WO2021085017A1 - Vascular endoscopic system and blood vessel diameter measurement method - Google Patents

Vascular endoscopic system and blood vessel diameter measurement method Download PDF

Info

Publication number
WO2021085017A1
WO2021085017A1 PCT/JP2020/037202 JP2020037202W WO2021085017A1 WO 2021085017 A1 WO2021085017 A1 WO 2021085017A1 JP 2020037202 W JP2020037202 W JP 2020037202W WO 2021085017 A1 WO2021085017 A1 WO 2021085017A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
image
endoscope
position information
diameter
Prior art date
Application number
PCT/JP2020/037202
Other languages
French (fr)
Japanese (ja)
Inventor
貴光 荒井
章二 田口
伸一 塚原
芳明 矢萩
博文 榎本
Original Assignee
パナソニックi-PROセンシングソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックi-PROセンシングソリューションズ株式会社 filed Critical パナソニックi-PROセンシングソリューションズ株式会社
Publication of WO2021085017A1 publication Critical patent/WO2021085017A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes

Definitions

  • the present disclosure relates to a blood vessel endoscopy system and a method for measuring blood vessel diameter.
  • Patent Document 1 it is possible to quickly and easily determine the optimum stent, and the validity of the determined stent can be easily confirmed before healing, while image analysis for comparing blood vessel images with different diagnosis dates and times with high accuracy.
  • the device is disclosed.
  • This image analysis device stores a short-axis cross-sectional image of a blood vessel output from an intravascular image imaging device, and generates a long-axis cross-sectional image of a blood vessel from a plurality of saved short-axis cross-sectional images.
  • the image analyzer generates a lumen closure curve at least along the outer circumference of the blood vessel lumen from the stored short-axis cross-sectional image, and the diameter of the stent to be inserted into the blood vessel from this generated lumen closure curve. Is calculated.
  • Patent Document 1 in determining the stent diameter, a large number of each short-axis cross-sectional image displayed on the display unit along the outer circumference of the lumen reflected in the short-axis cross-sectional image by a user such as a doctor. It is premised that the designated point of is specified. For this reason, a user such as a doctor is required to perform a plurality of designated operations during medical treatment such as surgery, which may make it difficult for the medical treatment to proceed smoothly, which is improved in terms of improving usability. It can be said that there was room for.
  • This disclosure was devised in view of the above-mentioned conventional situation, and observation of a subject such as a patient using an image taken by an angioscope without interrupting the smooth progress of medical practice by a user such as a doctor. It is an object of the present invention to provide a blood vessel endoscopy system and a blood vessel diameter measuring method for measuring a blood vessel diameter at a site with high accuracy.
  • the present disclosure describes a blood vessel of a subject whose distal end is inserted into the blood vessel of the subject and whose proximal side is pulled by a drive device at a constant speed in an automatic mode or manually in a manual mode at a variable speed.
  • a repeater that inputs and combines the blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the drive device, and the repeater.
  • the transmitted blood vessel image is associated with the position information and speed information of the endoscope and stored in a memory, and the blood vessel image stored in the memory and the position information and speed information of the endoscope are used.
  • a blood vessel endoscopy system including a calculation device that generates a constant velocity moving image of the blood vessel image and calculates the blood vessel diameter of the blood vessel based on a plurality of blood vessel images constituting the constant velocity moving image.
  • the distal end side is inserted into the blood vessel of the subject and the proximal end side is pulled at a constant speed by an automatic mode by a driving device, or manually pulled at a variable speed by a manual mode.
  • An endoscope capable of capturing a blood vessel, a blood vessel image captured by the endoscope, and position information and speed information of the endoscope sent from the driving device are input, associated with each other, and stored in a memory.
  • a constant velocity moving image of the blood vessel image is generated based on the difference between the input timing of the blood vessel image stored in the memory and the input timing of the position information and the velocity information of the endoscope, and the constant velocity moving image is configured.
  • a blood vessel endoscopy system including an arithmetic device for measuring the blood vessel diameter of the blood vessel based on a plurality of blood vessel images.
  • the present disclosure is a blood vessel diameter measuring method performed by a blood vessel endoscopy system, in which the distal end side is inserted into the blood vessel of a subject and the proximal end side is pulled by a driving device at a constant speed in an automatic mode.
  • the blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject, which is manually pulled at a variable speed in the manual mode, and the blood vessel image captured by the endoscope and the blood vessel image sent from the driving device are sent.
  • the position information and speed information of the endoscope are input by the repeater and combined, and the blood vessel image sent from the repeater is associated with the position information and speed information of the endoscope and stored in the memory.
  • a constant velocity moving image of the blood vessel image is generated using the blood vessel image stored in the memory and the position information and velocity information of the endoscope, and based on a plurality of blood vessel images constituting the constant velocity moving image.
  • a blood vessel diameter measuring method for calculating a blood vessel diameter of the blood vessel.
  • the present disclosure is a blood vessel diameter measuring method performed by a blood vessel endoscopy system, in which the distal end side is inserted into the blood vessel of a subject and the proximal end side is driven by a driving device at a constant speed in an automatic mode.
  • the blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject, which is pulled or manually pulled at a variable speed in a manual mode, and the blood vessel image captured by the endoscope and the driving device are used.
  • the position information and speed information of the endoscope sent from the endoscope are input and associated with each other and stored in the memory, and the input timing of the blood vessel image saved in the memory and the position information and speed information of the endoscope are recorded.
  • a blood vessel diameter measuring method for generating a constant velocity moving image of the blood vessel image based on a difference from an input timing and measuring the blood vessel diameter of the blood vessel based on a plurality of blood vessel images constituting the constant velocity moving image. ..
  • an endoscope capable of imaging the blood vessel of the subject while the guide wire is inserted into the blood vessel of the subject inserted in advance and pulled through a driving device, and the endoscope are used for imaging.
  • a repeater that inputs and combines the blood vessel image and the position information and speed information of the endoscope sent from the drive device, the blood vessel image sent from the repeater, the position information of the endoscope, and the position information of the endoscope.
  • the speed information is associated with the memory and stored in the memory, and based on the size of the guide wire in the width direction stored in the memory and a single blood vessel image corresponding to the position information and the speed information of the endoscope.
  • a blood vessel endoscopy system including an arithmetic device for calculating the blood vessel diameter of the blood vessel.
  • the present disclosure is a blood vessel diameter measuring method performed by a blood vessel endoscopy system, in which a guide wire is inserted into a blood vessel of a subject inserted in advance, and the subject is pulled through a driving device.
  • the blood vessel is imaged by an endoscope capable of imaging the blood vessel of the blood vessel, and the blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device are input by a repeater.
  • the blood vessel image sent from the repeater is associated with the position information and the speed information of the endoscope and stored in a memory, and the size of the guide wire stored in the memory in the width direction and the above.
  • a blood vessel diameter measuring method for calculating the blood vessel diameter of the blood vessel based on one blood vessel image corresponding to the position information and the speed information of the endoscope.
  • the present disclosure it is possible to measure the blood vessel diameter of an observation site of a subject such as a patient with high accuracy by using an image taken by an angioscope without interrupting the smooth progress of medical practice by a user such as a doctor. ..
  • FIG. 1 The figure which shows the structural example of the vascular endoscopy system which concerns on Embodiment 1.
  • Flow chart showing an example of the operation procedure of the vascular endoscopy system according to the first embodiment A flowchart showing an example of the operation procedure of the blood vessel diameter calculation process in step S43 of FIG.
  • the figure explaining the calculation example of the 3D position Diagram showing an example of a screen displayed on a monitor
  • a flowchart showing an example of an operation procedure of the third calculation process of the blood vessel diameter in step S43B of FIG. The figure which shows the outline example of the 4th calculation process of the blood vessel diameter which concerns on Embodiment 3.
  • FIG. 1 is a diagram showing a configuration example of the blood vessel endoscopy system 5 according to the first embodiment.
  • the vascular endoscopy system 5 targets a subject such as a human body and measures the diameter of blood vessels in the subject.
  • the vascular endoscope system 5 includes a vascular endoscope 100, an auto pullback device 80, a repeater 20, a camera control unit 30, a PC 50 (Personal Computer), and a monitor 70.
  • the vascular endoscope 100 as an example of the endoscope is a dedicated medical device used at the time of surgery or examination, in which the vascular endoscope camera 10 is attached to the tip of the catheter 200.
  • the vascular endoscope 100 is sometimes referred to as a so-called vascular endoscopic catheter.
  • the outer diameter of the vascular endoscope 100 is, for example, 1.8 mm ⁇ as the maximum outer diameter, but the outer diameter is not limited to this size.
  • the angioscope 100 is inserted in the blood vessel in the subject freely along a guide wire 150 inserted in advance in the observation site (for example, a blood vessel) in the subject.
  • the direction in which the vascular endoscopic camera 10 is inserted toward the observation site in the subject is defined as the traveling direction, and conversely, the direction in which the vascular endoscopic camera 10 is pulled out toward the outside of the subject is retracted. Defined as direction. Therefore, advancing and retreating means that the vascular endoscopic camera 10 can be inserted and removed toward the inside of the subject.
  • the vascular endoscopic camera 10 can be smoothly inserted to the site to be observed by being guided by a guide wire 150 inserted in advance to the site to be operated or examined (for example, the affected area).
  • the vascular endoscope 100 may be one in which the vascular endoscope camera 10 is interchangeably attached to the tip of a normal catheter.
  • the catheter 200 is, for example, a medical tube used for discharging a body fluid or injecting a drug solution.
  • a balloon, a stent, or the like may be interchangeably attached to the catheter 200.
  • the blood vessel endoscopy camera 10 is, for example, a 480,000-pixel high-resolution camera equipped with an image sensor (see below) capable of imaging blood vessels on the tip side. Note that 480,000 pixels are just an example, and the number of pixels does not have to be limited to 480,000 pixels.
  • the blood vessel endoscope camera 10 can image the inner wall of the blood vessel (hereinafter, referred to as “blood vessel wall”).
  • the angioscope camera 10 incorporates a solid-state image sensor (that is, an image sensor) such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Signal) as an image sensor, and incorporates a solid-state image sensor (that is, an image sensor) such as a subject (for example, the inside of a blood vessel which is an affected area).
  • a solid-state image sensor that is, an image sensor
  • a subject for example, the inside of a blood vessel which is an affected area.
  • the blood vessel endoscopic camera 10 When the blood vessel endoscopic camera 10 is inserted into the blood vessel, it is pulled back at a constant speed by driving the auto pullback device 80 based on the user's operation, so that the blood vessel wall is imaged at equal intervals, and the data of the captured image of the blood vessel wall is taken. Output a signal.
  • the captured image of the blood vessel wall or the like will be referred to as a “blood vessel image”.
  • the data signal of the blood vessel image may be either a still image or a moving image.
  • the blood vessel endoscope 100 may include a fiber that guides the irradiation light from the LED (Light Mission Diagram) light source or the camera control unit 30 in the subsequent stage in order to illuminate the subject.
  • the auto pullback device 80 as an example of the drive device pulls back the vascular endoscope 100, which is guided by the guide wire 150 and inserted into the observation target site (for example, a blood vessel), to the proximal end side at a pullback speed (for example, a constant speed). Performs an action (in other words, towing).
  • the length at which the auto-pullback device 80 pulls back the catheter 200 is the length at which the vascular endoscope camera 10 inserted at a position near the affected part is pulled back toward the proximal end side. It can be considered that it is almost the same as.
  • the vascular endoscope camera 10 images the blood vessel wall at equal intervals when the vascular endoscope 100 is pulled back by the auto pullback device 80.
  • the auto pullback device 80 transmits data of position information of the blood vessel endoscope 100 (more specifically, the blood vessel endoscope camera 10; the same applies hereinafter) and speed information of the imaging position to the repeater 20.
  • the speed information of the imaging position of the angioscope 100 is the imaging position of the angioscope camera 10 (that is, when the angioscope camera 10 of the angioscope 100 is pulled back to the proximal end side). This is the speed at which the position of the angioscope camera 10) moves to the proximal end side at a constant speed, which is substantially the same as the pullback speed (see above).
  • the speed information of the imaging position of the blood vessel endoscope 100 is set by the auto pullback device 80 by the operation of a user such as a doctor, and as an example, it is 0.5 mm / sec, 1.0 mm / sec, or 2.0 mm / sec. is there.
  • the start position of imaging is determined after, for example, a user such as a doctor confirms the captured image of the observation site (for example, blood vessel) of the subject imaged by the blood vessel endoscope 100 on the monitor 70.
  • the pullback of the vascular endoscope 100 is started by, for example, pressing the button bn2 of the auto pullback device 80 by a user such as a doctor.
  • buttons bn1 On the front surface of the housing 80z of the auto pullback device 80, there is a button bn1 that can select the speed information of the imaging position, a button bn2 that switches between start and stop by pressing the button, and a catheter 200 (in other words, a blood vessel). Buttons bn3 that automatically return the endoscope 100) to the initial position on the proximal end side are arranged respectively.
  • the velocity information of the imaging position of the angioscope 100 (sometimes simply referred to as “velocity information”) is a constant velocity selected by pressing the button bn1, for example, 0.5 mm / sec, 1.0 mm / sec, or It is 2.0 mm / sec.
  • Display d1, d2, d3 that display the speed and acceleration of movement of the catheter 200 (in other words, the blood vessel endoscope 100) are arranged.
  • a display d4 that schematically displays the position of the blood vessel endoscope 100 is arranged.
  • the repeater 20 has a configuration including an FPGA (Field Programmable Gate Array) 21, an AFE (Analog Front End) 22, input interfaces 23 and 24, and an output interface 25.
  • FPGA Field Programmable Gate Array
  • AFE Analog Front End
  • input interfaces 23 and 24 input interfaces 23 and 24, and an output interface 25.
  • output interface 25 In each of FIGS. 1 and 7, the interface is abbreviated as "I / F".
  • the input interface 23 is connected to the vascular endoscope 100 so as to be able to input a data signal, and inputs a data signal (for example, a moving image or a still image) of a vascular image captured by the vascular endoscope camera 10. Is output to AFE22.
  • a data signal for example, a moving image or a still image
  • the input interface 24 is connected to the auto pullback device 80 so that data can be input, and inputs the position information and speed information data of the vascular endoscope 100 output from the auto pullback device 80 and outputs the data to the FPGA 21. To do.
  • AFE22 is composed of an integrated circuit including at least an amplifier, an AD (Analog Digital) converter and a filter.
  • the AFE 22 performs amplification processing, analog-digital conversion processing, filtering processing, and the like on the data signal of the blood vessel image input via the input interface 23, and outputs the data signal to the FPGA 21.
  • the FPGA 21 combines the data of the blood vessel image after being processed by the AFE 22 with the data of the position information and the velocity information of the blood vessel endoscope 100.
  • the combined data of the blood vessel image data and the data of the position information and the velocity information may be simply referred to as "combined data”.
  • the output interface 25 outputs the combined data generated by the FPGA 21 (that is, the combined data of the blood vessel image data and the position information and speed information data of the blood vessel endoscope 100) to the image console 90.
  • the FPGA 21 is used as an example of the processor used in the repeater 20, but in addition to the FPGA 21, a CPU (Central Processing Unit), a GPU (Graphical Processing Unit), an MPU (Micro Processing Unit), and the like are used. You may.
  • the repeater 20 relays various signals performed between the angioscope camera 10 and the camera control unit 30.
  • the various signals include, for example, various control signals for the camera control unit 30 to control the vascular endoscopic camera 10 in addition to the data signal of the vascular image captured by the vascular endoscopic camera 10.
  • the repeater 20 combines the data of the blood vessel image captured by the blood vessel endoscope camera 10 with the data of the position information and the speed information of the blood vessel endoscope 100 pulled back by the auto pullback device 80. ..
  • the processing of combining the blood vessel image data with the position information and velocity information data is performed by concatenating these data, for example, by adding these data into one data.
  • the imaging position in the blood vessel provided by the auto pullback device 80 and the acquisition timing of the blood vessel image provided by the blood vessel endoscope 100 are matched (synchronized). Attached.
  • the above-mentioned data combination may be performed, for example, by drawing position information and velocity information on the blood vessel image, that is, by superimposing them.
  • the blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 may be associated with each other as separate files. This association is performed, for example, by storing the identification information of the other data file in the metadata storage area of one data file.
  • the combined blood vessel image and the position information and the velocity information may be displayed on separate screens, or may be displayed on the same screen by the superimpose method.
  • the catheter 200 that is, the blood vessel endoscope 100
  • the catheter 200 that is, the blood vessel endoscope 100
  • the catheter 200 is caught in the middle of the blood vessel which is the observation site, so that the speed is set to a preset constant speed. May not be obtained.
  • the blood vessel image provided by the blood vessel endoscope 100 when a constant speed cannot be obtained is omitted (that is, not used) at high speed when creating a constant velocity moving image described later, and is low speed. Sometimes the same image is added as many times as necessary.
  • the camera control unit 30 (CCU: Camera Control Unit) is electrically connected to the vascular endoscopy camera 10 via a repeater 20, and the imaging operation by the vascular endoscopy camera 10 and the imaging operation from the vascular endoscopy camera 10 Controls the generation of vascular image data based on the vascular image data signal.
  • the camera control unit 30 adds metadata to the data in which the blood vessel image data and the position information and velocity information data of the angioscope are combined (that is, the above-mentioned combined data).
  • the metadata includes data such as the imaging date and time of the blood vessel image provided by the blood vessel endoscopic camera 10.
  • the camera control unit 30 includes at least an image input unit (not shown), an image processing unit (not shown), and an image output unit (not shown).
  • the image input unit (not shown) inputs the combined data in which the blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 are combined.
  • the image input unit (not shown) uses HDMI (registered trademark) (High-Definition Multimedia Interface) or USB (Universal Serial Bus) Type-C, which can transfer video data at high speed, in addition to a dedicated image input interface. It may be the interface that was used.
  • the image processing unit (not shown) performs processing such as adding metadata to the input combined data.
  • the image processing unit (not shown) generates the combined data in RGB format or YUV format that can be visually recognized on the monitor 70 by performing predetermined image processing on the combined data sent from the repeater 20. You may.
  • the image output unit (not shown) transmits the combined data to which the metadata is added to the PC 50.
  • the PC 50 as an example of the arithmetic unit has a configuration including a processor 51, a memory 52, an input / output interface 53, an operation unit 54, and a storage 55.
  • the PC 50 receives the combined data generated by the repeater 20 via the camera control unit 30.
  • the PC 50 records and stores the blood vessel image data included in the combined data, the blood vessel image data after performing predetermined image processing on the blood vessel image data, and the like in the storage 55.
  • the PC 50 performs a process of calculating the blood vessel diameter of the observation site (for example, the blood vessel of the affected portion of the patient as the subject) based on the blood vessel image data.
  • the PC 50 outputs the measurement result of the blood vessel diameter or the data of the blood vessel image to the monitor 70, and performs a process of visualizing the calculation result of the blood vessel diameter.
  • the PC 50 creates a constant velocity moving image composed of a plurality of blood vessel images by using the combined data input from the repeater 20 at any time.
  • the constant-velocity moving image referred to here is, for example, an image taken from a plurality of blood vessel images at the same constant speed using the imaging position of the blood vessel endoscope camera 10 and the speed information of the blood vessel endoscope 100.
  • This is a moving image composed by sequentially selecting a plurality of blood vessel images having different positions in chronological order.
  • the processor 51 executes, for example, the above-mentioned blood vessel diameter measurement process and visualization process by executing various processing programs stored in the memory 52.
  • the processor 51 may be, for example, a GPU suitable for image processing, a dedicated electronic circuit designed by an MPU, a CPU, an ASIC (Application Specific Integrated Circuit), or the like, or an electronic circuit designed to be reconfigurable by an FPGA or the like. It may be configured.
  • the memory 52 is a RAM (Random Access Memory) used as a working memory of the processor 51. It includes a ROM (Read Only Memory) that stores programs for various processes executed by the processor 51.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the input / output interface 53 may be an interface using HDMI (registered trademark) or USB Type-C, which can transfer video data at high speed, in addition to the dedicated image input interface.
  • HDMI registered trademark
  • USB Type-C USB Type-C
  • the operation unit 54 includes an activation switch for activating the vascular endoscopy system 5, and accepts operations by a user such as a doctor.
  • the operation unit 54 may include, for example, a mouse, keyboard, touch pad, touch panel, microphone or other input device.
  • the storage 55 as an example of the memory is a large-capacity storage device, and stores blood vessel image data and the like captured by the blood vessel endoscopy camera 10.
  • the storage 55 may include, for example, a secondary storage device (for example, HDD (Hard Disk Drive) or SSD (Solid State Drive)), or a tertiary storage device (for example, an optical disk or SD card).
  • the monitor 70 displays the blood vessel diameter measurement result or blood vessel image data output from the PC 50.
  • the monitor 70 has a display device such as an LCD (Liquid Crystal Display), an organic EL (Electroluminescence), or a CRT (Cathode Ray Tube).
  • the camera control unit 30, the PC 50, and the monitor 70 are mounted in a single housing as an image console 90.
  • the blood vessel endoscope 100 is inserted into a blood vessel in order to observe the state of the blood vessel in the subject, such as a thrombus in the blood vessel in the subject or a plaque formed on the blood vessel wall.
  • the guide wire 150 is inserted into the blood vessel in advance.
  • the user can use the blood vessel endoscope 100 (in other words, the blood vessel at the tip) in which the blood vessel endoscope camera 10 is mounted on the tip side so as to be guided by the guide wire 150.
  • a catheter 200) to which the endoscope 100 is attached is advanced and inserted into the blood vessel.
  • the user activates the auto pullback device 80 and pulls back the catheter 200 (in other words, the angioscope 100) at a pullback speed (that is, a constant speed). Start the operation. Further, when the inside of the blood vessel is imaged by the blood vessel endoscope camera 10, the user can use a low molecular weight dextran or a low molecular weight dextran from the proximal end side of the catheter 200 to which the blood vessel endoscope 100 is attached so that the inside of the blood vessel can be clearly imaged. A contrast medium or a clear solution such as physiological saline is injected into the blood vessel.
  • FIG. 2 is a flowchart showing an example of the operation procedure of the blood vessel endoscopy system 5 according to the first embodiment.
  • the operations of the auto pullback device 80 are shown in chronological order.
  • the blood vessel endoscopy system 5 is activated (S1).
  • the vascular endoscope system 5 When the vascular endoscope system 5 is activated, the vascular endoscope 100, the auto pullback device 80, the repeater 20, and the image console 90 each start operating.
  • the user sets the start position and the end position of the measurement for pulling back the blood vessel endoscope 100 inserted into the blood vessel, which is the observation site in the subject, with respect to the auto pullback device 80.
  • the user actually visually confirms the blood vessel image captured by the blood vessel endoscopy camera 10 on the monitor 70 on which the blood vessel image is displayed, and determines the start position and the end position of the measurement.
  • the length from the start position to the end position of the pullback (measurement) of the blood vessel endoscope 100 by the auto pullback device 80 corresponds to the measurement length of the blood vessel.
  • the auto pullback device 80 acquires the position information and speed information of the vascular endoscope 100 measured at regular intervals when the catheter 200 (that is, the vascular endoscope 100) is pulled back at a constant speed within the measurement length. (S11).
  • the auto pullback device 80 outputs data of the position information of the blood vessel endoscope 100 and the speed information of the imaging position to the repeater 20 (S12).
  • the blood vessel endoscope 100 acquires a data signal of a blood vessel image captured by the blood vessel endoscope camera 10 (S21).
  • the blood vessel endoscope 100 outputs a data signal of a blood vessel image to the repeater 20 (S22).
  • the repeater 20 inputs the data signal of the blood vessel image from the blood vessel endoscope 100 (S31).
  • the repeater 20 inputs the position information and the speed information of the vascular endoscope 100 from the auto pullback device 80 (S32).
  • the repeater 20 inputs the position information and speed information data of the vascular endoscope 100 input from the auto pullback device 80 at the input timing (that is, the same time as the input) of the data signal of the blood vessel image to the above-mentioned input timing. It is combined with the data of the blood vessel image input to (S33).
  • the data of the blood vessel image from the blood vessel endoscope 100 input to the repeater 20 and the position information and the speed information of the blood vessel endoscope 100 from the auto pullback device 80 are time-matched (synchronized). Data is combined by the repeater 20.
  • the repeater 20 transmits the combined data generated in step S33 (that is, the combined data of the blood vessel image and the position information and speed information of the blood vessel endoscope 100) to the image console 90 (S34).
  • the transmission of the combined data is performed, for example, at a frame rate at which a user such as a doctor can view the blood vessel image captured by the blood vessel endoscope 100 in real time and display it on the monitor 70.
  • the camera control unit 30 receives the combined data generated by the repeater 20 (that is, the combined data of the blood vessel image and the position information and the speed information of the blood vessel endoscope 100). (S41).
  • the PC 50 stores this combined data in the storage 55.
  • the PC 50 creates a constant velocity moving image (see above) based on the combined data (S42).
  • the PC50 calculates the blood vessel diameter in the blood vessel, which is the observation site of the subject, using the data of at least two blood vessel images constituting the constant velocity moving image (S43). The details of the process in step S43 will be described later. Further, the PC 50 separates the combined blood vessel image and the position information and speed information data of the blood vessel endoscope 100 in order to separately display the blood vessel image and the position information and speed information of the blood vessel endoscope 100. (S44). The PC 50 displays the blood vessel image, the position information and velocity information of the blood vessel endoscope 100, and the blood vessel diameter on the monitor 70 (S45). The position information and the speed information may be displayed at the same time or may be displayed individually. After this, the vascular endoscopy system 5 ends the operation shown in FIG.
  • FIG. 3 is a flowchart showing an example of an operation procedure of the blood vessel diameter calculation process in step S43 of FIG.
  • This process is, for example, a process of calculating the blood vessel diameter using two blood vessel images constituting the constant velocity moving image created in step S42 of FIG.
  • the user only has to enter the center and radius of the circle for the PC50.
  • the processor 51 receives the center and radius of the circle input by the user via the operation unit 54.
  • the processor 51 has a plurality of (for example, 1156) measurement points arranged on the entire image on the circumference based on the center and radius of the circle with respect to the data of the blood vessel image input from the camera control unit 30. For example, 128) feature points e1 are detected (S51).
  • the number of 1156 measurement points and 128 feature points is an example.
  • FIG. 4 is a diagram showing the arrangement of feature points on a blood vessel image, the positional relationship between feature points and corresponding points, and the blood vessel diameter estimated using three-dimensional points. 128 feature points e1 are superimposed and drawn on the circumference of a circle designated by the user on the blood vessel image GZ1 captured by the blood vessel endoscopy camera 10.
  • the processor 51 determines whether or not the blood vessel image GZ1 that has detected the feature point e1 is the image of the first frame (S52). In the case of the image of the first frame (S52, YES), the processor 51 ends the process shown in FIG. 3 and returns to the original process without calculating the blood vessel diameter.
  • the processor 51 performs the first feature point matching (S53).
  • the processor 51 acquires a rectangular area near the feature point of the previous frame (in other words, the (n-1) th frame) as a template (n: an integer of 2 or more).
  • the template size is a size of 16 pixels in width ⁇ 16 pixels in height.
  • the processor 51 searches for a region that matches the template with a rectangular region centered on the feature point position of the current frame (in other words, the nth frame) as a search range.
  • the size of the search range is 128 pixels wide x 128 pixels high.
  • the processor 51 has a corresponding point f2 corresponding to the feature point e1 at a position where the ZNCC (Zero-means Normalized Cross Direction) value is minimized. Since the nth frame is an image in which the blood vessel endoscope 100 is pulled toward the front with respect to the (n-1) th frame, a plurality of circles formed by the plurality of corresponding points f2 are formed. It is smaller than the circle formed by the feature point e1.
  • the processor 51 estimates the vanishing point dp using the feature point e1 included in the (n-1) th frame and the corresponding point f2 included in the nth frame (S54). In the estimation of the vanishing point dp, the processor 51 obtains the flow from the feature point e1 to the corresponding point f2 for all the feature points e1 and the corresponding point f2. The processor 51 finds the intersection of the two flows. The processor 51 obtains a vector from all the feature points e1 to the intersection. The processor 51 obtains the similarity between the flow and each vector (here, the angle difference), and determines whether or not the similarity exceeds the threshold value, for example, whether or not the angle difference between the flow and the vector is less than 3 °. Determine.
  • the processor 51 determines that the feature point e1 is an effective feature point (hereinafter, may be referred to as an "inlier"). On the other hand, when the angle difference is 3 ° or more, the processor 51 determines that the feature point e1 is an invalid feature point (hereinafter, may be referred to as an “outlier”).
  • the processor 51 calculates the number of inliers at the intersections of all the flows. The processor 51 uses the intersection of the flows having the largest number of inliers as the vanishing point dp.
  • the processor 51 performs a second feature point matching for cross-checking (S55).
  • the processor 51 acquires a rectangular area near the corresponding point of the current frame (that is, the nth frame) as a template.
  • the template size is a size of 16 pixels in width ⁇ 16 pixels in height.
  • the processor 51 searches for a region that matches the template with a rectangular region centered on the corresponding point position of the previous frame (that is, the (n-1) th frame) as a search range.
  • the size of the search range is 128 pixels wide x 128 pixels high.
  • the processor 51 sets the position where the ZNCC value becomes the minimum as a feature point (corresponding feature point) corresponding to the corresponding point f2.
  • the processor 51 determines whether or not the feature point e1 and the corresponding feature point in the previous frame (that is, the (n-1) th frame) substantially match.
  • the substantially match between the feature point e1 and the corresponding feature point can be determined based on, for example, the position coordinates.
  • the processor 51 determines that the corresponding point f2 is reliable when the feature point e1 and the corresponding feature point substantially match, and when the feature point e1 and the corresponding feature point do not substantially match, the corresponding point f2 is unreliable.
  • the processor 51 adopts the feature point e1 judged to be reliable as an inlier, and does not adopt the feature point e1 judged to be unreliable as an outlier.
  • the processor 51 calculates the three-dimensional position of the feature point e1 which is an in-liner (S56). For example, triangulation is used to calculate the three-dimensional position of the feature point e1. Triangulation is a well-known surveying method using trigonometry and geometry that finds the position of a feature point by measuring the distance between the two points and the angle from each of these two points to the feature point to be measured.
  • FIG. 5 is a diagram illustrating an example of calculating a three-dimensional position.
  • the three-dimensional coordinates E of the feature point e1 be (X, Y, Z).
  • X is a coordinate value on the x-axis representing the diameter (minor axis) direction of the blood vessel.
  • Y is a coordinate value on the y-axis representing the radial direction of the blood vessel perpendicular to the x-axis.
  • Z is a coordinate value of the z-axis representing the longitudinal (major axis) direction of the blood vessel.
  • (u1, u2) be the image coordinates p1 of the feature point e1 at the camera position g1 of the (n-1) th frame.
  • (u2, v2) be the image coordinate p2 of the corresponding point f2 at the camera position g2 of the nth frame.
  • D be the distance between the camera position g1 of the (n-1) th frame and the camera position g2 of the nth frame.
  • the distance D is the imaging time difference and pullback speed between the camera position of the (n-1) th frame and the camera position of the nth frame when the auto pullback device 80 pulls the guide wire 150 at a constant pullback speed. It is calculated by the product of and.
  • the matrix K of the internal parameters of the camera is expressed by the mathematical formula (1).
  • fx the value obtained by dividing the focal length by the horizontal pixel pitch
  • fy the value obtained by dividing the focal length by the vertical pixel pitch
  • Cx the x-coordinate of the image center
  • Cy the y-coordinate of the image center
  • the image coordinates p1 and the three-dimensional coordinates E of the feature point e1 are expressed by the mathematical formula (2).
  • the image coordinates p2 and the three-dimensional coordinates E of the corresponding point f2 are expressed by the mathematical formula (3).
  • the processor 51 uses, for example, a triangulation function to obtain the three-dimensional coordinates E of the feature point e1 corresponding to the image coordinates p1 and the image coordinates p2.
  • the processor 51 can display (3D display) the three-dimensional coordinates E of the feature point e1 on the monitor 70 as a three-dimensional stereoscopic image.
  • the processor 51 detects a plane on which ellipse fitting is performed based on the three-dimensional coordinates E of the plurality of feature points e1 (S57). In the plane detection, the processor 51 selects three points from a plurality of feature points e1 (referred to as three-dimensional points), and obtains an equation (referred to as a planar equation) representing a plane including these three points. The processor 51 counts the number of three-dimensional points that are close to a plane within a predetermined distance from the obtained plane. The processor 51 selects the planar expression having the largest number of counted three-dimensional points. The processor 51 extracts a three-dimensional point close to the plane represented by the selected plane formula.
  • the processor 51 performs principal component analysis (PCA: Principal Component Analysis) based on the extracted three-dimensional point cloud, and detects a plane.
  • Principal component analysis is a method of multivariate analysis that synthesizes a variable called the principal component that best represents the overall variability with a small number of uncorrelated variables from a large number of correlated variables.
  • the processor 51 adopts the feature point e1 whose distance from the plane is more than a predetermined distance as an outliner and the feature point e1 which is within a predetermined distance as an inlier for estimating the blood vessel diameter.
  • the processor 51 estimates the blood vessel diameter by performing elliptical fitting based on the plurality of feature points e1 (S58).
  • a plurality of feature points e1 are projected onto the xy plane, and the two-dimensional points projected on the xy plane are fitted using RANSAC (Random Sample Consensus).
  • RANSAC Random Sample Consensus is a method of estimating elliptical parameters so as not to include outliers.
  • the processor 51 can estimate an ellipse by suppressing the influence of outliers even if a plurality of two-dimensional points include outliers. Therefore, the estimation accuracy of the ellipse is improved.
  • the processor 51 inputs a plurality of two-dimensional points and randomly extracts five points from the input two-dimensional points.
  • the processor 51 obtains an ellipse parameter using the extracted five points.
  • Elliptical parameters include major and minor diameters.
  • the processor 51 calculates the shortest distance from each two-dimensional point to the elliptical arc, counts the number of two-dimensional points (inlier number) whose distance is smaller than the threshold value, and records it in the memory 52.
  • the processor 51 extracts another five points from the plurality of input two-dimensional points, and counts the number of inliers in the same procedure as described above. When the counted number of inliers exceeds the number of inliers recorded in the memory 52, the processor 51 updates the number of inliers recorded in the memory 52. The processor 51 repeats the same procedure, and ends the extraction of the two-dimensional points when the number of inliers recorded in the memory 52 is not continuously updated a certain number of times, that is, when the maximum number of inliars is obtained. ..
  • the processor 51 uses an elliptical parameter that maximizes the number of inliers for all two-dimensional points, and determines as an inlyre a two-dimensional point in which the shortest distance from each two-dimensional point to the elliptical arc is smaller than the threshold value.
  • Processor 51 uses all the determined aligners to determine the elliptical parameters.
  • the processor 51 estimates that the major axis, which is one of the ellipse parameters, is the blood vessel diameter ⁇ 1.
  • the processor 51 can appropriately determine the size of the stent that can be inserted into the blood vessel by setting the diameter of the blood vessel to be the major diameter.
  • the processor 51 acquires the corresponding points corresponding to the feature points by template matching. For example, the processor 51 uses the feature points of the (n-1) th frame and the corresponding points of the nth frame for deep learning. The machine learning by the above is performed, and the trained model generated as a result of the machine learning may be used to acquire the corresponding points of the nth frame corresponding to the feature points of the (n-1) th frame.
  • the processor 51 estimates the major axis of the elliptical parameter as the blood vessel diameter
  • the minor axis may be estimated as the blood vessel diameter.
  • the processor 51 may use the major axis and the minor axis, for example, add the major axis and the minor axis and use half the value to estimate the blood vessel diameter.
  • the PC 50 sequentially acquires blood vessel images corresponding to the position information of the blood vessel endoscope 100 captured by the blood vessel endoscope camera 10. Record as a blood vessel image of a short axis cross section in the storage 55.
  • the minor axis cross section indicates a cross section in the direction of the blood vessel diameter (that is, the minor axis direction which is the diameter direction) when the blood vessel is regarded as having a substantially cylindrical shape. Further, the direction perpendicular to the minor axis direction is defined as the major axis direction.
  • the PC 50 calculates the measurement length of the blood vessel based on the position information of the blood vessel endoscope 100 sequentially input from the auto pullback device 80.
  • the PC 50 generates a three-dimensional image of a blood vessel based on a plurality of short-axis cross-sectional blood vessel images recorded in the storage 55, and cuts the three-dimensional image of the blood vessel along the long axis direction of the blood vessel to lengthen the blood vessel.
  • the major axis cross section indicates a cross section in the longitudinal direction (longitudinal direction) of a blood vessel when the blood vessel is regarded as having a substantially cylindrical shape.
  • the PC 50 displays the blood vessel image of the long axis cross section on the monitor 70 together with the measurement information of the blood vessel diameter and the blood vessel image of the short axis cross section.
  • FIG. 6 is a diagram showing an example of a screen displayed on the monitor 70.
  • the measurement result of the blood vessel diameter includes, for example, imaging date: October 1, 2019, patient ID: ABC100, measured value, blood vessel inner diameter: 2.5 mm, blood vessel length: 30 mm, stenosis inner diameter: 2.0 mm.
  • An indicator i1 representing a blood vessel diameter (blood vessel inner diameter): 2.5 mm is superimposed on the blood vessel image GZ5 having a short axis cross section together with a numerical value.
  • An indicator i2 indicating the measurement length is superimposed on the blood vessel image GZ6 having a long axis cross section together with a numerical value having a length of 13 mm.
  • the repeater 20 uses the blood vessel image data signal provided (transmitted) from the blood vessel endoscope 100 and the blood vessel provided (transmitted) from the auto pullback device 80.
  • the data of the position information and the speed information of the endoscope 100 are combined.
  • the repeater 20 transmits the combined data to the PC 50 of the image console 90.
  • the PC 50 is imaged at the same constant speed using the position information of the blood vessel endoscope 100 and the speed information of the imaging position of the blood vessel endoscope 100 from a plurality of blood vessel images, and the imaging positions are different. Create a constant velocity moving image composed by sequentially selecting multiple blood vessel images in chronological order.
  • the PC 50 calculates the blood vessel diameter using at least two blood vessel images constituting the constant velocity moving image (see FIG. 3).
  • the feature points arranged in a circle are detected from the measurement points reflected in the blood vessel image, and the displacement amount of the feature points between the two blood vessel images is used.
  • the variation in the displacement amount of the feature points is suppressed, and the calculation accuracy of the blood vessel diameter is improved. Therefore, a user such as a doctor can appropriately select the size of the stent when inserting the stent into the blood vessel portion where the blood vessel is narrowed.
  • the repeater 20 uses the data signal of the blood vessel image captured by the blood vessel endoscope camera 10 and the blood vessel endoscope 100 when the auto pullback device 80 pulls back the catheter 200 (in other words, the blood vessel endoscope 100). Since the position information and the speed information data of the above are acquired at the synchronized timing and these data are combined, it is easy to associate the blood vessel image with the position information and the speed information of the blood vessel endoscope 100.
