnO, the degree of vulcanization (crosslinking) is reduced. There seems to be a limit to the height.
이와 관련하여, 가황 촉진제로 ZnDBC를 단독으로 사용하더라도 음극의 저항을 낮추는 효과를 취할 수 있지만, 접착력과 팽창률의 측면에서 더욱 개선된 음극을 목적한다면, DSBS, ZnO 등의 다른 가황 촉진제를 첨가할 수 있을 것이다.In this regard, even if ZnDBC is used alone as a vulcanization accelerator, the effect of lowering the resistance of the negative electrode can be obtained, but if a further improved negative electrode in terms of adhesion and expansion is desired, other vulcanization accelerators such as DSBS and ZnO can be added There will be.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. The present invention is not limited to the above embodiments, but may be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains, other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented with.
예를 들어, 전술한 일 구현예의 범위 내에서 각 구성 요소의 종류, 적용량 등을 변경하더라도, 상기 실시예 1 내지 4와 동등 또는 그 이상의 효과를 구현할 수 있을 것이다. For example, even if the type and amount of each component are changed within the scope of the above-described exemplary embodiment, the same or higher effects as those of the first to fourth exemplary embodiments may be implemented.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects.

Claims (19)

  1. 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제;A vulcanization accelerator including a metal-organic framework (MOF);
    스티렌-부타디엔계 공중합체; 및Styrene-butadiene-based copolymer; And
    황 분자(S 8)를 포함하는,Containing a sulfur molecule (S 8 ),
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속-유기 골격은, The metal-organic skeleton,
    Zn(1,4-Benzenedicarboxylate)(BDC), Zn 4O(4,4′,4″-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate)(BPDC 2=biphenyl-4,4′-dicarboxylate) (BTE)(BPDC), Zn 4O(1,3,5-benzenetribenzoate) (BTB), Zn 4O(4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate) (BBC), 또는 이들 중 2 이상의 혼합물을 포함하는 것인,Zn(1,4-Benzenedicarboxylate)(BDC), Zn 4 O(4,4′,4″-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate)(BPDC 2 =biphenyl-4,4′-dicarboxylate) (BTE)(BPDC), Zn 4 O(1,3,5-benzenetribenzoate) (BTB), Zn 4 O(4,4′,4″-[benzene-1 ,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate) (BBC), or a mixture of two or more thereof,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  3. 제1항에 있어서,The method of claim 1,
    상기 스티렌-부타디엔계 공중합체는, The styrene-butadiene-based copolymer,
    아크릴-스티렌-부타디엔 공중합체, 스티렌-부타티엔 중합체, 또는 이들의 혼합물을 포함하는 것인,Acrylic-styrene-butadiene copolymer, styrene-butadiene polymer, or a mixture thereof,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  4. 제1항에 있어서,The method of claim 1,
    상기 스티렌-부타디엔계 공중합체 100 중량부를 기준으로,Based on 100 parts by weight of the styrene-butadiene-based copolymer,
    상기 황 분자를 0.5 내지 3 중량부로 포함하고, It contains 0.5 to 3 parts by weight of the sulfur molecule,
    상기 금속-유기 골격을 0.5 내지 2 중량부로 포함하는 것인,It contains 0.5 to 2 parts by weight of the metal-organic skeleton,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  5. 제1항에 있어서,The method of claim 1,
    상기 가황 촉진제는,The vulcanization accelerator,
    N,N-디사이클로헥실-2-벤조티아졸술펜아미드(N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS), 산화아연(ZnO), 또는 이들의 혼합물을 더 포함하는 것인,N,N-dicyclohexyl-2-benzothiazolesulfenamide (N,N-Dicyclohexyl-2-benzothiazolesulfenamide, DCBS), zinc oxide (ZnO), or a mixture thereof,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  6. 제5항에 있어서,The method of claim 5,
    상기 스티렌-부타디엔계 공중합체 100 중량부를 기준으로,Based on 100 parts by weight of the styrene-butadiene-based copolymer,
    상기 N,N-디사이클로헥실-2-벤조티아졸술펜아미드를 0.5 내지 2 중량부로 포함하고,0.5 to 2 parts by weight of the N,N-dicyclohexyl-2-benzothiazolesulfenamide,
