WO2021085641A1 - Polarization measurement device and ellipsometer - Google Patents

Polarization measurement device and ellipsometer Download PDF

Info

Publication number
WO2021085641A1
WO2021085641A1 PCT/JP2020/040970 JP2020040970W WO2021085641A1 WO 2021085641 A1 WO2021085641 A1 WO 2021085641A1 JP 2020040970 W JP2020040970 W JP 2020040970W WO 2021085641 A1 WO2021085641 A1 WO 2021085641A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizer
wave plate
image sensor
polarization
Prior art date
Application number
PCT/JP2020/040970
Other languages
French (fr)
Japanese (ja)
Inventor
井上 喜彦
佐藤 尚
川嶋 貴之
守俊 加藤
ローラン ファーブル
寿憲 熊谷
湧紀 石田
Original Assignee
株式会社フォトニックラティス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フォトニックラティス filed Critical 株式会社フォトニックラティス
Publication of WO2021085641A1 publication Critical patent/WO2021085641A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarization measuring device and an ellipsometer. Specifically, the polarization measuring device and the ellipsometer according to the present invention move the image sensor that converts optical information into an electric signal away from the measurement environment to acquire and analyze the polarization information in a special environment such as in a vacuum. It is the one that realized the measurement in.
  • the polarization measuring device can be used as a birefringence measuring device by analyzing the polarization information of the light passing through the sample, for example. Further, in the case of a sample in which a thin film is formed on the surface, the light reflected by the sample is affected by multiple reflections in the thin film, and its polarization state changes. The thickness or refractive index of the thin film can be derived from this change in the changed state. It is known that such a polarization measuring technique can be calculated by incident the light to be analyzed on a wave plate and a polarizer, rotating them, and measuring a change in the intensity of the transmitted light.
  • a rotation mechanism is required, so that there are problems such as time required for measurement, dust generation from the rotating part, and complicated mechanism.
  • a polarized image sensor that combines a region-divided polarizer, a region-divided wave plate, and an image sensor such as a CCD or CMOS for the purpose of realizing high-speed, real-time measurement of polarization information.
  • devices are made by stacking films of various materials. Since the thickness of each film affects the characteristics of the device, high-precision control is required, and the film is often formed mainly in vacuum.
  • an ellipsometer is known as a technique capable of measuring an ultrathin film of several nanometers with high accuracy, and is used for measuring the thickness of such a film.
  • a sample is taken out from the vacuum layer and measured, and an ellipsometer capable of measuring during the process or without breaking the vacuum has been desired.
  • a conventional polarized image sensor is provided with a region-divided polarizer or a region-divided wave plate and a uniform polarizer or a region-divided polarizer, and the light transmitted through them is converted into a light-dark distribution that differs depending on the polarization state. , It is converted into an electric signal by the image pickup element arranged immediately after (Fig. 1). Therefore, when it is necessary to measure the polarization in close proximity to the measurement target, it is necessary to install the image sensor in an environment with the measurement target.
  • the environment for acquiring the polarization information is, for example, a vacuum, a high temperature environment, or a special environment such as in a liquid, there is a problem that it is difficult to operate the image sensor stably.
  • the conventionally integrated region-dividing polarizer or region-dividing wave plate and an image sensor such as a CCD or CMOS are separated via a bundle fiber to create an environment different from the environment in which the measurement target is arranged. It is based on the finding that it is possible to arrange an image sensor.
  • the first aspect of the present invention relates to a polarization measuring device.
  • the polarization measuring device is arranged in the order of the wave plate and the polarizer from the direction in which light enters.
  • the wave plate is divided into regions within one plate, and each region has a plurality of axial directions.
  • the polarizer is uniform or divided into regions within one sheet, and each region has a plurality of axial directions.
  • the wave plate and polarizer are placed in front of one end face of the bundle fiber.
  • An image sensor is placed after the other end face of the bundle fiber.
  • the polarization information of the incident light is converted into a light-dark distribution by passing through the wave plate and the polarizer, and the light-dark distribution is propagated to the image sensor through the bundle fiber and converted into an electric signal using the image sensor.
  • the position of acquiring polarization information and the position of the image sensor are separated.
  • a polarizer is used in which the regions are divided in one sheet and each region has a plurality of axial directions.
  • the polarizer is placed in front of one end face of the bundle fiber.
  • An image sensor is placed after the other end face of the bundle fiber.
  • the second aspect of the present invention relates to an ellipsometer.
  • the ellipsometer is arranged in the order of the wave plate and the polarizer in the order in which the light reflected from the surface of the sample is incident and the light enters.
  • the wave plate is divided into regions within one plate, and each region has a plurality of axial directions.
  • the polarizer is uniform or divided into regions within one sheet, and each region has a plurality of axial directions.
  • the wave plate and polarizer are located in front of one end face of the bundle fiber. An image sensor is placed after the other end face of the bundle fiber.
  • the polarization information of the incident light is converted into a light-dark distribution by passing through the wave plate and the polarizer, and the light-dark distribution is propagated to the image pickup element through the bundle fiber and converted into an electric signal by using the image pickup element.
  • the polarization information can be obtained with, and the film thickness or refractive index of the sample can be calculated from the polarization information.
  • the position of acquiring polarization information and the position of the image sensor are separated.
  • a polarizer is used in which the regions are divided in one sheet and each region has a plurality of axial directions.
  • the polarizer is placed in front of one end face of the bundle fiber.
  • An image sensor is placed after the other end face of the bundle fiber.
  • the region-divided polarizer is preferably a photonic crystal produced by a self-cloning method, a wire grid method, or the like. Further, the region-divided wave plate is preferably a photonic crystal produced by a self-cloning method or the like.
  • a self-cloning photonic crystal is manufactured by forming a multilayer film on a substrate having a concavo-convex groove shape in an arbitrary direction by a special film forming technique called a self-cloning method.
  • a self-cloning photonic crystal refers to a polarizer having a transmission axis along the direction of the concavo-convex shape and a wave plate having an anisotropic axis along the direction of the concavo-convex shape (FIG. 2).
  • the function as a polarizer or a wave plate can be selected by controlling the thickness of the multilayer film.
  • a region dividing element of a polarizer or a wave plate can be easily realized (FIG. 3). Since the shape and size of the region can be arbitrarily designed, the self-cloning photonic crystal is suitable as the region-dividing polarizer and the region-dividing wave plate of the present invention.
  • a bundle fiber has a structure in which at least three or more optical fibers are bundled (Fig. 4).
  • a region-dividing polarizer is arranged alone (FIG. 5 (a)), or a combination of a region-dividing wave plate and a uniform polarizing plate is arranged (FIG. 5).
  • B) or a combination of a region-dividing wave plate and a region-dividing polarizer is arranged (FIG. 5 (c)), and the bundle fiber is brought close to or in contact with one end face.
  • the vicinity of one end face of the bundle fiber in which the region dividing element is arranged is called a "polarization detection unit".
  • an image sensor such as a CCD or CMOS is arranged on the other end face of the bundle fiber.
  • the end face of the bundle fiber in which the image sensor is arranged is called a "photoelectric conversion unit" in the sense that it converts an optical signal into an electric signal.
  • One of the features of the present invention is that the polarization detection unit and the photoelectric conversion unit are separated by the bundle fiber.
  • the light beam incident on the polarization detection unit is converted into a spatial distribution of the amount of transmitted light according to the polarization information by the region-divided polarizer alone or the combination of the region-divided wave plate and the polarizing plate.
  • the amount of light converted into the spatial distribution becomes the distribution of the amount of light transmitted by each optical fiber of the bundle fiber, is transmitted to the end face of the bundle fiber on the photoelectric conversion unit side, and is converted into an electric signal by the image sensor.
  • the light amount distribution information converted into an electric signal can be calculated by software to know the polarization information incident on the polarization detection unit.
  • the ellipsometer of the present invention may further have a configuration in which a reflection mirror is arranged so as to guide light to the sample, whereby a wave plate and a polarizer are arranged in the same direction as the light emission position (the ellipsometer of the present invention). FIG. 10).
  • the image sensor By using a polarization measuring device in which bundle fibers are interposed between region-divided polarizer wavelength plates, it is possible to arrange the image sensor in atmospheric pressure and atmosphere regardless of the environment in which the observation target is installed. For example, the polarization information of a light beam transmitted or reflected from a measurement target installed in a vacuum is measured using an image sensor installed in the atmosphere via a bundle fiber drawn from the inside of the vacuum chamber to the outside. Becomes possible.