  • the blood vessel endoscope 100 is inserted into the blood vessel of the subject at the distal end side and pulled at a constant speed by the auto pullback device 80 at the proximal end side to image the blood vessel of the subject.
  • a possible vascular endoscopic camera 10 is mounted on the tip side.
  • the repeater 20 inputs and combines the data of the blood vessel image captured by the blood vessel endoscope 100 and the data of the position information and the speed information of the blood vessel endoscope 100 sent from the auto pullback device 80.
  • the PC 50 stores in the storage 55 data in which the blood vessel image sent from the repeater 20 and the position information and the velocity information of the blood vessel endoscope 100 are combined.
  • the PC 50 generates a constant velocity moving image of the blood vessel image using the data obtained by combining the blood vessel image stored in the storage 55 with the position information and the velocity information of the blood vessel endoscope 100, and constitutes the constant velocity moving image.
  • the blood vessel diameter of a blood vessel is calculated based on a plurality of blood vessel images.
  • the vascular endoscopy system 5 uses the image captured by the vascular endoscope without interrupting the smooth progress of medical practice by a user such as a doctor, and the blood vessel, which is an observation site of a subject such as a patient, is used.
  • the blood vessel diameter can be measured with high accuracy. Therefore, the vascular endoscopy system 5 can assist a user such as a doctor in selecting a stent having an appropriate diameter to be inserted into a subject.
  • the repeater 20 combines the blood vessel image data with the position information and velocity information data of the blood vessel endoscope 100, the PC 50 acquires the position information at the timing synchronized (matched) with the blood vessel image data acquisition. And, using the data of the speed information, a constant velocity moving image of the blood vessel image can be generated in real time, and the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated with high accuracy.
  • the PC 50 superimposes the measurement result of the blood vessel diameter of the blood vessel, the indicator i1 indicating the blood vessel diameter, and the numerical value (that is, the numerical value of the blood vessel diameter) on the blood vessel image GZ1 and displays it on the monitor 70.
  • a user such as a doctor can visually grasp the blood vessel diameter in an easy-to-understand manner.
  • the PC 50 uses the input vascular images GZ5 of a plurality of short-axis cross sections to generate a vascular image GZ6 (an example of a long-axis cross-section image) of the long-axis cross section of the blood vessel, and together with the vascular image GZ5 of the short-axis cross section It is displayed on the monitor 70 in association with the blood vessel image GZ6 having a long-axis cross section.
  • a vascular image GZ6 an example of a long-axis cross-section image
  • the PC 50 uses the input vascular images GZ5 of a plurality of short-axis cross sections to generate a vascular image GZ6 (an example of a long-axis cross-section image) of the long-axis cross section of the blood vessel, and together with the vascular image GZ5 of the short-axis cross section It is displayed on the monitor 70 in association with the blood vessel image GZ6 having a long-axis cross section.
  • This allows the user to grasp the blood vessel diameter along the long
  • the PC 50 calculates the measurement length of the blood vessel based on the data of the position information and the speed information of the blood vessel endoscope 100 sequentially input from the auto pullback device 80, and sets the indicator i2 indicating the calculation result of the measurement length as the numerical value. It is also superimposed and displayed on the blood vessel image GZ6 of the long axis cross section. This allows the user to visually and accurately grasp the length of the observation site, for example, the stenosis of the blood vessel.
  • the PC 50 selects two blood vessel images corresponding to the position information of the vascular endoscope 100 from a plurality of blood vessel images constituting the constant velocity moving image, and for each of these two blood vessel images.
  • the disappearance points are estimated from the movement directions of the plurality of feature points arranged in a circular shape, and the disappearance points based on the movement of the angioscope 100 by the auto pullback device 80 are selected from the plurality of feature points.
  • the effective feature points having a vector in the direction are extracted, the three-dimensional coordinates of the effective feature points are calculated using the movement change amount of the effective feature points corresponding to the movement distance of the angioscope 100, and 3 of the effective feature points are calculated.
  • the diameter of the blood vessel is calculated based on the three-dimensional coordinates.
  • the PC 50 selects a plurality of blood vessel images having different position information of the blood vessel endoscope 100 and the same velocity information from a plurality of blood vessel images stored in the storage 55, and a plurality of selected blood vessel images.
  • the blood vessel endoscopy system 5 can calculate the blood vessel diameter with high accuracy by using at least two blood vessel images having the same velocity information, which constitute a constant velocity moving image.
  • the user can accurately grasp the blood vessel diameter along the long axis direction of the blood vessel, and the stent to be inserted into the blood vessel. The diameter of can be selected appropriately.
  • the auto pullback device 80 is operated in a manual mode at the discretion of a user such as a doctor, in addition to the automatic mode in which the catheter 200 (that is, the vascular endoscope 100) is pulled at a constant speed described above (in other words, the catheter 200 (in other words, the catheter 200 (in other words)). That is, the angioscope 100) can be pulled).
  • the auto-pullback device 80 measures at regular intervals when the catheter 200 (that is, the angioscope 100) is pulled back at a variable speed within the measurement length range (because it is manual, it does not reach a constant speed).
  • the position information and acceleration information of the angioscope 100 that is, the acceleration information obtained by the time change of the variable speed at regular time intervals) are acquired.
  • the auto pullback device 80 outputs the data of the position information and the distance information of the blood vessel endoscope 100 to the repeater 20.
  • the PC 50 may display the distance information (for example, the measurement length of the blood vessel) on the monitor 70 in addition to the position information of the blood vessel endoscope 100.
  • the auto pullback device 80 pulls back the catheter 200 (that is, the vascular endoscope 100) at a variable speed within the measurement length range (because it is manual, it does not reach a constant speed) at regular intervals.
  • the position information, acceleration information, and velocity information of the vascular endoscope 100 measured in the above are acquired, and the data of the imaging position information in which the position information of the vascular endoscope 100 and the frame position are combined is output to the repeater 20. It may be displayed on the monitor 70.
  • the repeater 20 is inside the blood vessel when the data of the blood vessel image captured by the blood vessel endoscope camera 10 and the auto pullback device 80 pull back the catheter 200 (in other words, the blood vessel endoscope 100). Data of position information and speed information of the endoscope 100 were acquired, and these synchronized data (that is, data having the same acquisition timing) were combined.
  • the PC 50A uses the blood vessel image data captured by the blood vessel endoscope camera 10, and the auto pullback device 80 pulls back the catheter 200 (in other words, the blood vessel endoscope 100). An example of inputting 100 position information and speed information data separately will be described.
  • the blood vessel image data and the position information and speed information data of the blood vessel endoscope 100 are not always synchronized data (that is, data whose acquisition timings match) depending on the input timing to the PC 50. .. Therefore, in the second embodiment, the PC50A adds a predetermined delay time to the data acquisition time of the position information and the speed information of the angioscope 100, for example, when it takes time to acquire the data of the blood vessel image. This makes it possible to associate these data (that is, to generate the synchronized data described above).
  • the PC50A assigns a time stamp indicating the time input to the PC50A to each of the input blood vessel image data and the position information and speed information data of the blood vessel endoscope 100, and these data are attached. Correspond.
  • FIG. 7 is a diagram showing a configuration example of the blood vessel endoscopy system 5A according to the second embodiment.
  • the configuration of the vascular endoscopy system 5A according to the second embodiment has substantially the same configuration as the vascular endoscopy system 5 according to the first embodiment.
  • the same reference numerals are given to the same configurations as the configurations of the vascular endoscopy system 5 according to the first embodiment to simplify the description. It will be omitted and different contents will be explained.
  • the auto pullback device 80 transfers the position information and speed information data of the vascular endoscope 100 when pulling back the catheter 200 (in other words, the vascular endoscope 100) to the PC 50A of the image console 90.
  • the data of the blood vessel image captured by the blood vessel endoscopy camera 10 is sent to the repeater 20A as in the first embodiment.
  • the repeater 20A transmits the blood vessel image data to the camera control unit 30 of the image console 90.
  • the processor 51 of the PC 50A adds a time stamp to the data of the position information and the speed information of the vascular endoscope 100 received from the auto pullback device 80.
  • This time stamp indicates, for example, the time when the processor 51 stores the data received from the auto pullback device 80 in the storage 55.
  • the processor 51 of the PC 50A adds a time stamp to the blood vessel image data input from the blood vessel endoscope 100 via the repeater 20A and the camera control unit 30. This time stamp indicates, for example, the time when the processor 51 stores the data received from the camera control unit 30 in the storage 55.
  • the processor 51 of the PC50A adds a delay time to the acquisition time of one of the data or adds a delay time. By subtracting, these data are associated. Further, when there is no particular time difference between the acquisition of the blood vessel image data and the acquisition of the position information and speed information data of the angioscope 100, and these data are simply input to the PC 50A at different timings, the processor of the PC 50A 51 associates these data having substantially the same time stamps.
  • the processor 51 of the PC 50A sequentially records the data of the associated blood vessel image and the data of the position information and the speed information of the blood vessel endoscope in the storage 55 for each position information of the different blood vessel endoscope 100.
  • FIG. 8 is a flowchart showing an example of the operation procedure of the blood vessel endoscopy system 5A according to the second embodiment.
  • the same process as that shown in FIG. 2 is given the same step number to simplify or omit the description, and different contents will be described.
  • the blood vessel endoscopy system 5A is started (S1).
  • the auto pullback device 80, the repeater 20A, the vascular endoscope 100, and the image console 90 each start operating.
  • the user sets the start position and the end position of the measurement for pulling back the vascular endoscope 100 inserted into the blood vessel for the auto pullback device 80.
  • the auto pullback device 80 measures the position information and the velocity information measured when the inside of the blood vessel is imaged by the blood vessel endoscope 100 while pulling back the blood vessel endoscope 100 within the range (measurement length) of the start position and the end position of the measurement. (S11).
  • the auto pullback device 80 outputs position information and speed information data to the image console 90 (S12A).
  • the processor 51 of the PC 50A adds a time stamp to the data of the position information and the speed information of the blood vessel endoscope 100. This time stamp indicates, for example, the time when the processor 51 stores the data received from the auto pullback device 80 in the storage 55.
  • the blood vessel endoscope 100 acquires the data of the blood vessel image captured by the blood vessel endoscope camera 10 (S21).
  • the blood vessel endoscope 100 outputs the blood vessel image data to the repeater 20 (S22).
  • the repeater 20 inputs blood vessel image data from the blood vessel endoscope 100 (S31).
  • the repeater 20 transmits the blood vessel image data to the image console 90 (S34A).
  • the camera control unit 30 receives the blood vessel image data (S41A).
  • the processor 51 of the PC 50A adds a time stamp to the blood vessel image data received by the camera control unit 30. As described above, this time stamp indicates, for example, the time when the processor 51 stores the data received from the camera control unit 30 in the storage 55.
  • the PC50A associates the blood vessel image data with the position information and velocity information data of the blood vessel endoscope 100 based on the time stamps of both. This association is performed, for example, by including the identification information of the other data file in the metadata of one data file.
  • the PC 50A stores the associated blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 in the storage 55.
  • the PC50A creates a constant velocity moving image based on the associated blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 (S42A). The creation of the constant velocity moving image is the same as that of the first embodiment.
  • the PC50A calculates the blood vessel diameter using two blood vessel images constituting the constant velocity moving image (S43). Further, the PC 50A separates the associated blood vessel image data and the position information and speed information data of the blood vessel endoscope 100 in order to separately display the blood vessel image and the position information and speed information of the blood vessel endoscope 100. (S44). The calculation of the blood vessel diameter is the same as in the first embodiment. After that, the PC 50A displays the blood vessel image, the position information and the velocity information, and the blood vessel diameter on the monitor 70 (S45). This display mode is the same as that of the first embodiment.
  • the PC 50A associates the blood vessel image data with the position information and speed information data of the blood vessel endoscope 100 by software processing. Therefore, the repeater 20A only needs to transfer the blood vessel image data acquired from the blood vessel endoscope 100 to the image console 90, the configuration of the repeater 20A can be simplified, and the hardware such as electronic components can be reduced.
  • the vascular endoscope 100 can image the blood vessel of the subject by inserting the tip side into the blood vessel of the subject and pulling the proximal end side by the auto pullback device 80 at a constant speed.
  • An vascular endoscopic camera 10 (an example of an image sensor) is mounted on the tip side.
  • the PC 50A inputs and associates the data of the blood vessel image captured by the blood vessel endoscope 100 with the data of the position information and the speed information of the blood vessel endoscope 100 sent from the auto pullback device 80 and stores them in the storage 55. ..
  • the PC50A generates a constant velocity moving image of the blood vessel image based on the difference between the input timing of the blood vessel image data stored in the storage 55 and the input timing of the position information and the speed information data of the blood vessel endoscope 100, and the like.
  • the blood vessel diameter is measured based on a plurality of blood vessel images constituting a rapid moving image.
  • the blood vessel endoscopy system 5A uses the image captured by the blood vessel endoscope without interrupting the smooth progress of medical practice by a user such as a doctor, and has a blood vessel diameter which is an observation site of a subject such as a patient. Can be measured with high accuracy. Therefore, the vascular endoscopy system 5A can assist in the selection of a stent of appropriate diameter to be inserted into the subject.
  • the PC50A associates the blood vessel image data with the endoscopic position information and velocity information data, the repeater can be easily configured.
  • the PC50A superimposes the measurement result of the blood vessel diameter of the blood vessel, the indicator i1 indicating the blood vessel diameter, and the numerical value (that is, the numerical value of the blood vessel diameter) on the blood vessel image GZ1 and displays it on the monitor 70.
  • a user such as a doctor can visually grasp the blood vessel diameter in an easy-to-understand manner.
  • the PC50A generates a blood vessel image GZ6 (an example of a long axis cross section image) of a long axis cross section of a blood vessel by using a plurality of input blood vessel images GZ5 of a short axis cross section, and together with a blood vessel image GZ5 of the short axis cross section. It is displayed on the monitor 70 in association with the blood vessel image GZ6 having a long-axis cross section.
  • This allows the user to grasp the blood vessel diameter along the long axis direction of the blood vessel. Therefore, the user can grasp the diameter of the blood vessel even when the blood vessel is distorted in the long axis direction, and can select an appropriate stent in consideration of the distortion in the long axis direction of the blood vessel.
  • the PC 50A calculates the measurement length of the blood vessel based on the data of the position information and the speed information of the blood vessel endoscope 100 sequentially input from the auto pullback device 80, and sets an indicator i2 indicating the calculation result of the measurement length as the numerical value. It is also superimposed and displayed on the blood vessel image GZ6 of the long axis cross section. This allows the user to visually and accurately grasp the length of the observation site, for example, the stenosis of the blood vessel.
  • the PC50A selects two blood vessel images corresponding to the position information of the angioscope 100 from a plurality of blood vessel images constituting the constant velocity moving image, and for each of these two blood vessel images.
  • the disappearance points are estimated from the movement directions of the plurality of feature points arranged in a circular shape, and the disappearance points based on the movement of the angioscope 100 by the auto pullback device 80 are selected from the plurality of feature points.
  • the effective feature points having a vector in the direction are extracted, the three-dimensional coordinates of the effective feature points are calculated using the movement change amount of the effective feature points corresponding to the movement distance of the angioscope 100, and 3 of the effective feature points are calculated.
  • the diameter of the blood vessel is calculated based on the three-dimensional coordinates.
  • the PC 50A selects a plurality of blood vessel images having different position information of the blood vessel endoscope 100 and the same velocity information from a plurality of blood vessel images stored in the storage 55, and a plurality of selected blood vessel images.
  • the blood vessel endoscopy system 5 can calculate the blood vessel diameter with high accuracy by using at least two blood vessel images having the same velocity information, which constitute a constant velocity moving image.
  • the user can accurately grasp the blood vessel diameter along the long axis direction of the blood vessel, and the stent to be inserted into the blood vessel. The diameter of can be selected appropriately.
  • the PCs 50 and 50A create a constant velocity moving image based on the combined data (that is, the data in which the blood vessel image and the position information and the speed information of the blood vessel endoscope 100 are combined), and the like.
  • the blood vessel diameter in the blood vessel which is the observation site of the subject, was calculated using the data of at least two blood vessel images constituting the rapid moving image.
  • the PCs 50 and 50A require data of at least two blood vessel images constituting a constant velocity moving image in order to calculate the blood vessel diameter in the blood vessel.
  • the PC for example, PC50
  • the combined data that is, the data in which the blood vessel image and the position information and the velocity information of the blood vessel endoscope 100 are combined.
  • AI artificial intelligence
  • the configuration of the vascular endoscopy system according to the third embodiment is the same as that of the vascular endoscopy system 5 according to the first embodiment. Therefore, in the description of the configuration of the vascular endoscopy system 5 according to the third embodiment, the same reference numerals are given to the same configurations as the configuration of the vascular endoscopy system 5 according to the first embodiment. It will be simplified or omitted, and different contents will be explained.
  • the configuration of the vascular endoscopy system 5 according to the third embodiment may be the same as that of the vascular endoscopy system 5A according to the second embodiment.
  • the vascular endoscopy system 5 In the vascular endoscopy system 5 according to the third embodiment, information on the width direction size (in other words, thickness) of the guide wire 150 inserted into the subject is previously stored in the memory 52 or the storage 55 of the PC 50. It has been saved (so-called preset).
  • the size of the guide wire 150 is, for example, 0.36 mm (0.14 inch). Since the size of the guide wire 150 differs depending on the type of guide wire, it does not have to be a fixed value. For example, the size of the guide wire 150 can be arbitrarily set by user operation according to the type of guide wire used. The same applies to the first and second embodiments described above.
  • the PC 50 can flexibly adjust the size of the guide wire according to the type of guide wire used in surgery, examination, or the like, and can support the calculation of an appropriate blood vessel diameter.
  • the PC 50 is formed (constructed) through a predetermined learning process before calculating the blood vessel diameter in an actual (that is, raw) blood vessel image imaged by the blood vessel endoscope 100 using the blood vessel endoscopy system 5.
  • the trained learning model may be stored in the memory 52 or the storage 55.
  • the predetermined learning process may be executed by the PC 50 or by an external device (not shown). When the learning process is executed by the external device, the learning model created as a result of the learning process from the external device is input to the PC 50 and stored in the memory 52 or the storage 55.
  • the PC 50 forms an AI (for example, a neural network) based on a learning model stored in the memory 52 or the storage 55, and the AI intersects the inner wall of the blood vessel which is shown to be in focus in the blood vessel image or the pseudo blood vessel image.
  • AI for example, a neural network
  • a reference point indicating a position in the vicinity of the (overlapping) guide wire 150 and a plurality of detection points (see below) capable of forming the same shape as the shape of the blood vessel (for example, a circular shape) including the reference point.
  • the pseudo blood vessel image is not an actual blood vessel image, but is an image in which at least the same subject (that is, blood vessel) as the blood vessel image is arranged and can be regarded as an image substantially equivalent to the actual blood vessel image.
  • the learning process shows a learning process for being able to estimate (detect) each of the reference point and the detection point in each blood vessel image or pseudo blood vessel image by using a plurality of blood vessel images or pseudo blood vessel images.
  • the PC 50 does not necessarily have to use the AI described above when specifying the reference point and the detection point described above.
  • the PC 50 performs predetermined image processing (for example, the same as the shape of a blood vessel) on one blood vessel image whose blood vessel diameter is a target in the blood vessel image input from the repeater 20 and stored in the memory 52 or the storage 55.
  • a reference point and a detection point may be specified by performing a search for a plurality of feature points constituting the shape (see FIG. 11).
  • the PC 50 is a blood vessel of a subject based on the size of the guide wire 150 in the width direction and one blood vessel image corresponding to the position information and the velocity information of the blood vessel endoscope 100 stored in the memory 52 or the storage 55. Calculate the blood vessel diameter of. The detailed operation procedure for calculating the blood vessel diameter will be described later.
  • FIG. 9 is a flowchart showing an example of the operation procedure of the vascular endoscopy system 5 according to the third embodiment.
  • the same step number is assigned to simplify or omit the description, and different contents will be described.
  • the camera control unit 30 receives the combined data generated by the repeater 20 (that is, the combined data of the blood vessel image and the position information and the speed information of the blood vessel endoscope 100). (S41).
  • the PC 50 stores this combined data in the storage 55.
  • the PC 50 reads out information on the size of the guide wire 150 in the width direction stored in the memory 52 or the storage 55 (S42B).
  • the PC 50 has information on the size of the guide wire 150 read in step S42B in the width direction and one blood vessel image (that is, position information of the blood vessel endoscope 100) included in the combined data received in step S41.
  • the blood vessel diameter of the blood vessel of the subject is calculated based on (one blood vessel image corresponding to the velocity information) (S43B). Details of step S43B will be described in detail with reference to FIGS. 10 to 17.
  • the PC 50 separates the combined blood vessel image and the position information and speed information data of the blood vessel endoscope 100 in order to display the blood vessel image and the position information and speed information of the blood vessel endoscope 100 separately (S44). ).
  • the PC 50 displays the blood vessel image, the position information and velocity information of the blood vessel endoscope 100, and the blood vessel diameter on the monitor 70 (S45).
  • the position information and the speed information may be displayed at the same time or may be displayed individually.
  • the PC 50 may calculate the blood vessel diameter by using any of the four calculation processes.
  • FIGS. 12 to 17 the same elements as those of FIGS. 10 or 11 are given the same reference numerals to simplify or omit the description, and different contents will be described.
  • FIG. 10 is a diagram showing a schematic example of the first calculation process of the blood vessel diameter according to the third embodiment.
  • FIG. 11 is a flowchart showing an example of an operation procedure of the first calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 11 is executed each time a single blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
  • a single blood vessel image so-called frame
  • FIG. 10 shows the blood vessel image IMG1 of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100. Since the guide wire 150 is inserted into the subject in the a direction, the guide wire 150 is also reflected in the blood vessel image IMG1.
  • the size G1 (in other words, the thickness) of the guide wire 150 in the width direction is, for example, 0.36 mm (0.14 inch). That is, since the blood vessel image IMG1 is imaged so as to focus on the inner wall of the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG1 which is the subject, the inner wall of the blood vessel VSL1 in focus (simply “inner wall of blood vessel”".
  • the length of the line segment WD1 straddling the guide wire 150 on the blood vessel image IMG1 from the position where the guide wire 150 intersects (overlaps) (reference point W1) is 0.36 mm (0.14 inch).
  • the processor 51 of the PC 50 acquires the actual (that is, raw) blood vessel image IMG1 imaged by the blood vessel endoscope 100, it is in the vicinity of the guide wire 150 in the blood vessel image IMG1 and in the blood vessel image IMG1.
  • the reference point W1 corresponding to the inner wall of the blood vessel that is in focus is determined and positioned (S61).
  • the processor 51 of the PC50 has a plurality of detection points W2, W3, W4, W5, which are estimated to form the same shape (that is, a circular shape) as the shape of the blood vessel VSL1 including the reference point W1 by AI based on the above-mentioned learning model.
  • W6, W7, and W8 are specified and positioned (S62).
  • each of the reference point W1 and the plurality of detection points W2 to W8 constitutes an in-focus blood vessel inner wall in the blood vessel image IMG1 and is arranged at equal intervals.
  • the processor 51 of the PC 50 fits the shape FT1 (for example, a shape imitating the shape of the inner wall of the blood vessel in focus in the blood vessel image IMG1) including all of the reference point W1 and the plurality of detection points W2 to W8 (S63).
  • shape fitting a so-called known fitting process such as an elliptical fitting or a plaque type fitting may be executed.
  • the processor 51 of the PC 50 has the same size G1 of the guide wire 150 in focus in the blood vessel image IMG 1 and the distance from the blood vessel endoscopy camera 10 (in other words, the shape FT1 fitted in step S63 (in other words, the shape FT1 fitted in step S63).
  • the blood vessel diameter Dm is calculated based on the length from the reference point W1 (existing on the circular shape) to the adjacent detection point (for example, the detection point W2) (S64).
  • the processor 51 of the PC 50 utilizes the fact that the length of the line segment WD1 from the reference point W1 in the blood vessel image IMG1 is the size G1 (in other words, the thickness) in the width direction of the guide wire 150. , The length of the arc from the reference point W1 to the detection point W2 in the blood vessel image IMG1 is calculated. Further, the processor 51 of the PC 50 calculates the circumference length of the fitting shape (that is, the shape FT1 indicating a circle) in step S63 by using the calculation result of the arc length from the reference point W1 to the detection point W2. The blood vessel diameter Dm (that is, the length from the detection point W2 to the detection point W6) is calculated by dividing the calculated circumference length by the circumference ratio ⁇ .
  • FIG. 12 is a diagram showing a schematic example of the second calculation process of the blood vessel diameter according to the third embodiment.
  • FIG. 13 is a flowchart showing an example of an operation procedure of the second calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 13 is executed every time one blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
  • the blood vessel image IMG2 of FIG. 12 may be a blood vessel image of an actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100, or a blood vessel image prepared in advance for the above-mentioned learning process. It may be a pseudo blood vessel image. Further, when the blood vessel image IMG2 is a pseudo blood vessel image, the guide wire 150 is arranged so as to be reflected in the blood vessel image IMG2 on the assumption that the guide wire 150 is inserted in the subject in the a direction. ..
  • the size G1 (in other words, the thickness) of the guide wire 150 in the width direction is, for example, 0.36 mm (0.14 inch).
  • the reference point W9 is a portion of the inner wall of the blood vessel that is in focus in the blood vessel image IMG2, and indicates an arbitrary position of the guide wire 150 or its vicinity.
  • the processor 51 of the PC 50 uses a plurality of blood vessel images IMG2 (which may be a pseudo blood vessel image) for AI (for example, monocular estimation by known supervised learning or automatic learning monocular estimation), and the reference point W9.
  • a learning model for positioning is formed by a learning process (S60). The process of step S60 may be executed by an external device different from the PC 50, and the learning model obtained by the learning process may be input to the PC 50 and stored in the storage 55.
  • the processor 51 of the PC 50 is the blood vessel of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100 by the AI based on the learning model formed through the learning process of step S60A.
  • a reference point W9 corresponding to the inner wall of the blood vessel that is in the vicinity of the guide wire 150 in the image and is in focus in the blood vessel image is determined and positioned (S61A). Since the processing after step S61A is the same as that in FIG. 12, the description thereof will be omitted.
  • FIG. 14 is a diagram showing a schematic example of a third calculation process of the blood vessel diameter according to the third embodiment.
  • FIG. 15 is a flowchart showing an example of an operation procedure of the third calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 15 is executed each time a single blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
  • a single blood vessel image so-called frame
  • the blood vessel image IMG3 of FIG. 14 may be a blood vessel image or a pseudo blood vessel image prepared in advance for the above-mentioned learning process. Further, when the blood vessel image IMG3 is a pseudo blood vessel image, the guide wire 150 is arranged so as to be reflected in the blood vessel image IMG2 on the assumption that the guide wire 150 is inserted in the subject in the a direction. .. Further, in the blood vessel image IMG3, scales SCL1 (that is, a ruler) having scales at equal intervals are arranged symmetrically with the guide wire 150.
  • the size G1 (in other words, the thickness) of the guide wire 150 in the width direction is, for example, 0.36 mm (0.14 inch).
  • the blood vessel image IMG3 is imaged so as to focus on the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG3, which is the subject, the line segment WD1 in which the inner wall of the blood vessel in focus and the guide wire 150 overlap.
  • the length on the blood vessel image IMG3 is 0.36 mm (0.14 inch).
  • the reference point W10 is a portion of the blood vessel inner wall that is in focus in the blood vessel image IMG3, and indicates a position where the blood vessel inner wall and the scale SCL1 intersect (overlap).
  • the position of the inner wall of the blood vessel in focus (for example, the position of the reference point W10) and the value of the scale from the starting point B1 of the scale SCL1 are stored in association with each other for each blood vessel image IMG3. Further, similarly to the reference point W1 in FIG. 11, an arbitrary position on the inner wall of the blood vessel in focus in the blood vessel image IMG3 and at or near the guide wire 150 may be used as the reference point W11.
  • the processor 51 of the PC 50 determines the position of the inner wall of the blood vessel in focus in the blood vessel image IMG3 (that is, in focus in the blood vessel image IMG3) for each blood vessel image IMG3 described with reference to FIG.
  • the reference is performed by performing learning processing using the association between the part of the inner wall of the blood vessel and the position where the inner wall of the blood vessel and the scale SCL1 intersect (overlap) and the value of the scale from the starting point B1 of the scale SCL1.
  • a learning model for positioning the point W10 is formed (S60B).
  • the process of step S60B may be executed by an external device different from the PC 50, and the learning model obtained by the learning process may be input to the PC 50 and stored in the storage 55.
  • the processor 51 of the PC 50 is a blood vessel of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100 by the AI based on the learning model formed through the learning process of step S60B.
  • a reference point W10 corresponding to the in-focus blood vessel inner wall in the image, or a reference point W11 corresponding to the blood vessel inner wall in the vicinity of the guide wire 150 in the blood vessel image and in focus in the blood vessel image is determined.
  • Positioning (S61B) Since the processing after step S61B is the same as that in FIG. 12, the description thereof will be omitted.
  • FIG. 16 is a diagram showing a schematic example of the fourth calculation process of the blood vessel diameter according to the third embodiment.
  • FIG. 17 is a flowchart showing an example of an operation procedure of the fourth calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 17 is executed each time a single blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
  • a single blood vessel image so-called frame
  • the blood vessel image IMG4 of FIG. 16 may be a blood vessel image of an actual (that is, raw) blood vessel VSL1 in the subject taken by the blood vessel endoscope 100, or a blood vessel image prepared in advance for the above-mentioned learning process. Alternatively, it may be a pseudo blood vessel image. Further, when the blood vessel image IMG4 is a pseudo blood vessel image, the guide wire 150A is arranged so as to be reflected in the blood vessel image IMG4 on the assumption that the guide wire 150A is inserted in the subject in the a direction. .. The guide wire 150A is graduated at equal intervals, for example, at arbitrary values of 0.01 mm to 1 mm.
  • the size G1 (in other words, the thickness) of the guide wire 150A in the width direction is, for example, 0.36 mm (0.14 inch). That is, since the blood vessel image IMG4 is imaged so as to focus on the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG4, which is the subject, the line segment WD1 in which the inner wall of the blood vessel in focus and the guide wire 150 overlap. The length on the blood vessel image IMG4 is 0.36 mm (0.14 inch).
  • the reference point W12 is a portion of the inner wall of the blood vessel that is in focus in the blood vessel image IMG4, and indicates a position in the vicinity of the guide wire 150A.
  • the value of the scale from the starting point of 150A is stored in association with the value of the scale.
  • the processor 51 of the PC 50 determines the position of the inner wall of the blood vessel in focus in the blood vessel image IMG 4 (that is, in focus in the blood vessel image IMG 4) for each blood vessel image IMG 4 described with reference to FIG.
  • Learning process using the association between the part of the inner wall of the blood vessel and the position where the inner wall of the blood vessel and the guide wire 150A intersect (overlap) and the value of the scale from the starting point of the guide wire 150A (see FIG. 15).
  • a learning model for positioning the reference point W12 S60C.
  • the process of step S60C may be executed by an external device different from the PC 50, and the learning model obtained by the learning process may be input to the PC 50 and stored in the storage 55.
  • the processor 51 of the PC 50 is a blood vessel of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100 by the AI based on the learning model formed through the learning process of step S60C.
  • a reference point W12 corresponding to the in-focus blood vessel inner wall in the image is determined and positioned (S61C).
  • the processor 51 of the PC 50 sets the scale from the size G1 of the in-focus guide wire 150 or the starting point (see FIG. 15) of the guide wire 150A in the blood vessel image captured by the blood vessel endoscope 100.
  • the value (scale interval) and the distance from the blood vessel endoscopy camera 10 are the same (in other words, they exist on the shape FT1 (for example, a circular shape) fitted in step S63).
  • the blood vessel diameter Dm is calculated based on the length up to (for example, detection point W2) (S64C).
  • the blood vessel endoscope 100 is inserted into the blood vessel of the subject into which the guide wire 150 is inserted in advance, and the driving device (for example, the auto pullback device 80) is inserted. It is possible to image the blood vessel of the subject while being pulled through.
  • the repeater 20 inputs the blood vessel image captured by the blood vessel endoscope 100 and the position information and speed information of the blood vessel endoscope 100 (specifically, the blood vessel endoscope camera 10) sent from the driving device. And combine.
  • the PC 50 associates the blood vessel image sent from the repeater 20 with the position information and speed information of the blood vessel endoscope 100 and stores them in the memory 52 or the storage 55, and the guide wire 150 stored in the memory 52 or the storage 55.
  • the blood vessel diameter of the blood vessel is calculated based on the size G1 in the width direction and one blood vessel image (for example, blood vessel image IMG1) corresponding to the position information and the speed information of the blood vessel endoscope 100.
  • the blood vessel endoscopy system 5 uses the image captured by the blood vessel endoscope without interrupting the smooth progress of medical practice by a user such as a doctor, and the blood vessel, which is an observation site of a subject such as a patient, is used.
  • the blood vessel diameter can be measured simply and with high accuracy using a single blood vessel image. Therefore, the vascular endoscopy system 5 can assist a user such as a doctor in selecting a stent having an appropriate diameter to be inserted into a subject.
  • the repeater 20 combines the blood vessel image data with the position information and speed information data of the blood vessel endoscope 100, the PC 50 acquires the position information at the timing synchronized (matched) with the blood vessel image data acquisition. And, using the data of the speed information, the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated simply and with high accuracy by using one blood vessel image.
  • the size G1 in the width direction of the guide wire 150 is a value that can be changed according to the user operation. This makes it possible to flexibly calculate the blood vessel diameter according to the type of guide wire used during surgery or examination.
  • the PC 50 has a reference point W1 indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire 150 in one blood vessel image, and a plurality of detection points indicating a position capable of forming the same shape as the shape of the blood vessel including the reference point W1.
  • W2 to W8 are specified, and the shape of the blood vessel including the reference point W1 and the plurality of detection points W2 to W8 is fitted.
  • the PC 50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W1 to any detection point, and the size G1 in the width direction of the guide wire 150.
  • the blood vessel endoscopy system 5 utilizes the size G1 (in other words, the thickness) in the width direction of the guide wire 150 inserted into the subject, and the blood vessel diameter of the blood vessel which is the observation site of the subject. Can be calculated simply and with high accuracy.
  • the PC 50 stores a learning model capable of detecting a reference point W9 indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire 150 in the blood vessel image in which the guide wire 150 inserted into the subject is reflected through the learning process. Save in storage 55.
  • the PC50 has a reference point W9 in one blood vessel image and a plurality of detection points W2 to indicate positions capable of forming the same shape as the shape of the blood vessel including the reference point W9 by AI (artificial intelligence) based on the learning model.
  • W8 is identified and the shape of the blood vessel including the reference point W9 and the plurality of detection points W2 to W8 is fitted.
  • the PC 50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W9 to any detection point, and the size G1 in the width direction of the guide wire 150.
  • the blood vessel endoscopy system 5 can easily and accurately position the reference point W9 in the blood vessel image by using the AI for positioning the reference point already formed by the learning process, and the inside of the subject can be positioned.
  • the size G1 in other words, the thickness
  • the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated simply and with high accuracy.
  • the PC 50 is a reference point indicating the position of the inner wall of the blood vessel in the vicinity of the scale SCL1 in the blood vessel image in which the guide wire 150 inserted into the subject and the scale SCL1 having graduations at equal intervals are shown after the learning process.
  • a learning model capable of detecting W10 is stored in the memory 52 or the storage 55.
  • the PC50 is a position capable of forming the same shape as the reference point W10 or the reference point W11 in one blood vessel image and the shape of the blood vessel including the reference point W10 or the reference point W11 by AI (artificial intelligence) based on the learning model.
  • a plurality of detection points W2 to W8 indicating the above are specified, and the shape of the blood vessel including the reference point W10 or the reference point W11 and the plurality of detection points W2 to W8 is fitted.
  • the PC 50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W10 or the reference point W11 to any detection point, and the size G1 in the width direction of the guide wire 150.
  • the blood vessel endoscopy system 5 can easily and accurately position the reference point W10 or the reference point W11 in the blood vessel image by using the AI for positioning the reference point already formed by the learning process.
  • the size G1 in other words, the thickness
  • the PC 50 is a reference point indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire 150A in the blood vessel image in which the guide wire 150A is inserted into the subject and has scales at equal intervals in the width direction after the learning process.
  • a learning model capable of detecting W12 is stored in the memory 52 or the storage 55.
  • the PC50 has a plurality of detection points W2 to indicate a reference point W12 in one blood vessel image and a position capable of forming the same shape as the shape of the blood vessel including the reference point W12 by AI (artificial intelligence) based on a learning model.
  • W8 is identified and the shape of the blood vessel including the reference point W12 and the plurality of detection points W2 to W8 is fitted.
  • the PC50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W12 to any detection point, and the size G1 in the width direction of the guide wire 150A.
  • the blood vessel endoscopy system 5 can easily and accurately position the reference point W12 in the blood vessel image by using the AI for positioning the reference point already formed by the learning process, and the inside of the subject can be positioned.
  • the blood vessel diameter of the blood vessel can be calculated simply and with high accuracy.
  • the PC 50 superimposes the measurement result of the blood vessel diameter of the blood vessel on the blood vessel image GZ5 and displays it on the monitor 70 (see FIG. 6). As a result, a user such as a doctor can visually grasp the blood vessel diameter in an easy-to-understand manner.
  • the constant velocity moving image is a moving image formed by sequentially selecting a plurality of blood vessel images having different imaging positions in chronological order, but the plurality of blood vessel images have a time axis. It may be selected at equal intervals above or at unequal intervals.
  • the blood vessel diameter of the observation site of a subject such as a patient is measured with high accuracy by using an image taken by an angioscope without interrupting the smooth progress of medical practice by a user such as a doctor. It is useful as an endoscopic system and a method for measuring blood vessel diameter.

