WO2021084825A1 - Carbon quantum dot-containing composition, and method for producing the same - Google Patents

Carbon quantum dot-containing composition, and method for producing the same Download PDF

Info

Publication number
WO2021084825A1
WO2021084825A1 PCT/JP2020/029349 JP2020029349W WO2021084825A1 WO 2021084825 A1 WO2021084825 A1 WO 2021084825A1 JP 2020029349 W JP2020029349 W JP 2020029349W WO 2021084825 A1 WO2021084825 A1 WO 2021084825A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon quantum
quantum dots
layered clay
quantum dot
clay mineral
Prior art date
Application number
PCT/JP2020/029349
Other languages
French (fr)
Japanese (ja)
Inventor
巧 葛尾
内田 淳也
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to PCT/JP2020/040499 priority Critical patent/WO2021085493A1/en
Priority to US17/755,257 priority patent/US20220380217A1/en
Priority to KR1020227014145A priority patent/KR20220066967A/en
Priority to JP2021553663A priority patent/JP7410165B2/en
Priority to CN202080068050.7A priority patent/CN114502690A/en
Priority to EP20880782.6A priority patent/EP4053075A4/en
Publication of WO2021084825A1 publication Critical patent/WO2021084825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon

Definitions

  • the present invention relates to a carbon quantum dot-containing composition and a method for producing the same.
  • Carbon quantum dots are stable carbon-based fine particles with a particle size of several nm to several tens of nm. Since carbon quantum dots exhibit good fluorescence characteristics, they are expected to be used as photonics materials for solar cells, displays, security inks, and the like. In addition, since it has low toxicity and high biocompatibility, it is expected to be applied to the medical field such as bioimaging.
  • Patent Document 1 describes a method of obtaining carbon quantum dots by heating a solution containing a polyphenol and an amine compound and carbonizing them (for example, Patent Document 1).
  • Patent Document 2 describes a composition for fingerprint detection, which is a mixture of carbon quantum dots and montmorillonite.
  • Patent Document 3 describes a pickering emulsion containing carbon quantum dots and montmorillonite.
  • Patent Document 4 describes a water purification material containing carbon quantum dots and clay minerals.
  • quantum dots differ in performance, for example, emission wavelength, depending on their particle size.
  • carbon quantum dots are prepared by a general method, it is difficult to adjust the particle size to a desired particle size, and it is also difficult to adjust the emission wavelength to a desired range, for example.
  • Patent Documents 2 to 4 when carbon quantum dots are prepared and then mixed with clay minerals, it is difficult to mix them uniformly, and the process tends to be complicated.
  • the present invention has been made in view of the above problems.
  • the present application provides a composition in which performance such as emission wavelength is in a desired range and carbon quantum dots and layered clay minerals are uniformly dispersed, and a method for producing a composition for easily obtaining the composition. For the purpose of provision.
  • the present invention provides the following carbon quantum dot-containing compositions.
  • a carbon quantum dot-containing composition containing carbon quantum dots obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral and the layered clay mineral.
  • the present invention also provides the following method for producing a carbon quantum dot-containing composition.
  • a method for producing a carbon quantum dot-containing composition containing a layered clay mineral and carbon quantum dots which comprises a step of preparing a mixture of an organic compound having a reactive group and a layered clay mineral, and heating the mixture.
  • a method for producing a carbon quantum dot-containing composition which comprises a step of carbonizing the organic compound to prepare carbon quantum dots.
  • the carbon quantum dots contained in the carbon quantum dot-containing composition of the present invention have a desired range of performance, such as emission wavelength. Further, in the carbon quantum dot-containing composition, the carbon quantum dots and the layered clay mineral are uniformly dispersed. Therefore, it can be expected that the desired performance is maintained for a long period of time. Further, according to the production method of the present invention, the carbon quantum dot-containing composition can be prepared by a simple method.
  • FIG. 1 is a graph showing the results when powder X-ray diffraction measurement was performed on the compositions of Example 5 and Comparative Example 3.
  • FIG. 2 is a graph showing the results of thermogravimetric analysis of the composition of Example 5.
  • the carbon quantum dot-containing composition of the present invention contains carbon quantum dots and layered clay minerals.
  • the carbon quantum dots refer to carbon particles having a particle size of 1 to 100 nm obtained by carbonizing an organic compound having a reactive group.
  • carbonization in the present specification means that an organic compound having a functional group forms a fused ring structure (graphite structure) by a reaction such as dehydration, decarboxylation, and dehydrogenation.
  • a carbon quantum dot-containing composition (hereinafter, also simply referred to as “composition”) is obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral.
  • composition is obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral.
  • the composition is prepared in this way, it is possible to obtain a composition in which the particle size of the carbon quantum dots is uniform, that is, the performance such as the emission wavelength is controlled.
  • the composition can suppress the formation of agglomerates of carbon quantum dots. The reason is not clear, but it is presumed as follows.
  • the reaction proceeds three-dimensionally between the surrounding molecules, so the particle size of the carbon quantum dots that are produced tends to vary.
  • carbon quantum dots have a large intermolecular force, and it is difficult to process the obtained carbon quantum dots into smaller carbon quantum dots, and agglomerates are likely to occur. If the particle size of the carbon quantum dots is relatively large, the carbon quantum dots cannot enter the layers of the layered clay mineral, and it is considered that they are difficult to mix uniformly.
  • an organic compound having a reactive group which is a raw material for carbon quantum dots, and a layered clay mineral are mixed, and the organic compound is carbonized in this state.
  • the organic compound and the layered clay mineral are mixed, a part of the organic compound penetrates between the layers of the layered clay mineral. Since the layers of the layered clay mineral are narrow, the aggregates of organic compounds are easily divided. Therefore, when the organic compound is carbonized in the presence of the layered clay mineral, the layers of the layered clay mineral serve as a template, so that carbon quantum dots having a uniform particle size can be easily prepared. Furthermore, since the organic compound as a raw material is finely dispersed, it is possible to reduce the particle size of the obtained carbon quantum dots.
  • carbon quantum dots are prepared as in the present invention, a part of the carbon quantum dots is in a state (composite) in which a part of the carbon quantum dots is inserted between layers of layered clay minerals. Therefore, not only the dispersed state of the carbon quantum dots and the layered clay mineral becomes uniform, but also the carbon quantum dots are less likely to aggregate over a long period of time, and the desired performance can be stably obtained.
  • the carbon quantum dots cover the surface of each layer constituting the layered clay mineral.
  • the specific surface area of the composition becomes smaller.
  • the surface of each layer constituting the layered clay mineral means not only the outer surface of the layered clay mineral but also the surface of each layer located inside the layered clay mineral. Then, in such a composition, the specific surface area can be used as one of the indexes of the dispersibility of the carbon quantum dots.
  • the value of the specific surface area of the clay itself is small, and the difference in the dispersibility of carbon dots may not appear as the difference in the specific surface area.
  • composition of the present invention may contain carbon quantum dots and layered clay minerals, but other than surfactants and carbon quantum dots that enhance dispersibility within a range that does not impair the purpose and effect of the present invention. It may contain other components such as the illuminant of. Further, although the case where the carbon quantum dots emit light will be described below as an example, the carbon quantum dots do not necessarily have to emit light.
  • the carbon quantum dots contained in the composition of the present invention are quantum dots obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral.
  • the method for preparing an organic compound having a reactive group and carbon quantum dots will be described in detail in the method for preparing a composition described later.
  • the emission wavelength and structure of carbon quantum dots are not particularly limited.
  • the emission wavelength and structure of the carbon quantum dots are determined according to the type of organic compound used for preparing the carbon quantum dots, the type of layered clay mineral, the average layer spacing of the layered clay mineral, and the like.
  • the height observed in the cross section is preferably 1 to 100 nm, more preferably 1 to 80 nm.
  • the size of the carbon quantum dot is within this range, the properties as a quantum dot can be sufficiently obtained.
  • the carbon quantum dots preferably emit visible light or near-infrared light when irradiated with light having a wavelength of 250 to 1000 nm, and the emission wavelength at this time is preferably 300 to 2000 nm, more preferably 300 to 1500 nm. preferable.
  • the emission wavelength is in this range, the composition of the present invention can be used for various purposes.
  • the carbon quantum dot preferably has at least one group selected from the group consisting of a carboxy group, a carbonyl group, a hydroxy group, an amino group, a phosphonic acid group, a phosphoric acid group, a sulfo group, and a boronic acid group.
  • the carbon quantum dots may have only one of these groups, or may have two or more groups. When the carbon quantum dots contain these groups, the dispersibility of the carbon quantum dots and the composition with respect to the solvent and the like is improved, and the carbon quantum dots can be easily used for various purposes.
  • the type of functional group possessed by the carbon quantum dot can be specified by, for example, an IR spectrum or the like. Further, the functional group of the carbon quantum dot is usually derived from the functional group of the organic compound.
  • the amount of carbon quantum dots in the composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30 parts by mass. When the amount of carbon quantum dots in the composition is in the above range, sufficient light emission can be obtained from the composition. Further, when the amount of carbon quantum dots is in the above range, the carbon quantum dots are less likely to aggregate in the composition, and the stability of the composition is enhanced.
  • a layered clay mineral is a laminate of crystal layers in which silicon, aluminum, oxygen, etc. are arranged in a predetermined structure. Generally, water, metal ions, potassium, magnesium, water, and organic substances are formed between the crystal layers. Etc. are taken in.
  • the layered clay mineral may be anion-exchangeable or cation-exchangeable.
  • layered clay minerals include smectite, layered double hydroxides, kaolinite, mica and the like.
  • smectite or layered double hydroxide has an average layer spacing suitable for supporting carbon quantum dots (or organic compounds described later), and it is easy to prepare carbon quantum dots having a desired particle size. Is preferable.
  • Smectite is a clay mineral that swells with water, etc., and examples include saponite, montmorillonite, hectorite, biderite, nontronite, saponite, and stephensite.
  • the layered double hydroxide is a double hydroxide in which a trivalent metal ion is dissolved in a divalent metal oxide, and examples thereof include hydrotalcite, hydrocarmite, hydromagnesite, and pyro. Includes aurite and the like.
  • the layered clay mineral may be a natural product or an artificial product. Further, the hydroxy group contained in the crystal layer may be substituted with fluorine. Further, the metalloid ion may be substituted with an alkali metal ion, an alkaline earth metal ion, an aluminum ion, an iron ion, an ammonium ion or the like. Further, the layered clay mineral may be modified with various organic substances, and may be, for example, smectite chemically modified with a quaternary ammonium salt compound or a quaternary pyridinium salt compound.
  • the amount of the layered clay mineral in the composition is preferably 50 to 99.9% by mass, more preferably 70 to 99.5% by mass.
  • the amount of carbon quantum dots is relatively large enough, and a sufficient amount of light emission can be obtained.
  • the layered clay mineral can sufficiently support the carbon quantum dots, and the dispersibility of the carbon quantum dots tends to be good.
  • the composition containing the carbon quantum dots and the layered clay mineral has a step of preparing a mixture of the organic compound having a reactive group and the layered clay mineral (mixture preparation step) and a step of heating the mixture to obtain the organic compound. It can be prepared by carrying out a step of carbonizing to prepare carbon quantum dots (carbon quantum dot preparation step).
  • the mixture preparation step a mixture in which an organic compound having a reactive group and a layered clay mineral are mixed substantially uniformly is prepared.
  • the organic compound is not particularly limited as long as it has a reactive group and can generate carbon quantum dots by carbonization.
  • the "reactive group” is a group for causing a polycondensation reaction between organic compounds in the carbon quantum dot preparation step described later, and contributes to the formation of the main skeleton of the carbon quantum dots. Is the basis. After preparing (carbonizing) carbon quantum dots, some of these reactive groups may remain. Examples of reactive groups include carboxy groups, hydroxy groups, amino groups, boronic acid groups and the like.
  • two or more kinds of organic compounds may be mixed with the layered clay mineral. In this case, it is preferable that the plurality of organic compounds have groups that easily react with each other.