    상기 산화아연을 0.5 내지 5 중량부로 포함하는 것인, It contains 0.5 to 5 parts by weight of the zinc oxide,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  7. 제1항에 있어서,The method of claim 1,
    파라멘탄 하이드로퍼옥사이드(Paramenthane hydroperoxide, PMHP), 포타슘 퍼설페이트(Potassium persulfate), 소듐 퍼설페이트(Sodium persulfate), 암모늄 퍼설페이트(Ammonium persulfate) 및 소듐 바이설페이트(Sodium bisulfate)를 포함하는 군에서 선택되는 적어도 하나의 중합 개시제를 더 포함하는 것인,Paramenthane hydroperoxide (PMHP), potassium persulfate (Potassium persulfate), sodium persulfate (Sodium persulfate), ammonium persulfate (Ammonium persulfate) and sodium bisulfate (Sodium bisulfate) selected from the group containing Which further comprises at least one polymerization initiator,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  8. 제1항에 있어서,The method of claim 1,
    용매인 물을 더 포함하는 것인,It further comprises water as a solvent,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  9. 제1항에 있어서,The method of claim 1,
    소듐 라우릴 설페이트 (Sodium Lauryl Sulfate, SLS), 소듐 라우레스 설페이트(Sodium Laureth Sulfate, SLES) 및 암모늄 라우릴 설페이트(Ammonium Lauryl Sulfate, ALS)를 포함하는 군에서 선택되는 적어도 하나의 유화제를 더 포함하는 것인,Sodium lauryl sulfate (SLS), sodium laureth sulfate (Sodium Laureth Sulfate, SLES) and ammonium lauryl sulfate (Ammonium Lauryl Sulfate, ALS) further comprising at least one emulsifier selected from the group containing That,
    리튬 이차 전지용 음극 바인더 원료.A material for negative electrode binders for lithium secondary batteries.
  10. 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에 가황화된 스티렌-부타디엔계 공중합체;를 포함하는, 리튬 이차 전지용 음극 바인더 조성물.A styrene-butadiene-based copolymer vulcanized in the presence of a vulcanization accelerator including a metal-organic framework (MOF); containing, a negative electrode binder composition for a lithium secondary battery.
  11. 제10항에 있어서,The method of claim 10,
    상기 음극 바인더 조성물은, 하기 수학식 1로 계산되는 겔 함량이 80% 이상인,The negative electrode binder composition has a gel content of 80% or more calculated by Equation 1 below,
    리튬 이차 전지용 음극 바인더 조성물:Anode binder composition for lithium secondary battery:
    [수학식 1][Equation 1]
    겔 함량(%)= M b/M a * 100Gel content (%) = M b /M a * 100
    상기 수학식 1에서,In Equation 1,
    M a는 상기 음극 바인더 조성물을 상온에서 24시간 건조 후, 80 ℃ 에서 24 시간 동안 건조시켜 필름 형태의 바인터 조성물을 확보하고 바인더 필름을 아주 펠렛(pellet) 형태로 제단 한뒤 0.5g 의 바인더 조성물을 취하여 측정한 무게이고, M a is the negative electrode binder composition dried at room temperature for 24 hours and then dried at 80° C. for 24 hours to obtain a film-type binder composition, and the binder film was cut into a very pellet, and 0.5 g of the binder composition was prepared. It is the weight taken and measured,
    M b는 무게가 측정된 음극 바인더 조성물을 THF(Tetrahydrofuran) 50 g 에 24 시간 이상 담근 후 200 Mesh를 통해 거른 다음, 상기 Mesh와 Mesh에 남아 있는 음극용 바인더를 같이 80 ℃에서 48 시간 건조시킨 뒤 Mesh에 남아 있는 공중합체의 무게이다.M b is the negative electrode binder composition weighed by immersion in 50 g of THF (Tetrahydrofuran) for 24 hours or more, filtering through 200 Mesh, and drying the mesh and the negative electrode binder remaining in the mesh at 80° C. for 48 hours. It is the weight of the copolymer remaining in the mesh.
  12. 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에, 스티렌-부타디엔계 공중합체 및 황 분자(S 8)를 가황 반응시키는 단계;를 포함하는, 리튬 이차 전지용 음극 바인더 조성물의 제조 방법.In the presence of a vulcanization accelerator including a metal-organic framework (MOF), the step of vulcanizing a styrene-butadiene-based copolymer and a sulfur molecule (S 8 ); containing, a negative electrode binder composition for a lithium secondary battery Manufacturing method.
  13. 제12항에 있어서,The method of claim 12,
    상기 가황 반응은,The vulcanization reaction,