Abstract

This vascular endoscopic system comprises: an endoscope which has a distal end side inserted into the blood vessel of a subject and a proximal end side pulled by a driving apparatus and which captures an image of the blood vessel of the subject; a repeater which receives and combines a blood vessel image captured by the endoscope and the position information and velocity information on the endoscope sent from the driving apparatus; and a calculation device which stores, in a memory, the blood vessel image and the position information and velocity information sent from the repeater in association with each other, generates a constant-velocity moving image of the blood vessel image by using the blood vessel image and the position information and velocity information on the endoscope stored in the memory, and calculates the blood vessel diameter of the blood vessel on the basis of a plurality of blood vessel images constituting the constant-velocity moving image.

Description

血管内視鏡システムおよび血管径測定方法Vascular endoscopy system and method of measuring blood vessel diameter
 本開示は、血管内視鏡システムおよび血管径測定方法に関する。 The present disclosure relates to a blood vessel endoscopy system and a method for measuring blood vessel diameter.
 特許文献1には、最適なステントの決定を迅速かつ容易にし、決定したステントの妥当性を治癒前に容易に確認可能であり、一方で診断日時の異なる血管画像を高精度で比較する画像解析装置が開示されている。この画像解析装置は、血管内画像撮像装置から出力される血管の短軸断面画像を保存し、保存された複数の短軸断面画像から血管の長軸断面画像を生成する。また、画像解析装置は、保存された短軸断面画像から、少なくとも血管の内腔の外周に沿った内腔閉曲線を生成し、この生成された内腔閉曲線から血管に挿入しようとするステントの径を算出する。 In Patent Document 1, it is possible to quickly and easily determine the optimum stent, and the validity of the determined stent can be easily confirmed before healing, while image analysis for comparing blood vessel images with different diagnosis dates and times with high accuracy. The device is disclosed. This image analysis device stores a short-axis cross-sectional image of a blood vessel output from an intravascular image imaging device, and generates a long-axis cross-sectional image of a blood vessel from a plurality of saved short-axis cross-sectional images. In addition, the image analyzer generates a lumen closure curve at least along the outer circumference of the blood vessel lumen from the stored short-axis cross-sectional image, and the diameter of the stent to be inserted into the blood vessel from this generated lumen closure curve. Is calculated.
日本国特開2009-240359号公報Japanese Patent Application Laid-Open No. 2009-240359
 しかし、特許文献1の構成では、ステント径を決定する上で医師等のユーザにより、表示部に表示されるそれぞれの短軸断面画像ごとに、短軸断面画像に映る内腔外周に沿って数多くの指定点の指定操作がなされることが前提となっている。このため、手術等の医療行為中に医師等のユーザが複数点の指定操作を行うことが求められるため、スムーズな医療行為の進行が困難となる可能性があり、ユーザビリティを向上する点で改善の余地があったと言える。 However, in the configuration of Patent Document 1, in determining the stent diameter, a large number of each short-axis cross-sectional image displayed on the display unit along the outer circumference of the lumen reflected in the short-axis cross-sectional image by a user such as a doctor. It is premised that the designated point of is specified. For this reason, a user such as a doctor is required to perform a plurality of designated operations during medical treatment such as surgery, which may make it difficult for the medical treatment to proceed smoothly, which is improved in terms of improving usability. It can be said that there was room for.
 本開示は、上述した従来の状況に鑑みて案出され、医師等のユーザによるスムーズな医療行為の進行を遮ることなく、血管内視鏡の撮像画像を利用して患者等の被検体の観察部位の血管径を高精度に測定する血管内視鏡システムおよび血管径測定方法を提供することを目的とする。 This disclosure was devised in view of the above-mentioned conventional situation, and observation of a subject such as a patient using an image taken by an angioscope without interrupting the smooth progress of medical practice by a user such as a doctor. It is an object of the present invention to provide a blood vessel endoscopy system and a blood vessel diameter measuring method for measuring a blood vessel diameter at a site with high accuracy.
 本開示は、先端側が被検体の血管内に挿入されかつ基端側が駆動機器により自動モードにより一定速度で引かれる、もしくはマニュアルモードにより手動にて可変速度にて引かれる、前記被検体の血管を撮像可能な内視鏡と、前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して結合する中継器と、前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、前記メモリに保存された前記血管画像と前記内視鏡の位置情報および速度情報とを用いて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を算出する演算装置と、を備える、血管内視鏡システムを提供する。 The present disclosure describes a blood vessel of a subject whose distal end is inserted into the blood vessel of the subject and whose proximal side is pulled by a drive device at a constant speed in an automatic mode or manually in a manual mode at a variable speed. From the endoscope that can be imaged, a repeater that inputs and combines the blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the drive device, and the repeater. The transmitted blood vessel image is associated with the position information and speed information of the endoscope and stored in a memory, and the blood vessel image stored in the memory and the position information and speed information of the endoscope are used. Provided is a blood vessel endoscopy system including a calculation device that generates a constant velocity moving image of the blood vessel image and calculates the blood vessel diameter of the blood vessel based on a plurality of blood vessel images constituting the constant velocity moving image.
 また、本開示は、先端側が被検体の血管内に挿入されかつ基端側が駆動機器により自動モードにより一定速度で引かれる、もしくはマニュアルモードにより手動にて可変速度にて引かれる、前記被検体の血管を撮像可能な内視鏡と、前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して対応付けてメモリに保存し、前記メモリに保存された前記血管画像の入力タイミングと前記内視鏡の位置情報および速度情報の入力タイミングとの差分に基づいて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を測定する演算装置と、を備える、血管内視鏡システムを提供する。 Further, in the present disclosure, the distal end side is inserted into the blood vessel of the subject and the proximal end side is pulled at a constant speed by an automatic mode by a driving device, or manually pulled at a variable speed by a manual mode. An endoscope capable of capturing a blood vessel, a blood vessel image captured by the endoscope, and position information and speed information of the endoscope sent from the driving device are input, associated with each other, and stored in a memory. A constant velocity moving image of the blood vessel image is generated based on the difference between the input timing of the blood vessel image stored in the memory and the input timing of the position information and the velocity information of the endoscope, and the constant velocity moving image is configured. Provided is a blood vessel endoscopy system including an arithmetic device for measuring the blood vessel diameter of the blood vessel based on a plurality of blood vessel images.
 また、本開示は、血管内視鏡システムにより実行される血管径測定方法であって、先端側が被検体の血管内に挿入されかつ基端側が駆動機器により自動モードにより一定速度で引かれる、もしくはマニュアルモードにより手動にて可変速度にて引かれる、前記被検体の血管を撮像可能な内視鏡により前記血管を撮像し、前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを中継器により入力して結合し、前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、前記メモリに保存された前記血管画像と前記内視鏡の位置情報および速度情報とを用いて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を算出する、血管径測定方法を提供する。 Further, the present disclosure is a blood vessel diameter measuring method performed by a blood vessel endoscopy system, in which the distal end side is inserted into the blood vessel of a subject and the proximal end side is pulled by a driving device at a constant speed in an automatic mode. The blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject, which is manually pulled at a variable speed in the manual mode, and the blood vessel image captured by the endoscope and the blood vessel image sent from the driving device are sent. The position information and speed information of the endoscope are input by the repeater and combined, and the blood vessel image sent from the repeater is associated with the position information and speed information of the endoscope and stored in the memory. A constant velocity moving image of the blood vessel image is generated using the blood vessel image stored in the memory and the position information and velocity information of the endoscope, and based on a plurality of blood vessel images constituting the constant velocity moving image. Provided is a blood vessel diameter measuring method for calculating a blood vessel diameter of the blood vessel.
 また、本開示は、血管内視鏡血管内視鏡システムにより実行される血管径測定方法であって、先端側が被検体の血管内に挿入されかつ基端側が駆動機器により自動モードにより一定速度で引かれる、もしくはマニュアルモードにより手動にて可変速度にて引かれる、前記被検体の血管を撮像可能な内視鏡により前記血管を撮像し、前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して対応付けてメモリに保存し、前記メモリに保存された前記血管画像の入力タイミングと前記内視鏡の位置情報および速度情報の入力タイミングとの差分に基づいて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を測定する、血管径測定方法を提供する。 Further, the present disclosure is a blood vessel diameter measuring method performed by a blood vessel endoscopy system, in which the distal end side is inserted into the blood vessel of a subject and the proximal end side is driven by a driving device at a constant speed in an automatic mode. The blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject, which is pulled or manually pulled at a variable speed in a manual mode, and the blood vessel image captured by the endoscope and the driving device are used. The position information and speed information of the endoscope sent from the endoscope are input and associated with each other and stored in the memory, and the input timing of the blood vessel image saved in the memory and the position information and speed information of the endoscope are recorded. Provided is a blood vessel diameter measuring method for generating a constant velocity moving image of the blood vessel image based on a difference from an input timing and measuring the blood vessel diameter of the blood vessel based on a plurality of blood vessel images constituting the constant velocity moving image. ..
 また、本開示は、ガイドワイヤが予め挿通された被検体の血管内に挿入され、駆動機器を介して引かれながら前記被検体の血管を撮像可能な内視鏡と、前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して結合する中継器と、前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、前記メモリに保存された前記ガイドワイヤの幅方向のサイズと前記内視鏡の位置情報および速度情報に対応する1枚の血管画像とに基づいて、前記血管の血管径を算出する演算装置と、を備える、血管内視鏡システムを提供する。 Further, in the present disclosure, an endoscope capable of imaging the blood vessel of the subject while the guide wire is inserted into the blood vessel of the subject inserted in advance and pulled through a driving device, and the endoscope are used for imaging. A repeater that inputs and combines the blood vessel image and the position information and speed information of the endoscope sent from the drive device, the blood vessel image sent from the repeater, the position information of the endoscope, and the position information of the endoscope. The speed information is associated with the memory and stored in the memory, and based on the size of the guide wire in the width direction stored in the memory and a single blood vessel image corresponding to the position information and the speed information of the endoscope. Provided is a blood vessel endoscopy system including an arithmetic device for calculating the blood vessel diameter of the blood vessel.
 また、本開示は、血管内視鏡システムにより実行される血管径測定方法であって、ガイドワイヤが予め挿通された被検体の血管内に挿入され、駆動機器を介して引かれながら前記被検体の血管を撮像可能な内視鏡により前記血管を撮像し、前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを中継器により入力して結合し、前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、前記メモリに保存された前記ガイドワイヤの幅方向のサイズと前記内視鏡の位置情報および速度情報に対応する1枚の血管画像とに基づいて、前記血管の血管径を算出する、血管径測定方法を提供する。 Further, the present disclosure is a blood vessel diameter measuring method performed by a blood vessel endoscopy system, in which a guide wire is inserted into a blood vessel of a subject inserted in advance, and the subject is pulled through a driving device. The blood vessel is imaged by an endoscope capable of imaging the blood vessel of the blood vessel, and the blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device are input by a repeater. The blood vessel image sent from the repeater is associated with the position information and the speed information of the endoscope and stored in a memory, and the size of the guide wire stored in the memory in the width direction and the above. Provided is a blood vessel diameter measuring method for calculating the blood vessel diameter of the blood vessel based on one blood vessel image corresponding to the position information and the speed information of the endoscope.
 本開示によれば、医師等のユーザによるスムーズな医療行為の進行を遮ることなく、血管内視鏡の撮像画像を利用して患者等の被検体の観察部位の血管径を高精度に測定できる。 According to the present disclosure, it is possible to measure the blood vessel diameter of an observation site of a subject such as a patient with high accuracy by using an image taken by an angioscope without interrupting the smooth progress of medical practice by a user such as a doctor. ..
実施の形態1に係る血管内視鏡システムの構成例を示す図The figure which shows the structural example of the vascular endoscopy system which concerns on Embodiment 1. 実施の形態1に係る血管内視鏡システムの動作手順の一例を示すフローチャートFlow chart showing an example of the operation procedure of the vascular endoscopy system according to the first embodiment 図2のステップS43の血管径の算出処理の動作手順の一例を示すフローチャートA flowchart showing an example of the operation procedure of the blood vessel diameter calculation process in step S43 of FIG. 血管画像上における特徴点の配置、特徴点と対応点の位置関係、および3次元点を用いて推定された血管径を示す図A diagram showing the arrangement of feature points on a blood vessel image, the positional relationship between feature points and corresponding points, and the blood vessel diameter estimated using three-dimensional points. 3次元位置の算出例を説明する図The figure explaining the calculation example of the 3D position モニタに表示される画面例を示す図Diagram showing an example of a screen displayed on a monitor 実施の形態2に係る血管内視鏡システムの構成例を示す図The figure which shows the structural example of the vascular endoscopy system which concerns on Embodiment 2. 実施の形態2に係る血管内視鏡システムの動作手順の一例を示すフローチャートFlow chart showing an example of the operation procedure of the vascular endoscopy system according to the second embodiment 実施の形態3に係る血管内視鏡システムの動作手順の一例を示すフローチャートFlow chart showing an example of the operation procedure of the vascular endoscopy system according to the third embodiment 実施の形態3に係る血管径の第1の算出処理の概要例を示す図The figure which shows the outline example of the 1st calculation process of the blood vessel diameter which concerns on Embodiment 3. 図9のステップS43Bの血管径の第1の算出処理の動作手順の一例を示すフローチャートA flowchart showing an example of an operation procedure of the first calculation process of the blood vessel diameter in step S43B of FIG. 実施の形態3に係る血管径の第2の算出処理の概要例を示す図The figure which shows the outline example of the 2nd calculation process of the blood vessel diameter which concerns on Embodiment 3. 図9のステップS43Bの血管径の第2の算出処理の動作手順の一例を示すフローチャートA flowchart showing an example of an operation procedure of the second calculation process of the blood vessel diameter in step S43B of FIG. 実施の形態3に係る血管径の第3の算出処理の概要例を示す図The figure which shows the outline example of the 3rd calculation process of the blood vessel diameter which concerns on Embodiment 3. 図9のステップS43Bの血管径の第3の算出処理の動作手順の一例を示すフローチャートA flowchart showing an example of an operation procedure of the third calculation process of the blood vessel diameter in step S43B of FIG. 実施の形態3に係る血管径の第4の算出処理の概要例を示す図The figure which shows the outline example of the 4th calculation process of the blood vessel diameter which concerns on Embodiment 3. 図9のステップS43Bの血管径の第4の算出処理の動作手順の一例を示すフローチャートA flowchart showing an example of an operation procedure of the fourth calculation process of the blood vessel diameter in step S43B of FIG.
 以下、適宜図面を参照しながら、本開示に係る血管内視鏡システムおよび血管径測定方法を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments in which the blood vessel endoscopy system and the blood vessel diameter measurement method according to the present disclosure are specifically disclosed will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
 図1は、実施の形態1に係る血管内視鏡システム5の構成例を示す図である。血管内視鏡システム5は、人体等の被検体を対象とし、その被検体内の血管の血管径を測定する。血管内視鏡システム5は、血管内視鏡100と、オートプルバック装置80と、中継器20と、カメラコントロールユニット30と、PC50(Personal Computer)と、モニタ70と、を含む構成である。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration example of the blood vessel endoscopy system 5 according to the first embodiment. The vascular endoscopy system 5 targets a subject such as a human body and measures the diameter of blood vessels in the subject. The vascular endoscope system 5 includes a vascular endoscope 100, an auto pullback device 80, a repeater 20, a camera control unit 30, a PC 50 (Personal Computer), and a monitor 70.
(血管内視鏡システムの構成)
 内視鏡の一例としての血管内視鏡100は、カテーテル200の先端に血管内視鏡カメラ10が取り付けられた、手術時あるいは検査時に使用される専用の医療器具である。血管内視鏡100は、いわゆる血管内視鏡カテーテルと称されることがある。血管内視鏡100の外径は、例えば最大外径として1.8mmΦであるが、このサイズに限定されなくてよい。血管内視鏡100は、被検体内の観察部位(例えば血管)内に予め挿通されたガイドワイヤ150に沿って、被検体内の血管内を進退自在に挿通される。ここで、血管内視鏡カメラ10が被検体内の観察部位に向かって挿入される方向を進行方向と定義し、反対に血管内視鏡カメラ10が被検体外に向かって引き抜かれる方向を退避方向と定義する。したがって、進退自在とは、血管内視鏡カメラ10が被検体内に向かって挿入されることも引き抜かれることも可能であることを意味する。血管内視鏡カメラ10は、手術あるいは検査の対象部位(例えば患部)までに予め挿通されたガイドワイヤ150に案内されて観察対象の部位までスムーズに挿入可能である。血管内視鏡100は、通常のカテーテルの先端部に血管内視鏡カメラ10が交換自在に装着されたものでよい。カテーテル200は、例えば、体液の排出あるいは薬液の注入に用いられる医療用の管である。カテーテル200には、血管内視鏡カメラ10の他、バルーンもしくはステント等が交換自在に装着されてよい。
(Structure of angioscopy system)
The vascular endoscope 100 as an example of the endoscope is a dedicated medical device used at the time of surgery or examination, in which the vascular endoscope camera 10 is attached to the tip of the catheter 200. The vascular endoscope 100 is sometimes referred to as a so-called vascular endoscopic catheter. The outer diameter of the vascular endoscope 100 is, for example, 1.8 mmΦ as the maximum outer diameter, but the outer diameter is not limited to this size. The angioscope 100 is inserted in the blood vessel in the subject freely along a guide wire 150 inserted in advance in the observation site (for example, a blood vessel) in the subject. Here, the direction in which the vascular endoscopic camera 10 is inserted toward the observation site in the subject is defined as the traveling direction, and conversely, the direction in which the vascular endoscopic camera 10 is pulled out toward the outside of the subject is retracted. Defined as direction. Therefore, advancing and retreating means that the vascular endoscopic camera 10 can be inserted and removed toward the inside of the subject. The vascular endoscopic camera 10 can be smoothly inserted to the site to be observed by being guided by a guide wire 150 inserted in advance to the site to be operated or examined (for example, the affected area). The vascular endoscope 100 may be one in which the vascular endoscope camera 10 is interchangeably attached to the tip of a normal catheter. The catheter 200 is, for example, a medical tube used for discharging a body fluid or injecting a drug solution. In addition to the vascular endoscopic camera 10, a balloon, a stent, or the like may be interchangeably attached to the catheter 200.
 血管内視鏡カメラ10は、例えば、血管を撮像可能な画像センサ(後述参照)が先端側に実装された48万画素の高解像度カメラである。なお、48万画素はあくまで一例であり、画素数は48万画素に限定されなくてよい。血管内視鏡100が被検体内の血管に挿入されると、血管内視鏡カメラ10は、血管の内壁(以下、「血管壁」という)を撮像可能である。血管内視鏡カメラ10は、画像センサとして、例えばCCD(Charge Coupled Device)あるいはCMOS(Complementary Metal-Oxide Semiconductor)等の固体撮像素子(つまりイメージセンサ)を内蔵し、被写体(例えば患部である血管内の血管壁)からの光を撮像面に結像し、結像した光学像を電気信号に変換して撮像画像のデータ信号を出力する。血管内視鏡カメラ10は、血管内に挿入されると、ユーザの操作に基づくオートプルバック装置80の駆動により定速で引き戻されるので等間隔で血管壁を撮像し、血管壁の撮像画像のデータ信号を出力する。以後、血管壁等の撮像画像を「血管画像」と称する。なお、血管画像のデータ信号は、静止画像および動画像のいずれの信号でもよい。また、血管内視鏡100は、被写体を照明するために、LED(Light Emission Diode)光源あるいは後段のカメラコントロールユニット30からの照射光を導くファイバを内蔵してもよい。 The blood vessel endoscopy camera 10 is, for example, a 480,000-pixel high-resolution camera equipped with an image sensor (see below) capable of imaging blood vessels on the tip side. Note that 480,000 pixels are just an example, and the number of pixels does not have to be limited to 480,000 pixels. When the blood vessel endoscope 100 is inserted into a blood vessel in a subject, the blood vessel endoscope camera 10 can image the inner wall of the blood vessel (hereinafter, referred to as “blood vessel wall”). The angioscope camera 10 incorporates a solid-state image sensor (that is, an image sensor) such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Signal) as an image sensor, and incorporates a solid-state image sensor (that is, an image sensor) such as a subject (for example, the inside of a blood vessel which is an affected area). The light from the blood vessel wall) is imaged on the image pickup surface, the formed optical image is converted into an electric signal, and the data signal of the image pickup image is output. When the blood vessel endoscopic camera 10 is inserted into the blood vessel, it is pulled back at a constant speed by driving the auto pullback device 80 based on the user's operation, so that the blood vessel wall is imaged at equal intervals, and the data of the captured image of the blood vessel wall is taken. Output a signal. Hereinafter, the captured image of the blood vessel wall or the like will be referred to as a “blood vessel image”. The data signal of the blood vessel image may be either a still image or a moving image. Further, the blood vessel endoscope 100 may include a fiber that guides the irradiation light from the LED (Light Mission Diagram) light source or the camera control unit 30 in the subsequent stage in order to illuminate the subject.
 駆動機器の一例としてのオートプルバック装置80は、ガイドワイヤ150に案内されて観察対象の部位(例えば血管)に挿入された血管内視鏡100をプルバック速度(例えば定速)で基端側に引き戻す(言い換えると、牽引する)動作を行う。このとき、オートプルバック装置80がカテーテル200(言い換えると、血管内視鏡100)を引き戻す長さは、患部付近の位置に挿通された血管内視鏡カメラ10が基端側に向かって引き戻される長さと略一致すると考えることができる。血管内視鏡カメラ10は、オートプルバック装置80によって血管内視鏡100が引き戻される際、血管壁を等間隔で撮像する。オートプルバック装置80は、中継器20に対し、血管内視鏡100(より具体的には、血管内視鏡カメラ10。以下同様。)の位置情報および撮像位置の速度情報のデータを送る。 The auto pullback device 80 as an example of the drive device pulls back the vascular endoscope 100, which is guided by the guide wire 150 and inserted into the observation target site (for example, a blood vessel), to the proximal end side at a pullback speed (for example, a constant speed). Performs an action (in other words, towing). At this time, the length at which the auto-pullback device 80 pulls back the catheter 200 (in other words, the vascular endoscope 100) is the length at which the vascular endoscope camera 10 inserted at a position near the affected part is pulled back toward the proximal end side. It can be considered that it is almost the same as. The vascular endoscope camera 10 images the blood vessel wall at equal intervals when the vascular endoscope 100 is pulled back by the auto pullback device 80. The auto pullback device 80 transmits data of position information of the blood vessel endoscope 100 (more specifically, the blood vessel endoscope camera 10; the same applies hereinafter) and speed information of the imaging position to the repeater 20.
 ここで、血管内視鏡100の撮像位置の速度情報は、血管内視鏡100の血管内視鏡カメラ10が基端側に引き戻される際に、血管内視鏡カメラ10の撮像位置(つまり、血管内視鏡カメラ10の位置)が基端側に定速で移動する時の速度であり、プルバック速度(上述参照)と略一致する。血管内視鏡100の撮像位置の速度情報は、医師等のユーザの操作によりオートプルバック装置80にて設定され、一例として、0.5mm/秒、1.0mm/秒あるいは2.0mm/秒である。また、撮像の開始位置は、例えば、医師等のユーザが血管内視鏡100により撮像された被検体の観察部位(例えば血管)の撮像画像をモニタ70で確認した上で決定される。血管内視鏡100の引き戻しは、例えば、医師等のユーザによるオートプルバック装置80のボタンbn2の押下によって開始される。 Here, the speed information of the imaging position of the angioscope 100 is the imaging position of the angioscope camera 10 (that is, when the angioscope camera 10 of the angioscope 100 is pulled back to the proximal end side). This is the speed at which the position of the angioscope camera 10) moves to the proximal end side at a constant speed, which is substantially the same as the pullback speed (see above). The speed information of the imaging position of the blood vessel endoscope 100 is set by the auto pullback device 80 by the operation of a user such as a doctor, and as an example, it is 0.5 mm / sec, 1.0 mm / sec, or 2.0 mm / sec. is there. Further, the start position of imaging is determined after, for example, a user such as a doctor confirms the captured image of the observation site (for example, blood vessel) of the subject imaged by the blood vessel endoscope 100 on the monitor 70. The pullback of the vascular endoscope 100 is started by, for example, pressing the button bn2 of the auto pullback device 80 by a user such as a doctor.
 オートプルバック装置80の筐体80zの前面には、撮像位置の速度情報を選択可能なボタンbn1と、押下することでスタートとストップとを切り替えて指示するボタンbn2と、カテーテル200(言い換えると、血管内視鏡100)を自動的に基端側の初期位置に復帰させるボタンbn3とがそれぞれ配置されている。血管内視鏡100の撮像位置の速度情報(単に、「速度情報」とも称する場合がある)は、ボタンbn1の押下によって選択される一定速度、例えば0.5mm/秒、1.0mm/秒あるいは2.0mm/秒である。また、筐体80zの前面には、血管内視鏡カメラ10による撮像の開始位置(言い換えると、観察部位の開始位置)から血管内視鏡カメラ10の基端側への移動量を表す測定長,カテーテル200(言い換えると、血管内視鏡100)が移動する速度,加速度をそれぞれ表示するディスプレイd1,d2,d3が配置されている。また、筐体80zの前面には、血管内視鏡100の位置を模式的に表示するディスプレイd4が配置されている。 On the front surface of the housing 80z of the auto pullback device 80, there is a button bn1 that can select the speed information of the imaging position, a button bn2 that switches between start and stop by pressing the button, and a catheter 200 (in other words, a blood vessel). Buttons bn3 that automatically return the endoscope 100) to the initial position on the proximal end side are arranged respectively. The velocity information of the imaging position of the angioscope 100 (sometimes simply referred to as “velocity information”) is a constant velocity selected by pressing the button bn1, for example, 0.5 mm / sec, 1.0 mm / sec, or It is 2.0 mm / sec. Further, on the front surface of the housing 80z, a measurement length representing the amount of movement from the start position of imaging by the blood vessel endoscopy camera 10 (in other words, the start position of the observation site) to the proximal end side of the blood vessel endoscopy camera 10. , Display d1, d2, d3 that display the speed and acceleration of movement of the catheter 200 (in other words, the blood vessel endoscope 100) are arranged. Further, on the front surface of the housing 80z, a display d4 that schematically displays the position of the blood vessel endoscope 100 is arranged.
 中継器20は、FPGA(Field Programmable Gate Array)21と、AFE(Analog Front End)22と、入力インターフェース23,24と、出力インターフェース25とを含む構成である。図1および図7のそれぞれでは、インターフェースを「I/F」と略記している。 The repeater 20 has a configuration including an FPGA (Field Programmable Gate Array) 21, an AFE (Analog Front End) 22, input interfaces 23 and 24, and an output interface 25. In each of FIGS. 1 and 7, the interface is abbreviated as "I / F".
 入力インターフェース23は、血管内視鏡100との間でデータ信号の入力を可能に接続され、血管内視鏡カメラ10で撮像された血管画像のデータ信号(例えば、動画あるいは静止画)を入力してAFE22に出力する。 The input interface 23 is connected to the vascular endoscope 100 so as to be able to input a data signal, and inputs a data signal (for example, a moving image or a still image) of a vascular image captured by the vascular endoscope camera 10. Is output to AFE22.
 入力インターフェース24は、オートプルバック装置80との間でデータの入力を可能に接続され、オートプルバック装置80から出力される血管内視鏡100の位置情報および速度情報のデータを入力してFPGA21に出力する。 The input interface 24 is connected to the auto pullback device 80 so that data can be input, and inputs the position information and speed information data of the vascular endoscope 100 output from the auto pullback device 80 and outputs the data to the FPGA 21. To do.
 AFE22は、増幅器、AD(Analog Digital)コンバータおよびフィルタを少なくとも含む集積回路により構成される。AFE22は、入力インターフェース23を介して入力された血管画像のデータ信号に対し、増幅処理、アナログデジタル変換処理、フィルタリング処理等を行ってFPGA21に出力する。 AFE22 is composed of an integrated circuit including at least an amplifier, an AD (Analog Digital) converter and a filter. The AFE 22 performs amplification processing, analog-digital conversion processing, filtering processing, and the like on the data signal of the blood vessel image input via the input interface 23, and outputs the data signal to the FPGA 21.
 FPGA21は、AFE22により処理された後の血管画像のデータと、血管内視鏡100の位置情報および速度情報のデータとを結合する。以下の説明において、血管画像データと位置情報および速度情報のデータとの結合データを、単に「結合データ」と称する場合がある。 The FPGA 21 combines the data of the blood vessel image after being processed by the AFE 22 with the data of the position information and the velocity information of the blood vessel endoscope 100. In the following description, the combined data of the blood vessel image data and the data of the position information and the velocity information may be simply referred to as "combined data".
 出力インターフェース25は、FPGA21により生成された結合データ(つまり、血管画像データと血管内視鏡100の位置情報および速度情報のデータとが結合されたデータ)を画像コンソール90に出力する。なお、ここでは、中継器20に使用されるプロセッサの一例として、FPGA21が用いられるが、FPGA21以外にCPU(Central Processing Unit)、GPU(Graphical Processing Unit)、MPU(Micro Processing Unit)等が用いられてもよい。 The output interface 25 outputs the combined data generated by the FPGA 21 (that is, the combined data of the blood vessel image data and the position information and speed information data of the blood vessel endoscope 100) to the image console 90. Here, the FPGA 21 is used as an example of the processor used in the repeater 20, but in addition to the FPGA 21, a CPU (Central Processing Unit), a GPU (Graphical Processing Unit), an MPU (Micro Processing Unit), and the like are used. You may.
 中継器20は、血管内視鏡カメラ10とカメラコントロールユニット30との間で行われる各種の信号を中継する。各種の信号は、例えば、血管内視鏡カメラ10で撮像された血管画像のデータ信号以外に、カメラコントロールユニット30が血管内視鏡カメラ10を制御するための各種の制御信号を含む。 The repeater 20 relays various signals performed between the angioscope camera 10 and the camera control unit 30. The various signals include, for example, various control signals for the camera control unit 30 to control the vascular endoscopic camera 10 in addition to the data signal of the vascular image captured by the vascular endoscopic camera 10.
 上述したように、中継器20は、血管内視鏡カメラ10で撮像された血管画像のデータと、オートプルバック装置80で引き戻される血管内視鏡100の位置情報および速度情報のデータとを結合する。ここで、血管画像のデータと位置情報および速度情報のデータとの結合の処理は、これらのデータを連結することで、例えばこれらのデータを足し合わせて1つのデータにすることで行われる。このように、中継器20による結合により、オートプルバック装置80から提供される血管内の撮像位置と、血管内視鏡100から提供される血管画像の取得タイミングとが一致(同期)するように対応付けられる。 As described above, the repeater 20 combines the data of the blood vessel image captured by the blood vessel endoscope camera 10 with the data of the position information and the speed information of the blood vessel endoscope 100 pulled back by the auto pullback device 80. .. Here, the processing of combining the blood vessel image data with the position information and velocity information data is performed by concatenating these data, for example, by adding these data into one data. In this way, by coupling with the repeater 20, the imaging position in the blood vessel provided by the auto pullback device 80 and the acquisition timing of the blood vessel image provided by the blood vessel endoscope 100 are matched (synchronized). Attached.
 なお、上述したデータの結合は、例えば、血管画像の上に位置情報および速度情報を描画する、つまり重畳させることで行われてもよい。また、血管画像のデータと、血管内視鏡100の位置情報および速度情報のデータとは、別ファイルとして対応付けられてもよい。この対応付けは、例えば一方のデータファイルのメタデータの格納領域に他方のデータファイルの識別情報を格納することで行われる。結合された血管画像と位置情報および速度情報とは、別々の画面で表示されてもよいし、あるいはスーパーインポーズ方式で同一の画面で表示されてもよい。なお、オートプルバック装置80がカテーテル200(つまり、血管内視鏡100)を自動モードにより一定速度で引き戻す際、観察部位である血管内の途中で引っかかる等の原因で、予め設定された一定の速度が得られなくなる場合がある。このような場合、一定の速度が得られない時に血管内視鏡100から提供された血管画像は、後述する等速動画を作成する際に高速時には必要数省かれ(つまり、使用されない)、低速時には同じ画像を必要数付加する。 Note that the above-mentioned data combination may be performed, for example, by drawing position information and velocity information on the blood vessel image, that is, by superimposing them. Further, the blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 may be associated with each other as separate files. This association is performed, for example, by storing the identification information of the other data file in the metadata storage area of one data file. The combined blood vessel image and the position information and the velocity information may be displayed on separate screens, or may be displayed on the same screen by the superimpose method. When the auto pullback device 80 pulls back the catheter 200 (that is, the blood vessel endoscope 100) at a constant speed in the automatic mode, the catheter 200 (that is, the blood vessel endoscope 100) is caught in the middle of the blood vessel which is the observation site, so that the speed is set to a preset constant speed. May not be obtained. In such a case, the blood vessel image provided by the blood vessel endoscope 100 when a constant speed cannot be obtained is omitted (that is, not used) at high speed when creating a constant velocity moving image described later, and is low speed. Sometimes the same image is added as many times as necessary.
 カメラコントロールユニット30(CCU:Camera Control Unit)は、中継器20を介して血管内視鏡カメラ10と電気的に接続され、血管内視鏡カメラ10による撮像動作、血管内視鏡カメラ10からの血管画像のデータ信号に基づく血管画像のデータの生成を制御する。カメラコントロールユニット30は、血管画像のデータと血管内視鏡の位置情報および速度情報のデータとが結合されたデータ(つまり、上述した結合データ)にメタデータを付加する。メタデータは、血管内視鏡カメラ10から提供される血管画像の撮像日時等のデータを含む。 The camera control unit 30 (CCU: Camera Control Unit) is electrically connected to the vascular endoscopy camera 10 via a repeater 20, and the imaging operation by the vascular endoscopy camera 10 and the imaging operation from the vascular endoscopy camera 10 Controls the generation of vascular image data based on the vascular image data signal. The camera control unit 30 adds metadata to the data in which the blood vessel image data and the position information and velocity information data of the angioscope are combined (that is, the above-mentioned combined data). The metadata includes data such as the imaging date and time of the blood vessel image provided by the blood vessel endoscopic camera 10.
 カメラコントロールユニット30は、画像入力部(図示略)、画像処理部(図示略)および画像出力部(図示略)を少なくとも含む。画像入力部(図示略)は、血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとが結合された結合データを入力する。画像入力部(図示略)は、専用の画像入力インターフェースの他、映像データを高速に転送可能なHDMI(登録商標)(High-Definition Multimedia Interface)あるいはUSB(Universal Serial Bus) Type-C等を用いたインターフェースでもよい。画像処理部(図示略)は、入力された結合データにメタデータを付加する等の処理を行う。また、画像処理部(図示略)は、中継器20から送られた結合データに対し、所定の画像処理を行うことで、モニタ70において視認可能なRGB形式あるいはYUV形式の結合されたデータを生成してもよい。画像出力部(図示略)は、メタデータが付加された結合されたデータをPC50に送信する。 The camera control unit 30 includes at least an image input unit (not shown), an image processing unit (not shown), and an image output unit (not shown). The image input unit (not shown) inputs the combined data in which the blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 are combined. The image input unit (not shown) uses HDMI (registered trademark) (High-Definition Multimedia Interface) or USB (Universal Serial Bus) Type-C, which can transfer video data at high speed, in addition to a dedicated image input interface. It may be the interface that was used. The image processing unit (not shown) performs processing such as adding metadata to the input combined data. Further, the image processing unit (not shown) generates the combined data in RGB format or YUV format that can be visually recognized on the monitor 70 by performing predetermined image processing on the combined data sent from the repeater 20. You may. The image output unit (not shown) transmits the combined data to which the metadata is added to the PC 50.
 演算装置の一例としてのPC50は、プロセッサ51と、メモリ52と、入出力インターフェース53と、操作部54と、ストレージ55とを含む構成である。PC50は、中継器20により生成された結合データを、カメラコントロールユニット30を介して受信する。PC50は、結合データに含まれる血管画像のデータ、あるいはこの血管画像のデータに対して所定の画像処理を施した後の血管画像のデータ等をストレージ55に記録して保存する。PC50は、血管画像のデータを基に、観察部位(例えば被検体である患者の患部の血管)の血管径を算出する処理を行う。PC50は、血管径の測定結果あるいは血管画像のデータをモニタ70に出力し、血管径の算出結果を可視化する処理を行う。 The PC 50 as an example of the arithmetic unit has a configuration including a processor 51, a memory 52, an input / output interface 53, an operation unit 54, and a storage 55. The PC 50 receives the combined data generated by the repeater 20 via the camera control unit 30. The PC 50 records and stores the blood vessel image data included in the combined data, the blood vessel image data after performing predetermined image processing on the blood vessel image data, and the like in the storage 55. The PC 50 performs a process of calculating the blood vessel diameter of the observation site (for example, the blood vessel of the affected portion of the patient as the subject) based on the blood vessel image data. The PC 50 outputs the measurement result of the blood vessel diameter or the data of the blood vessel image to the monitor 70, and performs a process of visualizing the calculation result of the blood vessel diameter.
 また、PC50は、中継器20から随時入力されてくる結合データを用いて、複数枚の血管画像から構成される等速動画を作成する。ここでいう等速動画は、例えば、複数枚の血管画像の中から、血管内視鏡カメラ10の撮像位置および血管内視鏡100の速度情報を用いて、同一の一定速度で撮像された撮像位置の異なる複数枚の血管画像が時系列に順次選択されることでて構成された動画である。 Further, the PC 50 creates a constant velocity moving image composed of a plurality of blood vessel images by using the combined data input from the repeater 20 at any time. The constant-velocity moving image referred to here is, for example, an image taken from a plurality of blood vessel images at the same constant speed using the imaging position of the blood vessel endoscope camera 10 and the speed information of the blood vessel endoscope 100. This is a moving image composed by sequentially selecting a plurality of blood vessel images having different positions in chronological order.
 プロセッサ51は、メモリ52に記憶された各種の処理用のプログラムを実行することで、例えば上述した血管径測定処理および可視化処理等のそれぞれを実行する。プロセッサ51は、例えば画像処理に適したGPUでもよいし、MPU、CPU、ASIC(Application Specific Integrated Circuit)等で設計された専用の電子回路、またはFPGA等で再構成可能に設計された電子回路で構成されてもよい。 The processor 51 executes, for example, the above-mentioned blood vessel diameter measurement process and visualization process by executing various processing programs stored in the memory 52. The processor 51 may be, for example, a GPU suitable for image processing, a dedicated electronic circuit designed by an MPU, a CPU, an ASIC (Application Specific Integrated Circuit), or the like, or an electronic circuit designed to be reconfigurable by an FPGA or the like. It may be configured.