  • organic compounds having the above reactive groups examples include carboxylic acids, alcohols, polyphenols, amine compounds, boron compounds, and sugars.
  • the organic compound may be in a solid state or a liquid state at room temperature.
  • the carboxylic acid may be a compound having one or more carboxy groups in the molecule (excluding those corresponding to polyphenols, amine compounds, or sugars).
  • carboxylic acids include monocarboxylic acids such as formic acid and acetic acid; divalent or higher polyvalent carboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, itaconic acid and polyacrylic acid; citric acid. , Glycoic acid, lactic acid, tartrate acid, hydroxy acid such as malic acid;
  • the alcohol may be a compound having one or more hydroxy groups (excluding those corresponding to carboxylic acids, polyphenols, amine compounds, or sugars).
  • examples of alcohols include polyhydric alcohols such as ethylene glycol, glycerol, erythritol, pentaerythritol, ascorbic acid and polyethylene glycol.
  • the polyphenol may be a compound having a structure in which a hydroxy group is bonded to a benzene ring.
  • polyphenols include catechol, resorcinol, hydroquinone, phloroglucinol, pyrogallol, 1,2,4-trihydroxybenzene, gallic acid, tannin, lignin, catechin, anthocyanin, rutin, chlorogenic acid, lignan, curcumin and the like. Is done.
  • amine compounds include 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, urea, thiourea, ammonium thiocyanate, ethanolamine, 1-amino-2-propanol, melamine, Includes cyanulic acid, barbituric acid, folic acid, ethylenediamine, polyethyleneimine, dicyandiamide, guanidine, aminoguanidine, formamide, glutamate, aspartic acid, cysteine, arginine, histidine, lysine, glutathione, RNA, DNA and the like.
  • boron compounds include compounds having a boronic acid group, and specifically, phenylboronic acid, pyridineboronic acid and the like.
  • sugar examples include glucose, sucrose, glucosamine, cellulose, chitin, chitosan and the like.
  • an organic compound in which the condensation reaction proceeds efficiently is preferable, and an example of the preferable compound is a carboxylic acid, a polyphenol, an amine compound, or a combination of a carboxylic acid and an amine compound.
  • the organic compound contains an amine compound, it is preferable because the N atom is doped and the light emission characteristics are improved. The same effect can be expected when the organic compound has a hetero atom other than the N atom.
  • the layered clay mineral to be combined with the organic compound is the same as the above-mentioned layered clay mineral (layered clay mineral contained in the composition).
  • the layered clay mineral is preferably selected according to the type of reactive group contained in the organic compound, the emission wavelength of the desired carbon quantum dots, that is, the particle size of the desired carbon quantum dots.
  • the reactive group of the organic compound is an anion
  • an anion-exchangeable layered clay mineral may be selected.
  • a cation-exchangeable layered clay mineral may be selected.
  • the average layer spacing of the layered clay mineral to be combined with the organic compound is appropriately selected according to the molecular structure of the organic compound and the particle size of the desired carbon quantum dots, but is preferably 0.1 to 10 nm, preferably 0.1. ⁇ 8 nm is more preferable.
  • the average layer spacing of layered clay minerals can be analyzed by an X-ray diffractometer or the like.
  • the average layer spacing of the layered clay mineral refers to the spacing between one bottom surface and the other top surface of adjacent crystal layers of the layered clay mineral.
  • carbon quantum dots are synthesized using layers of layered clay minerals as a template.
  • the average layer spacing of the layered clay mineral is 10 nm or less, carbon quantum dots having a short emission wavelength can be easily obtained.
  • the average layer spacing is 0.1 nm or more, a part of the organic compound easily enters between them, and carbon quantum dots are easily formed using the layers of the layered clay mineral as a template.
  • the layered clay mineral may be swollen with water or various solvents in order to adjust the average layer spacing of the layered clay mineral.
  • the organic solvent include methanol, ethanol, hexane, toluene, chloroform, dimethylformamide, dimethyl sulfoxide and the like.
  • the amount of the solvent in the mixture (organic compound, layered clay mineral and solvent) is preferably 10 to 80% by mass, more preferably 10 to 70% by weight.
  • the method of mixing the organic compound and the layered clay mineral is not particularly limited as long as they can be mixed uniformly.
  • it may be mixed while being crushed in a mortar, or may be mixed while being crushed by a ball mill or the like.
  • the mixing ratio of the organic compound and the layered clay mineral is appropriately selected according to the desired content ratio of the carbon dot quantum and the layered clay mineral.
  • the carbon quantum dot preparation step is a step of heating the above-mentioned mixture and carbonizing an organic compound to form carbon quantum dots.
  • the method for heating the mixture is not particularly limited as long as it can be carbonized by reacting an organic compound, and includes, for example, a method for heating, a method for irradiating an electromagnetic wave (for example, microwave), and the like.
  • the heating temperature is preferably 70 to 700 ° C, more preferably 100 to 500 ° C, and even more preferably 100 to 300 ° C.
  • the heating time is preferably 0.01 to 45 hours, more preferably 0.1 to 30 hours, and even more preferably 0.5 to 10 hours.
  • the particle size of the obtained carbon quantum dots, and thus the emission wavelength can be adjusted by the heating time. At this time, heating may be performed in a non-oxidizing atmosphere while an inert gas such as nitrogen is circulated.
  • the wattage is preferably 1 to 1500 W, more preferably 1 to 1000 W.
  • the heating time by electromagnetic waves is preferably 0.01 to 10 hours, more preferably 0.01 to 5 hours, and even more preferably 0.01 to 1 hour.
  • the particle size of the obtained carbon quantum dots, and thus the emission wavelength, can be adjusted by the irradiation time of electromagnetic waves (microwaves).
  • the electromagnetic wave irradiation can be performed by, for example, a semiconductor type electromagnetic wave irradiation device or the like. It is preferable to irradiate the electromagnetic wave while checking the temperature of the mixture. For example, it is preferable to irradiate electromagnetic waves while adjusting the temperature to 70 to 700 ° C.
  • a carbon quantum dot-containing composition in which carbon quantum dots and layered clay minerals are uniformly dispersed can be obtained.
  • the composition may be washed with an organic solvent to remove unreacted substances and by-products and purified.
  • the dispersibility of the carbon quantum dots is higher than that in the case where the carbon quantum dots are prepared and then mixed with the layered clay mineral. Will increase.
  • the carbon quantum dot-containing composition having high dispersibility of carbon quantum dots has good luminescence and is useful as a separating agent for separating a specific substance by utilizing the functional group of the carbon quantum dots. .. Therefore, the composition can be used for various purposes.
  • carbon quantum dot-containing composition is not particularly limited, and according to the performance of the carbon quantum dots, for example, solar cells, displays, security inks, quantum dot lasers, biomarkers, lighting materials, thermoelectric materials, photocatalysts, etc. It can be used as a separating agent for specific substances.
  • Example 1 1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.15 g of phloroglucinol dihydrate were mashed in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 200 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
  • Example 2 0.5 g of hydrotalcite (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.15 g of citric acid, and 0.1 g of dicyandiamide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 170 ° C. for 90 minutes to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
  • Example 3 1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.), 0.15 g of phloroglucinol dihydrate, and 0.5 mL of dimethyl sulfoxide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while flowing nitrogen through the screw cap test tube, the composition is heated at 155 ° C. for 3 hours and then vacuum dried at 40 ° C. for 8 hours to contain carbon quantum dots and layered clay minerals (a carbon quantum dot-containing composition (). Complex) was prepared.
  • Example 4 1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.15 g of phloroglucinol dihydrate were mashed in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 155 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
  • Example 5 1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.4 g of phloroglucinol dihydrate were mashed in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 200 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
  • Example 6 0.5 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.), 0.15 g of citric acid, and 0.1 g of dicyandiamide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 170 ° C. for 90 minutes to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
  • Example 7 1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.), 0.02 g of phloroglucinol dihydrate, and 0.1 g of resorcinol were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 200 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
  • Example 8 0.56 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.084 g of phloroglucinol dihydrate were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while circulating nitrogen in the screw cap test tube, the screw cap test tube is installed at the maximum electric field point of the semiconductor electromagnetic wave irradiation device (rectangular waveguide type resonator) manufactured by Fuji Denpa Koki Co., Ltd. under stirring. A carbon quantum dot-containing composition (complex) containing carbon quantum dots and layered clay minerals was prepared by irradiating an electromagnetic wave of 2.45 GHz.
  • semiconductor electromagnetic wave irradiation device rectangular waveguide type resonator
  • the TE103 single mode was adopted for electromagnetic wave irradiation by the semiconductor type electromagnetic wave irradiation device.
  • the semiconductor electromagnetic wave irradiator comprises a three-stub tuner, an iris, and a resonator equipped with a plunger, a semiconductor electromagnetic wave oscillator, and a monitor for monitoring input power and reflected power.
  • the temperature at the time of electromagnetic wave irradiation was measured using an infrared radiation thermometer.
  • the reflected power was suppressed to less than 0.1 W by adjusting the three-stub tuner and the plunger while oscillating an electromagnetic wave of 2 W and 2.45 GHz from the semiconductor electromagnetic wave oscillator.
  • the temperature indicated by the infrared radiation thermometer reached 200 ° C., and the reaction was carried out for 4 minutes after the thermometer showed 200 ° C.
  • the average layer spacing of the layered clay mineral was evaluated by powder X-ray diffraction measurement at a characteristic X-ray wavelength of 1.54 ⁇ using X'Pert-PRO MPD (manufactured by PANalytical).
  • the average layer spacing of the layered clay mineral means the spacing between the crystal layers constituting the layered clay mineral (the spacing between one bottom surface and the other top surface).
  • the composition was sandwiched between KBr plates and pressed to prepare a sample for measurement.
  • the measurement sample was irradiated with excitation light having a wavelength of 400 nm using a spectral fluorometer FP-8500 (manufactured by Nippon Kogaku Co., Ltd.), and the emission wavelength (fluorescence wavelength) was evaluated.
  • thermogravimetric analyzer TGA2 manufactured by Mettler
  • Example 3 carbon quantum dots were prepared at the same reaction temperature and the same reaction time, but in Example 3 using a layered clay mineral in which the layer spacing was expanded by the addition of a solvent, Carbon quantum dots showed longer wavelength emission. From this, it is considered that in Example 3, carbon quantum dots having a larger particle size than in Example 4 were obtained.
  • Comparative Example 1 and Comparative Example 3 in which the carbon quantum dots were synthesized and then the carbon quantum dots and the layered clay mineral were mixed, no light emission could be confirmed. It is probable that the dispersion was not performed well and the carbon quantum dots were aggregated. Further, in Comparative Example 2, although the carbon quantum dots were prepared at the same reaction temperature and the same reaction time as in Example 2, the fluorescence wavelength of the carbon quantum dots was long. In Example 2, it is considered that the fluorescence wavelength was shorter than that in Comparative Example 2 because the particle size of the carbon quantum dots was reduced by preparing the carbon quantum dots in the presence of the layered clay mineral.
  • Comparative Example 4 had a large specific surface area even though the ratio of the organic compound and the layered clay mineral was the same as that of Example 6.
  • Example 6 since the carbon quantum dots were prepared in the presence of the layered clay mineral, the carbon quantum dots were effectively included in the pores of the layered compound, and the dispersibility of the carbon quantum dots became better than that of Comparative Example 4. It is thought that it was.
  • the dispersibility between the carbon quantum dots and the layered clay mineral is good, and the performance of the carbon quantum dots (for example, the emission wavelength) can be adjusted to a desired range. it can. Therefore, a carbon quantum dot-containing composition that can be used for various purposes can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention addresses the problem of providing: a composition in which carbon quantum dots and layered clay minerals are uniformly distributed, and in which the properties of the composition, such as the wavelength of light emitted from the carbon quantum dots, are within a desired range; and a composition production method for obtaining this composition with ease. A carbon quantum dot-containing composition that solves the foregoing problem includes layered clay minerals and carbon quantum dots obtained by charring an organic compound having a reactive group in the presence of the layered clay minerals.