  • the polarization measuring device of the present invention only optical components having high environmental resistance such as region dividing elements and bundle fibers are arranged in a special environment such as in a vacuum, in a liquid, or in a high temperature environment.
  • Electronics application parts such as image pickup devices and light sources with low environmental resistance can be installed in an atmospheric environment to enable polarization measurement in a special environment.
  • FIG. 1 shows a configuration example of a conventional polarization imaging sensor.
  • FIG. 2 is a schematic view of a self-cloning photonic crystal and its substrate.
  • FIG. 3 is a schematic view of a region-divided self-cloning photonic crystal and its substrate.
  • FIG. 4 is a schematic view of the bundle fiber.
  • FIG. 5 is a device configuration diagram of a polarization measuring device including a bundle fiber between a polarization detecting unit and a photoelectric conversion unit.
  • the polarization detector includes a single region-dividing polarizer (FIG. 5 (a)), a combination of a region-dividing polarizer and a uniform polarizing element (FIG.
  • FIG. 6 is a configuration example of a suitable polarization measuring device of the present invention.
  • FIG. 7 shows an example of arrangement of the region-divided wave plate, the inorganic polarizer, and the image sensor arranged at both ends of the bundle fiber.
  • FIG. 8 is a configuration example of an ellipsometer using the polarization measuring device of the present invention.
  • FIG. 9 is a comparison graph of measurement results of a conventional ellipsometer and an ellipsometer using the polarization measuring device of the present invention.
  • FIG. 10 is a configuration example of an ellipsometer in which the light source is arranged on the same side as the polarization measuring device.
  • FIG. 11 is a configuration example of a birefringence measuring device that combines a transmitted light source and the polarization measuring device of the present invention.
  • FIG. 6 is an example of a device configuration of a polarization measuring device including a polarization detection unit including a region-divided wave plate and a polarizer, a bundle fiber, and a photoelectric conversion unit including an image sensor.
  • a light ray (measurement light) transmitted or reflected through the measurement target transmits the region-divided wave plate and the uniform inorganic polarizing element substantially vertically in this order, and is also substantially perpendicular to the bundle fiber end face.
  • the polarization detection unit is configured so as to be incident on. Further, the image sensor is arranged on the end face on the opposite side of the bundle fiber.
  • the light amount distribution information transmitted by the bundle fiber is converted into an electric signal by the image sensor, and the polarization information can be acquired by the software that calculates and analyzes this.
  • the polarization detection unit is a combination of a region-divided wave plate and a uniform inorganic polarizer.
  • FIG. 7 is a component configuration example of the polarization detection unit used in the present invention.
  • Each region of the region-divided wave plate matches the arrangement of each fiber constituting the bundle fiber.
  • the polarization detection unit has a configuration in which an inorganic polarizer having a uniform transmission axis is inserted between the region-divided wave plate and the bundle fiber.
  • the region-divided wave plate is preferably a photonic crystal (self-cloning type photonic crystal) produced by the self-cloning method. Further, a wave plate made of quartz or the like may be divided and combined according to the arrangement of each fiber constituting the bundle fiber.
  • the polarization detection unit may be configured only by the region-divided polarizing element instead of the combination of the region-divided wave plate and the inorganic polarizing element.
  • FIG. 8 shows an arrangement example of the ellipsometer of the present invention.
  • the light source one in which one end of an optical fiber is connected to a laser light source, the fiber tip is arranged at a position where light is obliquely irradiated to the measurement target, and a polarizing plate is arranged at the fiber tip is used. By doing so, it is possible to keep the polarization state of the light irradiating the measurement target constant without worrying about bending of the fiber or the like.
  • the light emitted from the optical fiber generally spreads, but for example, by connecting a fiber type collimator lens using graded index fiber to the optical fiber and attaching a polarizer to the tip, collimated light with a constant polarization state is irradiated. can do.
  • the polarization detection unit of the polarization measuring device of the present invention is arranged on the optical path of the irradiation light reflected on the surface to be measured.
  • the light rays transmitted through the region-divided wave plate pass through the polarizer, they are converted into a light-dark pattern corresponding to the polarization state of the reflected light.
  • the light-dark pattern is transmitted to the image sensor arranged in the photoelectric conversion unit via the bundle fiber, and is converted into an electric signal here.
  • By calculating the obtained electrical signal with software it is possible to know the polarization information of the light beam incident on the polarization detection unit.
  • an ellipsometer that acquires information on the film thickness and refractive index of the thin film provided on the measurement target is realized.
  • the prototype device was able to obtain the same measurement results as when the measurement target was placed in the atmosphere even when the measurement target was placed in the vacuum chamber.
  • a commercially available mechanism may be used as the mechanism for introducing the bundle fiber into the vacuum.
  • the region division wavelength made of a self-cloning photonic crystal divided into regions corresponding to this arrangement is used.
  • a board was used.
  • the bundle fiber is not limited to the two-row arrangement as shown in FIG.
  • Self-cloning photonic crystals divided into regions according to the arrangement of bundle fibers of various arrangements may be used.
  • a necessary light / dark pattern is required even if the area is divided into a region irrelevant to the arrangement of the fibers by using a region dividing element divided into a region sufficiently larger than the arrangement of the fibers. Can be obtained.
  • Polarization measurement requires at least 4 pieces of information. That is, it can be realized if there is a wave plate in four directions. Even if there are multiple directions, there is no problem if the parameters at the time of calculation are changed. Further, the patterns in four directions may be arranged periodically.
  • the diameter of one bundle fiber used in the trial is 220 ⁇ m.
  • the portion (core) through which light propagates has a diameter of 200 ⁇ m. Therefore, the pattern of the photonic crystal to be mounted may be 200 ⁇ m or more in diameter.
  • one region of the wave plate may be placed on a plurality of fibers.
  • the incident light has a spatial intensity distribution, it is necessary to take into account the amount depending on the intensity of the calculation.
  • wave plates in four directions having an area sufficiently smaller than the incident range of the light are arranged periodically or randomly, and the outputs corresponding to each of the four directions obtained on the image sensor are averaged. Therefore, it is possible to perform a measurement that is not easily affected by the intensity distribution of the beam.
  • the bundle fibers are not always arranged in the same manner at the entrance and the exit, and the arrangement may be interchanged inside. Even in such a case, it is possible to change the polarization direction of the first incident light and know in advance which output corresponds to which wave plate from the change in intensity. Polarization can be calculated using that information. This operation can be performed before vacuuming.
  • FIG. 9 shows the result of comparing the output result of the ellipsometer of the present invention with the measurement result of a commercially available ellipsometer (SE101 manufactured by Photonic Lattice). As shown in FIG. 9, according to the ellipsometer of the present invention, results equivalent to those on the market were obtained.
  • FIG. 10 A small ellipsometer with the light source placed on the same side as the bundle fiber for polarization measurement
  • an optical fiber connected to a laser light source is arranged along a bundle fiber for polarization measurement, and a light beam emitted from the optical fiber is bent by a small mirror and irradiated to a measurement target, which is equivalent to a normal ellipsometer.
  • This is an example of realizing an optical system.
  • a reflection mirror is arranged so as to guide the light emitted from the tip of the optical fiber to the sample.
  • the light source constituting the ellipsometer and the polarization measuring unit can be integrated, and the unit placed close to the measurement target can be miniaturized.
  • the polarization state of the light emitted from the fiber may change due to the reflection mirror, but this can be corrected by grasping it in advance.
  • the birefringence of the measurement target can be known by measuring and calculating the change in the polarization information of the light beam transmitted through the measurement target. Therefore, the birefringence measuring device can be configured by combining the polarization measuring device of the present invention with a transmission light source.
  • FIG. 11 shows an example of the device configuration. In the case of the birefringence measuring device, the light source does not have to be a laser, and for example, an LED can be used.
  • the light source is arranged with a polarizer and a 1/4 wave plate in order from the side where light enters so that the light source is circularly polarized light, and the transmission axis of the polarizer and the axis of the 1/4 wave plate are 45. It is necessary to shift the degree.
  • the polarization measuring device of the present invention can be used in all situations where the installation environment of the observation target is different from the atmosphere such as in vacuum or liquid.
  • the installation environment of the observation target is different from the atmosphere such as in vacuum or liquid.
  • the present invention The ellipsometer according to the above can be preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