 メモリ52は、プロセッサ51のワーキングメモリとして使用されるRAM(Random Access Memory)と。プロセッサ51により実行される各種の処理用のプログラムを記憶するROM(Read Only Memory)と、を含む。 The memory 52 is a RAM (Random Access Memory) used as a working memory of the processor 51. It includes a ROM (Read Only Memory) that stores programs for various processes executed by the processor 51.
 入出力インターフェース53は、専用の画像入力インターフェースの他、映像データを高速に転送可能なHDMI(登録商標)あるいはUSB Type-C等を用いたインターフェースでもよい。 The input / output interface 53 may be an interface using HDMI (registered trademark) or USB Type-C, which can transfer video data at high speed, in addition to the dedicated image input interface.
 操作部54は、血管内視鏡システム5を起動させる起動スイッチを含み、医師等のユーザによる操作を受け付ける。操作部54は、上述した起動スイッチの他に、例えば、マウス、キーボード、タッチパッド、タッチパネル、マイクロホンまたはその他の入力デバイスを含んでよい。 The operation unit 54 includes an activation switch for activating the vascular endoscopy system 5, and accepts operations by a user such as a doctor. In addition to the activation switch described above, the operation unit 54 may include, for example, a mouse, keyboard, touch pad, touch panel, microphone or other input device.
 メモリの一例としてのストレージ55は、大容量の記憶装置であり、血管内視鏡カメラ10で撮像された血管画像データ等を蓄積する。ストレージ55は、例えば二次記憶装置(例えばHDD(Hard Disk Drive)もしくはSSD(Solid StateDrive))、あるいは三次記憶装置(例えば光ディスク、SDカード)を含んでよい。 The storage 55 as an example of the memory is a large-capacity storage device, and stores blood vessel image data and the like captured by the blood vessel endoscopy camera 10. The storage 55 may include, for example, a secondary storage device (for example, HDD (Hard Disk Drive) or SSD (Solid State Drive)), or a tertiary storage device (for example, an optical disk or SD card).
 モニタ70は、PC50から出力される血管径の測定結果あるいは血管画像のデータを表示する。モニタ70は、例えばLCD(Liquid Crystal Display)、有機EL(Electroluminescence)、CRT(Cathode Ray Tube)等の表示デバイスを有する。なお、カメラコントロールユニット30、PC50およびモニタ70は、画像コンソール90として、単一の筐体に搭載される。 The monitor 70 displays the blood vessel diameter measurement result or blood vessel image data output from the PC 50. The monitor 70 has a display device such as an LCD (Liquid Crystal Display), an organic EL (Electroluminescence), or a CRT (Cathode Ray Tube). The camera control unit 30, the PC 50, and the monitor 70 are mounted in a single housing as an image console 90.
(血管内視鏡システムの動作)
 次に、実施の形態1に係る血管内視鏡システム5の動作を説明する。
(Operation of angioscopy system)
Next, the operation of the vascular endoscopy system 5 according to the first embodiment will be described.
 例えば、被検体内の血管内に血栓があったり、血管壁にプラークができていたりする等、被検体内の血管の状態を観察するために、血管内視鏡100は、血管内に挿入される。医師等のユーザが血管内視鏡100を血管内に挿入する際、ガイドワイヤ150が先行して血管内に挿通される。ガイドワイヤ150が観察したい血管内に届くと、ユーザは、ガイドワイヤ150に案内されるように、血管内視鏡カメラ10が先端側に実装された血管内視鏡100(言い換えると、先端に血管内視鏡100が取り付けられたカテーテル200)を血管内に進行させて挿入していく。血管内視鏡カメラ10が観察したい血管内に達すると、ユーザは、オートプルバック装置80を作動させ、カテーテル200(言い換えると、血管内視鏡100)をプルバック速度(つまり、一定の速度)で引き戻す動作を開始させる。また、血管内視鏡カメラ10で血管内を撮像する場合、ユーザは、血管内を鮮明に撮像できるように、血管内視鏡100が取り付けられたカテーテル200の基端側から低分子デキストラン、もしくは造影剤、もしくは生理食塩水等の透明液を血管内に注入する。 For example, the blood vessel endoscope 100 is inserted into a blood vessel in order to observe the state of the blood vessel in the subject, such as a thrombus in the blood vessel in the subject or a plaque formed on the blood vessel wall. To. When a user such as a doctor inserts the blood vessel endoscope 100 into the blood vessel, the guide wire 150 is inserted into the blood vessel in advance. When the guide wire 150 reaches the inside of the blood vessel to be observed, the user can use the blood vessel endoscope 100 (in other words, the blood vessel at the tip) in which the blood vessel endoscope camera 10 is mounted on the tip side so as to be guided by the guide wire 150. A catheter 200) to which the endoscope 100 is attached is advanced and inserted into the blood vessel. When the angioscope camera 10 reaches the inside of the blood vessel to be observed, the user activates the auto pullback device 80 and pulls back the catheter 200 (in other words, the angioscope 100) at a pullback speed (that is, a constant speed). Start the operation. Further, when the inside of the blood vessel is imaged by the blood vessel endoscope camera 10, the user can use a low molecular weight dextran or a low molecular weight dextran from the proximal end side of the catheter 200 to which the blood vessel endoscope 100 is attached so that the inside of the blood vessel can be clearly imaged. A contrast medium or a clear solution such as physiological saline is injected into the blood vessel.
 図2は、実施の形態1に係る血管内視鏡システム5の動作手順の一例を示すフローチャートである。図2では、血管内視鏡システム5を構成する血管内視鏡100、中継器20および画像コンソール90の他に、オートプルバック装置80のそれぞれによる動作が時系列に示されている。 FIG. 2 is a flowchart showing an example of the operation procedure of the blood vessel endoscopy system 5 according to the first embodiment. In FIG. 2, in addition to the blood vessel endoscope 100, the repeater 20, and the image console 90 constituting the blood vessel endoscopy system 5, the operations of the auto pullback device 80 are shown in chronological order.
 図2において、医師等のユーザが画像コンソール90の筐体に収容されたPC50の操作部54に含まれる起動スイッチを押下すると、血管内視鏡システム5は、起動する(S1)。血管内視鏡システム5が起動すると、血管内視鏡100、オートプルバック装置80、中継器20、および画像コンソール90は、それぞれ動作を開始する。 In FIG. 2, when a user such as a doctor presses the activation switch included in the operation unit 54 of the PC 50 housed in the housing of the image console 90, the blood vessel endoscopy system 5 is activated (S1). When the vascular endoscope system 5 is activated, the vascular endoscope 100, the auto pullback device 80, the repeater 20, and the image console 90 each start operating.
 ユーザは、オートプルバック装置80に対し、被検体内の観察部位である血管内に挿入された血管内視鏡100を引き戻すための計測の開始位置および終了位置を設定する。このとき、ユーザは、血管内視鏡カメラ10で撮像される血管画像をその血管画像が表示されたモニタ70で実際に目視によって確認し、計測の開始位置および終了位置を決定する。オートプルバック装置80による血管内視鏡100の引き戻し(計測)の開始位置から終了位置までの長さが血管の測定長に相当する。 The user sets the start position and the end position of the measurement for pulling back the blood vessel endoscope 100 inserted into the blood vessel, which is the observation site in the subject, with respect to the auto pullback device 80. At this time, the user actually visually confirms the blood vessel image captured by the blood vessel endoscopy camera 10 on the monitor 70 on which the blood vessel image is displayed, and determines the start position and the end position of the measurement. The length from the start position to the end position of the pullback (measurement) of the blood vessel endoscope 100 by the auto pullback device 80 corresponds to the measurement length of the blood vessel.
 オートプルバック装置80は、測定長の範囲内でカテーテル200(つまり、血管内視鏡100)を定速で引き戻す際に一定時間ごとに計測した、血管内視鏡100の位置情報および速度情報を取得する(S11)。オートプルバック装置80は、血管内視鏡100の位置情報および撮像位置の速度情報のデータを中継器20に出力する(S12)。 The auto pullback device 80 acquires the position information and speed information of the vascular endoscope 100 measured at regular intervals when the catheter 200 (that is, the vascular endoscope 100) is pulled back at a constant speed within the measurement length. (S11). The auto pullback device 80 outputs data of the position information of the blood vessel endoscope 100 and the speed information of the imaging position to the repeater 20 (S12).
 一方で、血管内視鏡100は、血管内視鏡カメラ10で撮像された血管画像のデータ信号を取得する(S21)。血管内視鏡100は、血管画像のデータ信号を中継器20に出力する(S22)。 On the other hand, the blood vessel endoscope 100 acquires a data signal of a blood vessel image captured by the blood vessel endoscope camera 10 (S21). The blood vessel endoscope 100 outputs a data signal of a blood vessel image to the repeater 20 (S22).
 一方で、中継器20は、血管内視鏡100からの血管画像のデータ信号を入力する(S31)。中継器20は、オートプルバック装置80から血管内視鏡100の位置情報および速度情報を入力する(S32)。中継器20は、血管画像のデータ信号の入力タイミング(つまり入力した時と同時刻)にオートプルバック装置80から入力された血管内視鏡100の位置情報および速度情報のデータを、上述した入力タイミングに入力された血管画像のデータに結合する(S33)。つまり、中継器20に入力される血管内視鏡100からの血管画像のデータとオートプルバック装置80からの血管内視鏡100の位置情報および速度情報とは時間的に一致(同期)するように中継器20によってデータの結合が行われる。 On the other hand, the repeater 20 inputs the data signal of the blood vessel image from the blood vessel endoscope 100 (S31). The repeater 20 inputs the position information and the speed information of the vascular endoscope 100 from the auto pullback device 80 (S32). The repeater 20 inputs the position information and speed information data of the vascular endoscope 100 input from the auto pullback device 80 at the input timing (that is, the same time as the input) of the data signal of the blood vessel image to the above-mentioned input timing. It is combined with the data of the blood vessel image input to (S33). That is, the data of the blood vessel image from the blood vessel endoscope 100 input to the repeater 20 and the position information and the speed information of the blood vessel endoscope 100 from the auto pullback device 80 are time-matched (synchronized). Data is combined by the repeater 20.
 中継器20は、ステップS33により生成された結合データ(つまり、血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータ)を画像コンソール90に送信する(S34)。この結合データの送信は、例えば、血管内視鏡100により撮像される血管画像を医師等のユーザがリアルタイムで閲覧かつモニタ70にて表示可能なフレームレートで行われる。 The repeater 20 transmits the combined data generated in step S33 (that is, the combined data of the blood vessel image and the position information and speed information of the blood vessel endoscope 100) to the image console 90 (S34). The transmission of the combined data is performed, for example, at a frame rate at which a user such as a doctor can view the blood vessel image captured by the blood vessel endoscope 100 in real time and display it on the monitor 70.
 一方で、画像コンソール90では、カメラコントロールユニット30は、中継器20により生成された結合データ(つまり、血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータ)を受信する(S41)。PC50は、この結合データをストレージ55に蓄積する。PC50は、結合データを基に、等速動画(上述参照)を作成する(S42)。 On the other hand, in the image console 90, the camera control unit 30 receives the combined data generated by the repeater 20 (that is, the combined data of the blood vessel image and the position information and the speed information of the blood vessel endoscope 100). (S41). The PC 50 stores this combined data in the storage 55. The PC 50 creates a constant velocity moving image (see above) based on the combined data (S42).
 PC50は、等速動画を構成する少なくとも2枚の血管画像のデータを用いて、被検体の観察部位である血管内の血管径を算出する(S43)。このステップS43の処理の詳細については後述する。また、PC50は、血管画像と血管内視鏡100の位置情報および速度情報とを別々に表示するために、結合された血管画像と血管内視鏡100の位置情報および速度情報のデータを分離する(S44)。PC50は、血管画像と、血管内視鏡100の位置情報および速度情報と、血管径とをモニタ70に表示する(S45)。なお、位置情報と速度情報は、同時に表示されてもよいし、個別に表示されてもよい。この後、血管内視鏡システム5は、図2に示す動作を終了する。 The PC50 calculates the blood vessel diameter in the blood vessel, which is the observation site of the subject, using the data of at least two blood vessel images constituting the constant velocity moving image (S43). The details of the process in step S43 will be described later. Further, the PC 50 separates the combined blood vessel image and the position information and speed information data of the blood vessel endoscope 100 in order to separately display the blood vessel image and the position information and speed information of the blood vessel endoscope 100. (S44). The PC 50 displays the blood vessel image, the position information and velocity information of the blood vessel endoscope 100, and the blood vessel diameter on the monitor 70 (S45). The position information and the speed information may be displayed at the same time or may be displayed individually. After this, the vascular endoscopy system 5 ends the operation shown in FIG.
 図3は、図2のステップS43の血管径の算出処理の動作手順の一例を示すフローチャートである。この処理は、例えば、図2のステップS42において作成される等速動画を構成する2枚の血管画像を用いて、血管径を算出する処理である。ユーザは、PC50に対し、円の中心と半径を入力するだけでよい。プロセッサ51は、操作部54を介して、ユーザ入力による円の中心と半径を受け付ける。プロセッサ51は、カメラコントロールユニット30から入力した血管画像のデータに対し、画像全体に配置された複数(例えば1156)個の測定点の中から、円の中心と半径に基づく円周上に複数(例えば128)個の特徴点e1を検出する(S51)。なお、1156個の測定点および128個の特徴点の数は、一例である。 FIG. 3 is a flowchart showing an example of an operation procedure of the blood vessel diameter calculation process in step S43 of FIG. This process is, for example, a process of calculating the blood vessel diameter using two blood vessel images constituting the constant velocity moving image created in step S42 of FIG. The user only has to enter the center and radius of the circle for the PC50. The processor 51 receives the center and radius of the circle input by the user via the operation unit 54. The processor 51 has a plurality of (for example, 1156) measurement points arranged on the entire image on the circumference based on the center and radius of the circle with respect to the data of the blood vessel image input from the camera control unit 30. For example, 128) feature points e1 are detected (S51). The number of 1156 measurement points and 128 feature points is an example.
 図4は、血管画像上における特徴点の配置、特徴点と対応点の位置関係、および3次元点を用いて推定された血管径を示す図である。血管内視鏡カメラ10で撮像された血管画像GZ1に対し、ユーザにより指定された円の円周上に128個の特徴点e1が重畳して描画される。 FIG. 4 is a diagram showing the arrangement of feature points on a blood vessel image, the positional relationship between feature points and corresponding points, and the blood vessel diameter estimated using three-dimensional points. 128 feature points e1 are superimposed and drawn on the circumference of a circle designated by the user on the blood vessel image GZ1 captured by the blood vessel endoscopy camera 10.
 プロセッサ51は、特徴点e1を検出した血管画像GZ1が1フレーム目の画像であるか否かを判別する(S52)。1フレーム目の画像である場合(S52、YES)、プロセッサ51は、図3に示す処理を終了し、血管径を算出することなく元の処理に復帰する。 The processor 51 determines whether or not the blood vessel image GZ1 that has detected the feature point e1 is the image of the first frame (S52). In the case of the image of the first frame (S52, YES), the processor 51 ends the process shown in FIG. 3 and returns to the original process without calculating the blood vessel diameter.
 一方、ステップS52で2フレーム目以降の画像である場合(S52、NO)、プロセッサ51は、第1の特徴点マッチングを行う(S53)。第1の特徴点マッチングでは、プロセッサ51は、前フレーム(言い換えると、第(n-1)番目フレーム)の特徴点近傍の矩形領域をテンプレートとして取得する(n:2以上の整数)。一例として、テンプレートサイズは、幅16ピクセル×高さ16ピクセルのサイズである。 On the other hand, when the image is from the second frame onward in step S52 (S52, NO), the processor 51 performs the first feature point matching (S53). In the first feature point matching, the processor 51 acquires a rectangular area near the feature point of the previous frame (in other words, the (n-1) th frame) as a template (n: an integer of 2 or more). As an example, the template size is a size of 16 pixels in width × 16 pixels in height.
 プロセッサ51は、現フレーム(言い換えると、第n番目フレーム)の特徴点位置を中心とした矩形領域を、探索範囲としてテンプレートと一致する領域を探索する。探索範囲のサイズは、幅128ピクセル×高さ128ピクセルのサイズである。プロセッサ51は、ZNCC(Zero-means Normalized Cross Correction)値が最小となる位置を特徴点e1に対応する対応点f2とする。なお、第n番目フレームは、第(n-1)番目フレームに対し、血管内視鏡100が手前に引かれた状態の画像であるので、複数の対応点f2が形成する円は、複数の特徴点e1が形成する円と比べ、小さくなる。 The processor 51 searches for a region that matches the template with a rectangular region centered on the feature point position of the current frame (in other words, the nth frame) as a search range. The size of the search range is 128 pixels wide x 128 pixels high. The processor 51 has a corresponding point f2 corresponding to the feature point e1 at a position where the ZNCC (Zero-means Normalized Cross Direction) value is minimized. Since the nth frame is an image in which the blood vessel endoscope 100 is pulled toward the front with respect to the (n-1) th frame, a plurality of circles formed by the plurality of corresponding points f2 are formed. It is smaller than the circle formed by the feature point e1.
 プロセッサ51は、第(n-1)番目フレームに含まれる特徴点e1と第n番目フレームに含まれる対応点f2を用いて、消失点dpを推定する(S54)。消失点dpの推定では、プロセッサ51は、全ての特徴点e1および対応点f2に対し、特徴点e1から対応点f2へのフローを求める。プロセッサ51は、2つのフローの交点を求める。プロセッサ51は、全ての特徴点e1から交点までのベクトルを求める。プロセッサ51は、このフローと各ベクトルとの類似度(ここでは角度差)を求め、この類似度が閾値を超えるか否か、例えばフローとベクトルの角度差が3°未満であるか否かを判別する。プロセッサ51は、角度差が3°未満である場合、この特徴点e1を有効な特徴点(以下、「インライア」と称する場合がある)であると判定する。一方、プロセッサ51は、角度差が3°以上である場合、この特徴点e1を無効な特徴点(以下、「アウトライア」と称する場合がある)であると判定する。プロセッサ51は、全てのフローの交点に対し、インライアの数を算出する。プロセッサ51は、インライアの数が最も多いフローの交点を消失点dpとする。 The processor 51 estimates the vanishing point dp using the feature point e1 included in the (n-1) th frame and the corresponding point f2 included in the nth frame (S54). In the estimation of the vanishing point dp, the processor 51 obtains the flow from the feature point e1 to the corresponding point f2 for all the feature points e1 and the corresponding point f2. The processor 51 finds the intersection of the two flows. The processor 51 obtains a vector from all the feature points e1 to the intersection. The processor 51 obtains the similarity between the flow and each vector (here, the angle difference), and determines whether or not the similarity exceeds the threshold value, for example, whether or not the angle difference between the flow and the vector is less than 3 °. Determine. When the angle difference is less than 3 °, the processor 51 determines that the feature point e1 is an effective feature point (hereinafter, may be referred to as an "inlier"). On the other hand, when the angle difference is 3 ° or more, the processor 51 determines that the feature point e1 is an invalid feature point (hereinafter, may be referred to as an “outlier”). The processor 51 calculates the number of inliers at the intersections of all the flows. The processor 51 uses the intersection of the flows having the largest number of inliers as the vanishing point dp.
 プロセッサ51は、クロスチェックのために第2の特徴点マッチングを行う(S55)。第2の特徴点マッチングでは、プロセッサ51は、現フレーム(つまり、第n番目フレーム)の対応点近傍の矩形領域をテンプレートとして取得する。一例として、テンプレートサイズは、幅16ピクセル×高さ16ピクセルのサイズである。プロセッサ51は、前フレーム(つまり、第(n-1)番目フレーム)の対応点位置を中心とした矩形領域を、探索範囲としてテンプレートと一致する領域を探索する。探索範囲のサイズは、幅128ピクセル×高さ128ピクセルのサイズである。プロセッサ51は、ZNCC値が最小となる位置を対応点f2に対応する特徴点(対応特徴点)とする。プロセッサ51は、前フレーム(つまり、第(n-1)番目フレーム)における、特徴点e1と対応特徴点とが略一致するか否かを判別する。特徴点e1と対応特徴点との略一致は、例えば位置座標を基に判別可能である。プロセッサ51は、特徴点e1と対応特徴点とが略一致する場合、対応点f2が信頼性ありと判断し、特徴点e1と対応特徴点とが略一致しない場合、対応点f2が信頼性なしと判断する。プロセッサ51は、信頼性ありと判断された特徴点e1をインライアとして採用し、信頼性なしと判断された特徴点e1をアウトライアとして採用しない。 The processor 51 performs a second feature point matching for cross-checking (S55). In the second feature point matching, the processor 51 acquires a rectangular area near the corresponding point of the current frame (that is, the nth frame) as a template. As an example, the template size is a size of 16 pixels in width × 16 pixels in height. The processor 51 searches for a region that matches the template with a rectangular region centered on the corresponding point position of the previous frame (that is, the (n-1) th frame) as a search range. The size of the search range is 128 pixels wide x 128 pixels high. The processor 51 sets the position where the ZNCC value becomes the minimum as a feature point (corresponding feature point) corresponding to the corresponding point f2. The processor 51 determines whether or not the feature point e1 and the corresponding feature point in the previous frame (that is, the (n-1) th frame) substantially match. The substantially match between the feature point e1 and the corresponding feature point can be determined based on, for example, the position coordinates. The processor 51 determines that the corresponding point f2 is reliable when the feature point e1 and the corresponding feature point substantially match, and when the feature point e1 and the corresponding feature point do not substantially match, the corresponding point f2 is unreliable. Judge. The processor 51 adopts the feature point e1 judged to be reliable as an inlier, and does not adopt the feature point e1 judged to be unreliable as an outlier.
 プロセッサ51は、インライアである特徴点e1の3次元位置を算出する(S56)。特徴点e1の3次元位置の算出には、例えば三角測量が用いられる。三角測量は、2点間の距離およびこれら2点から測定したい特徴点への角度をそれぞれ測定することで、特徴点の位置を求める、三角法および幾何学を用いた周知の測量方法である。 The processor 51 calculates the three-dimensional position of the feature point e1 which is an in-liner (S56). For example, triangulation is used to calculate the three-dimensional position of the feature point e1. Triangulation is a well-known surveying method using trigonometry and geometry that finds the position of a feature point by measuring the distance between the two points and the angle from each of these two points to the feature point to be measured.
 図5は、3次元位置の算出例を説明する図である。ここで、特徴点e1の3次元座標Eを(X,Y,Z)とする。Xは、血管の径(短軸)方向を表すx軸の座標値である。Yは、x軸に対し垂直な血管の径方向を表すy軸の座標値である。Zは、血管の長手(長軸)方向を表すz軸の座標値である。第(n-1)番目フレームのカメラ位置g1における、特徴点e1の画像座標p1を(u1,u2)とする。第n番目フレームのカメラ位置g2における、対応点f2の画像座標p2を(u2,v2)とする。第(n-1)番目フレームのカメラ位置g1と第n番目フレームのカメラ位置g2の間の距離をDとする。ここで、距離Dは、オートプルバック装置80がガイドワイヤ150を一定のプルバック速度で牽引する際、第(n-1)番目フレームのカメラ位置と第n番目フレームのカメラ位置の撮像時間差とプルバック速度との積で算出される。 FIG. 5 is a diagram illustrating an example of calculating a three-dimensional position. Here, let the three-dimensional coordinates E of the feature point e1 be (X, Y, Z). X is a coordinate value on the x-axis representing the diameter (minor axis) direction of the blood vessel. Y is a coordinate value on the y-axis representing the radial direction of the blood vessel perpendicular to the x-axis. Z is a coordinate value of the z-axis representing the longitudinal (major axis) direction of the blood vessel. Let (u1, u2) be the image coordinates p1 of the feature point e1 at the camera position g1 of the (n-1) th frame. Let (u2, v2) be the image coordinate p2 of the corresponding point f2 at the camera position g2 of the nth frame. Let D be the distance between the camera position g1 of the (n-1) th frame and the camera position g2 of the nth frame. Here, the distance D is the imaging time difference and pullback speed between the camera position of the (n-1) th frame and the camera position of the nth frame when the auto pullback device 80 pulls the guide wire 150 at a constant pullback speed. It is calculated by the product of and.
 カメラの内部パラメータの行列Kを数式(1)で表す。 The matrix K of the internal parameters of the camera is expressed by the mathematical formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、fx:焦点距離を水平画素ピッチで割った値、fy:焦点距離を垂直画素ピッチで割った値、Cx:画像中心のx座標、Cy:画像中心のy座標である。 Here, fx: the value obtained by dividing the focal length by the horizontal pixel pitch, fy: the value obtained by dividing the focal length by the vertical pixel pitch, Cx: the x-coordinate of the image center, and Cy: the y-coordinate of the image center.
 特徴点e1の画像座標p1と3次元座標Eは、数式(2)で表される。 The image coordinates p1 and the three-dimensional coordinates E of the feature point e1 are expressed by the mathematical formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
  対応点f2の画像座標p2と3次元座標Eは、数式(3)で表される。 The image coordinates p2 and the three-dimensional coordinates E of the corresponding point f2 are expressed by the mathematical formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 プロセッサ51は、例えば三角測量関数を使用し、画像座標p1と画像座標p2に対応する、特徴点e1の3次元座標Eを求める。 The processor 51 uses, for example, a triangulation function to obtain the three-dimensional coordinates E of the feature point e1 corresponding to the image coordinates p1 and the image coordinates p2.
 プロセッサ51は、特徴点e1の3次元座標Eを3次元の立体画像としてモニタ70に表示(3D表示)可能である。 The processor 51 can display (3D display) the three-dimensional coordinates E of the feature point e1 on the monitor 70 as a three-dimensional stereoscopic image.
 プロセッサ51は、複数の特徴点e1の3次元座標Eを基に、楕円フィッティングが行われる平面を検出する(S57)。平面の検出では、プロセッサ51は、複数の特徴点e1(3次元点という)の中から3点を選択し、これら3点を含む平面を表す式(平面式という)を求める。プロセッサ51は、求めた平面との距離が所定距離以内で平面に近い3次元点の数を計数する。プロセッサ51は、計数した3次元点の数が最も多くなる平面式を選択する。プロセッサ51は、選択した平面式で表される平面に近い3次元点を抽出する。プロセッサ51は、抽出した3次元点群を基に、主成分分析(PCA:Principal Component Analysis)を行い、平面を検出する。主成分分析は、相関のある多数の変数から相関のない少数で全体のばらつきを最もよく表す主成分と呼ばれる変数を合成する多変量解析の一手法である。 The processor 51 detects a plane on which ellipse fitting is performed based on the three-dimensional coordinates E of the plurality of feature points e1 (S57). In the plane detection, the processor 51 selects three points from a plurality of feature points e1 (referred to as three-dimensional points), and obtains an equation (referred to as a planar equation) representing a plane including these three points. The processor 51 counts the number of three-dimensional points that are close to a plane within a predetermined distance from the obtained plane. The processor 51 selects the planar expression having the largest number of counted three-dimensional points. The processor 51 extracts a three-dimensional point close to the plane represented by the selected plane formula. The processor 51 performs principal component analysis (PCA: Principal Component Analysis) based on the extracted three-dimensional point cloud, and detects a plane. Principal component analysis is a method of multivariate analysis that synthesizes a variable called the principal component that best represents the overall variability with a small number of uncorrelated variables from a large number of correlated variables.
 プロセッサ51は、平面からの距離が所定距離を超えて離れている特徴点e1をアウトライアとし、所定距離以内である特徴点e1をインライアとして血管径の推定に採用する。 The processor 51 adopts the feature point e1 whose distance from the plane is more than a predetermined distance as an outliner and the feature point e1 which is within a predetermined distance as an inlier for estimating the blood vessel diameter.
 プロセッサ51は、複数の特徴点e1を基に、楕円フィッティングを行って血管径を推定する(S58)。楕円フィッティングでは、複数の特徴点e1をx-y平面に投影し、x-y平面に投影された2次元点に対し、RANSAC(Random Sample Consensus)を利用したフィッティングが行われる。RANSACは、外れ値を含まないように、楕円パラメータを推定する手法である。 The processor 51 estimates the blood vessel diameter by performing elliptical fitting based on the plurality of feature points e1 (S58). In the elliptical fitting, a plurality of feature points e1 are projected onto the xy plane, and the two-dimensional points projected on the xy plane are fitted using RANSAC (Random Sample Consensus). RANSAC is a method of estimating elliptical parameters so as not to include outliers.
 プロセッサ51は、RANSACを利用することで、複数の2次元点に外れ値が含まれても、その影響を抑えて楕円を推定できる。したがって、楕円の推定精度が向上する。具体的に、プロセッサ51は、複数の2次元点を入力し、入力した複数の2次元点の中から5点をランダムに抽出する。プロセッサ51は、抽出した5点を用いて楕円パラメータを求める。楕円パラメータは、長径および短径を含む。プロセッサ51は、各2次元点から楕円弧までの最短距離を算出し、その距離が閾値より小さくなる2次元点の数(インライア数)を計数し、メモリ52に記録する。プロセッサ51は、入力した複数の2次元点の中から別の5点を抽出し、上記と同様の手順で、インライア数を計数する。プロセッサ51は、計数したインライア数がメモリ52に記録されたインライア数を超える場合、メモリ52に記録されたインライア数を更新する。プロセッサ51は、同様の手順を繰り返し、メモリ52に記録されるインライア数が一定回数連続して更新されなかった場合、つまり最大となるインライア数が得られた場合、2次元点の抽出を終了する。プロセッサ51は、全ての2次元点に対し、インライア数が最大となる楕円パラメータを用いて、各2次元点から楕円弧までの最短距離が閾値より小さくなる2次元点をインライアとして決定する。プロセッサ51は、決定した全てのインライアを用いて、楕円パラメータを求める。全てのインライアを用いて楕円パラメータを求めた結果、プロセッサ51は、楕円パラメータの1つである長径を血管径φ1と推定する。プロセッサ51は、血管径を長径とすることで、血管に挿通可能なステントのサイズを適正に決定できる。 By using RANSAC, the processor 51 can estimate an ellipse by suppressing the influence of outliers even if a plurality of two-dimensional points include outliers. Therefore, the estimation accuracy of the ellipse is improved. Specifically, the processor 51 inputs a plurality of two-dimensional points and randomly extracts five points from the input two-dimensional points. The processor 51 obtains an ellipse parameter using the extracted five points. Elliptical parameters include major and minor diameters. The processor 51 calculates the shortest distance from each two-dimensional point to the elliptical arc, counts the number of two-dimensional points (inlier number) whose distance is smaller than the threshold value, and records it in the memory 52. The processor 51 extracts another five points from the plurality of input two-dimensional points, and counts the number of inliers in the same procedure as described above. When the counted number of inliers exceeds the number of inliers recorded in the memory 52, the processor 51 updates the number of inliers recorded in the memory 52. The processor 51 repeats the same procedure, and ends the extraction of the two-dimensional points when the number of inliers recorded in the memory 52 is not continuously updated a certain number of times, that is, when the maximum number of inliars is obtained. .. The processor 51 uses an elliptical parameter that maximizes the number of inliers for all two-dimensional points, and determines as an inlyre a two-dimensional point in which the shortest distance from each two-dimensional point to the elliptical arc is smaller than the threshold value. Processor 51 uses all the determined aligners to determine the elliptical parameters. As a result of obtaining the ellipse parameter using all the aligners, the processor 51 estimates that the major axis, which is one of the ellipse parameters, is the blood vessel diameter φ1. The processor 51 can appropriately determine the size of the stent that can be inserted into the blood vessel by setting the diameter of the blood vessel to be the major diameter.
 なお、ここでは、プロセッサ51は、特徴点に対応する対応点をテンプレートマッチングによって取得したが、例えば第(n-1)番目フレームの特徴点および第n番目フレームの対応点を用いて、ディープラーニングによる機械学習を行い、機械学習の結果生成された学習済みモデルを使用し、第(n-1)番目フレームの特徴点に対応する第n番目フレームの対応点を取得してもよい。 Here, the processor 51 acquires the corresponding points corresponding to the feature points by template matching. For example, the processor 51 uses the feature points of the (n-1) th frame and the corresponding points of the nth frame for deep learning. The machine learning by the above is performed, and the trained model generated as a result of the machine learning may be used to acquire the corresponding points of the nth frame corresponding to the feature points of the (n-1) th frame.
 また、プロセッサ51は、楕円パラメータの長径を血管径として推定したが、短径を血管径として推定してもよい。また、プロセッサ51は、長径と短径を用い、例えば長径と短径を加算しその半分の値を用いて、血管径を推定してもよい。 Further, although the processor 51 estimates the major axis of the elliptical parameter as the blood vessel diameter, the minor axis may be estimated as the blood vessel diameter. Further, the processor 51 may use the major axis and the minor axis, for example, add the major axis and the minor axis and use half the value to estimate the blood vessel diameter.
 オートプルバック装置80によって血管内視鏡100が定速で引き戻される際、PC50は、血管内視鏡カメラ10で撮像される、血管内視鏡100の位置情報に対応する血管画像を順次取得し、ストレージ55に短軸断面の血管画像として記録する。ここで、短軸断面とは、血管を略円筒形状とみなした場合に、血管径の方向(つまり直径方向である短軸方向)の断面を示す。また、短軸方向に垂直な方向を長軸方向と定義する。また、PC50は、オートプルバック装置80から順次入力される血管内視鏡100の位置情報を基に、血管の測定長を算出する。PC50は、ストレージ55に記録された複数枚の短軸断面の血管画像を基に、血管の3次元画像を生成し、血管の3次元画像を血管の長軸方向に沿って切断することで長軸断面の血管画像を生成する。長軸断面とは、同様に血管を略円筒形状とみなした場合に、血管の長さ方向(長手方向)の断面を示す。PC50は、血管径の測定情報、短軸断面の血管画像とともに、長軸断面の血管画像をモニタ70に表示する。 When the blood vessel endoscope 100 is pulled back at a constant speed by the auto pullback device 80, the PC 50 sequentially acquires blood vessel images corresponding to the position information of the blood vessel endoscope 100 captured by the blood vessel endoscope camera 10. Record as a blood vessel image of a short axis cross section in the storage 55. Here, the minor axis cross section indicates a cross section in the direction of the blood vessel diameter (that is, the minor axis direction which is the diameter direction) when the blood vessel is regarded as having a substantially cylindrical shape. Further, the direction perpendicular to the minor axis direction is defined as the major axis direction. Further, the PC 50 calculates the measurement length of the blood vessel based on the position information of the blood vessel endoscope 100 sequentially input from the auto pullback device 80. The PC 50 generates a three-dimensional image of a blood vessel based on a plurality of short-axis cross-sectional blood vessel images recorded in the storage 55, and cuts the three-dimensional image of the blood vessel along the long axis direction of the blood vessel to lengthen the blood vessel. Generates a blood vessel image of the axial cross section. Similarly, the major axis cross section indicates a cross section in the longitudinal direction (longitudinal direction) of a blood vessel when the blood vessel is regarded as having a substantially cylindrical shape. The PC 50 displays the blood vessel image of the long axis cross section on the monitor 70 together with the measurement information of the blood vessel diameter and the blood vessel image of the short axis cross section.
 図6は、モニタ70に表示される画面例を示す図である。モニタ70に表示される画面GMには、例えば、血管径の測定結果と、短軸断面の血管画像GZ5と、長軸断面の血管画像GZ6とが同時に表示される。血管径の測定結果の情報は、例えば、撮像日付:2019年10月1日、患者ID:ABC100、計測値 血管内径:2.5mm、血管長:30mm、狭窄部内径:2.0mmを含む。短軸断面の血管画像GZ5には、血管径(血管内径):2.5mmを表すインジケータi1が数値とともに重畳される。長軸断面の血管画像GZ6には、測定長を表すインジケータi2が長さ13mmの数値とともに重畳される。 FIG. 6 is a diagram showing an example of a screen displayed on the monitor 70. On the screen GM displayed on the monitor 70, for example, the measurement result of the blood vessel diameter, the blood vessel image GZ5 having a short axis cross section, and the blood vessel image GZ6 having a long axis cross section are displayed at the same time. Information on the measurement result of the blood vessel diameter includes, for example, imaging date: October 1, 2019, patient ID: ABC100, measured value, blood vessel inner diameter: 2.5 mm, blood vessel length: 30 mm, stenosis inner diameter: 2.0 mm. An indicator i1 representing a blood vessel diameter (blood vessel inner diameter): 2.5 mm is superimposed on the blood vessel image GZ5 having a short axis cross section together with a numerical value. An indicator i2 indicating the measurement length is superimposed on the blood vessel image GZ6 having a long axis cross section together with a numerical value having a length of 13 mm.
 実施の形態1に係る血管内視鏡システム5では、中継器20は、血管内視鏡100から提供(送信)された血管画像のデータ信号と、オートプルバック装置80から提供(送信)された血管内視鏡100の位置情報および速度情報のデータとを結合する。中継器20は、結合データを画像コンソール90のPC50に送信する。PC50は、複数枚の血管画像の中から、血管内視鏡100の位置情報と血管内視鏡100の撮像位置の速度情報とを用いて、同一の一定速度で撮像された、撮像位置の異なる複数枚の血管画像を時系列に順次選択して構成される等速動画を作成する。PC50は、等速動画を構成する少なくとも2枚の血管画像を用いて、血管径を算出する(図3参照)。血管径の算出では、血管画像に映る測定点の中から円状に配置した特徴点が検出され、2枚の血管画像間における特徴点の変位量が用いられる。同一の一定速度で撮像された(等速)の2枚の血管画像を用いることで、特徴点の変位量のバラツキが抑えられ、血管径の算出精度が向上する。したがって、医師等のユーザは、血管が狭窄している血管箇所にステントを挿入する場合に、ステントのサイズを適正に選択できる。また、中継器20は、血管内視鏡カメラ10で撮像された血管画像のデータ信号と、オートプルバック装置80がカテーテル200(言い換えると、血管内視鏡100)を引き戻す際の血管内視鏡100の位置情報および速度情報のデータとを同期したタイミングで取得し、これらのデータを結合するので、血管画像と血管内視鏡100の位置情報および速度情報との対応付けが容易である。 In the blood vessel endoscopy system 5 according to the first embodiment, the repeater 20 uses the blood vessel image data signal provided (transmitted) from the blood vessel endoscope 100 and the blood vessel provided (transmitted) from the auto pullback device 80. The data of the position information and the speed information of the endoscope 100 are combined. The repeater 20 transmits the combined data to the PC 50 of the image console 90. The PC 50 is imaged at the same constant speed using the position information of the blood vessel endoscope 100 and the speed information of the imaging position of the blood vessel endoscope 100 from a plurality of blood vessel images, and the imaging positions are different. Create a constant velocity moving image composed by sequentially selecting multiple blood vessel images in chronological order. The PC 50 calculates the blood vessel diameter using at least two blood vessel images constituting the constant velocity moving image (see FIG. 3). In the calculation of the blood vessel diameter, the feature points arranged in a circle are detected from the measurement points reflected in the blood vessel image, and the displacement amount of the feature points between the two blood vessel images is used. By using two (constant velocity) blood vessel images taken at the same constant speed, the variation in the displacement amount of the feature points is suppressed, and the calculation accuracy of the blood vessel diameter is improved. Therefore, a user such as a doctor can appropriately select the size of the stent when inserting the stent into the blood vessel portion where the blood vessel is narrowed. Further, the repeater 20 uses the data signal of the blood vessel image captured by the blood vessel endoscope camera 10 and the blood vessel endoscope 100 when the auto pullback device 80 pulls back the catheter 200 (in other words, the blood vessel endoscope 100). Since the position information and the speed information data of the above are acquired at the synchronized timing and these data are combined, it is easy to associate the blood vessel image with the position information and the speed information of the blood vessel endoscope 100.
 このように、血管内視鏡システム5では、血管内視鏡100は、先端側が被検体の血管内に挿入されかつ基端側がオートプルバック装置80により一定速度で引かれ、被検体の血管を撮像可能な血管内視鏡カメラ10が先端側に実装される。中継器20は、血管内視鏡100により撮像された血管画像のデータとオートプルバック装置80から送られる血管内視鏡100の位置情報および速度情報のデータとを入力して結合する。PC50は、中継器20から送られる血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータをストレージ55に保存する。また、PC50は、ストレージ55に保存された血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータを用いて血管画像の等速動画を生成し、等速動画を構成する複数枚の血管画像に基づいて血管の血管径を算出する。 As described above, in the blood vessel endoscopy system 5, the blood vessel endoscope 100 is inserted into the blood vessel of the subject at the distal end side and pulled at a constant speed by the auto pullback device 80 at the proximal end side to image the blood vessel of the subject. A possible vascular endoscopic camera 10 is mounted on the tip side. The repeater 20 inputs and combines the data of the blood vessel image captured by the blood vessel endoscope 100 and the data of the position information and the speed information of the blood vessel endoscope 100 sent from the auto pullback device 80. The PC 50 stores in the storage 55 data in which the blood vessel image sent from the repeater 20 and the position information and the velocity information of the blood vessel endoscope 100 are combined. Further, the PC 50 generates a constant velocity moving image of the blood vessel image using the data obtained by combining the blood vessel image stored in the storage 55 with the position information and the velocity information of the blood vessel endoscope 100, and constitutes the constant velocity moving image. The blood vessel diameter of a blood vessel is calculated based on a plurality of blood vessel images.