Description

炭素量子ドット含有組成物、およびその製造方法Carbon quantum dot-containing composition and its manufacturing method
 本発明は、炭素量子ドット含有組成物、およびその製造方法に関する。 The present invention relates to a carbon quantum dot-containing composition and a method for producing the same.
 炭素量子ドットは粒子径が数nmから数10nm程度の安定な炭素系微粒子である。炭素量子ドットは、良好な蛍光特性を示すことから、太陽電池、ディスプレイ、セキュリティインク等のフォトニクス材料としての用途が期待されている。また、低毒性で生体親和性も高いため、バイオイメージング等の医療分野への応用も期待されている。 Carbon quantum dots are stable carbon-based fine particles with a particle size of several nm to several tens of nm. Since carbon quantum dots exhibit good fluorescence characteristics, they are expected to be used as photonics materials for solar cells, displays, security inks, and the like. In addition, since it has low toxicity and high biocompatibility, it is expected to be applied to the medical field such as bioimaging.
 従来、炭素量子ドットの製造方法として、種々の方法が提案されている。例えば特許文献1には、ポリフェノールとアミン化合物とを含む溶液を加熱し、これらを炭化させることで炭素量子ドットを得る方法が記載されている(例えば特許文献1)。 Conventionally, various methods have been proposed as a method for producing carbon quantum dots. For example, Patent Document 1 describes a method of obtaining carbon quantum dots by heating a solution containing a polyphenol and an amine compound and carbonizing them (for example, Patent Document 1).
 一方、炭素量子ドットの用途に応じて、上述のような方法で得られた炭素量子ドットと各種粘土鉱物とを混合することも提案されている。例えば、特許文献2には、炭素量子ドットと、モンモリロナイトとを混合した、指紋検出用の組成物が記載されている。また、特許文献3には、炭素量子ドットとモンモリロナイトとを含む、ピッカリングエマルションが記載されている。さらに、特許文献4には、炭素量子ドットと粘土鉱物とを含む浄水材料が記載されている。 On the other hand, it has also been proposed to mix carbon quantum dots obtained by the above-mentioned method with various clay minerals, depending on the use of carbon quantum dots. For example, Patent Document 2 describes a composition for fingerprint detection, which is a mixture of carbon quantum dots and montmorillonite. Further, Patent Document 3 describes a pickering emulsion containing carbon quantum dots and montmorillonite. Further, Patent Document 4 describes a water purification material containing carbon quantum dots and clay minerals.
特開2018-35035号公報JP-A-2018-35035 中国特許出願公開第108951280号明細書Chinese Patent Application Publication No. 108951280 中国特許出願公開第107129804号明細書Chinese Patent Application Publication No. 107129804 米国特許出願公開第2018/0291266号明細書U.S. Patent Application Publication No. 2018/0291266
 一般的に、量子ドットは、その粒子径によって性能、例えば発光波長が相違する。しかしながら、一般的な方法で炭素量子ドットを調製すると、所望の粒子径に調整することが難しく、例えば発光波長を所望の範囲に調整することも難しかった。また、特許文献2~4のように、炭素量子ドットの調製後、粘土鉱物と混合する場合、均一に混合することが難しく、さらにはその工程が煩雑になりやすかった。 In general, quantum dots differ in performance, for example, emission wavelength, depending on their particle size. However, when carbon quantum dots are prepared by a general method, it is difficult to adjust the particle size to a desired particle size, and it is also difficult to adjust the emission wavelength to a desired range, for example. Further, as in Patent Documents 2 to 4, when carbon quantum dots are prepared and then mixed with clay minerals, it is difficult to mix them uniformly, and the process tends to be complicated.
 本発明は上記課題に鑑みてなされたものである。本願は、例えば発光波長等の性能が所望の範囲であり、かつ炭素量子ドットおよび層状粘土鉱物が均一に分散した組成物の提供、および当該組成物を簡便に得るための組成物の製造方法の提供を目的とする。 The present invention has been made in view of the above problems. The present application provides a composition in which performance such as emission wavelength is in a desired range and carbon quantum dots and layered clay minerals are uniformly dispersed, and a method for producing a composition for easily obtaining the composition. For the purpose of provision.
 本発明は、以下の炭素量子ドット含有組成物を提供する。
 層状粘土鉱物の存在下、反応性基を有する有機化合物を炭化させて得られる炭素量子ドットと、前記層状粘土鉱物と、を含む、炭素量子ドット含有組成物。
The present invention provides the following carbon quantum dot-containing compositions.
A carbon quantum dot-containing composition containing carbon quantum dots obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral and the layered clay mineral.
 本発明は、以下の炭素量子ドット含有組成物の製造方法も提供する。
 層状粘土鉱物と、炭素量子ドットとを含む炭素量子ドット含有組成物の製造方法であって、反応性基を有する有機化合物と、層状粘土鉱物との混合物を調製する工程と、前記混合物を加熱し、前記有機化合物を炭化させて炭素量子ドットを調製する工程と、を含む、炭素量子ドット含有組成物の製造方法。
The present invention also provides the following method for producing a carbon quantum dot-containing composition.
A method for producing a carbon quantum dot-containing composition containing a layered clay mineral and carbon quantum dots, which comprises a step of preparing a mixture of an organic compound having a reactive group and a layered clay mineral, and heating the mixture. A method for producing a carbon quantum dot-containing composition, which comprises a step of carbonizing the organic compound to prepare carbon quantum dots.
 本発明の炭素量子ドット含有組成物が含む炭素量子ドットは、例えば発光波長等、その性能が所望の範囲となる。さらに当該炭素量子ドット含有組成物内では、炭素量子ドットと層状粘土鉱物とが均一に分散されている。したがって、長期間に亘って所望の性能を維持することが期待できる。また、本願発明の製造方法によれば、簡便な方法で、上記炭素量子ドット含有組成物を調製できる。 The carbon quantum dots contained in the carbon quantum dot-containing composition of the present invention have a desired range of performance, such as emission wavelength. Further, in the carbon quantum dot-containing composition, the carbon quantum dots and the layered clay mineral are uniformly dispersed. Therefore, it can be expected that the desired performance is maintained for a long period of time. Further, according to the production method of the present invention, the carbon quantum dot-containing composition can be prepared by a simple method.
図1は、実施例5および比較例3の組成物に対し、粉末X線回折測定を行ったときの結果を示すグラフである。FIG. 1 is a graph showing the results when powder X-ray diffraction measurement was performed on the compositions of Example 5 and Comparative Example 3. 図2は、実施例5の組成物に対し、熱重量分析を行ったときの結果を示すグラフである。FIG. 2 is a graph showing the results of thermogravimetric analysis of the composition of Example 5.
 本発明の炭素量子ドット含有組成物は、炭素量子ドットと層状粘土鉱物とを含む。本明細書において、炭素量子ドットとは、反応性基を有する有機化合物を炭化させて得られる粒子径が1~100nmの炭素粒子のことを指す。なお、本明細書における炭化とは、官能基を有する有機化合物が脱水、脱炭酸、脱水素等の反応によって縮環構造(グラファイト構造)を形成することをいう。 The carbon quantum dot-containing composition of the present invention contains carbon quantum dots and layered clay minerals. In the present specification, the carbon quantum dots refer to carbon particles having a particle size of 1 to 100 nm obtained by carbonizing an organic compound having a reactive group. In addition, carbonization in the present specification means that an organic compound having a functional group forms a fused ring structure (graphite structure) by a reaction such as dehydration, decarboxylation, and dehydrogenation.
 前述のように、従来の一般的な方法で炭素量子ドットを調製した場合、その粒子径の制御が難しく、発光波長等の制御が難しかった。また、炭素量子ドットを含む組成物を調製する場合、このような炭素量子ドットを調製してから、層状粘土鉱物等と混合することが一般的であった。しかしながら、当該方法では、炭素量子ドットと層状粘土鉱物等とを均一に混合することは難しかった。 As described above, when carbon quantum dots were prepared by a conventional general method, it was difficult to control the particle size and the emission wavelength and the like. Further, when preparing a composition containing carbon quantum dots, it was common to prepare such carbon quantum dots and then mix them with a layered clay mineral or the like. However, with this method, it was difficult to uniformly mix carbon quantum dots and layered clay minerals.
 これに対し、本願発明では、層状粘土鉱物の存在下、反応性基を有する有機化合物を炭化させて炭素量子ドット含有組成物(以下、単に「組成物」とも称する)を得る。このように組成物を調製すると、炭素量子ドットの粒子径が揃った、すなわち発光波長等の性能が制御された組成物が得られる。また、当該組成物では、炭素量子ドットの凝集体の生成を抑制することも可能である。その理由は定かではないが、以下のように推測される。 On the other hand, in the present invention, a carbon quantum dot-containing composition (hereinafter, also simply referred to as “composition”) is obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral. When the composition is prepared in this way, it is possible to obtain a composition in which the particle size of the carbon quantum dots is uniform, that is, the performance such as the emission wavelength is controlled. In addition, the composition can suppress the formation of agglomerates of carbon quantum dots. The reason is not clear, but it is presumed as follows.
 炭素量子ドットの原料である有機化合物を炭化する際には、周辺の分子間で反応が三次元で進行するため、生成する炭素量子ドットの粒子径がばらつきやすかった。また、炭素量子ドットは分子間力が大きく、得られた炭素量子ドットをより微小な炭素量子ドットに加工することは難しく、凝集体が生じやすかった。炭素量子ドットの粒子径が比較的大きいと、炭素量子ドットが層状粘土鉱物の層間に入り込めず、均一に混ざり難いと考えられる。 When carbonizing the organic compound that is the raw material of carbon quantum dots, the reaction proceeds three-dimensionally between the surrounding molecules, so the particle size of the carbon quantum dots that are produced tends to vary. In addition, carbon quantum dots have a large intermolecular force, and it is difficult to process the obtained carbon quantum dots into smaller carbon quantum dots, and agglomerates are likely to occur. If the particle size of the carbon quantum dots is relatively large, the carbon quantum dots cannot enter the layers of the layered clay mineral, and it is considered that they are difficult to mix uniformly.
 これに対し、本発明では、炭素量子ドットの原料となる、反応性基を有する有機化合物と、層状粘土鉱物と、を混合し、この状態で有機化合物を炭化させる。有機化合物と、層状粘土鉱物とを混合すると、有機化合物の一部が層状粘土鉱物の層間に入りこむ。そして、層状粘土鉱物の層間は狭いため、有機化合物の集合体が分断されやすい。したがって、有機化合物を層状粘土鉱物の存在下で炭化すると、層状粘土鉱物の層間がテンプレートとなるため、粒子径の揃った炭素量子ドットが調製されやすくなる。またさらに、原料となる有機化合物が微細に分散されているため、得られる炭素量子ドットの粒子径を小さくすることも可能である。 On the other hand, in the present invention, an organic compound having a reactive group, which is a raw material for carbon quantum dots, and a layered clay mineral are mixed, and the organic compound is carbonized in this state. When the organic compound and the layered clay mineral are mixed, a part of the organic compound penetrates between the layers of the layered clay mineral. Since the layers of the layered clay mineral are narrow, the aggregates of organic compounds are easily divided. Therefore, when the organic compound is carbonized in the presence of the layered clay mineral, the layers of the layered clay mineral serve as a template, so that carbon quantum dots having a uniform particle size can be easily prepared. Furthermore, since the organic compound as a raw material is finely dispersed, it is possible to reduce the particle size of the obtained carbon quantum dots.
 また、本発明のように炭素量子ドットを調製すると、炭素量子ドットの一部が層状粘土鉱物の層間に入り込んだ状態(複合体)となる。したがって、炭素量子ドットおよび層状粘土鉱物の分散状態が均一になるだけでなく、炭素量子ドットが長期間に亘って凝集し難くなり、所望の性能が安定して得られやすくなる。 Further, when carbon quantum dots are prepared as in the present invention, a part of the carbon quantum dots is in a state (composite) in which a part of the carbon quantum dots is inserted between layers of layered clay minerals. Therefore, not only the dispersed state of the carbon quantum dots and the layered clay mineral becomes uniform, but also the carbon quantum dots are less likely to aggregate over a long period of time, and the desired performance can be stably obtained.
 ここで、本発明の組成物のように、炭素量子ドットの凝集が少なく、炭素量子ドットが分散して存在する割合が多い場合、炭素量子ドットが層状粘土鉱物を構成する各層の表面を覆うため、組成物の比表面積が小さくなる。なお、層状粘土鉱物を構成する各層の表面とは、層状粘土鉱物の外表面だけでなく、層状粘土鉱物の内部に位置する各層の表面も意味する。そして、このような組成物では、その比表面積を炭素量子ドットの分散性の指標の一つとすることができる。ただし、層状粘土鉱物の種類によっては粘土自体の比表面積の値が小さく、炭素ドットの分散性の違いが、比表面積の差として現れない場合もある。 Here, as in the composition of the present invention, when the agglomeration of carbon quantum dots is small and the proportion of carbon quantum dots dispersed and present is large, the carbon quantum dots cover the surface of each layer constituting the layered clay mineral. , The specific surface area of the composition becomes smaller. The surface of each layer constituting the layered clay mineral means not only the outer surface of the layered clay mineral but also the surface of each layer located inside the layered clay mineral. Then, in such a composition, the specific surface area can be used as one of the indexes of the dispersibility of the carbon quantum dots. However, depending on the type of layered clay mineral, the value of the specific surface area of the clay itself is small, and the difference in the dispersibility of carbon dots may not appear as the difference in the specific surface area.
 ここで、本発明の組成物は、炭素量子ドットと、層状粘土鉱物とを含んでいればよいが、本発明の目的および効果を損なわない範囲で分散性を高める界面活性剤や炭素量子ドット以外の発光体等の他の成分を含んでいてもよい。また、以下では炭素量子ドットが発光する場合を例に説明するが、必ずしも炭素量子ドットは発光しなくてもよい。 Here, the composition of the present invention may contain carbon quantum dots and layered clay minerals, but other than surfactants and carbon quantum dots that enhance dispersibility within a range that does not impair the purpose and effect of the present invention. It may contain other components such as the illuminant of. Further, although the case where the carbon quantum dots emit light will be described below as an example, the carbon quantum dots do not necessarily have to emit light.
 (炭素量子ドット)