[Problem] To provide a polarization measurement device with which an imaging element can be disposed in an environment different from an environment in which an object to be measured is disposed. [Solution] A wave plate and a polarizer are arranged in this order from a direction in which light is incident. The wave plate is divided into regions within one plate, and each region has a plurality of axial directions. The polarizer is uniform or is divided into regions within one sheet, and each region has a plurality of axial directions. The wave plate and the polarizer are arranged in front of one end surface of a bundle fiber, and an imaging element is disposed in the rear of the other end surface of the bundle fiber. Polarization information on the incident light is converted into a light-dark distribution by causing the light to pass through the wave plate and the polarizer, and the light-dark distribution propagates to the imaging element through the bundle fiber, and is converted into an electric signal using the imaging element, thereby obtaining the polarization information. Accordingly, a position where the polarization information is acquired and a position of the imaging element are separated from each other.

Description

偏光計測装置およびエリプソメータPolarization measuring device and ellipsometer
 本発明は、偏光計測装置およびエリプソメータに関する。具体的に説明すると、本発明に係る偏光計測装置およびエリプソメータは、光情報を電気信号に変換する撮像素子を計測環境から離して偏光情報を取得・解析することで、真空中などの特殊環境下での計測を実現したものである。 The present invention relates to a polarization measuring device and an ellipsometer. Specifically, the polarization measuring device and the ellipsometer according to the present invention move the image sensor that converts optical information into an electric signal away from the measurement environment to acquire and analyze the polarization information in a special environment such as in a vacuum. It is the one that realized the measurement in.
 偏光計測装置は、例えば試料を透過する光の偏光情報を解析することで複屈折の計測機として用いることができる。また、薄膜が表面に形成された試料の場合、試料を反射した光は薄膜における多重反射の影響を受けて、その偏光状態が変化する。この変更状態の変化から薄膜の厚さもしくは屈折率を導出することができる。こうした偏光計測技術は、解析したい光を波長板と偏光子に入射し、それらを回転し透過してくる光の強度変化を測定することで、計算できることは知られている。 The polarization measuring device can be used as a birefringence measuring device by analyzing the polarization information of the light passing through the sample, for example. Further, in the case of a sample in which a thin film is formed on the surface, the light reflected by the sample is affected by multiple reflections in the thin film, and its polarization state changes. The thickness or refractive index of the thin film can be derived from this change in the changed state. It is known that such a polarization measuring technique can be calculated by incident the light to be analyzed on a wave plate and a polarizer, rotating them, and measuring a change in the intensity of the transmitted light.
 ただし、上記のように波長板と偏光子を回転させる場合、回転機構が必要となるため、計測に時間を要する、回転部分から発塵を生じる、機構が複雑になるなどの課題があった。それらの課題を解決するために、領域分割偏光子、領域分割波長板、およびCCDやCMOSなどの撮像素子を組み合わせた偏光イメージセンサーを、偏光情報の高速・リアルタイム計測を実現する目的で用いることが知られている。 However, when rotating the wave plate and the polarizer as described above, a rotation mechanism is required, so that there are problems such as time required for measurement, dust generation from the rotating part, and complicated mechanism. In order to solve these problems, it is possible to use a polarized image sensor that combines a region-divided polarizer, a region-divided wave plate, and an image sensor such as a CCD or CMOS for the purpose of realizing high-speed, real-time measurement of polarization information. Are known.
特許第4974543号公報 「偏光イメージング装置」Japanese Patent No. 4974543 "Polarization Imaging Device" 特許第5118311号公報 「位相差および光軸方位の測定装置」Japanese Patent No. 5118311 "Measuring device for phase difference and optical axis orientation" 特許第5140409号公報 「偏光計測器、測定システム」Japanese Patent No. 5140409 "Polarization measuring instrument, measuring system" 特許第5254323号公報 「光学歪み計測装置」Japanese Patent No. 5254323 "Optical strain measuring device" 特開2005-114704号公報 「偏光解析装置」Japanese Unexamined Patent Publication No. 2005-114704 "Polarization Analyzer"
 一方で、半導体もしくはディスプレイの製造では、様々な材料の膜を積み重ねてデバイスが作られる。それぞれの膜の厚さはデバイスの特性に影響を与えるため、高精度な制御が求められ、主に真空中で製膜される場合が多い。例えばエリプソメータは数nmという極薄膜を高精度に計測できる技術として知られており、こうした膜の厚さの計測に用いられている。ただし、通常は真空層からサンプルを取り出して計測されており、プロセス中もしくは真空を破らずに計測できるエリプソメータが望まれていた。 On the other hand, in the manufacture of semiconductors or displays, devices are made by stacking films of various materials. Since the thickness of each film affects the characteristics of the device, high-precision control is required, and the film is often formed mainly in vacuum. For example, an ellipsometer is known as a technique capable of measuring an ultrathin film of several nanometers with high accuracy, and is used for measuring the thickness of such a film. However, usually, a sample is taken out from the vacuum layer and measured, and an ellipsometer capable of measuring during the process or without breaking the vacuum has been desired.
 ところで、従来の偏光イメージセンサーは、領域分割偏光子、もしくは領域分割波長板と一様な偏光子もしくは領域分割偏光子とを備え、それらを透過した光は、偏光状態によって異なる明暗分布に変換され、直後に配置された撮像素子で電気信号に変換されている(図1)。そのため、測定対象に近接して偏光計測を行う必要がある場合、撮像素子を測定対象のある環境に設置する必要があった。一方で、偏光情報を取得する環境が、例えば真空中や高温環境下、もしくは液中などの特殊な環境下であった場合、撮像素子を安定に動作させることが難しいという問題があった。 By the way, a conventional polarized image sensor is provided with a region-divided polarizer or a region-divided wave plate and a uniform polarizer or a region-divided polarizer, and the light transmitted through them is converted into a light-dark distribution that differs depending on the polarization state. , It is converted into an electric signal by the image pickup element arranged immediately after (Fig. 1). Therefore, when it is necessary to measure the polarization in close proximity to the measurement target, it is necessary to install the image sensor in an environment with the measurement target. On the other hand, when the environment for acquiring the polarization information is, for example, a vacuum, a high temperature environment, or a special environment such as in a liquid, there is a problem that it is difficult to operate the image sensor stably.
 これを解決する手段として、測定環境と偏光計測センサを配置する空間をガラス窓などを介して分離する手法がある。しかしながら、計測位置の正確な位置決めが必要な場合や、測定対象と計測センサ間の距離を近接させる必要がある場合には、窓ガラス越しに測定する手法では必要な精度が得られない場合があった。 As a means to solve this, there is a method of separating the measurement environment and the space where the polarization measurement sensor is arranged through a glass window or the like. However, when accurate positioning of the measurement position is required, or when the distance between the measurement target and the measurement sensor needs to be close, the required accuracy may not be obtained by the method of measuring through the window glass. It was.
 本発明は、従来一体化されていた領域分割偏光子もしくは領域分割波長板とCCDやCMOSなどの撮像素子を、バンドルファイバーを介して分離することにより、測定対象の配置された環境と異なる環境に撮像素子を配置することを可能にするという知見に基づくものである In the present invention, the conventionally integrated region-dividing polarizer or region-dividing wave plate and an image sensor such as a CCD or CMOS are separated via a bundle fiber to create an environment different from the environment in which the measurement target is arranged. It is based on the finding that it is possible to arrange an image sensor.
 本発明の第1の側面は、偏光測定装置に関する。偏光測定装置は、光が入る方向から波長板、偏光子の順で配置されている。波長板は、1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ。偏光子は、一様であるか、もしくは1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ。波長板および偏光子は、バンドルファイバーの一方の端面の前に配置される。バンドルファイバーの他方の端面の後には撮像素子が配置されている。これにより、入射した光の偏光情報が波長板および偏光子を透過することで明暗分布に変換され、バンドルファイバーを通してその明暗分布が前記撮像素子まで伝搬され、撮像素子を用いて電気信号に変換することで偏光情報を取得できる。このように、本発明の偏光測定装置においては、偏光情報の取得位置と撮像素子の位置が分離されることとなる。 The first aspect of the present invention relates to a polarization measuring device. The polarization measuring device is arranged in the order of the wave plate and the polarizer from the direction in which light enters. The wave plate is divided into regions within one plate, and each region has a plurality of axial directions. The polarizer is uniform or divided into regions within one sheet, and each region has a plurality of axial directions. The wave plate and polarizer are placed in front of one end face of the bundle fiber. An image sensor is placed after the other end face of the bundle fiber. As a result, the polarization information of the incident light is converted into a light-dark distribution by passing through the wave plate and the polarizer, and the light-dark distribution is propagated to the image sensor through the bundle fiber and converted into an electric signal using the image sensor. This makes it possible to acquire polarization information. As described above, in the polarization measuring apparatus of the present invention, the position of acquiring polarization information and the position of the image sensor are separated.