 これにより、血管内視鏡システム5は、医師等のユーザによるスムーズな医療行為の進行を遮ることなく、血管内視鏡の撮像画像を利用して患者等の被検体の観察部位である血管の血管径を高精度に測定できる。したがって、血管内視鏡システム5は、医師等のユーザによる被検体内に挿通される適切な径のステントの選択を支援することができる。特に、中継器20が血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとを結合するので、PC50は、血管画像のデータ取得と同期(一致)したタイミングで取得した位置情報および速度情報のデータを用いて、血管画像の等速動画をリアルタイムに生成し、被検体の観察部位である血管の血管径を高精度に算出できる。 As a result, the vascular endoscopy system 5 uses the image captured by the vascular endoscope without interrupting the smooth progress of medical practice by a user such as a doctor, and the blood vessel, which is an observation site of a subject such as a patient, is used. The blood vessel diameter can be measured with high accuracy. Therefore, the vascular endoscopy system 5 can assist a user such as a doctor in selecting a stent having an appropriate diameter to be inserted into a subject. In particular, since the repeater 20 combines the blood vessel image data with the position information and velocity information data of the blood vessel endoscope 100, the PC 50 acquires the position information at the timing synchronized (matched) with the blood vessel image data acquisition. And, using the data of the speed information, a constant velocity moving image of the blood vessel image can be generated in real time, and the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated with high accuracy.
 また、PC50は、血管の血管径の測定結果と、血管径を表すインジケータi1と、その数値(つまり血管径の数値)とを血管画像GZ1に重畳してモニタ70に表示する。これにより、医師等のユーザは、血管径を視覚的に分かり易く把握できる。 Further, the PC 50 superimposes the measurement result of the blood vessel diameter of the blood vessel, the indicator i1 indicating the blood vessel diameter, and the numerical value (that is, the numerical value of the blood vessel diameter) on the blood vessel image GZ1 and displays it on the monitor 70. As a result, a user such as a doctor can visually grasp the blood vessel diameter in an easy-to-understand manner.
 また、PC50は、入力される複数の短軸断面の血管画像GZ5を用いて、血管の長軸断面の血管画像GZ6(長軸断面画像の一例)を生成し、短軸断面の血管画像GZ5と長軸断面の血管画像GZ6とを対応付けてモニタ70に表示する。これにより、ユーザは、血管の長軸方向に沿って血管径を把握することができる。したがって、ユーザは、血管が長軸方向に歪んでいる状態であっても、血管径を把握でき、血管の長軸方向の歪みを考慮して適切なステントを選択できる。 Further, the PC 50 uses the input vascular images GZ5 of a plurality of short-axis cross sections to generate a vascular image GZ6 (an example of a long-axis cross-section image) of the long-axis cross section of the blood vessel, and together with the vascular image GZ5 of the short-axis cross section It is displayed on the monitor 70 in association with the blood vessel image GZ6 having a long-axis cross section. This allows the user to grasp the blood vessel diameter along the long axis direction of the blood vessel. Therefore, the user can grasp the diameter of the blood vessel even when the blood vessel is distorted in the long axis direction, and can select an appropriate stent in consideration of the distortion in the long axis direction of the blood vessel.
 また、PC50は、オートプルバック装置80から順次入力される血管内視鏡100の位置情報および速度情報のデータに基づいて血管の測定長を算出し、測定長の算出結果を示すインジケータi2をその数値とともに長軸断面の血管画像GZ6に重畳して表示する。これにより、ユーザは、観察部位である、例えば血管の狭窄部の長さを視覚的にかつ正確に把握できる。 Further, the PC 50 calculates the measurement length of the blood vessel based on the data of the position information and the speed information of the blood vessel endoscope 100 sequentially input from the auto pullback device 80, and sets the indicator i2 indicating the calculation result of the measurement length as the numerical value. It is also superimposed and displayed on the blood vessel image GZ6 of the long axis cross section. This allows the user to visually and accurately grasp the length of the observation site, for example, the stenosis of the blood vessel.
 また、PC50は、等速動画を構成する複数枚の血管画像の中から、血管内視鏡100の位置情報に対応する2枚の血管画像を選択し、これら2枚の血管画像のそれぞれに対して円状に配置される複数個の特徴点のそれぞれの移動方向から消失点を推定し、複数個の特徴点の中から、オートプルバック装置80による血管内視鏡100の移動に基づく消失点の方向へのベクトルを有する有効特徴点を抽出し、血管内視鏡100の移動距離に対応する有効特徴点の移動変化量を用いて有効特徴点の3次元座標を算出し、有効特徴点の3次元座標に基づいて、血管の血管径を算出する。これにより、血管内視鏡システム5は、血管画像に配置された、血管径の測定に有効な特徴点を用いて、血管径を正確に測定できる。 Further, the PC 50 selects two blood vessel images corresponding to the position information of the vascular endoscope 100 from a plurality of blood vessel images constituting the constant velocity moving image, and for each of these two blood vessel images. The disappearance points are estimated from the movement directions of the plurality of feature points arranged in a circular shape, and the disappearance points based on the movement of the angioscope 100 by the auto pullback device 80 are selected from the plurality of feature points. The effective feature points having a vector in the direction are extracted, the three-dimensional coordinates of the effective feature points are calculated using the movement change amount of the effective feature points corresponding to the movement distance of the angioscope 100, and 3 of the effective feature points are calculated. The diameter of the blood vessel is calculated based on the three-dimensional coordinates. Thereby, the blood vessel endoscopy system 5 can accurately measure the blood vessel diameter by using the feature points arranged on the blood vessel image and effective for measuring the blood vessel diameter.
 また、PC50は、ストレージ55に保存された複数の血管画像の中から、血管内視鏡100の位置情報が異なる、速度情報が同一である血管画像を複数選択し、選択された複数の血管画像を用いて等速動画を生成する。これにより、血管内視鏡システム5は、等速動画を構成する、速度情報が同一である少なくとも2枚の血管画像を用いて血管径を高精度に算出できる。また、等速動画が作成される血管の長軸方向に沿って血管径が算出されるので、ユーザは、血管の長軸方向に沿って血管径を正確に把握でき、血管内に挿入するステントの径を適正に選択できる。 Further, the PC 50 selects a plurality of blood vessel images having different position information of the blood vessel endoscope 100 and the same velocity information from a plurality of blood vessel images stored in the storage 55, and a plurality of selected blood vessel images. To generate a constant velocity moving image using. Thereby, the blood vessel endoscopy system 5 can calculate the blood vessel diameter with high accuracy by using at least two blood vessel images having the same velocity information, which constitute a constant velocity moving image. In addition, since the blood vessel diameter is calculated along the long axis direction of the blood vessel in which the constant velocity moving image is created, the user can accurately grasp the blood vessel diameter along the long axis direction of the blood vessel, and the stent to be inserted into the blood vessel. The diameter of can be selected appropriately.
 なお、オートプルバック装置80は、上述した一定速度でカテーテル200(つまり、血管内視鏡100)を引く自動モード以外に、医師等のユーザの判断でマニュアルモードにより作動させる(言い換えると、カテーテル200(つまり、血管内視鏡100)を引く)ことができる。マニュアルモードでは、オートプルバック装置80は、測定長の範囲内でカテーテル200(つまり、血管内視鏡100)を可変速度で引き戻す(手動になるので一定速度にはならない)際に一定時間ごとに計測した、血管内視鏡100の位置情報および加速度情報(つまり、一定時間ごとの可変速度の時間変化により求まる加速度の情報)を取得する。オートプルバック装置80は、血管内視鏡100の位置情報および距離情報のデータを中継器20に出力する。PC50は、血管内視鏡100の位置情報に加えて距離情報(例えば血管の測定長)をモニタ70に表示するようにしてもよい。 The auto pullback device 80 is operated in a manual mode at the discretion of a user such as a doctor, in addition to the automatic mode in which the catheter 200 (that is, the vascular endoscope 100) is pulled at a constant speed described above (in other words, the catheter 200 (in other words, the catheter 200 (in other words)). That is, the angioscope 100) can be pulled). In the manual mode, the auto-pullback device 80 measures at regular intervals when the catheter 200 (that is, the angioscope 100) is pulled back at a variable speed within the measurement length range (because it is manual, it does not reach a constant speed). The position information and acceleration information of the angioscope 100 (that is, the acceleration information obtained by the time change of the variable speed at regular time intervals) are acquired. The auto pullback device 80 outputs the data of the position information and the distance information of the blood vessel endoscope 100 to the repeater 20. The PC 50 may display the distance information (for example, the measurement length of the blood vessel) on the monitor 70 in addition to the position information of the blood vessel endoscope 100.
 また、マニュアルモードでは、オートプルバック装置80は、測定長の範囲内でカテーテル200(つまり、血管内視鏡100)を可変速度で引き戻す(手動になるので一定速度にはならない)際に一定時間ごとに計測した、血管内視鏡100の位置情報および加速度情報と速度情報とを取得し、血管内視鏡100の位置情報とフレーム位置を合わせた撮像位置情報のデータを中継器20に出力し、モニタ70に表示するようにしてもよい。 Further, in the manual mode, the auto pullback device 80 pulls back the catheter 200 (that is, the vascular endoscope 100) at a variable speed within the measurement length range (because it is manual, it does not reach a constant speed) at regular intervals. The position information, acceleration information, and velocity information of the vascular endoscope 100 measured in the above are acquired, and the data of the imaging position information in which the position information of the vascular endoscope 100 and the frame position are combined is output to the repeater 20. It may be displayed on the monitor 70.
(実施の形態2)
 実施の形態1では、中継器20が、血管内視鏡カメラ10で撮像された血管画像のデータと、オートプルバック装置80がカテーテル200(言い換えると、血管内視鏡100)を引き戻す際の血管内視鏡100の位置情報および速度情報のデータを取得し、これらの同期したデータ(つまり、取得タイミングが一致するデータ)を結合した。実施の形態2では、PC50Aが、血管内視鏡カメラ10で撮像された血管画像のデータと、オートプルバック装置80がカテーテル200(言い換えると、血管内視鏡100)を引き戻す際の血管内視鏡100の位置情報および速度情報のデータを別々に入力する例を説明する。この場合、血管画像のデータと、血管内視鏡100の位置情報および速度情報のデータとは、PC50への入力タイミングによっては同期したデータ(つまり、取得タイミングが一致するデータ)になるとは限らない。このため、実施の形態2では、PC50Aは、例えば、血管画像のデータ取得に時間がかかる場合、血管内視鏡100の位置情報および速度情報のデータ取得時刻に所定の遅延時間(ディレイ)を加えることで、これらのデータの対応付け(つまり、上述した同期したデータの生成)が可能となる。ここでは、PC50Aは、入力された血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとのそれぞれに、PC50Aに入力された時刻を示すタイムスタンプを付与し、これらのデータを対応付ける。
(Embodiment 2)
In the first embodiment, the repeater 20 is inside the blood vessel when the data of the blood vessel image captured by the blood vessel endoscope camera 10 and the auto pullback device 80 pull back the catheter 200 (in other words, the blood vessel endoscope 100). Data of position information and speed information of the endoscope 100 were acquired, and these synchronized data (that is, data having the same acquisition timing) were combined. In the second embodiment, the PC 50A uses the blood vessel image data captured by the blood vessel endoscope camera 10, and the auto pullback device 80 pulls back the catheter 200 (in other words, the blood vessel endoscope 100). An example of inputting 100 position information and speed information data separately will be described. In this case, the blood vessel image data and the position information and speed information data of the blood vessel endoscope 100 are not always synchronized data (that is, data whose acquisition timings match) depending on the input timing to the PC 50. .. Therefore, in the second embodiment, the PC50A adds a predetermined delay time to the data acquisition time of the position information and the speed information of the angioscope 100, for example, when it takes time to acquire the data of the blood vessel image. This makes it possible to associate these data (that is, to generate the synchronized data described above). Here, the PC50A assigns a time stamp indicating the time input to the PC50A to each of the input blood vessel image data and the position information and speed information data of the blood vessel endoscope 100, and these data are attached. Correspond.
 図7は、実施の形態2に係る血管内視鏡システム5Aの構成例を示す図である。実施の形態2に係る血管内視鏡システム5Aの構成は、実施の形態1に係る血管内視鏡システム5とほぼ同一の構成を有する。実施の形態2に係る血管内視鏡システム5Aの構成の説明において、実施の形態1に係る血管内視鏡システム5の構成と同一の構成については同一の符号を付与して説明を簡略化あるいは省略し、異なる内容について説明する。 FIG. 7 is a diagram showing a configuration example of the blood vessel endoscopy system 5A according to the second embodiment. The configuration of the vascular endoscopy system 5A according to the second embodiment has substantially the same configuration as the vascular endoscopy system 5 according to the first embodiment. In the description of the configuration of the vascular endoscopy system 5A according to the second embodiment, the same reference numerals are given to the same configurations as the configurations of the vascular endoscopy system 5 according to the first embodiment to simplify the description. It will be omitted and different contents will be explained.
 血管内視鏡システム5Aでは、オートプルバック装置80は、カテーテル200(言い換えると、血管内視鏡100)を引き戻す際の血管内視鏡100の位置情報および速度情報のデータを画像コンソール90のPC50Aに送信する。血管内視鏡カメラ10で撮像される血管画像のデータは、実施の形態1と同様に中継器20Aに送られる。中継器20Aは、血管画像のデータを画像コンソール90のカメラコントロールユニット30に送信する。 In the vascular endoscope system 5A, the auto pullback device 80 transfers the position information and speed information data of the vascular endoscope 100 when pulling back the catheter 200 (in other words, the vascular endoscope 100) to the PC 50A of the image console 90. Send. The data of the blood vessel image captured by the blood vessel endoscopy camera 10 is sent to the repeater 20A as in the first embodiment. The repeater 20A transmits the blood vessel image data to the camera control unit 30 of the image console 90.
 PC50Aのプロセッサ51は、オートプルバック装置80から受信した血管内視鏡100の位置情報および速度情報のデータにタイムスタンプを付与する。このタイムスタンプは、例えばプロセッサ51がオートプルバック装置80から受け取ったデータをストレージ55に保存した時の時刻を示す。また、PC50Aのプロセッサ51は、血管内視鏡100から中継器20Aおよびカメラコントロールユニット30を介して入力した血管画像のデータにタイムスタンプを付与する。このタイムスタンプは、例えばプロセッサ51がカメラコントロールユニット30から受け取ったデータをストレージ55に保存した時の時刻を示す。 The processor 51 of the PC 50A adds a time stamp to the data of the position information and the speed information of the vascular endoscope 100 received from the auto pullback device 80. This time stamp indicates, for example, the time when the processor 51 stores the data received from the auto pullback device 80 in the storage 55. Further, the processor 51 of the PC 50A adds a time stamp to the blood vessel image data input from the blood vessel endoscope 100 via the repeater 20A and the camera control unit 30. This time stamp indicates, for example, the time when the processor 51 stores the data received from the camera control unit 30 in the storage 55.
 PC50Aのプロセッサ51は、血管画像のデータの取得と血管内視鏡100の位置情報および速度情報のデータの取得との時間差が予め分かっている場合、一方のデータの取得時間に遅延時間を加算もしくは減算することで、これらのデータを対応付ける。また、血管画像のデータの取得と、血管内視鏡100の位置情報および速度情報のデータの取得とに特に時間差が無く、単に異なるタイミングでこれらのデータがPC50Aに入力される場合、PC50Aのプロセッサ51は、タイムスタンプが略一致する、これらのデータを対応付ける。PC50Aのプロセッサ51は、異なる血管内視鏡100の位置情報ごとに、対応付けられた血管画像のデータと、血管内視鏡の位置情報および速度情報のデータとをストレージ55に順次記録する。 When the time difference between the acquisition of the blood vessel image data and the acquisition of the position information and the speed information data of the blood vessel endoscope 100 is known in advance, the processor 51 of the PC50A adds a delay time to the acquisition time of one of the data or adds a delay time. By subtracting, these data are associated. Further, when there is no particular time difference between the acquisition of the blood vessel image data and the acquisition of the position information and speed information data of the angioscope 100, and these data are simply input to the PC 50A at different timings, the processor of the PC 50A 51 associates these data having substantially the same time stamps. The processor 51 of the PC 50A sequentially records the data of the associated blood vessel image and the data of the position information and the speed information of the blood vessel endoscope in the storage 55 for each position information of the different blood vessel endoscope 100.
 図8は、実施の形態2に係る血管内視鏡システム5Aの動作手順の一例を示すフローチャートである。図8の説明において、図2に示す処理と同一の処理については、同一のステップ番号を付与して説明を簡略化あるいは省略し、異なる内容について説明する。 FIG. 8 is a flowchart showing an example of the operation procedure of the blood vessel endoscopy system 5A according to the second embodiment. In the description of FIG. 8, the same process as that shown in FIG. 2 is given the same step number to simplify or omit the description, and different contents will be described.
 図8において、ユーザが画像コンソール90の操作部54の起動スイッチを押下すると、血管内視鏡システム5Aは起動する(S1)。血管内視鏡システム5Aが起動すると、オートプルバック装置80、中継器20A、血管内視鏡100、および画像コンソール90は、それぞれ動作を開始する。 In FIG. 8, when the user presses the start switch of the operation unit 54 of the image console 90, the blood vessel endoscopy system 5A is started (S1). When the vascular endoscope system 5A is activated, the auto pullback device 80, the repeater 20A, the vascular endoscope 100, and the image console 90 each start operating.
 ユーザは、オートプルバック装置80に対し、血管内に挿入した血管内視鏡100を引き戻すための計測の開始位置および終了位置を設定する。 The user sets the start position and the end position of the measurement for pulling back the vascular endoscope 100 inserted into the blood vessel for the auto pullback device 80.
 オートプルバック装置80は、計測の開始位置および終了位置の範囲(測定長)内で血管内視鏡100を引き戻しながら血管内視鏡100で血管内を撮像する際に計測した、位置情報および速度情報を取得する(S11)。オートプルバック装置80は、位置情報および速度情報のデータを画像コンソール90に出力する(S12A)。PC50Aのプロセッサ51は、血管内視鏡100の位置情報および速度情報のデータにタイムスタンプを付与する。このタイムスタンプは、例えばプロセッサ51がオートプルバック装置80から受け取ったデータをストレージ55に保存した時の時刻を示す。 The auto pullback device 80 measures the position information and the velocity information measured when the inside of the blood vessel is imaged by the blood vessel endoscope 100 while pulling back the blood vessel endoscope 100 within the range (measurement length) of the start position and the end position of the measurement. (S11). The auto pullback device 80 outputs position information and speed information data to the image console 90 (S12A). The processor 51 of the PC 50A adds a time stamp to the data of the position information and the speed information of the blood vessel endoscope 100. This time stamp indicates, for example, the time when the processor 51 stores the data received from the auto pullback device 80 in the storage 55.
 一方で、血管内視鏡100は、血管内視鏡カメラ10で撮像された血管画像のデータを取得する(S21)。血管内視鏡100は、血管画像のデータを中継器20に出力する(S22)。 On the other hand, the blood vessel endoscope 100 acquires the data of the blood vessel image captured by the blood vessel endoscope camera 10 (S21). The blood vessel endoscope 100 outputs the blood vessel image data to the repeater 20 (S22).
 一方で、中継器20は、血管内視鏡100から血管画像のデータを入力する(S31)。中継器20は、血管画像のデータを画像コンソール90に送信する(S34A)。画像コンソール90では、カメラコントロールユニット30は、血管画像のデータを受信する(S41A)。PC50Aのプロセッサ51は、カメラコントロールユニット30が受信した血管画像のデータに対し、タイムスタンプを付与する。上述したように、このタイムスタンプは、例えばプロセッサ51がカメラコントロールユニット30から受け取ったデータをストレージ55に保存した時の時刻を示す。 On the other hand, the repeater 20 inputs blood vessel image data from the blood vessel endoscope 100 (S31). The repeater 20 transmits the blood vessel image data to the image console 90 (S34A). In the image console 90, the camera control unit 30 receives the blood vessel image data (S41A). The processor 51 of the PC 50A adds a time stamp to the blood vessel image data received by the camera control unit 30. As described above, this time stamp indicates, for example, the time when the processor 51 stores the data received from the camera control unit 30 in the storage 55.
 一方で、PC50Aは、両者のタイムスタンプを基に、血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとを対応付ける。この対応付けは、例えば一方のデータファイルのメタデータに他方のデータファイルの識別情報を含めることで行われる。PC50Aは、対応付けた血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとをストレージ55に蓄積する。PC50Aは、対応付けられた血管画像のデータと血管内視鏡100の位置情報および速度情報のデータを基に、等速動画を作成する(S42A)。等速動画の作成は、実施の形態1と同様である。 On the other hand, the PC50A associates the blood vessel image data with the position information and velocity information data of the blood vessel endoscope 100 based on the time stamps of both. This association is performed, for example, by including the identification information of the other data file in the metadata of one data file. The PC 50A stores the associated blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 in the storage 55. The PC50A creates a constant velocity moving image based on the associated blood vessel image data and the position information and velocity information data of the blood vessel endoscope 100 (S42A). The creation of the constant velocity moving image is the same as that of the first embodiment.
 PC50Aは、等速動画を構成する2枚の血管画像を用いて、血管径を算出する(S43)。また、PC50Aは、血管画像と血管内視鏡100の位置情報および速度情報とを別々に表示するために、対応付けられた血管画像データと血管内視鏡100の位置情報および速度情報データを分離する(S44)。血管径の算出は、実施の形態1と同様である。この後、PC50Aは、血管画像、位置情報および速度情報、および血管径をモニタ70に表示する(S45)。この表示態様は、実施の形態1と同様である。 The PC50A calculates the blood vessel diameter using two blood vessel images constituting the constant velocity moving image (S43). Further, the PC 50A separates the associated blood vessel image data and the position information and speed information data of the blood vessel endoscope 100 in order to separately display the blood vessel image and the position information and speed information of the blood vessel endoscope 100. (S44). The calculation of the blood vessel diameter is the same as in the first embodiment. After that, the PC 50A displays the blood vessel image, the position information and the velocity information, and the blood vessel diameter on the monitor 70 (S45). This display mode is the same as that of the first embodiment.
 実施の形態2に係る血管内視鏡システム5Aでは、PC50Aは、血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとの対応付けをソフトウェア処理で行う。したがって、中継器20Aは、血管内視鏡100から取得した血管画像のデータを画像コンソール90に転送するだけでよく、中継器20Aの構成を簡略化でき、電子部品等のハードウェアを削減できる。 In the blood vessel endoscopy system 5A according to the second embodiment, the PC 50A associates the blood vessel image data with the position information and speed information data of the blood vessel endoscope 100 by software processing. Therefore, the repeater 20A only needs to transfer the blood vessel image data acquired from the blood vessel endoscope 100 to the image console 90, the configuration of the repeater 20A can be simplified, and the hardware such as electronic components can be reduced.
 以上により、血管内視鏡システム5Aでは、血管内視鏡100は、先端側が被検体の血管内に挿入されかつ基端側がオートプルバック装置80により一定速度で引かれ、被検体の血管を撮像可能な血管内視鏡カメラ10(画像センサの一例)が先端側に実装される。PC50Aは、血管内視鏡100により撮像された血管画像のデータとオートプルバック装置80から送られる血管内視鏡100の位置情報および速度情報のデータとを入力して対応付けてストレージ55に保存する。PC50Aは、ストレージ55に保存された血管画像のデータの入力タイミングと血管内視鏡100の位置情報および速度情報のデータの入力タイミングとの差分に基づいて血管画像の等速動画を生成し、等速動画を構成する複数枚の血管画像に基づいて血管の血管径を測定する。 As described above, in the blood vessel endoscopy system 5A, the vascular endoscope 100 can image the blood vessel of the subject by inserting the tip side into the blood vessel of the subject and pulling the proximal end side by the auto pullback device 80 at a constant speed. An vascular endoscopic camera 10 (an example of an image sensor) is mounted on the tip side. The PC 50A inputs and associates the data of the blood vessel image captured by the blood vessel endoscope 100 with the data of the position information and the speed information of the blood vessel endoscope 100 sent from the auto pullback device 80 and stores them in the storage 55. .. The PC50A generates a constant velocity moving image of the blood vessel image based on the difference between the input timing of the blood vessel image data stored in the storage 55 and the input timing of the position information and the speed information data of the blood vessel endoscope 100, and the like. The blood vessel diameter is measured based on a plurality of blood vessel images constituting a rapid moving image.
 これにより、血管内視鏡システム5Aは、医師等のユーザによるスムーズな医療行為の進行を遮ることなく、血管内視鏡の撮像画像を利用して患者等の被検体の観察部位である血管径を高精度に測定できる。したがって、血管内視鏡システム5Aは、被検体内に挿入される適切な径のステントの選択を支援することができる。特に、PC50Aが血管画像のデータと内視鏡の位置情報および速度情報のデータとを対応付けるので、中継器を簡単な構成にできる。 As a result, the blood vessel endoscopy system 5A uses the image captured by the blood vessel endoscope without interrupting the smooth progress of medical practice by a user such as a doctor, and has a blood vessel diameter which is an observation site of a subject such as a patient. Can be measured with high accuracy. Therefore, the vascular endoscopy system 5A can assist in the selection of a stent of appropriate diameter to be inserted into the subject. In particular, since the PC50A associates the blood vessel image data with the endoscopic position information and velocity information data, the repeater can be easily configured.
 また、PC50Aは、血管の血管径の測定結果と、血管径を表すインジケータi1と、その数値(つまり血管径の数値)とを血管画像GZ1に重畳してモニタ70に表示する。これにより、医師等のユーザは、血管径を視覚的に分かり易く把握できる。 Further, the PC50A superimposes the measurement result of the blood vessel diameter of the blood vessel, the indicator i1 indicating the blood vessel diameter, and the numerical value (that is, the numerical value of the blood vessel diameter) on the blood vessel image GZ1 and displays it on the monitor 70. As a result, a user such as a doctor can visually grasp the blood vessel diameter in an easy-to-understand manner.
 また、PC50Aは、入力される複数の短軸断面の血管画像GZ5を用いて、血管の長軸断面の血管画像GZ6(長軸断面画像の一例)を生成し、短軸断面の血管画像GZ5と長軸断面の血管画像GZ6とを対応付けてモニタ70に表示する。これにより、ユーザは、血管の長軸方向に沿って血管径を把握することができる。したがって、ユーザは、血管が長軸方向に歪んでいる状態であっても、血管径を把握でき、血管の長軸方向の歪みを考慮して適切なステントを選択できる。 Further, the PC50A generates a blood vessel image GZ6 (an example of a long axis cross section image) of a long axis cross section of a blood vessel by using a plurality of input blood vessel images GZ5 of a short axis cross section, and together with a blood vessel image GZ5 of the short axis cross section. It is displayed on the monitor 70 in association with the blood vessel image GZ6 having a long-axis cross section. This allows the user to grasp the blood vessel diameter along the long axis direction of the blood vessel. Therefore, the user can grasp the diameter of the blood vessel even when the blood vessel is distorted in the long axis direction, and can select an appropriate stent in consideration of the distortion in the long axis direction of the blood vessel.
 また、PC50Aは、オートプルバック装置80から順次入力される血管内視鏡100の位置情報および速度情報のデータに基づいて血管の測定長を算出し、測定長の算出結果を示すインジケータi2をその数値とともに長軸断面の血管画像GZ6に重畳して表示する。これにより、ユーザは、観察部位である、例えば血管の狭窄部の長さを視覚的にかつ正確に把握できる。 Further, the PC 50A calculates the measurement length of the blood vessel based on the data of the position information and the speed information of the blood vessel endoscope 100 sequentially input from the auto pullback device 80, and sets an indicator i2 indicating the calculation result of the measurement length as the numerical value. It is also superimposed and displayed on the blood vessel image GZ6 of the long axis cross section. This allows the user to visually and accurately grasp the length of the observation site, for example, the stenosis of the blood vessel.
 また、PC50Aは、等速動画を構成する複数枚の血管画像の中から、血管内視鏡100の位置情報に対応する2枚の血管画像を選択し、これら2枚の血管画像のそれぞれに対して円状に配置される複数個の特徴点のそれぞれの移動方向から消失点を推定し、複数個の特徴点の中から、オートプルバック装置80による血管内視鏡100の移動に基づく消失点の方向へのベクトルを有する有効特徴点を抽出し、血管内視鏡100の移動距離に対応する有効特徴点の移動変化量を用いて有効特徴点の3次元座標を算出し、有効特徴点の3次元座標に基づいて、血管の血管径を算出する。これにより、血管内視鏡システム5は、血管画像に配置された、血管径の測定に有効な特徴点を用いて、血管径を正確に測定できる。 Further, the PC50A selects two blood vessel images corresponding to the position information of the angioscope 100 from a plurality of blood vessel images constituting the constant velocity moving image, and for each of these two blood vessel images. The disappearance points are estimated from the movement directions of the plurality of feature points arranged in a circular shape, and the disappearance points based on the movement of the angioscope 100 by the auto pullback device 80 are selected from the plurality of feature points. The effective feature points having a vector in the direction are extracted, the three-dimensional coordinates of the effective feature points are calculated using the movement change amount of the effective feature points corresponding to the movement distance of the angioscope 100, and 3 of the effective feature points are calculated. The diameter of the blood vessel is calculated based on the three-dimensional coordinates. Thereby, the blood vessel endoscopy system 5 can accurately measure the blood vessel diameter by using the feature points arranged on the blood vessel image and effective for measuring the blood vessel diameter.
 また、PC50Aは、ストレージ55に保存された複数の血管画像の中から、血管内視鏡100の位置情報が異なる、速度情報が同一である血管画像を複数選択し、選択された複数の血管画像を用いて等速動画を生成する。これにより、血管内視鏡システム5は、等速動画を構成する、速度情報が同一である少なくとも2枚の血管画像を用いて血管径を高精度に算出できる。また、等速動画が作成される血管の長軸方向に沿って血管径が算出されるので、ユーザは、血管の長軸方向に沿って血管径を正確に把握でき、血管内に挿入するステントの径を適正に選択できる。 Further, the PC 50A selects a plurality of blood vessel images having different position information of the blood vessel endoscope 100 and the same velocity information from a plurality of blood vessel images stored in the storage 55, and a plurality of selected blood vessel images. To generate a constant velocity moving image using. Thereby, the blood vessel endoscopy system 5 can calculate the blood vessel diameter with high accuracy by using at least two blood vessel images having the same velocity information, which constitute a constant velocity moving image. In addition, since the blood vessel diameter is calculated along the long axis direction of the blood vessel in which the constant velocity moving image is created, the user can accurately grasp the blood vessel diameter along the long axis direction of the blood vessel, and the stent to be inserted into the blood vessel. The diameter of can be selected appropriately.
(実施の形態3)
 実施の形態1,2では、PC50,50Aは、結合データ(つまり、血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータ)に基づいて等速動画を作成し、等速動画を構成する少なくとも2枚の血管画像のデータを用いて、被検体の観察部位である血管内の血管径を算出した。言い換えると、PC50,50Aは、血管内の血管径を算出するために、等速動画を構成する少なくとも2枚の血管画像のデータを必要とする。そこで、実施の形態3では、PC(例えばPC50)は、結合データ(つまり、血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータ)と、被検体内に挿通されるガイドワイヤの幅方向のサイズと、予め学習処理により形成(構築)された人工知能(AI)の学習モデルとを用いて、1枚の血管画像から被検体の観察部位である血管内の血管径を算出する例を説明する。
(Embodiment 3)
In the first and second embodiments, the PCs 50 and 50A create a constant velocity moving image based on the combined data (that is, the data in which the blood vessel image and the position information and the speed information of the blood vessel endoscope 100 are combined), and the like. The blood vessel diameter in the blood vessel, which is the observation site of the subject, was calculated using the data of at least two blood vessel images constituting the rapid moving image. In other words, the PCs 50 and 50A require data of at least two blood vessel images constituting a constant velocity moving image in order to calculate the blood vessel diameter in the blood vessel. Therefore, in the third embodiment, the PC (for example, PC50) is inserted into the subject with the combined data (that is, the data in which the blood vessel image and the position information and the velocity information of the blood vessel endoscope 100 are combined). Using the size of the guide wire in the width direction and the learning model of artificial intelligence (AI) formed (constructed) by the learning process in advance, the blood vessel diameter in the blood vessel, which is the observation site of the subject, is obtained from one blood vessel image. An example of calculating is described.
 実施の形態3に係る血管内視鏡システムの構成は、実施の形態1に係る血管内視鏡システム5と同一である。このため、実施の形態3に係る血管内視鏡システム5の構成の説明において、実施の形態1に係る血管内視鏡システム5の構成と同一の構成については同一の符号を付与して説明を簡略化あるいは省略し、異なる内容について説明する。なお、実施の形態3に係る血管内視鏡システム5の構成は、実施の形態2に係る血管内視鏡システム5Aと同一であってもよい。 The configuration of the vascular endoscopy system according to the third embodiment is the same as that of the vascular endoscopy system 5 according to the first embodiment. Therefore, in the description of the configuration of the vascular endoscopy system 5 according to the third embodiment, the same reference numerals are given to the same configurations as the configuration of the vascular endoscopy system 5 according to the first embodiment. It will be simplified or omitted, and different contents will be explained. The configuration of the vascular endoscopy system 5 according to the third embodiment may be the same as that of the vascular endoscopy system 5A according to the second embodiment.
 実施の形態3に係る血管内視鏡システム5では、被検体内に挿通されるガイドワイヤ150の幅方向のサイズ(言い換えると、太さ)の情報は、PC50のメモリ52あるいはストレージ55内に予め保存(いわゆるプリセット)されている。ガイドワイヤ150のサイズは、例えば0.36mm(0.14inch)である。なお、ガイドワイヤ150のサイズは、ガイドワイヤの種類によって異なるものが存在するため、固定値でなくてよく、例えば使用されるガイドワイヤの種類に応じてユーザ操作により任意に設定可能であり、上述した実施の形態1,2においても同様である。これにより、PC50は、手術あるいは検査等において使用されるガイドワイヤの種類に応じて、柔軟にガイドワイヤのサイズを調整可能となり適切な血管径の算出を支援できる。 In the vascular endoscopy system 5 according to the third embodiment, information on the width direction size (in other words, thickness) of the guide wire 150 inserted into the subject is previously stored in the memory 52 or the storage 55 of the PC 50. It has been saved (so-called preset). The size of the guide wire 150 is, for example, 0.36 mm (0.14 inch). Since the size of the guide wire 150 differs depending on the type of guide wire, it does not have to be a fixed value. For example, the size of the guide wire 150 can be arbitrarily set by user operation according to the type of guide wire used. The same applies to the first and second embodiments described above. As a result, the PC 50 can flexibly adjust the size of the guide wire according to the type of guide wire used in surgery, examination, or the like, and can support the calculation of an appropriate blood vessel diameter.
 PC50は、血管内視鏡システム5を用いて血管内視鏡100により撮像された実際の(つまり生の)血管画像中の血管径を算出する前に、所定の学習処理を経て形成(構築)された学習モデルをメモリ52あるいはストレージ55に保存してよい。所定の学習処理は、PC50で実行されてもよいし、外部装置(図示略)で実行されてもよい。学習処理が外部装置で実行された場合には、外部装置から学習処理の結果として作成された学習モデルがPC50に入力されてメモリ52あるいはストレージ55に保存される。 The PC 50 is formed (constructed) through a predetermined learning process before calculating the blood vessel diameter in an actual (that is, raw) blood vessel image imaged by the blood vessel endoscope 100 using the blood vessel endoscopy system 5. The trained learning model may be stored in the memory 52 or the storage 55. The predetermined learning process may be executed by the PC 50 or by an external device (not shown). When the learning process is executed by the external device, the learning model created as a result of the learning process from the external device is input to the PC 50 and stored in the memory 52 or the storage 55.
 PC50は、メモリ52あるいはストレージ55に保存された学習モデルに基づくAI(例えばニューラルネットワーク)を形成し、このAIにより、血管画像あるいは疑似血管画像中にピントが合うように映っている血管内壁と交差する(重なる)ガイドワイヤ150の近傍の位置を示す基準ポイント(後述参照)と、基準ポイントを含む血管の形状(例えば円形状)と同一形状を構成可能な複数の検出ポイント(後述参照)とを特定する。疑似血管画像は、実際の血管画像ではないが、血管画像と同じ被写体(つまり血管)が少なくとも配置され実質的に実際の血管画像と同等の画像とみなすことができる画像である。したがって、学習処理は、複数枚の血管画像あるいは疑似血管画像を用いて、それぞれの血管画像あるいは疑似血管画像中に基準ポイントおよび検出ポイントのそれぞれを推定(検出)可能となるための学習処理を示す。なお、PC50は、上述した基準ポイントおよび検出ポイントを特定する際に、上述したAIを必ずしも使用しなくてもよい。例えば、PC50は、中継器20から入力されてメモリ52あるいはストレージ55に保存された血管画像の中で、血管径の対象となる1枚の血管画像に対する所定の画像処理(例えば血管の形状と同一形状を構成する複数の特徴点の探索)を施すことで、基準ポイントおよび検出ポイントを特定してもよい(図11参照)。 The PC 50 forms an AI (for example, a neural network) based on a learning model stored in the memory 52 or the storage 55, and the AI intersects the inner wall of the blood vessel which is shown to be in focus in the blood vessel image or the pseudo blood vessel image. A reference point (see below) indicating a position in the vicinity of the (overlapping) guide wire 150 and a plurality of detection points (see below) capable of forming the same shape as the shape of the blood vessel (for example, a circular shape) including the reference point. Identify. The pseudo blood vessel image is not an actual blood vessel image, but is an image in which at least the same subject (that is, blood vessel) as the blood vessel image is arranged and can be regarded as an image substantially equivalent to the actual blood vessel image. Therefore, the learning process shows a learning process for being able to estimate (detect) each of the reference point and the detection point in each blood vessel image or pseudo blood vessel image by using a plurality of blood vessel images or pseudo blood vessel images. .. The PC 50 does not necessarily have to use the AI described above when specifying the reference point and the detection point described above. For example, the PC 50 performs predetermined image processing (for example, the same as the shape of a blood vessel) on one blood vessel image whose blood vessel diameter is a target in the blood vessel image input from the repeater 20 and stored in the memory 52 or the storage 55. A reference point and a detection point may be specified by performing a search for a plurality of feature points constituting the shape (see FIG. 11).
 PC50は、メモリ52あるいはストレージ55に保存された、ガイドワイヤ150の幅方向のサイズと血管内視鏡100の位置情報および速度情報に対応する1枚の血管画像とに基づいて、被検体の血管の血管径を算出する。血管径の算出の詳細な動作手順については後述する。 The PC 50 is a blood vessel of a subject based on the size of the guide wire 150 in the width direction and one blood vessel image corresponding to the position information and the velocity information of the blood vessel endoscope 100 stored in the memory 52 or the storage 55. Calculate the blood vessel diameter of. The detailed operation procedure for calculating the blood vessel diameter will be described later.