    70 내지 90 ℃의 온도 범위에서 수행되는 것인,That is carried out in a temperature range of 70 to 90 ℃,
    리튬 이차 전지용 음극 바인더 조성물의 제조 방법.Method for producing a negative electrode binder composition for a lithium secondary battery.
  14. 제12항에 있어서,The method of claim 12,
    상기 가황 반응은,The vulcanization reaction,
    1 내지 60 분 동안 수행되는 것인,Which is carried out for 1 to 60 minutes,
    리튬 이차 전지용 음극 바인더 조성물의 제조 방법.Method for producing a negative electrode binder composition for a lithium secondary battery.
  15. 제12항에 있어서,The method of claim 12,
    상기 가황 반응은,The vulcanization reaction,
    상기 음극 바인더 원료가 음극 집전체에 도포된 상태에서 수행되는 것인,It is to be carried out in a state where the negative electrode binder raw material is applied to the negative electrode current collector
    리튬 이차 전지용 음극 바인더 조성물의 제조 방법.Method for producing a negative electrode binder composition for a lithium secondary battery.
  16. 제12항에 있어서,The method of claim 12,
    상기 가황 반응 이전에,Before the vulcanization reaction,
    상기 음극 바인더 원료, 도전재, 바인더, 및 용매를 포함하는 음극 활물질 슬러리를 제조하는 단계; 및Preparing a negative electrode active material slurry including the negative electrode binder raw material, a conductive material, a binder, and a solvent; And
    상기 음극 활물질 슬러리를 음극 집전체의 일면 또는 양면에 도포하는 단계;를 포함하는 것인,Including; coating the negative electrode active material slurry on one or both surfaces of a negative electrode current collector
    리튬 이차 전지용 음극 바인더 조성물의 제조 방법.Method for producing a negative electrode binder composition for a lithium secondary battery.
  17. 제12항에 있어서,The method of claim 12,
    상기 음극 활물질 슬러리 100 중량% 중, 상기 음극 바인더 원료의 함량은 0.1 내지 0.5 중량%인 것인,In 100% by weight of the negative active material slurry, the content of the negative electrode binder raw material is 0.1 to 0.5% by weight,
    리튬 이차 전지용 음극 바인더 조성물의 제조 방법.Method for producing a negative electrode binder composition for a lithium secondary battery.
  18. 음극 집전체; 및 Negative electrode current collector; And
    상기 음극 집전체 상에 위치하고, 금속-유기 골격(Metal-organic framework, MOF)을 포함하는 가황 촉진제의 존재 하에 가황화된 스티렌-부타디엔계 공중합체, 음극 활물질, 및 도전재를 포함하는 음극 활물질 층을 포함하는 것인,A negative electrode active material layer including a styrene-butadiene-based copolymer, a negative electrode active material, and a conductive material, which is located on the negative electrode current collector and vulcanized in the presence of a vulcanization accelerator including a metal-organic framework (MOF) It includes,
    리튬 이차 전지용 음극.Anode for lithium secondary batteries.
  19. 제18항의 음극;The cathode of claim 18;
    전해질; 및Electrolytes; And
    양극을 포함하는, Including an anode,
    리튬 이차 전지.Lithium secondary battery.
PCT/KR2020/013964 2019-10-31 2020-10-14 Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof WO2021085894A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20880581.2A EP3883023B1 (en) 2019-10-31 2020-10-14 Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof
CN202080006435.0A CN113474923B (en) 2019-10-31 2020-10-14 Anode binder for lithium rechargeable battery, anode binder comprising cured product of the anode binder
US17/299,613 US20220020992A1 (en) 2019-10-31 2020-10-14 Anode Binder for Lithium Rechargeable Battery, Anode Binder Including Cured Compound of the Same Anode Binder
PL20880581.2T PL3883023T3 (en) 2019-10-31 2020-10-14 Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190138185 2019-10-31
KR10-2019-0138185 2019-10-31
KR10-2020-0131978 2020-10-13
KR1020200131978A KR20210052240A (en) 2019-10-31 2020-10-13 Anode binder for lithium rechargeable battery, anode binder including cured compound of the same anode binder