 なお、偏光測定装置において波長板を省略することも可能である。その場合、1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ偏光子を用いる。偏光子は、バンドルファイバーの一方の端面の前に配置される。バンドルファイバーの他方の端面の後には撮像素子が配置される。これにより、入射した光の偏光情報が偏光子を透過することで明暗分布に変換され、バンドルファイバーを通してその明暗分布が撮像素子まで伝搬され、撮像素子を用いて電気信号に変換することで偏光情報を取得できる。このように、偏光情報の取得位置と撮像素子の位置が離れていることとなる。 It is also possible to omit the wave plate in the polarization measuring device. In that case, a polarizer is used in which the regions are divided in one sheet and each region has a plurality of axial directions. The polarizer is placed in front of one end face of the bundle fiber. An image sensor is placed after the other end face of the bundle fiber. As a result, the polarization information of the incident light is converted into a light-dark distribution by passing through the polarizer, the light-dark distribution is propagated to the image sensor through the bundle fiber, and the polarization information is converted into an electric signal by using the image sensor. Can be obtained. In this way, the position where the polarization information is acquired and the position of the image sensor are separated.
 本発明の第2の側面は、エリプソメータに関する。エリプソメータは、試料の表面で反射した光が入射し、光が入る方向から波長板、偏光子の順で配置されている。波長板は、1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ。偏光子は、一様であるか、もしくは1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ。波長板および偏光子は、バンドルファイバーの一方の端面の前に配置されている。バンドルファイバーの他方の端面の後には撮像素子が配置されている。これにより、入射した光の偏光情報が波長板及び偏光子を透過することで明暗分布に変換され、バンドルファイバーを通してその明暗分布が撮像素子まで伝搬され、撮像素子を用いて電気信号に変換することで偏光情報を取得し、偏光情報から試料の膜厚もしくは屈折率を計算できる。このように、本発明のエリプソメータにおいては、偏光情報の取得位置と撮像素子の位置が分離されることとなる。 The second aspect of the present invention relates to an ellipsometer. The ellipsometer is arranged in the order of the wave plate and the polarizer in the order in which the light reflected from the surface of the sample is incident and the light enters. The wave plate is divided into regions within one plate, and each region has a plurality of axial directions. The polarizer is uniform or divided into regions within one sheet, and each region has a plurality of axial directions. The wave plate and polarizer are located in front of one end face of the bundle fiber. An image sensor is placed after the other end face of the bundle fiber. As a result, the polarization information of the incident light is converted into a light-dark distribution by passing through the wave plate and the polarizer, and the light-dark distribution is propagated to the image pickup element through the bundle fiber and converted into an electric signal by using the image pickup element. The polarization information can be obtained with, and the film thickness or refractive index of the sample can be calculated from the polarization information. As described above, in the ellipsometer of the present invention, the position of acquiring polarization information and the position of the image sensor are separated.
 なお、エリプソメータにおいて波長板を省略することも可能である。その場合、1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ偏光子を用いる。偏光子は、バンドルファイバーの一方の端面の前に配置される。バンドルファイバーの他方の端面の後には撮像素子が配置される。これにより、入射した光の偏光情報が偏光子を透過することで明暗分布に変換され、バンドルファイバーを通してその明暗分布が前記撮像素子まで伝搬され、撮像素子を用いて電気信号に変換することで偏光情報を取得できる。このように、偏光情報の取得位置と撮像素子の位置が離れていることとなる。 It is also possible to omit the wave plate in the ellipsometer. In that case, a polarizer is used in which the regions are divided in one sheet and each region has a plurality of axial directions. The polarizer is placed in front of one end face of the bundle fiber. An image sensor is placed after the other end face of the bundle fiber. As a result, the polarization information of the incident light is converted into a light-dark distribution by passing through the polarizer, the light-dark distribution is propagated to the image sensor through the bundle fiber, and the polarized light is converted into an electric signal by using the image sensor. Information can be obtained. In this way, the position where the polarization information is acquired and the position of the image sensor are separated.
 領域分割された偏光子は、自己クローニング法やワイヤーグリッド法などにより作製されたフォトニック結晶であることが好ましい。また、領域分割された波長板は、自己クローニング法などにより作成されたフォトニック結晶であることが好ましい。 The region-divided polarizer is preferably a photonic crystal produced by a self-cloning method, a wire grid method, or the like. Further, the region-divided wave plate is preferably a photonic crystal produced by a self-cloning method or the like.
 自己クローニングフォトニック結晶とは、任意方向の凹凸溝形状を形成した基板上に自己クローニング法と呼ばれる特殊な成膜技術で多層膜を形成することで製造される。自己クローニングフォトニック結晶は、凹凸形状の方向に沿った透過軸を有する偏光子や、凹凸形状の方向に沿った異方性軸を有する波長板を指す(図2)。多層膜の厚さの制御などにより、偏光子や波長板としての機能を選択することができる。また、基板の凹凸溝形状の方向を、分割した領域ごとに変えることにより、偏光子や波長板の領域分割素子が容易に実現することが特徴である(図3)。領域の形状やサイズを任意に設計できることから、本発明の領域分割偏光子や領域分割波長板として、自己クローニングフォトニック結晶は好適である。 A self-cloning photonic crystal is manufactured by forming a multilayer film on a substrate having a concavo-convex groove shape in an arbitrary direction by a special film forming technique called a self-cloning method. A self-cloning photonic crystal refers to a polarizer having a transmission axis along the direction of the concavo-convex shape and a wave plate having an anisotropic axis along the direction of the concavo-convex shape (FIG. 2). The function as a polarizer or a wave plate can be selected by controlling the thickness of the multilayer film. Further, by changing the direction of the concave-convex groove shape of the substrate for each divided region, a region dividing element of a polarizer or a wave plate can be easily realized (FIG. 3). Since the shape and size of the region can be arbitrarily designed, the self-cloning photonic crystal is suitable as the region-dividing polarizer and the region-dividing wave plate of the present invention.
 バンドルファイバーとは、少なくても3本以上の光ファイバーが束ねられた構造を有する(図4)。バンドルファイバーの一方の端面の前に、領域分割偏光子を単体で配置するか(図5(a))、もしくは領域分割波長板と一様な偏光板を組み合わせたものを配置するか(図5(b))、もしくは領域分割波長板と領域分割偏光子を組み合わせたものを配置し(図5(c))、バンドルファイバーの一方の端面に近接もしくは接触させる。この領域分割素子が配置されたバンドルファイバーの一方の端面近傍を「偏光検出部」と呼ぶ。また、バンドルファイバーの他方の端面に、CCDやCMOSなどの撮像素子を配置する。撮像素子の配置されたバンドルファイバーの端面を光信号を電気信号に変換するという意味で、「光電変換部」と呼ぶ。本発明は、バンドルファイバーを介することにより、偏光検出部と光電変換部とが分離していることを特徴の一つとしている。 A bundle fiber has a structure in which at least three or more optical fibers are bundled (Fig. 4). In front of one end face of the bundle fiber, a region-dividing polarizer is arranged alone (FIG. 5 (a)), or a combination of a region-dividing wave plate and a uniform polarizing plate is arranged (FIG. 5). (B)), or a combination of a region-dividing wave plate and a region-dividing polarizer is arranged (FIG. 5 (c)), and the bundle fiber is brought close to or in contact with one end face. The vicinity of one end face of the bundle fiber in which the region dividing element is arranged is called a "polarization detection unit". Further, an image sensor such as a CCD or CMOS is arranged on the other end face of the bundle fiber. The end face of the bundle fiber in which the image sensor is arranged is called a "photoelectric conversion unit" in the sense that it converts an optical signal into an electric signal. One of the features of the present invention is that the polarization detection unit and the photoelectric conversion unit are separated by the bundle fiber.
 領域分割偏光子単体もしくは領域分割波長板と偏光板の組み合わせにより、偏光検出部に入射した光線は、その偏光情報に応じた透過光量の空間分布に変換される。空間分布に変換された光量は、バンドルファイバーの各光ファイバーが伝達する光量の分布になり、光電変換部側のバンドルファイバー端面まで伝送され、撮像素子により電気信号に変換される。電気信号に変換された光量分布情報は、ソフトウェアにより演算することで、偏光検出部に入射した偏光情報を知ることが可能になる。 The light beam incident on the polarization detection unit is converted into a spatial distribution of the amount of transmitted light according to the polarization information by the region-divided polarizer alone or the combination of the region-divided wave plate and the polarizing plate. The amount of light converted into the spatial distribution becomes the distribution of the amount of light transmitted by each optical fiber of the bundle fiber, is transmitted to the end face of the bundle fiber on the photoelectric conversion unit side, and is converted into an electric signal by the image sensor. The light amount distribution information converted into an electric signal can be calculated by software to know the polarization information incident on the polarization detection unit.
 本発明のエリプソメータは、さらに、光を試料へ導くように反射ミラーが配置されており、これにより光の射出位置と同じ方向に波長板および偏光子が配置されている構成であってもよい(図10)。 The ellipsometer of the present invention may further have a configuration in which a reflection mirror is arranged so as to guide light to the sample, whereby a wave plate and a polarizer are arranged in the same direction as the light emission position (the ellipsometer of the present invention). FIG. 10).