 本発明の組成物が含む炭素量子ドットは、層状粘土鉱物の存在下、反応性基を有する有機化合物を炭化させて得られる量子ドットである。なお、反応性基を有する有機化合物や、炭素量子ドットの調製方法については、後述の組成物の調製方法で詳しく説明する。
(Carbon quantum dots)
The carbon quantum dots contained in the composition of the present invention are quantum dots obtained by carbonizing an organic compound having a reactive group in the presence of a layered clay mineral. The method for preparing an organic compound having a reactive group and carbon quantum dots will be described in detail in the method for preparing a composition described later.
 炭素量子ドットの発光波長や構造は特に制限されない。炭素量子ドットの発光波長や構造は、炭素量子ドットの調製に使用する有機化合物の種類や、層状粘土鉱物の種類、層状粘土鉱物の平均層間隔等に応じて定まる。 The emission wavelength and structure of carbon quantum dots are not particularly limited. The emission wavelength and structure of the carbon quantum dots are determined according to the type of organic compound used for preparing the carbon quantum dots, the type of layered clay mineral, the average layer spacing of the layered clay mineral, and the like.
 ただし、炭素量子ドットを原子間力顕微鏡(AFM)により観察したときに、断面で観察される高さは、1~100nmが好ましく、1~80nmがより好ましい。炭素量子ドットの大きさが当該範囲であると、量子ドットとしての性質が十分に得られやすい。 However, when the carbon quantum dots are observed with an atomic force microscope (AFM), the height observed in the cross section is preferably 1 to 100 nm, more preferably 1 to 80 nm. When the size of the carbon quantum dot is within this range, the properties as a quantum dot can be sufficiently obtained.
 また、当該炭素量子ドットは、波長250~1000nmの光を照射したときに、可視光または近赤外光を発することが好ましく、このときの発光波長は300~2000nmが好ましく、300~1500nmがより好ましい。発光波長が当該範囲であると、本発明の組成物を種々の用途に使用できる。 Further, the carbon quantum dots preferably emit visible light or near-infrared light when irradiated with light having a wavelength of 250 to 1000 nm, and the emission wavelength at this time is preferably 300 to 2000 nm, more preferably 300 to 1500 nm. preferable. When the emission wavelength is in this range, the composition of the present invention can be used for various purposes.
 炭素量子ドットは、カルボキシ基、カルボニル基、ヒドロキシ基、アミノ基、ホスホン酸基、リン酸基、スルホ基、およびボロン酸基からなる群から選ばれる少なくとも一種の基を有することが好ましい。炭素量子ドットは、これらのうちの1種のみの基を有していてもよく、2種以上の基を有していてもよい。炭素量子ドットがこれらの基を含むと、炭素量子ドット、ひいては組成物の溶媒等に対する分散性が良好になり、種々の用途に使用しやすくなる。炭素量子ドットが有する官能基の種類は、例えばIRスペクトル等により特定できる。また、炭素量子ドットが有する官能基は、通常有機化合物が有する官能基に由来する。 The carbon quantum dot preferably has at least one group selected from the group consisting of a carboxy group, a carbonyl group, a hydroxy group, an amino group, a phosphonic acid group, a phosphoric acid group, a sulfo group, and a boronic acid group. The carbon quantum dots may have only one of these groups, or may have two or more groups. When the carbon quantum dots contain these groups, the dispersibility of the carbon quantum dots and the composition with respect to the solvent and the like is improved, and the carbon quantum dots can be easily used for various purposes. The type of functional group possessed by the carbon quantum dot can be specified by, for example, an IR spectrum or the like. Further, the functional group of the carbon quantum dot is usually derived from the functional group of the organic compound.
 組成物中の炭素量子ドットの量は、0.1~50質量%が好ましく、0.5~30質量部がより好ましい。組成物中の炭素量子ドットの量が上記範囲であると、組成物から十分な発光が得られる。また、炭素量子ドットの量が上記範囲であると、組成物内で炭素量子ドットが凝集し難くなり、組成物の安定性が高まる。 The amount of carbon quantum dots in the composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30 parts by mass. When the amount of carbon quantum dots in the composition is in the above range, sufficient light emission can be obtained from the composition. Further, when the amount of carbon quantum dots is in the above range, the carbon quantum dots are less likely to aggregate in the composition, and the stability of the composition is enhanced.
 (層状粘土鉱物)
 層状粘土鉱物は、ケイ素、アルミニウム、酸素等が所定の構造で配列した結晶層の積層体であり、一般的に、結晶層どうしの間には、水や金属イオン、カリウムやマグネシウム、水、有機物等が取り込まれている。層状粘土鉱物は、アニオン交換性であってもよく、カチオン交換性であってもよい。
(Layered clay mineral)
A layered clay mineral is a laminate of crystal layers in which silicon, aluminum, oxygen, etc. are arranged in a predetermined structure. Generally, water, metal ions, potassium, magnesium, water, and organic substances are formed between the crystal layers. Etc. are taken in. The layered clay mineral may be anion-exchangeable or cation-exchangeable.
 層状粘土鉱物の例には、スメクタイト、層状複水酸化物、カオリナイト、および雲母等が含まれる。これらの中でもスメクタイトまたは層状複水酸化物が、炭素量子ドット(もしくは後述の有機化合物)を担持するのに適した平均層間隔を有し、かつ所望の粒子径の炭素量子ドットを調製しやすい点で好ましい。 Examples of layered clay minerals include smectite, layered double hydroxides, kaolinite, mica and the like. Among these, smectite or layered double hydroxide has an average layer spacing suitable for supporting carbon quantum dots (or organic compounds described later), and it is easy to prepare carbon quantum dots having a desired particle size. Is preferable.
 スメクタイトは、水等によって膨潤する粘土鉱物であり、その例には、サポナイト、モンモリロナイト、ヘクトライト、バイデライト、ノントロナイト、ソーコナイト、スティーブンサイト等が含まれる。 Smectite is a clay mineral that swells with water, etc., and examples include saponite, montmorillonite, hectorite, biderite, nontronite, saponite, and stephensite.
 一方、層状複水酸化物は、2価の金属酸化物に3価の金属イオンが固溶した複水酸化物であり、その例には、ハイドロタルサイト、ハイドロカルマイト、ハイドロマグネサイト、パイロオーライト等が含まれる。 On the other hand, the layered double hydroxide is a double hydroxide in which a trivalent metal ion is dissolved in a divalent metal oxide, and examples thereof include hydrotalcite, hydrocarmite, hydromagnesite, and pyro. Includes aurite and the like.
 層状粘土鉱物は天然物であってもよく、人工物であってもよい。また、結晶層に含まれるヒドロキシ基がフッ素で置換されたものであってもよい。さらに、層間イオンがアルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、鉄イオン、アンモニウムイオン等で置換されたものであってもよい。また、層状粘土鉱物は、各種有機物によって修飾されていてもよく、例えば、四級アンモニウム塩化合物や四級ピリジニウム塩化合物で化学修飾されたスメクタイトであってもよい。 The layered clay mineral may be a natural product or an artificial product. Further, the hydroxy group contained in the crystal layer may be substituted with fluorine. Further, the metalloid ion may be substituted with an alkali metal ion, an alkaline earth metal ion, an aluminum ion, an iron ion, an ammonium ion or the like. Further, the layered clay mineral may be modified with various organic substances, and may be, for example, smectite chemically modified with a quaternary ammonium salt compound or a quaternary pyridinium salt compound.
 組成物中の層状粘土鉱物の量は、50~99.9質量%が好ましく、70~99.5質量%がより好ましい。層状粘土鉱物の量が上記範囲であると、相対的に炭素量子ドットの量が十分に多くなり、十分な発光量が得られる。また、層状粘土鉱物の量が上記範囲であると、層状粘土鉱物によって炭素量子ドットを十分に担持でき、炭素量子ドットの分散性が良好になりやすい。 The amount of the layered clay mineral in the composition is preferably 50 to 99.9% by mass, more preferably 70 to 99.5% by mass. When the amount of the layered clay mineral is in the above range, the amount of carbon quantum dots is relatively large enough, and a sufficient amount of light emission can be obtained. Further, when the amount of the layered clay mineral is in the above range, the layered clay mineral can sufficiently support the carbon quantum dots, and the dispersibility of the carbon quantum dots tends to be good.
 (組成物の調製方法)
 上記炭素量子ドットおよび層状粘土鉱物を含む組成物は、反応性基を有する有機化合物と、層状粘土鉱物との混合物を調製する工程(混合物調製工程)と、前記混合物を加熱し、前記有機化合物を炭化させて炭素量子ドットを調製する工程(炭素量子ドット調製工程)と、を行うことで調製できる。
(Method for preparing composition)
The composition containing the carbon quantum dots and the layered clay mineral has a step of preparing a mixture of the organic compound having a reactive group and the layered clay mineral (mixture preparation step) and a step of heating the mixture to obtain the organic compound. It can be prepared by carrying out a step of carbonizing to prepare carbon quantum dots (carbon quantum dot preparation step).
 ・混合物調製工程
 混合物調製工程では、反応性基を有する有機化合物と、層状粘土鉱物とを略均一に混合した混合物を調製する。有機化合物は、反応性基を有し、炭化によって炭素量子ドットを生成可能な化合物であれば特に制限されない。本明細書では、「反応性基」とは、後述の炭素量子ドット調製工程において、有機化合物どうしの重縮合反応等を生じさせるための基であり、炭素量子ドットの主骨格の形成に寄与する基である。なお、炭素量子ドットに調製(炭化)後、これらの反応性基の一部が残存していてもよい。反応性基の例には、カルボキシ基、ヒドロキシ基、アミノ基、およびボロン酸基等が含まれる。なお、混合物調製工程では、二種以上の有機化合物を層状粘土鉱物と混合してもよい。この場合、複数の有機化合物は、互いに反応しやすい基を有することが好ましい。
-Mixture preparation step In the mixture preparation step, a mixture in which an organic compound having a reactive group and a layered clay mineral are mixed substantially uniformly is prepared. The organic compound is not particularly limited as long as it has a reactive group and can generate carbon quantum dots by carbonization. In the present specification, the "reactive group" is a group for causing a polycondensation reaction between organic compounds in the carbon quantum dot preparation step described later, and contributes to the formation of the main skeleton of the carbon quantum dots. Is the basis. After preparing (carbonizing) carbon quantum dots, some of these reactive groups may remain. Examples of reactive groups include carboxy groups, hydroxy groups, amino groups, boronic acid groups and the like. In the mixture preparation step, two or more kinds of organic compounds may be mixed with the layered clay mineral. In this case, it is preferable that the plurality of organic compounds have groups that easily react with each other.
 上記反応性基を有する有機化合物の例には、カルボン酸、アルコール、ポリフェノール、アミン化合物、ホウ素化合物、および糖が含まれる。有機化合物は、常温で固体状であってもよく、液体状であってもよい。 Examples of the organic compounds having the above reactive groups include carboxylic acids, alcohols, polyphenols, amine compounds, boron compounds, and sugars. The organic compound may be in a solid state or a liquid state at room temperature.
 カルボン酸は、分子中にカルボキシ基を1つ以上有する化合物(ただし、ポリフェノール、アミン化合物、または糖に相当するものは除く)であればよい。カルボン酸の例には、ギ酸、酢酸等のモノカルボン酸;シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、イタコン酸、ポリアクリル酸等の2価以上の多価カルボン酸;クエン酸、グリコール酸、乳酸、酒石酸、リンゴ酸等のヒドロキシ酸;が含まれる。 The carboxylic acid may be a compound having one or more carboxy groups in the molecule (excluding those corresponding to polyphenols, amine compounds, or sugars). Examples of carboxylic acids include monocarboxylic acids such as formic acid and acetic acid; divalent or higher polyvalent carboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, itaconic acid and polyacrylic acid; citric acid. , Glycoic acid, lactic acid, tartrate acid, hydroxy acid such as malic acid;
 アルコールは、ヒドロキシ基を1つ以上有する化合物(ただし、カルボン酸、ポリフェノール、アミン化合物、または糖に相当するものは除く)であればよい。アルコールの例には、エチレングリコール、グリセロール、エリスリトール、ペンタエリスリトール、アスコルビン酸、ポリエチレングリコール等の多価アルコールが含まれる。 The alcohol may be a compound having one or more hydroxy groups (excluding those corresponding to carboxylic acids, polyphenols, amine compounds, or sugars). Examples of alcohols include polyhydric alcohols such as ethylene glycol, glycerol, erythritol, pentaerythritol, ascorbic acid and polyethylene glycol.
 ポリフェノールは、ベンゼン環にヒドロキシ基が結合した構造を有する化合物であればよい。ポリフェノールの例には、カテコール、レゾルシノール、ヒドロキノン、フロログルシノール、ピロガロール、1,2,4-トリヒドロキシベンゼン、没食子酸、タンニン、リグニン、カテキン、アントシアニン、ルチン、クロロゲン酸、リグナン、クルクミン等が含まれる。 The polyphenol may be a compound having a structure in which a hydroxy group is bonded to a benzene ring. Examples of polyphenols include catechol, resorcinol, hydroquinone, phloroglucinol, pyrogallol, 1,2,4-trihydroxybenzene, gallic acid, tannin, lignin, catechin, anthocyanin, rutin, chlorogenic acid, lignan, curcumin and the like. Is done.
 アミン化合物の例には、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、尿素、チオ尿素、チオシアン酸アンモニウム、エタノールアミン、1-アミノ-2-プロパノール、メラミン、シアヌル酸、バルビツール酸、葉酸、エチレンジアミン、ポリエチレンイミン、ジシアンジアミド、グアニジン、アミノグアニジン、ホルムアミド、グルタミン酸、アスパラギン酸、システイン、アルギニン、ヒスチジン、リシン、グルタチオン、RNA、DNA等が含まれる。 Examples of amine compounds include 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, urea, thiourea, ammonium thiocyanate, ethanolamine, 1-amino-2-propanol, melamine, Includes cyanulic acid, barbituric acid, folic acid, ethylenediamine, polyethyleneimine, dicyandiamide, guanidine, aminoguanidine, formamide, glutamate, aspartic acid, cysteine, arginine, histidine, lysine, glutathione, RNA, DNA and the like.
 ホウ素化合物の例には、ボロン酸基を有する化合物が含まれ、具体的にはフェニルボロン酸、ピリジンボロン酸等が含まれる。 Examples of boron compounds include compounds having a boronic acid group, and specifically, phenylboronic acid, pyridineboronic acid and the like.
 糖の例には、グルコース、スクロース、グルコサミン、セルロース、キチン、キトサン等が含まれる。 Examples of sugar include glucose, sucrose, glucosamine, cellulose, chitin, chitosan and the like.
 上記の中でも、縮合反応が効率的に進行する有機化合物が好ましく、好ましいものの一例として、カルボン酸、ポリフェノール、アミン化合物、もしくはカルボン酸とアミン化合物との組み合わせが挙げられる。また、有機化合物がアミン化合物を含むと、N原子がドープされることで、発光特性が向上するため好ましい。なお、有機化合物が、N原子以外のヘテロ原子を有する場合においても同様の効果が期待される。 Among the above, an organic compound in which the condensation reaction proceeds efficiently is preferable, and an example of the preferable compound is a carboxylic acid, a polyphenol, an amine compound, or a combination of a carboxylic acid and an amine compound. Further, when the organic compound contains an amine compound, it is preferable because the N atom is doped and the light emission characteristics are improved. The same effect can be expected when the organic compound has a hetero atom other than the N atom.