Publications (1)

Publication Number Publication Date
WO2021085894A1 true WO2021085894A1 (en) 2021-05-06

Family

ID=75716418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013964 WO2021085894A1 (en) 2019-10-31 2020-10-14 Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof

Country Status (1)

Country Link
WO (1) WO2021085894A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026462A1 (en) * 2010-08-24 2012-03-01 日本ゼオン株式会社 Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negative electrode
JP2017174804A (en) * 2016-02-18 2017-09-28 福建藍海黒石科技有限公司Blue Ocean & Black Stone Technology Co.,Ltd.(Fujian) Aqueous binder for lithium ion battery negative electrode and preparation method of the same
KR20180048554A (en) * 2018-05-03 2018-05-10 인천대학교 산학협력단 Polymeric binder for anodes using interaction between polyacrylic acid and polyaniline
KR20190036700A (en) * 2017-09-28 2019-04-05 주식회사 엘지화학 A carbon -surfur complex, manufacturing method thereof and lithium secondary battery comprising the same
KR20190118278A (en) * 2018-04-10 2019-10-18 충남대학교산학협력단 Binder for secondary battery anode and anode for secondary battery comprising the same and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026462A1 (en) * 2010-08-24 2012-03-01 日本ゼオン株式会社 Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negative electrode
JP2017174804A (en) * 2016-02-18 2017-09-28 福建藍海黒石科技有限公司Blue Ocean & Black Stone Technology Co.,Ltd.(Fujian) Aqueous binder for lithium ion battery negative electrode and preparation method of the same
KR20190036700A (en) * 2017-09-28 2019-04-05 주식회사 엘지화학 A carbon -surfur complex, manufacturing method thereof and lithium secondary battery comprising the same
KR20190118278A (en) * 2018-04-10 2019-10-18 충남대학교산학협력단 Binder for secondary battery anode and anode for secondary battery comprising the same and lithium secondary battery comprising the same
KR20180048554A (en) * 2018-05-03 2018-05-10 인천대학교 산학협력단 Polymeric binder for anodes using interaction between polyacrylic acid and polyaniline

Similar Documents

Publication Publication Date Title
WO2020009340A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery including same
WO2020218773A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2019017567A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020067779A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2022220474A1 (en) Additive, electrolyte comprising same for rechargeable lithium battery, and rechargeable lithium battery
WO2019139271A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
WO2019004699A1 (en) Lithium secondary battery
WO2020242138A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2022158728A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
WO2022158701A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
WO2021194073A1 (en) Lithium secondary battery
WO2022265259A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023200106A1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including same
WO2023191200A1 (en) Cathode for rechargeable lithium battery and rechargeable lithium battery including same
WO2022158703A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
WO2018070733A1 (en) Lithium secondary battery cathode and lithium secondary battery including same
WO2022203206A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
WO2021085894A1 (en) Anode binder material for lithium secondary battery, and anode binder comprising cured product thereof
WO2021034130A1 (en) Ion conductive polymer, and lithium secondary battery electrode and lithium secondary battery which comprise same
WO2021118085A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018221844A1 (en) Electrode for lithium secondary battery and lithium secondary battery including same
WO2023224187A1 (en) Electrolyte of rechargeable lithium battery and rechargeable lithium battery including same
WO2023224188A1 (en) Electrolyte of rechargeable lithium battery and rechargeable lithium battery including same
WO2021080197A1 (en) Electrolyte for secondary lithium battery, and secondary lithium battery comprising same
WO2021194097A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020880581

Country of ref document: EP

Effective date: 20210618

NENP Non-entry into the national phase

Ref country code: DE