 領域分割偏光子波長板の間にバンドルファイバーが介在する偏光計測装置を用いることで、観察対象が設置された環境に依らず、撮像素子を大気圧・大気中に配置することが可能になる。例えば真空中に設置された測定対象を透過もしくは反射した光線の偏光情報を、真空チャンバーの内部から外部に引き出されたバンドルファイバーを介して、大気中に設置された撮像素子を用いて計測することが可能になる。 By using a polarization measuring device in which bundle fibers are interposed between region-divided polarizer wavelength plates, it is possible to arrange the image sensor in atmospheric pressure and atmosphere regardless of the environment in which the observation target is installed. For example, the polarization information of a light beam transmitted or reflected from a measurement target installed in a vacuum is measured using an image sensor installed in the atmosphere via a bundle fiber drawn from the inside of the vacuum chamber to the outside. Becomes possible.
 従って、本発明の偏光計測装置を用いることにより、真空中や液中、高温環境下などの特殊な環境下には領域分割素子やバンドルファイバーなどの耐環境特性の高い光学部品のみを配置し、耐環境特性の低い撮像素子や光源などのエレクトロニクス応用部品は大気環境下に設置して、特殊環境下の偏光計測が可能になる。 Therefore, by using the polarization measuring device of the present invention, only optical components having high environmental resistance such as region dividing elements and bundle fibers are arranged in a special environment such as in a vacuum, in a liquid, or in a high temperature environment. Electronics application parts such as image pickup devices and light sources with low environmental resistance can be installed in an atmospheric environment to enable polarization measurement in a special environment.
図1は、従来の偏光イメージングセンサーの構成例を示す。FIG. 1 shows a configuration example of a conventional polarization imaging sensor. 図2は、自己クローニングフォトニック結晶とその基板の模式図である。FIG. 2 is a schematic view of a self-cloning photonic crystal and its substrate. 図3は、領域分割型の自己クローニングフォトニック結晶とその基板の模式図である。FIG. 3 is a schematic view of a region-divided self-cloning photonic crystal and its substrate. 図4は、バンドルファイバーの概略図である。FIG. 4 is a schematic view of the bundle fiber. 図5は、偏光検出部と光電変換部の間にバンドルファイバーを具備する偏光計測装置の装置構成図である。偏光検出部は、領域分割偏光子単体(図5(a))、領域分割偏光子と一様な偏光子の組み合わせ(図5(b))、領域分割偏光子と領域分割偏光子の組み合わせ(図5(c))のいずれかからなる。FIG. 5 is a device configuration diagram of a polarization measuring device including a bundle fiber between a polarization detecting unit and a photoelectric conversion unit. The polarization detector includes a single region-dividing polarizer (FIG. 5 (a)), a combination of a region-dividing polarizer and a uniform polarizing element (FIG. 5 (b)), and a combination of a region-dividing polarizer and a region-dividing polarizer (FIG. 5 (b)). It consists of any of FIG. 5 (c)). 図6は、好適な本発明の偏光計測装置の構成例である。FIG. 6 is a configuration example of a suitable polarization measuring device of the present invention. 図7は、バンドルファイバーの両端に配置された領域分割波長板、無機偏光子、撮像素子の配置例である。FIG. 7 shows an example of arrangement of the region-divided wave plate, the inorganic polarizer, and the image sensor arranged at both ends of the bundle fiber. 図8は、本発明の偏光計測装置を用いたエリプソメータの構成例である。FIG. 8 is a configuration example of an ellipsometer using the polarization measuring device of the present invention. 図9は、従来のエリプソメータと本発明の偏光計測装置を用いたエリプソメータの測定結果の比較グラフである。FIG. 9 is a comparison graph of measurement results of a conventional ellipsometer and an ellipsometer using the polarization measuring device of the present invention. 図10は、光源を偏光計測装置と同じ側に配置したエリプソメータの構成例である。FIG. 10 is a configuration example of an ellipsometer in which the light source is arranged on the same side as the polarization measuring device. 図11は、透過光源と本発明の偏光計測装置を組み合わせた複屈折測定装置の構成例である。FIG. 11 is a configuration example of a birefringence measuring device that combines a transmitted light source and the polarization measuring device of the present invention.
 以下、図面を用いて本発明を実施するための形態について説明する。本発明は、以下に説明する形態に限定されるものではなく、以下の形態から当業者が自明な範囲で適宜変更したものも含む。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to the forms described below, and includes those which are appropriately modified by those skilled in the art from the following forms to the extent obvious to those skilled in the art.
[1.基本構成]
 図6は、領域分割波長板と偏光子を含む偏光検出部、バンドルファイバー、及び撮像素子を含む光電変換部を具備した偏光計測装置の装置構成例である。図6に示されるように、測定対象を透過もしくは反射した光線(測定光)が、領域分割波長板と一様な無機偏光子をこの順にほぼ垂直に透過し、且つバンドルファイバー端面にもほぼ垂直に入射するように偏光検出部が構成されている。更に、バンドルファイバーの反対側の端面に撮像素子を配置する。バンドルファイバーにより伝達された光量分布情報は、撮像素子により電気信号に変換され、これを演算・解析するソフトウェアにより、偏光情報を取得することができる。なお、計測する光線が直線偏光に近い場合にも楕円率を高感度に検出する為に、偏光検出部は領域分割波長板と一様な無機偏光子の組み合わせにすることが望ましい。
[1. Basic configuration]
FIG. 6 is an example of a device configuration of a polarization measuring device including a polarization detection unit including a region-divided wave plate and a polarizer, a bundle fiber, and a photoelectric conversion unit including an image sensor. As shown in FIG. 6, a light ray (measurement light) transmitted or reflected through the measurement target transmits the region-divided wave plate and the uniform inorganic polarizing element substantially vertically in this order, and is also substantially perpendicular to the bundle fiber end face. The polarization detection unit is configured so as to be incident on. Further, the image sensor is arranged on the end face on the opposite side of the bundle fiber. The light amount distribution information transmitted by the bundle fiber is converted into an electric signal by the image sensor, and the polarization information can be acquired by the software that calculates and analyzes this. In addition, in order to detect the ellipticity with high sensitivity even when the light beam to be measured is close to linearly polarized light, it is desirable that the polarization detection unit is a combination of a region-divided wave plate and a uniform inorganic polarizer.
 図7は、本発明に用いられる偏光検出部の部品構成例である。領域分割波長板の各領域は、バンドルファイバーを構成する各ファイバーの配置に一致させている。また、偏光検出部は、領域分割波長板とバンドルファイバーの中間に、一様な透過軸を有する無機偏光子を挿入した構成を有する。 FIG. 7 is a component configuration example of the polarization detection unit used in the present invention. Each region of the region-divided wave plate matches the arrangement of each fiber constituting the bundle fiber. Further, the polarization detection unit has a configuration in which an inorganic polarizer having a uniform transmission axis is inserted between the region-divided wave plate and the bundle fiber.
 領域分割波長板は、自己クローニング法により作製されたフォトニック結晶(自己クローニング型フォトニック結晶)であることが好ましい。また、水晶などからなる波長板を、バンドルファイバーを構成する各ファイバーの配置に合わせて分割・組み合わせたものを用いてもよい。 The region-divided wave plate is preferably a photonic crystal (self-cloning type photonic crystal) produced by the self-cloning method. Further, a wave plate made of quartz or the like may be divided and combined according to the arrangement of each fiber constituting the bundle fiber.
 また、計測する偏光状態が円偏光に近い場合には、領域分割波長板と無機偏光子の組み合わせではなく、領域分割偏光子のみによって偏光検出部を構成してもよい。 Further, when the polarization state to be measured is close to circularly polarized light, the polarization detection unit may be configured only by the region-divided polarizing element instead of the combination of the region-divided wave plate and the inorganic polarizing element.
[2.真空チャンバー内の測定対象の膜厚測定用エリプソメータ]
 図8に本発明のエリプソメータでの配置例を示す。光源としては、レーザー光源に光ファイバーの一端を繋ぎ、測定対象に対して光が斜めに照射する位置にファイバー先端を配置し、このファイバー先端に偏光板を配置したものを用いている。このようにすることでファイバーの曲げ等を気にせず、測定対象に照射する光の偏光状態を一定に保つことができる。光ファイバーから出た光は一般的には広がるが、例えばグレーデッドインデックスファイバーを用いたファイバー型コリメータレンズを光ファイバーと接続し、その先に偏光子を取り付けることで、偏光状態が一定のコリメート光を照射することができる。
[2. Ellipsometer for measuring the film thickness of the object to be measured in the vacuum chamber]
FIG. 8 shows an arrangement example of the ellipsometer of the present invention. As the light source, one in which one end of an optical fiber is connected to a laser light source, the fiber tip is arranged at a position where light is obliquely irradiated to the measurement target, and a polarizing plate is arranged at the fiber tip is used. By doing so, it is possible to keep the polarization state of the light irradiating the measurement target constant without worrying about bending of the fiber or the like. The light emitted from the optical fiber generally spreads, but for example, by connecting a fiber type collimator lens using graded index fiber to the optical fiber and attaching a polarizer to the tip, collimated light with a constant polarization state is irradiated. can do.