 一方、有機化合物と組み合わせる層状粘土鉱物は、上述の層状粘土鉱物(組成物が含む層状粘土鉱物)と同様である。層状粘土鉱物は、有機化合物が有する反応性基の種類、所望の炭素量子ドットの発光波長、すなわち所望の炭素量子ドットの粒子径に合わせて、選択することが好ましい。例えば、有機化合物が有する反応性基がアニオンとなる場合には、アニオン交換性の層状粘土鉱物を選択してもよい。同様に、有機化合物が有する反応性基がカチオンとなる場合には、カチオン交換性の層状粘土鉱物を選択してもよい。 On the other hand, the layered clay mineral to be combined with the organic compound is the same as the above-mentioned layered clay mineral (layered clay mineral contained in the composition). The layered clay mineral is preferably selected according to the type of reactive group contained in the organic compound, the emission wavelength of the desired carbon quantum dots, that is, the particle size of the desired carbon quantum dots. For example, when the reactive group of the organic compound is an anion, an anion-exchangeable layered clay mineral may be selected. Similarly, when the reactive group of the organic compound is a cation, a cation-exchangeable layered clay mineral may be selected.
 一方、有機化合物と組み合わせる層状粘土鉱物の平均層間隔は、有機化合物の分子構造や、所望の炭素量子ドットの粒子径に合わせて適宜選択されるが、0.1~10nmが好ましく、0.1~8nmがより好ましい。層状粘土鉱物の平均層間隔は、X線回折装置等によって解析できる。なお、層状粘土鉱物の平均層間隔とは、層状粘土鉱物の隣り合う結晶層の一方の底面と他方の天面との間隔をいう。前述のように、炭素量子ドットは、層状粘土鉱物の層間をテンプレートとして合成される。そのため、層状粘土鉱物の平均層間隔が、10nm以下であると、発光波長が短い炭素量子ドットが得られやすくなる。一方で、平均層間隔が0.1nm以上であると、これらの間に有機化合物の一部が入り込みやすくなり、層状粘土鉱物の層間をテンプレートとして炭素量子ドットが形成されやすくなる。 On the other hand, the average layer spacing of the layered clay mineral to be combined with the organic compound is appropriately selected according to the molecular structure of the organic compound and the particle size of the desired carbon quantum dots, but is preferably 0.1 to 10 nm, preferably 0.1. ~ 8 nm is more preferable. The average layer spacing of layered clay minerals can be analyzed by an X-ray diffractometer or the like. The average layer spacing of the layered clay mineral refers to the spacing between one bottom surface and the other top surface of adjacent crystal layers of the layered clay mineral. As described above, carbon quantum dots are synthesized using layers of layered clay minerals as a template. Therefore, when the average layer spacing of the layered clay mineral is 10 nm or less, carbon quantum dots having a short emission wavelength can be easily obtained. On the other hand, when the average layer spacing is 0.1 nm or more, a part of the organic compound easily enters between them, and carbon quantum dots are easily formed using the layers of the layered clay mineral as a template.
 なお、層状粘土鉱物の平均層間隔を調整するため、層状粘土鉱物を水や各種溶媒によって膨潤させてもよい。有機溶媒としては、例えば、メタノール、エタノール、ヘキサン、トルエン、クロロホルム、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。混合物(有機化合物と層状粘土鉱物と溶媒)中の溶媒の量は、10~80質量%が好ましく、10~70重量%がより好ましい。 The layered clay mineral may be swollen with water or various solvents in order to adjust the average layer spacing of the layered clay mineral. Examples of the organic solvent include methanol, ethanol, hexane, toluene, chloroform, dimethylformamide, dimethyl sulfoxide and the like. The amount of the solvent in the mixture (organic compound, layered clay mineral and solvent) is preferably 10 to 80% by mass, more preferably 10 to 70% by weight.
 ここで、有機化合物と層状粘土鉱物とを混合する方法は、これらを均一に混合可能であれば、特に制限されない。例えば、乳鉢ですりつぶしながら混合したり、ボールミル等によって粉砕しながら混合したりしてもよい。 Here, the method of mixing the organic compound and the layered clay mineral is not particularly limited as long as they can be mixed uniformly. For example, it may be mixed while being crushed in a mortar, or may be mixed while being crushed by a ball mill or the like.
 また、有機化合物と層状粘土鉱物との混合比は、所望の炭素ドット量子と層状粘土鉱物との含有比に合わせて適宜選択される。 Further, the mixing ratio of the organic compound and the layered clay mineral is appropriately selected according to the desired content ratio of the carbon dot quantum and the layered clay mineral.
 ・炭素量子ドット調製工程
 炭素量子ドット調製工程は、上述の混合物を加熱し、有機化合物を炭化させて炭素量子ドットとする工程である。混合物の加熱方法は、有機化合物を反応させて、炭化可能であれば特に制限されず、例えば加熱する方法や、電磁波(例えばマイクロ波)を照射する方法等が含まれる。
-Carbon quantum dot preparation step The carbon quantum dot preparation step is a step of heating the above-mentioned mixture and carbonizing an organic compound to form carbon quantum dots. The method for heating the mixture is not particularly limited as long as it can be carbonized by reacting an organic compound, and includes, for example, a method for heating, a method for irradiating an electromagnetic wave (for example, microwave), and the like.
 混合物を加熱する場合、加熱温度は70~700℃が好ましく、100~500℃がより好ましく、100~300℃がさらに好ましい。また、加熱時間は0.01~45時間が好ましく、0.1~30時間がより好ましく、0.5~10時間がさらに好ましい。加熱時間によって、得られる炭素量子ドットの粒子径、ひいては発光波長を調整できる。またこのとき、窒素等の不活性ガスを流通させながら非酸化性雰囲気で加熱を行ってもよい。 When heating the mixture, the heating temperature is preferably 70 to 700 ° C, more preferably 100 to 500 ° C, and even more preferably 100 to 300 ° C. The heating time is preferably 0.01 to 45 hours, more preferably 0.1 to 30 hours, and even more preferably 0.5 to 10 hours. The particle size of the obtained carbon quantum dots, and thus the emission wavelength, can be adjusted by the heating time. At this time, heating may be performed in a non-oxidizing atmosphere while an inert gas such as nitrogen is circulated.
 電磁波(例えばマイクロ波)を照射する場合、ワット数は1~1500Wが好ましく、1~1000Wがより好ましい。また、電磁波(例えばマイクロ波)による加熱時間は0.01~10時間が好ましく、0.01~5時間がより好ましく、0.01~1時間がさらに好ましい。電磁波(マイクロ波)の照射時間によって、得られる炭素量子ドットの粒子径、ひいては発光波長を調整できる。 When irradiating electromagnetic waves (for example, microwaves), the wattage is preferably 1 to 1500 W, more preferably 1 to 1000 W. The heating time by electromagnetic waves (for example, microwaves) is preferably 0.01 to 10 hours, more preferably 0.01 to 5 hours, and even more preferably 0.01 to 1 hour. The particle size of the obtained carbon quantum dots, and thus the emission wavelength, can be adjusted by the irradiation time of electromagnetic waves (microwaves).
 上記電磁波照射は、例えば半導体式電磁波照射装置等によって行うことができる。電磁波の照射は、上記混合物の温度を確認しながら行うことが好ましい。例えば温度が70~700℃となるように調整しながら、電磁波を照射することが好ましい。 The electromagnetic wave irradiation can be performed by, for example, a semiconductor type electromagnetic wave irradiation device or the like. It is preferable to irradiate the electromagnetic wave while checking the temperature of the mixture. For example, it is preferable to irradiate electromagnetic waves while adjusting the temperature to 70 to 700 ° C.
 当該炭素量子ドット調製工程により、炭素量子ドットと、層状粘土鉱物とが均一に分散された炭素量子ドット含有組成物が得られる。またこのとき、当該組成物を有機溶媒で洗浄して、未反応物や副生物を除去して精製してもよい。 By the carbon quantum dot preparation step, a carbon quantum dot-containing composition in which carbon quantum dots and layered clay minerals are uniformly dispersed can be obtained. At this time, the composition may be washed with an organic solvent to remove unreacted substances and by-products and purified.
 (用途)
 上述のように、混合物調製工程および上記炭素量子ドット調製工程を経て炭素量子ドット含有組成物を調製すると、炭素量子ドットを調製してから層状粘土鉱物と混合した場合より、炭素量子ドットの分散性が高まる。なお、炭素量子ドットの分散性が高い炭素量子ドット含有組成物は、発光性が良好であったり、炭素量子ドットが有する官能基を利用して特定物質を分離させる分離剤として有用であったりする。したがって、組成物を各種用途に利用可能である。
(Use)
As described above, when the carbon quantum dot-containing composition is prepared through the mixture preparation step and the carbon quantum dot preparation step, the dispersibility of the carbon quantum dots is higher than that in the case where the carbon quantum dots are prepared and then mixed with the layered clay mineral. Will increase. The carbon quantum dot-containing composition having high dispersibility of carbon quantum dots has good luminescence and is useful as a separating agent for separating a specific substance by utilizing the functional group of the carbon quantum dots. .. Therefore, the composition can be used for various purposes.
 上述の炭素量子ドット含有組成物の用途は、特に制限されず、炭素量子ドットの性能に合わせて、例えば太陽電池、ディスプレイ、セキュリティインク、量子ドットレーザ、バイオマーカー、照明材料、熱電材料、光触媒、特定物質の分離剤等に使用できる。 The use of the above-mentioned carbon quantum dot-containing composition is not particularly limited, and according to the performance of the carbon quantum dots, for example, solar cells, displays, security inks, quantum dot lasers, biomarkers, lighting materials, thermoelectric materials, photocatalysts, etc. It can be used as a separating agent for specific substances.
 以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, specific examples of the present invention will be described together with comparative examples, but the present invention is not limited thereto.
 [実施例1]
 サポナイト(スメクトンSA、クニミネ工業社製)1.0gと、フロログルシノール二水和物0.15gと、を乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、200℃で3時間加熱し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 1]
1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.15 g of phloroglucinol dihydrate were mashed in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 200 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
 [実施例2]
 ハイドロタルサイト(富士フイルム和光純薬社製)0.5gと、クエン酸0.15gと、ジシアンジアミド0.1gとを乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、170℃で90分加熱し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 2]
0.5 g of hydrotalcite (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.15 g of citric acid, and 0.1 g of dicyandiamide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 170 ° C. for 90 minutes to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
 [実施例3]
 サポナイト(スメクトンSA、クニミネ工業社製)1.0gと、フロログルシノール二水和物0.15gと、ジメチルスルホキシド0.5mLとを乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、155℃で3時間加熱したのち、40℃で8時間真空乾燥させて炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 3]
1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.), 0.15 g of phloroglucinol dihydrate, and 0.5 mL of dimethyl sulfoxide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while flowing nitrogen through the screw cap test tube, the composition is heated at 155 ° C. for 3 hours and then vacuum dried at 40 ° C. for 8 hours to contain carbon quantum dots and layered clay minerals (a carbon quantum dot-containing composition (). Complex) was prepared.
 [実施例4]
 サポナイト(スメクトンSA、クニミネ工業社製)1.0gと、フロログルシノール二水和物0.15gと、を乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、155℃で3時間加熱し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 4]
1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.15 g of phloroglucinol dihydrate were mashed in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 155 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
 [実施例5]
 サポナイト(スメクトンSA、クニミネ工業社製)1.0gと、フロログルシノール二水和物0.4gと、を乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、200℃で3時間加熱し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 5]
1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.4 g of phloroglucinol dihydrate were mashed in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 200 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
 [実施例6]
 サポナイト(スメクトンSA、クニミネ工業社製)0.5gと、クエン酸0.15gと、ジシアンジアミド0.1gとを乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、170℃で90分加熱し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 6]
0.5 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.), 0.15 g of citric acid, and 0.1 g of dicyandiamide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 170 ° C. for 90 minutes to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
 [実施例7]
 サポナイト(スメクトンSA、クニミネ工業社製)1.0gと、フロログルシノール二水和物0.02gと、レゾルシノール0.1gとを乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、200℃で3時間加熱し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 7]
1.0 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.), 0.02 g of phloroglucinol dihydrate, and 0.1 g of resorcinol were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while nitrogen was circulated in the screw cap test tube, it was heated at 200 ° C. for 3 hours to prepare a carbon quantum dot-containing composition (composite) containing carbon quantum dots and layered clay minerals.
 [実施例8]
 サポナイト(スメクトンSA、クニミネ工業社製)0.56gと、フロログルシノール二水和物0.084gと、を乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、ゴムパッキン付きねじ口キャップで封をした。そして、ねじ口試験管内に窒素を流通させながら、撹拌下、富士電波工機社製の半導体式電磁波照射装置(矩形導波管型共振器)の電場最大点に上記ねじ口試験管を設置して、2.45GHzの電磁波を照射し、炭素量子ドットと、層状粘土鉱物と、を含む炭素量子ドット含有組成物(複合体)を調製した。
[Example 8]
0.56 g of saponite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) and 0.084 g of phloroglucinol dihydrate were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and sealed with a screw cap with rubber packing. Then, while circulating nitrogen in the screw cap test tube, the screw cap test tube is installed at the maximum electric field point of the semiconductor electromagnetic wave irradiation device (rectangular waveguide type resonator) manufactured by Fuji Denpa Koki Co., Ltd. under stirring. A carbon quantum dot-containing composition (complex) containing carbon quantum dots and layered clay minerals was prepared by irradiating an electromagnetic wave of 2.45 GHz.