 図9は、実施の形態3に係る血管内視鏡システム5の動作手順の一例を示すフローチャートである。図9の説明において、図2に示す処理と同一の処理については、同一のステップ番号を付与して説明を簡略化あるいは省略し、異なる内容について説明する。 FIG. 9 is a flowchart showing an example of the operation procedure of the vascular endoscopy system 5 according to the third embodiment. In the description of FIG. 9, for the same process as the process shown in FIG. 2, the same step number is assigned to simplify or omit the description, and different contents will be described.
 図9において、画像コンソール90では、カメラコントロールユニット30は、中継器20により生成された結合データ(つまり、血管画像と血管内視鏡100の位置情報および速度情報とが結合されたデータ)を受信する(S41)。PC50は、この結合データをストレージ55に蓄積する。PC50は、メモリ52あるいはストレージ55に保存された、ガイドワイヤ150の幅方向のサイズの情報を読み出す(S42B)。PC50は、ステップS42Bで読み出されたガイドワイヤ150の幅方向のサイズの情報と、ステップS41で受信された結合データに含まれる1枚の血管画像(つまり、血管内視鏡100の位置情報および速度情報に対応する1枚の血管画像)とに基づいて、被検体の血管の血管径を算出する(S43B)。ステップS43Bの詳細については、図10~図17を参照して詳述する。 In FIG. 9, in the image console 90, the camera control unit 30 receives the combined data generated by the repeater 20 (that is, the combined data of the blood vessel image and the position information and the speed information of the blood vessel endoscope 100). (S41). The PC 50 stores this combined data in the storage 55. The PC 50 reads out information on the size of the guide wire 150 in the width direction stored in the memory 52 or the storage 55 (S42B). The PC 50 has information on the size of the guide wire 150 read in step S42B in the width direction and one blood vessel image (that is, position information of the blood vessel endoscope 100) included in the combined data received in step S41. The blood vessel diameter of the blood vessel of the subject is calculated based on (one blood vessel image corresponding to the velocity information) (S43B). Details of step S43B will be described in detail with reference to FIGS. 10 to 17.
 PC50は、血管画像と血管内視鏡100の位置情報および速度情報とを別々に表示するために、結合された血管画像と血管内視鏡100の位置情報および速度情報のデータを分離する(S44)。PC50は、血管画像と、血管内視鏡100の位置情報および速度情報と、血管径とをモニタ70に表示する(S45)。なお、位置情報と速度情報は、同時に表示されてもよいし、個別に表示されてもよい。この後、血管内視鏡システム5は、図2に示す動作を終了する。 The PC 50 separates the combined blood vessel image and the position information and speed information data of the blood vessel endoscope 100 in order to display the blood vessel image and the position information and speed information of the blood vessel endoscope 100 separately (S44). ). The PC 50 displays the blood vessel image, the position information and velocity information of the blood vessel endoscope 100, and the blood vessel diameter on the monitor 70 (S45). The position information and the speed information may be displayed at the same time or may be displayed individually. After this, the vascular endoscopy system 5 ends the operation shown in FIG.
 次に、実施の形態3に係る血管径の算出処理の動作手順について、図10~図17を参照して説明する。この血管径の算出処理は、主にPC50のプロセッサ51により実行される。実施の形態3では、血管径の算出処理を4通り説明する。PC50は、4通りの算出処理のうちいずれの処理を用いて血管径を算出してよい。なお、図12~図17の説明において、図10あるいは図11の要素と同一の要素については同一の符号を付与して説明を簡略化あるいは省略し、異なる内容について説明する。 Next, the operation procedure of the blood vessel diameter calculation process according to the third embodiment will be described with reference to FIGS. 10 to 17. This blood vessel diameter calculation process is mainly executed by the processor 51 of the PC 50. In the third embodiment, four ways of calculating the blood vessel diameter will be described. The PC 50 may calculate the blood vessel diameter by using any of the four calculation processes. In the description of FIGS. 12 to 17, the same elements as those of FIGS. 10 or 11 are given the same reference numerals to simplify or omit the description, and different contents will be described.
[第1の算出処理]
 図10は、実施の形態3に係る血管径の第1の算出処理の概要例を示す図である。図11は、図9のステップS43Bの血管径の第1の算出処理の動作手順の一例を示すフローチャートである。図11の処理は、PC50のメモリ52あるいはストレージ55に蓄積された結合データ(上述参照)を構成する1枚の血管画像(いわゆるフレーム)がプロセッサ51に取得されるごとに実行される。
[First calculation process]
FIG. 10 is a diagram showing a schematic example of the first calculation process of the blood vessel diameter according to the third embodiment. FIG. 11 is a flowchart showing an example of an operation procedure of the first calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 11 is executed each time a single blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
 図10では、血管内視鏡100により撮像された、被検体内の実際の(つまり生の)血管VSL1の血管画像IMG1が示される。被検体内にはガイドワイヤ150がa方向に向かって挿通されるので、血管画像IMG1にもガイドワイヤ150が映る。ガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)は、例えば0.36mm(0.14inch)である。つまり、血管画像IMG1全体のうち被写体となる略中心部分の血管VSL1の内壁にピントが合うように血管画像IMG1は撮像されているので、ピントが合っている血管VSL1の内壁(単に「血管内壁」と称する)とガイドワイヤ150とが交差する(重なる)位置(基準ポイントW1)からガイドワイヤ150を跨ぐ線分WD1の血管画像IMG1上の長さが0.36mm(0.14inch)となる。 FIG. 10 shows the blood vessel image IMG1 of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100. Since the guide wire 150 is inserted into the subject in the a direction, the guide wire 150 is also reflected in the blood vessel image IMG1. The size G1 (in other words, the thickness) of the guide wire 150 in the width direction is, for example, 0.36 mm (0.14 inch). That is, since the blood vessel image IMG1 is imaged so as to focus on the inner wall of the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG1 which is the subject, the inner wall of the blood vessel VSL1 in focus (simply "inner wall of blood vessel"". The length of the line segment WD1 straddling the guide wire 150 on the blood vessel image IMG1 from the position where the guide wire 150 intersects (overlaps) (reference point W1) is 0.36 mm (0.14 inch).
 図11において、PC50のプロセッサ51は、血管内視鏡100により撮像された実際の(つまり生の)血管画像IMG1を取得すると、血管画像IMG1中のガイドワイヤ150近傍であってかつ血管画像IMG1中のピントが合っている血管内壁に相当する基準ポイントW1を決定して位置決めする(S61)。PC50のプロセッサ51は、上述した学習モデルに基づくAIにより、基準ポイントW1を含む血管VSL1の形状と同一形状(つまり円形状)を構成すると推定される複数の検出ポイントW2,W3,W4,W5,W6,W7,W8を特定して位置決めする(S62)。例えば、基準ポイントW1および複数の検出ポイントW2~W8のそれぞれは、血管画像IMG1中のピントの合う血管内壁を構成し、等間隔に配置される。 In FIG. 11, when the processor 51 of the PC 50 acquires the actual (that is, raw) blood vessel image IMG1 imaged by the blood vessel endoscope 100, it is in the vicinity of the guide wire 150 in the blood vessel image IMG1 and in the blood vessel image IMG1. The reference point W1 corresponding to the inner wall of the blood vessel that is in focus is determined and positioned (S61). The processor 51 of the PC50 has a plurality of detection points W2, W3, W4, W5, which are estimated to form the same shape (that is, a circular shape) as the shape of the blood vessel VSL1 including the reference point W1 by AI based on the above-mentioned learning model. W6, W7, and W8 are specified and positioned (S62). For example, each of the reference point W1 and the plurality of detection points W2 to W8 constitutes an in-focus blood vessel inner wall in the blood vessel image IMG1 and is arranged at equal intervals.
 PC50のプロセッサ51は、基準ポイントW1および複数の検出ポイントW2~W8の全てを含む形状FT1(例えば、血管画像IMG1中のピントの合う血管内壁の形状に模した形状)をフィッティングする(S63)。この形状フィッティングには、例えば楕円フィッティング、プラーク型フィッティングなどのいわゆる公知のフィッティング処理が実行されてよい。 The processor 51 of the PC 50 fits the shape FT1 (for example, a shape imitating the shape of the inner wall of the blood vessel in focus in the blood vessel image IMG1) including all of the reference point W1 and the plurality of detection points W2 to W8 (S63). For this shape fitting, a so-called known fitting process such as an elliptical fitting or a plaque type fitting may be executed.
 PC50のプロセッサ51は、血管画像IMG1中のピントが合っているガイドワイヤ150のサイズG1と、血管内視鏡カメラ10からの距離が同一となる(言い換えると、ステップS63でフィッティングされた形状FT1(例えば円形状)上に存在する)基準ポイントW1から隣接の検出ポイント(例えば検出ポイントW2)までの長さとに基づいて、血管径Dmを算出する(S64)。 The processor 51 of the PC 50 has the same size G1 of the guide wire 150 in focus in the blood vessel image IMG 1 and the distance from the blood vessel endoscopy camera 10 (in other words, the shape FT1 fitted in step S63 (in other words, the shape FT1 fitted in step S63). The blood vessel diameter Dm is calculated based on the length from the reference point W1 (existing on the circular shape) to the adjacent detection point (for example, the detection point W2) (S64).
 具体的には、PC50のプロセッサ51は、血管画像IMG1中の基準ポイントW1からの線分WD1の長さがガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)であることを利用し、血管画像IMG1中の基準ポイントW1から検出ポイントW2までの円弧の長さを算出する。また、PC50のプロセッサ51は、基準ポイントW1から検出ポイントW2までの円弧の長さの算出結果を用いてステップS63のフィッティング形状(つまり円を示す形状FT1)の円周の長さを算出し、その算出された円周の長さを円周率πで除することで血管径Dm(つまり検出ポイントW2から検出ポイントW6までの長さ)を算出する。 Specifically, the processor 51 of the PC 50 utilizes the fact that the length of the line segment WD1 from the reference point W1 in the blood vessel image IMG1 is the size G1 (in other words, the thickness) in the width direction of the guide wire 150. , The length of the arc from the reference point W1 to the detection point W2 in the blood vessel image IMG1 is calculated. Further, the processor 51 of the PC 50 calculates the circumference length of the fitting shape (that is, the shape FT1 indicating a circle) in step S63 by using the calculation result of the arc length from the reference point W1 to the detection point W2. The blood vessel diameter Dm (that is, the length from the detection point W2 to the detection point W6) is calculated by dividing the calculated circumference length by the circumference ratio π.
[第2の算出処理]
 図12は、実施の形態3に係る血管径の第2の算出処理の概要例を示す図である。図13は、図9のステップS43Bの血管径の第2の算出処理の動作手順の一例を示すフローチャートである。図13の処理は、PC50のメモリ52あるいはストレージ55に蓄積された結合データ(上述参照)を構成する1枚の血管画像(いわゆるフレーム)がプロセッサ51に取得されるごとに実行される。
[Second calculation process]
FIG. 12 is a diagram showing a schematic example of the second calculation process of the blood vessel diameter according to the third embodiment. FIG. 13 is a flowchart showing an example of an operation procedure of the second calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 13 is executed every time one blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
 図12の血管画像IMG2は、血管内視鏡100により撮像された被検体内の実際の(つまり生の)血管VSL1の血管画像でもよいし、上述した学習処理用に予め用意された血管画像あるいは疑似血管画像でもよい。また、血管画像IMG2が疑似血管画像である場合、被検体内にはガイドワイヤ150がa方向に向かって挿通されることを想定して血管画像IMG2にもガイドワイヤ150が映るように配置される。ガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)は、例えば0.36mm(0.14inch)である。つまり、血管画像IMG2全体のうち被写体となる略中心部分の血管VSL1にピントが合うように血管画像IMG2は撮像されているので、ピントが合っている血管内壁とガイドワイヤ150とが交差する(重なる)線分WD1の血管画像IMG2上の長さが0.36mm(0.14inch)となる。基準ポイントW9は、図11の基準ポイントW1と同様に、血管画像IMG2中のピントの合っている血管内壁の部分であって、かつ、ガイドワイヤ150あるいはその近傍の任意の位置を示す。 The blood vessel image IMG2 of FIG. 12 may be a blood vessel image of an actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100, or a blood vessel image prepared in advance for the above-mentioned learning process. It may be a pseudo blood vessel image. Further, when the blood vessel image IMG2 is a pseudo blood vessel image, the guide wire 150 is arranged so as to be reflected in the blood vessel image IMG2 on the assumption that the guide wire 150 is inserted in the subject in the a direction. .. The size G1 (in other words, the thickness) of the guide wire 150 in the width direction is, for example, 0.36 mm (0.14 inch). That is, since the blood vessel image IMG2 is imaged so as to focus on the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG2, the in-focus blood vessel inner wall and the guide wire 150 intersect (overlap). ) The length of the line segment WD1 on the blood vessel image IMG2 is 0.36 mm (0.14 inch). The reference point W9, like the reference point W1 in FIG. 11, is a portion of the inner wall of the blood vessel that is in focus in the blood vessel image IMG2, and indicates an arbitrary position of the guide wire 150 or its vicinity.
 図13において、PC50のプロセッサ51は、AI(例えば、公知の教師学習による単眼推定あるいは自動学習単眼推定)向けに、複数枚の血管画像IMG2(疑似血管画像でもよい)を用いて、基準ポイントW9の位置決め用の学習モデルを学習処理により形成する(S60)。なお、このステップS60の処理は、PC50とは異なる外部装置により実行されて学習処理により得られた学習モデルがPC50に入力されてストレージ55に保存されてもよい。 In FIG. 13, the processor 51 of the PC 50 uses a plurality of blood vessel images IMG2 (which may be a pseudo blood vessel image) for AI (for example, monocular estimation by known supervised learning or automatic learning monocular estimation), and the reference point W9. A learning model for positioning is formed by a learning process (S60). The process of step S60 may be executed by an external device different from the PC 50, and the learning model obtained by the learning process may be input to the PC 50 and stored in the storage 55.
 そして、PC50のプロセッサ51は、ステップS60Aの学習処理を経て形成された学習モデルに基づくAIにより、血管内視鏡100により撮像された、被検体内の実際の(つまり生の)血管VSL1の血管画像中のガイドワイヤ150近傍であってかつ血管画像中のピントが合っている血管内壁に相当する基準ポイントW9を決定して位置決めする(S61A)。ステップS61A以降の処理は図12と同様であるため、説明を省略する。 Then, the processor 51 of the PC 50 is the blood vessel of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100 by the AI based on the learning model formed through the learning process of step S60A. A reference point W9 corresponding to the inner wall of the blood vessel that is in the vicinity of the guide wire 150 in the image and is in focus in the blood vessel image is determined and positioned (S61A). Since the processing after step S61A is the same as that in FIG. 12, the description thereof will be omitted.
[第3の算出処理]
 図14は、実施の形態3に係る血管径の第3の算出処理の概要例を示す図である。図15は、図9のステップS43Bの血管径の第3の算出処理の動作手順の一例を示すフローチャートである。図15の処理は、PC50のメモリ52あるいはストレージ55に蓄積された結合データ(上述参照)を構成する1枚の血管画像(いわゆるフレーム)がプロセッサ51に取得されるごとに実行される。
[Third calculation process]
FIG. 14 is a diagram showing a schematic example of a third calculation process of the blood vessel diameter according to the third embodiment. FIG. 15 is a flowchart showing an example of an operation procedure of the third calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 15 is executed each time a single blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
 図14の血管画像IMG3は、上述した学習処理用に予め用意された血管画像あるいは疑似血管画像でもよい。また、血管画像IMG3が疑似血管画像である場合、被検体内にはガイドワイヤ150がa方向に向かって挿通されることを想定して血管画像IMG2にもガイドワイヤ150が映るように配置される。また、血管画像IMG3では、等間隔に目盛りが付されたスケールSCL1(つまり定規)がガイドワイヤ150と対称的に配置されている。ガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)は、例えば0.36mm(0.14inch)である。つまり、血管画像IMG3全体のうち被写体となる略中心部分の血管VSL1にピントが合うように血管画像IMG3は撮像されているので、ピントが合っている血管内壁とガイドワイヤ150とが重なる線分WD1の血管画像IMG3上の長さが0.36mm(0.14inch)となる。基準ポイントW10は、血管画像IMG3中のピントの合っている血管内壁の部分であって、かつ、血管内壁とスケールSCL1とが交差する(重なる)位置を示す。 The blood vessel image IMG3 of FIG. 14 may be a blood vessel image or a pseudo blood vessel image prepared in advance for the above-mentioned learning process. Further, when the blood vessel image IMG3 is a pseudo blood vessel image, the guide wire 150 is arranged so as to be reflected in the blood vessel image IMG2 on the assumption that the guide wire 150 is inserted in the subject in the a direction. .. Further, in the blood vessel image IMG3, scales SCL1 (that is, a ruler) having scales at equal intervals are arranged symmetrically with the guide wire 150. The size G1 (in other words, the thickness) of the guide wire 150 in the width direction is, for example, 0.36 mm (0.14 inch). That is, since the blood vessel image IMG3 is imaged so as to focus on the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG3, which is the subject, the line segment WD1 in which the inner wall of the blood vessel in focus and the guide wire 150 overlap. The length on the blood vessel image IMG3 is 0.36 mm (0.14 inch). The reference point W10 is a portion of the blood vessel inner wall that is in focus in the blood vessel image IMG3, and indicates a position where the blood vessel inner wall and the scale SCL1 intersect (overlap).
 学習処理では、血管画像IMG3ごとに、ピントが合っている血管内壁の位置(例えば基準ポイントW10の位置)とスケールSCL1の起点B1からの目盛りの値とが対応付けて記憶される。また、図11の基準ポイントW1と同様に、血管画像IMG3中のピントの合っている血管内壁の部分であって、かつ、ガイドワイヤ150あるいはその近傍の任意の位置を基準ポイントW11としてもよい。 In the learning process, the position of the inner wall of the blood vessel in focus (for example, the position of the reference point W10) and the value of the scale from the starting point B1 of the scale SCL1 are stored in association with each other for each blood vessel image IMG3. Further, similarly to the reference point W1 in FIG. 11, an arbitrary position on the inner wall of the blood vessel in focus in the blood vessel image IMG3 and at or near the guide wire 150 may be used as the reference point W11.
 図15において、PC50のプロセッサ51は、図14を参照して説明した血管画像IMG3ごとに、血管画像IMG3中のピントが合っている血管内壁の位置(つまり、血管画像IMG3中のピントの合っている血管内壁の部分であって、かつ、血管内壁とスケールSCL1とが交差する(重なる)位置)とスケールSCL1の起点B1からの目盛りの値との関連付けを用いた学習処理を行うことで、基準ポイントW10の位置決め用の学習モデルを形成する(S60B)。なお、このステップS60Bの処理は、PC50とは異なる外部装置により実行されて学習処理により得られた学習モデルがPC50に入力されてストレージ55に保存されてもよい。 In FIG. 15, the processor 51 of the PC 50 determines the position of the inner wall of the blood vessel in focus in the blood vessel image IMG3 (that is, in focus in the blood vessel image IMG3) for each blood vessel image IMG3 described with reference to FIG. The reference is performed by performing learning processing using the association between the part of the inner wall of the blood vessel and the position where the inner wall of the blood vessel and the scale SCL1 intersect (overlap) and the value of the scale from the starting point B1 of the scale SCL1. A learning model for positioning the point W10 is formed (S60B). The process of step S60B may be executed by an external device different from the PC 50, and the learning model obtained by the learning process may be input to the PC 50 and stored in the storage 55.
 そして、PC50のプロセッサ51は、ステップS60Bの学習処理を経て形成された学習モデルに基づくAIにより、血管内視鏡100により撮像された、被検体内の実際の(つまり生の)血管VSL1の血管画像中のピントが合っている血管内壁に相当する基準ポイントW10、あるいは血管画像中のガイドワイヤ150近傍であってかつ血管画像中のピントが合っている血管内壁に相当する基準ポイントW11を決定して位置決めする(S61B)。ステップS61B以降の処理は図12と同様であるため、説明を省略する。 Then, the processor 51 of the PC 50 is a blood vessel of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100 by the AI based on the learning model formed through the learning process of step S60B. A reference point W10 corresponding to the in-focus blood vessel inner wall in the image, or a reference point W11 corresponding to the blood vessel inner wall in the vicinity of the guide wire 150 in the blood vessel image and in focus in the blood vessel image is determined. Positioning (S61B). Since the processing after step S61B is the same as that in FIG. 12, the description thereof will be omitted.
[第4の算出処理]
 図16は、実施の形態3に係る血管径の第4の算出処理の概要例を示す図である。図17は、図9のステップS43Bの血管径の第4の算出処理の動作手順の一例を示すフローチャートである。図17の処理は、PC50のメモリ52あるいはストレージ55に蓄積された結合データ(上述参照)を構成する1枚の血管画像(いわゆるフレーム)がプロセッサ51に取得されるごとに実行される。
[Fourth calculation process]
FIG. 16 is a diagram showing a schematic example of the fourth calculation process of the blood vessel diameter according to the third embodiment. FIG. 17 is a flowchart showing an example of an operation procedure of the fourth calculation process of the blood vessel diameter in step S43B of FIG. The process of FIG. 17 is executed each time a single blood vessel image (so-called frame) constituting the combined data (see above) stored in the memory 52 or the storage 55 of the PC 50 is acquired by the processor 51.
 図16の血管画像IMG4は、血管内視鏡100により撮像された、被検体内の実際の(つまり生の)血管VSL1の血管画像でもよいし、上述した学習処理用に予め用意された血管画像あるいは疑似血管画像でもよい。また、血管画像IMG4が疑似血管画像である場合、被検体内にはガイドワイヤ150Aがa方向に向かって挿通されることを想定して血管画像IMG4にもガイドワイヤ150Aが映るように配置される。ガイドワイヤ150Aは、例えば0.01mm~1mmの任意の値ごとに等間隔に目盛りが付されている。ガイドワイヤ150Aの幅方向のサイズG1(言い換えると、太さ)は、例えば0.36mm(0.14inch)である。つまり、血管画像IMG4全体のうち被写体となる略中心部分の血管VSL1にピントが合うように血管画像IMG4は撮像されているので、ピントが合っている血管内壁とガイドワイヤ150とが重なる線分WD1の血管画像IMG4上の長さが0.36mm(0.14inch)となる。基準ポイントW12は、血管画像IMG4中のピントの合っている血管内壁の部分であって、かつ、ガイドワイヤ150Aの近傍の位置を示す。 The blood vessel image IMG4 of FIG. 16 may be a blood vessel image of an actual (that is, raw) blood vessel VSL1 in the subject taken by the blood vessel endoscope 100, or a blood vessel image prepared in advance for the above-mentioned learning process. Alternatively, it may be a pseudo blood vessel image. Further, when the blood vessel image IMG4 is a pseudo blood vessel image, the guide wire 150A is arranged so as to be reflected in the blood vessel image IMG4 on the assumption that the guide wire 150A is inserted in the subject in the a direction. .. The guide wire 150A is graduated at equal intervals, for example, at arbitrary values of 0.01 mm to 1 mm. The size G1 (in other words, the thickness) of the guide wire 150A in the width direction is, for example, 0.36 mm (0.14 inch). That is, since the blood vessel image IMG4 is imaged so as to focus on the blood vessel VSL1 in the substantially central portion of the entire blood vessel image IMG4, which is the subject, the line segment WD1 in which the inner wall of the blood vessel in focus and the guide wire 150 overlap. The length on the blood vessel image IMG4 is 0.36 mm (0.14 inch). The reference point W12 is a portion of the inner wall of the blood vessel that is in focus in the blood vessel image IMG4, and indicates a position in the vicinity of the guide wire 150A.
 学習処理では、血管画像IMG4ごとに、ピントが合っている血管内壁の位置(例えば基準ポイントW12の位置)とガイドワイヤ150Aとが交差する(重なる)位置の血管画像IMG4上の座標と、ガイドワイヤ150Aの起点(図15参照)からの目盛りの値とが対応付けて記憶される。 In the learning process, for each blood vessel image IMG4, the coordinates on the blood vessel image IMG4 at the position where the position of the inner wall of the blood vessel in focus (for example, the position of the reference point W12) and the guide wire 150A intersect (overlap) and the guide wire. The value of the scale from the starting point of 150A (see FIG. 15) is stored in association with the value of the scale.
 図17において、PC50のプロセッサ51は、図16を参照して説明した血管画像IMG4ごとに、血管画像IMG4中のピントが合っている血管内壁の位置(つまり、血管画像IMG4中のピントの合っている血管内壁の部分であって、かつ、血管内壁とガイドワイヤ150Aとが交差する(重なる)位置)とガイドワイヤ150Aの起点(図15参照)からの目盛りの値との関連付けを用いた学習処理を行うことで、基準ポイントW12の位置決め用の学習モデルを形成する(S60C)。なお、このステップS60Cの処理は、PC50とは異なる外部装置により実行されて学習処理により得られた学習モデルがPC50に入力されてストレージ55に保存されてもよい。 In FIG. 17, the processor 51 of the PC 50 determines the position of the inner wall of the blood vessel in focus in the blood vessel image IMG 4 (that is, in focus in the blood vessel image IMG 4) for each blood vessel image IMG 4 described with reference to FIG. Learning process using the association between the part of the inner wall of the blood vessel and the position where the inner wall of the blood vessel and the guide wire 150A intersect (overlap) and the value of the scale from the starting point of the guide wire 150A (see FIG. 15). To form a learning model for positioning the reference point W12 (S60C). The process of step S60C may be executed by an external device different from the PC 50, and the learning model obtained by the learning process may be input to the PC 50 and stored in the storage 55.
 そして、PC50のプロセッサ51は、ステップS60Cの学習処理を経て形成された学習モデルに基づくAIにより、血管内視鏡100により撮像された、被検体内の実際の(つまり生の)血管VSL1の血管画像中のピントが合っている血管内壁に相当する基準ポイントW12を決定して位置決めする(S61C)。ステップS61Cの後、ステップS62,S63の処理が実行される。ステップS63の後、PC50のプロセッサ51は、血管内視鏡100により撮像された血管画像中のピントが合っているガイドワイヤ150のサイズG1あるいはガイドワイヤ150Aの起点(図15参照)からの目盛りの値(目盛り間隔)と、血管内視鏡カメラ10からの距離が同一となる(言い換えると、ステップS63でフィッティングされた形状FT1(例えば円形状)上に存在する)基準ポイントW12から隣接の検出ポイント(例えば検出ポイントW2)までの長さとに基づいて、血管径Dmを算出する(S64C)。 Then, the processor 51 of the PC 50 is a blood vessel of the actual (that is, raw) blood vessel VSL1 in the subject imaged by the blood vessel endoscope 100 by the AI based on the learning model formed through the learning process of step S60C. A reference point W12 corresponding to the in-focus blood vessel inner wall in the image is determined and positioned (S61C). After step S61C, the processes of steps S62 and S63 are executed. After step S63, the processor 51 of the PC 50 sets the scale from the size G1 of the in-focus guide wire 150 or the starting point (see FIG. 15) of the guide wire 150A in the blood vessel image captured by the blood vessel endoscope 100. The value (scale interval) and the distance from the blood vessel endoscopy camera 10 are the same (in other words, they exist on the shape FT1 (for example, a circular shape) fitted in step S63). The blood vessel diameter Dm is calculated based on the length up to (for example, detection point W2) (S64C).
 以上により、実施の形態3に係る血管内視鏡システム5では、血管内視鏡100は、ガイドワイヤ150が予め挿通された被検体の血管内に挿入され、駆動機器(例えばオートプルバック装置80)を介して引かれながら被検体の血管を撮像可能である。中継器20は、血管内視鏡100により撮像された血管画像と駆動機器から送られる血管内視鏡100(具体的には、血管内視鏡カメラ10)の位置情報および速度情報とを入力して結合する。PC50は、中継器20から送られる血管画像と血管内視鏡100の位置情報および速度情報とを対応付けてメモリ52あるいはストレージ55に保存し、メモリ52あるいはストレージ55に保存されたガイドワイヤ150の幅方向のサイズG1と血管内視鏡100の位置情報および速度情報に対応する1枚の血管画像(例えば血管画像IMG1)とに基づいて、血管の血管径を算出する。 As described above, in the blood vessel endoscopy system 5 according to the third embodiment, the blood vessel endoscope 100 is inserted into the blood vessel of the subject into which the guide wire 150 is inserted in advance, and the driving device (for example, the auto pullback device 80) is inserted. It is possible to image the blood vessel of the subject while being pulled through. The repeater 20 inputs the blood vessel image captured by the blood vessel endoscope 100 and the position information and speed information of the blood vessel endoscope 100 (specifically, the blood vessel endoscope camera 10) sent from the driving device. And combine. The PC 50 associates the blood vessel image sent from the repeater 20 with the position information and speed information of the blood vessel endoscope 100 and stores them in the memory 52 or the storage 55, and the guide wire 150 stored in the memory 52 or the storage 55. The blood vessel diameter of the blood vessel is calculated based on the size G1 in the width direction and one blood vessel image (for example, blood vessel image IMG1) corresponding to the position information and the speed information of the blood vessel endoscope 100.
 これにより、血管内視鏡システム5は、医師等のユーザによるスムーズな医療行為の進行を遮ることなく、血管内視鏡の撮像画像を利用して患者等の被検体の観察部位である血管の血管径を、1枚の血管画像を用いてシンプルかつ高精度に測定できる。したがって、血管内視鏡システム5は、医師等のユーザによる被検体内に挿通される適切な径のステントの選択を支援することができる。特に、中継器20が血管画像のデータと血管内視鏡100の位置情報および速度情報のデータとを結合するので、PC50は、血管画像のデータ取得と同期(一致)したタイミングで取得した位置情報および速度情報のデータを用いて、1枚の血管画像を用いて、被検体の観察部位である血管の血管径をシンプルかつ高精度に算出できる。 As a result, the blood vessel endoscopy system 5 uses the image captured by the blood vessel endoscope without interrupting the smooth progress of medical practice by a user such as a doctor, and the blood vessel, which is an observation site of a subject such as a patient, is used. The blood vessel diameter can be measured simply and with high accuracy using a single blood vessel image. Therefore, the vascular endoscopy system 5 can assist a user such as a doctor in selecting a stent having an appropriate diameter to be inserted into a subject. In particular, since the repeater 20 combines the blood vessel image data with the position information and speed information data of the blood vessel endoscope 100, the PC 50 acquires the position information at the timing synchronized (matched) with the blood vessel image data acquisition. And, using the data of the speed information, the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated simply and with high accuracy by using one blood vessel image.
 また、ガイドワイヤ150の幅方向のサイズG1は、ユーザ操作に応じて変更可能な値である。これにより、手術あるいは検査時に使用されるガイドワイヤの種類に応じて、柔軟に血管径の算出が可能となる。 Further, the size G1 in the width direction of the guide wire 150 is a value that can be changed according to the user operation. This makes it possible to flexibly calculate the blood vessel diameter according to the type of guide wire used during surgery or examination.
 また、PC50は、1枚の血管画像中のガイドワイヤ150近傍の血管内壁の位置を示す基準ポイントW1と、基準ポイントW1を含む血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントW2~W8とを特定し、基準ポイントW1および複数の検出ポイントW2~W8を含む血管の形状をフィッティングする。PC50は、血管の形状のフィッティング結果と基準ポイントW1からいずれかの検出ポイントまでの長さとガイドワイヤ150の幅方向のサイズG1とに基づいて、血管の血管径を算出する。これにより、血管内視鏡システム5は、被検体内に挿通されるガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)を利用して、被検体の観察部位である血管の血管径をシンプルかつ高精度に算出できる。 Further, the PC 50 has a reference point W1 indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire 150 in one blood vessel image, and a plurality of detection points indicating a position capable of forming the same shape as the shape of the blood vessel including the reference point W1. W2 to W8 are specified, and the shape of the blood vessel including the reference point W1 and the plurality of detection points W2 to W8 is fitted. The PC 50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W1 to any detection point, and the size G1 in the width direction of the guide wire 150. As a result, the blood vessel endoscopy system 5 utilizes the size G1 (in other words, the thickness) in the width direction of the guide wire 150 inserted into the subject, and the blood vessel diameter of the blood vessel which is the observation site of the subject. Can be calculated simply and with high accuracy.
 また、PC50は、学習処理を経て、被検体内に挿通されるガイドワイヤ150が映る血管画像中のガイドワイヤ150近傍の血管内壁の位置を示す基準ポイントW9を検出可能な学習モデルをメモリ52あるいはストレージ55に保存する。PC50は、学習モデルに基づくAI(人工知能)により、1枚の血管画像中の基準ポイントW9と、基準ポイントW9を含む血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントW2~W8とを特定し、基準ポイントW9および複数の検出ポイントW2~W8を含む血管の形状をフィッティングする。PC50は、血管の形状のフィッティング結果と基準ポイントW9からいずれかの検出ポイントまでの長さとガイドワイヤ150の幅方向のサイズG1とに基づいて、血管の血管径を算出する。これにより、血管内視鏡システム5は、既に学習処理により形成された基準ポイントの位置決め用のAIを用いることで、簡易かつ高精度に血管画像中の基準ポイントW9を位置決め可能となり、被検体内に挿通されるガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)を利用して、被検体の観察部位である血管の血管径をシンプルかつ高精度に算出できる。 Further, the PC 50 stores a learning model capable of detecting a reference point W9 indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire 150 in the blood vessel image in which the guide wire 150 inserted into the subject is reflected through the learning process. Save in storage 55. The PC50 has a reference point W9 in one blood vessel image and a plurality of detection points W2 to indicate positions capable of forming the same shape as the shape of the blood vessel including the reference point W9 by AI (artificial intelligence) based on the learning model. W8 is identified and the shape of the blood vessel including the reference point W9 and the plurality of detection points W2 to W8 is fitted. The PC 50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W9 to any detection point, and the size G1 in the width direction of the guide wire 150. As a result, the blood vessel endoscopy system 5 can easily and accurately position the reference point W9 in the blood vessel image by using the AI for positioning the reference point already formed by the learning process, and the inside of the subject can be positioned. By using the size G1 (in other words, the thickness) in the width direction of the guide wire 150 inserted into the guide wire 150, the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated simply and with high accuracy.
 また、PC50は、学習処理を経て、被検体内に挿通されるガイドワイヤ150と等間隔の目盛りが付されたスケールSCL1とが映る血管画像中のスケールSCL1近傍の血管内壁の位置を示す基準ポイントW10を検出可能な学習モデルをメモリ52あるいはストレージ55に保存する。PC50は、学習モデルに基づくAI(人工知能)により、1枚の血管画像中の基準ポイントW10あるいは基準ポイントW11と、基準ポイントW10あるいは基準ポイントW11を含む血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントW2~W8とを特定し、基準ポイントW10あるいは基準ポイントW11および複数の検出ポイントW2~W8を含む血管の形状をフィッティングする。PC50は、血管の形状のフィッティング結果と基準ポイントW10あるいは基準ポイントW11からいずれかの検出ポイントまでの長さとガイドワイヤ150の幅方向のサイズG1とに基づいて、血管の血管径を算出する。これにより、血管内視鏡システム5は、既に学習処理により形成された基準ポイントの位置決め用のAIを用いることで、簡易かつ高精度に血管画像中の基準ポイントW10あるいは基準ポイントW11を位置決め可能となり、被検体内に挿通されるガイドワイヤ150の幅方向のサイズG1(言い換えると、太さ)を利用して、被検体の観察部位である血管の血管径をシンプルかつ高精度に算出できる。 Further, the PC 50 is a reference point indicating the position of the inner wall of the blood vessel in the vicinity of the scale SCL1 in the blood vessel image in which the guide wire 150 inserted into the subject and the scale SCL1 having graduations at equal intervals are shown after the learning process. A learning model capable of detecting W10 is stored in the memory 52 or the storage 55. The PC50 is a position capable of forming the same shape as the reference point W10 or the reference point W11 in one blood vessel image and the shape of the blood vessel including the reference point W10 or the reference point W11 by AI (artificial intelligence) based on the learning model. A plurality of detection points W2 to W8 indicating the above are specified, and the shape of the blood vessel including the reference point W10 or the reference point W11 and the plurality of detection points W2 to W8 is fitted. The PC 50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W10 or the reference point W11 to any detection point, and the size G1 in the width direction of the guide wire 150. As a result, the blood vessel endoscopy system 5 can easily and accurately position the reference point W10 or the reference point W11 in the blood vessel image by using the AI for positioning the reference point already formed by the learning process. By using the size G1 (in other words, the thickness) of the guide wire 150 inserted into the subject in the width direction, the blood vessel diameter of the blood vessel which is the observation site of the subject can be calculated simply and with high accuracy.
 また、PC50は、学習処理を経て、被検体内に挿通されかつ幅方向に等間隔の目盛りが付されたガイドワイヤ150Aが映る血管画像中のガイドワイヤ150A近傍の血管内壁の位置を示す基準ポイントW12を検出可能な学習モデルをメモリ52あるいはストレージ55に保存する。PC50は、学習モデルに基づくAI(人工知能)により、1枚の血管画像中の基準ポイントW12と、基準ポイントW12を含む血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントW2~W8とを特定し、基準ポイントW12および複数の検出ポイントW2~W8を含む血管の形状をフィッティングする。PC50は、血管の形状のフィッティング結果と基準ポイントW12からいずれかの検出ポイントまでの長さとガイドワイヤ150Aの幅方向のサイズG1とに基づいて、血管の血管径を算出する。これにより、血管内視鏡システム5は、既に学習処理により形成された基準ポイントの位置決め用のAIを用いることで、簡易かつ高精度に血管画像中の基準ポイントW12を位置決め可能となり、被検体内に挿通されるガイドワイヤ150Aの幅方向のサイズG1(言い換えると、太さ)あるいはガイドワイヤ150Aの起点(図15参照)からの目盛りの値(目盛り間隔)を利用して、被検体の観察部位である血管の血管径をシンプルかつ高精度に算出できる。 Further, the PC 50 is a reference point indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire 150A in the blood vessel image in which the guide wire 150A is inserted into the subject and has scales at equal intervals in the width direction after the learning process. A learning model capable of detecting W12 is stored in the memory 52 or the storage 55. The PC50 has a plurality of detection points W2 to indicate a reference point W12 in one blood vessel image and a position capable of forming the same shape as the shape of the blood vessel including the reference point W12 by AI (artificial intelligence) based on a learning model. W8 is identified and the shape of the blood vessel including the reference point W12 and the plurality of detection points W2 to W8 is fitted. The PC50 calculates the blood vessel diameter of the blood vessel based on the fitting result of the shape of the blood vessel, the length from the reference point W12 to any detection point, and the size G1 in the width direction of the guide wire 150A. As a result, the blood vessel endoscopy system 5 can easily and accurately position the reference point W12 in the blood vessel image by using the AI for positioning the reference point already formed by the learning process, and the inside of the subject can be positioned. The observation site of the subject using the size G1 (in other words, the thickness) of the guide wire 150A inserted into the guide wire 150A or the scale value (scale interval) from the starting point of the guide wire 150A (see FIG. 15). The blood vessel diameter of the blood vessel can be calculated simply and with high accuracy.
 また、PC50は、血管の血管径の測定結果を血管画像GZ5に重畳してモニタ70に表示する(図6参照)。これにより、医師等のユーザは、血管径を視覚的に分かり易く把握できる。 Further, the PC 50 superimposes the measurement result of the blood vessel diameter of the blood vessel on the blood vessel image GZ5 and displays it on the monitor 70 (see FIG. 6). As a result, a user such as a doctor can visually grasp the blood vessel diameter in an easy-to-understand manner.
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications, modifications, substitutions, additions, deletions, and equality within the scope of the claims. It is understood that it naturally belongs to the technical scope of the present disclosure. Further, each component in the various embodiments described above may be arbitrarily combined as long as the gist of the invention is not deviated.
 例えば、上述した実施の形態1では、等速動画は、撮像位置の異なる複数枚の血管画像を時系列に順次選択して構成される動画であったが、複数枚の血管画像は、時間軸上で等間隔に選択されてもよいし、不等間隔に選択されてもよい。 For example, in the first embodiment described above, the constant velocity moving image is a moving image formed by sequentially selecting a plurality of blood vessel images having different imaging positions in chronological order, but the plurality of blood vessel images have a time axis. It may be selected at equal intervals above or at unequal intervals.
 なお、本出願は、2019年10月30日出願の日本特許出願(特願2019-197660)および2020年3月24日出願の日本特許出願(特願2020-052918)に基づくものであり、それらの内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application filed on October 30, 2019 (Japanese Patent Application No. 2019-197660) and a Japanese patent application filed on March 24, 2020 (Japanese Patent Application No. 2020-052918). The contents of are incorporated herein by reference.
 本開示は、医師等のユーザによるスムーズな医療行為の進行を遮ることなく、血管内視鏡の撮像画像を利用して患者等の被検体の観察部位の血管径を高精度に測定する血管内視鏡システムおよび血管径測定方法として有用である。 In the present disclosure, the blood vessel diameter of the observation site of a subject such as a patient is measured with high accuracy by using an image taken by an angioscope without interrupting the smooth progress of medical practice by a user such as a doctor. It is useful as an endoscopic system and a method for measuring blood vessel diameter.
5,5A 血管内視鏡システム
10 血管内視鏡カメラ
20、20A 中継器
21 FPGA
22 AFE
23、24 入力インターフェース
25 出力インターフェース
30 カメラコントロールユニット
50、50A PC
51 プロセッサ
52 メモリ
53 入出力インターフェース
54 操作部
55 ストレージ
70 モニタ
80 オートプルバック装置
100 血管内視鏡
5,5A Vascular Endoscopy System 10 Vascular Endoscopy Camera 20, 20A Repeater 21 FPGA
22 AFE
23, 24 Input interface 25 Output interface 30 Camera control unit 50, 50A PC
51 Processor 52 Memory 53 Input / output interface 54 Operation unit 55 Storage 70 Monitor 80 Auto pullback device 100 Vascular endoscope