 次に、測定対象表面で反射した照射光の光路上に、本発明の偏光計測装置の偏光検出部を配置する。領域分割波長板を透過した光線が偏光子を透過することで、反射光の偏光状態に対応した明暗パターンに変換される。明暗パターンは、バンドルファイバーを介して光電変換部に配置された撮像素子に伝達され、ここで電気信号に変換される。得られた電気信号を、ソフトウェアにより演算することで、偏光検出部に入射した光線の偏光情報を知ることができる。得られた偏光情報とシミュレーションの結果とをソフトウェアが比較・演算することで、測定対象に設けられた薄膜の膜厚や屈折率の情報を取得するエリプソメータが実現する。 Next, the polarization detection unit of the polarization measuring device of the present invention is arranged on the optical path of the irradiation light reflected on the surface to be measured. When the light rays transmitted through the region-divided wave plate pass through the polarizer, they are converted into a light-dark pattern corresponding to the polarization state of the reflected light. The light-dark pattern is transmitted to the image sensor arranged in the photoelectric conversion unit via the bundle fiber, and is converted into an electric signal here. By calculating the obtained electrical signal with software, it is possible to know the polarization information of the light beam incident on the polarization detection unit. By comparing and calculating the obtained polarization information with the simulation results, an ellipsometer that acquires information on the film thickness and refractive index of the thin film provided on the measurement target is realized.
 試作した装置は、測定対象が真空チャンバー内に配置された場合でも、測定対象が大気中に配置されている場合と同様の計測結果を得ることができた。なお、真空中にバンドルファイバーを導入する機構はすでに市販されているものを用いればよい。 The prototype device was able to obtain the same measurement results as when the measurement target was placed in the atmosphere even when the measurement target was placed in the vacuum chamber. As the mechanism for introducing the bundle fiber into the vacuum, a commercially available mechanism may be used.
 また、本実施形態では、図7に示されるように複数の光ファイバーが二列に配置されたバンドルファイバーを用いたため、この配置に対応した領域に分割された自己クローニングフォトニック結晶製の領域分割波長板を用いた。ただし、バンドルファイバーは、図7のような二列の配置に限らない。様々な配置のバンドルファイバーの配置に合わせた領域に分割した自己クローニングフォトニック結晶を用いればよい。また、バンドルファイバーに束ねられるファイバーの本数が多くなると、ファイバーの配置より十分に大きな領域に分割した領域分割素子を用いることにより、ファイバーの配置に無関係な領域に分割しても、必要な明暗パターンを得ることができる。 Further, in the present embodiment, since a bundle fiber in which a plurality of optical fibers are arranged in two rows is used as shown in FIG. 7, the region division wavelength made of a self-cloning photonic crystal divided into regions corresponding to this arrangement is used. A board was used. However, the bundle fiber is not limited to the two-row arrangement as shown in FIG. Self-cloning photonic crystals divided into regions according to the arrangement of bundle fibers of various arrangements may be used. Further, when the number of fibers bundled in the bundle fiber is large, a necessary light / dark pattern is required even if the area is divided into a region irrelevant to the arrangement of the fibers by using a region dividing element divided into a region sufficiently larger than the arrangement of the fibers. Can be obtained.
 偏光計測には最低4つの情報があればよい。つまり4方向の波長板があれば実現できる。4方向が複数方向あっても計算時点でのパラメータを変えれば問題ない。また4方向のパターンが周期的に並んでいてもいい。試作で用いたバンドルファイバーの1本の直径は220μmである。その中で光が伝搬する部分(コア)は直径200μmである。したがって装着するフォトニック結晶のパターンは直径200μm以上であればいい。例えば複数本のファイバーの上に波長板の一領域が載っても構わない。 Polarization measurement requires at least 4 pieces of information. That is, it can be realized if there is a wave plate in four directions. Even if there are multiple directions, there is no problem if the parameters at the time of calculation are changed. Further, the patterns in four directions may be arranged periodically. The diameter of one bundle fiber used in the trial is 220 μm. The portion (core) through which light propagates has a diameter of 200 μm. Therefore, the pattern of the photonic crystal to be mounted may be 200 μm or more in diameter. For example, one region of the wave plate may be placed on a plurality of fibers.
 なお、4方向だけの波長板の場合、入射する光に空間的な強度分布がある場合、その強度さによる分を加味して計算を行う必要がある。一方で、入射する光の中で光の入射範囲に比べ十分小さい面積の4方向の波長板を周期的もしくはランダムに配置し、撮像素子上で得られる4方向それぞれに対応する出力を平均化することで、ビームの強度分布の影響を受けにくい測定を行うことができる。
 また、バンドルファイバーは入り口と出口で必ず同じ配置になっているとは限らず、内部で配置が入れ替わる場合がある。そうした場合においても、最初に入射する光の偏光方向を変え、その強度変化からどの出力がどの波長板に対応しているかをあらかじめ知ることができる。その情報を用いて偏光計算が可能である。この操作は真空に入れる前に行っておくことができる。
In the case of a wave plate having only four directions, if the incident light has a spatial intensity distribution, it is necessary to take into account the amount depending on the intensity of the calculation. On the other hand, in the incident light, wave plates in four directions having an area sufficiently smaller than the incident range of the light are arranged periodically or randomly, and the outputs corresponding to each of the four directions obtained on the image sensor are averaged. Therefore, it is possible to perform a measurement that is not easily affected by the intensity distribution of the beam.
In addition, the bundle fibers are not always arranged in the same manner at the entrance and the exit, and the arrangement may be interchanged inside. Even in such a case, it is possible to change the polarization direction of the first incident light and know in advance which output corresponds to which wave plate from the change in intensity. Polarization can be calculated using that information. This operation can be performed before vacuuming.
 図9は、本発明のエリプソメータの出力結果を、市販のエリプソメータ(フォトニックラティス社製SE101)の測定結果と比較した結果を示している。図9に示されるように、本発明のエリプソメータによれば、市販のものと同等の結果が得られた。 FIG. 9 shows the result of comparing the output result of the ellipsometer of the present invention with the measurement result of a commercially available ellipsometer (SE101 manufactured by Photonic Lattice). As shown in FIG. 9, according to the ellipsometer of the present invention, results equivalent to those on the market were obtained.
[3.光源を偏光計測用バンドルファイバーと同じ側に配置した小型エリプソメータ]
 図10は、レーザー光源に接続した光ファイバーを、偏光計測用のバンドルファイバーに添わせて配置し、ここから出射した光線を小型ミラーにより折り曲げて測定対象へ照射することにより、通常のエリプソメータと同等の光学系を実現した例である。光の射出位置と同じ方向に偏光検出部を配置するために、光ファイバーの先端から射出された光を試料へ導くように反射ミラーが配置されている。この構成により、エリプソメータを構成する光源と偏光計測部とを一体化させることが可能になり、測定対象に近接配置するユニットの小型化が実現される。なお、この場合、反射ミラーによりファイバーから出た光の偏光状態が変わる可能性があるが、それはあらかじめ把握しておくことで、補正が可能である。
[3. A small ellipsometer with the light source placed on the same side as the bundle fiber for polarization measurement]
In FIG. 10, an optical fiber connected to a laser light source is arranged along a bundle fiber for polarization measurement, and a light beam emitted from the optical fiber is bent by a small mirror and irradiated to a measurement target, which is equivalent to a normal ellipsometer. This is an example of realizing an optical system. In order to arrange the polarization detection unit in the same direction as the light emission position, a reflection mirror is arranged so as to guide the light emitted from the tip of the optical fiber to the sample. With this configuration, the light source constituting the ellipsometer and the polarization measuring unit can be integrated, and the unit placed close to the measurement target can be miniaturized. In this case, the polarization state of the light emitted from the fiber may change due to the reflection mirror, but this can be corrected by grasping it in advance.
[4.透過光の偏光計測装置]
 図11に示すように、測定対象を透過した光線の偏光情報の変化を計測、演算することで、測定対象が有する複屈折を知ることができる。従って、本発明の偏光計測装置を、透過光源と組み合わせることにより複屈折測定装置を構成することができる。図11に装置構成の一例を示す。複屈折計測装置の場合、光源はレーザーである必要はなく、例えばLEDを用いることができる。なお、複屈折計測装置の場合、光源は円偏光となるように、光が入る側から順に偏光子、1/4波長板とならべ、偏光子の透過軸と1/4波長板の軸を45度ずらす必要がある。
[4. Polarized light measuring device for transmitted light]
As shown in FIG. 11, the birefringence of the measurement target can be known by measuring and calculating the change in the polarization information of the light beam transmitted through the measurement target. Therefore, the birefringence measuring device can be configured by combining the polarization measuring device of the present invention with a transmission light source. FIG. 11 shows an example of the device configuration. In the case of the birefringence measuring device, the light source does not have to be a laser, and for example, an LED can be used. In the case of a birefringence measuring device, the light source is arranged with a polarizer and a 1/4 wave plate in order from the side where light enters so that the light source is circularly polarized light, and the transmission axis of the polarizer and the axis of the 1/4 wave plate are 45. It is necessary to shift the degree.
 本発明の偏光計測装置は、観察対象の設置環境が真空中や液中など、大気中とは異なる環境下で偏光計測をあらゆる状況で利用されうる。特に真空中に設置された測定対象表面で反射した光線の偏光状態を計測するエリプソメータでは、偏光検出部をサンプルに近接させる必要があるが、偏光検出部を真空中に設置する場合に、本発明に係るエリプソメータを好適に利用することができる。 The polarization measuring device of the present invention can be used in all situations where the installation environment of the observation target is different from the atmosphere such as in vacuum or liquid. In particular, in an ellipsometer that measures the polarization state of light rays reflected from the surface of a measurement target installed in a vacuum, it is necessary to bring the polarization detection unit close to the sample. However, when the polarization detection unit is installed in a vacuum, the present invention The ellipsometer according to the above can be preferably used.