 なお、当該半導体式電磁波照射装置による電磁波照射には、TE103シングルモードを採用した。当該半導体式電磁波照射装置は、スリースタブチューナー、アイリス、およびプランジャーを備えた共振器、半導体式電磁波発振器、ならびに入力電力および反射電力を監視するモニターから構成される。電磁波照射時の温度は赤外放射温度計を用いて測定した。そして、当該半導体式電磁波発振器より2W、2.45GHzの電磁波を発振しつつ、スリースタブチューナーおよびプランジャーを調節することで、反射電力を0.1W未満に抑えた。電磁波照射1分後に、赤外放射温度計が示す温度が200℃となり、温度計が200℃を示してから4分間反応を行った。 The TE103 single mode was adopted for electromagnetic wave irradiation by the semiconductor type electromagnetic wave irradiation device. The semiconductor electromagnetic wave irradiator comprises a three-stub tuner, an iris, and a resonator equipped with a plunger, a semiconductor electromagnetic wave oscillator, and a monitor for monitoring input power and reflected power. The temperature at the time of electromagnetic wave irradiation was measured using an infrared radiation thermometer. Then, the reflected power was suppressed to less than 0.1 W by adjusting the three-stub tuner and the plunger while oscillating an electromagnetic wave of 2 W and 2.45 GHz from the semiconductor electromagnetic wave oscillator. One minute after the electromagnetic wave irradiation, the temperature indicated by the infrared radiation thermometer reached 200 ° C., and the reaction was carried out for 4 minutes after the thermometer showed 200 ° C.
 [比較例1]
 フロログルシノール二水和物1.2gを内容積15mlのねじ口試験管に入れ、窒素気流下、200℃で3時間加熱して炭素量子ドットを合成した。合成した炭素量子ドットを0.12g測り取り、サポナイト1.0gとともに乳鉢ですりつぶすことで両者を混合し、炭素量子ドット含有組成物を得た。
[Comparative Example 1]
1.2 g of phloroglucinol dihydrate was placed in a screw cap test tube having an internal volume of 15 ml and heated at 200 ° C. for 3 hours under a nitrogen stream to synthesize carbon quantum dots. 0.12 g of the synthesized carbon quantum dots were measured and ground with 1.0 g of saponite in a mortar to mix the two to obtain a carbon quantum dot-containing composition.
 [比較例2]
 クエン酸0.15gと、ジシアンジアミド0.1gとを乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、窒素気流下、170℃で90分加熱して炭素量子ドットを合成した。合成した炭素量子ドットを35.0mg測り取り、ハイドロタルサイト70.0mgとともに乳鉢ですりつぶすことで両者を混合し、炭素量子ドット含有組成物を得た。
[Comparative Example 2]
0.15 g of citric acid and 0.1 g of dicyandiamide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and heated at 170 ° C. for 90 minutes under a nitrogen stream to synthesize carbon quantum dots. 35.0 mg of the synthesized carbon quantum dots were measured, and the two were mixed by grinding with 70.0 mg of hydrotalcite in a mortar to obtain a carbon quantum dot-containing composition.
 [比較例3]
 フロログルシノール二水和物1.2gを内容積15mlのねじ口試験管に入れ、窒素気流下、200℃で3時間加熱して炭素量子ドットを合成した。合成した炭素量子ドットを0.31g測り取り、サポナイト1.0gとともに乳鉢ですりつぶすことで両者を混合し、炭素量子ドット含有組成物を得た。
[Comparative Example 3]
1.2 g of phloroglucinol dihydrate was placed in a screw cap test tube having an internal volume of 15 ml and heated at 200 ° C. for 3 hours under a nitrogen stream to synthesize carbon quantum dots. 0.31 g of the synthesized carbon quantum dots were measured and ground with 1.0 g of saponite in a mortar to mix the two to obtain a carbon quantum dot-containing composition.
 [比較例4]
 クエン酸0.15gと、ジシアンジアミド0.1gとを乳鉢ですりつぶした。当該混合物を内容積15mlのねじ口試験管に入れ、窒素気流下、170℃で90分加熱して炭素量子ドットを合成した。合成した炭素量子ドットを50.0mg測り取り、サポナイト100.0mgとともに乳鉢ですりつぶすことで両者を混合し、炭素量子ドット含有組成物を得た。
[Comparative Example 4]
0.15 g of citric acid and 0.1 g of dicyandiamide were ground in a mortar. The mixture was placed in a screw cap test tube having an internal volume of 15 ml and heated at 170 ° C. for 90 minutes under a nitrogen stream to synthesize carbon quantum dots. 50.0 mg of the synthesized carbon quantum dots were measured, and the two were mixed by grinding with 100.0 mg of saponite in a mortar to obtain a carbon quantum dot-containing composition.
 [評価]
 実施例および比較例で使用した層状粘土鉱物の平均層間隔、得られた組成物の比表面積、および組成物の発光波長について、以下のように評価した。結果を表1に示す。また、実施例5および比較例3の組成物中での炭素量子ドットの凝集状態、および実施例5の組成物の炭素量子ドットの含有量を以下のように測定した。結果をそれぞれ、図1および図2に示す。
[Evaluation]
The average layer spacing of the layered clay minerals used in Examples and Comparative Examples, the specific surface area of the obtained composition, and the emission wavelength of the composition were evaluated as follows. The results are shown in Table 1. In addition, the aggregated state of carbon quantum dots in the compositions of Example 5 and Comparative Example 3 and the content of carbon quantum dots in the composition of Example 5 were measured as follows. The results are shown in FIGS. 1 and 2, respectively.
 (層状粘土鉱物の平均層間隔の測定)
 層状粘土鉱物の平均層間隔は、X’Pert-PRO MPD(PANalytical製)を用い、特性X線波長1.54Åにて粉末X線回折測定を行い評価した。層状粘土鉱物の平均層間隔とは、層状粘土鉱物を構成する結晶層の間隔(一方の底面と他方の天面との間隔)を意味する。
(Measurement of average layer spacing of layered clay minerals)
The average layer spacing of the layered clay mineral was evaluated by powder X-ray diffraction measurement at a characteristic X-ray wavelength of 1.54 Å using X'Pert-PRO MPD (manufactured by PANalytical). The average layer spacing of the layered clay mineral means the spacing between the crystal layers constituting the layered clay mineral (the spacing between one bottom surface and the other top surface).
 (比表面積の評価)
 組成物の比表面積は、Monosorb(Quantachrome Instruments製)を用いて評価した。N:He=20vol%:80vol%の混合ガスを用いてBET一点法により比表面積の値を求めた。サンプルは150℃で10分間乾燥したものを用いた。
(Evaluation of specific surface area)
The specific surface area of the composition was evaluated using Monosorb (manufactured by Quantachrome Instruments). The value of the specific surface area was determined by the BET one-point method using a mixed gas of N 2: He = 20 vol%: 80 vol%. The sample used was dried at 150 ° C. for 10 minutes.
 (発光波長の評価)
 組成物をKBrプレートに挟み、プレスして測定用サンプルを作製した。当該測定用サンプルに分光蛍光光度計FP-8500(日本分光社製)を用いて波長400nmの励起光を照射し、発光波長(蛍光波長)を評価した。
(Evaluation of emission wavelength)
The composition was sandwiched between KBr plates and pressed to prepare a sample for measurement. The measurement sample was irradiated with excitation light having a wavelength of 400 nm using a spectral fluorometer FP-8500 (manufactured by Nippon Kogaku Co., Ltd.), and the emission wavelength (fluorescence wavelength) was evaluated.
 (炭素量子ドットの凝集状態の評価)
 実施例5よび比較例3の組成物における炭素量子ドットの凝集状態は、X’Pert-PRO MPD(PANalytical製)を用い、特性X線波長1.54Åにて粉末X線回折測定を行い評価した。
(Evaluation of agglutination state of carbon quantum dots)
The aggregated state of carbon quantum dots in the compositions of Example 5 and Comparative Example 3 was evaluated by powder X-ray diffraction measurement at a characteristic X-ray wavelength of 1.54 Å using X'Pert-PRO MPD (manufactured by PANalytical). ..
 (炭素量子ドット含有量の評価)
 熱重量分析装置TGA2(Mettler社製)を用いて、40ml/分の空気気流下、昇温速度10℃/分で測定を行い、重量減少量から実施例5の組成物中の炭素量子ドット含有量を評価した。
(Evaluation of carbon quantum dot content)
Using a thermogravimetric analyzer TGA2 (manufactured by Mettler), measurement was performed at a heating rate of 10 ° C./min under an air flow of 40 ml / min, and the amount of weight loss was determined by the amount of carbon quantum dots contained in the composition of Example 5. The amount was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表に示されるように、層状粘土鉱物の存在下、炭素量子ドットを調製して、炭素量子ドットおよび層状粘土鉱物を含む炭素量子ドット含有組成物を得た場合、所望の波長の発光が得られた(実施例1~8)。また、実施例3および実施例4では同一の反応温度および同一の反応時間で炭素量子ドットを調製しているが、溶媒の添加により層間隔が拡張した層状粘土鉱物を用いた実施例3では、炭素量子ドットはより長波長発光を示した。このことから、実施例3において、実施例4より粒子径が大きな炭素量子ドットが得られたと考えられる。 As shown in the above table, when carbon quantum dots are prepared in the presence of layered clay minerals to obtain carbon quantum dot-containing compositions containing carbon quantum dots and layered clay minerals, light emission of a desired wavelength is obtained. (Examples 1 to 8). Further, in Examples 3 and 4, carbon quantum dots were prepared at the same reaction temperature and the same reaction time, but in Example 3 using a layered clay mineral in which the layer spacing was expanded by the addition of a solvent, Carbon quantum dots showed longer wavelength emission. From this, it is considered that in Example 3, carbon quantum dots having a larger particle size than in Example 4 were obtained.
 一方、炭素量子ドットを合成してから、炭素量子ドットと層状粘土鉱物とを混合した比較例1および比較例3では、発光が確認できなかった。分散が良好に行われず、炭素量子ドットが凝集してしまったと考えられる。また、比較例2では、実施例2と同一の反応温度および同一の反応時間で炭素量子ドットを調製したにも関わらず、炭素量子ドットの蛍光波長が長かった。実施例2では、層状粘土鉱物の存在下、炭素量子ドットを調製することで、炭素量子ドットの粒子径が小さくなったため、比較例2より蛍光波長が短くなったと考えられる。また、比較例4の組成物は、有機化合物と層状粘土鉱物との比率が実施例6と同一にも関わらず、比表面積が大きかった。実施例6では、層状粘土鉱物の存在下、炭素量子ドットを調製したため、層状化合物の空孔に炭素量子ドットが効果的に包接され、炭素量子ドットの分散性が比較例4より良好になったと考えられる。 On the other hand, in Comparative Example 1 and Comparative Example 3 in which the carbon quantum dots were synthesized and then the carbon quantum dots and the layered clay mineral were mixed, no light emission could be confirmed. It is probable that the dispersion was not performed well and the carbon quantum dots were aggregated. Further, in Comparative Example 2, although the carbon quantum dots were prepared at the same reaction temperature and the same reaction time as in Example 2, the fluorescence wavelength of the carbon quantum dots was long. In Example 2, it is considered that the fluorescence wavelength was shorter than that in Comparative Example 2 because the particle size of the carbon quantum dots was reduced by preparing the carbon quantum dots in the presence of the layered clay mineral. Further, the composition of Comparative Example 4 had a large specific surface area even though the ratio of the organic compound and the layered clay mineral was the same as that of Example 6. In Example 6, since the carbon quantum dots were prepared in the presence of the layered clay mineral, the carbon quantum dots were effectively included in the pores of the layered compound, and the dispersibility of the carbon quantum dots became better than that of Comparative Example 4. It is thought that it was.
 さらに、図1に示されるように、実施例5および比較例3のいずれの組成物でも、層状粘土鉱物由来の回折ピーク(2θ=19°付近のピーク)が観察された。また、実施例5の組成物では、炭素量子ドットの凝集に由来する回折ピークが観察されなかったのに対し、比較例3の組成物では、炭素量子ドットの凝集に由来する鋭いピークが回折角度2θ=17°、20°、26°、29°付近に観察された。さらに、実施例5の組成物では、層状粘土鉱物の層秩序に由来するピーク(2θ=8°)の小角側へのシフト(2θ=6°)とブロード化が観察された。このことから、実施例5の調製方法では、炭素量子ドットが層状粘土鉱物の層間で生成したといえる。また、得られた組成物では、炭素量子ドットが層状粘土鉱物中に良好に分散していると考えられる。 Further, as shown in FIG. 1, a diffraction peak derived from a layered clay mineral (a peak near 2θ = 19 °) was observed in both the compositions of Example 5 and Comparative Example 3. Further, in the composition of Example 5, no diffraction peak derived from the aggregation of carbon quantum dots was observed, whereas in the composition of Comparative Example 3, a sharp peak derived from the aggregation of carbon quantum dots was observed at a diffraction angle. It was observed near 2θ = 17 °, 20 °, 26 °, and 29 °. Further, in the composition of Example 5, a shift (2θ = 6 °) of the peak (2θ = 8 °) derived from the layer order of the layered clay mineral to the small angle side and broadening were observed. From this, it can be said that in the preparation method of Example 5, carbon quantum dots were generated between the layers of the layered clay mineral. Moreover, in the obtained composition, it is considered that the carbon quantum dots are well dispersed in the layered clay mineral.
 さらに、図2に示されるように、実施例5の組成物の重量減少量を測定したとき、約300℃から550℃の間で、21質量%重量減少がみられた。この結果から、実施例5の組成物は21質量%の炭素量子ドットを含むと算出された。 Further, as shown in FIG. 2, when the weight loss of the composition of Example 5 was measured, a weight loss of 21% by mass was observed between about 300 ° C. and 550 ° C. From this result, it was calculated that the composition of Example 5 contained 21% by mass of carbon quantum dots.
 本出願は、2019年10月29日出願の特願2019-196094号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-196094 filed on October 29, 2019. All the contents described in the application specification are incorporated in the application specification.
 本発明の炭素量子ドット含有組成物によれば、炭素量子ドットと層状粘土鉱物との分散性が良好であり、さらには炭素量子ドットの性能(例えば発光波長)を所望の範囲に調整することができる。したがって、各種用途に使用可能な炭素量子ドット含有組成物が得られる。 According to the carbon quantum dot-containing composition of the present invention, the dispersibility between the carbon quantum dots and the layered clay mineral is good, and the performance of the carbon quantum dots (for example, the emission wavelength) can be adjusted to a desired range. it can. Therefore, a carbon quantum dot-containing composition that can be used for various purposes can be obtained.