Claims (18)

  1.  先端側が被検体の血管内に挿入されかつ基端側が駆動機器により引かれ、前記被検体の血管を撮像可能な内視鏡と、
     前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して結合する中継器と、
     前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、前記メモリに保存された前記血管画像と前記内視鏡の位置情報および速度情報とを用いて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を算出する演算装置と、を備える、
     血管内視鏡システム。
    An endoscope in which the distal end side is inserted into the blood vessel of the subject and the proximal end side is pulled by a driving device to image the blood vessel of the subject.
    A repeater that inputs and combines the blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device.
    The blood vessel image sent from the repeater is associated with the position information and speed information of the endoscope and stored in a memory, and the blood vessel image and the position information and speed information of the endoscope stored in the memory are stored. A calculation device for generating a constant-velocity moving image of the blood vessel image using the above and calculating the blood vessel diameter of the blood vessel based on a plurality of blood vessel images constituting the constant-velocity moving image.
    Vascular endoscopy system.
  2.  先端側が被検体の血管内に挿入されかつ基端側が駆動機器により引かれ、前記被検体の血管を撮像可能な内視鏡と、
     前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して対応付けてメモリに保存し、前記メモリに保存された前記血管画像の入力タイミングと前記内視鏡の位置情報および速度情報の入力タイミングとの差分に基づいて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を測定する演算装置と、を備える、
     血管内視鏡システム。
    An endoscope in which the distal end side is inserted into the blood vessel of the subject and the proximal end side is pulled by a driving device to image the blood vessel of the subject.
    The blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device are input and stored in a memory in association with each other, and the blood vessel image saved in the memory. A constant velocity moving image of the blood vessel image is generated based on the difference between the input timing and the input timing of the position information and the speed information of the endoscope, and the blood vessel is based on a plurality of blood vessel images constituting the constant velocity moving image. It is equipped with an arithmetic device for measuring the blood vessel diameter of the
    Vascular endoscopy system.
  3.  前記演算装置は、
     前記血管の血管径の測定結果を前記血管画像に重畳してモニタに表示する、
     請求項1または2に記載の血管内視鏡システム。
    The arithmetic unit
    The measurement result of the blood vessel diameter of the blood vessel is superimposed on the blood vessel image and displayed on the monitor.
    The vascular endoscopy system according to claim 1 or 2.
  4.  前記演算装置は、
     入力される複数の前記血管画像を用いて、前記血管の長軸断面画像を生成し、前記血管画像と前記血管の長軸断面画像とを対応付けてモニタに表示する、
     請求項1または2に記載の血管内視鏡システム。
    The arithmetic unit
    A long-axis cross-sectional image of the blood vessel is generated using the plurality of input blood vessel images, and the blood vessel image and the long-axis cross-sectional image of the blood vessel are associated and displayed on the monitor.
    The vascular endoscopy system according to claim 1 or 2.
  5.  前記演算装置は、
     前記駆動機器から順次入力される前記内視鏡の位置情報および速度情報に基づいて前記血管の測定長を算出し、前記測定長の算出結果を示すインジケータを前記長軸断面画像に重畳して表示する、
     請求項4に記載の血管内視鏡システム。
    The arithmetic unit
    The measurement length of the blood vessel is calculated based on the position information and speed information of the endoscope sequentially input from the drive device, and an indicator showing the calculation result of the measurement length is superimposed and displayed on the long-axis cross-sectional image. To do,
    The vascular endoscopy system according to claim 4.
  6.  前記演算装置は、
     前記等速動画を構成する複数枚の血管画像の中から、前記内視鏡の位置情報に対応する2枚の血管画像を選択し、前記2枚の血管画像のそれぞれに対して円状に配置される複数個の特徴点のそれぞれの移動方向から消失点を推定し、
     前記複数個の特徴点の中から、前記駆動機器による前記内視鏡の移動に基づく前記消失点の方向へのベクトルを有する有効特徴点を抽出し、前記内視鏡の移動距離に対応する前記有効特徴点の移動変化量を用いて前記有効特徴点の3次元座標を算出し、
     前記有効特徴点の3次元座標に基づいて、前記血管の血管径を算出する、
     請求項1または2に記載の血管内視鏡システム。
    The arithmetic unit
    Two blood vessel images corresponding to the position information of the endoscope are selected from the plurality of blood vessel images constituting the constant velocity moving image, and arranged in a circle with respect to each of the two blood vessel images. The vanishing point is estimated from the movement direction of each of the plurality of feature points to be created.
    From the plurality of feature points, an effective feature point having a vector in the direction of the vanishing point based on the movement of the endoscope by the driving device is extracted, and the movement distance of the endoscope corresponds to the movement distance of the endoscope. The three-dimensional coordinates of the effective feature point are calculated using the amount of change in movement of the effective feature point.
    The blood vessel diameter of the blood vessel is calculated based on the three-dimensional coordinates of the effective feature point.
    The vascular endoscopy system according to claim 1 or 2.
  7.  前記演算装置は、
     前記メモリに保存された複数の前記血管画像の中から、前記内視鏡の位置情報が異なる、前記速度情報が同一である血管画像を複数選択し、選択された複数の前記血管画像を用いて前記等速動画を生成する、
     請求項1または2に記載の血管内視鏡システム。
    The arithmetic unit
    From the plurality of blood vessel images stored in the memory, a plurality of blood vessel images having different position information of the endoscope and the same velocity information are selected, and the selected blood vessel images are used. Generate the constant velocity video,
    The vascular endoscopy system according to claim 1 or 2.
  8.  前記内視鏡は、前記被検体の血管を撮像可能な画像センサを有し、
     前記画像センサは、前記内視鏡の先端側に実装されている、
     請求項1または2に記載の血管内視鏡システム。
    The endoscope has an image sensor capable of capturing a blood vessel of the subject.
    The image sensor is mounted on the tip side of the endoscope.
    The vascular endoscopy system according to claim 1 or 2.
  9.  血管内視鏡システムにより実行される血管径測定方法であって、
     先端側が被検体の血管内に挿入されかつ基端側が駆動機器により引かれ、前記被検体の血管を撮像可能な内視鏡により前記血管を撮像し、
     前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを中継器により入力して結合し、
     前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、
     前記メモリに保存された前記血管画像と前記内視鏡の位置情報および速度情報とを用いて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を算出する、
     血管径測定方法。
    A method of measuring blood vessel diameter performed by an angioscopy system,
    The distal end side is inserted into the blood vessel of the subject and the proximal end side is pulled by the driving device, and the blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject.
    The blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device are input by a repeater and combined.
    The blood vessel image sent from the repeater is associated with the position information and speed information of the endoscope and stored in the memory.
    A constant velocity moving image of the blood vessel image is generated using the blood vessel image stored in the memory and the position information and velocity information of the endoscope, and based on a plurality of blood vessel images constituting the constant velocity moving image. Calculate the blood vessel diameter of the blood vessel,
    Blood vessel diameter measurement method.
  10.  血管内視鏡システムにより実行される血管径測定方法であって、
     先端側が被検体の血管内に挿入されかつ基端側が駆動機器により引かれ、前記被検体の血管を撮像可能な内視鏡により前記血管を撮像し、
     前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して対応付けてメモリに保存し、
     前記メモリに保存された前記血管画像の入力タイミングと前記内視鏡の位置情報および速度情報の入力タイミングとの差分に基づいて前記血管画像の等速動画を生成し、前記等速動画を構成する複数枚の血管画像に基づいて前記血管の血管径を測定する、
     血管径測定方法。
    A method of measuring blood vessel diameter performed by an angioscopy system,
    The distal end side is inserted into the blood vessel of the subject and the proximal end side is pulled by the driving device, and the blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject.
    The blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device are input, associated with each other, and stored in the memory.
    A constant velocity moving image of the blood vessel image is generated based on the difference between the input timing of the blood vessel image stored in the memory and the input timing of the position information and the speed information of the endoscope, and the constant velocity moving image is configured. The blood vessel diameter of the blood vessel is measured based on a plurality of blood vessel images.
    Blood vessel diameter measurement method.
  11.  ガイドワイヤが予め挿通された被検体の血管内に挿入され、駆動機器を介して引かれながら前記被検体の血管を撮像可能な内視鏡と、
     前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを入力して結合する中継器と、
     前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、前記メモリに保存された前記ガイドワイヤの幅方向のサイズと前記内視鏡の位置情報および速度情報に対応する1枚の血管画像とに基づいて、前記血管の血管径を算出する演算装置と、を備える、
     血管内視鏡システム。
    An endoscope capable of imaging the blood vessel of the subject while the guide wire is inserted into the blood vessel of the subject inserted in advance and pulled through a driving device.
    A repeater that inputs and combines the blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device.
    The blood vessel image sent from the repeater is stored in a memory in association with the position information and the speed information of the endoscope, and the size of the guide wire stored in the memory in the width direction and the endoscope. A calculation device for calculating the blood vessel diameter of the blood vessel based on one blood vessel image corresponding to the position information and the velocity information.
    Vascular endoscopy system.
  12.  前記ガイドワイヤの幅方向のサイズは、ユーザ操作に応じて変更可能な値である、
     請求項11に記載の血管内視鏡システム。
    The size of the guide wire in the width direction is a value that can be changed according to the user operation.
    The vascular endoscopy system according to claim 11.
  13.  前記演算装置は、
     前記1枚の血管画像中の前記ガイドワイヤ近傍の血管内壁の位置を示す基準ポイントと、前記基準ポイントを含む前記血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントとを特定し、
     前記基準ポイントおよび前記複数の検出ポイントを含む前記血管の形状をフィッティングし、
     前記血管の形状のフィッティング結果と前記基準ポイントからいずれかの前記検出ポイントまでの長さと前記ガイドワイヤの幅方向のサイズとに基づいて、前記血管の血管径を算出する、
     請求項11に記載の血管内視鏡システム。
    The arithmetic unit
    A reference point indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire in the one blood vessel image and a plurality of detection points indicating a position capable of forming the same shape as the shape of the blood vessel including the reference point are specified. ,
    Fitting the shape of the blood vessel containing the reference point and the plurality of detection points
    The blood vessel diameter of the blood vessel is calculated based on the fitting result of the shape of the blood vessel, the length from the reference point to any of the detection points, and the size in the width direction of the guide wire.
    The vascular endoscopy system according to claim 11.
  14.  前記演算装置は、
     学習処理を経て、前記被検体内に挿通されるガイドワイヤが映る血管画像中の前記ガイドワイヤ近傍の血管内壁の位置を示す基準ポイントを検出可能な学習モデルを前記メモリに保存し、
     前記学習モデルに基づく人工知能により、前記1枚の血管画像中の前記基準ポイントと、前記基準ポイントを含む前記血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントとを特定し、
     前記基準ポイントおよび前記複数の検出ポイントを含む前記血管の形状をフィッティングし、
     前記血管の形状のフィッティング結果と前記基準ポイントからいずれかの前記検出ポイントまでの長さと前記ガイドワイヤの幅方向のサイズとに基づいて、前記血管の血管径を算出する、
     請求項11に記載の血管内視鏡システム。
    The arithmetic unit
    After the learning process, a learning model capable of detecting a reference point indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire in the blood vessel image in which the guide wire inserted into the subject is shown is stored in the memory.
    By artificial intelligence based on the learning model, the reference point in the one blood vessel image and a plurality of detection points indicating positions capable of forming the same shape as the shape of the blood vessel including the reference point are identified.
    Fitting the shape of the blood vessel containing the reference point and the plurality of detection points
    The blood vessel diameter of the blood vessel is calculated based on the fitting result of the shape of the blood vessel, the length from the reference point to any of the detection points, and the size in the width direction of the guide wire.
    The vascular endoscopy system according to claim 11.
  15.  前記演算装置は、
     学習処理を経て、前記被検体内に挿通されるガイドワイヤと等間隔の目盛りが付されたスケールとが映る血管画像中の前記スケール近傍の血管内壁の位置を示す基準ポイントを検出可能な学習モデルを前記メモリに保存し、
     前記学習モデルに基づく人工知能により、前記1枚の血管画像中の前記基準ポイントと、前記基準ポイントを含む前記血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントとを特定し、
     前記基準ポイントおよび前記複数の検出ポイントを含む前記血管の形状をフィッティングし、
     前記血管の形状のフィッティング結果と前記基準ポイントからいずれかの前記検出ポイントまでの長さと前記ガイドワイヤの幅方向のサイズとに基づいて、前記血管の血管径を算出する、
     請求項11に記載の血管内視鏡システム。
    The arithmetic unit
    A learning model that can detect a reference point indicating the position of the inner wall of the blood vessel near the scale in the blood vessel image in which the guide wire inserted into the subject and the scale with equidistant scales are shown through the learning process. In the memory
    By artificial intelligence based on the learning model, the reference point in the one blood vessel image and a plurality of detection points indicating positions capable of forming the same shape as the shape of the blood vessel including the reference point are identified.
    Fitting the shape of the blood vessel containing the reference point and the plurality of detection points
    The blood vessel diameter of the blood vessel is calculated based on the fitting result of the shape of the blood vessel, the length from the reference point to any of the detection points, and the size in the width direction of the guide wire.
    The vascular endoscopy system according to claim 11.
  16.  前記演算装置は、
     学習処理を経て、前記被検体内に挿通されかつ幅方向に等間隔の目盛りが付されたガイドワイヤが映る血管画像中の前記ガイドワイヤ近傍の血管内壁の位置を示す基準ポイントを検出可能な学習モデルを前記メモリに保存し、
     前記学習モデルに基づく人工知能により、前記1枚の血管画像中の前記基準ポイントと、前記基準ポイントを含む前記血管の形状と同一形状を構成可能な位置を示す複数の検出ポイントとを特定し、
     前記基準ポイントおよび前記複数の検出ポイントを含む前記血管の形状をフィッティングし、
     前記血管の形状のフィッティング結果と前記基準ポイントからいずれかの前記検出ポイントまでの長さと前記ガイドワイヤの幅方向のサイズとに基づいて、前記血管の血管径を算出する、
     請求項11に記載の血管内視鏡システム。
    The arithmetic unit
    Learning that can detect a reference point indicating the position of the inner wall of the blood vessel in the vicinity of the guide wire in the blood vessel image in which the guide wire inserted into the subject and having the scales at equal intervals in the width direction is reflected through the learning process. Save the model in the memory
    By artificial intelligence based on the learning model, the reference point in the one blood vessel image and a plurality of detection points indicating positions capable of forming the same shape as the shape of the blood vessel including the reference point are identified.
    Fitting the shape of the blood vessel containing the reference point and the plurality of detection points
    The blood vessel diameter of the blood vessel is calculated based on the fitting result of the shape of the blood vessel, the length from the reference point to any of the detection points, and the size in the width direction of the guide wire.
    The vascular endoscopy system according to claim 11.
  17.  前記演算装置は、
     前記血管の血管径の測定結果を前記血管画像に重畳してモニタに表示する、
     請求項11に記載の血管内視鏡システム。
    The arithmetic unit
    The measurement result of the blood vessel diameter of the blood vessel is superimposed on the blood vessel image and displayed on the monitor.
    The vascular endoscopy system according to claim 11.
  18.  血管内視鏡システムにより実行される血管径測定方法であって、
     ガイドワイヤが予め挿通された被検体の血管内に挿入され、駆動機器を介して引かれながら前記被検体の血管を撮像可能な内視鏡により前記血管を撮像し、
     前記内視鏡により撮像された血管画像と前記駆動機器から送られる前記内視鏡の位置情報および速度情報とを中継器により入力して結合し、
     前記中継器から送られる前記血管画像と前記内視鏡の位置情報および速度情報とを対応付けてメモリに保存し、
     前記メモリに保存された前記ガイドワイヤの幅方向のサイズと前記内視鏡の位置情報および速度情報に対応する1枚の血管画像とに基づいて、前記血管の血管径を算出する、
     血管径測定方法。
    A method of measuring blood vessel diameter performed by an angioscopy system,
    The guide wire is inserted into the blood vessel of the subject inserted in advance, and the blood vessel is imaged by an endoscope capable of imaging the blood vessel of the subject while being pulled through a driving device.
    The blood vessel image captured by the endoscope and the position information and speed information of the endoscope sent from the driving device are input by a repeater and combined.
    The blood vessel image sent from the repeater is associated with the position information and speed information of the endoscope and stored in the memory.
    The blood vessel diameter of the blood vessel is calculated based on the size of the guide wire in the width direction stored in the memory and one blood vessel image corresponding to the position information and the velocity information of the endoscope.
    Blood vessel diameter measurement method.
PCT/JP2020/037202 2019-10-30 2020-09-30 Vascular endoscopic system and blood vessel diameter measurement method WO2021085017A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019197660 2019-10-30
JP2019-197660 2019-10-30
JP2020-052918 2020-03-24
JP2020052918A JP7157098B2 (en) 2019-10-30 2020-03-24 Angioscope system and method for measuring blood vessel diameter