Claims (7)

  1.  光が入る方向から波長板、偏光子の順で配置され、
     前記波長板は、1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つものであり、
     前記偏光子は、一様であるか、もしくは1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つものであり、
     前記波長板および前記偏光子がバンドルファイバーの一方の端面の前に配置され、
     前記バンドルファイバーの他方の端面の後には撮像素子が配置されており、
     入射した光の偏光情報が前記波長板および前記偏光子を透過することで明暗分布に変換され、前記バンドルファイバーを通してその明暗分布が前記撮像素子まで伝搬され、前記撮像素子を用いて電気信号に変換することで偏光情報を取得でき、
     偏光情報の取得位置と撮像素子の位置が離れている
     偏光計測装置。
    The wave plate and the polarizer are arranged in this order from the direction in which the light enters.
    The wave plate is divided into regions within one plate, and each region has a plurality of axial directions.
    The polarizer is uniform or is divided into regions within one sheet, and each region has a plurality of axial directions.
    The wave plate and the polarizer are placed in front of one end face of the bundle fiber.
    An image sensor is placed after the other end face of the bundle fiber.
    The polarization information of the incident light is converted into a light-dark distribution by passing through the wave plate and the polarizer, and the light-dark distribution is propagated to the image sensor through the bundle fiber and converted into an electric signal using the image sensor. Polarization information can be obtained by
    A polarization measuring device in which the acquisition position of polarization information and the position of the image sensor are separated.
  2.  1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ偏光子があり、
     前記偏光子がバンドルファイバーの一方の端面の前に配置され、
     前記バンドルファイバーの他方の端面の後には撮像素子が配置されており、
     入射した光の偏光情報が前記偏光子を透過することで明暗分布に変換され、前記バンドルファイバーを通してその明暗分布が前記撮像素子まで伝搬され、前記撮像素子を用いて電気信号に変換することで偏光情報を取得でき、
     偏光情報の取得位置と撮像素子の位置が離れている
     偏光計測装置。
    There is a polarizer in which the regions are divided in one sheet and each region has multiple axial directions.
    The polarizer is placed in front of one end face of the bundle fiber
    An image sensor is placed after the other end face of the bundle fiber.
    The polarization information of the incident light is converted into a light-dark distribution by passing through the polarizer, the light-dark distribution is propagated to the image sensor through the bundle fiber, and the polarized light is converted into an electric signal by using the image sensor. You can get information,
    A polarization measuring device in which the acquisition position of polarization information and the position of the image sensor are separated.
  3.  試料の表面で反射した光が入射し、光が入る方向から波長板、偏光子の順で配置され、
     前記波長板は、1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つものであり、
     前記偏光子は、一様であるか、もしくは1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つものであり、
     前記波長板および前記偏光子がバンドルファイバーの一方の端面の前に配置され、
     前記バンドルファイバーの他方の端面の後には撮像素子が配置されており、
     入射した光の偏光情報が前記波長板及び前記偏光子を透過することで明暗分布に変換され、前記バンドルファイバーを通してその明暗分布が前記撮像素子まで伝搬され、前記撮像素子を用いて電気信号に変換することで偏光情報を取得し、前記偏光情報から前記試料の膜厚もしくは屈折率を計算でき、
     偏光情報の取得位置と撮像素子の位置が離れている
     エリプソメータ。
    The light reflected from the surface of the sample is incident, and the wave plate and the polarizer are arranged in this order from the direction in which the light enters.
    The wave plate is divided into regions within one plate, and each region has a plurality of axial directions.
    The polarizer is uniform or is divided into regions within one sheet, and each region has a plurality of axial directions.
    The wave plate and the polarizer are placed in front of one end face of the bundle fiber.
    An image sensor is placed after the other end face of the bundle fiber.
    The polarization information of the incident light is converted into a light-dark distribution by passing through the wave plate and the polarizer, and the light-dark distribution is propagated to the image pickup element through the bundle fiber and converted into an electric signal by using the image pickup element. By doing so, polarization information can be obtained, and the film thickness or refractive index of the sample can be calculated from the polarization information.
    An ellipsometer in which the position where the polarization information is acquired and the position of the image sensor are separated.
  4.  1枚の中で領域分割され、それぞれの領域が複数の軸方位を持つ偏光子があり、
     前記偏光子がバンドルファイバーの一方の端面の前に配置され、
     前記バンドルファイバーの他方の端面の後には撮像素子が配置されており、
     入射した光の偏光情報が前記偏光子を透過することで明暗分布に変換され、前記バンドルファイバーを通してその明暗分布が前記撮像素子まで伝搬され、前記撮像素子を用いて電気信号に変換することで偏光情報を取得でき、
     偏光情報の取得位置と撮像素子の位置が離れている
     エリプソメータ。
    There is a polarizer in which the regions are divided in one sheet and each region has multiple axial directions.
    The polarizer is placed in front of one end face of the bundle fiber
    An image sensor is placed after the other end face of the bundle fiber.
    The polarization information of the incident light is converted into a light-dark distribution by passing through the polarizer, the light-dark distribution is propagated to the image sensor through the bundle fiber, and the polarized light is converted into an electric signal by using the image sensor. You can get information,
    An ellipsometer in which the position where the polarization information is acquired and the position of the image sensor are separated.
  5.  領域分割された前記波長板もしくは前記偏光子がフォトニック結晶からなる
     請求項1もしくは請求項2に記載の偏光計測装置。
    The polarization measuring apparatus according to claim 1 or 2, wherein the region-divided wave plate or the polarizer is made of a photonic crystal.
  6.  領域分割された前記波長板もしくは前記偏光子がフォトニック結晶からなる
     請求項3もしくは請求項4に記載のエリプソメータ。
    The ellipsometer according to claim 3 or 4, wherein the region-divided wave plate or the polarizer is composed of a photonic crystal.
  7.  光を前記試料へ導くように反射ミラーが配置されており、これにより前記光の射出位置と同じ方向に前記波長板および前記偏光子が配置されている
     請求項4もしくは請求項6に記載のエリプソメータ。
    The ellipsometer according to claim 4 or 6, wherein a reflection mirror is arranged so as to guide light to the sample, whereby the wave plate and the polarizer are arranged in the same direction as the emission position of the light. ..
PCT/JP2020/040970 2019-11-01 2020-10-30 Polarization measurement device and ellipsometer WO2021085641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199642A JP2021071433A (en) 2019-11-01 2019-11-01 Polarization measurement device and ellipsometer
JP2019-199642 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021085641A1 true WO2021085641A1 (en) 2021-05-06

Family

ID=75712953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040970 WO2021085641A1 (en) 2019-11-01 2020-10-30 Polarization measurement device and ellipsometer

Country Status (2)

Country Link
JP (1) JP2021071433A (en)
WO (1) WO2021085641A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095488A1 (en) * 2022-11-04 2024-05-10 国立大学法人東北大学 Bundled fiber, polarized light sensor, optical encoder, optical scattering detection sensor, and method for manufacturing bundled fiber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076319A1 (en) * 2002-04-19 2004-04-22 Fauver Mark E. Method and apparatus of shadowgram formation for optical tomography
JP2005114704A (en) * 2003-09-17 2005-04-28 Photonic Lattice Inc Polarization-analyzing apparatus
JP2009180035A (en) * 2008-01-31 2009-08-13 Daiho Constr Co Ltd Method of connecting caisson
WO2012090367A1 (en) * 2010-12-27 2012-07-05 株式会社日立ハイテクノロジーズ Defect inspection method and defect inspection device
JP5254323B2 (en) * 2008-05-10 2013-08-07 株式会社フォトニックラティス Optical strain measurement device
JP2017524505A (en) * 2014-07-24 2017-08-31 ゼット スクエア リミテッド Multi-core fiber endoscope
JP2019505831A (en) * 2015-12-07 2019-02-28 エーエスエムエル ホールディング エヌ.ブイ. Objective lens system
US20190090753A1 (en) * 2016-05-25 2019-03-28 Joseph Carson Method, system, software, and device for remote, miiaturized, and three-dimensional imaging and analysis of human lesions research and clinical applications thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076319A1 (en) * 2002-04-19 2004-04-22 Fauver Mark E. Method and apparatus of shadowgram formation for optical tomography
JP2005114704A (en) * 2003-09-17 2005-04-28 Photonic Lattice Inc Polarization-analyzing apparatus
JP2009180035A (en) * 2008-01-31 2009-08-13 Daiho Constr Co Ltd Method of connecting caisson
JP5254323B2 (en) * 2008-05-10 2013-08-07 株式会社フォトニックラティス Optical strain measurement device
WO2012090367A1 (en) * 2010-12-27 2012-07-05 株式会社日立ハイテクノロジーズ Defect inspection method and defect inspection device
JP2017524505A (en) * 2014-07-24 2017-08-31 ゼット スクエア リミテッド Multi-core fiber endoscope
JP2019505831A (en) * 2015-12-07 2019-02-28 エーエスエムエル ホールディング エヌ.ブイ. Objective lens system
US20190090753A1 (en) * 2016-05-25 2019-03-28 Joseph Carson Method, system, software, and device for remote, miiaturized, and three-dimensional imaging and analysis of human lesions research and clinical applications thereof

Also Published As

Publication number Publication date
JP2021071433A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US8830463B2 (en) Rotating-element ellipsometer and method for measuring properties of the sample using the same
US7495762B2 (en) High-density channels detecting device
KR20130018553A (en) Film thickness measurement apparatus
JP5172040B2 (en) Surface shape measuring method and surface shape measuring apparatus
KR20090132537A (en) Apparatus and method for measuring thickness of film
JP2004513363A (en) Especially for plasma resonance sensors for biosensor technology
KR20170039232A (en) Birefringence measurement device and birefringence measurement method
US20150009509A1 (en) Transparent substrate monitoring apparatus and transparent substrate method
KR20090132538A (en) Apparatus for measuring thickness of film
KR102281621B1 (en) Systems and methods for semiconductor wafer inspection and metrology
WO2021085641A1 (en) Polarization measurement device and ellipsometer
KR102229048B1 (en) Thickness measuring apparatus and thickness measuring method
KR20020009512A (en) Method and device for measuring thickness of test object
EP2718666A1 (en) Coupled multi-wavelength confocal systems for distance measurements
US8197634B2 (en) Plasma processing apparatus
TWI579525B (en) An optical system and measuring methods for simultanuous absolute positioning distance and tilting angular measurements of a moving object
US20120316830A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP2005257339A (en) Semiconductor wafer inspection device
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
KR20050075094A (en) An ellipsometry device using spectral imaging and ellipsometry method thereof
JPH0599659A (en) Method and device for measuring light-beam incident angle and usage of distance measuring equipment
KR102008253B1 (en) Multi channel optical profiler based on interferometer
US20120314200A1 (en) Coupled multi-wavelength confocal systems for distance measurements
WO2024095488A1 (en) Bundled fiber, polarized light sensor, optical encoder, optical scattering detection sensor, and method for manufacturing bundled fiber
WO2016194061A1 (en) Optical-characteristic-detection optical system, measurement probe, and optical-characteristic-detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881732

Country of ref document: EP

Kind code of ref document: A1