Claims (6)

  1.  層状粘土鉱物の存在下、反応性基を有する有機化合物を炭化させて得られる炭素量子ドットと、
     前記層状粘土鉱物と、
     を含む、炭素量子ドット含有組成物。
    Carbon quantum dots obtained by carbonizing an organic compound having a reactive group in the presence of layered clay minerals,
    With the layered clay mineral
    A carbon quantum dot-containing composition comprising.
  2.  前記層状粘土鉱物が、スメクタイトおよび層状複水酸化物から選ばれる、少なくとも一種を含む、
     請求項1に記載の炭素量子ドット含有組成物。
    The layered clay mineral comprises at least one selected from smectite and layered double hydroxides.
    The carbon quantum dot-containing composition according to claim 1.
  3.  前記反応性基を有する有機化合物が、カルボン酸、アルコール、ポリフェノール、アミン化合物、ホウ素化合物、および糖からなる群から選ばれる、少なくとも一種の化合物である、
     請求項1または2に記載の炭素量子ドット含有組成物。
    The organic compound having a reactive group is at least one compound selected from the group consisting of carboxylic acids, alcohols, polyphenols, amine compounds, boron compounds, and sugars.
    The carbon quantum dot-containing composition according to claim 1 or 2.
  4.  前記炭素量子ドットが、カルボキシ基、カルボニル基、ヒドロキシ基、アミノ基、ホスホン酸基、リン酸基、スルホ基、およびボロン酸基からなる群から選ばれる少なくとも一種の基を有する、
     請求項1~3のいずれか一項に記載の炭素量子ドット含有組成物。
    The carbon quantum dot has at least one group selected from the group consisting of a carboxy group, a carbonyl group, a hydroxy group, an amino group, a phosphonic acid group, a phosphoric acid group, a sulfo group, and a boronic acid group.
    The carbon quantum dot-containing composition according to any one of claims 1 to 3.
  5.  層状粘土鉱物と、炭素量子ドットとを含む炭素量子ドット含有組成物の製造方法であって、
     反応性基を有する有機化合物と、層状粘土鉱物との混合物を調製する工程と、
     前記混合物を加熱し、前記有機化合物を炭化させて炭素量子ドットを調製する工程と、
     を含む、
     炭素量子ドット含有組成物の製造方法。
    A method for producing a carbon quantum dot-containing composition containing a layered clay mineral and carbon quantum dots.
    A step of preparing a mixture of an organic compound having a reactive group and a layered clay mineral, and
    A step of heating the mixture and carbonizing the organic compound to prepare carbon quantum dots.
    including,
    A method for producing a carbon quantum dot-containing composition.
  6.  前記混合物を調製する工程に使用する、前記層状粘土鉱物の平均層間隔が、0.1nm~10nmである、
     請求項5に記載の炭素量子ドット含有組成物の製造方法。
    The average layer spacing of the layered clay minerals used in the step of preparing the mixture is 0.1 nm to 10 nm.
    The method for producing a carbon quantum dot-containing composition according to claim 5.
PCT/JP2020/029349 2019-10-29 2020-07-30 Carbon quantum dot-containing composition, and method for producing the same WO2021084825A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2020/040499 WO2021085493A1 (en) 2019-10-29 2020-10-28 Carbon quantum dot-containing composition and method for producing same
US17/755,257 US20220380217A1 (en) 2019-10-29 2020-10-28 Carbon quantum dot-containing composition and method for producing same
KR1020227014145A KR20220066967A (en) 2019-10-29 2020-10-28 Carbon quantum dot-containing composition and method for preparing same
JP2021553663A JP7410165B2 (en) 2019-10-29 2020-10-28 Carbon quantum dot-containing composition and method for producing the same
CN202080068050.7A CN114502690A (en) 2019-10-29 2020-10-28 Carbon quantum dot-containing composition and method for producing same
EP20880782.6A EP4053075A4 (en) 2019-10-29 2020-10-28 Carbon quantum dot-containing composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019196094 2019-10-29
JP2019-196094 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021084825A1 true WO2021084825A1 (en) 2021-05-06