Publications (1)

Publication Number Publication Date
WO2021085017A1 true WO2021085017A1 (en) 2021-05-06

Family

ID=75711991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037202 WO2021085017A1 (en) 2019-10-30 2020-09-30 Vascular endoscopic system and blood vessel diameter measurement method

Country Status (2)

Country Link
JP (2) JP7157098B2 (en)
WO (1) WO2021085017A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151246A (en) * 1997-06-19 1999-06-08 Medinol Ltd Improved intravascular ultrasonic image and signal processing
JP2006508731A (en) * 2002-12-04 2006-03-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for assisting navigation of catheter to blood vessel
JP2009240359A (en) * 2008-03-28 2009-10-22 Kazunori Urasawa Image analysis apparatus and the image analysis method
WO2015045368A1 (en) * 2013-09-26 2015-04-02 テルモ株式会社 Image processing device, image display system, imaging system, image processing method, and program
JP2016508750A (en) * 2012-12-12 2016-03-24 ライトラボ・イメージング・インコーポレーテッド Method and apparatus for automated determination of vessel lumen contour

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151246A (en) * 1997-06-19 1999-06-08 Medinol Ltd Improved intravascular ultrasonic image and signal processing
JP2006508731A (en) * 2002-12-04 2006-03-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for assisting navigation of catheter to blood vessel
JP2009240359A (en) * 2008-03-28 2009-10-22 Kazunori Urasawa Image analysis apparatus and the image analysis method
JP2016508750A (en) * 2012-12-12 2016-03-24 ライトラボ・イメージング・インコーポレーテッド Method and apparatus for automated determination of vessel lumen contour
WO2015045368A1 (en) * 2013-09-26 2015-04-02 テルモ株式会社 Image processing device, image display system, imaging system, image processing method, and program

Also Published As

Publication number Publication date
JP2021069919A (en) 2021-05-06
JP2022183211A (en) 2022-12-08
JP7157098B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US20160206267A1 (en) Image processing apparatus, image display system, imaging system, image processing method, and program
JP5457841B2 (en) Medical image processing apparatus and medical image processing program
JP6254053B2 (en) Endoscopic image diagnosis support apparatus, system and program, and operation method of endoscopic image diagnosis support apparatus
JP6017746B1 (en) Medical diagnostic apparatus, ultrasonic observation system, medical diagnostic apparatus operating method, and medical diagnostic apparatus operating program
JP2013059609A (en) Medical image display device and x-ray diagnosis device
JP2009056238A (en) Endoscope apparatus
US10524652B2 (en) Information processing device, imaging system, information processing method and program
JP2007260144A (en) Medical image treatment device and medical image treatment method
JP2012024518A (en) Device, method, and program for assisting endoscopic observation
US20160361044A1 (en) Medical observation apparatus, method for operating medical observation apparatus, and computer-readable recording medium
JP2008148858A (en) Three-dimensional image processor and medical image diagnostic apparatus
CN110769731B (en) Endoscope system, processing system for endoscope, and image processing method
EP4189698A1 (en) Devices, systems, and methods for identifying unexamined regions during a medical procedure
JP7441934B2 (en) Processing device, endoscope system, and method of operating the processing device
WO2021085017A1 (en) Vascular endoscopic system and blood vessel diameter measurement method
JP7221786B2 (en) Blood vessel diameter measurement system
JP2021194268A (en) Blood vessel observation system and blood vessel observation method
JP2021194268A6 (en) Blood vessel observation system and blood vessel observation method
KR101601021B1 (en) Three dimension endoscope system using giro sensor
JP7221787B2 (en) Blood vessel diameter measurement system
WO2020230389A1 (en) Blood vessel diameter measurement system and blood vessel diameter measurement method
JP7197535B2 (en) Observation site observation system and observation site observation method
JP2008093213A (en) Medical image processor and medical image processing method
KR102364490B1 (en) Untrasound dianognosis apparatus, method and computer-readable storage medium
JP2014239841A (en) Ultrasonic diagnostic equipment, medical image processor, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880966

Country of ref document: EP

Kind code of ref document: A1