Family

ID=75714984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029349 WO2021084825A1 (en) 2019-10-29 2020-07-30 Carbon quantum dot-containing composition, and method for producing the same

Country Status (2)

Country Link
TW (1) TWI767345B (en)
WO (1) WO2021084825A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429964A (en) * 2021-06-25 2021-09-24 南京信息工程大学 Preparation method of fluorescent amino clay
CN113563878A (en) * 2021-07-26 2021-10-29 曲阜师范大学 Multi-emission carbon spot fluorescent probe with large Stokes displacement and preparation method and application thereof
CN113998691A (en) * 2021-10-09 2022-02-01 三峡大学 Preparation method of graphene quantum dots with supramolecular structures
CN114316967A (en) * 2021-12-31 2022-04-12 湖南智享未来生物科技有限公司 Carbon dot composition, preparation method and application in cell nucleus and membrane co-staining
CN114989819A (en) * 2022-04-07 2022-09-02 宁波大学 Preparation method and detection application of carbon quantum dots for detecting aluminum ions
CN115322776A (en) * 2022-07-12 2022-11-11 公安部物证鉴定中心 Fingerprint developing agent based on nitrogen-doped multicolor fluorescent carbon dots, preparation method and application
CN115595145A (en) * 2022-11-07 2023-01-13 中国刑事警察学院(Cn) Preparation method and application of nitrogen-zinc doped carbon dot-hydrotalcite nanocomposite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477854A (en) * 2014-11-17 2015-04-01 武汉理工大学 Ternary semiconductor quantum dot/graphene functional composite material and preparation method thereof
WO2017141975A1 (en) * 2016-02-15 2017-08-24 国立大学法人東京工業大学 Sp2 carbon-containing composition, graphene quantum dot-containing composition, and methods for producing these, and method for peeling graphite
JP2018131621A (en) * 2017-02-15 2018-08-23 大阪ガスケミカル株式会社 Nanocarbon-containing inorganic porous material emitter
WO2019012474A1 (en) * 2017-07-13 2019-01-17 Carbon Upcycling Technologies Inc. A mechanochemical process to produce exfoliated nanoparticles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788402B (en) * 2013-12-23 2015-08-12 齐鲁工业大学 A kind of carbon quantum dot/hectorite emulsion-stabilizing system and prepare the method for paraffin wax emulsions
TWI636120B (en) * 2017-08-04 2018-09-21 奇美實業股份有限公司 Manufacturing method of quantum dot, light emitting material, light emitting device and display apparatus
TWI656195B (en) * 2017-10-24 2019-04-11 奇美實業股份有限公司 Quantum dot, light emitting material and manufacturing method of quantum dot
CN109077062B (en) * 2018-08-09 2021-05-18 陕西科技大学 Preparation method of modified MMT/ZnO/GQDs nano composite antibacterial agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477854A (en) * 2014-11-17 2015-04-01 武汉理工大学 Ternary semiconductor quantum dot/graphene functional composite material and preparation method thereof
WO2017141975A1 (en) * 2016-02-15 2017-08-24 国立大学法人東京工業大学 Sp2 carbon-containing composition, graphene quantum dot-containing composition, and methods for producing these, and method for peeling graphite
JP2018131621A (en) * 2017-02-15 2018-08-23 大阪ガスケミカル株式会社 Nanocarbon-containing inorganic porous material emitter
WO2019012474A1 (en) * 2017-07-13 2019-01-17 Carbon Upcycling Technologies Inc. A mechanochemical process to produce exfoliated nanoparticles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429964A (en) * 2021-06-25 2021-09-24 南京信息工程大学 Preparation method of fluorescent amino clay
CN113563878A (en) * 2021-07-26 2021-10-29 曲阜师范大学 Multi-emission carbon spot fluorescent probe with large Stokes displacement and preparation method and application thereof
CN113998691A (en) * 2021-10-09 2022-02-01 三峡大学 Preparation method of graphene quantum dots with supramolecular structures
CN114316967A (en) * 2021-12-31 2022-04-12 湖南智享未来生物科技有限公司 Carbon dot composition, preparation method and application in cell nucleus and membrane co-staining
CN114316967B (en) * 2021-12-31 2023-04-14 湖南智享未来生物科技有限公司 Carbon dot composition, preparation method and application in cell nucleus and membrane co-staining
CN114989819A (en) * 2022-04-07 2022-09-02 宁波大学 Preparation method and detection application of carbon quantum dots for detecting aluminum ions
CN114989819B (en) * 2022-04-07 2024-01-09 深圳万知达科技有限公司 Preparation method and detection application of carbon quantum dot for detecting aluminum ions
CN115322776A (en) * 2022-07-12 2022-11-11 公安部物证鉴定中心 Fingerprint developing agent based on nitrogen-doped multicolor fluorescent carbon dots, preparation method and application
CN115595145A (en) * 2022-11-07 2023-01-13 中国刑事警察学院(Cn) Preparation method and application of nitrogen-zinc doped carbon dot-hydrotalcite nanocomposite

Also Published As

Publication number Publication date
TWI767345B (en) 2022-06-11
TW202116977A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
WO2021084825A1 (en) Carbon quantum dot-containing composition, and method for producing the same
WO2021085493A1 (en) Carbon quantum dot-containing composition and method for producing same
Xu et al. Enhanced up-conversion luminescence and optical temperature sensing in graphitic C 3 N 4 quantum dots grafted with BaWO 4: Yb 3+, Er 3+ phosphors
Kumar et al. Synthesis and characterization of carbon quantum dots from orange juice
Raevskaya et al. Spectral and luminescent properties of ZnO–SiO 2 core–shell nanoparticles with size-selected ZnO cores
Saladino et al. Synthesis of Nd: YAG nanopowder using the citrate method with microwave irradiation
WO2022202385A1 (en) Method for producing carbon quantum dots
Tomskaya et al. Synthesis of Luminescent N‐Doped Carbon Dots by Hydrothermal Treatment
Hassairi et al. Tuning white upconversion emission in GdPO4: Er/Yb/Tm phosphors
WO2022202384A1 (en) Method for producing carbon quantum dots
Cheng et al. One-pot synthesis of ultrasmall β-NaGdF 4 nanoparticles with enhanced upconversion luminescence
Ma et al. Enhanced luminescence of delaminated layered europium hydroxide (LEuH) composites with sensitizer anions of coumarin-3-carboxylic acid
WO2021235025A1 (en) Composition and method for producing same
Smalenskaite et al. Induced neodymium luminescence in sol–gel derived layered double hydroxides
WO2022044422A1 (en) Solid composition and method for producing same
JP5125817B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
Tiwari et al. Synthesis, characterization and optical studies of highly luminescent ZnS nanoparticles associated with hypromellose matrix as a green and novel stabilizer
Qiu et al. Green-light-emitting carbon dots via eco-friendly route and their potential in ferric-ion detection and WLEDs
Zhang et al. Size‐tailored synthesis and luminescent properties of three‐dimensional BaMoO4, BaMoO4: Eu3+ micron‐octahedrons and micron‐flowers via sonochemical route
JP5062065B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
Khan et al. Spectroscopic properties of Sm3+ and CdS co-doped in sol-gel silica glass
JP7265093B2 (en) Method for producing the composition
Kolte et al. Optical properties of Ln 2+, 3+(Ln= Eu 2+, Ce 3+, Dy 3+ and Ce 3+/Dy 3+) doped BaMg 2 Al 6 Si 9 O 30 nanophosphor
Zeng et al. Multicolor properties and applications of Ln 3+ doped hierarchical NaY (WO 4) 2 via a facile solvothermal process
TWI836209B (en) Composition and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP